
DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

IMPLEMENTATION AND STUDY OF ADAM-BASED ALGORITHMS

Relatore: Laurenado:
prof. Loris Nanni Lorenzo Giannini

ANNO ACCADEMICO: 2021/2022
Data di laurea: 22 Settembre 2022

Abstract

The following thesis proposes an analysis of some variants of the ”Adam” optimizer (adaptive
moment estimation) used mainly in the training of convolutional neural networks, also known as
”CNN”. This algorithm is derived from ”SGD” (stochastic gradient descent) based optimizer, a
method which, to decrease the error function of the classifier, updates the weights of the various
neurons in the network using the gradient of a ”Loss Function”. Starting with the implementa-
tion and analysis of ”AngularGrad” and ”AdaInject”, recently idealized variants of the ”Adam”
algorithm, they will then be used to create ensembles using variants already proposed in the
literature.

I

II

Contents

Figures IV

Tables IV

1 Introduction 1
1.1 Artificial Intelligence . 1
1.2 Machine Learning . 1
1.3 Artificial Neural Networks . 2
1.4 Deep Learning . 4
1.5 CNN . 5
1.6 Training . 5

2 Optimizers 7
2.1 Stochastic gradient descent . 7
2.2 Adam . 8
2.3 DiffGrad . 9
2.4 AngularGrad . 10
2.5 AdaInject . 10
2.6 Other Adam Variants . 11

2.6.1 Hyp . 11
2.6.2 CLRW . 12
2.6.3 Linear CLRW . 12
2.6.4 CLRWDecreasing . 13

3 New Optimizers Approach 15
3.1 AngularHypGrad . 15
3.2 HypAngularGrad . 16
3.3 AngularCLRWDecreasing . 16
3.4 LinearAngularCLRW . 16
3.5 AdaDoubleInject . 17

4 Experimental phase 19
4.1 Working environment . 19

III

4.1.1 Pseudocode . 20
4.2 Experimental results . 20

4.2.1 Additional experimental results . 23

5 Conclusions 25

Bibliography 26

Figures

1.1 Venn diagram ofmachine learning concepts and classes (inspired byGoodfellow
et al. 2016, p. 9). 2

1.2 Perceptron scheme . 3
1.3 An example of an MLP network . 3
1.4 An example of the difference between ANNs and DNNs 4
1.5 LeNet-5 architecture . 5
1.6 Graphical interpretation of gradient descent operation 6

2.1 The difference beetween gradient descent, SGD and mini-batch gradient descent 8
2.2 Different learning rates . 9
2.3 An example of cyclic warm restart . 13

4.1 Graphs of the three versions of the AngularGradtan method 21
4.2 Graphs of the three versions of the AngularGradcos method 21
4.3 Graphs of the three versions of the AngularHypGrad method 22
4.4 Graphs of the three versions of the HypAngularGrad method 22
4.5 Graphs of the three versions of the AngularCLRWDecreasing method 22
4.6 Graphs of the three versions of the LinearAngularCLRW method 22

Tables

4.1 Experimental results with AlexNet and subset 20
4.2 Experimental results with ResNet50 and LAR dataset 23

IV

Chapter 1

Introduction

1.1 Artificial Intelligence

A good AI definition can be:

”Artificial intelligence (AI) systems are software (and possibly also hardware) sys-
tems designed by humans that, given a complex goal, act in the physical or digital
dimension by perceiving their environment through data acquisition, interpreting
the collected structured or unstructured data, reasoning on the knowledge, or pro-
cessing the information, derived from this data and deciding the best action(s) to
take to achieve the given goal [1]”.

AI, in fewer words, can also be defined as the partial reproduction of some of the intellectual
activity of man (mainly learning, recognition, choice) through the construction of ideal mathe-
matical models with the use of electronic computers and programming techniques.

Some fields in which this discipline focuses are knowledge rapresentation, communication
and planning. It can be totally software-based, like a voice assistant, or embedded in a hardware
device, like an autonomous car.

1.2 Machine Learning

”Today, intelligent systems that offer artificial intelligence capabilities often rely on
machine learning. Machine learning describes the capacity of systems to learn from
problem-specific training data to automate the process of analytical model building
and solve associated tasks [2]”.

