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Chapter 1

Introduction

If we are given a system with an unknown behaviour, how do we approach its

study? An intuitive answer is the same that a child with a new, mysterious

toy would give: we could “mess” with it and see what happens. More seri-

ously, we can say that to study a system is to study its reaction to external

stimuli, which in the context of statistical physics means altering one of the

variables of the system.

In general, this could lead to a radically different system that we are no

longer able to study in relation to the original one; but if the alteration is

small in comparison to its effect, the system maintains a comparable be-

haviour. In this case, the response of the system can be approximated as

linear to the perturbation and we can write the linear response function [8].

Integrating the response function over time, we get the generalized suscep-

tibility [42]. This means that the linear response function is not only a

theoretical tool but it has a clear physical meaning. If we are given a solid,

we might be interested in studying how its size is altered if we increase its

temperature: in this case, the linear response function is connected to the

thermal expansion coefficient, how much the system expands when its tem-

perature is increased. At the same time, the specific heat of the solid can be

retrieved from the response of the internal energy to a thermal perturbation

5



6 CHAPTER 1. INTRODUCTION

[15].

The response function is, in turn, determined by the equilibrium fluctuations:

this is the fluctuation-response theorem [10]; for instance the specific heat,

which describes the response of the internal energy to a thermal perturbation,

can be expressed from the correlations of the internal energy fluctuations in

the unperturbed state. More in general, at equilibrium the linear response

of an observable can be written only in terms of the equilibrium correlation

between the observable itself and the entropy produced in response to per-

turbation [24].

Out of equilibrium, however, these results are in general no longer valid.

In general, there are two kinds of systems out of equilibrium [42].

The first one are systems that are in the process of relaxing to equilibrium:

for example, when a hot cup of coffee is placed in a room at room tempera-

ture, heat will flow from the coffee to the rest of the room; after some time

the coffee and the air will have relaxed to a new equilibrium state: the coffee

is now at the same temperature of the room. Before that, however, the coffee

is not in equilibrium with the room and the process is not reversible: heat

will not flow back again from the room to the coffee, warming it up. It is

possible to keep changing the external parameters in order to never let the

system relax, like in a running combustion engine.

Secondly there are systems that are driven from equilibrium by thermody-

namic forces. This kind of systems can be further distinguished into three

subgroups: systems under the influence of mechanical nonconservative forces;

systems in contact with the environment at different chemical potentials; and

systems in contact with parts of the environment at different temperatures.

Out of equilibrium, the linear response can no longer be written just as a

correlation between the observable and the entropy produced in response
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to perturbation, but another correlation term, called frenesy1, related to

the volume of transitions or changes performed in time, will appear. This

quantity is time-symmetric, in the sense that trajectories display the same

activity if they are spanned in the normal temporal direction or backward in

time and it complements entropy production (which is time-antisymmetric)

in the description of fluctuating quantities in regimes out of equilibrium [42].

The subject of our study is a conceptually simple one dimensional model

of a heat conducting material in contact with two thermostats at adjustable

temperatures; if they are set at the same value, we have a system in thermal

equilibrium, with all its usual proprieties; the interesting behaviour is when

they are not.

The inertial dynamics of the system are modeled as a Fermi-Pasta-Ulam

system, a simple toy-model developed in the Fifties; while it was the first

computational model in physics [17, 18], it is still in use as a simple model

of a conductive body.

A Fermi-Pasta-Ulam chain is composed by a series of masses, with their

dynamics determined by a non-linear potential that depends only on the

distance between them.

How could we model the effects of the thermostats connected to the chain?

We would be tempted to add a thermal white noise term to the dynamics of

the extremes of the chain; these oscillators would move as in thermal equi-

librium with the thermostat and their thermal fluctuations would propagate

along the chain due to the Fermi-Pasta-Ulam interaction. Unfortunately, we

would encounter mathematical problems when we apply this method to our

model.

In order to obtain an analogue for out of equilibrium systems of the Kubo

1It has also been called traffic or dynamical activity.



8 CHAPTER 1. INTRODUCTION

formula, a relation between stationary fluctuations of some observable and

the response of the system, we need an approach that does not require to ex-

plicit the probability density function, which, in contrast with equilibrium, is

in general unknown. A suitable one is the path-integral approach, a technique

that it has proved to be a very powerful tool in various areas of physics, both

computationally and conceptually [40].

