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Abstract

Cellular communications exploiting the mmWaves frequency range are coming
within our technological reach. However the specificities of propagation at these
frequencies call for new transmission schemes. Concerning the downlink there are
signs that opportunistic beamforming may be an effective solution. This thesis
aims to show that in mmWaves channels, schemes based on randomly-directional
beamforming allow to harness both the spatial multiplexing and multiuser diver-
sity characterizing the broadcast channel by using only limited feedback and a
simple transmitter architecture. It is well-known that performances of random
beamforming schemes become optimal when the number of users tends to infinity.
Hence, the number of necessary users with respect to the number of transmitting
antennas is investigated and the necessity of a linear relation between the two is
confirmed. Opportunistic beamforming is furthermore analysed under the aspect
of fairness. The possibility to combine it with proportional-fair scheduling with
only a small sum-rate loss is shown. Finally, the allocation of multiple users per
beam is considered and the advantage of NOMA over OMA under the point of
view of fairness is displayed.
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Introduction

In the two past decades internet access has been shifting from fixed only con-
nections to mobile ones, and 2017 was the first year where more web-pages were
served to mobiles users than to fixed ones. This global phenomenon is especially
fostered by newly industrialized countries users which are mainly accessing inter-
net through mobile connections (98 percent of Internet users in China are mobile).
Furthermore mobile users data rates requirements have boomed with the consump-
tion (and production) of video content on smartphones. This trend is continuing,
plus the connections density is increasing as the spectrum must also be shared with
machines forming the new Internet of Things. In this context increasing spectral
efficiency and frequency reuse is becoming harder and harder. That’s why among
its new features, the fifth generation (5G) of the global cellular network introduces
a radical change in the range of frequencies over which the communications may
occur. Indeed it includes parts of the millimetre-waves (mmWaves) spectrum, also
referred to as Extremely High Frequency spectrum, which ranges from 30 GHz
to 300 GHz, while previous generations of cellular networks used only frequencies
under 4 GHz. Unfortunately this huge amount of bandwidth wasn’t allocated be-
fore to mobile communications for a sensible reason: its propagation properties
are pretty poor. Indeed mmWaves suffer of a much higher propagation power loss,
specifically when passing through solid and liquid obstacles, which may completely
block them. On the other hand, given the shortness of the wavelength it is possible
to fit in a regular base-station antennas arrays composed of a great many elements
and thus exploit the advantages of Multiple-Inputs Multiple-Outputs (MIMO)
systems.

Unfortunately usual precoding techniques require, not only a complex hard-
ware structure which may be unrealizable in mmWaves, but also the knowledge
of the state of the channel at the transmitter, and as the number of users and
antennas becomes very large the Channel State Information (CSI) that should
be fed-back from users to the base station may become too large. One way to
overcome this problem is to simply focus the transmitted power towards users
through beamforming. The elements of an antennas array can be coordinated
to provide a high directivity to the signal. Furthermore, this directivity is con-
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served by the mmWaves channel which has a quasi-optical nature: a beam may be
blocked or reflected but will generally suffer little scattering and diffusion. How-
ever the mmWave channel presents an high variability, so to ulteriorly decrease
the training overhead beamforming techniques where the beams are transmitted
in random directions and then assigned to the user presenting the highest signal
power have been developed under the name of random and Opportunistic Beam-
Forming (OBF). This kind of schemes try to exploit the concept of multiuser
diversity, which consists of exploiting the variability of the channel to transmit to
each user when it is close to its peak channel quality level. In this optic, users
only need to feed-back an aggregated channel quality indicator or their Signal to
Noise plus Interference Noise Ratio (SINR) to the base station, consequently the
feedback overhead is greatly reduced.

The interference between signals intended to different users is greatly decreased
by using different beams focused in different directions, as they become asymp-
totically orthogonal when the number of transmitting antennas increases. In this
way we can simultaneously transmit to many users located in different directions
without needing to use separate frequency bands or codes reducing the available
degrees of freedom. This concept is called spatial multiplexing and it is known
that the maximal number of achievable parallel transmissions is, in the general
MIMO case, limited by the number of transmitting antennas and receiving an-
tennas. As the achievable angular beam width is inversely proportional to the
number of antennas we may expect to be able to achieve a similar result with
random beamforming using equispaced beams, but only at the condition of being
able to find users aligned with each beam. The relationship between the number of
transmission antennas and the necessary number of users have been object of stud-
ies and it has been shown that in mmWaves the necessary number of users to get
both a full power and multiplexing gain asymptotically grows only linearly with the
number of transmitting antennas, while for lower frequency channels modelled by
Rayleigh fading this growth was exponential in the number of antennas. Random
beamforming hence appears much more suitable for mmWaves frequencies.

Another issue is represented by the fact that focusing resources on the best
users lead to fairness issues. Indeed if our criterion for transmission is simply the
quality of the channel with respect to the random beam we can be led to neglect
users which are far away from the base-station. To assure fairness we will probably
be forced to sacrifice some multiuser diversity but the trade-off should be dealt
with smartly. This kind of problems is generally dealt with through scheduling
policies, but in the context of random beamforming the beam directions determine
a subset of well-aligned users which are suitable for transmission so the scheduling
policies must be rethought on a sectors basis, while trying to maintain a global
optimality. Furthermore an advantage of Non-Orthogonal Multiple Access Tech-
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niques (NOMA) (which consists in the superposition of the signals intended to
different users followed by interference cancellation) with respect to Orthogonal
Multiple Access Techniques OMA, like Time Division Multiple Acces (TDMA) or
Frequency Division Multiple Access (FDMA), has been proved in terms of achiev-
able sets of rates in the multiuser scenario. So it would be interesting to see how
this can be applied to fairness enforcing for random beamforming in mmWaves
channels. Interference cancellation of NOMA requires a computational complexity
at the receiver scaling with the number of involved users, indeed each users should
decode all the data intended to users with a worst channel than its own to remove
their interference. In order to limit this complexity, the separation of users in sec-
tors associated to each beam becomes advantageous, as we can perform Successive
Interference Cancellation (SIC) just on a few users at the time.

Thesis outline and organization
The general aim of this thesis is to show that, in mmWaves channels, schemes based
on random-directional beamforming allow to harness both spatial multiplexing and
multiuser diversity of the Broadcast Channel (BC) using only limited feedback
from users and a simple transmitter architecture.

The thesis is organized in two parts. The first part is named "Theoretical
framework and analysis" and contains the chapters 1 to 4. This title shouldn’t
mislead the reader: this part deals with very practical problems, but with an ana-
lytical and theoretical approach. The numerous aspects which contributes to the
suitability of random beamforming in mmWaves channels (like channel character-
istic and hardware limitations) are presented. The general performances we can
expect from random beamforming are put in the larger contest of linear precod-
ing and the general information-theoretic broadcast channel. The opportunistic
beamforming scheme itself is characterized and the criticalities emerging from a
theoretical analysis are pointed out. The second part is named "Computational
analysis and numerical results" and it contains Chapter 5 and 6. These two chap-
ters aim to elucidate the aforementioned issues of the necessary number of users and
fairness by computational methods: including simulations and numerical analysis.
Different fairness policies are extended to opportunistic beamforming and their
performances are compared.

• Chapter 1: mmWaves and simplified channel models
The electromagnetic waves propagation characteristics in the mmWave fre-
quency range are reported and compared the those in the traditional fre-
quencies. The channel models successively used are defined and justified.

• Chapter 2: Optimal performances of the MIMO Broadcast Channel

3



The broadcast channel is analysed from an information theoretical point of
view, leading to the sum-capacity formulas and it’s asymptotical analysis.
The concepts of spatial multiplexing and multiuser diversity, which explain
the asymptotical performances of opportunistic beamforming, are explained
and their upper bound is defined.

• Chapter 3: Dealing with hardware and feedback limitations
The problem of limited feedback in linear precoding is exposed, and random
beamforming proposed as a solution. The main beamforming transceiver
architectures are reviewed, and practical problems calling for a simple direc-
tional beamforming protocol are presented.

• Chapter 4: Some open issues in opportunistic beamforming
The problem of the necessary number of users for optimal performances
of opportunistic beamforming is stated and some asymptotical results are
exposed. The optimal fairness concept is defined and associated to scheduling
policies, as well as NOMA and OMA.

• Chapter 5: Methodology and approach
The objectives of the numerical analysis are presented, and the simulations
methodology is described. A semi-analytical approach to quickly compute
the expectations of some r.vs. of interest are presented.

• Chapter 6: Simulations and results:
Simulations concerning the evolution of the performances of opportunistic
beamforming with the number of users are performed and their results are
exposed. The proportional fairness policy is examined for random beam-
forming in heterogeneous networks, the proportional fairness scheduling is
applied in conjunction with NOMA in order to see if an advantage over
OMA is obtained.

The following conceptual diagram put in relation the main topics and ideas un-
derlying the thesis structure.
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Figure 1: Conceptual scheme of the thesis content
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Part I

Theoretical framework and analysis
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Chapter 1

mmWaves and simplified channel
models

Electromagnetic waves in the frequency range between 30 GHz and 300 GHz
are referred to as millimetre waves (often abbreviated as mm-Waves or mmWaves
and officially called “extremely high frequencies” by the ITU) because their wave-
length span from about one to ten millimetres. This large amount of under-utilised
bandwidth (about 250 GHz of usable bands) [12] represents one of the main re-
sources which will allow the next generations of cellular systems, starting from
5G, to meet the massively increasing data rate demand from users and connected
devices [13]. In the past these frequencies were mainly used in the backhaul for
fixed or satellite point-to-point radio-links because their characteristics seemed to
be unfit for mobile communications which were instead deployed in microwave
frequencies usually between 700 MHz and 2.6 GHz.

Figure 1.1: Electromagnetic spectrum chart showing the planned allocation of
mmWaves bands in 5G (credits: Qualcomm)

The way electromagnetic waves propagate and interact with the environment
is strongly frequency dependent. Indeed, mmWaves suffer from high atmospheric
attenuation (due to oxygen absorption or precipitation) and have a low penetra-
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tion coefficient which may result on the complete shadowing presence of obstacles
(buildings but also foliage) [3]. Furthermore, being the propagation of mmWaves
very directional, similarly to visible light, it was thought that only line-of-sight
(LOS) communication would have been possible. However, the smallness of the
wavelength allows to concentrate a large number of antennas in a small surface
base station (BS) or user equipment (UE) transceiver which allows to implement
massive MIMO or beamforming techniques which greatly improve capacity by in-
creasing directivity gain and leveraging path diversity and reflections. Robust
links with moving UE can furthermore be achieved by adaptive beam steering
and handover from one BS to another. Also the manufacturing of components
for mmWaves transmission, reception and processing developed in the past few
years and nowadays network and device components are already being commer-
cialised [14]. In this chapter we are thus going to investigate which are the main
characteristics of the mmWaves channel and describe some resulting models which
have been proposed in the literature and are fitted for our successive analysis of
random beamforming schemes, which implies a trade-off between accuracy and
mathematical tractability.

1.1 Propagation characteristics of mmWaves
The aim of this section is to give a quick overview of the main differences

between mmWaves bands and traditional cellular bands, focusing on those charac-
teristics that will motivate the adoption of our channel models and the consecutive
analysis of random beamforming schemes: increased path loss, high probability of
blockage and sparse multipath.

1.1.1 Signal attenuation and blockage

The maximum coverage distance and interference levels in our system will
depend on the path loss caused by free space and atmospheric attenuation. First
and foremost, one could remember that the free-space path loss (FSPL) depends
quadratically on the frequency:

FSPL =

(
4πd

λ

)2

=

(
4πdf

c

)2

(1.1)

when considering antennas with frequency-independent gains. For instance, we
will have a 40dB difference in FSPL between a transmission at 1 GHz and one at
100 GHz. Contrariwise if at both ends of the link we consider transceivers with a
fixed physical area and the corresponding antennas gains, we obtain that the path
loss decreases quadratically with frequency [15], [16]! Another major concern is the
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attenuation caused by gases composing the atmosphere and eventual precipitation.
The atmospheric attenuation generally increases with frequency and we can notice
in Figure 2 the presence of several stronger absorption windows corresponding to
dioxygen and water vapor molecules resonance frequencies that we will preferably
reserve for local or personal area communications with coverage distances of a few
meters. But if we consider a transmission distance of one kilometre, we realise that
between 30 and 100 GHz, taking out the 50 to 70 GHz oxygen absorption window
we have 50 GHz of bandwidth left where the atmospheric attenuation is under 1 dB!
Since one of the principles of modern cellular systems is frequency reuse through
the deployment of a dense network of base-stations, with inter-site distances of a
few hundred meters in urban areas, the atmospheric attenuation would be even
lower. Using more sophisticated channel models for the urban micro-cell scenario
like the 3GPP/ITU ABG or NYUSIM from New York University, it has been
shown that beyond the first meter of distance there is virtually no difference in
the path loss exponent between mmWaves and standard microwaves [15].

Figure 1.2: Atmospheric absorption of mmWaves [1]

Another factor to be taken into account is rain and the other climatic
effects. If the effects of light rain are negligible for small cell distances, heavy
rain or fog may severely impair performances of mmWaves systems. The size
of raindrops is roughly the same as the wavelengths of mmWaves and there-
fore they can scatter, but also absorb, diffract or depolarize the signal. The
attenuation will depend on the intensity of rain, usually expressed in millime-
tres per hour, but also on the distribution of droplets size and waves’ polariza-
tion (see [17] and [18] for more details). We will here focus only on frequency.
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Figure 1.3: Rain attenuation in
mmWaves frequencies [2]

As shown in Figure 1.3 the rain attenu-
ation increases of many orders of mag-
nitude in the first ten GHz but then be-
comes almost constant after 100 GHz.
Taking a frequency of 75 GHz one can
observe that the heavy rain attenua-
tion is roughly 10dB/km which is quite
large. Although this kind of attenua-
tion may be compensated by increased
gains, in the regions where intense pre-
cipitation is expected it is a good prac-
tice to set-up a system where communi-
cations in regular cellular bands act as
back-up when the severe propagation
impairments make mmWaves commu-

nication unavailable or inconvenient. Another fundamental challenge for mmWaves
signals is their sensitivity to blockage. Considering the mobility of users, the ap-
pearance of buildings, vehicles but also of foliage or of the user’s own body in
the transmission path between the BS and the UE is very likely and may cause a
sudden outage if not handled properly. It has been shown that transmission power
through lossy media decreases almost uniformly with frequency [15]. It is thus
very hard to guarantee connection to indoor users with an outdoor base station,
and thinking to an urban environment, coverage can be guaranteed only with a
dynamic optimization of beamforming/precoding to exploit the better paths and
the handover from one BS to the other when it gets a better channel. The required
density of BS will actually be mainly determined by the blockage events rather
than attenuation or frequency reuse requirements [19]. Simulations for 5G New
Radio have shown that in a metropolitan setting the inter-site distance should
be of about two hundred meters to guarantee coverage with present technology.
From a Qualcomm simulation for San Francisco it resulted that by reusing existing
LTE sites to deploy mmWaves BS an outdoor downlink coverage of 64.8% could
be achieved, and that by reaching 73 sites/km2 a coverage of over 95% could be
achieved [20].

1.1.2 Multipath and consequent delay and Doppler spread

Given the high attenuation or blockage that could be suffered by the LOS path
and the advantages resulting from spatial diversity, advanced beamforming and
beam tracking techniques leveraging path diversity and reflections are one of the
key enabling factors for successful mmWaves communications. The quasi-optical
nature and high directivity of mmWaves typically produce very few multipaths,
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but they can have a sufficiently high intensity to allow for non line-of-sight (NLOS)
communication. As the wavelength is so short many surfaces which would appear
nearly flat at higher scales become rough (i.e. have surface height deviations
comparable to the wavelength) and produce diffuse scattering. This diffusion being
essentially isotropic in the extreme case, it entails a large power dissipation [15].
For this reason, in urban areas the material composing building façades becomes a
critical factor (consider the difference between smooth glass and concrete or stucco
for instance). Diffraction on the other hand strongly decreases at high frequencies,
so obstacles like buildings, vehicles or people will produce sharp “shadows”, and
it will be difficult to be able to exploit a refracted signal to reach a UE around a
building corner for instance [21]. We will mainly rely on reflections, obeying the
Fresnel equations like visible light. NLOS paths will require channel equalization
and will have a higher latency than LOS channels. Each path n having a different
length, it will introduce a different delay τn, which will result at the receiver in a
phase shift of 2πτnf for that path’s spectral components. The impact of the higher
frequency of mmWaves on the delay spread is not clear but the root-mean-square
(RMS) delay spread is generally below a few hundreds of nanoseconds. The delay
spread is actually much more influenced by the type of environment as shown in
1.4 where the New York City environment is denser and more reflective than the
one of Austin which implies LOS links only for small ranges and shorter delay
spreads.