Asmentioned in the article just cited, in the last decade in the field ofML there have been notable
developments in the search for sophisticated learning algorithms and efficient pre-processing
techniques. In tasks related to high-dimensional data, such as classification, clustering and re-
gression, ML tries to overcome the difficulty of humans to explain all of the tacit knowledge that
is required, automating the task of analytical model building. This can be achieved by applying

1

algorithms that iteratively learn from problem-specific training data, which allows computers to
find complex patterns without explicitly being programmed.

Based on the type of problem and the amount of data available, ML can be divided into three
categories: supervised learning, unsupervised learning, and reinforcemement learning. Finally,
depending on the type of task, there are numerous algorithms available, each with different
specifications and variants.

Below, in Figure 1.1, a diagram on the various concepts of Machine Learning.

Figure 1.1: Venn diagram of machine learning concepts and classes (inspired by Goodfellow et
al. 2016, p. 9).

1.3 Artificial Neural Networks

An artificial neural network (ANN) is a computational model composed of interconnected pro-
cessing units, called ”artificial neurons,” inspired by its biological counterpart. Introduced by
McCulloch and Pitts (M&P) in 1943 [3], the first artificial neuron model functioned as a logic
gate, with only two internal states. These ANNs could then only perform basic logic functions,
such as AND, OR and NOT. Neurons receive data as input and then aggregate it and make it
available to a given activation function. The model proposed by M&P could have only Boolean
values as inputs, all of which had equal weight and contributed with equal importance to the
decision, and the activation function was a simple decision threshold, which had to be prede-
termined. These limitations meant that the only functions that could be represented were linear
ones while nonlinear ones, such as XOR, could not.

A new model of artificial neuron called ”perceptron” was proposed in 1957 by F. Rosenblatt
[4]. This new neuron is capable of ”learning” from given data. Unlike the M&P model, each
input has a distinct weight and these inputs can take on real values instead, the activation function
is a heaviside step function as seen in Figure 1.2.

2

1.4 Deep Learning

In recent decades there have beenmany developments in the field ofML, including the evolution
of ANNs into Deep Neural Networks (DNNs) that enhance their learning capabilities, such as
the example demonstrated in Figure 1.4. The field in which these DNNs are studied is called
Deep Learning (DL). Development in this field is mainly due to the creation of vast datasets for
training and the increasing computing power of available hardware.

For many applications, deep learning models outperform shallow machine learning models
and traditional data analysis approaches [2].

A formal definition of DNNs might be:

”A Deep Neural Network (DNN) is defined to be an Artificial Neural Network
(ANN) with at least one hidden layer of units between the input and output layers.
The extra layers give it added levels of abstraction, thus enhancing it’s modelling
capability” [5].

In addition, the neurons ofwhich they are formed are generallymore complex than those found in
ANNs. They generally perform either more complex operation, such as convolution, or multiple
activations per single neuron. These features make the core capability of DNNs to directly
receive raw input data and automatically discover the corresponding learning task.

DL is great in case you need to handle a large amount of high dimensional data, such as text,
image, video and audio processing [2].

Figure 1.4: An example of the difference between ANNs and DNNs

However, there are also disadvantages with DNNs, such as overfitting and the computa-
tional time required. Overfitting happens when the network tends to ”memorize” details instead
of ”learning” them, causing it to perform poorly when the input data are different [5]. This prob-
lem can be solved by monitoring the progress of iterative training and stopping it at the ideal
point. For the computational time required instead, a good solution is to use GPUs so as to take
advantage of their enormous processing power for the matrix and vector computations required.

4

1.5 CNN

One of the most popular types of DNNs are convolutional neural networks (CNNs). This type of
network has been introduced since 1998 with Yann LeCun’s proposal of the network ”LeNet-5”
[6], whose architecture is shown in Figure 1.5, after a study on back-propagation started in 1988
[7].

CNNs are variants of MLP networks that exploit certain new features to reduce their overall
complexity. The first is local processing, i.e., each neuron is connected only locally to neurons
in the next layer thus leading to a strong reduction in the number of connections. The second
is group shared weights , that is, different neurons of the same level perform the same type of
processing on different portions of input, trivially leading to a total reduction in the number of
weights. Another difference with MLP networks are the activation functions used, generally the
sigmoid function, which causes the vanishing (or exploding) gradient problem in deep networks
[8], has been replaced since 2011 by the ”Rectified Linear Units”(ReLu) activation function [9].