A realization of a stochastic process is called a trajectory (or path) and, if

the dynamics are given, one can in principle compute the probability mea-

sure of such paths. The expectation value of observables dependent on the

trajectory can be written as a sum (or integral) over all possible trajectories

with path weights depending on the dynamics.

The expectation of perturbed observables, to be used in the linear response

formula, may be rewritten it term of path weights of the unperturbed dy-

namics, if its path weights are comparable with those unperturbed. This is

always true for mechanical perturbations [15, 16]. The main problem with

white noises is that this is not the case when noise prefactors are different,

as when we change temperatures. Mathematicians would say that there is

no absolute continuity between the two processes. This issue was solved

recently for nonequilibrium overdamped systems, for which we now have a

thermal response theory [15, 16]. The problem remains open for inertial sys-

tems, which is why we are interested in this issue in this thesis.

Instead of relying on an explicit white noise term that has proven to be

pathological, the effect of the thermal reservoirs to our Fermi-Pasta-Ulam

chain is modeled by applying to the extremes of the chain two Andersen

thermostats: an algorithm updates the velocity of the oscillator in contact

with thermostats with a value extracted from the equilibrium distribution

at the given bath temperature [2].
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Our goal is to prove that this reformulation is a viable path to the study of

out of equilibrium thermal response. In order to do so, we derive a general

expression for the linear response function, showing separately the contri-

bution of the entropic and frenetic term, and test it in a simulation with

the directly measured linear response of different observables of the system.

Hence, for the first time we obtain a fluctuation-response relation for ther-

mal perturbations of a system with full Hamiltonian dynamics and operating

out of equilibrium, thus extending previous results available only for systems

evolving via overdamped stochastic equations or Markov jump processes [11].
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Chapter 2

The thermal response problem

In equilibrium statistical mechanics, all thermodynamics properties are de-

rived from the partition function [33]: once a physicist is given a Hamiltonian,

his job is to compute as accurately as possible the partition function, with

the appropriate methods for the particular problem (exact analytic calcula-

tions, perturbative expansions, numerical calculations and so on). This is

not in general possible in non-equilibrium statistical mechanics, but there

are many different approaches, whose connections are far from evident, none

of them of universal validity.

One of these approaches is the linear response theory [10] which allows us to

study a system by studying its response to any form of small perturbation

(thermal, mechanical, chemical, etc).

2.1 Introduction to stochastic differential equations

For deterministic processes in physics, differential equations are usually writ-

ten in the form:
dYt
dt

= At(Yt) (2.1)

where Yt is some time-dependent physical quantity and At(Yt) a function

of this quantity and time. It could also, of course, depend on some other

11
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physical quantities but for the sake of simplicity we will restrict ourselves to

the simpler case.

Equation (2.1) can also be written as an update formula [22]:

Yt+dt = Yt +At(Yt) dt (2.2)

Since, for any t0, Yt0+dt is a function of only the value of Y at time t0, we

can say that this process is memoryless. This is a Markov process.

It is possible to show that equation (2.2) is the most general form for a

deterministic continuous Markov process, since any other form would break

consistency [22].

Similarly, the general form for a stochastic continuous Markov process is [22]

Yt+dt = Yt +At(Yt) dt+D
1/2
t (Yt)Nt(dt)1/2 (2.3)

where Nt is a function that at every instant extract a value from N(0, 1) (a

normal distribution with zero mean and unit variance), At(Yt) is the drift

term and Dt(Yt) is the diffusion coefficient.

To study the stochastic part of the equation (2.3), we write it in the form of

a differential equation

dYt
dt

= At(Yt) +D
1/2
t (Yt)

Nt
(dt)1/2

(2.4)

Since, for a Gaussian distribution, αN(0, 1) = N(0, α2):

Nt
(dt)1/2

= N

(
0,

1

dt

)
≡ Γt (2.5)

which, in the limit dt→ 0, is a Gaussian that keeps widening and lowering.

This is called white noise, denoted as Γt.