(a) New York (b) Austin

Figure 1.4: Measures of RMS delay spread as a function of TX-RX separation for
all possible pointing angles at 28 GHz in New York City and 38 GHz in Austin,
Texas for LOS and NLOS links [3]

In a scenario with mobile users (or reflectors), multipaths will lead by
Doppler effect to different frequency shifts νn, depending on the different angle of
arrivals to the UE and resulting in a phenomenon called Doppler spread, which
also design the range of these frequency shifts. The channel coherence time is
the time interval over which the frequency response of the channel can be con-
sidered static. As it depends on the speed at which the UE moves from a region
of destructive interference between multipaths to the other, coherence time is in-
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versely proportional to the Doppler spread, and for a constant UE velocity the
Doppler frequency shift linearly increase with the carrier frequency. As a result, in
mmWaves the coherence time is smaller than in regular cellular bands. This means
that passing from 2 GHz to 28 GHz carriers, causes channel coherence times pass-
ing from 500 µs to 35 µs. For the Channel State Information at the Transmitter
(CSIT) to be useful, it must cover a time-frequency block where the channel is
approximately static, so it should be updated at each coherence time. That’s one
of the reasons why full CSI feedback in mmWaves becomes more challenging than
at lower frequencies, additionally to the lower capabilities in uplink with respect
to the downlink, if we want to concentrate complexity at the BS. Nevertheless, the
use of a narrow beam can allow to eliminate much of multipaths and simplify the
channel response by considerably reducing the delay spread and Doppler spread
(by reducing the angular spread of incoming waves), thus also increasing coherence
time [2]. By channel sparsity we indicate the fact that the range of the parameters
(like angle of arrival, delay, Doppler shift) associated to non-negligible received
power is very limited.

1.2 Fundamental models for a multiuser downlink
MISO in mmWaves bands

Given the high directivity of mmWaves, ray-tracing-based models have been
successfully used to find the best path with minimal loss and maintain a low inter-
ference level [22]. These models relay on a knowledge of the surrounding environ-
ment geometry and propagation characteristics, which could be obtained through
an initial set-up operation or a routine training phase. In the 5G NR context,
very sophisticated models have been designed, we can cite the ABG model from
3GPP/ITU. But the aim of this thesis is to show how in a mmWaves multiuser
downlink scenario, smart stochastic beamforming schemes can achieve almost op-
timal performances using only a partial CSI feed-back. Our result aim to be of
general extent, and to overlook the specificities of the individual settings. We will
thus adopt tractable analytical models, with a fixed set of parameters (number of
paths, average path loss, blockage probability etc.) which will be used to simulate
the channel of each user, making abstraction of the physical environment leading
to that channel characteristics, and representing them by appropriate random vari-
ables. Nonetheless, in order to apply the beamforming concept, and to implement
schemes based on the distance of the UE from the BS, we will also have to assign
a position to users around the BS. The details will be explained in the simulation
scenario description part.
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1.2.1 Rayleigh and Ricean fading models

The well-known Rayleigh and Ricean fading models have been used to repre-
sent wireless channels in a compact way by taking advantage of the central limit
theorem. They indeed consider the interference at the receiver of a very large
number of refracted or reflected multipaths. By considering that the individual
attenuations and delays of each of the Np paths are independent of frequency and
by neglecting Doppler effect, we can model a multipath fading channel between
the BS and UE as a linear time-variant system, where the signal at the receiver
becomes:

r(t) =

Np∑
n=1

an(t)x (t− τn(t)) (1.2)

with x(t) being the transmitted signal and an (t) the complex valued overall attenu-
ation factor that includes all the effects of the propagation and antennas gains. By
using Shannon-Nyquist sampling theorem we get a discrete convolutional model:

r[m] =
∞∑
l=0

hl[m]x[m− l] (1.3)

where the contributes of the different paths have been grouped as:

hl[m] =

Np∑
n=1

an

(m
W

)
e−j2πfτn(

m
W ) sinc

[
l − τn

(m
W

)
W
]
. (1.4)

Each Fourier component will thus suffer from a phase shift of e−j2πτnf due to travel
time. If we look at the wavelength λ of the component and the path length dn we
have that τnf = dn

λ
� 1, so for each path the phase shift can basically be con-

sidered uniformly distributed between 0 and 2π, thus each of the addends in the
previous sum can be modelled as an independent circular symmetric complex ran-
dom variable. As the number of paths becomes very large, if we consider all their
gains to be of close orders of magnitude, we get that the distribution of the sum
hl[m] converges by the central limit theorem towards a circular symmetric complex
gaussian (see [23] for a more rigorous and complete development). This defines the
Rayleigh fading channel, which is usually associated to additive white Gaussian
noise (AWGN) n[m]∼CN(0, σ2

m) to form the following input-output model:

y[m] =
L∑
l=0

hl[m]x[m− l] + n[m] (1.5)

note than in practice the impulse response will be of finite length L as longer delays
correspond to longer paths which in turns are associated to stronger attenuations
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and become negligible. In the narrowband approximation all the τn (t) are much
lower than the symbol period so we can assume the channel to be memoryless, or
equivalently frequency flat fading (FFF), in that case we only have a multiplicative
channel:

y[m] = h∗[m]x[m] + n[m] . (1.6)

For a Multiple-Input Single-Output (MISO) system instead, we need to consider
the superposition at the kth user’s receiver of the signals xi[m] coming from each of
the M transmitting antennas, and that each of them experiment a different fading
hk,i[m]:

yk[m] =
M∑
i=1

h∗k,i[m]xi[m] + nk[m] = h†k[m]x[m] + nk[m] . (1.7)

In the Rayleigh frequency-flat fading MISO channel, if the separation between
the transmitting antennas is sufficiently large, we consider that each of the fading
coefficients is independent from the others. The Rayleigh model is fitted for
scenarios with only NLOS paths and diffuse scattering or many small reflectors
rather than few strong reflections. From the considerations made in the first section
of this chapter on mmWaves propagation characteristics, we easily understand that
the Rayleigh model isn’t particularly adapted. The Rician channel model is an
extension of the Rayleigh model which includes an additional dominant LOS or
specular path with known attenuation

√
k
k+1

σ
1
where k, called K-factor, balance

the ratio of energy among the main path and the scattered paths:

hl[m] =

√
k

k + 1
σ1e

jθ +

√
1

k + 1
CN

(
0, σ2

l

)
. (1.8)

Although the inclusion of a dominant path makes the Rician model better for LOS
mmWaves links both these models have been developed in the context of traditional
communications at lower frequencies where the power of scattered waves is more
relevant, and don’t take into account of the direction of the transmission, nor the
distance from the BS, but only small-scale fading effects.

1.2.2 Models including directivity and distance

As anticipated, we will make use of beamforming to focus power toward the users
through a good path and avoid interferences. We consider that our transmitting
BS is equipped with a large uniform linear array (ULA) of M antennas spaced of
a distance d. If the receiving UE are sufficiently far away from the BS (more than
the Fraunhofer distance), the far-field approximation holds and the waves can be
considered planar. Then, we can note from 1.5 that depending on the receiver
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azimuthal angle with respect to the array, it will receive the signal produced by
each antenna with a delay due to the difference in the wave path lengths.

Figure 1.5: Uniform linear array with inter-antenna distance d. Note the additional
path distance d sinφ for each antenna before the right side one [4]

The signals are received with a constant time delay τ = d sinφ
c

, where c is the
speed of light, between each consecutive antenna, which is equivalent to a phase
delay of 2πfcτ = 2π d sinφ

λc
where fc and λc = c

fc
are the carrier frequency and

wavelength. We will define the normalized normalized angle of departure (AoD)
from the physical AoD φ ∈ [−π, π] and the carrier wavelength λc as follows:

θ =
2d sinφ

λc
. (1.9)

If we start counting from the antenna on the closest end of the array, the ith
antenna will have a cumulative phase delay of (i − 1)πθ. We can thus model the
received signal from this path as a(θ)†x[m] where a(θ) is called steering vector and
is defined as:

a(θ) =
1√
M



1

e−jπθ

e−jπ2θ

...

e−jπ(M−1)θ


(1.10)

Our channel models are assumed to be non-selective in frequency in order to focus
only on the spatial aspects, so we’ll use as input output model:

yk[m] = hk[m]†x[m] + nk[m] (1.11)
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The strength of the received signal will mainly depend on how much energy is
transmitted in the directions that result in a good propagation channel (in LOS
or through reflections) to the UE. Such a channel can be modelled as:

hk[m] =

√
M

Np

Np∑
i=1

αk,i[m]a (θk,i) (1.12)

Where the αk,i are the path gains that will change for each transmitted symbol in a
fast fading scenario. The high directivity and attenuation of mmWaves allows us to
limit ourselves to a small number of paths Np with non-negligible received power.
By modelling the gains as independent standard complex Gaussian variables, that
is αk,i[m]∼CN(0, 1), and the AoD θk,i as independent random variables with
uniform distribution over [−1, 1], we obtain the so called Uniform Random Multi-
Path (UR-MP) channel model, whose energy is normalized. In the extreme case
of only one relevant direction, we reduce to the so called “Uniform random single
path” (UR-SP) model:

hk[m] = αk[m]
√
Ma (θk) (1.13)

The UR-SP model has been introduced in [24] and extensively used to simplify the
task of analytically studying beamforming in highly directional mmWaves chan-
nels, while the UR-MP was introduced in [25] in order to capture a larger variety of
scenarios. Indeed, as Np grows we pass from a single path case to a few dominant
reflections and then reach high scattering scenarios, asymptotically converging to
the Rayleigh fading scenario. Finally, one may want to explicit the part of atten-
uation depending on the distance between the UE and the base station, to be able
to use the distance information to optimize the transmission strategy, so we have:

hk[m] =

√
M

Np

αk,0[m]a (θk,0)√
1 + dβLOSk

+

√
M

Np

Np−1∑
i=1

αk,i[m]a (θk,i)√
1 + dβNLOS

k

(1.14)

which allows us to distinguish between the loss exponents of the line-of-sight path
βLOS and the loss exponent of the non-line-of-sight paths βNLOS . One option
adopted in [26] is to focus on the dominant LOS path and neglect the others,
obtaining the simplified model:

hk[m] =
√
M
αk[m]a (θk)√

1 + dβLOSk

(1.15)

then we can assume that this LOS path will be available only with a certain
probability P (LOS) = e−φdk with φ determined by the building density, their
shape and material etc. . . If the LOS path isn’t available, we will simply consider it
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as a blockage situation, excluding that user from the transmission. These models
will allow us to analytically study and simulate random beamforming schemes
based on the position of users, which could be obtained by the BS through feedback
or estimation techniques. However, the distance can also be seen as a proxy for
any factor determining a long term heterogeneity of the fading between users: such
as the presence of highly attenuating medias in the transmission path.
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Chapter 2

Optimal performances of the MIMO
Broadcast Channel

The scenario considered by this thesis consists in the downlink from a base
station to multiple non-cooperative receivers, which is referred to in information
theory as broadcast channel. Note that differently from the meaning given to
"broadcasting" in networking terminology, we consider that the transmitter wants
to deliver independent data to the different users, so our scenario is indeed the
one of cellular networks rather than radio or television broadcasting. In order
to evaluate the performances of the proposed limited feedback schemes, we need
an ideal benchmark as reference. Thus we will now briefly introduce the main
capacity results for MIMO broadcast channels and the main concepts that need
to be exploited to achieve the capacity region: spatial multiplexing, interference
cancellation and multiuser diversity.

2.1 Capacity region of the MIMO BC

As we are dealing with a multiuser system, where we want to transmit in-
dependent information to each of the K users, we cannot simply talk about the
capacity of the channel, but we have to use the concept of capacity region.

Definition 2.1.1. Consider a set (R1, R2, ..., RK−1, RK) of simultaneously achiev-
able rates between the base-station and K users, the capacity region of the channel
is defined as the the closure of the union of all achievable rate sets.

As studying the region of achievable sets of rates using a specific communication
strategy may become cumbersome in some situations, we may focus on some other
simplified metrics. The most important one is the sum-rate RSum which is the
maximal sum of rates simultaneously achievable by a communication strategy, and
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is upper-bounded by the sum-rate capacity CSum of the channel. The sum-rate
offers a view on the global performance of the system. Instead, if we are concerned
about the balance between the rates of each users a simple solution is to use the
symmetric-rate RSym which is the highest rate that can be simultaneously allocated
to every receiver in the system, and whose upper bound is the symmetric capacity
CSym of the channel. The condition of having identical rates for each user being
quite restrictive, in the methodology chapter we will see that other metrics can be
used to evaluate the fairness of the system.

2.1.1 Capacity region of the SISO Broadcast Channel

Let’s first consider the case where there is only one transmitting antenna and
one receiving antenna per user: the Single-Input Single-Output (SISO) Broadcast
Channel:

yk = h∗kx+ nk, k = 1, 2, . . . , K (2.1)

where hk ∈ C is the downlink channel between the BS and user k, x ∈ C is the
transmitted signal and the complex Gaussian noise terms nk∼CN(0, 1) are inde-
pendent. Furthermore, we set a limit on the transmitted power: σx = Ex [xx∗] ≤
P .

Unless all users have the same channel gain, the full capacity region can’t be
achieved by orthogonal multiple access schemes like Time Division Multiple Ac-
cess (TDMA) or Frequency Division Multiple Access (FDMA) which totally avoid
interference between signals intended to different users. In the general case the
capacity-region achieving communication strategy is to use a Non-Orthogonal Mul-
tiple Access (NOMA) scheme, composed of Superposition Coding at transmitter
and Successive Interference Cancellation (SIC) at receivers [27], [28]. Superposi-
tion Coding consists in simply transmitting a weighted sum of the signals intended
to each user. Note that the rate of the superposed streams will be different in gen-
eral. Then, each users is able to decode the data intended to users with channel
gain lower than its own, and can thus reconstruct the corresponding transmitted
signals and subtract them from the received superposition before decoding its own
message. In this way each user only suffers from the interference caused by signals
intended to users with a better channel gain.
By varying at the transmitter the power assigned to each user’s signal all points
of the capacity region are achieved. For instance, supposing to have two users, if
we want to help the user which has the channel with the lower gain we can in-
crease the power dedicated to its transmission without significantly deteriorating
the performances of the user with the better channel as it will not be affected
by interference anyway. The sum-capacity, for any K, is nevertheless achieved by
transmitting only to the user with the highest channel gain. If we order users by
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decreasing channel gains, that is |h1| ≥ |h2| ≥ · · · ≥ |hK |, the boundary of the
capacity region of the SISO BC with AWGN of power N0 and total transmitted
power P is given by the sets of rates {Rk}1≤k≤K of the following form:

Rk = log

1 +
Pk |hk|2(∑k−1

j=1 Pj

)
|hk|2 +N0

 subject to
K∑
k=1

Pk = P . (2.2)

The sum-capacity is then obtained as:

CSumSISO−BC = max
{Pk}|

∑K
k=1 Pk=P

K∑
k=1

Rk

= max
{Pk}|

∑K
k=1 Pk=P

K∑
k=1

log

1 +
Pk |hk|2(∑k−1

j=1 Pj

)
|hk|2 +N0


= log

(
1 +

P |h1|2

N0

)
.

(2.3)

To apply SIC, one needs to be able to order the channels of the different users, we
did this intuitively by considering an ordering of the channel gains |h1| ≥ |h2| ≥
· · · ≥ |hK | but we should stress the fact that SIC is capacity achieving for a class
of broadcast channels designed as degraded.

Definition 2.1.2. A broadcast channel with K users is said to be degraded if
the r.v. X representing the transmitted signal and the r.vs. Yi with 1 ≤ i ≤ K
representing the signal received by each user constitute a Markov chain of the form:
X → Y1 → Y2 → ...→ YK.

This implies for instance, that a higher rate is achievable between the BS and
user i than between the BS and user j > i by the data processing inequality which
states that I (X;Yj) ≤ I (X;Yi) for any input distribution p(x), we say in that
case that the channel of user i is more capable than the channel of user j. We
can see that our Gaussian Broadcast Channel GBC falls in the class of degraded
channels by first considering the equivalent channel where all channels have equal
attenuation but a rescaled noise power Ni = N0

|hi|2
, which will be ordered as follows:

N1 ≤ N2 ≤ ... ≤ NK . Then the received signal by user l > 1 can be expressed
as the sum of the signal received by user l − 1 and some independent additional
Gaussian noise of power Nl − Nl−1. In this way Yl depends on X only through
Yl−1 and we have a Markov chain.
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Figure 2.1: Equivalent degraded model of a 2-users Gaussian BC [5]

This description of the SISO BC was important not only as limiting case of the
more general MISO BC but because it allowed us to introduce SIC which, despite
not being directly applicable or capacity achieving in the MISO case, will turn
out useful in the developments part to efficiently multiplex on a single directional
beam many users with disparate channel qualities (i.e. when the near-far effect is
predominant).

2.1.2 Capacity region of the MIMO Broadcast Channel

By allowing multiple antennas at the transmitter, it’s not anymore so obvious how
to rank the channels of the different users by their quality: the channel is in general
non-degraded. We now have a channel vector (or matrix for N > 1) for each user,
and as the effective channel gain will depend on its scalar product with the transmit
vector x, having a higher norm isn’t a sufficient condition to get a higher gain, the
correspondence between the directions of the two vectors also has to be taken into
account, as well as the phase matching. Thus it is impossible to state generally
that one user will be able to decode the data intended to other users because its
channel is better, making SIC not applicable. Nevertheless, another way to reduce
the multiple access interference, taking advantage of a coding technique developed
in 1983 which is named "dirty-paper coding" (DPC) or Costa precoding from the
name of its inventor [29]. This technique takes advantage of the fact that with full
CSIT, the BS knows how the signal intended to different users will interfere with
each-other and it can pre-cancel part of the interference at transmission. DPC
was first applied to the Gaussian Broadcast Channel in 2000 [30], starting from
a M = 2, K = 2, N = 1 setting it has successively been extended to the most
general case of arbitrary M , K and N . The rates region achieved by DPC was the
largest ever discovered but it took a few years to prove that it effectively coincided
with the capacity region of the GBC [31]. Although very interesting, a full account
of the research process leading to the final proof would fall beyond the scope of
this thesis, but it can be found in [32]. We will nevertheless mention the fact
that many progresses were allowed by the discovery of a fundamental equivalence
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between the Broadcast Channel and the Multiple Access Channel (MAC), which
represents the uplink case of the same scenario with multiple users and one base
station. For instance the sum-rate capacity of the GBC was upper bounded by the
so-called Sato’s bound and by passing through the dual MAC channel it has been
possible to prove that the maximal sum-rate point of the DPC region coincided
with it [33]. As we will see later, this equivalence allows to compute much more
easily the bounds of the capacity region of the GBC, for which no closed-form
solution exist.