At last the architecture of CNNs is extremely different from MLP networks. A CNN is
composed of a hierarchy of layers, the last ones are generally fully-connected and operate like
an MLP classifier, while at intermediate levels the features described earlier are used. They are
also divided into blocks that exploit convolutional, pooling, and activation layers.

Figure 1.5: LeNet-5 architecture

1.6 Training

In this section we will briefly discuss supervised training. First the network is presented with
data whose class is already known, after which the output produced z by the network for each
pattern x is compared with the desired output t through a loss function, one of which is the sum
of squares of the errors:

J(w, x) =
1

2

∑

c=1...s

(tc − zc)
2

which represents the difference between the two outcomes. The overall error J(w) is the average
of all J(w, x). To reduce J(w) we modify the weights w by following, through the geometric

5

interpretation of the gradient theorem, the opposite direction of the gradient of J . This algorithm,
based on the backpropagation concept first announced by Rumelhalt, Hinton andWilliams [10],
is named gradient descent, the graphical interpretation of which can be seen in Figure 1.6.

For a deeper understanding of this algorithm it is recommended to read ”An overview of
gradient descent optimization algorithms” [11] by Sebastian Ruder, for this thesis we will stop
at a general formula concerning the updating of parameters viz:

θ = θ − η
∂J(θ)

∂θ

where η is the learning rate that is, the size of the steps taken to reach the minimum.

Figure 1.6: Graphical interpretation of gradient descent operation

6

Chapter 2

Optimizers

In this chapter we are going to cover the topic of optimizers, starting with what they are and
ending with an explanation of some of Adam’s variants.

Optimizers are methods or algorithms that reduce the loss function by updating network
parameters. As one can realize from this definition, the gradient descent algorithm, discussed
in the previous chapter, can also be considered an optimizer. In fact, the latter is the basis for
numerous optimization algorithms.

2.1 Stochastic gradient descent

The Stochastic gradient descent (SGD) algorithm, compared to gradient descent, instead of
calculating the gradient of the entire dataset for each step, performs an update by calculating the
gradient relative to one parameter at a time. That is, the update function becomes:

θ = θ − η∇J(θ; xi, yi)

with xi and yi a given pattern and its label, respectively. This means that for each epoch, which
is the presentation of all n patterns of the training set to the network, there will be n updates.
SGD therefore requires less space to perform operations even though since these are smaller
they are more frequent.

SGD performs frequent updates with high variance that heavily fluctuate the objective func-
tion. These fluctuations allow it to move much more than before and perhaps reach new, po-
tentially better, local minima. On the other hand, however, these fluctuations complicate the
convergence of the loss function as it may overshoot. This phenomenon can be partly counter-
acted by decreasing the learning rate [11].

Another variant called mini-batch gradient descent involves dividing the training set into
batches, and updating the parameters occurs once each pattern in the batch has been visited.

θ = θ − η∇J(θ; x1:k, y1:k)

with k the number of patterns in a batch.

7

2.3 DiffGrad

Proposed in 2019 [15] diffGrad is an optimizer that, unlike Adam, dynamically adjusts the learn-
ing rate. One of the problems of Adam is with controlling friction for the first moment in order
to avoid overshooting near to an optimum solution. To solve it diffGrad takes into account the
change in short-term gradients by inserting a new coefficient in the parameter update formula.

The first step is to compute the absolute difference of the gradients of two consecutive steps:

∆gt = gt−1 − gt

The new coefficient is defined as:
ξt =

1

1 + e−|∆gt|
.

DiffGrad does not change how the moments mt and vt are computed, and like Adam, it
uses their bias-corrected versions m̂t and v̂t in the parameter update formula. The formula then
becomes:

θt = θt−1 − η
ξt · m̂t√
v̂t + ϵ

The importance of having an adequate learning rate (lr) is demonstrated graphically in Figure
2.2. The three cases are: A) Case where the lr is too small, the process does not reach the local
minimum. B) Case in which the lr) is too large, it risks overshooting the local minimum.
C) Case in which lr adjusts dynamically.

A) B)

C)

Figure 2.2: Different learning rates

9

2.4 AngularGrad

AngularGrad is one of Adam’s newly published variants ispired by diffGrad, developed mainly
to reduce the zig-zag effect in the optimization trajectory due to the high gradient variation that
penalize the final result [16]. To do this, the algorithm also takes into account the information
from the angle/direction of the gradient vector instead of just the magnitude of it.

