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Abstract

In recent years, graph analysis has gained significant traction due to the widespread pres-

ence of networks across various domains, including biology, linguistics, and social sciences.

This thesis explores the intricate relationship between node embedding techniques and

the accuracy of motif estimation in complex networks, highlighting the critical role that

embedding methods play in understanding network structures. We introduce the concept

of Node Heaviness, which quantifies a node’s involvement in motifs, and propose a novel

node embedding technique specifically designed for predicting node heaviness.

Through comprehensive experiments, we evaluate several embedding methods, includ-

ing matrix factorization approaches, random walks, and deep learning techniques, with

the goal of enhancing the accuracy of node heaviness predictions by capturing structural

characteristics of nodes. Our analysis reveals varying effectiveness based on dataset char-

acteristics and the specific nature of the graphs. While deep learning methods generally

exhibit superior performance, they often struggle with dense graphs, where the complexity

of the network structure can hinder their effectiveness. In contrast, our custom node em-

bedding technique tailored for this task demonstrates adequate performance, showcasing

significant potential for improvement.

By analyzing the strengths and weaknesses of different embedding strategies, this the-

sis contributes valuable insights to the field of network analysis. The findings underscore

the importance of selecting appropriate embedding techniques for specific graph charac-

teristics.
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Chapter 1

Introduction

In recent years, graph analysis has garnered significant interest due to the widespread

presence of networks in real-world situations. We use graphs to represent information

across various fields, including biology, linguistics and social sciences. [1, 2, 4, 28, 33]

Modeling interplay between data on graphs has made it possible to systematically under-

stand different network systems, such as protein-protein interaction, friendship networks,

and word co-occurrence instances. These networks help with tasks like finding community

groups and predicting links, which assist in understanding how rumors or diseases spread,

finding new drug applications, and identifying links between genes and diseases.

The study of networks has evolved into Network Science, with applications extending

to brain imaging, drug discovery, social media analysis, finance, and scientific collab-

orations. Unlike regular grid-like data such as images, audio, and text, which mainly

originate from Euclidean spaces, network data originate from irregular, non-Euclidean

domains. Therefore graphs serve as simple yet powerful and versatile models for rep-

resenting and analyzing complex informations. As nonlinear structures, they provide a

universal language for describing and modeling convoluted systems and making network

data ever-present across diverse application fields. Consequently networks are funda-

mentally combinatorial structures made of interconnected nodes but without an inherent

spatial context or geometric information like coordinates. Using graphs to model complex

systems allows for capturing valuable high-order geometric patterns, which significantly

enhances the performance of various network analysis tasks.

The widespread use of network data in many fields highlights the importance of graph

analysis. Graph modeling provides a structured way to gain deep insights into complex

systems, making networks essential tools for both scientific research and practical uses.

Graph analytics, or network analysis, has emerged as a vibrant and influential field. De-

veloping efficient analytics tools for graph analysis is crucial for better understanding

complex networks. However, traditional methods such as path, connectivity, community,

and centrality analysis primarily rely on handcrafted graph topological features extracted

1



1.1 Graph Embeddings 2

from adjacency matrices. These methods can become computationally expensive and

memory-intensive when applied to large-scale networks in industrial systems due to the

high-dimensional and heterogeneous nature of these networks.

Graph analysis tasks generally fall into four main categories:

� Node classification, which involves assigning labels to nodes based on the labels

of other nodes and the network’s structure.

� Link prediction, which aims to predict missing or future links within the network.

� Clustering, which focuses on grouping similar nodes together.

� Visualization, which helps reveal the network’s structure.

1.1 Graph Embeddings

Over the past few years, various approaches have been developed for the task described

above. For node classification, the methods are typically divided into two groups: those

that use random walks to spread labels and those that extract features from nodes to apply

classifiers. Link prediction include methods like maximum likelihood models, similarity-

based approaches, and probabilistic models. Clustering techniques, instead, consist of

attribute-based models and those that optimize inter-cluster and intra-cluster distances.

Models that were designed to solve graph-based problems usually operate on the original

graph adjacency matrix or on a derived vector space.

Recently, methods that represent networks in vector spaces while preserving their proper-

ties have become increasingly popular [13, 14, 19]. These embeddings serve as a base for

models, allowing parameters to be learned from training data and reducing the need for

complex classification models to be applied directly to the graph. Network embedding, or

representation learning, involves mapping these networks to a geometric space, such as a

Euclidean space, to create an embedding space as shown in Figure 1.1. This process as-

signs geometric coordinates to nodes while still preserving key properties of the network.

We begin by introducing several preliminary concepts, recalling the definition of Wang et

al. [8].

Definition 1.1.1 (Graph). A graph G = (V ,E ) is a structure where V = {v1 , . . . , vn}
represents a set of vertices (or nodes), and E = {ei ,j}ni ,j=1 represents a collection of edges

that link pairs of vertices.

Definition 1.1.2 (Graph Embedding). Given a graph G = (V ,E ), a graph embedding is

a mapping f : vi ↦→ zi ∈ R
d for all i ∈ {1 , . . . , n}, such that d ≪ |V | and the function f

preserves some proximity measure defined on graph G.
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The objective of network embedding is to generate a low-dimensional vector represen-

tation of a high-dimensional network, where the relationships between nodes are reflected

in their distances within the lower-dimensional space. This vector representation help

facilitating various tasks, including but not limited to: visualization, link prediction, net-

work inference, community detection, and node classification. Additionally, embedding

can reveal insights into the structure of the represented network data, which can help

enhance performances by leveraging the embedding space’s richer geometry. For many

applications, especially those involving machine learning, converting the network into a

vector space is a foundamental task.

Figure 1.1: Schematic of node embedding in an undirected and unweighted graph. (Figure
taken from [1])

Recent advancements in the graph embedding world, particularly on node embedding

techniques, have demonstrated an impressive ability to convert high-dimensional, sparse

graphs into low-dimensional, dense, and continuous vector spaces, while preserving the

structural properties. These informative and nonlinear embeddings are useful for various

graph analytic tasks. By encoding nodes into a latent vector space, node similarity in

the original complex network can be evaluated through different similarity measures like

dot product and cosine distance in the geometric embedded space. This transformation

helps support faster and more accurate graph analytics compared to working directly in

the high-dimensional graph domain.

Network embedding, however, still presents numerous challenges, maily due to the wide

array of available techniques and the rapid evolution of the field. For decades, dimen-

sionality reduction methods that were based on factorization matrices have served as

foundational approaches for encoding topological network information. However, in the

recent surge of new embedding methods, it has made increasingly difficult for profession-

als to stay up to date.

The abundance of diverse techniques creates a significant challenge in selecting the most
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appropriate method for a specific application. There is also a notable lack of standardized

tests for systematic comparison, and existing methods are often evaluated on a limited

range of tasks and small real-world datasets. This makes it challenging to assess and

compare the relative performance of different methods. Creating vector representations

for each node in a graph is inherently complex and introduces several research-driven

obstacles, further complicating the task of choosing and implementing the most effective

embedding approach. Among them we have:

� Choice of Property: A good vector embedding should focus on maintaining the

graph structure and node connections. However, determining which specific char-

acteristics to preserve is challenging due to the numerous available distance metrics

and properties. The embedding space could focus on retaining intra-community sim-

ilarity, structural role similarity, or node label similarity, with the effectiveness of

the embedding often depending on the application. Therefore, choosing which graph

property to preserve is a fundamental question in designing network embeddings.

� Scalability: Embedding methods must be efficient for large-scale networks with

millions of nodes and edges, processing them within a reasonable time while ad-

dressing challenges like data sparsity and low parallelizability. Scalability may be

particularly challenging when the goal is to preserve global network properties that

often require computationally heavy embedding methods.

� Dimensionality of the Embedding: Determining the optimal dimensionality re-

quires balancing the preservation of information from the original network, which

often favors higher dimensions, and the need to reduce complexity or minimize noise,

which generally supports lower dimensions. While higher dimensions can enhance

reconstruction precision, they also increase time and space complexity. Conversely,

lower dimensions might improve performance in specific tasks, such as link predic-

tion, by focusing on local node connections. Thus, the choice of dimensionality often

depends on the application and the specific goals of the embedding.

� Adaptability: We need embedding methods to be versatile and capable of being

applied to different types of data and tasks without needing to redo the full learning

process.

� Topology Awareness: The embedding should ensure that the distances between

nodes in the latent space accurately represent the original network’s connectivity

and/or homophily, meaning that similar nodes in the network should remain close

to each other in the embedding space.
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1.2 Purpose of the thesis

Determining the amount of motifs in a graph play a critical role in understanding the

underlying structure and function of complex networks. They are used in a variety of

applications, such as identifying unusual patterns in social networks and pinpointing crit-

ical functional components in biological systems. However, the direct computation of

these motifs is often computationally expensive because of the vast number of possible

subgraphs in large networks. As a result, accurately estimating motif recurrences has

emerged as a valuable tradeoff between precision and computational complexity. In re-

cent years, approximation techniques have gained traction, offering feasible solutions for

various tasks while maintaining a balance between efficiency and accuracy.

In addition to the choice of the machine learning approach and algorithm used to predict

motif counts, the quality of input data also plays a crucial role. The accuracy of these

models can be significantly impacted by the quality of the input features, which raises

the question of whether the effort spent on improving input data is worth the potential

gains in performance.

This thesis aims to explore how input data quality impacts the accuracy of motif

estimation and whether the time spent enhancing input data is warranted by the im-

provements in results. We seek to identify the most effective node embedding method

and to evaluate whether specialized approaches for this task outperform more generic

methods. To this end, we introduce a novel node embedding technique specifically de-

signed for motif estimation and compare its performance with well-established embedding

methods in the field.

We present the concept of Node Heaviness, defined as follows.

Definition 1.2.1 (Node Heaviness). Given a target motif M and a node in a graph

u ∈ V , we define the heaviness NM({u}) of the node u as the number of instances ofM
in which u is involved.

In this thesis we will evaluate the accuracy of our methods by assessing their per-

formance in predicting node heaviness, focusing on triangles as motifs. This approach

allows us to quantify and analyze how well our node embedding techniques capture the

involvement of nodes in triangles, providing insights into their effectiveness.



Chapter 2

Literature Review

Recently, graph embedding techniques have emerged as fundamental tools in representing

complex graph-structured data in a lower-dimensional space, facilitating numerous tasks

in machine learning and data analysis. This chapter provides a comprehensive taxonomy

of graph embedding methods, aiming to categorize and elucidate the diverse approaches

employed to transform graph data into meaningful vector representations. The literature

reveals that graph embeddings can be broadly classified into several categories based on

their underlying methodologies and applications.[6, 10]

These include classical techniques, such as matrix factorization and random walk-based

methods, as well as more recent advances that leverage deep learning architectures. Clas-

sical methods, like DeepWalk[16] and node2vec[15], focus on capturing local and global

structural information through random walks, while matrix factorization approaches such

as GraRep[19] aim to decompose graph matrices into latent factors. On the other hand,

emerging methods incorporate neural networks to capture more intricate patterns in graph

data, exemplified by techniques like Graph Convolutional Networks (GCNs) and Graph

Attention Networks (GATs) [31, 33]. By examining both established and cutting-edge

techniques, this chapter seeks to offer a structured understanding of graph embedding

approaches and their implications for various domains of research and application.

2.1 Taxonomy of Graph Embeddings Methods

A network embedding maps each node of a network to a latent space, typically a Eu-

clidean vector space Rd , where d ≪ n and n is the number of nodes. In this latent space,

certain properties of the nodes, edges, or the entire network are preserved. This can be

defined as a mapping function: f : V → R
d , where each node vi is mapped to a vector zi

in the latent space. This vector zi is expected to capture the topological properties of the

original network while reducing its dimensionality.

The main goal of graph embedding is to encode nodes into a low-dimensional space so

6
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that the similarity in this latent space approximates the similarity in the original high-

dimensional graph, while preserving the graph’s structural properties. Advanced graph

node embedding techniques achieve this by solving an optimization problem through an

unsupervised learning approach, independent of downstream prediction tasks.