What are the characteristics of Γt? Its mean is by definition:

〈Γt〉 = 0 (2.6)

We can write the correlation function as

〈ΓtΓt+t′〉 = 0 t′ 6= 0 (2.7)
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and since 〈Γt〉 ∼ 1/dt goes to infinite in the limit dt→ 0:

〈ΓtΓt+t′〉 = δ′t (2.8)

It can be shown [21] that the density function of a random variable defined

by equations (2.3) and (2.4) satisfies the partial differential equation:

∂

∂t
Pt(y) = − ∂

∂y
[At(y)Pt(y)] +

∂2

2∂y2
[Dt(y)Pt(y)] (2.9)

with y a realization of Yt. This is called the (forward) Fokker-Planck equa-

tion. We can rewrite it as:

∂

∂t
Pt(y) = L†Pt(y) (2.10)

by introducing the forward generator L†. Its adjoint, the backward generator

L, is an operator acting on functions of the process and of the time is defined

as:

L ft(y) = At(y)∇ft(x) +
Dt

2
(y)∇2ft(y) (2.11)

with ft(y) a generic function.

We remark that these are mathematical results, without any particular as-

sumption on the physics of the process.

2.2 Equilibrium linear response theory

Let us take a damped harmonic oscillator [36]

d2x

dt2
+ γ

dx

dt
+ ω2

0x = f(t), ω2
0 =

k

m
(2.12)

how does f(t) affects the system? We expect the solution x(t) to be a linear

functional of f(t) in the form

x(t) =

∫ +∞

−∞
dt′ R(t− t′) f(t′) (2.13)

where R(t− t′) is the linear response function.

If we are studying a system at equilibrium, we can easily derive the form of



14 CHAPTER 2. THE THERMAL RESPONSE PROBLEM

R(t− t′) since the time-dependent distribution is known and can be written

as:

ρ(q, p) =
1

Z(H)
e−βH(q,p) Z(H) =

∫
dq dp e−βH(q,p) (2.14)

where Z(H) is the partition function. We will denote the average value taken

with the equilibrium distribution (2.14) as 〈 · 〉(0). If A(q, p) is a dynamical

variable, then its average value when no perturbation is applied is:

〈A〉(0) =

∫
dq dp A(q, p) ρ(q, p) (2.15)

If we now perturb the system with a time-dependent potential V, arbitrarily

small:

H → H ′ = H + V V = −hA(q, p) (2.16)

where h is a numerical coefficient and A(q, p) is a dynamic variable. We limit

ourselves to effects that are linear in h. The new partition function, in the

first order of h, is therefore

Z(H + V ) ' 1

Z(H)

∫
dqdpe−βH(1− βV ) = Z(H)(1− β〈V 〉) (2.17)

We will denote the average value taken with the perturbation h as 〈 · 〉(h). If

we introduce a second dynamic variable B(q, p), we can compute its average

〈B〉(h) to first order of f

〈B〉(h) ' 1

Z(H)(1− β〈V 〉)

∫
dqdpe−βH(1− βV )B(q, p)

' (1 + β〈V 〉)(〈B〉(0) − β〈V B〉) ' 〈B〉(0) + β[〈V 〉〈B〉 − 〈V B〉]

= 〈B〉(0) − β〈V B〉c

where we have defined 〈V B〉c, connected part of 〈V B〉 as

〈V B〉c ≡ 〈V B〉 − 〈V 〉〈B〉 (2.18)

so that the variation of B is

〈B〉(h) − 〈B〉(0) = −β〈V B〉c = βh〈BA〉c (2.19)
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and since the linear response function is defined as

〈B〉(h) = 〈B〉(0) + h

∫ t

0
dt′ R(t− t′) + o(h) (2.20)

we can write the static susceptibility χBA, which is the derivative of 〈B〉(h)

with respect of the perturbation h, as

χBA =
∂〈B〉(h)

∂h

∣∣∣
h=0

=

∫ t

0
dt′ RBA(t− t′) = β〈BA〉c (2.21)

This is the fluctuation-response theorem: the response of the system to a

small perturbation, described by χBA, is governed by the equilibrium fluc-

tuation 〈BA〉c.

But what if the fluctuation is not constant? A very simple form of time-

dependent fluctuation is

h(t) = Θ(−t)h (2.22)

which can be interpreted as a constant fluctuation applied from t = −∞ to

t = 0 and then switched off (figure 2.1).