To exploit the change of gradients during optimization steps a new angular coefficent was
introduced. The latter is defined as follows:

ϕt = tanh (̸ (|Amin|)) · λ1 + λ2

where λ1 and λ2 two hyperparameters that empirically perform best when set at 0.5 both.
The ̸ , on the other hand, can take on two values. In fact, this optimizer arrives with two

variants, in one case ̸ is the function cos while in the other the function tan . The coefficent At

represents the angle between the current gradient and that of the previous iteration. At−1 as can
be guessed is the angle between the gradients of the previous iterations, namely gt−1 and gt−2.
Hence the term Amin is defined as:

Amin = min (At−1, At).

The coefficent ϕt dynamically adjusts the learning rate by causing the parameter update to be
lower in low-changing gradient regions and vice-versa. AngularGrad computes the first and
second moments as Adam and diffGrad but in updating the parameters it inserts ϕ as follows:

θt = θt−1 − η
ϕt · m̂t√
v̂t + ϵ

As a result, due to these new changes, fluctuations in the trajectory are significantly smoothed
out by plotting a more direct path toward the minimum of the cost function. Another advantage
gained is the reduction in computational power required.

2.5 AdaInject

Like AngularGrad, AdaInject is one of the latest Adam variants released [17]. This variant
injects the second order momentum into the weight upgrade formula. The curvature information
is obtained through short-term parameters.

Unlike the variants seen before, AdaInject is not a stand-alone approach, but can be inte-
grated with any existing adaptive momentum stochastic gradient descent approach.

In Adam the first-order momentmt is used to update the parameters, while the second-order
moment vt is used to control the learning rate. From this it can be seen that Adam mainly relies
on gradients.

AdaInject instead proposes to inject the curvature information weighted second order mo-

10

mentum into first order momentum. To do this a new EMA is presented:

st = β1st−1 + (1− β1) ·
(gt +∆θ · g2t)

k

where ∆θ represents the difference at short-term of the parameters, thus θt−2 − θt−1, while k is
a real-valued hyperparameter that empirically is set to 2.

This new approach keeps the second-order moment vt the same as Adam, but replaces the
first-order moment mt with the inject moment st just introduced. A bias-correction is also per-
formed in AdaInject, respectively:

ŝt =
st

1− βt
1

v̂t =
vt

1− βt
2

Finally, the parameter update rule is given as:

θt = θt−1 − η
ŝt√
v̂t + ϵ

.

These new featuresmean that AdaInject helps optimizersmake larger upgrades to parameters
in scenarios where, typically, there is a low gradient, such as flat regions, or where there are areas
of low curvature, such as monotonous increase/decrease regions.

In the same article in which it was presented, AdaInject shows a boost in the performance
of the optimizers to which it was applied.

2.6 Other Adam Variants

In this new section some variants of Adam and diffGrad previously seen will be analyzed. These
are the approaches from which inspiration was drawn to develop the new variants proposed in
this thesis. These algorithms were presented and studied in Bassani Matteo’s bachelor’s thesis,
a computer engineering student at the ”Department of Information Engineering - DEI” in Padua,
Italy.2.

2.6.1 Hyp

This approach follows diffGrad’s philosophy in trying to dynamically update the learning rate.
Unlike the old variant, instead of using the absolute sigmoid function, it uses the hyperbolic
function, hence where the name (Hyperbolic) comes from.

2Thesis title: ”Exploiting Adam-like Optimization Algorithms to Improve Performance of Multi-label Classi-
fication,” year of publication: 2020, URL: http://hdl.handle.net/20.500.12608/5001

11

The revised parameter ξt is calculated as follows:

ξt = − 1

a ·∆gt + b
+ c

where a,b and c are initialized to 10, 2/3 and 3/2 respectively.