The taxonomy proposed in this work is based on a mathematical perspective. It divides

the methods into two main categories based on their depth: shallow embedding methods

and deep learning methods. Below, we describe the characteristics of each category and

provide a summary of representative approaches within each category.

Category Type Method
Time

Complexity
Property

Preservation

Shallow
Embedding

Factorization
LE[14] O(|E |d2 ) 1st order proximity

GraRep[19] O(|V |3 ) 1st - kth order proximity

Random Walk node2vec[15] O(|V |d) 1st - kth order proximity

Optimization HOPE[7] O(|E |d2 ) 1st - kth order proximity

Deep Learning
−− VGAE[18] O(|V |d + |V |2 ) [34] 1st order proximity

−− GIN[13] O(|V |d2 + |E |) [35] 1st - kth order proximity

Table 2.1: Detailed Comparison of Graph Embedding Techniques highlighting Methodological
Differences, Computational Complexity, and Property Preservation

2.1.1 Property Preservation

Proximity measures are crucial for assessing how well graph embedding methods pre-

serve the properties of the graph structure. In particular, there are three main types of

proximity measures (see Table 2.1):

1. First-Order Proximity: The first-order proximity between two nodes, vi and vj ,

is determined by the weight of the edge sij connecting them. This weight serves

as a direct measure of similarity based on existing connections. If sij > 0 , there is

positive first-order proximity between vi and vj ; otherwise, the proximity is zero.

This type of proximity reflects the local network structure and is useful for preserving

direct connections between nodes. However, since many similar nodes may not

be directly connected due to sparse real-world data, first-order proximity alone is

insufficient for capturing all meaningful relationships.

2. Second-Order Proximity: Second-order proximity focuses on the similarity of

the neighborhood structures of nodes. For a node vi , its first-order proximity vector

is denoted as si = [si1 , . . . , sin ] as show in Figure 2.1. The second-order proximity
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between nodes vi and vj is determined by comparing these vectors si and sj . This

measure operates on the principle that nodes are similar if they have many common

neighbors. It is particularly effective for identifying similarities between nodes even

when they are not directly connected, thereby enhancing the capture of the global

network structure and addressing issues of data sparsity.

3. Higher-Order Proximity: Higher-order proximity includes more complex mea-

sures such as the Katz Index, Rooted PageRank, and metrics based on common

neighbors. While second-order proximity is often effective for most embedding meth-

ods, higher-order proximity can provide additional and more detailed insights into

the global structure of the network.

Figure 2.1: Illustration of Proximity Orders: the image illustrates the concepts of first-order
proximity and second-order proximity in a graph. The diagram visually differen-
tiates these proximities, with first-order proximity highlighted by direct edges and
second-order proximity by overlapping neighborhoods.

2.1.2 Encoder-Decoder Framework

Recently, significant efforts have been made to create general frameworks that unify vari-

ous embedding methods under a common mathematical formulation. Notably, Hamilton

et al. [12] proposed an encoder-decoder framework that organizes embedding methods

around four key components:

1. Pairwise Similarity Function sG : V × V → R
+, which measures the similarity

between nodes in the graph.

2. Encoder, defined as ENC : V → R
d, that maps each node vi ∈ V to a low-

dimensional vector, or embedding zi ∈ R
d.

3. Decoder, which is a function that takes these node embeddings and reconstructs

user-specified graph statistics. A common approach is to use a pairwise decoder:

DEC : R
d × R

d → R
+, which maps pairs of node embeddings to a real-valued

similarity measure, quantifying the similarity between nodes in the original graph.
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4. Loss Function ℓ : R× R→ R, which evaluates the quality of the reconstruction.

The goal is to optimize both the encoder and decoder so that the decoded similar-

ity between two embeddings zi and zj approximates a predefined graph-based similarity

measure sG(vi, vj). This can be expressed as:

DEC(ENC(vi),ENC(vj)) = DEC(zi, zj) ≈ sG(vi, vj).

To achieve this, we minimize an empirical loss function over a set of training node

pairs V :

L =
∑

(vi,vj)∈V

ℓ(DEC(zi, zj), sG(vi, vj)),

where ℓ : R × R → R measures the discrepancy between the decoded similarity and the

true similarity.

Once trained, the encoder can be used to generate embeddings for nodes, which serve

as features for downstream machine learning tasks.

While many node embedding methods can be described using this framework, some

approaches, particularly those involving higher-order network embeddings, extend be-

yond this pairwise similarity-based model. These methods, which often incorporate deep

learning techniques, require additional considerations to be fully captured within this

framework.

2.2 Shallow Network Embeddings

The majority of node embedding algorithms rely on what we term shallow embedding. In

these approaches, the encoder function, which maps nodes to their corresponding vector

embeddings, is simply an embedding lookup:

ENC(vi) = Z × vi

Here, Z ∈ R
d×|V | is a matrix containing the embedding vectors for all nodes, and vi

is the indicator vector associated with each node vi (a vector of zeros except at position

i, where the element is 1). The trainable parameters for shallow embedding methods are

simply ΘENC = {Z}, meaning that the embedding matrix Z is optimized directly (see

Figure 2.2).

These shallow embedding approaches are largely inspired by classic matrix factoriza-

tion techniques for dimensionality reduction and multi-dimensional scaling. Many of these

methods were initially conceived as factorization algorithms, reinterpreted here within the

encoder-decoder framework. The objective of the embedding process is to optimize the

embedding matrix Z to achieve the best mapping between nodes and their corresponding

embedding vectors.

The proposed taxonomy categorizes embedding methods into three broad classes:
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Figure 2.2: Diagram showing the process of generating a shallow embedding: the image de-
picts how the embedding matrix and indicator vector are used to compute the
embedding of a node. The indicator vector selects the corresponding column from
the embedding matrix to generate the node’s embedding representation.

� Factorization-Based Methods: These methods involve matrix factorization tech-

niques to decompose the adjacency matrix or similarity matrix of the graph.

� Random Walk-Based Methods: These methods use random walk processes to

capture the graph’s structural properties and node relationships.

� Optimization-Based Methods: These methods optimize an objective function

directly over the embedding space, often involving gradient descent or similar tech-

niques to minimize a loss function that captures the desired properties of the graph.

This framework helps to systematically categorize and understand various embedding

techniques by their underlying mathematical processes and application methods.

2.2.1 Factorization-Based Methods

Early methods for learning node representations primarily relied on matrix-factorization

approaches, inspired by classic dimensionality reduction techniques such as PCA and

LDA, as well as non-linear methods like t-SNE and UMAP. Many embedding methodolo-

gies were developed using an inner-product decoder, where the strength of the relationship

between two nodes is proportional to the dot product of their embeddings. These tech-

niques utilize a mean-squared-error (MSE) loss function, differing mainly in how they

define node similarity.

Matrix factorization-based approaches aim to learn embeddings that approximate a

deterministic measure of node similarity by factorizing matrices representing node con-

nections, such as the adjacency matrix or Laplacian matrix. The factorization technique
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used depends on the matrix properties; for instance, positive semi-definite matrices like

the Laplacian allow for eigenvalue decomposition, while unstructured matrices may re-

quire gradient descent or Singular Value Decomposition (SVD).

These methods have demonstrated effectiveness in graph reconstruction but tend to

overfit to the adjacency matrix, limiting their utility in tasks such as link prediction. Ad-

ditionally, their computational complexity, typically O(|V |2), poses challenges for scaling
to large networks. Moreover, their reliance on adjacency matrix-based similarity mea-

sures, which primarily capture local connections, can further restrict their applicability

in broader tasks.

Laplacian Eigenmaps

One of the earliest and most notable methods is the Laplacian Eigenmaps [14] (LE) tech-

nique. It is a technique aimed at embedding a network such that nodes close in the

original graph remain close in a low-dimensional embedding space. Within the encoder-

decoder framework, LE is a shallow embedding approach where the decoder measures the

squared Euclidean distance between node embeddings. The loss function is weighted by

the similarity of nodes within the graph, focusing on preserving local structures.

This is achieved by preserving a similarity measure defined by the weights between

nodes, encoded in a weight matrix W , where Wij represents the weight between nodes i

and j. The optimization objective is:

L =
∑

vi ,vj∈V

DEC(zi , zj ) · sG(vi , vj )

where DEC(zi , zj ) = ∥zi − zj∥22 and sG(vi , vj ) = Wij . If the graph is unweighted this

value is equal to the adjacency matrix Aij .

It’s important to note that LE uses a quadratic decoder function, which can penalize

small distances between embedded nodes, potentially disrupting the preservation of local

topology. Despite this, the algorithm seeks to keep the embedding of two nodes close when

their corresponding weight Wij is high. Laplacian Eigenmaps are particularly useful in

cases where high-dimensional data lies on a low-dimensional manifold. The algorithm is

simple, involving local computations and solving a sparse eigenvalue problem.

GraRep

GraRep [19] is an advanced graph embedding method that extends the skip-gram model

to capture higher-order node similarity by considering k-step neighbors, where 1 ≤ k ≤ K

and K represents the highest order. The method is designed to handle both direct node

connections and more distant relationships by progressively increasing the value of k. For
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each k, GraRep aims to minimize the following loss function:

L =
∑

vi,vj∈V

T k
ij log(σ(x

T
i xj)) + λEvj∼pk(V )[log(σ(−xT

i xj))]

Definition 2.2.1 (Transition Probability Matrix). Given a graph G = (V,E) with nodes

V , edges E, an adjacency matrix A representing the connections between nodes and the

degree matrix D representing the number of neighbour of each node, the transition proba-

bility matrix T is defined as follows:

T = A ·D−1

Here, xi and xj are the vector representations of nodes vi and vj, respectively, σ(x) =
1

1+e−x is the sigmoid function, and pk(V ) is the noise distribution over the nodes, used for

negative sampling. The term λ controls the number of negative samples.

GraRep transforms this optimization problem into a matrix factorization problem.

Specifically, the k-step loss function is computed using the matrix Xk which represents

the log-transformed k-step transition probabilities, adjusted by a threshold β. Negative

values are set to zero, ensuring that only significant similarities are retained.

Next, the low-dimensional embeddings for each k-step are obtained by applying Sin-

gular Value Decomposition (SVD) to Xk, producing a matrix Ck. The final node repre-

sentation is formed by concatenating the embeddings across all k-steps:

C = [C1, C2, . . . , CK ]

This concatenated representation integrates information from multiple scales, capturing

both local and global structure within the graph. While GraRep is effective in preserving

high-order proximities, its scalability is limited due to the potential size of T k, which can

have O(|V |2) non-zero entries.

GraRep is especially useful for tasks that require capturing complex relationships in

graphs, but it faces challenges in scaling to large networks due to the computational

demands of handling high-order transition matrices.

2.2.2 Random Walks-Based Methods

Graph embedding methods based on random walks are highly effective for solving a wide

range of graph-related tasks. However, the growing volume of research in this area has

made it increasingly challenging to compare different approaches and pinpoint areas for

further improvement in the field.

Random walks have been employed to approximate various properties in graphs, such

as node centrality and similarity. They are particularly useful when only a partial view of

the graph is available or when the graph is too large to measure completely. Embedding
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techniques that use random walks to derive node representations have been proposed,

with DeepWalk [16] and node2vec [15] being notable examples.

The core idea of random walk embedding is to encode the scores from the random

walk into an embedding space. Random walks serve as stochastic similarity measures for

various problems, including content recommendation, community detection, and image

segmentation. Specifically, node similarity in complex graphs can be defined as the prob-

ability of reaching a node vj from a source node vi during a random walk of length l (see

Figure 2.3).

Figure 2.3: Node neighborhood sampling techniques [1]:
(A) Multi-hop neighborhood sampling: In this method nodes of various colors
represent those sampled at different distances or ”hops” from vi. The node vj is
shown as one of the neighbors located three hops away from vi, with the arrows
indicating the shortest path from vi to vj .
(B) Random walk-based node neighborhood sampling: In this technique, the
neighborhood of each node is sampled based on transition probabilities computed
through a random walk process.