Figure 2.2: System models of the MIMO BC (left) and the MIMO MAC (right)
channels [6]

Let’s now define the general MIMO Broadcast Channel model, where one base-
station with M antennas transmits to K users having each N antennas. Following
our narrow-band model we can express the received signal by user k as:

yk = Hkx + nk, k = 1, 2, . . . , K (2.4)

where Hk ∈ CN×M is the (known and fixed) downlink channel matrix between
the BS and user k, x ∈ CM×1 is the transmit vector, and the circularly symmet-
ric complex Gaussian noise terms nk∼CN(0, I) are independent. We define the
transmit covariance matrix of the input signal as Σx = Ex

[
xx†
]
� 0. Then, the

average power constraint of the transmitter can be expressed as: Tr (Σx) ≤ P .
The fundamental result of dirty paper coding is that when the noise is Gaussian
and if the channel to each user is known at the transmitter, it allows to sequentially
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encode the information for each user and transmit it simultaneously so that when
it receives the superposition each user experiences no interference from the users
encoded earlier. This is furthermore achieved without increasing the transmitted
power. As a glimpse on the functioning of DPC let’s suppose that we want to trans-
mit simultaneously to two different users. We first choose a code-word w1 ∈ B1

for the first user, then code for the second user by considering w1 as known inter-
ference. The optimal way to do so for the AWGN case y2 = w1 + w2 + n2 is to
find the intended information code word p which is closest to αw1 in a code-book
B2 formed by replicating B1 to uniformly cover all the domain over which the sum
of the signal and the interference could lie, and then transmit w2 = p−αw1. The
coefficient α = P

P+N0
will allow to minimize the error of the estimation of p at

the receiver, which is done by looking in B2 for the nearest code-word to αy2. In
this way, the second receiver error probability is the same as if the transmission to
the first user was absent. Similarly if we had one more user, we could choose its
code-word by presubtracting the interference caused by the first two user’s signals
to its transmission. Still, it would cause interference to users one and two as user
two causes interference to user one. We can apply the procedure to any number of
user but, differently from SIC, the choice of the ordering of users is arbitrary and
we will lead to different performances. That’s why we will make use of the set Π
of all the ordering vectors π over the set {1, 2, ..., K}, such that π(1) is encoded
first. By extending DPC to our general MIMO BC model the capacity region is
then defined as:

CBC (P,H1...K)
∆
=

Convex

 ⋃
π∈Π, Σ1,...,ΣK

 RDPC
1 (π,Σ1...K ,H1...K) , . . . ,

RDPC
K (π,Σ1...K ,H1...K)

 (2.5)

where Σ1, . . . ,ΣK are the individual power allocation matrices such that Σi � 0, ∀i
and tr

{∑K
i=1 Σi

}
= Tr (Σx) ≤ P and Convex{·} represents the convex envelope

operator. The rates RDPC
k achievable by DPC are then given by:

RDPC
π(i) = log

∣∣∣I + Hπ(i)

(∑
j≥i Σπ(j)

)
H†π(i)

∣∣∣∣∣∣I + Hπ(i)

(∑
j>i Σπ(j)

)
H†π(i)

∣∣∣ (2.6)

This equation shows explicitly the fact that the rate achieved by the ith user to be
encoded is obtained by considering only the power of transmissions to users π(j)
such that j ≥ i as noise or signal contributors. Nevertheless it doesn’t help us a
lot to obtain the bounds of the capacity region as the maximization of the sets of
rates is a non-convex problem. We will thus show how it can be obtained from
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the capacity region of the dual MIMO MAC which is much simpler to compute.
First, note that if the channel matrix in downlink is H, the uplink channel matrix
is H†. The main difference is given by the fact that we have, in general, individual
power constraints on each user’s covariance matrix Qi � 0 which must be such
that Tr (Qi) ≤ Pi.

Theorem 2.1.1. The dirty paper region of a MIMO BC channel with power con-
straint P is equal to the capacity region of the dual MIMO MAC with sum power
constraint P .

CBC (P,H1...K) =
⋃

{Pi}|
∑K
i=0 Pi≤P

CMAC

(
P1, . . . , PK ;H†1...K

)
(2.7)

Then we only need to know that the capacity region of the MIMOMAC channel
is given by the union (over the possible covariance matrices Qj � 0 which respect
the individual power constraints) of rates following a sum-rate bound for each
possible subset of the users:

CMAC

(
P1, . . . , PK ,H

†
1...K

)
∆
=
⋃
{Qi}|Tr(Qi)≤Pi

{
(R1, . . . , RK) :

∑
i∈S Ri

≤ log
∣∣∣I +

∑
i∈SH

†
iQiH i

∣∣∣ ∀S ⊆ {1, . . . ,M}} (2.8)

For each set of covariance matrices (Q1, . . . ,QK) we will obtain a K-dimensional
polyhedron of achievable rates. The MIMO MAC rates are a concave function of
the covariance matrices, so the boundary points of the capacity region and the
corresponding covariance matrices that the boundary points of the sum power
MIMO MAC capacity region (and the corresponding covariance matrices) can be
found by standard convex optimization algorithms. The duality of the MAC and
BC channel also allows to find more easily the optimal covariance matrices to be
used in dirty paper coding by a simple transformation of those used in the dual
MAC [33]. Concerning the achievable sum-rate, we have:

CSum
BC (P,H1...K) = CSum

MAC(P,H†1...K)

= max
{Qj}|∑K

i=1 Tr(Qi)≤P
log

∣∣∣∣∣I +
K∑
i=1

H†iQiH i

∣∣∣∣∣ (2.9)
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Figure 2.3: Dual capacity regions of the MAC and BC for two-users [7]

Note that till here we have always considered for simplicity deterministic and
fixed channel matrices, but the results we have found can be extended to fast
fading channels in the sense of ergodic capacity. For instance the ergotic sum-rate
capacity of the MIMO-BC with full CSIT can be found in [34] to be:

CSum
BC = maxQk(H) EH

[
log
(∣∣∣I +

∑K
k=1 HH

k Qk(H)Hk

∣∣∣)]
subject to:∑K
k=1 Tr (Qk(H)) ≤ P

Qk(H) � 0, for k = 1, 2, . . . , K

(2.10)

which is an immediate extension of (1.34) taking in account that the covariance
matrix can be adapted as a function of the realizations of the channel matrix.

2.2 Spatial multiplexing and multiuser diversity in
MIMO Broadcast Channels

In the analysis of the achievable rate of a telecommunication system, one
major factor is represented by the number of degrees of freedom of the channel.
Degrees of freedom can be seen as the number of independent dimensions over
which we can transmit our signal or, more precisely, as we are concerned with
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distinguishability at the receiver, as the number of dimensions of the received signal
space. For instance by using Quadrature Amplitude Modulation (QAM) instead of
Pulse Amplitude Modulation (QAM) we double the number of degrees of freedom,
but this can also be achieved by doubling the bandwidth and transmitting two
independent symbols over orthogonal carriers. But degrees of freedom can also be
increased by taking advantage of the physical separation between multiple receiving
antennas if we manage to transmit different non-interfering data streams to each
of them. In this case we talk about spatial degrees of freedom, which in turn
allow for spatial multiplexing. The number of degrees of freedom of the channel
will determine how many additional bits per channel use we obtain by doubling
the transmission power at high Signal to Noise Ratio (SNR). Considering only the
variability of spatial degrees of freedom, we can define the spatial multiplexing
gain as follows.

Definition 2.2.1. The spatial multiplexing gain r corresponding to a transmission
rate R obtained by using a total power P is defined as:

r = lim
P→∞

R (P )

logP
. (2.11)

We will now see how the maximal spatial multiplexing gain can be computed
and obtained in a MIMO point-to-point channel, and then understand how this
concept can be extended to the broadcast channel.

2.2.1 Spatial multiplexing in MIMO point-to-point systems

As explained spatial multiplexing is very important because it allows to obtain an
increase of the degrees of freedom and not only a power gain. This is particularly
convenient in high-SNR regime because of the concavity of the logarithm. It is
a well-known result that in a point-to-point MIMO system with M transmit an
N receive antennas the channel can be decomposed in up to min(N,M) virtual
channels over which it is possible to transmit independent data streams. This can
be achieved through Singular Value Decomposition (SVD), which requires CSIT,
or, when channel matrices are asymptotically circular, by Inverse Discrete Fourier
Transform (IDFT) which doesn’t require CSIT but necessitate the addition of a
cyclic prefix at the end of codewords, thus introducing an overhead. Indeed, the
point-to-point narrowband AGWN MIMO channel can be expressed in matrix
form as:

y = Hx + n (2.12)

where x ∈ CM ,y ∈ CN and n ∼ CN (0, N0IN) are the transmitted, received and
noise signals while H ∈ CM×N is the channel matrix containing the complex mul-
tiplicative factors of the channel between each of the transmitting and receiving
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antennas, and that we will consider deterministic and constant for simplicity (see
[35] for the general case and ergodic capacity computation). The channel matrix
be can rewritten by SVD as H = UΣV† where U is M×M and unitary, V is N×
N and unitary, and Σ is a M ×N rectangular diagonal matrix which contains the
so-called singular values σi of H on its diagonal. The matrix H has exactly RH

positive singular values σi, where RH is the rank of H, which by basic princi-
ples satisfies RH ≤ min(M,N). By applying the linear transformation V to our
codewords x̃ before transmission and U† at the receiver, we obtain

ỹ = U†(Hx + n)

= U†
(
UΣV†(Vx̃) + n

)
= Σx̃ + U†n

= Σx̃ + ñ

(2.13)

that constitutes a system of RH parallel sub-channels as Σ is diagonal:

ỹi = σic̃i + ñi for i = 1, . . . , RH . (2.14)

We can then apply a waterfilling policy to optimize the power distribution among
channels:

Pi =

(
µ− 1

σ2
i

)+

for 1 ≤ i ≤ RH and subject to
RH∑
i=1

Pi = P . (2.15)

Then, the capacity can be obtained as the sum of rates achievable on each virtual
sub-channel. At high SNR, given that an equal power distribution is optimal we
find:

CMIMO(P,H) =

RH∑
i

(
log

(
1 +

Pi|σi|2

N0

))

≈
RH∑
i

(
log

(
1 +

P |σi|2

RHN0

))
at high SNR

≤ RH log

(
1 +

P

RHN0

(
1

RH

RH∑
i

|σi|2
))

by Jensen’s inequality

= RH log

(
1 +

P

RHN0

(
Tr[H†H]

RH

))
.

(2.16)
We can notice that as the transmitted power grows we get a RH-fold increase of
the rate with respect to a SISO system, this kind of gain in degrees of freedom is
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called (spatial) multiplexing gain and can be upper bounded by:

lim
P→∞

CMIMO

log (P )
≤ lim

P→∞

RH log
(

1 + P
RHN0

(
Tr[H†H]
RH

))
log (P )

= lim
P→∞

RH log
(

P
RHN0

(
Tr[H†H]
RH

))
log (P )

= lim
P→∞

RH

(
log (P ) + log

(
Tr[H†H]

R2
HN

2
0

))
log (P )

= RH ≤ min(M,N) .

(2.17)

Note that the capacity of a MIMO system is equivalently expressed in matrix form
using the covariance matrix Q = Ex

[
xx†
]
� 0 as:

CMIMO = max
{Q}|Tr(Q)≤P

log
∣∣IN + HQH†

∣∣ . (2.18)

We can understand that this expression is equivalent to the one in (21) by remem-
bering that the determinant of a matrix is equal to the product of its eigenvalues,
that the non-zero singular values of H are equal to the eigenvalues of HH†(or
H†H) and that the logarithm of a product is equal to the sum of the logarithms
of the factors.

2.2.2 Spatial multiplexing in the MISO Broadcast Channel

We have seen that in a point-to-point MIMO system we can achieve a multiplexing
gain of up to the minimum between the number of transmitting and receiving
antennas. But what happens with K multiple users, each one having multiple
antennas? Can we globally consider the system as a M to N ×K MIMO system
and reach a multiplexing gain of min(M,N ×K)? The difference consists in the
fact that in the BC the antennas belonging to different users cannot cooperate
in the decoding of their messages. Despite this limitation it is actually possible,
with perfect CSIT, to obtain the same spatial multiplexing gain min(M,N ×K)
of the equivalent cooperative MIMO [36]. Actually it has been proven that as
transmitted power goes to infinity the difference between the sum-capacity of the
BC and that of the equivalent cooperative MIMO tends to zero [37].

Let’s now consider the MISO Broadcast Channel where each receiver only has
N = 1 antennas to try to get some insights on the implications of the sum-rate
capacity formula. We can express the received signal by user k as:

yk = hkx + nk, k = 1, 2, . . . , K (2.19)
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where hk ∈ CM×1 is the downlink channel between the BS and user k, x ∈ CM

is the transmit vector and the complex Gaussian noise terms nk∼CN(0, 1) are
independent. We keep the transmit covariance matrix Σx = Ex

[
xx†
]
and the

average power constraint Tr (Σx) ≤ P . The sum-rate capacity formula is then
simplified to:

CSumMISO−BC(P,H) = max
{Pi}:

∑K
i=1 Pi≤P

log

∣∣∣∣∣I +
K∑
i=1

Pihih
†
i

∣∣∣∣∣ (2.20)

Indeed, for the N = 1 case, duality indicates that rank-one covariance ma-
trices (i.e., beamforming) allow to reach the BC capacity. This fact follows from
the transformations to the dual MAC channel where we have a set of covariance
matrices which are scalars in the N = 1 case [35].
Let’s have a look to the spatial multiplexing gain of the MISO BC. First imagine
that we have K = M and hi = ei ∀i, which are row vectors with all zeros excepted
in position i. Then for symmetry reasons the best power allocation is Pi = P

K
and

we get:

log

∣∣∣∣∣I +
K∑
i=1

Pihih
†
i

∣∣∣∣∣ = log

∣∣∣∣∣I +
P

K

K∑
i=1

eie
†
i

∣∣∣∣∣
= log

∣∣∣∣I +
P

K
I

∣∣∣∣
= log

M∏
j=1

(
1 +

P

K

)
= M log

(
1 +

P

K

)
so we get as expected a multiplexing gain of M. The same principle can be extended
to any set of channel vectors {hk}. Note that for any matrix A if Av = λv, then
(A + I)v = (λ + 1)v, so eigj

(
I +

∑K
i=1 Pihih

†
i

)
= 1 + eigj

(∑K
i=1 Pihih

†
i

)
and we

get:

log

∣∣∣∣∣I +
K∑
j=1

Pihih
†
i

∣∣∣∣∣ = log
M∏
i=1

eigj

(
I +

K∑
i=1

Pihih
†
i

)

= log
M∏
i=j

1 + eigj

(
K∑
i=1

Pihih
†
i

)

=
M∑
i=j

log

(
1 + eigj

(
K∑
i=1

Pihih
†
i

))
.

(2.21)
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Let’s define Rh
∆
= rank

(∑K
i=1 Pihih

†
i

)
, as ∀ hi 6= 0, the outer products hih

†
i

will result in rank-1 positive semi-definite matrices which will be independent if
the channel vectors are, Rh will coincide with the number of linearly independent
channel vectors. The number of non-zero terms in the external sum is also given
by RH as log(1 + x) = 0 ⇐⇒ x = 0.

Considering that we have K of these channel vectors and at most M of them
can be linearly independent we get the spatial multiplexing gain upper bound of
min(M,K), which can be reached even without cooperation between the antennas
of the K users.