Figure 2.1: Schematic picture of the perturbation (h(t)) and system response

(〈B〉(h) − 〈B〉(0))
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Now 〈B(t)〉(h) is a time-dependent variable. For t < 0, 〈B(t)〉(h) = 〈B〉(0)

is still constant and consistent with the previous formulation. Working in

the analogue of the Heisenberg picture we can derive the form of for positive

times

〈B(t)〉(h) =
1

Z(H ′)

∫
dqdpe−βH

′
B(t) ' 1 + β〈V 〉

Z(H)

∫
dqdpe−βH(1− βV )B(t)

' 〈B〉+ βh〈B(t)A(0)〉c (2.23)

The function 〈B(t)A(0)〉c is the (connected) equilibrium time correlation

function of B and A, also called the Kubo function CBA(t) [24]. The response

function is nothing but the time-derivative of the Kubo function.

We can show that remembering the definition of the response function (2.13)

〈B(t)〉(h) − 〈B〉(0) =

∫ t

−∞
dt′RBA(t− t′)f(t′)

= f

∫ 0

−∞
dt′RBA(t− t′) = f

∫ 0

−∞
RBA(t′)dt′ (2.24)

where the index BA means that we are considering the response of the

observable B to a perturbation of A. Since it has to be consisted to (2.23),

we can take the derivative of both terms and get

d

dt
〈B(t)〉(h) = −fRBA(t)

d

dt
〈B(t)〉(h) = βf〈Ḃ(t)A(0)〉c (2.25)

and so we can finally write the response function as

RBA(t) = −βΘ(t)〈Ḃ(t)A(0)〉c ≡ −βΘ(t)ĊBA (2.26)

where we can see the proportionality between the response function and a

time-dependent correlator. This is also called the Kubo formula.

Let us write the Fourier-transformat of the linear response function

R̃BA(ω) =

∫ +∞

−∞
dtRBA(t) eiωt = −β

∫ +∞

0
dt ĊBA(t) eiωt (2.27)
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If we take the imaginary part of the equation we get

R̃′′BA(ω) = −β
∫ +∞

0
dt ĊBA(t) sin(ωt) = −β

2

∫ +∞

−∞
dt ĊBA(t) sin(ωt)

= i
β

2

∫ +∞

−∞
dt eiωt ĊBA(t) (2.28)

and, integrating by parts, we finally get

R̃′′BA(ω) =
iβ

2
(−iω)C̃BA(t) =

βω

2
C̃BA(t) (2.29)

Since it is possible to show that the imaginary part of the Fourier-trasformat

of the linear response function (R̃′′) is related to the energy dissipated by a

system, this is usually called the fluctuation–dissipation theorem [33].

2.3 Non-equilibrium linear response

The previous derivation of the Kubo formula assumes that the system is in

equilibrium. We can ask ourself if there is a more general form.

The Fokker-Planck equation (2.10) for a Markov process with probability

density Pt(y) (for t ≤ 0) with the forward generator L† can be written as:

d

dt
Pt(y) = L†Pt(y), L†Pstat(y) = 0

with Pstat(y) the stationary probability density. We then turn on the per-

turbation at t = 0 so:

L†h ≡ L
† + hL†pert (2.30)

where h is a small parameter that let us control the amplitude of the pertur-

bation per unit of time. We want to consider the effect of the perturbation

on an observable O. The formal result of a first order Dyson expansion is:

〈O(t)〉(h) − 〈O(0)〉(0) = h

∫ t

0

〈
L†pertPstat

Pstat
O(t′)

〉(0)

dt′ (2.31)
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in terms of time-correlation function for the unperturbed process. This for-

mula, called the Agarwal-Kubo function, was first proposed by Agarwal [1],

after Kubo’s derivation for equilibrium [24], and later rediscovered in differ-

ent forms [6]; in theory, this could be applied to a non-equilibrium state.

2.3.1 Application to intertial diffusion dynamics

As an example, we try to apply it to a diffusion Langevin dynamics:

Mv̇t = −Mγvt +
√

2DΓt (2.32)

whereM is the mass of the particle, γ the viscosity of the fluid, D its diffusion

constant and Γt the gaussian white noise (2.5). From Einstein relation we

know that

D = γMkbT (2.33)

with T the temperature and kb the Boltzmann constant.