The nodes in the random walk are generated based on a distribution, where ri rep-

resents the i-th node in the walk starting from r0 = u, πvx denotes the unnormalized

transition probability between nodes v and x and Z is a normalizing constant.

We can define a random walk as a Markov chain over the set of nodes V . The transition

probability of moving to node v depends solely on the previous node u and is determined

by the adjacency matrix A. For a standard random walk, the transition probability is

proportional to the edge weight Auv:

p(xt+1 = v | xt = u) =
Auv

deg(u)

where xt ∈ V is the position of the walker at time t.

Transition probabilities between all pairs of nodes are represented by the transition

probability matrix T .
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Standard random walks naturally capture node neighborhoods in undirected connected

graphs. One can also design biased random walks to explore different neighborhood

notions.

Random-walk-based similarity functions rely on the co-visiting probabilities of a walker.

An important property of random walks, often overlooked in the embedding literature, is

their capacity to capture similarity at different structural scales (e.g., local vs. global).

node2vec

DeepWalk and node2vec are graph embedding techniques that, similar to matrix factor-

ization approaches, rely on shallow embeddings and use a decoder based on the inner

product. However, instead of decoding a deterministic node similarity measure, they op-

timize embeddings to encode the statistics of random walks on the graph. The core idea

is to learn embeddings such that:

DEC(zi, zj) =
ez

⊤

i zj

∑

vk∈V
ez

⊤

i zk
≈ pG,T (vj | vi)

where pG,T (vj | vi) is the probability of visiting node vj during a random walk of

length L starting from node vi. Typically, L is chosen from the range L ∈ {2, . . . , 10}.
This probability pG,L(vj | vi) is stochastic and asymmetric, unlike the similarity measures

in traditional approaches.

These methods aim to minimize the following cross-entropy loss:

L =
∑

(vi,vj)∈V

− log(DEC(zi, zj))

where the training set V is generated by sampling random walks starting from each

node, meaning N pairs (vi, vj) are sampled from the distribution (vi, vj) ∼ pG,L(vj | vi).
However, directly evaluating this loss is computationally expensive, particularly O(|V |2),
because the denominator in the normalization factor

∑

vk∈V
ez

⊤

i zk has a time complexity

of O(|V |).
To address this, node2vec use different optimizations and approximations to com-

pute this loss. While DeepWalk employs a hierarchical softmax technique, leveraging a

binary-tree structure to speed up the computation, node2vec approximates the loss using

negative sampling, where instead of normalizing over the entire set of vertices, it uses a

random set of ”negative samples.”

Beyond these algorithmic differences, the key distinction between node2vec and DeepWalk

is the flexibility of the random walks. While DeepWalk uses simple unbiased random walks,

node2vec introduces two hyperparameters, p and q, that bias the random walk. The hy-
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perparameter p controls the likelihood of the walk immediately revisiting a node, while q

influences the likelihood of revisiting a node’s one-hop neighborhood. By adjusting these

parameters, node2vec can smoothly transition between walks that are more similar to

breadth-first search (BFS) or depth-first search (DFS). This flexibility allows node2vec

to learn embeddings that either emphasize community structures (BFS-like behavior) or

local structural roles (DFS-like behavior).

node2vec modifies the random walk process to account for different types of network

neighborhoods. The probability of transitioning from node v to node u after having just

visited node t is given by:

P (ci = u | ci−1 = v) =
πvu

Z

if (v, u) ∈ E, and 0 otherwise. Here, πvu is the unnormalized transition probability

between nodes v and u, and Z is the normalizing constant. The variable π is defined as

follows:

πvu =



















1
p
ωvu if dtu = 0

ωvu if dtu = 1

1
q
ωvu if dtu = 2

where ωvu is the weight of the edge between nodes v and u, and dtu is the shortest

path distance between node u and node t (the node visited before v). The parameters

p and q control the random walk’s behavior: p influences the likelihood of revisiting the

previous node (controlling the walk’s tendency towards depth-first search), and q affects

the likelihood of exploring nearby nodes (steering the walk towards breadth-first search).

2.2.3 Optimization-Based Methods

Matrix factorization and random walk methods for graph embedding utilize distinct math-

ematical approaches. Matrix factorization, being a well-established mathematical tech-

nique, differs fundamentally from random walk-based methods, which, while diverse, are

unified by the principle of exploring graph structure through stochastic processes.

Beyond these two categories, there are other embedding techniques that do not fit

neatly into either group but aim to achieve similar goals through optimization. These

methods, often termed hybrid approaches, rely on a shared step of optimization, typically

carried out via gradient descent. The core of these optimization-based methods is the loss

function, which encapsulates the desired properties to be preserved in the embeddings.

This loss function integrates node similarities from the original space with regularization

terms to maintain specific network features.

In essence, while matrix factorization and random walks offer different mathematical
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frameworks, many modern embedding methods leverage optimization techniques to refine

node representations. By focusing on the optimization of a well-defined loss function,

these approaches align closely in their goal of preserving relevant network characteristics,

even as they employ varied mathematical processes.

HOPE

High-Order Proximity preserved Embedding [7] (HOPE) is an algorithm designed to ef-

ficiently capture high-order similarities in large-scale networks, particularly for directed

graphs where asymmetric transitivity is crucial. Asymmetric transitivity refers to the idea

that the relationship from node vi to node vj may differ from the relationship from vj to

vi. HOPE addresses this by approximating high-order proximity through a loss function

that minimizes the difference between the observed similarity and the predicted similarity

based on the embedding, specifically using the L2-norm to measure the reconstruction

error:

L =
∑

vi,vj∈V

∥Dec(zi, zj)− sG(vi, vj)∥22,

where Dec(zi, zj) = zTi zj and sG(vi, vj) denotes any similarity measure between vi and vj.

The authors of HOPE propose a general factorization approach for various similarity

measures, expressing the similarity matrix S as a product of two matrices, M−1
g and Ml.

In this formulation, M−1
g represents the inverse of the global similarity matrix, capturing

broad structural relationships across the network, while Ml is the local similarity matrix,

focusing on more localized connections within the network. Both matrices are typically

polynomial functions of the adjacency matrix or its variants, which allows for efficient

computation using Generalized Singular Value Decomposition (SVD).

Proximity Measurement Mg Ml

Katz I − β · A β · A
Personalized PageRank I − αT (1− α) · I
Common Neighbors I A2

Adamic-Adar I A ·D · A

Table 2.2: Proximity Measurements and Corresponding Mg and Ml Matrices

HOPE can be used with several common similarity measures, including the Katz Index,

Rooted PageRank, Common Neighbors, and Adamic-Adar score. These measures can all

be expressed in the general formulation S = M−1
g Ml which are shown in Table 2.2. For

example:

� Katz Index considers all paths between two nodes, with a decay parameter β to

control the weight of longer paths.
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� Rooted PageRank measures the probability that a random walk from node vi

ends at node vj in a steady state, with a parameter α controlling the random walk

behavior.

� Common Neighbors counts the number of shared neighbors between two nodes

� Adamic-Adar modifies the common neighbors approach by weighting neighbors

inversely by their degree

HOPE’s formulation unifies these diverse similarity measures under a single framework,

enabling the algorithm to efficiently embed large-scale graphs while preserving both local

and global asymmetric transitivity.

2.3 Deep Learning Embeddings

Representation learning has always been a key challenge in machine learning, with many

studies focused on finding effective methods to learn meaningful features of data samples.

Recently, deep neural networks have demonstrated their strong ability to create valuable

embeddings across various types of data. [27, 33]

While deep learning has achieved great success in various fields, there hasn’t been as

much focus on using these techniques for network data, especially in learning network

representations. However, the growing interest in deep learning has led to an increase

in methods that apply deep neural networks to graph data. Deep autoencoders, which

are known for their ability to model complex, non-linear structures, have been used for

tasks like dimensionality reduction and network embedding in approaches such as SDNE

(Structural Deep Network Embedding) and DNGR (Deep Neural Networks for Learning

Graph Representations). These methods take advantage of the deep autoencoders’ ability

to model non-linearities, allowing them to create embeddings that capture the intricate

structure of graphs.

The success of deep learning in data analysis, including network embedding, can be

attributed to its ability to capture complex features and non-linear relationships among

input variables.

Graph Neural Networks (GNNs) extend the concept of Convolutional Neural Networks to

graph data, enabling the encoding of high-dimensional information from a node’s neigh-

borhood into a dense vector embedding. GNN methods typically consist of two compo-

nents: an encoder, which maps a node vi to a low-dimensional embedding vector zi based

on its local neighborhood and attributes, and a decoder, which extracts user-specified pre-

dictions from the embedding vector. This approach is well-suited for end-to-end learning

and provides state-of-the-art performance. GNN-based methods include:

� Graph Convolutional Networks (GCNs): GCNs extend the principles of Con-

volutional Neural Networks (CNNs) to graph-structured data. They apply convo-
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lutional operations directly to the nodes and edges of a graph, allowing them to

capture local properties and relationships within the graph, making them effective

for tasks like node classification and link prediction.

� Graph Attention Networks (GATs): GATs enhance the capabilities of Graph

Convolutional Networks by introducing an attention mechanism. This mechanism

allows the model to weigh the importance of different neighboring nodes, rather

than treating them all equally. By using masked self-attentional layers, GATs can

focus more on relevant neighbors, improving the model’s ability to capture complex

relationships in the graph.

To define a Graph Neural Network (GNN) model, we first need to understand the

graph data structure and its inherent limitations. The contextual information of a graph

dataset depends on both the features of the nodes and the structural properties of the

graph itself. Ignoring the relationships between nodes and treating them as independent

entities can lead to a loss of structural information and result in a model that is less

expressive and interpretable. Thus, it is crucial to incorporate the graph’s structure

into the model. We start by examining the concept of permutation invariance and its

significance for GNN models. Next, we describe the message-passing mechanism used

in GNNs, which integrates both node features and structural information through local

feature extraction.

2.3.1 Permutation Invariance

A GNN model must be either permutation invariant or permutation equivariant to be

effective. This means that the function f should not be influenced by the arbitrary

ordering of nodes in the adjacency matrix.

Definition 2.3.1 (Permutation Invariance and Equivariance). A function f that processes

an adjacency matrix A should satisfy one of the following properties:

� f(PAP T ) = f(A) (Permutation Invariance)

� f(PAP T ) = Pf(A) (Permutation Equivariance)

where P is a permutation matrix.

In essence, it is not feasible to input the adjacency matrix of a graph into a neural

network to produce a graph embedding, as this approach is dependent on the arbitrary

ordering of nodes within the matrix.

2.3.2 Neural Message Passing Framework

The Neural Message Passing Framework is a general approach for processing graph-

structured data using iterative computations. The core idea is that the embedding of
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each node is updated in iterations by aggregating information from its neighbors. The

computation proceeds in iterations, where the embedding of a node is updated based on

the embeddings of its neighboring nodes. At iteration k = 0, each node v has an initial

embedding h
(0)
v = xv, where xv represents the node’s features.

� AGGREGATE: The AGGREGATE(k) function collects the embeddings of the neigh-

bors of node u at iteration k and computes a message:

m
(k)
N(u) = AGGREGATE(k)

(

{h(k)
v , ∀v ∈ N(u)}

)

,

where N(u) is the set of neighbors of node u.

� UPDATE: The UPDATE(k) function then updates the embedding of node u using

its current embedding and the aggregated message:

h(k+1)
u = UPDATE(k)

(

h(k)
u ,m

(k)
N(u)

)

.

After K iterations, the final embedding of node u is denoted as zu = h
(K)
u . In its most

basic form, the AGGREGATE function sums up the embeddings of neighboring nodes:

m
(k)
N(u) =

∑

v∈N(u)

h(k)
v .