Now we can even go further in the approximation with a cooperative MIMO
channel by considering the channel matrix formed in the following way H =
[h1h2 · · ·hK ] to state the following theorem from [37]:

Theorem 2.2.1. If H is full row rank (which implies M ≥ K), then:

lim
P→∞

[
CMIMO(P,H)− CSumMISO−BC(P,H)

]
= 0 (2.22)

We can then use the affine approximation of the point-to-point MIMO sum-rate
capacity in [38]:

CSumMISO−BC(P,H) ∼= CMIMO(P,H)

∼=
K∑
i=1

log

(
P

K
λi

)
= K log(P ) + log

∣∣HH†
∣∣−K logK

(2.23)

where λ1, . . . , λK are the eigenvalues of HH† and ∼= means that the difference
between the two sides tends to zero as P →∞. Another interesting results is that
at high-SNR the sum-rate capacity converges to the sum-rate obtained by using
the same power for each user:

limP→∞

[
CSumMISO−BC(P,H)− log

∣∣∣∣∣I +
K∑
i=1

P

K
hih

†
i

∣∣∣∣∣
]

= 0 . (2.24)

2.2.2.1 Do we need multiple antenna at receivers?

As we said, in mmWaves the transmitting BS must have multiple antennas to focus
the transmitted power, but what about the users? In present cellular systems like
3G and LTE, cellphones already have from two to four receive antennas. As
explained it will be even easier to fit multiple mmWave antennas into small-size
devices, for instance Qualcomm already produced a mmWaves antenna module
(named QTM052) which consists of an array of 4 antennas and their 5G modem
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Snapdragon X50 supports up to 4 of these modules (one on each side of the phone
to decrease hand-blockage probability) for a total of 16 antennas. We can thus
expect that mmWaves systems will definitely take advantage of multiple antennas
at the receiver. Which will anyway have to act as transmitter during the uplink
if we consider a duplex system or any form of feedback. Nevertheless, from a
system point of view, and as the number of users grows, the major advantage in
downlink is given by increasing the number of antennas at the transmitting base
station. Indeed in the broadcast channel the maximum multiplexing gain will be
min(M,N×K) which doesn’t depend on N as long as we are in a typical situation
where N < M < K < NK, so by increasing the number of antennas at receivers
we don’t gain in spatial degrees of freedom. Obviously, having many antennas
at each receiver may allow both a power gain and a diversity gain equal to the
number of antennas, but it will not affect significantly the two main aspects on
which we focus: spatial multiplexing and multiuser diversity (we can note that
the variability of the channel gain decreases with more antennas, so exploiting
multi-user diversity becomes less impactful). In conclusion we will consider that
the number of transmitting antennas M is large, and for simplicity receivers will
have only one antenna.

2.2.3 Multi-user diversity in MIMO Rayleigh broadcast chan-
nels

Multi-user diversity consists in the advantage that can be taken from the presence
of multiple users whose channels fade independently. With CSIT it is possible
to schedule for transmission users when their channel quality is good, and delay
their transmission when it is bad. With homogeneous channels among users, the
simplest approach consists in transmitting only to the user with maximal channel
gain. Or if we want to exploit spatial multiplexing at the same time, we can
imagine to transmit the S < K best users, where S ≤ M in order to be able
to multiplex their signals. With heterogeneous users, i.e. users whose channel
qualities have different averages, we should schedule one user when its channel is
good with respect to its own distribution, in order to maintain the fairness of the
system. In this way nevertheless we are not maximizing the system sum-rate. The
effectiveness of multiuser diversity depends on the dynamic range of the channel,
and in particular the tail of the channel gain probability distribution. If the tail of
the distribution is heavy, we may expect to get a high multiuser diversity gain as
some of the users will probably have a peak value which is very high. Obviously
channel tracking is necessary to obtain a multi-user diversity gain but some reduced
forms of feed-back (and not full CSIT) are sufficient.
One can actually quantify the multi-user gain. For instance in a SISO Broadcast
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channel with Rayleigh fading, the |hi|2 are all i.i.d. exponential random variables
with unit mean and it can be shown that for large K the maximum of K such
random variables behaves with high probability as logK [39]. Thus, for large K,
we have

CSum
SISO−BC = log (P logK) + o(1) (2.25)

where o(1) represents terms that vanish as K tends to infinity. The multiuser
diversity gain result in a logK factor for SNR and therefore in a log logK behaviour
of the rate.

Figure 2.4: Expectation and variance of the maximum gain among K users
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Figure 2.5: Expectation and variance of the maximum rate among K users

Turning to the general MIMO-BC case, we have the following result which
includes multiuser diversity and spatial multiplexing:

Theorem 2.2.2. For M and P fixed and any N, we have:

lim
K→∞

E
[
CSum
MIMO−BC

]
M log(log(KN))

= 1 (2.26)

In [39] we can find an asymptotical expression for the sum-rate capacity of the
MIMO-BC in high number of users regime. For fixed P and M we have:

CSum
MIMO−BC = M log(logK) +M log

P log(N)

M
+ o(1) (2.27)

where o(1) represents terms that vanish as K tends to infinity.
This results conclude the current section and Chapter 2 as a whole. This

chapter will allow us to tackle our particular problem of random beamforming in
mmWaves channels starting from the general perspective of the capacity results for
MIMO Broadcast Channels. We have seen that to approach capacity, two ingredi-
ents will be essential: spatial multiplexing and multiuser diversity. Theorem 2.2.2
is summing up the upper bound on both of them given by the sum-rate capacity.
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The lack of already implemented systems for cellular downlink in mmWaves de-
prives us from any possible benchmark on which evaluating our random beamform-
ing scheme, but now we know that we obtain with our opportunistic beamforming
scheme a rate scaling like M log logK +M log P logN

M
we can be satisfied!
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Chapter 3

Dealing with hardware and feedback
limitation

The capacity achieving strategies presented in the last section unfortunately
present a great complexity and require full channel state information at the trans-
mitter, incomplete CSIT fatally degrades the performances of Dirty Paper Coding
which is based on the possibility to predict interference at the receivers to pre-
remove it. Some efforts have been made to obtain more flexible schemes still
based on similar approaches like Ranked Known Interference [34], lattice based
DPC [40], Vector Perturbation precoding [41] or Tomlinson-Harashima precoding
[42]. These schemes still approach very tightly the capacity of the channel, never-
theless they remain more unpractical to implement than linear techniques which
are much simpler and thus computationally cheaper. Transmission at mmWave
frequencies involves another practical issue: to digitally precode the signal for
each antenna and install a dedicated radio-frequency (RF) chain for each antennas
may become prohibitively complex, expensive and energy consuming. That’s why
hybrid digital-analog precoding architectures are investigated. Finally we will in-
troduce the so-called directional beamforming schemes which only necessitates a
simple precoding architecture and can reach very good performances with limited
feedback.

3.1 Linear precoding and beamforming

Linear precoding, sometimes referred to as transmit beamforming, consists in si-
multaneously transmitting each of the user data streams in an unique "transmit
direction" (size N complex transmit vector). In this case we only have to decide
what are the beamforming vectors optimizing the SNRs: the best solution is the so
called Minimum Mean Squared Error (MMSE) beamforming, but its also common
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to implement some sub-optimal versions that we will investigate. Then, we will
illustrate the dependence of linear precoding from the quantity of feedback, and
introduce opportunistic random beamforming as a limited feedback alternative.

3.1.1 Linear precoding with full CSIT

We are now going to focus on the main linear precoding techniques, namely MMSE
and its two sub-optimal versions: Maximal Ratio Transmission (MRT) and Zero
Forcing (ZF) precoding which respectively maximize the received signal power
and minimize the interference power. Note that the MMSE, MRT and ZF linear
precoders used in downlink were originally developed as filters for the receiver in
the dual uplink MAC. In that context they were respectively called Wiener filter,
matched filter and decorrelating filter. Linear precoding is characterized by the
fact that our transmitted signal will be of the form:

x =
K∑
k=1

xk
√
Pkwk = Wx (3.1)

Where xk is the information word intended for user i, that we associate to a unit
norm transmit vector wk ∈ CM×1 (also called beam or spatial signature) and a
power gain Pk ≥ 0, such that

∑K
i=1 Pi ≤ P . In the matrix formulation we use

the precoding matrix W ,
[√
P1w1, . . . ,

√
PKwK

]
and the vector of all users

information words x , [x1, . . . , xK ]T . Then, considering a MISO BC scenario for
simplicity (see [43] for the MIMO BC case), we get that the received signal at user
k is:

yk =
√
Pk

(
h†kwk

)
xk +

√
Pk

K∑
j=1,j 6=k

(
h†kwj

)
xj + nk (3.2)

with, as usual hk ∈ C1×M representing the channel vectors and nk ∈ CN (0, σ2)
being the independent noise terms. The SINR of user k is thus given by:

SINRk =

∣∣∣√Pkh†kwk

∣∣∣2∑K
i=1,i6=k

∣∣∣√Pih†kwi

∣∣∣2 + σ2

(3.3)

These SINRs obviously have to be jointly maximized as the terms
∣∣∣√Pih†kwi

∣∣∣2
aren’t null in general. The MMSE approach aims to minimize the mean square
errors which can be defined as:

MSEk = Exk,hx
[

1

Pk

∣∣∣yk −√Pk · xk
∣∣∣2]
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leading to the following convex minimization problem:

(
wMMSE

1 , . . . ,wMMSE
K

)
= arg min

w̃k:‖w̃k‖2=1

K∑
k=1

MSEk (3.4)

whose solution can be found using the Lagrangian multipliers technique or through
iterative algorithms (see [44] for one example). For equal power distribution Pk =
P
K
∀k we get [8]:

wMMSE
k = arg max

w̃k:‖w̃k‖2=1

P
Kσ2

∣∣∣h†kw̃k

∣∣∣2∑
i6=k

P
Kσ2

∣∣∣h†iw̃k

∣∣∣2 + 1

=

(
IN +

∑K
i=1

P
Kσ2 hih

†
i

)−1

hk∥∥∥∥(IN +
∑K

i=1
P
Kσ2 hih

†
i

)−1

hk

∥∥∥∥
(3.5)

If we look at the SINR formula, two simplified approaches naturally arise: maxi-
mizing the numerator (done in MRT precoding) and minimizing the denominator
(done in ZF precoding). Starting with the MRT approach, in order to maximize
the received signal power, given the Cauchy–Schwarz inequality, one must simply
choose:

wMRT
k = arg max

wk:|wk|2=1

∣∣∣h†kwk

∣∣∣2 =
hk
‖hk‖

(3.6)

This scheme coincides with the MMSE solution for K = 1 and it tends to be
optimal when the users suffer from strong noise, which makes the interference
negligible.
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Figure 3.1: Average sum rate of the different linear precoding methods for K = 4
users as a function of the average SNR [8].

On the other hand, in high SNR regime the main problem becomes interference,
that we can try to null by using spatial signatures which are orthogonal to all the
users’ channels but the intended one. We will thus choose the projection of hk on
the subspace which is orthogonal to the channel vectors of all the other users:

wZF
k = Proj

(
{h1, . . . ,hk−1,hk+1, . . . ,hK}⊥

)
hk (3.7)

we can note that this projection is non-null only if hk is linearly independent from
all the other channel vectors. A necessary condition for this is that K ≤ M , and
if we should have more users than transmitting antennas we should limit ourselves
to simultaneous transmission to only M of them. Remember that the maximal
spatial multiplexing gain is of the MISO BC is min(M,K), with ZF precoding we
can reach it but obviously not exceed it. The achievable sum-rate is given by:

RSum
MISO−ZF =

M∑
i=1

log

1 +
Pi

∣∣∣h†kwZF
k

∣∣∣2
σ2


which can be maximised using a waterfilling policy as in the point-to-point MIMO
case. The projection operation can be expressed in matrix form and is thus a linear
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operation. If the channel vectors of all the scheduled users are linearly independent
the ZF vectors are simply given by the normalized columns of the left-inverse of
the matrix H = [h1h2 · · ·hK ]:

wZF
k =

colk
(
(H†)−1L

)
‖colk ((H†)−1L)‖

. (3.8)

where colk(·) selects the kth column of the matrix to which it is applied. If we
wanted to solve the more general problem:

maximize
w1,...,wK

f (SINR1, . . . , SINRK)

subject to
∑K

k=1 Pk ‖wk‖2 ≤ P
(3.9)

with for instance f (SINR1, . . . , SINRK) =
∑K

k=1 log2 (1 + SINRk), the problem
would be NP-hard, but we know that the general solution is (geometrically) some-
where between MRT (approached at low SNR) and ZF precoding (approached at
high SNR).

Figure 3.2: Geometrical representation of the optimal, ZF and MRT transmit
vectors with respect to the channel vectors [8]

When the number of users becomes very high with respect to the number of
transmitting antennas, while limiting the transmission to M simultaneous users
we can fully exploit multiuser diversity, we have the following theorem from [45].

Theorem 3.1.1. Let M, N, and the total average transmit power be fixed, and
RBF denotes the sum rate of optimal beamforming. Then

lim
K→∞

E {RBF}
M log logKN

= 1 (3.10)
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We can see that linear precoding, or beamforming, can achieve the full spatial
multiplexing and multi-user diversity gains when the number of users goes to
infinity: the limit is the same than for dirty paper coding. But till this point we
have still considered the availability of full CSIT, which only is an ideal hypothesis.
What happens with limited feedback?

3.1.2 Linear precoding with limited feedback

As anticipated, having full CSIT might not be possible or at least practical in
mmWave broadcast channels. Channel reciprocity allows to estimate CSI of the
downlink channel through the CSI of the uplink in time-division-duplex (TDD)
channels, but this isn’t possible with frequency-division-duplexing (FDD) as the
channel may be different at different frequencies. In this case, CSI is estimated
by transmitting from the base station a sequence of pilots which are previously
known by the receiver and allow it to infer the channel matrix from the received
signal. The number of complex values needed to be fed-back from each users is
then equal to M × N , the size of the channel matrix, and can thus cause a large
overhead when large arrays are used and the number of users increases. Further-
more a smaller wavelength corresponds to a shorter coherence time, so the training
pilots must be sent more frequently to track changes of channel conditions, and
this is even more problematic when users are highly mobile. That’s why many
alternative schemes using only a reduced feedback (often referred to as finite-rate
feedback) have been studied (see [46] for an overview). For instance "antenna se-
lection", "channel vector quantization", "per antenna phase quantization", "quan-
tized equal gain codebooks" and "random vector quantization" are some classical
feedback systems but we can also find intelligent processing techniques adapted to
the nature of mmWave channel, like compressed sensing for sparse channels. Con-
cerning beamforming, one usual approach is to feed-back only a quantized version
of the channel state vector. This can be done for instance by using a finite set of
vectors (codebook) which span all the directions of the channel vector space. This
set of vectors must be known beforehand both by the base station and the users
equipment, so it can either be predetermined by the standard or transmitted dur-
ing the communication set-up (having each user independently generate random
quantization codebooks have some advantages, as using the same quantization
vectors may reduce the spatial multiplexing gain). Then, the UEs only need to
feed-back an index which identifies the closest channel vector from the codebook,
with B bits it can identify 2B different channel vectors. It has been shown in [47]
that:

Theorem 3.1.2. The throughput achieved by finite-rate feedback-based zero-forcing
with arbitrary quantization codebooks of fixed size is bounded as the SNR is taken
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to infinity.

So by using a fixed sized codebook we cannot arbitrarily increase the rate by
increasing the power. In the same paper another very interesting result is provided:

Theorem 3.1.3. A finite-rate feedback-based zero-forcing system in which per-user
feedback is scaled at rate B = α log(P ) can achieve a multiplexing gain no larger
than αM . Therefore, a necessary condition for achieving the full multiplexing gain
of M is to scale feedback at least as B = log(P ).

This last theorem clearly shows us that for systems having a massive num-
ber of users also feedback strategies based on quantization of the channel vectors
may not be able to scale and maintain optimal performances. We will see that
opportunistic beamforming doesn’t require CSIT but only some channel quality
indicator which doesn’t scale with the number of antennas and may allow beam-
forming gain (almost equal to coherent beamforming one), spatial multiplexing (by
use of orthogonal beams) and multiuser diversity. Furthermore by its directivity
it seems very adapted to the mmWave channel.

3.1.3 Opportunistic random beamforming

When full CSI is not available at the base station it will not be possible to directly
align our beam with users’ AoD. So the idea is to transmit randomly one or
multiple transmit beams and then ask a feedback about the received SINR to
users. As this feedback allows the base station to gain some knowledge on the
channels quality and implement strategies which harness multiuser diversity we
talk about opportunistic beamforming. The simplest of these schemes consists of
having each users feeding-back its best SINR and the corresponding beam index to
the base-station. Users can estimate their SINR by evaluating the received signal
when predetermined pilots are sent by the base-station using each beam. We will
suppose that the base station obtains the true SINR value but in practical systems
we can imagine that the receiver only produces an estimate and directly sends a
quantized version of it or uses it to derive a Channel Quality Indicator (CQI) to
be transmitted like in 3GPP mobile communication standards. Then, the base-
station can associate to each beam the user which reported the highest SINR, and
transmit its data using that beam. If we want to obtain the full multiplexing gain,
the base-station should choose, at each coherence interval, a set of M orthogonal
vectors wRBF

i ∈ CM × 1 such that
∥∥wRBF

i

∥∥2
= 1 ∀1 ≤ i ≤ M drawn from an

isotropic distribution. Then we get for each users k a SINR corresponding to each
different beam j:
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SINRk,j =

∣∣∣√Pkh†kwRBF
j

∣∣∣2∑M
i=1,i6=j

∣∣∣√Pih†kwRBF
i

∣∣∣2 + σ2

(3.11)

and, if the number of users is very large, we can hope to obtain good performances
by finding one for each of the beams one user aligned whose channel is aligned
with it. The SINRk,j are random variable depending both on the random choice
of the beamforming vectors and on the distribution of the channels vectors. In the
Rayleigh channel, having channel vectors with i.i.d. circularly-symmetric complex
Gaussian distribution: hk ∼ CN (0, IN), we have the following asymptotical results
from [39]. If we keep M and P fixed but let the number of users K go to infinity
we get that the achievable rate RRBF tends to the BC sum-rate capacity:

lim
K→∞

(
RRBF − CSumMISO−BC

)
= 0 (3.12)

or equivalently, by remembering the high user regime analysis of the MISO BC,
we also have for the random beamforming scheme that:

RRBF = M log log n+M log
P

M
+ o(1) . (3.13)

We can imagine that with infinite users each beam is perfectly matched to one
user. However, for fixed K and M we have:

lim
P→∞

RRBF

logP
= 0 (3.14)

so the multiplexing gain of the scheme is formally null. Indeed, as we don’t have
perfect interference cancellation in high power regime the transmission becomes
interference dominated and the SINRs are bounded to a constant value, which im-
plies a bounded sum-rate and the hereinabove result. It seems therefore necessary
to understand how many users are necessary to start to see the asymptotic be-
haviour of high user regime, with respect to the number of antennas. This question
and its extension to the mmWave channel models will be one of the main focus of
the thesis and is left to the next chapter. To conclude this section we mention that
random beamforming is possible also with multiple receiving antennas at each user
(N > 1). In this case we can choose between two different approaches: treating
each of the antennas as a different user (thus involving an higher feedback, pro-
portional to N ×K ) or assigning only one beam per user and consider the total
user’s SINRs defined as:

SINRk,j =
wRBF
j

†
HkH

†
kw

RBF
j∑M

i=1,i6=j wRBF
i

†
HkH

†
kw

RBF
i + σ2

(3.15)

where Hk ∈ CM×N is the channel matrix of user k.
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3.2 Directional beamforming for mmWave chan-
nels

This section aims to show how directional beamforming appears to be a very
adapted scheme in the mmWaves frequency range which entails strong constraints
on the complexity of the transmitter architecture and displays a very high channel
directivity, captured by the UR-SP and UR-MP models.