2.6.2 CLRW

The name of this variable stands for Cyclic Learning Rate with Warm restarts, and as it suggests
it exploits the idea of a cyclic learning rate with a certain number of restarts being performed
relative to the current number of epochs. The learning rate starts with its maximum value and
then decays until it restarts. A graphical visualization of the Learning Rate trend by adopting
this approach can be seen in Figure 2.3

This approach comes with three variations:

ξ1,t = 0.5 + 0.5 cos
(
mod(e, period)

period
· π

)
(2.1)

ξ2,t = cos
(
mod(e, period)

period
· π
2

)
(2.2)

ξ3,t = 0.5 + 0.5 cos
(
mod(e, period)

period
· π

)
· exp−drop·e (2.3)

where e is the current epoch, period=(number of epochs) / (number of restarts).
Whichever variant is chosen in each case the final step consists of:

X = 4 · ξi,t ·∆ĝt

ξt =
1

1 + exp−X

where ∆ĝt represents the normalization of the short-term difference of the gradients and ξt is
the coefficient that will be placed in the update function.

The purpose of this approach is to improve convergence in cases of ill-conditioned functions
and to avoid ending up in suboptimal local minima.

The variant described in formula (2.3) decreases at each warm restart the maximum and
minimum learning rate so as to control and contain the divergence phenomenon.

2.6.3 Linear CLRW

As the name suggests, this approach is nothing more than a linear version of CLRW that instead
of degree returns values in radians. It is executed as follows:

ξ4,t = arccos
(
cos

(
mod(e, period)

period
· π
2

))

12

2.6.4 CLRWDecreasing

This approach is also a variant of CLRW although more complex than the previous one.

At each warm restart, the first iteration is executed as the function (2.2), and the rest as fol-
lows:

ξ4,t =
y
e

period

·
(
2 + 0.5 cos

(mod (e, period)

period
· π

))

Figure 2.3: An example of cyclic warm restart

13

14

Chapter 3

New Optimizers Approach

This chapter will look at five new variants of the Adam optimizer. These have all been designed
by building on some features found in ”AngularGrad” and ”AdaInject” and combining them
with other existing approaches.

• AngularHypGrad: union of ”AngularGrad” and ”Hyp”;

• HypAngularGrad: another union of the concepts of ”AngularGrad” and ”Hyp”, variant
of ”AngularHypGrad”;

• AngularCLRWDecreasing: merging of the concepts of ”AngularGrad” and ”CLRWDe-
creasing”;

• LinearAngularCLRW: merging of the concepts of ”AngularGrad” and ”LinearCLRW”;

• AdaDoubleInject: expanding the features of ”AdaInject”.

3.1 AngularHypGrad

This variant retains the main structure of the ”Hyp” approach, set forth in the previous chapter,
except that it no longer uses the mere difference between gradients as the variable of the hy-
perbolic function. The new coefficient is obtained by applying the first step of ”AngularGrad,”
that is, taking the lesser of At, which is the angle between the current gradient vector gt and
that of the previous iteration gt−1, and At−1, which is the angle between gt−1 and that of the still
previous iteration gt−2.

At and At−1 are computed according to this formula:

At = arctan
(|gt − gt−1|
(1 + gt · gt−1)

)

At−1 = arctan
(|gt−1 − gt−2|
(1 + gt−1 · gt−2)

)

Amin = min (At, At−1)

15

Recalling that the hyperbolic function is computed as follows:

ξt = − 1

a · Amin + b
+ c

where a,b and c retain their previous values, namely 10, 2/3 and 3/2 respectively.
The coefficient before being entered into the parameter update formula is normalized.

3.2 HypAngularGrad

This approach is very similar to AngularHypGrad but swaps the order of operations. In this
variant, the hyperbola function is executed as many as twice per iteration. The variable for the
first is the angle between gt and gt−1, while for the second is the angle At−1.

The results of these two functions is then compared and the lesser is chosen as the new
coefficient ξt. As before, the coefficient is normalized before being used.

Other variants of these two approaches were tested, including trying to integrate more of the
features of ”AngularGrad” but none of them gave good results except for ”AngularHypGrad”
and ”HypAngularGrad”. The results will be presented in the next chapter.

3.3 AngularCLRWDecreasing

The combination of the ”CLRWDecresing” and ”AngularGrad” approaches led to the creation
of this variant. Like the original approach, the latter applies the same operations except that,
instead of using the simple difference between gradients (the current one and the immediate
previous one), it follows the approach of ”AngularGrad,” i.e., the minor angle Amin. The only
thing that changes then is the calculation of the variable X:

X = 4 · ξi,t · Amin.