The UPDATE function then computes the new embedding of node u as follows:

h(k+1)
u = σ

(

W
(k+1)
self h(k)

u +W
(k+1)
neigh m

(k)
N(u) + b(k+1)

)

,

where W
(k+1)
self and W

(k+1)
neigh are trainable weight matrices, b(k+1) is the bias term and σ(·)

is an element-wise non-linear activation function.

Graph Convolutional Networks (GCNs)

Graph Convolutional Networks normalize the AGGREGATE function by the degrees of the

nodes, taking into account self-loops:

h(k+1)
u = σ





∑

v∈N(u)∪{u}

1√
dudv

h(k)
v W (k+1) + b(k+1)



 ,

where du and dv are the degrees of nodes u and v, respectively and the summation

includes both the neighbors and the node itself (self-loop).

This formulation ensures that the message-passing process in GCNs is normalized by node

degrees, making the model less sensitive to the degree distribution of the graph.
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2.3.3 Limitations of Graph Neural Networks

Graph Neural Networks (GNNs) have revolutionized the way we approach learning from

graph-structured data by leveraging node and edge information to produce meaningful

embeddings. However GNNs still face several limitations, particularly when dealing with

graph isomorphism and expressive power.

Definition 2.3.2 (Graph Isomorphism). Two graphs G = (VG, EG) and H = (VH , EH)

are isomorphic if and only if there exists a bijection f : VG → VH such that for every pair

of vertices u, v ∈ VG, the edge (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EH .

In other words, G and H are isomorphic if there exists a one-to-one correspondence

between their vertex sets that preserves adjacency.

The graph isomorphism problem seeks to determine whether two graphs are topologically

identical. Despite significant research, no polynomial-time algorithm is known to solve

this problem efficiently. The Weisfeiler-Lehman (WL) test, introduced by Weisfeiler and

Lehman [21], offers a practical approach to this challenge by providing an effective and

computationally efficient method for distinguishing a broad class of graphs.

The WL test works by iteratively refining node labels based on the labels of their

neighboring nodes. The test involves the following steps:

1. Aggregation: Collect and aggregate the labels of a node and its neighbors.

2. Hashing: Generate new labels by hashing the aggregated information.

Two graphs are deemed non-isomorphic if their node labels differ at any iteration of

the test. The Weisfeiler-Lehman test is based on the following theorem:

Theorem 1 (Weisfeiler-Lehman Test Theorem). Let G and H be two graphs. If the WL

test terminates with the labels of corresponding nodes in G and H being different, then

G and H are non-isomorphic. Conversely, if G and H are non-isomorphic, then there

exists an iteration at which the labels of corresponding nodes in G and H are different.

GNNs have demonstrated substantial utility in various applications by iteratively up-

dating node embeddings to capture network structures and features of surrounding nodes.

However, they face inherent limitations in their expressiveness and capability to distin-

guish graph structures. GNNs are inspired by the WL test’s approach to graph labeling

and aggregation. While GNNs effectively learn from node neighborhoods, their aggrega-

tion schemes face limitations:

� Aggregation Scheme: Many GNNs use aggregation functions that may not be

injective. This means different node neighborhoods can be mapped to the same

embedding, reducing the network’s ability to capture distinct subtree structures.

� Subtree Structures: The expressiveness of a GNN is constrained by its ability

to distinguish different subtree structures. If a GNN’s aggregation scheme is not
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injective, it might fail to differentiate between graphs that have distinct subtree

structures but produce similar embeddings.

To analyze a GNN’s representational power, we consider the concept of a multiset:

Definition 2.3.3 (Multiset). A multiset is a generalized concept of a set that allows

multiple instances for its elements. More formally, a multiset is a 2-tuple X = (S,m),

where S is the underlying set of X formed from its distinct elements, and m : S → N≥1

gives the multiplicity of the elements.

The goal is to determine whether a GNN’s aggregation scheme maps different multisets

to distinct embeddings. A maximally powerful GNN would map different multisets to

unique representations, reflecting the true diversity of graph structures.

The theoretical framework for analyzing GNNs involves:

� Injectivity: A GNNs aggregation function should be injective to ensure that dis-

tinct neighborhoods map to unique embeddings.

� Expressive Power: To achieve maximal expressiveness, a GNN must represent

injective multiset functions effectively. Many popular GNNs exhibit non-injective

aggregation schemes, limiting their ability to capture all graph properties.

Despite their advancements, GNNs are inherently limited by their aggregation mech-

anisms and their ability to distinguish complex graph structures. Understanding these

limitations through the WL test and related theoretical frameworks helps in designing

more powerful GNNs that better capture and differentiate the nuances of graph data.

2.3.4 Advanced Graph Neural Network Models

This section delves into two advanced graph neural network frameworks: Variational

Graph Auto-Encoders (VGAE) and Graph Isomorphism Networks (GIN). VGAE builds on

variational autoencoders to capture latent structures in graph data, enhancing link pre-

diction through probabilistic modeling. GIN, on the other hand, extends the Weisfeiler-

Lehman test to achieve maximal discriminative power, leveraging deep multisets for ef-

fective node representation.

VGAE

Variational Graph Auto-Encoders (VGAE) is a framework for unsupervised learning on

graph-structured data that builds on the variational autoencoder (VAE) approach. VGAE

leverages latent variables to learn interpretable representations for undirected graphs.

Specifically, the model uses a graph convolutional network (GCN) as the encoder and

a simple inner product as the decoder, enabling it to perform well on tasks like link

prediction in citation networks. Unlike many existing unsupervised learning models for

graph data and link prediction, VGAE can naturally integrate node features, leading to
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improved predictive performance across various benchmark datasets.

The inference model is parameterized by a two-layer GCN, which estimates the mean and

variance of the latent variables based on the node features and the graph structure. The

GCN is defined as

h(k+1)
u = ReLU



Ã
∑

v∈N(u)∪{u}

1√
dudv

h(k)
v W (0)



W (1)

where:

� h
(k)
v is the feature representation of node v at the k-th layer.

� W (0) and W (1) are the learnable weight matrices.

� ReLU is the activation function.

� Ã = D−1/2AD−1/2 is the normalized adjacency matrix.

The generative model predicts the graph structure by computing the inner product

between pairs of latent variables. Learning is achieved by optimizing the variational lower

bound, involving the reconstruction of the adjacency matrix and the Kullback-Leibler

divergence between the approximate and prior distributions of the latent variables.

Kipf et al. demonstrated that using variational autoencoders for graph embedding can

significantly enhance performance compared to non-probabilistic autoencoders, as VGAE

effectively captures higher-order dependencies between nodes in the graph.

GIN

The Graph Isomorphism Network (GIN) extends the Weisfeiler-Lehman (WL) test, achiev-

ing maximal discriminative power among Graph Neural Networks (GNNs).

To model injective multiset functions for neighbor aggregation, it introduce the con-

cept of “deep multisets”, which involves parameterizing universal multiset functions using

neural networks. The parameter ϵ can be learnable or fixed. GIN then updates node rep-

resentations as follows:

h(k)
v = MLP(k)





(

1 + ϵ(k)
)

· h(k−1)
v +

∑

u∈N(v)

h(k−1)
u





While other powerful GNNs may exist, GIN is a maximally powerful and simple exam-

ple. The node embeddings learned by GIN can be applied to tasks like node classification

and link prediction. As the number of iterations increases, node representations, which

correspond to subtree structures, become more global. Sufficient iterations are key to

achieving strong discriminative power, though features from earlier iterations may some-

times generalize better. To capture all structural information, we utilize data from all

depths/iterations of the model. This is similar to Jumping Knowledge Networks, where

graph representations are concatenated across all iterations/layers of GIN.



Chapter 3

Short Walks Node Embedder

(SNOW)

In response to the increasing evidence that custom embeddings can outperform standard

methods for tasks such as link prediction and node classification, we developed a custom

random walk embedder called Short Walks NOde embedder (SNOW) specifically designed

to predict node heaviness by exploiting information from short random walks.

This method aims to derive node embeddings that capture the likelihood of a given

node being part of a triangle. For an edge {u, v}, we focus on reflecting the frequency with

which random walks starting from node u reach node v and vice versa, excluding the direct

edge {u, v} itself. In the case of a heavy edge, where the edge participates in multiple

triangles, random walks from u are more likely to reach v through a shared neighbor, and

vice versa. This behavior is effectively captured by the random walks. By incorporating

this information into the embeddings of the nodes connected by the edge, the resulting

node embeddings provide a detailed representation of the local triangle structure.

3.1 Implementation Details

We implemented this approach using the steps described in the following sections.

3.1.1 Embedding matrix initialization

If our dataset contains at least d node features (where d represents the desired dimension-

ality of the final embedding), we apply Principal Component Analysis (PCA) on them to

obtain a starting vector for each node. The resulting vectors will have a dimensionality

equal to the embedding dimension, d.

In cases where the number of features is insufficient (i.e., num features < d) or when no

features are present, we initialize each node with a random vector in R
d. These vectors

23
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are drawn from a uniform distribution with values in the range [0, 1), which is the default

range used by the Python random function for generating random floats.

3.1.2 Negative Sampling

To improve the performance of SNOW, we apply negative sampling to the nodes in order to

refine the embeddings. We perform negative sampling before applying the positive ones,

as this helps to ”adjust” the initial embedding vectors, which might otherwise have vectors

too skewed or exaggerated. By first smoothing out these irregularities, the embeddings

are better prepared for the positive sampling phase. Empirically, this approach results in

a slight improvement in overall accuracy.

For each node u, as shown in Algorithm 1, we select a fixed number (if possible) of

2-paths (u − v − z) that do not form triangles. To achieve this, we select z from the

set Nu⊕v ← (Nu ⊕ Nv), which consists of nodes that are neighbors of either u or v, but

not both. Here, Nu ⊕ Nv represents the symmetric difference between the neighbors of

u and v, ensuring that the selected node z does not connect to both u and v. Then, in

Algorithm 3, we update the embedding of the nodes using a fixed learning rate ηn:

zu = zu − σ(zw · zu)ηn

zv = zv − σ(zv · zw)ηn

This process helps in reducing the similarity between embeddings of nodes that are

not forming a triangle. Empirical results show that incorporating negative sampling into

the SNOW algorithm can improve the accuracy, making the embeddings more accurate and

effective for predicting node heaviness.

3.1.3 Random Walks

For each edge (u, v), as shown in Algorithm 2 and 3, we will perform multiple random

walks starting from both u and v. These random walks are of length 3 (because a cycle

of length 3 is necessary to form a triangle) allowing for the exploration of the local

neighborhood structure while maintaining focus on proximity relationships. On each

walk, the path is traced to check if it finishes at the other end of the edge: v for walks

starting from u, and u for walks starting from v.

Heaviness Probability Puv

The probability that a random walk starting from node u reaches node v (and vice versa)

is computed by performing the walk multiple times and counting the number of successful

paths that connect u to v through a neighbor node (see Figure 3.1). These probabilities,

pu,v and pv,u, are normalized by the number of walks w and are then used to update the
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Algorithm 1 GenerateNegativeSamples(G, n)

1: Input: Graph G = (V,E), number n of negative samples for each node
2: Output: R set of negative samples
3: R← {}
4: for u ∈ V do
5: Ru ← {}
6: Nu ← list of neighbors of u
7: if Nu ̸= ∅ then
8: while |Ru| < n do
9: v ← uniformly randomly selected node from Nu

10: Nv ← list of neighbors of v
11: Nu⊕v ← (Nu ⊕Nv)
12: if Nu⊕v ̸= ∅ then
13: w ← uniformly randomly selected node from Nu⊕v

14: Ru ← Ru

⋃{(u, v, w)}
15: end if
16: end while
17: R← R

⋃

Ru

18: end if
19: end for
20: return R

Algorithm 2 PerformWalk(G, u, v, l)

1: Input: Graph G, nodes u, v, length of walk l
2: Output: 1 if the path from u goes through v, 0 otherwise.
3: M ← {u}
4: Nu ← list of neighbors of u
5: while |M | < l do
6: if Nu ̸= ∅ then
7: w ← uniformly randomly selected node from Nu

8: Nu ← list of neighbors of w
9: M ←M ∪ {w}

10: else
11: return 0
12: end if
13: end while
14: if M [−1] = v then
15: return 1
16: end if
17: return 0
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nodes embedding accordingly.