3.2.1 Digital, analog and hybrid beamforming

Till now we have used the base-band equivalent model and assumed that the
BS was able to process digitally the signal without any limitation apart from
computational complexity.

Figure 3.3: Block diagram of a RF chain connected to a phased array [9]

In practice, this digital beamforming architecture implies that after processing
the signal at base-band one Radio Frequency (RF) chain is used for each antenna
which is impractical for BS equipped with large mmWaves arrays. Indeed, RF
chains (composed of filter, amplifier, mixer, DAC/ADC etc...) have in general a
high cost and energy consumption, which are even more accentuated for mmWaves
frequencies.

On the other hand we have fully analog beamforming which is performed by
using one single RF chain to up-convert the signal from base-band to pass-band
and then feed its output through independent phase-shifters and power amplifiers
to each antenna. The phase shift and power amplification correspond to the mul-
tiplication by a complex coefficient in the digital domain. Unfortunately with this
architecture the problem is that to have multiple beams carrying different streams
we need to reproduce for each beam the whole structure from a new RF chain to a
new set of antennas. This scheme is not flexible at all and cause a disadvantageous
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trade-off between the multiuser spatial multiplexing gain limited by the number of
RF chains and the beamforming gain limited to the fraction of antennas dedicated
to each RF chain.

Figure 3.4: Fully connected hybrid beamforming architecture [10]

In order to find a balance between digital and analog beamforming some hy-
brid architectures have been developed. The most common hybrid beamforming
architecture first perform some digital precoding and then, by connecting each RF
chain to all the antennas through dedicated phase-shifters, allows to produce a
number of beams equal to the number of RF chains while maintaining a beam-
forming gain equal to the total number of antennas [48]. With a reduced cost,
power consumption and complexity, we can still approach the performances of
digital beamforming, making hybrid architectures the main solution for the imple-
mentation of large mmWave beamforming arrays, independently from the chosen
beamforming strategy. Furthermore directional beamforming schemes are particu-
larly adapted to hybrid structures as they only need phase shifting (to compensate
for the additional path-lengths caused by the AoD and obtain in-phase reception)
but no single-antenna power control.

3.2.2 Single beam model

As anticipated, we can make use of beamforming to focus power towards the users
through a good path and avoid interferences. We consider that our transmitting BS

48



is equipped with a large uniform linear array (ULA) of M antennas. The beam
is produced by transmitting the desired signal through all the antennas with a
constant phase delay πθ between each consecutive antenna, so that the ith antenna
will have a cumulative phase delay of (i− 1)πθ. This kind of transmitter is named
phased array. Let’s remember that the steering vector for a given normalized angle
of departure (AoD) θ ∈ [−1, 1] is:

a (θ) =
1√
M

(
1 e−jπθ e−jπ2θ . . . e−jπ(M−1)θ

)T
. (3.16)

Then, we simply obtain the transmitted beam as the product of the data stream
x[m] and the steering vector: p[m] = a (ϑ)x[m], leading to a received power

for user k of:
∣∣∣h†kp∣∣∣2. With full CSIT the optimal beamforming strategy is to

beamform in the direction of the user which would have the highest SNR. In the
UR-SP model we have that:

hk[m] = αk[m]
√
Ma (θk) (3.17)

and so the BS will transmit to the ith user such that i = argmax
k

|αk[m]| using

p[m] = a (θi)x[m] and obtaining at the receiver a signal-to-noise ratio:

SNR = ρM max
k
|αk[m]|2

∣∣∣a (θk)
† a (θk)

∣∣∣2 = ρM max
k
|αk[m]|2 = ρM |αi[m]|2

which leads, for constant ρ, to a maximum reliable transmission rate of:

RSB = E
[
log
(

1 + ρmax
k
|αk|2M

)]
. (3.18)

To increase performances we can also adopt a waterfilling power distribution policy
over time if the average SNR of future best users can be predicted.

As we were beamforming in the perfect direction in the previous case we had∣∣∣a (θi)
† a (ϑ)

∣∣∣2 = 1 but it is interesting to see how this expression behave when the
channel and the transmitting steering vectors don’t coincide.

M
∣∣∣a (θk)

† a(ϑ)
∣∣∣2 =

1

M

∣∣∣∣∣
M−1∑
n=0

e−ιπn(ϑ−θk)

∣∣∣∣∣
2

=
1

M

∣∣∣∣∣sin π(ϑ−θk)M
2

sin π(ϑ−θk)
2

∣∣∣∣∣
2

, FM (ϑ− θk)

(3.19)
which is called Féjer kernel of order M . This kernel defines a pattern composed of
one central main lobe and M − 2 secondary lobes. It has unitary mean, which re-
flects the fact that no power gain is obtained by beamforming totally randomly (on
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the contrary the capacity decreases, due to Jensen’s inequality and the concavity
of the logarithm), and a peak value of M in ϑ − θk = 0, where full beamform-
ing gain is obtained. So as we increase the number of antennas in the array we
proportionally increase the potential beamforming gain but we reduce the width
of the main lobe, which means that we’ll need a better alignment between user’s
channel vector and the beam.
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Figure 3.5: Féjer kernel of order 10, note zeros at multiples of 2
M

If we apply a random beamforming approach we will not be able to aim at some
user, instead the direction will be chosen randomly and then users will feed-back
their SNR for that beam. Random beamforming schemes count on the fact that
the number of users is sufficiently high to have some users in the main lobe with
high confidence for any arbitrary AoD. Hopefully we will have many of them, and
we will be able to select to which of them to transmit. To maximize sum-rate by
harnessing multiuser diversity the base-station can transmit only to the user with
the highest SNR for that beam. The maximum reliable transmission rate is then
given by:

RSB = E
[
log

(
1 + ρmax

k
|αk[m]|2M

∣∣∣a (θk)
† a(ϑ)

∣∣∣2)] . (3.20)

3.2.3 Multiple beams model

In order to exploit the spatial degrees of freedom resulting from the elevated num-
ber of antennas at the base station and the many receiving users, it is profitable to
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transmit many beams simultaneously. As we have seen this kind of transmission
schemes can be effectively implemented through hybrid digital-analog architec-
tures. We know that in a general setting with M transmitting antennas and K
single-receiver users the potential spatial multiplexing gain is given by min(M,K).
Let’s see what happens now that the structure of beams is limited to steering vec-
tors. Considering that the total transmit power is equally distributed among each
of the S beams we can express the signal to noise plus interference ratio for user k
and beam b as:

SINRk,b =
|αk[m]|2 ρ

S
M
∣∣∣a (θk)

† a (ϑb)
∣∣∣2

1 +
∑

b′ 6=b |αk[m]|2 ρ
S
M
∣∣∣a (θk)

† a (ϑb′)
∣∣∣2 (3.21)

From the behaviour of the Féjer kernel it is intuitive that we can only get M
interference-free streams if we find M users equispaced in the angular domain, so
that when it is beamformed each user channel is parallel to its beam and orthog-
onal to the other ones. In this ideal case we use the following equispaced beam
transmission scheme with a number S = M of beams:

pb[m] = a (ϑb)xb[m] = a

(
ϑ+

2(b− 1)

S

)
xb[m] (3.22)

and we obtain for the user k in the direction θk = ϑb a beamforming gain of:

M
∣∣∣a (θk)

† a (ϑb)
∣∣∣2 = FM (ϑb − θk) = FM (0) = M

while the received power from other beams is null:

M
∣∣∣a (θk)

† a (ϑb′)
∣∣∣2 = FM (ϑb′ − θk) = FM

(
2(b′ − b)
M

)
= 0 .

We thus have a SINRk,b = αk[m] ρ
S
M = αk[m]ρ and a sum-rate of:

RMB =
∑

1≤k≤M

E
[
log
(
1 + |αk|2 ρ

)]
= M × E

[
log
(
1 + |αk|2 ρ

)]
. (3.23)

The selected M users can achieve full beamforming gain and interference free
reception only because we consider that they are perfectly aligned with the equis-
paced beams, this happens almost surely if we let K →∞ while keeping fixed the
other parameters, but what we may expect in a real scenario is to have users only
close to the beams directions. Obviously the higher is the number of users the
more likely it is to find users which are almost in optimal directions. If we have
enough users we will also have the choice, for each beam, to select the user with
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the best fading fluctuation, or to perform superposition coding and SIC among
users in the same sector in order to increase fairness. Researchers have thus tried
to understand how many users are enough to get the full spatial multiplexing gain
and exploit the multiuser diversity, in which ways we can keep good performances
with partial feedback and what kinds of scheduling and multiple access schemes
are more appropriate to increase fairness in asymmetric scenarios.
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Chapter 4

Some open issues in opportunistic
beamforming

The first studies on opportunistic beamforming schemes are quite old we can cite
the seminal work of P. Visawanath and D. Tse [49] where all the fundamentals are
already laid out. However, they were focusing on Rayleigh and Rician channels
while only recently the attention has been focused on mmWave frequencies and
results have been extended to the corresponding channel models. We will first see
how one critical aspect to evaluate the opportunistic beamforming scheme is the
necessary number of users for the system to work properly. Furthermore the simple
opportunistic beamforming scheme exposed in the past chapter can be considered
a basis over which many proposals of sophistication have been made. These al-
ternatives generally aim at two objectives. First, try to guarantee a high fairness
in the transmission when users qualities are heterogeneous. Secondly reduce the
feedback containing information on the channels quality as much as possible. All
these topics are still active lines of research, and we will report hereinafter some
of the main contributions to conclude the first part of this thesis.

4.1 Necessary number of users for full multiplexing
gain

As the number of users grows the probability to find at least one user whose channel
is close to each of the orthogonal beams increases. On the other hand, the more
transmitting antennas we have the more beams we have and the thinner they get,
so it’s harder to find properly aligned users. How must K scale with respect to
M in order to still have a full multiplexing gain? In [50] the random beamforming
performances in mm Wave channels have first been investigated analytically in
asymptotic terms, by considering the variation of achievable rates depending on the
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relationship between the number of transmitting antennas and the number of users.
As an anticipation, the results were actually very promising if the number of users
scales linearly with the number of antennas, the sum rate will also scale linearly
with the number of antennas. But these results were obtained by considering
only the one single path channel model (UR SP). The variable channel sparsity
in the mm Wave band have been taken into account in a successive study [25],
which demonstrates that the more the channel is rich in multipaths and scattering
the more we need a large number of users to maintain the same performances.
After reviewing the previous result for Rayleigh channels, we will report the main
obtained results.

4.1.1 Rayleigh channel

The issue of the necessary number of users so that random beamforming achieves
full multiplexing gain in Rayleigh fading channel scenario is exposed in [51]. What
has been found, to put it in a nutshell, is that M cannot asymptotically grow
faster than logK if we want to maintain the full multiplexing gain. From [39] we
indeed have the following theorem.

Theorem 4.1.1. Suppose the transmitter hasM antennas, each receiver is equipped
with a single antenna, and that we use random beamforming to users with the high-
est SINRs. Then we have that

if
M

logK
= c1 > 0 then

Csum

M
= c2 > 0 (4.1)

where c1 and c2 are two positive constants independent of K. Whereas,

if lim
K→∞

M

logK
=∞, then lim

K→∞

R

M
= 0 (4.2)

So in Rayleigh channels the number of users must grow at least exponentially
with the number of transmitting antennas if we want to have a linear scaling of
the rate with M . This is one of the reasons why random beamforming schemes
were not largely adopted in classical microwave mobile systems.

4.1.2 Directional beamforming in UR-SP channel

Suppose the base station has M antennas, the K receivers have only one antenna
each and they are a fractional power of the number of transmitting antennas
(K = M q with q ∈ (0, 1)), then it has been proved in [50] that the following
results hold.
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4.1.2.1 Single beam, single user

We start with the OBF scheme where one single beam in a random direction is
used to transmit a known pilot, and after users report their SINRs it is used to
transmit only to the user with the best SINR. The expected achievable rate R1 is
given by

R1 = E
[
log

(
1 + max

1≤k≤K
|αk|2M

∣∣∣a (θk)
† a(ϑ)

∣∣∣2)] (4.3)

and we have two theorems which bound its asymptotic behaviour in the high
number of users and antennas scenario. In the first Theorem 4.1.2 no fading is
considered but only the beamforming gain.

Theorem 4.1.2. For K = M q and any given q ∈ (0, 1) we have asymptotic upper
and lower bounds for R1 when |αk| = 1 for all k given by

log
(
1 +M2q−1−ε) .M E [log(1 + Z)] .M log

(
1 +M2q−1+ε

)
(4.4)

for any sufficiently small ε > 0, where Z = maxkM
∣∣∣a (θk)

† a(ϑ)
∣∣∣2 and x .M y

means that limM→∞ x/y ≤ 1.

Then in Theorem 4.1.3 fading is taken in account and the previous result is
confirmed.

Theorem 4.1.3. For αk
i.i.d.∼ CN(0, 1) and q ∈

(
1
2
, 1
)
we have

lim
M→∞

R1

E
[
log
(
1 + ρM maxk |αk|2

)] = 2q − 1 (4.5)

and on the other hand when q ∈
(
0, 1

2

)
,R1 → 0 as M →∞.

These two theorems are basically saying that if the number of antennas grows
like a fractional power of the number of antennas, we will still asymptotically have
a full multiuser diversity gain and a beamforming gain behaving like K2

M
. We know

that the multiuser diversity gain is given by

E
[
log
(

1 + ρM max
k
|αk|2

)]
∼M log (M log (K)) = log (M log (M q)) (4.6)

so we get R1 ∼M (2q − 1) log (M log (M q)).

55



4.1.2.2 Multiple beams, best user-beam pair selected

We now consider to sequentially transmit S = M l with l ∈ (0, 1) equispaced beams
during the training phase and then transmit only for the best user-beam pair. The
expected rate RS of the multiple training beams scheme is given by

RS = E
[
log

(
1 + max

1≤k≤K
max

1≤b≤S
|αk|2M

∣∣∣a (θk)
† a (ϑb)

∣∣∣2)] (4.7)

This time, as stated by the following theorem the many beams will allow us to
compensate for sparsity of users. No fading is considered in this scenario.

Theorem 4.1.4. For K = M q, S = M l and any l, q ∈ (0, 1) such that l + q < 1,
we have asymptotic lower and upper bounds on RS in the case of |αk| = 1,∀k,
given, for any sufficiently small ε > 0, by

log
(
1 +M2q+2l−1−ε) .M E [log (1 + Z ′)] .M log

(
1 +M2q+2l−1+ε

)
(4.8)

where Z ′ = maxk Z
′
k and Z ′k = maxbM

∣∣∣a (θk)
† a (ϑb)

∣∣∣2.
Thus we achieve a fraction of the full multiplexing gain given by the following

theorem.

Corollary 4.1.4.1. For K = M q, S = M l and any l, q ∈ (0, 1) such that 1
2
<

l + q < 1 we have

lim
M→∞

E [log (1 + Z ′)]

log(1 +M)
= 2(q + l)− 1 (4.9)

4.1.2.3 Multiple beams, multiple users

In this version of the scheme, after the training period where a known pilot is
transmitted through every beam in order for the user to get an estimate of the
SINRs to feedback, the base station will simultaneously transmit on each beam b
the data corresponding to the user κb which has the highest SINR for that beam

Rκb = E
[
log

(
1 + max

1≤k≤K
SINRk,b

)]

= E

log

1 +
ρM

∣∣∣a (θκb)
† a (ϑb)

∣∣∣2
1 +

∑
b′ 6=b ρM

∣∣∣a (θkb)
† a (ϑ′b′)

∣∣∣2

 (4.10)

where we assumed that |αk| = 1, ∀k for simplicity. So the achievable sum-rate
with S equispaced beams transmitted simultaneously is given by:

RM =
S∑
b=1

Rκb (4.11)
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Considering no fading we have the following bound on the per-beam rate.

Theorem 4.1.5. For K = M q, S = M l with q ∈ (0, 1) and l in
(
0, q − ε

2

)
,

asymptotic upper and lower bounds on the per-user rate Rκb of selected user κb for
fixed total transmit power Pt = 1 are given by

log
(
1 +M2q−1−l−ε) .M Rκb .M log

(
1 +M2q−1−l+ε) (4.12)

for any sufficiently small ε > 0.