Recalling that the remaining operations are carried out as follows:

ξ4,t =
y
e

period

·
(
2 + 0.5 cos

(mod (e, period)

period
· π

))

ξt =
1

1 + exp−X

3.4 LinearAngularCLRW

As easily guessed from the name, this approach is the union of the ”AngularGrad” and ”Linear
CLRW” methods. Like the previous method exhibited, the only real variance from the original
approach is in the calculation of the variableX . Again, the latter is calculated withAmin instead
of the difference of gradients.

16

3.5 AdaDoubleInject

This approach is an expansion of the ”AdaInject” approach. Instead of exploiting the curvature
information only to replace the first momentummt, it also uses the short-term parameter history
to create a new EMA to replace the second momentum vt.

The new EMAs thus become:

st = β1st−1 + (1− β1) ·
(gt +∆θ · g2t)

k

pt = β1pt−1 + (1− β2) ·
(gt +∆θ · g2t)

k
.

remembering that∆θ is the difference between the parameters of the previous iteration with the
current one.

As with the original approach, a bias-correction is computed at the EMAs:

ŝt =
st

1− βt
1

p̂t =
pt

1− βt
2

Finally, following hand in hand with the ”parent,” ”AdaDoubleInject” is a general approach
that can be applied to any pre-existing method by causing performance to be boosted.

17

18

Chapter 4

Experimental phase

This chapter will first expose the working environment and then turn to the results obtained from
studying the approaches presented in the previous chapters.

4.1 Working environment

The analysis work in this thesis was done on the matlab platform, which is a programming and
numerical computing platform used by millions of engineers and scientists for data analysis,
algorithm development and model building [18]. The version of matlab used is R2022a using
mainly the ”Deep Learning Toolbox” functions.

The basis for this thesis was the work done in Bassani Matteo’s thesis mentioned in the
previous chapters. From there the program was modified so that the new ”AngularGrad” and
”AdaInject” approaches could be implemented.

It was only after the implementation of the two approaches just mentioned that research was
devoted to finding new variants that had these approaches as their initial cues. The first tests
carried out were performed with ”AlexNet” [19] as a neural network and using a subset of the
”LAR” dataset. This subset contains 1320 elements of which 880 were used as a training set
and 440 as a test set. These specific tools were used for time reasons.

The pseudocode of the program is presented in the next page.

19

4.1.1 Pseudocode

Choose the boost method
load dataset
load network
for all fold in dataset do

make data compatible with network input
create training and test sets
create graphic
for all methods in approaches do

set the parameters
train the network
classification of test patterns
calculation of accuracy

end loop
end loop

4.2 Experimental results

This section will proceed to expose and then analyze the results obtained in the work done in
this thesis under the conditions and using the tools described above. All the results that are
exposed are an average of the results, i.e. the accuracy, that each approach obtained in each
fold. Existing methods are first exposed, while, later new methods are exposed, including the
two versions of ”AngularGrad.” Below is the Table 4.1 with the percentage results obtained
with the working environment described above. The table is divided into four columns. The
first shows the approach used, the second shows the result obtained by following the directions
of ”Adam,” and the third and fourth show the results obtained by the boost methods ”AdaInject”
and ”AdaDoubleInject.”

Optimizer Base AdaInject AdaDoubleInject
Adam 0.3954 0.64697 0.68483
Hyp 0.6106 0,7523 0.7682

CLRWDecreasing 0.5909 0.7167 0.7932
LinearCLRW 0.5212 0.6962 0.7364

AngularGrad
AngularGrad(tan) 0.6212 0.7182 0.7393
AngularGrad(cos) 0.4682 0.6303 0.7061

New Approaches
AngularHypGrad 0.6023 0.7387 0.7076
HypAngularGrad 0.6795 0.7053 0.73563

AngularCLRWDecreasing 0.6000 0.71817 0.7265
LinearAngularCLRW 0.5800 0.67347 0.7280

Table 4.1: Experimental results with AlexNet and subset

20

4.2.1 Additional experimental results

For the remaining time, only a series of more extensive tests were carried out. These involved
using a new network, ”ResNet50” [20], and the entire ”LAR” dataset [21]. The methods tested
here are just a few of those mentioned above. The boost approach used is that of ”AdaInject.”
The table 4.2 shows the percentage results obtained in these tests. The first column shows
the name of the method tested, the second the average of seven trainings, and the third the
result obtained from the seven-network sum rule. The first item in the table, ”Adam(base),” was
included for comparison and represents the results obtained with this work environment using
the EMAs of the classical ”Adam” optimizer, not those of ”AdaInject” as for the remaining
entries.