Puv =
pv,u + pu,v

w

Figure 3.1: Visualization of the PerformWalk algorithm: in this figure, we illustrate the Per-
formWalk algorithm. Green edges denote successful runs, while red edges indicate
failed attempts. The first segment represents the walks from vertex vi to vertex
vj , and the second segment captures the reverse walks from vj to vi.

Node Embedding Vector Update

We multiply the dot product between the embeddings of nodes u and v by the heaviness

probability Puv and a fixed learning rate ηp to update the embedding vector of node u.

The same update process is applied to the embedding vector of node v:

zu = zu + ηpPuvσ(zu · zv)

zv = zv + ηpPuvσ(zu · zv)

3.1.4 Loss Function

The objective function of the SNOW algorithm combines both negative sampling loss

and positive sampling loss to optimize node embeddings. Below is the formulation of the

objective function:

The negative sampling loss aims to minimize the similarity between nodes that don’t

form triangles in the graph. For each triplet of negative samples (u, v, w), the negative

sampling loss is defined as:

Lneg =
∑

(u,v,w)∈R

σ(zw · zu) + σ(zv · zw)
2

Here, R is the set of negative samples, and σ(x) = 1
1+exp(−x)

is the sigmoid function.
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Algorithm 3 SNOW(G, n, d, w, l, ηp, ηn)

1: Input: Graph G = (V,E),
number of negative samples for each node n,
embedding dimension d,
number of walks w,
lenght of walks l,
lerning rate for positive and negative samples ηp, ηn,

2: Output: Z list of node embeddings
3: Z ← InitializeNodeEmbeddings(G, d) such that Z[i] ∈ R

d for each i ∈ V
4: R← GenerateNegativeSamples(G, n)
5:

6: % Negative Samples
7:

8: for (u, v, w) ∈ R do
9: zu ← Z[u]

10: zv ← Z[v]
11: zw ← Z[w]
12: Z[u]← zu − σ(zw · zu)ηn
13: Z[v]← zv − σ(zv · zw)ηn
14: end for
15:

16: % Positive Samples
17:

18: for {u, v} ∈ E, u ̸= v do
19: E ′ ← E \ {{u, v}}
20: pu,v ← 0
21: pv,u ← 0
22: for w times do
23: pu,v ← pu,v + PerformWalk(G′ = (V,E ′), u, v, l)
24: pv,u ← pv,u + PerformWalk(G′ = (V,E ′), v, u, l)
25: end for
26: Puv ← pv,u/w + pu,v/w
27: zu ← Z[u]
28: zv ← Z[v]
29: Z[u]← zu + ηpPuvσ(zu · zv)
30: Z[u]← zu + ηpPuvσ(zv · zu)
31: end for
32: return Z
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On the other hand, the positive sampling loss encourages the embeddings of highly

triangle-connected nodes to be similar. For each edge {u, v} ∈ E, the positive sampling

loss is defined as:

Lpos = −
∑

{u,v}∈E

pv,u + pu,v
w

σ(zu · zv)

where pu,v and pv,u represent the successful random walks between nodes u and v, and

w is the number of walks.

The final loss function, which the SNOW algorithm aims to minimize, thus combines

both the negative and positive sampling losses:

L = Lneg + Lpos

Substituting the expressions for Lneg and Lpos, we get the following complete loss

function:

L =
∑

(u,v,w)∈R

σ(zw · zu) + σ(zv · zw)
2

−
∑

{u,v}∈E

pv,u + pu,v
w

σ(zu · zv)

Therefore, the objective of the SNOW algorithm is to minimize the combined loss L,
optimizing the embeddings Z for the graph.

3.1.5 Complexity

We now analyze the temporal complexity of the SNOW algorithm.

� The initialization process using Principal Component Analysis (PCA) requiresO(d2|V |+
d3), where d represents the dimensionality of the embeddings and |V | denotes the

number of nodes in the graph.

� Generating negative samples incurs a complexity of O(|V |n), which arises from

iterating over each node and sampling it n times.

� Applying these negative samples also requires O(|V |n), reflecting the total number

of negative samples to be processed.

� Performing the random walks incurs a complexity of O(l), where l denotes the length

of each walk.

� Finally, the application of positive samples necessitates O(2|E|wl), where |E| is the
number of edges, w is the number of walks per edge, and l is the length of the walks.

This complexity arises from iterating over each edge, the number of walks per edge,

and applying the PerformWalk function twice.

At the end of the analysis, the final complexity of the SNOW algorithm is given by O(d2|V |+
d3+2|V |n+2|E|wl). Since the length l of the walks is very short, this factor can often be
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ignored. Additionally, because the number w of walks, the embedding dimension d, and

the number n of negative samples per node are generally small compared to other terms,

the overall time complexity is essentially O(|V |+ |E|).



Chapter 4

Experimental Methodology

The prediction of node heaviness is a crucial problem in network analysis, with signifi-

cant implications for the study of social networks, biological networks, and other complex

systems. In this context, we define the heaviness of a node as the number of triangles adja-

cent to it, as triangles represent the simplest and most fundamental motif in graph theory.

Understanding heavy nodes within a graph provides valuable insights into the structure

and connectivity of the network. Therefore, accurately predicting node heaviness requires

embedding methods capable of capturing both local and global graph structures.

Together with SNOW we evaluate several state-of-the-art advanced graph embedding meth-

ods to determine their suitability for predicting node heaviness in unweighted, undirected

graphs. The methods considered include the Graph Isomorphism Network (GIN), Varia-

tional Graph Auto-Encoder (VGAE), High-Order Proximity preserved Embedding (HOPE),

node2vec, Laplacian Eigenmaps (LE), and GraRep. Each method is here discussed in

terms of its ability to capture the graph properties essential for accurately predicting

triangle counts, and by extension, node heaviness.

4.1 State of the art Embedding Methods and Their

Applicability

For the task of predicting triangle counts in unweighted, undirected graphs, deep learning-

based methods like GIN prove to be particularly effective due to their capability to capture

complex graph structures. GIN, in particular, stands out for its expressive power and

versatility, making it highly suitable for this task. node2vec remains a strong candidate

in scenarios where neighborhood information is crucial, although it may require tuning for

optimal performance in triangle prediction while GraRep emerges as an attractive option

due to its multi-scale representation capabilities, making it well-suited for capturing the

necessary structural information for triangle count prediction.

30
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Laplacian Eigenmaps

LE is an effective dimensionality reduction technique that utilizes the Laplacian eigenvec-

tors of the graph to map nodes into a lower-dimensional space. By prioritizing the preser-

vation of local neighborhood information through minimizing the Laplacian quadratic

form, this approach excels at capturing the graph’s fundamental structure. Its focus on

local relationships allows it to deliver a meaningful representation of the graph’s inherent

geometry. LE offers a strong basis for uncovering and analyzing the underlying patterns

in large, unweighted, undirected graphs.

GraRep

GraRep is a method that extends matrix factorization techniques to capture global graph

structures at multiple scales. By using higher-order proximity information, GraRep gen-

erates embeddings that encode various levels of graph structure. It’s ability to capture

higher-order proximities makes it well-suited for identifying structural motifs across dif-

ferent scales of the graph.

node2vec

node2vec is a random walk-based embedding method that generates node representations

by simulating random walks over the graph. By adjusting the bias parameters, node2vec

can explore different neighborhood structures, capturing a balance between local and

global graph properties. node2vec is relatively efficient and scalable, making it suitable

for large graphs, although it may not capture triangle structures as comprehensively as

deep learning methods.

High-Order Proximity preserved Embedding (HOPE)

High-Order Proximity preserved Embedding is an optimization-based method designed to

preserve higher-order proximities between nodes in the embedding space. By focusing on

preserving asymmetric transitivity, HOPE can capture more complex relationships between

nodes that are not directly connected. Although triangles are inherently symmetric, the

ability to capture high-order proximities and asymmetric relationships can help under-

stand the broader structural context in which triangles form. HOPE captures the structural

roles of nodes within the graph, indirectly supporting the identification of triangle-rich

regions.

Variational Graph Auto-Encoder (VGAE)

The Variational Graph Auto-Encoder is a deep learning-based approach that excels at

learning graph embeddings through a probabilistic framework. VGAE leverages both the

graph’s structure and node features to learn embeddings that reflect the overall topology

of the graph. The embeddings learned by VGAE are highly expressive, enabling the model
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to capture complex structural information critical for accurate triangle count prediction

and its probabilistic nature allows it to adapt effectively to various graph types without

reliance on additional node labels.

Graph Isomorphism Network (GIN)

The Graph Isomorphism Network is another deep learning-based method designed to

enhance the expressive power of graph neural networks. GIN’s ability to capture intricate

node relationships and substructures makes it especially suitable for tasks requiring an

understanding of triangles in the graph. Also it does not require labeled nodes, making

it ideal for scenarios involving unweighted, undirected graphs without additional node

attributes.

4.2 Direct Triangle Counting Methods

In this section, we turn our focus to methods specifically designed for directly predicting or

counting triangles in graph structures. These methods will be used as a basis for evaluating

the efficiency of embedding-based approaches used for predicting node heaviness, in terms

of computational time and accuracy.

To achieve a thorough evaluation, we will compare the performance of these direct

triangle counting techniques with that of embedding methods we presented in the previous

chapter. Our objective is to evaluate not only the accuracy of each approach but also

their efficiency regarding time complexity and scalability.

By examining both direct counting methods and embeddings methods in our tests, we

aim to uncover the strengths and weaknesses of each approach. The subsequent sections

will explore specific methods for triangle counting and prediction, including a simple linear

degree predictor algorithm and NetworkX’s triangle counting function.

4.2.1 Simple Degree Predictor (SDP)

We propose an extremely simple linear model to predict node heaviness. The predictive

model is expressed in the form of a linear equation:

ÑM(u) = α · deg(u) + β

where deg(u) represents the degree of node u, and α and β are parameters to be de-

termined. This model is motivated by the observation that nodes with higher degrees are

generally more likely to be involved in a larger number of triangles, as a higher degree

increases the probability of forming interconnected neighborhoods.

The degree of a node often serves as a strong indicator of its local clustering, implying

that nodes with more connections tend to participate in more triangular structures.
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To estimate α and β, we apply linear regression to 40% of the nodes. This training

set allows us to find the optimal values for these parameters. Subsequently, we use the

remaining 60% of the data, which serves as the test set, to evaluate the performance of our

predictive model. By leveraging this approach, we aim to provide a simple yet effective

method for estimating node heaviness, with α and β capturing the linear influence of the

node’s degree on its likelihood of participating in triangles.

4.2.2 NetworkX Triangle Counting Function

NetworkX provides a straightforward and efficient method for counting triangles in a graph

through its ‘triangles‘ function [36], as shown in Algoritmh 4. This function computes the

number of triangles that each node participates in. Specifically, it calculates the number

of triangles for each node u in the graph by checking the nodes adjacent to u and counting

all sets of three interconnected nodes that include u.

Algorithm 4 nx.triangles(G)

1: Input: Graph G = (V,E)
2: Output: Number of triangles for each node or in the graph.
3: Initialize R← {}
4: for each node u ∈ V (G) do
5: R[u]← {v | v ∈ N(u) and v /∈ R and v ̸= u}
6: end for
7: Initialize triangle counts← Counter(dict.fromkeys(V (G), 0))
8: for each u ∈ V (G) do
9: for each neighbor v ∈ R[u] do

10: triangle counts[u]← triangle counts[u] + |R[u] ∩R[v]|
11: triangle counts[v]← triangle counts[v] + |R[u] ∩R[v]|
12: triangle counts.update(|R[u] ∩R[v]|)
13: end for
14: end for
15: return dict(triangle counts)
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4.3 Methodological Details

Our objective is to evaluate the performance of different graph embedding methods when

used as input features for a neural network model designed to predict the number of tri-

angles that a given node participates in within a graph G. In this section, we will provide

a comprehensive overview of the experimental setup, detailing the process of assessing the

effectiveness of various embedding techniques.