This implies that the sum-rate scales like M l log
(
1 +M2q−1−l), so in the limit

of infinite transmission antennas and users we are both maximally exploiting the
multiplexing capability of the channel and getting a beamforming gain.

4.1.3 Directional beamforming in UR-MP channel

To have only one path would be ideal for opportunistic beamforming purposes
but in practice it is more realistic, even at mmWaves frequencies, to have multiple
reflections or scattering clusters. We are thus going to present an extension of the
results of the previous subsection to the UR-MP channel. These results and their
proofs can be found in [25].

The number of multipaths L will be expressed as a function ofM , as this allows
to get asymptotical results on the rate behaviour for a range of channels going from
the single-path to the Rayleigh channel. Indeed we have that the UR-MP channel
converges to a Rayleigh channel when L = Mβ with β > 1 in the sense described
by the following theorem.

Theorem 4.1.6. Under the UR-MP model when L = Mβ we have

L (hk|θk,1, · · · , θk,L) = CN (0,R (θk,1, · · · , θk,L)) (4.13)

where L (hk|θk,1, · · · , θk,L) is the distribution of hk conditioned on (θk,1, · · · , θk,L).
Furthermore we have for any ε > 0,

Pr
(
|R (θk,1, · · · , θk,L)− I|E ≥ ε11T

)
→ 0 (4.14)

as M → ∞, if β > 1 where the probability is computed according to θk|i
i.i.d.∼

Unif[−1, 1], | · |E represents the element-wise absolute value and 1 is a vector of
ones. That is, the conditional channel covariance matrix R (θk,1, · · · , θk,L) con-
verges to I uniformly in elements in probability.

We already knew that in Rayleigh channel an exponential scaling of the number
of users with respect to the number of antennas was necessary to have a full
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multiplexing gain. The following results show us what happens in between the
Rayleigh channel and the fixed number of paths models. These scenario can be
modelled by a logarithmic, fractional power and linear (or faster) growth of the
number of users with respect to the number of antennas. Let cu and c′u be positive
constants, the following table summarizez the necessary number of users depending
on the scattering richness.

Scattering richness Sufficient number of users

L fixed K 'M (linear)

L = log(M) K 'M1+cu (polynomial)

L = Mβ, 0 ≤ β < 1 K ' ec
′
uM

β (sub-exponential)

L = M or faster K ' ec
′
uM (exponential)

Table 4.1: Sufficient number of users for linear sum-rate scaling with M

4.2 Achieving fairness in opportunistic beamform-
ing

In a multiuser scenario, the distribution of data transmission rates among users is
a crucial issue. In many practical contexts, the base-station must try to guarantee
to all users, which experiment different channel conditions, some minimal perfor-
mances. On the other hand from a total system throughput point of view, it may
be profitable to give priority (i.e. assign more time, power or degrees of freedom)
to users with a better channel, thus increasing the disparity between data rates
of different users. Opportunistic beamforming in its simplest version consists in
simply select the user with the best SINR for each beam, which may result in a
particularly unfair distribution of rates. That’s why it is generally associated to
a user scheduling or radio resource management protocol which takes care of bal-
ancing the rates of users. In order to compare different schemes under the fairness
aspect, it should first be well defined and dedicated metrics are needed.

4.2.1 Fairness concept and metrics

We already saw in Chapter 2 the concept of achievable rates region. From the
rate region it is possible to find the Pareto optimal point of a given scheme and
compare it to another one but with large number of users rate regions are difficult
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to obtain as we should vary all the parameters involved in the protocol (like power
distribution, number of beams etc.). In practice network operators generally face
the fairness problem by scalarization, which consists in selecting a network utility
function that tries to balance the sum-rate and fairness and concentrate both
aspects of performance in one single figure. We already introduced the symmetric
rate, which is the maximum rate simultaneously achievable by all users but it
becomes unadapted in scenarios where the fatally low performances of users with
really bad channels may totally hide the ones of the other users. The fairness
problem being of great interest in many different study disciplines, starting from
economics, some very precise and significative fairness optimality criteria have
been derived, we are going to state the most important ones as reported in [52].
Let be R = (R1, . . . , RK) the allocation of rates among the users, the set of possible
allocations R ⊆ RK

+ is a subset of the capacity region of the channel which will
depend on the utilized transmission scheme.

Definition 4.2.1. An allocation R ∈ R is called

• (globally) optimal if it maximizes the sum-rate
∑K

k=1Rk

• (strictly) Pareto optimal if there is no solution R′ ∈ R dominating it, i.e.
such that R′k ≥ Rk for all k = 1, . . . , K and R′k0 > Rk0 for some k0 ∈
{1, . . . , K}

• max-min fair if for each k ∈ {1, . . . , K} increasing Rk must be at the expense
of decreasing Rl for some l such that initially Rl < Rk. If a max-min fair
allocation exists, then it is unique and strictly Pareto optimal.

• proportionally fair if for each other allocation R′ ∈ R we have
K∑
k=1

(R′k −Rk)

Rk

≤ 0.

If a proportionally fair allocation exists on R, then it is unique and it is the
solution of the following maximization problem

max
R∈R

K∑
k=1

logRk .

• α-fair optimal if it solves the following maximization problem where α is a
real number:

max
R∈R

K∑
k=1

R1−α
k

(1− α)
.

We have that an α -fair optimal policy is globally optimal when α → 0,
proportionally fair when α→ 1, and max-min fair when α→∞.
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4.2.2 Scheduling the proportional-fair policy

One first approach to the fairness problem is to solve it from a higher control layer
by scheduling users by following a policy which may take into account the state
of the channel (channel aware scheduling) or not (channel unaware scheduling).
The latter are often the simplest and may consist in a trivial first-in first-out rule
or Round-Robin scheduler (where each user is given a fixed time, after which it
is put at the end of the users’ queue). Channel aware protocols require feedback
but are much more efficient as they allow to include the expected rate obtained
by scheduling one user in the decision.

Single user opportunistic communication is the simplest version of channel
aware scheduling, as it requires channel qualities to select the user who would lead
to the highest rate. This may obviously lead users with a poorer channel to never
be scheduled. Proportionally Fair (PF) scheduling, which is one of the most used
schedulers in telecommunications, aims to solve this issue by transmitting to the
user whose potential rate is the highest with respect to the average rate he has
achieved in the past. This is done by transmitting to user k∗ such that

k∗ = arg max
1≤k≤K

Rα
k (t)

T βk (t)
(4.15)

where Rk is the rate potentially achievable in the incoming time slot by user k, Tk
is its historical average data rate and α and β are two parameters allowing to tune
the balance between fairness and current rate maximization to the desired value.
Tk can be computed as

Tk(t+ 1) =


(

1− 1
te

)
Tk(t) + 1

tc
Rk(t), k = k∗(

1− 1
tc

)
Tk(t), k 6= k∗

(4.16)

With tc defining the time interval over which we want to achieve fairness. In a
scenario where we transmit simultaneously to many users we have to select at
each transmission slot a set of users I∗. As the rates of the different users are in
general interdependent, we cannot simply maximize the rates-throughput ratios
individually, nor the sum of the ratios. In [53] it is shown that the criterion

I∗ = arg max
I

∏
k∈I

(
1 +

Rk|I(t)

(tc − 1)Tk(t)

)
(4.17)

is the one maximizing the sum over all users of the logarithms of the throughputs

∑
1≤k≤K

log (Tk(t+ 1)) = log

( ∏
1≤k≤K

Tk(t+ 1)

)
. (4.18)
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If compared to the Definitions 4.2.1, we can notice that this means that a form
of long term proportional fairness will be achieved. From an intuitive point of
view this criterion guarantees than none of the average throughput is too low,
otherwise the product would be largely reduced. This scheme can be applied to
opportunistic beamforming with quasi-orthogonal beams, by scheduling one single
user per beam. When the rates of the different users are independent from each
other, Eq. 4.17 is simplified to:

I∗ = arg max
∑
k∈I

(
Rk|I(t)

Tk(t)

)
(4.19)

Another notable policy based on proportional fair scheduling is the Modified
Largest Weighted Delay First which guarantees to all users a minimum bit-rate
when used with a token bucket system.

4.2.3 Orthogonal and non-orthogonal schemes

One usual approach to the general fairness problem is, in systems based on the
subdivision of time and frequency resources among users (TDMA, FDMA, etc...),
to assign a large portion of bandwidth or transmission time to users with poor
channel quality. This solution is adopted in 3GPP standards like 4G LTE and 5G
where spectrum and time are divided in Physical Resource Elements which consist
in one carrier sub-band and one OFDM symbol transmission time. Scheduling
policies, where the transmission to one user is prioritized depending on some ob-
jective function may be considered as intelligent forms of TDMA. Although very
practical, this kind of orthogonal schemes are not optimal when the channels of
the different users are heterogeneous (for instance if some of them are far away and
others are closer to the BS). Indeed we saw that techniques based on superposition
of signals intended to the different users resulted in better sets of rate and it is
proven from an information theoretic point of view [54]. Enforcing fairness through
NOMA has also another advantage over TDMA as by simultaneous transmission
it allows to keep a low transmission latency even if the bit-rate is low while TDMA
systems may involve large delays for weak users who would have few assigned slots.
That’s why the application of NOMA to opportunistic beamforming schemes in
mmWaves gave birth to a flourishing line of research [55]. The main idea is to
divide the users in different sectors, each corresponding to one dominant beam
which will be used to transmit the superposition of the signals intended to the
users of the sector. Then SIC is performed among the users belonging to the same
sector.
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Figure 4.1: Scheme of superposition coding combined to beamforming [11]

In Chapter 2 we saw that SIC required ordering among channel qualities in
order to be performed, and that the absence of an unambiguous ordering in the
MISO (and MIMO) BC context didn’t allow us to apply it directly. However, with
respect to each single beam b, the channels of the users can be ordered according to
their SINRk,b. Then we can enforce users to fully decode and cancel interference
created by transmissions to other weaker users in the same sector. To avoid putting
too much computational burden on the users, some strategies consider to perform
SIC one couple of users at a time. In this way we can associate to one user
with a bad channel quality one user with a good channel quality through SIC
guarantee decent performances to the user with the bad channel almost without
sacrificing the rate of the user with the good channel. More sophisticated and
optimal pairing schemes have been developed [56]. Comparison of beamforming
in mmWaves channels using OMA and NOMA have been performed showing the
advantages of the latter [57]. The problem of optimal power allocation between
users is treated in [58]. And we can find results on NOMA combined to hybrid
precoding in mmWaves in [59] and [60].
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Part II

Computational analysis and
numerical results
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Chapter 5

Methodology and approach

The remaining part of the thesis will be carried out with the help of computer
simulations and numerical methods. Before presenting and analysing the results
in the next chapter we are going to first state the objective of the analysis and
then describe and motivate the chosen methodology to tackle each problem. Some
details will also be given about utilized software and the simulation parameters.

5.1 Tackled problems and objectives

Now that the framework and the main relevant literature have been exposed, let’s
see which open problems we can try to solve.

In the previous chapters many valuable asymptotical bounds on the perfor-
mances of OBF schemes have been stated. As we have seen, asymptotical results
in large number of users regime showing that opportunistic beamforming schemes
are particularly adapted to the mmWave channel have been published.The main
results being that in a mmWave channel with finite number of transmission paths,
as the number of antennas in the system tends to infinity a linear scaling of the
number of users with respect to the number of antennasM is sufficient to obtain a
linear scaling of the sum-rate withM , contrary to the Rayleigh channel case where
an exponential scaling of users is needed. Despite this fact a complete analysis for
finite number of users is still missing. This statement exposes a promising property
of mmWaves channels, but is valid only as the number of users and antennas tends
to infinity, and we are not sure that, although large, the size of these parameters
in real networks will be sufficient to approximate the asymptotical behaviour. We
will thus try to investigate the problem over plausible ranges of the parameters. In
this view we will first introduce an efficient way to actually compute the expected
rates of the simplest schemes from the parameters probability distributions, with-
out passing through simulations whose complexity scales with the number of users
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and antennas. This allows a complete characterization of the performances over
the parameter space for the simpler schemes. Then, we will try to understand
what are the actual number of users, as a function of the number of antennas
that are necessary to approach optimal performances in multi-beam OBF. This
time the problem will not be approached from an asymptotic point of view but
by concretely investigating the whole range of plausible parameters. On one hand
by using the direct computation of the expected value of the relevant quantities
when their expression is simple enough and in the other through Monte Carlo sim-
ulations where an analytical solution would be too complicated. Finally, we will
step aside from sum-rate analysis to focus on the distribution of rates among users
with heterogeneous channels. The fairness in simulated heterogeneous scenarios
will be compared between some intuitive policies and the proportional-fair one.
The possibility to simultaneously schedule multiple users per beam through OMA
or NOMA should also be considered.

5.2 Stochastic characterization of the multiuser and
beamforming gains

5.2.1 Beamforming only

As we have seen, the beamforming gain is given by the Féjer kernel function
computed on the difference between the beam and the user normalized angles.

FM (ϑ− θk) =
1

M

∣∣∣∣∣sin π(ϑ−θk)M
2

sin π(ϑ−θk)
2

∣∣∣∣∣
2

.

In our random beamforming scenario, the beam angle and users’ angles are inde-
pendent and uniformly distributed over [−1, 1]. So the difference δk = ϑ − θk is
also a random variable uniformly distributed over [−1, 1]. We are now interested
in the distribution of FM (δk). Unfortunately the Féjer function is not invertible,
so we cannot directly apply the following theorem on invertible transformations of
random variables (that we state hereafter as we’ll need it later).

Theorem 5.2.1. Let X be a continuous random variable with probability density
function fX and support I where I = [a, b]. Let g : I → Re be a continuous
monotonic function with inverse function h : J → I where J = g(I). Let Y = g(X)
be our transformed random variable. Then the probability density function fY of
Y satisfies:

fY (y) =

 fX(h(y)) |h′(y)| if y ∈ J
0 otherwise

(5.1)
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One could note that the Féjer kernel is piece-wise monotone so inverses exist
over injective subsets of the support and we could sum-up the densities coming
from each subset but these inverses still doesn’t have an a closed form expression
so this approach doesn’t lead to any solution. Hence we will try to obtain the
distribution numerically in MATLAB.

Figure 5.1: CDF of the Féjer kernel of a uniformly distributed angle for M=10

The probability density function can be approximated through a normalized
histogram with bins of minimal size. But MATLAB also contains specific built-
in functions to create non-parametric distributions from empirical data: ecdf(),
which stands for empirical Cumulative Distribution Function (CDF), allows to
create a discrete CDF from samples, that we will simply obtain by computing
the Féjer kernel over [−1, 1] as δk is considered to be uniformly distributed. If
we desire a continuous CDF we can create with makedist() a "Piecewise Linear
Distribution" object which computes as before the discrete CDF for the points
present in the sample vectors and then linearly connect the CDF values to form a
continuous curve. In this way it was possible to obtain the following plot of the
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CDF of the Féjer kernel of order ten applied to a uniform angle distribution.
We can see from Figure 5.1 that with high probability (over 0.8) we get a gain
inferior to 1, which can be associated to the high probability of being outside
of the main lobe. Then, the CDF increases almost uniformly for values from 1
to 10, which implies that the Probability Distribution Function (PDF) is almost
constant over these values. If we compute the PDF we can actually note a pick
around 10, but also around the secondary lobes peak values as the Féjer kernel
has null derivative around these values.

Figure 5.2: Fraction of the maximal beamforming gain achieved in average by
Single Beam OBF with no fading as a function of K.

This CDF can be used to compute the CDF of the maximum of K r.v. with the
same distribution by simply elevating it at the Kth power. Finally, the distribution
of the maximum can for instance be used to compute their expected value and see
how it evolves as a fraction of its upper bound M as done in Figure 5.2.
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5.2.2 Beamforming and fading

We now consider both components of the gain: gmax,K = max1≤k≤K |αk|2 FM (δk)
indeed depends on the beamforming gain and on the fading coefficient whose square
modulus follows an exponential distribution. This follows from:

αk ∼ CN
(
0, σ2

)
⇒ |αk| ∼ Rayleigh

(
σ√
2

)
⇐⇒ |αk|2 ∼ Exp

(
1

σ2

)
(5.2)

To obtain the distribution of the product we could make use of the following
theorem.

Theorem 5.2.2. If X and Y are two independent, continuous random variables,
described by probability density functions fX and fY then the probability density
function of Z = XY is:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z/x)
1

|x|
dx (5.3)

As we don’t have an analytical expression for the distribution of FM (δk) in
order to get the product variable CDF shown in the next figure we used the
MATLAB toolbox CUPID [61] which allows to effectively manipulate random
variables.

Again, once we have the CDF of |αk|2 FM (δk) it’s immediate to get the CDF
of max1≤k≤K |αk|2 FM (δk) by elevating it to the kth power.
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Figure 5.3: CDF of the product of the beamforming and Rayleigh fading gains for
M=10

The expected value can be computed through a single integration from the
CDF using the formula following formula which is valid for non-negative random
variables. Fortunately the random variables of interest, our gains and rates are
positive by definition.