Optimizer Average Sum rule
Adam(base) 0.9215 0.9629

Adam 0.9372 0.9583
Hyp 0.9381 0.9682

AngularGrad(cos) 0.9382 0.9583
AngularHypGrad 0.9396 0.9644
HypAngularGrad 0.9453 0.9652

AngularCLRWDecreasing 0.9433 0.9629
LinearAngularCLRW 0.9511 0.9652

Table 4.2: Experimental results with ResNet50 and LAR dataset

In this working environment and with the tests performed, it can be seen that the results are
about in the same range. The boost brought by ”AdaInject” is not as visible as it was before.
The results of the new variants are slightly better than the boosted approaches of ”Adam” and
”Hyp”.

In any case experimenting on one dataset is by no means sufficient to reach definite conclu-
sions. That is why other tests are already planned and in progress.

23

24

Chapter 5

Conclusions

The objective of this thesis was to implement and study the two new approaches ”AngularGrad”
and ”AdaInject,” and thenmove on to study possible new variants of the ”Adam” algorithm. The
analysis of the first two approaches was quite in line with the results proposed in the papers in
which they were presented, except for the case of ”AngularGradcos” which turned out to perform
less well than expected. The new variants, achieve on average the same performance as the
approaches they were inspired by. The ”AdaDoubleInject” method, on the other hand, seems to
perform better than ”AdaInject,” or at worst, like it.

That said, the results obtained seem promising, although a study on only one dataset is not
enough to reach definitive conclusions, and that is why new tests, on different networks and
datasets, are already planned and underway.

25

Bibliography

[1] H.-L. E. Group, “A definition of ai: Main capabilities and scientific disciplines,” European
commission, 2019.

[2] C. Janiesch, P. Zschech, andK. Heinrich, “Machine learning and deep learning,” Electronic
Markets, vol. 31, pp. 685–695, apr 2021.

[3] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous ac-
tivity,” Bulletin of Mathematical Biophysics, 1943.

[4] F. Rosenblatt, “Perceptron–a perceiving and recognizing automaton,” Report 85-460-1,
Cornell Aeronautical Laboratory, 1957.

[5] A. Simon, M. Deo, V. Selvam, and R. Babu, “An overview of machine learning and its
applications,” International Journal of Electrical Sciences & Engineering, vol. Volume,
pp. 22–24, 01 2016.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to doc-
ument recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[7] Y. Lecun, “A theoretical framework for back-propagation,” in Proceedings of the 1988
Connectionist Models Summer School, CMU, Pittsburg, PA (D. Touretzky, G. Hinton, and
T. Sejnowski, eds.), pp. 21–28, Morgan Kaufmann, 1988.

[8] Y. Bohra, “The challenge of vanishing/exploding gradients in deep neural networks,”Data
Science Blogathon, 2021.

[9] G. E. Hinton, “Rectified linear units improve restricted boltzmann machines vinod nair,”
2010.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature 323, 533–536, 1986.

[11] S. Ruder, “An overview of gradient descent optimization algorithms,” 2016.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.

[13] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” 2012.

26

[14] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural Net-
works, vol. 12, no. 1, pp. 145–151, 1999.

[15] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and B. B. Chaudhuri,
“diffgrad: An optimizationmethod for convolutional neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 31, no. 11, pp. 4500–4511, 2020.

[16] S. K. Roy, M. E. Paoletti, J. M. Haut, S. R. Dubey, P. Kar, A. Plaza, and B. B. Chaudhuri,
“Angulargrad: A new optimization technique for angular convergence of convolutional
neural networks,” arXiv, 2021.

[17] S. R. Dubey, S. H. S. Basha, S. K. Singh, and B. B. Chaudhuri, “Curvature injected adaptive
momentum optimizer for convolutional neural networks,” 2021.

[18] The Mathworks, Inc., Natick, Massachusetts,MATLAB version 9.12.0.1884302 (R2022a),
2022.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” inAdvances in Neural Information Processing Systems (F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[21] G. M. e. a. Moccia S, De Momi E, “Confident texture-based laryngeal tissue classification
for early stage diagnosis support,” J Med Imaging (Bellingham). 4(3):034502., 2017.

27