We use node embeddings as input features for our model. These embeddings, repre-

sented as a tensor z, are computed using the entire graph beforehand and are used as

input to a feedforward neural network. The objective is to train the model in a fully-

supervised setting using the Mean Absolute Error (MAE) loss function, with the target

values being the actual number of triangles associated with each node in the graph. To

balance the fact that in most datasets many nodes have very few triangles adjacent, we use

a large train set of 40% of the nodes; for each of the nodes in the training set, in addition

to its embedding we have its exact heaviness (number of triangles the node is involved in).

For each test configuration, we conduct 5 runs and aggregate the results by computing

the mean.

4.3.1 Model Architecture

The model employed is a simple feedforward neural network composed of multiple linear

layers interspersed with ReLU activation functions and dropout for regularization. The

architecture is summarized as follows:

� Input Layer: The input consists of precomputed node embeddings.

� Hidden Layers: Five hidden layers with decreasing units (64, 32, 16, 8, and 4) to

progressively capture complex interactions.

� Output Layer: A single unit that outputs a scalar value representing the predicted

number of triangles.

We use dropout as a regularization technique to prevent overfitting. Dropout works by

randomly ”dropping out” a fraction of the neurons during each training iteration, which

helps the model learn more robust features and prevents it from becoming overly reliant

on specific neurons. This technique also enhances generalization, leading to better perfor-

mance on unseen data. Additionally, dropout breaks co-adaptations, which occur when

neurons adjust to compensate for each other’s presence, resulting in a more independent

and distributed learning process. The dropout layers are applied after the non-linear acti-

vation functions in the network, and the dropout rate is determined as a hyperparameter

during the model selection procedure.
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The network structure is defined as follows:

x→ ReLU(W1x+ b1)→ Dropout

→ ReLU(W2x+ b2)→ Dropout

→ ReLU(W3x+ b3)→ Dropout

→ ReLU(W4x+ b4)→ Dropout

→ ReLU(W5x+ b5)→ Output

where Wi and bi represent the weights and biases of the i-th layer, respectively.

4.3.2 Loss Function and Optimization

The loss function used is Mean Absolute Error (MAE), defined as:

MAE =
1

|V |

|V |
∑

i=1

|yi − ỹi|

where yi is the actual number of triangles, and ỹi is the predicted value for node i.

To optimize the model, we use the AdamW optimizer, which is a variant of the Adam

optimizer with weight decay. This optimizer is chosen for its effectiveness in handling

sparse gradients and noisy data. The learning rate is set to 0.002, which was found to be

a good trade-off between convergence speed and stability.

4.3.3 Weight Decay

Weight decay is a regularization technique used to prevent overfitting by penalizing large

weights. This is achieved by adding a penalty term to the loss function that discourages

the network from assigning excessively large values to the model parameters. The weight

decay term in the loss function is given by:

Loss = MSE + λ
∑

i

Wi

where λ is the weight decay coefficient, and Wi are the weights of the network.

In AdamW, weight decay is applied directly to the weights before the parameter update

is performed, thus decoupling it from the gradient-based updates. The update rule for

AdamW is:

Wt+1 = Wt − η

(

mt√
vt + ϵ

+ λWt

)

where Wt are the weights at time step t, η is the learning rate, mt is the first moment

estimate, vt is the second moment estimate, and ϵ is a small constant for numerical
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stability. The weight decay term λWt is added directly to the gradient.

For this model, we use a weight decay value of λ = 0.01. This value was chosen based

on empirical experiments to balance regularization and model performance effectively.

4.3.4 Weight Initialization

Proper initialization of weights is crucial for the efficient training of neural networks. In

this model, we use Xavier initialization (also known as Glorot initialization), which sets

the weights of the network based on the size of the previous layer. The method initializes

the weights W with values drawn from a uniform distribution:

W ∼ U
(

−
√

6

nin + nout

,

√

6

nin + nout

)

where nin and nout are the number of input and output units in the weight tensor,

respectively. Xavier initialization ensures that the variance of the outputs remains consis-

tent across layers, preventing issues such as vanishing or exploding gradients during the

training process.

4.3.5 Hyperparameter Selection

Hyperparameters play a critical role in determining the performance of the model. Below

(Table 4.1) is the table summarizing the hyperparameters used:

Hyperparameter Value

Learning Rate 0.002

Batch Size 32

Number of Epochs 3000

Dropout Rate 0.03

Weight Initialization Xavier

Weight Decay 0.01

Optimizer AdamW

Loss Function MAE

Table 4.1: Summary of selected Hyperparameters on the NN

These hyperparameters were selected after experimentation to ensure that the model

achieves optimal performance on the given task. The small dropout rate and learning

rate help in stabilizing the training process and preventing the model from overfitting to

the training data.



4.4 Datasets 37

4.4 Datasets

In this study, we employ six diverse datasets: CiteSeer, PPI, PubMed, WikiCS, Arxiv and

Products which are commonly used in the field of graph-based machine learning. These

datasets encompass a variety of domains, including academic citation networks, biologi-

cal protein-protein interaction networks, and web-based content classification, offering a

broad spectrum of challenges for testing the robustness and generalization capabilities of

graph-based algorithms.

The following table (Table 4.2) summarizes the main characteristics of these datasets,

highlighting the number of nodes, edges, and features associated with each dataset:

Dataset Nodes |V | Edges |E| Number of Features

CiteSeer [22] 3,327 4,732 3,703

PPI [23] 56,944 818,716 50

PubMed [24] 19,717 44,338 500

WikiCS [25] 11,701 216,123 300

Arxiv [26] 169,343 1,166,243 128

Products [26] 2,449,029 61,859,140 100

Table 4.2: Main Characteristics of the datasets used

� The CiteSeer dataset is a citation network where each node represents a scientific

document, and the edges represent citation links between these documents. It is

often used to evaluate models for document classification and citation prediction.

� The PPI (Protein-Protein Interaction) dataset represents a biological network

where nodes correspond to proteins, and edges denote interactions between them.

This dataset is particularly useful for testing models on biological network tasks

such as predicting protein functions.

� The PubMed is another citation network, specifically focusing on documents re-

lated to the topic of diabetes. Nodes in this dataset represent biomedical papers,

while edges denote citation relationships between these papers. The dataset is en-

riched with features derived from the text of the documents.

� The WikiCS is derived from Wikipedia, where nodes represent articles, and edges

signify the presence of hyperlinks between these articles. This dataset is often used

for evaluating machine learning models on tasks like node classification and semi-

supervised learning.
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� TheArxiv dataset is a large-scale citation network drawn from the Arxiv repository.

In this dataset, nodes correspond to scientific papers, and edges represent citations

between them. Due to its large scale, Arxiv is an excellent dataset for testing the

scalability of graph-based models.

� The Products dataset represents a large-scale product co-purchase network. In

this dataset, nodes represent products, and edges indicate co-purchase relationships

between these products. It is used for evaluating graph-based models on tasks such

as node classification and link prediction in large e-commerce networks.



Chapter 5

Results

In this chapter, we examine the performance of various node embedding techniques used

for predicting node heaviness across multiple datasets. By analyzing the results and

visualizations, we aim to understand the effectiveness and robustness of each method,

especially under varying levels of tolerance for prediction errors.

5.1 Accuracy of Predictions

To thoroughly assess the performance of our node heaviness prediction model across

different datasets, we need to identify the optimal balance between prediction accuracy

and allowable error tolerance. Since the number of triangles adjacent to each node in

the dataset follows an simil-exponential distribution, we can pinpoint the critical position

where the curve shows a sharp change in curvature (elbow). This inflection point, where

the number of adjacent triangles sharply increases, will be used to set the tolerance level

for each prediction.

We will vary the tolerance from 0% (exact match) up to 50% (half the value of the

identified node). Additionally, before calculating the accuracy, we will round the predic-

tions to the nearest integer since the target values are integers.

We choose this value because it represents the critical division between a small number

of very heavy nodes and a large number of lighter nodes. For heavy nodes, which have

high numerical values and are thus more susceptible to small errors, a higher tolerance is

necessary to accommodate the considerable numerical differences.

For instance, in datasets like Arxiv, where heavy nodes have values in the tens of thou-

sands, this is crucial. Conversely, lighter nodes, which have lower values, need a lower

tolerance due to their small numerical range. A percentage-based tolerance relative to the

node’s value is not ideal because it results in excessively tight tolerances for light nodes,

leading to misclassification of small variations as significant errors. This approach also

disproportionately affects heavy nodes, potentially leading to less accurate predictions.
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These evaluations will be based on the rounded results of the test set of the simple

NN defined in Chapter 4.

5.1.1 Determining the elbow point

Given two arrays x and y, the objective is to identify the point on the curve that is farthest

from the straight line connecting the first and last points of said curve. We define the

starting point p1 = (x0, y0) and the ending point p2 = (xn, yn) and calculate the vector

vl = (xn − x0, yn − y0) representing the line from the start point p1 to the end point p2.

Then we calculate the projection of vi onto vl and we can finally get the elbow point

by calculating the point with the maximum perpendicular distance: ie = argmax(∥vi −
Proj(vi, vl)∥). We here show the elbow values of the examined datasets in Table 5.1.

Citeseer PubMed PPI WikiCS Arxiv Products

Elbow Value 5 10 158 5166 780 264

Top % of Nodes 96.00% 95.61% 90.15% 95.46% 99.45% 98.24%

Table 5.1: Elbow value and amount of node with lower value in the examined datasets

5.1.2 Accuracy Results

As the tolerance increases from 0% to 50%, the accuracy of all methods generally improves,

which is expected because a higher tolerance allows for more lenient error margins. How-

ever, the rate of accuracy improvement varies across methods and datasets, indicating

that some predictions are more accurate than others.

Firstly, it is important to note, as shown in Table 5.2, that a significant portion of

the nodes exhibit a heaviness level equal to zero. This has a considerable impact on the

levels of accuracy, as this majority of nodes become easy to predict, and their correct

classification tends to partially obscure the potential challenges in predicting the heavy

nodes, which are fewer and exhibit much more variable values.

Citeseer Pubmed PPI WikiCS Arxiv Products

69.61% 75.56% 28.13% 12.50% 26.06% 23.11%

Table 5.2: Percentage of nodes with 0 heaviness in the datasets.

In any case, we observe that in dense datasets, where the number of triangles adjacent

to the nodes is very high, the neural network struggles to provide precise values imme-
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diately. This is likely due to the presence of extreme values, which make it difficult to

fine-tune the weights more accurately. This phenomenon is also present in sparser graphs,

but rounding the final output to the nearest integer helps mitigate this issue.

Figure 5.1 presents the test set accuracy of various models across different tolerance

levels for the Citeseer dataset. We observe that GIN consistently achieves top-tier accu-

racy, significantly outperforming other embedding methods across the board. SNOW also

demonstrates strong performance, particularly at lower tolerance levels, where it notably

surpasses node2vec. In contrast, GraRep records the lowest accuracy, characterized by a

substantial variance across tolerance levels.
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Figure 5.1: Accuracy of various models on the Citeseer dataset (d = 64).

The PubMed dataset results (Figure 5.2) show a slightly different trend. Here, GIN

continues to lead in accuracy, though with a narrower margin than observed in Citeseer.

SNOW initially underperforms in comparison to node2vec, yet it recovers and matches

node2vec at higher tolerance levels. GraRep, which struggled in the previous dataset,

improves on PubMed, delivering accuracy comparable to other embedding methods.

Turning to the PPI dataset (Figure 5.3), the high density of the graph results in

very low accuracy at zero tolerance, but it improves markedly at low tolerance levels.

HOPE, which achieved only moderate results on previous datasets, claims and maintains

the highest accuracy here, closely followed by GIN. Meanwhile, SNOW lags significantly

behind.
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Figure 5.2: Accuracy of various models on the PubMed dataset (d = 64).