E [X] =

∫ ∞
0

(1− FX(x)) dx (5.4)
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that can also be used to obtain the second order moment as:

E
[
X2
]

=

∫ ∞
x2=0

Pr[X2 ≥ x2]dx2

=

∫ ∞
x2=0

Pr[X ≥ x]dx2

=

∫ ∞
x2=0

(1− FX(x)) dx2

= 2

∫ ∞
x=0

x(1− FX(x))dx

(5.5)

where in the first step we used the fact that the square function is monotonously
increasing for positive arguments and the last step is obtained by changing the
variable of integration from x2 to x and noting that dx2 = 2xdx. The mean and
second order moment lead to the variance using the basic decomposition

Var(X) = E
[
X2
]
− E [X]2 . (5.6)

This new approach allows us to obtain the expected rates using only one integral for
any K and M whereas a simulation would require to perform at least K products
between the beam-vector and each channel vector of length M in order to select
the maximum of them. Furthermore this whole simulation should be repeated a lot
of times in order to estimate the average behaviour and variance, leading to large
simulation times. Hence, when the number of users and antennas is very large
but, maybe not enough to use asymptotical analysis results this semi-analytical
method turns-out very helpful.

71



Figure 5.4: Mean and standard deviation of the maximal random gain among K
users for M=10

Figure 5.5: Mean and standard deviation of the rate achievable by the user with
maximal random gain among K users for M=10
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From Figure 5.4 and 5.5 we can note that the presence of the Féjer kernel
doesn’t change the global shape of the curve which still looks logarithmic for the
gain and doubly logarithmic for the rate, with respect to the number of users. This
implies that after an important initial rise the rate tends to grow very slowly with
the number of users.
This method is adapted to quickly compute interest values for high numbers of
users, but as the number of users becomes extremely high we may face prob-
lems due to numerical computation. It would then be more appropriate to use
the fact that our product distribution tail has an exponential decay to apply the
Fisher–Tippett–Gnedenko theorem of extreme value theory and approximate the
distribution of the maximum as an appropriately fitted Gumbel distribution, as
done by P. Viswanath and D. Tse to get their first results in their seminal work
on opportunistic beamforming [49].

5.3 Simulation methods and considered scenarios

When the considered scenario was too complicated for direct computation we used
simulations based on Monte Carlo methods. In Monte Carlo simulations the initial
systems parameters are generated according to their respective distributions, then
they are deterministically processed and results are averaged over the simulations.
By the law of the unconscious statistician and the law of large numbers the sample
averages should approximate the statistical expected values, with a variance de-
creasing with the number of averaged elements. The number of repetitions ranges
from a minimum of one hundred for the more computationally demanding, to a
thousand in the general case. All the simulations were performed in MATLAB
R2018a.
The channel model used in the simulations of the first Section of Chapter 6 is the
UR-SP described in Subsection 1.2.2. The considered numbers of users per cell
are arbitrarily chosen and range from zero to a few thousands. Considering that
mmWaves generally don’t offer a long range coverage, these number of users may be
reached only in really crowded environments. The random parameters generated
at each run of the simulation are, for all K users, their complex channel gain gen-
erated using alpha wgn(K,1,0,’complex’) (function coming from the Commu-
nication toolbox) and their channel AoD angles generated using rand(K,1)*2-1.
The random beam angles are generated in the same way.

For the heterogeneous case the model including distance described at the end of
Subsection 1.2.2 is used. This time the initial number of users K_tot is generated
according to a Poisson distribution by using random(’Poisson’,mu) with mu being
the chosen mean. Their polar coordinates are generated in order to have a uniform
distribution over a disk of fixed radius Disk_Radius. This can be achieved by
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choosing the angle from a uniform distribution as before and also the square of
the distance as d2

k ∼ U [0, d2
Disk−Radius]. Then, following the rationale of [62], we

consider a total blockage probability for each user depending on its distance dk
from the BS as:

P(Blockage) = 1− e−φdk (5.7)

where the coefficient φ represents the building density and is set to 0.1. Finally,
users without LOS are excluded from transmission.

Figure 5.6: Scatter plot of users positions in the azimuthal plane with respect
to a central BS. Users suffering blockage and those having a direct path (LOS)
are distinguished and those in the sector corresponding to one of the beams are
highlighted.

One example of the final obtained users distribution is shown in Figure 5.6.
The figure also shows a sector, indeed for each beam only a subset of users is
considered for transmission according to their angular distance with respect of the
beam direction. This allows to speed-up simulations by optimizing each beam
transmission policy only over a fraction of the total number of users. The sector
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width is a set to be inversely proportional to the number of transmitting antennas,
and thus directly proportional to the main lobe width.
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Chapter 6

Simulations and results

In this section we will tackle the two issues introduced in Chapter 4. The first
section will be focused on determining the necessary number of users for OBF to
approach optimal performances while the second section will deal with the trade-off
between fairness among users and sum-rate maximization.

6.1 Evolution of the OBF rates with the number
of users

We have seen at the end of Chapter 3 that if we let the number of users in the
system tend to infinity, OBF becomes sum-rate capacity achieving. In the first
section of Chapter 4 we saw that the necessary number of users is asymptotically
related to the number of transmitting antennas. More precisely, if the number of
antennasM tends to infinity, we have thatK must grow at least linearly withM in
order to get a sum-rate linearly scaling with M (i.e. full multiplexing gain). This
result is derived from the mmWaves channel UR-SP model, while in the classical
Rayleigh channel model the number of users had to grow at exponentially with
M in order to get the full multiplexing gain. Unfortunately these results are valid
only for infinite numbers of antennas and users, we are thus going to see if they
still hold with a large, but finite, number of users and antennas.

6.1.1 Single Beam OBF

We start from the simulation of the simplest case, the single beam OBF scheme,
which is recapitulated in Alogrithm 1 box.

We know that as the number of users goes to infinity, fading is beneficial as it
allows to obtain a multiuser diversity gain, but is it true also when the number of
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Algorithm 1: Single Beam Opportunistic Beamforming (SB-OBF)
1 BS generates a beam direction ϑ ∼ Unif [−1, 1]
2 BS transmits a known pilot in that direction: ρxpilota (ϑ)
3 UEs compute and feed-back their signal-to-noise ratios:

SNRk = ρM |αk|2
∣∣∣a (θk)

† a (ϑ)
∣∣∣2

4 BS selects the user i = argmax
1≤k≤K

SNRk for transmission

5 BS transmits ρxia (ϑ)
6 Repeat from 1 after the transmission time is over

users is small? Let’s compare the rate achieved with beamforming gain only and
with both beamforming and Rayleigh fading.

Figure 6.1: Comparison of the mean and standard deviation of the rate achievable
by SB OBF with K users for M=10 in the fading and unitary channel gain cases
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We can note that the achieved rate is almost the same in both cases for K ≤ 20
while afterwards the rate with fading continues to increase with the number of
users while the no-fading gain follows a horizontal asymptote of value log (1 +M)
corresponding to perfectly matched beamforming.

Now let’s have a look at the achievable rate as a function of the number of
users for different number of transmitting antennas. The results obtained through
Monte Carlo simulation and from the numerical CDF extrapolation reported in
the next figure coincide, thus confirming the validity of both approaches.

Figure 6.2: Single user OBF achievable rate as a function of the number of users
for different values of M. Theoretical values obtained using the CDF.

From the plots we also notice that for small K we initially obtain the highest
rate with small arrays but as K grows larger arrays become optimal. We are
interested in the necessary number of users to approach the almost stagnating
part of the curve. In this optic we consider the threshold of 0.95% of log (1 +Mρ),
with varying M , and see how many users are necessary in order to overcome the
threshold.
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Figure 6.3: Necessary number of users in SB-OBF to have a 95% of the rate
log(1 +M) with and without fading

By looking at the figure a linear relation between the necessary number of users
and the number of antennas is evident. We repeated the test with and without
fading but there are no significant differences, the linear coefficients are both close
to 2.5 but we have to keep in mind that this figure depends on the transmis-
sion SNR. If we now consider M equispaced beams with power equally splitted,
and we neglect inter-beam interference we would obtain a total rate greater than∑M

i=1 0.95 log(1 + ρ) = 0.95M log(1 + ρ) so we would approach a full multiplexing
gain by increasing the number of users linearly w.r.t. the number of antennas.
Obviously inter-beam interference cannot be neglected a priori so we will now
study the multi-beam case through a dedicated simulation.

6.1.2 Multiple Beams OBF

In order to exploit spatial diversity and allow quasi-orthogonal simultaneous trans-
mission toM users we now consider the OBF scheme with equispaced beams, which
is summarized in the following box.

Again, we start by looking in Figure 6.4 at the behaviour of the rate as the
number of users increases, for different numbers of transmitting antennas. This
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Algorithm 2: Equispaced Beams Opportunistic Beamforming (EB-OBF)
1 BS generates ϑ1 ∼ Unif [−1, 1]

2 BS computes the angles ϑb = ϑ1 + 2(b−1)
S

for b = 1, ..., S
3 BS transmits sequentially a known pilot using S = M different beams:

xpilota (ϑb) b = 1, ..., S

4 UEs compute and feed-back for all beams:

SINRk,b =
|αk|2 ρSM

∣∣∣a (θk)
† a (ϑb)

∣∣∣2
1 +

∑
b′ 6=b |αk|

2 ρ
S
M
∣∣∣a (θk)

† a (ϑb′)
∣∣∣2

5 BS selects the user ib = argmax
1≤k≤K

SINRk,b for transmission on each beam

6 BS transmits ∑
1≤i≤S

ρ

S
xiba (ϑb)

7 Repeat from 1 after the transmission time is over

Symbol Definition

K number of users

M number of antennas at the BS

S number of beams

a (·) steering vector function

ρ SNR at the transmitter

αk fading coefficient of user k

θk AoD towards user k

Table 6.1: Algorithm 1 (SB-OBF) and 2 (EB-OBF) parameters

time we can notice that, thanks to the parallel transmission to many users, the
sum-rate is always higher with larger transmission arrays, independently from the
number of users.
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Figure 6.4: EB-OBF achievable sum-rate as a function K for ρ = 1

Figure 6.5: Achievable rate per beam as a function of K for ρ = 1
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Then we consider in Figure 6.5 the average rate per beam, this time we find
an opposite result: the more antennas and beams we use, the lower is the average
rate per beam. Indeed, the larger beamforming gain is compensated by the power
split and the beams become narrower as M increases so its harder to find users
in the main lobe and the multiuser diversity can exploit only a smaller number of
users. The rate per beam could be increased by using a number of beams S < M
but this would reduce the sum-rate, so from a system view it’s a bad option.

We are now going to focus on the necessary number of users to approach a
full multiplexing gain. As before we set the threshold at 95% of M log (1 + ρ)
which is the rate we would obtain without fading if we were able to find M per-
fectly placed users. In order to avoid confusion between the multiplexing gain and
the multiuser-diversity gain due to fading we also perform the simulation with-
out fading. The plot in Figure 6.6 displays an almost perfect linearity between
the necessary number of users and the number of antennas, thus extending the
asymptotical results of Chapter 4 to the finite number of users case.

Figure 6.6: Necessary number of users to have a 95% of the rate M log (1 + ρ)
with fading and no fading for different transmission SNRs

As a first remark we note that the higher is the transmitted power, the higher is
the linear coefficient giving the necessary number of users. We must pay attention
to this fact as the multiplexing gain is generally defined as a limit at high SNR, we
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should have convergence to a fixed linear coefficient as the transmit SNR increases
but this doesn’t happen. What we can say is that at fixed transmitting power, a
linear increase of the number of users with the number of antennas is sufficient to
approach the perfect CSIT sum-rate of beamforming without fading M log(1 + ρ).
Finally, by comparing the doted lines versus the full lines of the same colour we
see that the presence of fading only increases the slope of the line, which makes
sense as it is equivalent to a power gain.

To be fair, the sum-rate obtained by considering |αk|2 ∼ Exp (1), as it takes
benefit from multiuser diversity, should be compared to

M × E
[
log

(
1 + max

1≤k≤K
|αk|2

)]
which is the high number of users regime upper bound to sum-rate for our channel,
as stated in Theorem 2.2.2.

Figure 6.7: Ratio of EB-OPBF sum-rate w.r.t. the full multiplexing and multi-user
diversity gains (considering all users) sum-rate, with ρ = 1.

The ratio between the two is plotted in Figure 6.7 and unfortunately we see
that the performances are pretty poor for large arrays which seems to necessitate
much more users to achieve their full potential. Nonetheless, if we think about it,
this result was expectable, this sum-rate upper bound could be reached only if all
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beams were transmitting to the single user with the best fading gain in the whole
system, while being orthogonal to each-other at the same time in order to cre-
ate interference-free parallel streams. This is obviously impossible and we should
rather consider that each beam can only select the best user among those in the sec-
tor spanned by its main lobe, so the maximum should be taken over a fraction of K
inversely proportional toM . In this way we obtain Figure 6.8, which shows a really
quick convergence for every M to around 0.9M ×E

[
log
(

1 + max1≤k≤ K
2M
|αk|2

)]
.

Figure 6.8: Ratio of EB-OPBF sum-rate w.r.t. the full multiplexing and multi-user
diversity gain (considering each beam’s sector users only) sum-rate, with ρ = 1.

6.2 Fairness in non-homogeneous networks

Till now we have only dealt with homogeneous networks, assuming that the chan-
nels of the different users had identical statistics. Indeed, for a given beam users
can be more or less aligned with its direction, but considering that the beam direc-
tions are uniformly distributed over all angles and updated at each transmission,
we should obtain in the long term a perfect equality among users’ throughputs.
And this still holds despite the opportunistic policy of transmitting with each beam
to the user with the highest instantaneous SINR with respect to that beam. In
this section instead we will deal with heterogeneous networks, that is a network
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where the fading statistics of the users are different.
To simulate an heterogeneous network we will use the model including trans-

mission path distance presented in Subsection 1.2.2 of the first chapter and whose
channel vector model is presented in Equation 1.15 and reported hereinafter:

hk[m] =
√
M
αk[m]a (θk)√

1 + dβLOSk

where dk is the distance of the UE from the BS and βLOS is the loss exponent for
LOS paths, as detailed in the methodology chapter, transmissions to users without
LOS are assumed to be blocked in this scenario. Given the fixed different distances
from the base-station, some users will have a channel which have an average higher
path loss than others. In this situation applying the opportunistic policy of the
previous section (like in Alg. 1 and Alg. 2) would result in some users being
almost never scheduled. In a fairness and minimum guaranteed quality of service
perspective, a different transmission strategy should be adopted. In Section 4.2
proportional-fair scheduling was introduced, and will be used as a reference to
evaluate the fairness of some alternative policies. Then, we will focus on the
fairness gain obtained by applying NOMA instead of OMA.

6.2.1 Single user per beam scheduling

In all the cases of this subsection, the BS will still generate multiple equispaced
beams like in EB-OBF but for each beam only users in the corresponding sector
will be considered and will need to feed-back their SINR. Then different choices of
what to transmit with each beam will be considered. Given that two beams cannot
transmit to the same user in our sectorized scenario, inter-beam interference isn’t
influenced by which user is scheduled on each beam. This implies that the rates
and throughputs of users scheduled on different beams are independent, so the
proportional-fair scheduling policy can be applied beam by beam and still reach
the global optimum. The details of this protocol are reported in the Alg. 3 box.
This protocol has been implemented along with four other intuitive scheduling
options. Each of these policies will substitute iPFs [t] of Alg. 3, with a different
decision criteria. They are meant to embody the main guiding principles one
could adopt while trying to find a policy which maximize the fairness.

• Policy 1: The opportunistic policy of the previous section where for sector s
we select:

i1s[t] = argmax
1≤ks≤Ks

Rks [t] (6.1)
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• Policy 2: The policy consisting selecting the user having the current lowest
throughput:

i2s[t] = argmin
1≤ks≤Ks

Tks [t] (6.2)

• Policy 3: The policy consisting in randomly selecting with equal probabilities
each user in the sector for transmission. We will call this this policy the
"random user" policy.

i3s[t] ∼ Unif [1:Ks] (6.3)

• Policy 4: An intermediary policy, which, gives to all users an equal probabil-
ity to be selected over time, but select each user when its fading fast-varying
component is higher than the other users’ one. Indeed, in this section we
consider that the users in the sector feedback before each scheduling update
their instantaneous effective channel gains for each beam:

Gainks,s[t] =
|αks [t]|

2 FM (ϑs[t]− θks)
1 + dβLOSks

(6.4)

while the distance dks , like the AoD θks , is considered nearly constants over
a long period of time. So, we suppose that the distance is known at the BS
which can then compute:

i4s[t] = argmax
1≤ks≤Ks

[
Gainks,s[t]

1 + dβLOSks

]
= argmax

1≤ks≤Ks

[
|αks [t]|

2 FM (ϑs[t]− θks)
] (6.5)

These four policies, along with the SPF are compared in Figure 6.9 in their steady
state behaviour.
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Figure 6.9: Proportional-fairness objective function value for different scheduling
policies and transmitted power

We can see that with the opportunistic policy fairness is much lower than for
all the others policies. It approaches the other ones only at very high transmission
SNR. This can be explained by considering that at high transmission SNR the
rate is mainly determined by inter-beam interference, which depends from the
alignment of the users with the transmitted beams. However, being the beam
directions uniformly distributed, no user has a better angle than the others in the
long term, thus the network becomes almost homogeneous.

The second policy, which selects the user having the lowest throughput, per-
forms well in terms of fairness especially at high SNR, and it is always over the
random user selection policy.

Concerning the policy 4 we can see that on the long term it reaches is close to
optimal proportional fairness for low transmission SNRs. This can be explained in
the following way. At low SNR (ρ << 1) the inter-beam interference is neglectable
and so we can write:
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Ris[t] ≈ log
(

1 +
ρ

S
Gainkn,s[t]

)
(6.6)

≈ ρ

S
Gainkn,s[t] (6.7)

And, for tc >> 1 by the law of large numbers we have on the long term:

Ris[t]

Tk∗ [t]
≈

Ris[t]

E
[
Ris[t]

]
≈ ρ

S
Gainkn,s[t]

1

E
[
ρ
S

Gainkn,s[t]
]

Furthermore as the Féjer kernel and the fast fading coefficient |αks [t]|
2 are assumed

independent and having both mean 1, the expectation of their product has still
mean 1. Then, the distance dks is not considered a random variable once the
scenario has been generated so we have :

E [Gainkn,s[t]] = E

[
|αks [t]|

2 FM (ϑs[t]− θks)
1 + dβLOSks

]
=

1

1 + dβLOSks

which in turns leads to:

Ris[t]

Tk∗ [t]
≈ |αks [t]|

2 FM (ϑs[t]− θks)
1 + dβLOSks

(1 + dβLOSks
)

= |αks [t]|
2 FM (ϑs[t]− θks)

This last expression is precisely the one maximized in policy 4, so at low SNR we
are nearly optimizing the proportional fairness objective function. Unfortunately
at high SNR its fairness tends to the one of policy 3 where a random user is selected.
The latter actually doesn’t perform so badly in terms of fairness, we can note an
almost constant and not very consistent offset with the optimal one (SPF). On the
other hand, if we look at the sum-rates, shown in Figure 6.10, we notice that it’s
performances are very poor, just above policy 2which is the the worse one in term
of sum-rate as users with poor channels keep being scheduled despite their low
rate. As expected the higher curve corresponds to the opportunistic policy. One
more time the SPF and policy 4 almost coincide for low SNRs and then diverge
with SPF keeping close to the opportunistic strategy sum-rate.

This brief comparison allowed us to gain some insights into the proportional
fair policy. This policy allows to increase fairness but is also exploits multiuser
diversity very well in both low SNR and high SNR. We are now going to see
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what happens if we relax the condition of transmitting only to one user with each
beam. this will also be the occasion to comapare OMA and NOMA on the fairness
achievement issue.

Figure 6.10: Proportional-fairness objective function value for different scheduling
policies and transmitted power

6.2.2 NOMA versus OMA for proportional fairness

To increase fairness we could think to allocate simultaneously many users on a
single beam, for each beam. To do so we can either choose an Orthogogal Multiple
Access approach like TDMA and FDMA or a Non-Orthogonal Multiple Access
Approach like superposition coding followed by successive interference cancellation.
The aim of this subsection is to compare the two approaches in the two-users per
beam case.

Let’s start by defining the NOMA approach. For each beam b we superpose in
the power domain the signals intended for two distinct users i∗b and j∗b :

pb =
ρ

S
a (ϑb)

(
βbxi∗b + (1− βb)xj∗b

)
(6.8)
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where ib, jb and βb are selected in order to maximize the objective function

J(ib, jb, βb) =
∑

1≤kb≤Kb

log (Tkb [t+ 1]) . (6.9)

As here the rates of the scheduled users are not independent, the solution is given
by Eq. 4.17 which applied to our sector becomes:

I∗ = arg max
I={ib,jb}

[
max
βb

(
1 +

Rib [t]

(tc − 1)Tib [t]

)(
1 +

Rjb [t]

(tc − 1)Tjb [t]

)]
(6.10)

Let’s consider that jb is the user with the best channel, that is the highest
inter-beam SINR for beam b. The fact that it’s channel is better than the one of
user ib, implies that, if user ib is able to decode some data transmitted through
beam b, then also user jb will be able to decode that message. Thus, user jb can
decode the message intended to user ib, re-modulate it in the same way as the
base station did, simulate the effect of the channel on that signal and subtract
the resulting signal from the received one. In this way, the interference due to the
signal intended to ib is cancelled and user jb is now only experiencing interference
from other beams, so its SINR is:

SINRjb =
(1− β2

b ) |αjb|
2 ρ
S

FM (ϑb − θjb)
1 + dβLOSjb

+
∑

b′ 6=b |αjb|
2 ρ
S

FM (ϑb′ − θjb)
(6.11)

and it can support a rate up to Rjb = log (1 + SINRjb).
On the other hand, user ib will suffer both from inter-beam interference and

from the interference due to the signal intended to user jb. It’s global SINR is thus
given by:

SINRib =
β2
b |αib|

2 FM (ϑb − θib)

s
ρ
(1 + dβLOSib

) + |αib|
2

(
(1− β2

b ) FM (ϑb − θib) +
∑
b′ 6=b

FM (ϑb′ − θib)

)
(6.12)

which allows a transmission rate up to Rib = log (1 + SINRib).
By considering superposition coding applied on individual beams, the sum-rate

would be achieved by transmitting only to the user kb with the higher SINRkb,b, so
with no need for superposition and SIC. Nonetheless the NOMA approach allows
to obtain a capacity region which is larger than the one achieved by OMA. In
other words, in a given sector some sets of rates {R1b , ...., RKb}, can be achieved
only through NOMA. As we are trying to increase fairness, we can expect that
PF scheduling will not aim to always select one single user, but rather to share
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the transmission in some cases. In that case superposition coding may give better
results than OMA which finally result in an increase of our objective function.

Now, in order to perform a fair comparison, we have to extend the Single
Proportional Fair user per beam (Alg. 3) protocol to the possibility of simultaneous
transmission to two users. Let’s suppose that FDMA is chosen, and performed over
users ib and jb. Let’s say that a bandwidth portion 0 ≤ ξb ≤ 1 and a share of the
power 0 ≤ ηb ≤ 1 are assigned to user ib. The formulas giving the rates are:

Rib = ξblog

(
1 +

ηb
ξb
SINRib

)
(6.13)

Rjb = (1− ξb)log
(

1 +
1− ηb
1− ξb

SINRjb

)
(6.14)

Then we proceed like for the NOMA case by finding:

I∗ = arg max
I={ib,jb}

[
max
ηb

(
1 +

Rib [t]

(tc − 1)Tib [t]

)(
1 +

Rjb [t]

(tc − 1)Tjb [t]

)]
(6.15)

The whole transmission protocol is actually the same than in Alg. 4, we just have
to replace the three equations of line 8 with the ones hereinabove.

Let’s now see how the two algorithms perform in our heterogeneous scenario.
In Figure 6.11 the steady state sums of the throughputs logarithms for both of
them are plotted. From it, we can clearly see the superiority of NOMA over
OMA, but we have to notice that it’s only an increase of about 2%. It has been
shown that NOMA particularly outperforms OMA in near-far situations. However
our scenario, in order to be realistic, consider a probability of LOS decreasing
exponentially with the distance, so there is a limited number of users at large
distance. Anyway, from Figure 6.12 this advantage is also present in terms of
sum-rate, even if it was not the objective we set.

As a final word on the fairness issue, we have been able to see that thanks to
the randomness of the beams angles and to the possibility to actually schedule
users on each beam by also taking care of fairness, random beamforming schemes
can conserve almost all their capability in term of sum-rate while guaranteeing
decent performances to the weaker users.
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Figure 6.11: Proportional-fairness of our NOMA and OMA policies

Figure 6.12: Sum-rates of our NOMA and OMA policies
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Algorithm 3: Single Proportional Fair user per beam (SPF)
1 BS generates ϑ1[t] ∼ Unif [−1, 1]

2 BS computes the angles ϑb[t] = ϑ1[t] + 2(b−1)
S

for b = 1, ..., S
3 BS transmits sequentially a known pilot using S = M different beams:

xpilota (ϑb[t]) b = 1, ..., S

4 ∀1 ≤ k ≤ K UE k is assigned to sector s = 1, ..., S if |ϑs − θk| ≤ ∆, the
number of UEs in sector s is noted Ks and users are re-indexed in their
sector as 1 ≤ ks ≤ Ks.

5 For s = 1, ..., S:
6 {
7 UEs 1 ≤ ks ≤ Ks estimate from the pilots and feed-back their effective

channel gains for each beam s:
8

Gainks,s[t] =
|αks [t]|

2 FM (ϑs[t]− θks)
1 + dβLOSks

9 The BS computes from the received channel gains the final SINR for
scheduling in sector s of the users 1 ≤ ks ≤ Ks:

SINRks,s[t] =
|αks [t]|

2 ρ
S
M
∣∣∣a (θks)

† a (ϑs[t])
∣∣∣2

1 + dβLOSks
+
∑

s′ 6=s |αks [t]|
2 ρ
S
M
∣∣∣a (θks)

† a (ϑs′ [t])
∣∣∣2

10 The BS computes the potential rate achieved by scheduling user ks on
beam s as:

Rks [t] = log (1 + SINRks,s[t])

The BS schedules for transmission on beam s the user iPFs such that:

iPFs [t] = argmax
1≤ks≤Ks

Rks [t]

Tks [t]

The throughput of user is is updated for next transmission:

Tks [t+ 1] =

(
1− 1

tc

)
Tks [t] +

1

tc
RkS [t]

11 }
12 BS transmits:

x[t] =
∑

1≤s≤S

ρ

S
xis[t][t]a (ϑs[t])

13 Repeat from 1 after the transmission time is over
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Algorithm 4: 2-Users per beam NOMA (2U-NOMA)
1 BS generates ϑ1[t] ∼ Unif [−1, 1]

2 BS computes the angles ϑb[t] = ϑ1[t] + 2(b−1)
S

for b = 1, ..., S
3 BS transmits sequentially a known pilot using S = M different beams:

xpilota (ϑb[t]) b = 1, ..., S

4 ∀1 ≤ k ≤ K UE k is assigned to sector s = 1, ..., S if |ϑs − θk| ≤ ∆, the
number of UEs in sector s is noted Ks and users are re-indexed in their
sector as 1 ≤ ks ≤ Ks.

5 For s = 1, ..., S:
6 {
7 UEs 1 ≤ ks ≤ Ks estimate from the pilots and feed-back their effective

channel gain for each beam s:

Gainks,s[t] =
|αks [t]|

2 FM (ϑs[t]− θks)
1 + dβLOSks

8 Using the effective channel gains and Eq. 6.11, Eq. 6.12 the BS is able to
find through optimization:

I∗ = arg max
I={is,js}

[
max
βs

(
1 +

Ris [t]

(tc − 1)Tis [t]

)(
1 +

Rjs [t]

(tc − 1)Tjs [t]

)]
and store the corresponding proportional-fair rates Ri∗s [t] and Rj∗s [t].

9 The throughputs of user i∗s and j∗s are updated for next transmission:

Ti∗s(t+ 1) =

(
1− 1

tc

)
Ti∗s [t] +

1

tc
Ri∗s [t]

Tj∗s (t+ 1) =

(
1− 1

tc

)
Tj∗s [t] +

1

tc
Rj∗s [t]

}
10 The BS transmits:

x[t] =
∑

1≤s≤S

ρ

S
a (ϑb)

(
βbxi∗s + (1− βb)xj∗s

)
11 Repeat from 1 after the transmission time is over
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Symbol Definition

K number of users

M number of antennas at the BS

S number of beams

a (·) steering vector function

ρ SNR at the transmitter

αk fading coefficient of user k

dk path length to user k

θk AoD towards user k

tc PF throughput time-window parameter

∆ sector half-angle

FM (·) Féjer kernel function of order M

βLOS loss exponent of the line-of-sight components

Table 6.2: Algorithm 3 (SPF) and 4 (2U-NOMA) symbols and parameters
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Conclusion and future investigations

In order to get a general view on the thesis, let’s now sum-up the results of each
chapter. We started this thesis by deriving in Chapter 1 the main features that a
downlink transmission scheme should adopt to be adapted to the mmWave channel
by studying its characteristics. Its high attenuation needs to be compensated by
a high power gain and its high directivity and sparsity in the angular domain
suggest to employ directional beamforming. Furthermore the coherence time of
the channel is reduced with respect to lower frequencies so users have to transmit
more often their feedback, which should thus be limited in some way to reduce the
overhead, leading to random directional beamforming approaches.

Then, in order to understand what are the main concepts to be exploited in
multiuser downlink communications we have taken in Chapter 2 a bird’s eye view
on our problem and analysed the capacity of the MIMO Broadcast Channel. The
final aim was to obtain the sum-rate capacity of the MIMO Broadcast channel,
but on the way the concepts of capacity region and successive interference were
presented, as they would have come to our aid in the final developments on fairness.
The sum-rate capacity was then analysed in asymptotical terms (scaling w.r.t. the
number of antennas and users), so that the concepts of spatial multiplexing and
multiuser diversity were highlighted and could be thoroughly explained.

After that, in Chapter 3, we turned our attention to linear precoding, the family
of precoding strategies to which directional beamforming belongs. Optimal and
almost optimal solutions (i.e. MMSE, ZF and MRT beamforming) were presented
but limitations in the transmitter architecture complexity and necessary feedback
made it clear that this optimal solutions may not be implementable in mmWaves,
nevertheless they provided us some insights in what characteristics should have the
beams to obtain high performances: alignment with the intended user’s channel
and orthogonality to the other users’ channels. The asymptotical performances
of opportunistic random beamforming in high user regime were derived and they
were shown to reach the sum-rate capacity of the MISO channel for infinite users.
The question of how many users were necessary to approach these performances
naturally arose.

A first answer to this question was given in the first section of Chapter 4 where
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asymptotical results linking the necessary number of users to have full multiplexing
gain were exposed. The main result being that while in Rayleigh fading channels
the number of necessary users scales exponentially with the number of antennas,
in the mmWave case only linear scaling is necessary thanks to the directivity of
the channel which was modelled by the UR-SP model. The second section of the
chapter was dedicated to introduce the main concepts and tools related to another
issue: the maintainment of fairness in opportustic communications. To this aim
Pareto, max-min, proportional-fair and α-fair policies were introduced and a focus
was made on the scheduling algorithm which achieves the proportional-fair policy.
Finally NOMA was introduced and associated to opportunistic beamforming.

In Chapter 5 we started by stating the objectives of the simulations to be
performed and to give a general description of the way scenarios were generated.
But the chapter also included a new approach which allows to compute the CDF
of the product of the beamforming and fast fading gains and of its maximum
over K such random variables, as well as the CDF of derived quantities like the
corresponding rate. CDFs from which one can efficiently compute the expected
value or variance with a single integral if needed, whereas a direct computation
would involve multiple integration over 2×K independent random variables.

In the first section of Chapter 6 the Single Beam Opportunistic Beamforming
rate was first computed for up to 1000 transmitting antennas and 5000 users. An
insufficient and sufficient number of users regime (where the beamforming gain
approaches M) were identified, and the fixed linear relation between the necessary
number of users and the number of transmitting antennas was pointed out. The
same experiment was repeated in the Equispaced Beams OBF case and this time
the sufficient number of users regime was identified by a rate approaching the full
beamforming and multiplexing gains. The necessary number of users turned out
to maintain a linear relation with the number of transmitting antennas but this
time the linearity coefficient wasn’t fixed but increased with the transmission SNR.
Finally a comparison with the asymptotical sum-rate capacity of the channel was
performed by considering both the full spatial multiplexing gain and multiuser
diversity gains, and it was shown that the EB-OBF scheme approaches for all
number of users and antennas 90% of this sum-rate capacity if we only take care
of reducing the considered number of users to compute the multiuser diversity gain
from the total number of users in the system to the fraction of users in a single
beam sector, in order to take into account the impossibility of one user to be the
best one for multiple beams at the same time.

After this in the second section of Chapter 6 we moved from the sum-rate
analysis to the fairness analysis in non-homogeneous networks. As a metric we
used the sum of the logarithms of the time-average throughputs of all the users,
which is the one maximized by proportional-fair policies. We considered in our
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random equispaced beamforming protocol many policies to determine to which user
to transmit. These policies where meant to cover different choices for the trade-off
between multiuser diversity and fairness. The proportional-fair policy was used as
a reference for fairness and was shown to keep the second best sum-rate after the
opportunistic beamforming policy, with a fixed offset from OBF corresponding
to a power penalty of around 5dB for the considered scenarios. These results
were obtained by considering the possibility of scheduling only one user per beam,
but were then extended to the possibility to simultaneously schedule two of them
through OMA or NOMA. The best Proportional-Fair policy in the two cases was
evaluated and an little advantage of the NOMA over OMA was measured both in
terms of fairness and sum-rate.

As a conclusion we can say that Opportunistic Beamforming appears an opti-
mal solution for mmWaves channel for a multitude of reasons: channel directivity,
low transmitter and receiver complexity, small required feedback... Furthermore
the factors which made it unfeasible at lower frequencies disappear in mmWaves,
like the necessary number of users passing from an exponential growth in the num-
ber of transmitting antennas to a linear one or the possibility to fit much more
mmWaves antenna elements in an array of the same size. Opportunistic beam-
forming thus result a very promising solution for the downlink of cellular networks
in mmWaves frequencies. The analysis carried out in this thesis was of course
at high level of abstraction, so simulations with more realistic channel models
should be performed to see if the exposed results still hold. Our analysis was also
lacking a proper characterization of the coherence time, and the consequent sep-
aration of the analysis in fast-fading and low fading regimes which may influence
the performances as it may not be possible to have instantaneous channel quality
information in fast-fading regime. Finally the influence of multiple antennas at
receivers should be checked, as well as the effect of having many neighbouring
cells performing OBF, the inter-cell interference may be a problem but we can
also imagine some advantages in coordinated transmission or position estimation
through triangulation.
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