For the WikiCS dataset (Figure 5.4), which is structurally similar to PPI but with

more features, LE emerges as the top performer at low tolerance levels, with GIN in

close pursuit. VGAE, however, struggles considerably, particularly at low tolerance levels

where its accuracy remains much lower than other methods.

The Arxiv dataset results (Figure 5.5) reflect its unique node characteristics as many

nodes have a very low number of triangles adjacent. This trait makes most nodes relatively

easy to classify, resulting in accuracy levels approaching 100% even at low tolerance. Here,

node2vec excels, surpassing matrix factorization methods such as GraRep and LE.

Finally, Figure 5.6 presents the accuracy trends for the Products dataset. Due to the

dataset’s substantial size, only some of the models have been tested because of memory

and runtime limitations. At low tolerance, LE and SNOW outperform GIN by a no-

ticeable margin. However, GIN performs better at zero tolerance and achieves accuracy

comparable to other models at higher tolerance levels.

At the level of individual results for each type of embedder, we notice that GIN con-

sistently ranks among the top embedding methods (as shown in Table 5.3), although it

slightly underperforms in the case of dense graphs, where it still achieves results compa-

rable to those of other methods.

In general, the methods tend to behave differently depending on the type and struc-

ture of the graph they are applied to, making it difficult to provide a clear ranking of the
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Figure 5.3: Accuracy of various models on the PPI dataset (d = 64).

best embedding methods in terms of accuracy.

SNOW, which performs well in sparse graphs, tends to suffer in dense graphs, as the

presence of high-degree nodes increases the likelihood that all random walks will fail

without finding triangles. This is the main problem within SNOW, which can be observed in

the plots provided in the appendix. While SNOW correctly classifies a significant portion of

the nodes, albeit with some noise, a considerable portion of the heavy nodes is misclassified

as really light. This bias in the runs should be examined and addressed, as in the absence

of this issue, SNOW could prove to be a viable alternative to random walk methods such as

node2vec. Nevertheless, we can observe that SNOW is better at recognizing heavy nodes

compared to node2vec directly from the embeddings, as can shown in Figure 5.7 from

the UMAP visualizations of the SNOW and node2vec embeddings.
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Figure 5.4: Accuracy of various models on the WikiCS dataset (d = 64).
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Figure 5.5: Accuracy of various models on the Arxiv dataset (d = 64).
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Figure 5.6: Accuracy of various models on the Products dataset (d = 64).

Figure 5.7: 3D UMAP plot of node2vec and SNOW on the PubMed dataset: In the SNOW
plot, the heavy nodes are distinctly separated from the light ones, demonstrating
the algorithm’s enhanced ability to differentiate node types. (Nodes with 0 heavi-
ness are shown in grey)
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Dataset GIN VGAE GraRep node2Vec SNOW HOPE LE SDP

CiteSeer 0.3919 0.5957 0.6940 0.4506 0.4175 0.4139 0.4557 0.7782

PubMed 0.8053 1.0475 1.3015 1.0974 1.1109 1.0178 0.9437 2.2348

PPI 8.6022 28.1166 10.7680 21.2688 26.1585 7.0973 53.1471 37.5665

WikiCS 141.6618 207.6236 196.2895 308.7476 348.9465 205.7345 148.6957 469.2210

Arxiv 26.5038 28.3918 34.9250 25.2351 32.8094 29.7230 20.1128 35.0209

Products 13.8710 – – – 32.4755 29.7230 19.2938 –

Table 5.3: Average MAE for different embedding methods across various datasets. The best
result in each row is highlighted in green. All accuracy results are within a 8%
variance margin.

5.1.3 Time efficiency

We now analyze the accuracy of various embedding methods in comparison to the time

required to compute them. It is immediately evident that the direct calculation of trian-

gles using the ”triangles” function from NetworkX is the most efficient both in terms of

time and accuracy, as it is a precise calculation rather than an estimate. However, several

observations are worth analyzing in detail (As shown in Figure 5.8).
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Among the deep learning methods, we note that the GIN algorithm, which has a

considerable training time in datasets with few nodes (e.g., Citeseer and PPI), tends to

scale more efficiently than other methods as the number of nodes increases. This results

in GIN’s computation time approaching that of NetworkX for larger datasets.

In contrast, LE (Laplacian Eigenmaps) starts off very quickly on smaller datasets but

soon encounters significant slowdowns due to its cubic time complexity.

SNOW and node2vec have very similar computation times, and in general, random

walk-based methods tend not to be among the fastest or the most accurate.



5.1 Accuracy of Predictions 47

Finally, while HOPE demonstrates a good level of accuracy on smaller datasets, it

quickly becomes impractical in terms of time when applied to larger graphs.
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Figure 5.8: Performance of Embedding Methods: Time vs Loss (MAE)



5.1.4 Simple Degree Predictor (SDP)

We now analyze the performance of the simple degree predictor. The best values for α

and β for each dataset are shown in Table 5.4.

We recall the formula of the predictor:

ÑM(u) = α · deg(u) + β

As shown in Table 5.3 the performance of SDP is inferior to all the embedding methods

analyzed. However, the difference is not extreme, and as shown in Figure 5.9, the predicted

values tend to correctly follow the curve of the true values. Nonetheless, the results on the

WikiCS dataset reveal a challenge: when the distribution of the heaviness does not follow

a linear function with the node degrees, it becomes difficult to make accurate predictions.

In the case of WikiCS dataset, the high-degree nodes are significantly under-predicted.

Dataset α β

Citeseer 0.8467 -1.2646

PubMed 0.8020 -1.7008

PPI 5.7636 -42.8670

WikiCS 25.2797 -107.1657

ArXiv 6.1901 -45.0748

Table 5.4: Best α and β values for different datasets on the simple degree predictor.

Figure 5.9: Prediction plots of the simple degree predictor on PPI and WikiCS datasets (The
red dots are the predictions while the blue ones are the true values of the heaviness)

This highlights that SDP is highly susceptible to the type of graph and its distribution,

although it is extremely efficient in terms of computation time by being able to find the
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optimal α and β in minimal amount of time, even on large datasets like Products and

Arxiv.

5.2 Accuracy of Predictions on Partial Graph Visi-

bility

Unlike other types of embeddings such as random walk and matrix factorization, which

require the entire graph as input, GNN-based embeddings can learn with just a subgraph

containing some nodes and edges.

Therefore in this section, we analyze the accuracy performance of GIN and VGAE when

graph visibility is reduced. Specifically, we randomly select 40% of the edges from the

datasets along with their corresponding nodes. We then train GIN and VGAE on this sub-

graph and embed the remaining 60% of the edges and their corresponding nodes.
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Figure 5.10: Accuracy of GIN on the Citeseer dataset with full and partial graph visibility.

We observe that the accuracy is generally lower when graph visibility is reduced, par-

ticularly, as we can see in Figure 5.10, in the case of GIN, whereas VGAE is less affected by

this reduction (as shown in Figure 5.11). This effect is more pronounced in datasets with

a smaller number of nodes and a higher edge density, such as the PPI dataset. However,

despite the performance drop, the variance in the results does not increase significantly

and remains relatively contained. Furthermore, even with reduced performance, GIN still

achieves relatively high levels of accuracy.

Training time is highly dependent on the number of nodes selected from the dataset.

In dense graphs, the training time with partially visible graphs is almost the same as

that for fully visible graphs. However, for sparser datasets like PubMed and Arxiv, the

training time is significantly reduced with partial graph visibility.
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Figure 5.11: Accuracy of VGAE on the Citeseer dataset with full and partial graph visibility.

5.3 Heavy Node Classification

We now conduct a binary classification analysis on the datasets to evaluate the ability of

the predictor to identify heavy nodes, defined as the top X% of nodes with the highest

number of adjacent triangles.

We tested thresholds of 1%, 5%, 10%, and 25% to explore the performance of different

embedding methods. Our approach involved comparing the top X% of nodes identified

through our predictions with those identified through ground truth values.

Dataset GIN VGAE Grarep n2vec SNOWHOPE LE SDP

Citeseer 0.86 0.96 0.76 0.81 0.74 0.91 0.77 0.79

Pubmed 0.90 0.85 0.77 0.79 0.78 0.77 0.79 0.58

PPI 1.00 0.83 0.94 0.78 0.84 1.00 0.31 0.88

WikiCS 0.92 0.53 0.77 0.70 0.76 0.68 0.86 0.54

Arxiv 0.77 0.84 0.64 0.81 0.67 0.70 0.84 0.64

Products 0.86 – – – 0.69 – 0.80 –

GIN VGAE Grarep n2vec SNOWHOPE LE SDP

0.86 0.67 0.69 0.72 0.69 0.86 0.75 0.31

0.83 0.60 0.66 0.64 0.66 0.65 0.70 0.19

0.89 0.83 0.94 0.78 0.89 0.78 0.83 0.39

0.75 0.48 0.71 0.58 0.79 0.68 0.91 0.25

0.63 0.54 0.55 0.64 0.40 0.58 0.66 0.88

0.73 – – – 0.32 – 0.65 –

Table 5.5: Precision and Recall values at 1% heavy nodes. All results are within a 6% variance
margin.

Dataset GIN VGAE Grarep n2vec SNOWHOPE LE SDP

Citeseer 0.87 0.73 0.84 0.80 0.72 0.93 0.83 0.64

Pubmed 0.83 0.80 0.72 0.76 0.76 0.75 0.80 0.50

PPI 0.96 0.65 0.96 0.82 0.84 1.00 0.64 0.80

WikiCS 0.91 0.70 0.88 0.85 0.83 0.88 0.90 0.75

Arxiv 0.76 0.69 0.59 0.74 0.52 0.78 0.90 0.55

Products 0.77 – – – 0.56 – 0.80 –

GIN VGAE Grarep n2vec SNOWHOPE LE SDP

0.68 0.50 0.48 0.62 0.57 0.70 0.73 0.58

0.77 0.40 0.53 0.65 0.57 0.69 0.72 0.80

0.96 0.80 0.96 0.82 0.85 0.93 0.85 0.88

0.95 0.59 0.89 0.77 0.81 0.75 0.91 0.28

0.46 0.48 0.38 0.70 0.31 0.43 0.57 0.96

0.64 – – – 0.34 – 0.69 –

Table 5.6: Precision and Recall values at 5% heavy nodes. All results are within a 6% variance
margin.
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Dataset GIN VGAE Grarep n2vec SNOWHOPE LE SDP

Citeseer 0.90 0.70 0.90 0.82 0.73 0.93 0.84 0.66

Pubmed 0.84 0.78 0.64 0.79 0.69 0.72 0.78 0.52

PPI 0.95 0.61 0.92 0.85 0.84 0.97 0.77 0.67

WikiCS 0.92 0.71 0.90 0.89 0.87 0.85 0.93 0.84

Arxiv 0.72 0.67 0.58 0.76 0.50 0.68 0.93 0.55

Products 0.75 – – – 0.54 – 0.81 –

GIN VGAE Grarep n2vec SNOWHOPE LE SDP

0.67 0.48 0.32 0.65 0.54 0.64 0.70 0.65

0.72 0.24 0.59 0.60 0.59 0.68 0.74 0.92

0.95 0.79 0.90 0.82 0.85 0.96 0.93 0.98

0.95 0.61 0.86 0.79 0.82 0.88 0.91 0.71

0.44 0.41 0.38 0.73 0.39 0.58 0.55 0.99

0.66 – – – 0.39 – 0.76 –

Table 5.7: Precision and Recall values at 10% heavy nodes. All results are within a 6% variance
margin.

Dataset GIN VGAE Grarep n2vec SNOWHOPE LE SDP

Citeseer 0.90 0.70 0.68 0.90 0.82 0.92 0.90 0.69

Pubmed – – – – – – – –

PPI 0.93 0.66 0.91 0.87 0.82 0.95 0.82 0.70

WikiCS 0.92 0.67 0.90 0.86 0.88 0.93 0.95 0.71

Arxiv 0.62 0.46 0.52 0.73 0.50 0.76 0.95 0.73

Products 0.75 – – – 0.54 – 0.88 –

GIN VGAE Grarep n2vec SNOWHOPE LE SDP

0.56 0.44 0.58 0.50 0.45 0.43 0.59 0.78

– – – – – – – –

0.92 0.77 0.90 0.81 0.86 0.94 0.90 0.99

0.95 0.59 0.86 0.80 0.92 0.93 0.94 1.00

0.53 0.41 0.59 0.81 0.69 0.79 0.60 0.98

0.79 – – – 0.62 – 0.84 –

Table 5.8: Precision and Recall values at 25% heavy nodes. All results are within a 6% variance
margin. (At the 25% threshold for the PubMed dataset, we observed that the nodes
have no adjacent triangles)

In Table 5.5 we present the test set precisions and recalls of various models across

different datasets at 1% threshold. We observe that Graph Isomorphism Networks (GIN)

maintain the highest levels of precision and recall across nearly all datasets. Grarep per-

forms weakly in all cases except for PPI, while SNOW, node2vec, and HOPE yield mediocre

results. In Table 5.6, at 5% threshold, GIN continues to achieve good results; however,

HOPE and LE exhibit better precision values, highlighting an improvement over deep learn-

ing methods. At 10% and 25% threshold, as shown in Tables 5.7 and 5.8, the trend remains

consistent, with HOPE and LE recording the best results, while GIN, despite providing good

outcomes, struggles to compete effectively.

The results reveal that deep learning methods, such as Graph Isomorphism Networks

(GIN), consistently perform best at lower thresholds, demonstrating superior accuracy

and precision. However, GIN suffers heavily from low accuracy as the number of nodes

surpasses the elbow point of the graph. While GIN achieves high precision and recall at

the 1% and 5% thresholds, performance drops significantly when attempting to classify a

larger portion of heavy nodes, as shown in Figure 5.12 which plot the accuracy of the test

set of the various embedding models across different datasets. This decline highlights the

method’s limitations in scaling effectively to higher thresholds.

Matrix factorization methods like Laplacian Eigenmaps (LE) and HOPE, on the other

hand, surpass deep learning methods as the threshold increases, particularly excelling

in classifying larger node subsets. This suggests their effectiveness in handling higher
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percentages of heavy nodes.

SDP performs relatively well in terms of recall at the 10% and 25% heavy node thresh-

olds, but its generally low accuracy and precision present a different reality. These results

indicate that while SDP can recall heavy nodes at higher thresholds, its overall performance

is hindered by imprecision, which limits its reliability in more comprehensive classifica-

tion tasks. In contrast, random walk-based methods perform poorly across all thresholds,

indicating their unsuitability for this classification task.
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5.4 Impact of Embedding Dimensions on Model Per-

formance

In this analysis, we investigated the impact of varying embedding dimensions on model

performance. Our experiments aimed to determine whether increasing the size of the
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Figure 5.12: Accuracy of the datasets in predicting Heavy Nodes

embeddings would yield significant improvements in model accuracy and a reduction in

the average loss (MAE).

For the node2vec algorithm, we can see in Table 5.9 a modest reduction of the loss

when increasing the embedding size from 64 to 128 dimensions. However, beyond 128

dimensions, up to 256, the performance remained stable, showing no further gains. No-

tably, SNOW consistently outperformed node2vec, even with larger embedding dimensions.

Although node2vec is designed to leverage larger dimensions to capture the overall graph

structure, SNOW excels by focusing on a more localized neighborhood structure, which re-

quires fewer dimensions to achieve high performance.

Dimension GIN VGAE GraRep node2vec SNOW HOPE LE

d64 0.3919 0.5957 0.6940 0.4508 0.4175 0.4145 0.4557

d128 0.2915 0.5710 0.4827 0.4257 0.3753 0.3009 0.4408

d256 0.3015 0.5901 0.5356 0.4192 0.3704 0.3424 0.4450

Table 5.9: Average Loss (MAE) for Different Embedding Dimensions on Various Algorithms
on Citeseer dataset. The best result in each row is highlighted in green.

The HOPE algorithm exhibited a consistent, albeit slight, improvement with larger

embeddings. This trend was similarly observed with VGAE and SNOW, where performance

increased incrementally with embedding size.

Laplacian Eigenmaps showed a gradual decrease in MAE with increased dimensions,

although its accuracy did not improve significantly. GIN, which had the lowest MAE across

all dimensions, improved in accuracy at 128 dimensions but stabilized at 256 dimensions,

maintaining its position as the top performer across all metrics.
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Overall, GIN achieved the highest accuracy and the lowest MAE across all embedding

sizes in the tests, indicating its robustness and effectiveness in handling varying embed-

ding sizes. Despite the various improvements observed across different algorithms and

embedding sizes, the general shape of the performance graphs remained consistent, indi-

cating that while embedding size influences model performance, the trend and structure

of the results are relatively stable across different dimensions.

For most algorithms, increasing the embedding dimension up to 128 provides notable

improvements in performance and reduction in MAE, but further increases up to 256

dimensions yield diminishing returns. This suggests that while larger embeddings can

enhance model accuracy and reduce errors, the benefit of very large embeddings may be

limited.

The general performance trends for the algorithms remained consistent regardless of em-

bedding size, indicating that while embedding dimension does affect performance, the

overall trends are stable. This underscores the importance of selecting an embedding size

that balances performance gains with computational efficiency.

5.5 Predicting Node Heaviness with more complex

Motifs

In this section, we analyze the ability of different embedding methods to predict more

complex motifs, specifically 4-cycles and 4-cliques which can be seen in Figure 5.13.

Figure 5.13: Illustration of the motif analysed.

Our results indicate that GIN and HOPE achieve the best performance in both 4-cycles

and 4-cliques, significantly outperforming other embedding methods (As shown in Table

5.10).

We observe that Laplacian Eigenmaps (LE) drastically degrades in performance when

compared to its predictions for triangles as seen in Figures 5.14 and 5.15. This drop in
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accuracy suggests that LE struggles to capture more complex structures like 4-cycles and

4-cliques.

Motif GIN VGAE GraRep node2vec SNOW HOPE LE SDP

4-cycles 0.4097 1.2702 0.9053 1.1136 0.8975 0.4488 2.0298 7.3141

4-cliques 1.4873 3.6338 1.9208 3.0374 3.2801 1.4018 8.7963 6.8795

Table 5.10: Performance metrics for predicting 4-Cliques on PPI datasets and 4-Cycles on
Citeseer dataset. The best result in each row is highlighted in green.

These results align with the concept of order proximity defined in Table 2.1. GIN and

HOPE benefit from k-th order proximity, allowing them to capture deeper relational struc-

tures beyond the immediate neighborhood, which is crucial for predicting complex motifs.

In contrast, LE, which operates with only 1st order proximity, encounters difficulties in

identifying these more intricate patterns.

While SNOW performs reasonably well in predicting 4-cycles, it struggles with 4-cliques.

This outcome is expected, as SNOW’s architecture is more suited to predicting cyclic motifs

rather than dense structures. Interestingly, node2vec shows a similar trend, with both

SNOW and node2vec producing nearly identical results.
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Figure 5.14: Citeseer Dataset - 4-cycles Predictions
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Figure 5.15: PPI Dataset - 4-cliques Predictions
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Chapter 6

Conclusions

In this thesis, we explored the intricate relationship between node embedding techniques

and the accuracy of motif estimation in complex networks. We began by discussing the

significance and relevance of graph analysis across various domains, illustrating how graph

embeddings have emerged as powerful tools for understanding and modeling complex net-

works.

Graphs, characterized by their non-Euclidean structure, provide a flexible and univer-

sal framework for representing complex relationships within data, making them essential

in fields such as social network analysis, biological systems, and computational linguistics.

Our goal was to investigate how the choice of embedding methods impacts the ef-

fectiveness of motif estimation. By introducing the concept of Node Heaviness and a

novel node embedding technique specifically designed for motif estimation, we aimed to

contribute valuable insights to the field of network analysis.

6.1 Key Findings

Our experimental results indicate that different embedding techniques exhibit varying

levels of effectiveness depending on the dataset and the specific characteristics of the

graph.

While the Graph Isomorphism Network (GIN) demonstrated strong performance over-

all, it occasionally faced challenges with dense graphs. In contrast, dedicated methods

like SNOW performed adequately but not at the top level, indicating room for improve-

ment. This variability underscores the necessity for practitioners to choose embedding

techniques tailored to the specific structure of their networks to maximize effectiveness.

In terms of computational trade-offs, we found that direct computation methods, such

as those utilizing NetworkX, often provided the most accurate results with minimal com-

putational effort. On the other hand, while deep learning methods offer greater scalability,

they may require additional tuning to perform well with specific datasets.
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The analysis of heavy node classification highlighted that GIN excels at lower thresholds

but experiences a decline in accuracy when attempting to classify larger subsets of heavy

nodes. This indicates the value of employing a combination of methods, such as matrix

factorization techniques, to ensure robust heavy node identification, particularly at higher

thresholds.

Finally, we observed that reducing graph visibility affects the accuracy of node em-

beddings. GIN was more sensitive to this reduction compared to VGAE, suggesting that

when dealing with incomplete networks, selecting methods less impacted by missing data

can enhance motif estimation accuracy.

6.2 Future Work

These findings have several important implications for the field of network analysis. The

good performance of SNOW in the realm of shallow embeddings suggests that incorporating

domain-specific modifications to existing algorithms can yield significant improvements

in tasks such as link prediction and node classification, though there is still room for

enhancement.

Additionally, the promising results obtained from GIN and VGAE indicate that fur-

ther exploration into deep learning approaches for graph embeddings could unlock new

capabilities for handling more complex network structures.

6.3 Conclusion

In conclusion, this thesis advances the understanding of graph embeddings by evaluating

the efficacy of current methods for predicting node heaviness.

Our results underscore the potential of tailored approaches like SNOW in capturing crit-

ical graph properties. Moreover, deep learning techniques such as GIN show significant

potential in advancing the field by effectively managing the complexity of dense graphs.

The scalability and computational efficiency of these methods also point toward po-

tential applications in real-world scenarios, as large graphs demand not only accuracy

but also manageable execution times. This work lays the groundwork for future research

aimed at enhancing the accuracy, scalability, and efficiency of graph embedding methods,

ultimately enabling more effective and powerful graph analysis.
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Appendix A

Plots

A.1 Plot of predictions on Citeseer dataset

In this section, we present the prediction plots for the various embeddings on the Citeseer

dataset, where the embedding dimension is set to d = 64.

In the plots, blue points represent the correct values as determined by the ground

truth, while red points indicate the predicted values.

The nodes have been ordered based on their correct values to make the distinction

between light and heavy nodes more apparent. This ordering helps to clearly visualize

the performance of the embeddings across different node categories.
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Figure A.1: Plot of predictions on Citeseer dataset
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A.2 UMAP of embeddings on Citeseer dataset

In this section, we visualize the embeddings after applying UMAP to assess how effectively

they distinguish between heavy and light nodes. Nodes with a heaviness value of 0 are

marked in gray and are displayed with a smaller size, given their abundance in the dataset.

This visual adjustment ensures that they remain distinguishable from the heavier

nodes, providing a clearer representation of the overall node distribution in the embed-

ding space.
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Figure A.2: UMAP of embeddings on Citeseer dataset

A.3 Plot of predictions on GIN embeddings across

different datasets

In this section, we present the prediction plots for the GIN embedding across various

datasets. As in the previous plots, blue points represent the correct values obtained from

the ground truth, while red points indicate the predicted values. The nodes have been

ordered according to their correct values to better highlight the distinction between light

and heavy nodes. For datasets with a large number of nodes, a random subset of 15000

nodes has been selected for plotting to ensure the visual clarity of the results.
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Figure A.3: Plot of predictions on GIN embeddings across different datasets
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