We can write a Pstat(x) that satisfy the stationary Fokker-Planck equation:

0 =
∂Pstat
∂t

= L†Pstat =
∂

∂vt
γvtPstat +

kbT

M

∂2Pstat
∂v2

t

(2.34)

If we introduce a thermal perturbation T → T +h, we can write the pertur-

bation in (2.34) as:

L†h = L† + hL†pert L†pert =
kb
M

∂2

∂v2
(2.35)

then Agarwal-Kubo equation gives us a very simple expression for thermal

response:

〈O(t)〉h − 〈O(0)〉0 = h

∫ t

0

〈
kb
M

1

Pstat

∂2Pstat
∂v2

O(t′)

〉
0

dt′ (2.36)

This expression is well-defined and suffers no mathematical problems, if

Pstat(x) is smooth and the process has only integrable time-correlations.

But, of course, no explicit computations of this formula can be done out of
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equilibrium, except for special cases: if we are truly out of equilibrium, we

have in general no way of knowing ∂2Pstat
∂v2 /Pstat or to measure it. While it

is generally a well-behaving expression and we have no problem with the

hypotheses we had to assume, the expression
L†pertPstat
Pstat

is just not sufficiently

explicit and it is often of little practical use.

We need a different approach that allows us to derive a practically useful

expression for linear response formulas.

2.4 The path-integral approach

The notion of path-integral was introduced for the first time in the 1920s

by Norbert Wiener as a method to solve problems in the theory of diffusion

and Brownian motion. This integral, which is now also called the Wiener

integral, has played a central role in the further development of the subject

of path integration. It was reinvented in a different form by Richard Feyn-

man in 1942, for the reformulation of quantum mechanics. In the 1950s,

path-integrals were studied intensively for solving functional equations in

quantum field theory (Schwinger equations). But its results are not limited

to the quantum world, the path-integral technique finds newer and newer

applications in statistical physics and non-relativistic quantum mechanics,

in particular, in solid body physics and the description of critical phenomena

(phase transitions), polymer physics and quantum optics, and in many other

branches of physics. Most works in theoretical and mathematical physics

during the two last decades of the last century contained some elements of

the path-integral technique [12].

We can show its application to stochastic processes with a simple exam-

ple [40]. Let us assume a one-dimensional Markovian process that follows a
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Langevin diffusion equation:

ẋt = At(x) +D Γt (2.37)

where At(x) is the drift term and it is the deterministic component of the

process, while D is the diffusion coefficient, that we assume constant for

simplicity, and Γt is the Gaussian white noise. Under these hypotheses we

also write the Champman-Kolmogorov equation:

P (x3, t3|x1, t1) =

∫ +∞

−∞
dx2P (x3, t3|x2, t2)P (x2, t2|x1, t1) (2.38)

with t1 < t2 < t3. Such an equation allows us, by partitioning the time

interval in N + 1 steps, t0 < t1 < ... < tf , with ti = t0 + i(tf − t0)/(N + 1),

to write:

P (xf , tf |x0, t0) =

∫ +∞

−∞
...

∫ +∞

−∞
dx1...dxNP (xf , tf |xN , tN )...P (x1, t1|x0, t0)

This can be interpreted as an integration over all possible paths that the

process could follow. We would need the form of P (xi+1, ti+1|xi, ti) in order

to evaluate this integral, however we will follow an alternative way.

Now, the probability that at a given time t the process takes a value between

a and b is: ∫ b

a
dxP (x, t|x0, t0) (2.39)

We can iterate this for all the partition, each with its ai and bi:∫ b1

a1

...

∫ bN−1

aN−1

dx1..dxN−1P (xf , tf |xN−1, tN−1)...P (x1, t1|x0, t0) (2.40)

It is obvious that if we increase the number of time slices and at the same

time we take the limit bi − ai → 0 the trajectory can be defined with arbi-

trary precision, if the trajectories are continuous.

For a general Markov process, we can write:

P (x, t|x0, t0) =

∫
D[x(t)]e

−
∫ t
t0
dsL[x(s),ẋ(s)] (2.41)
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where L[x(s), ẋ(s)] is the stochastic Lagrangian (also called Onsager-Machlup

functional). We can also indentify the stochastic action through

A[x(t)] =

∫ t

t0

dsL[x(s), ẋ(s)] (2.42)

that allows to write (2.41) as

P (x, t|x0, t0) =

∫
D[x(t)]e−A[x(t)] (2.43)

This formulation allows us to write practically useful expressions for linear

response formulas, readily applicable for non equilibrium processes too [5, 7,

9, 14].

As an example, let us apply this to the Wiener process [20, 38]:

P (W2, t2|W1, t1) =
e

(W2−W1)2

2D(t2−t1)√
2π(t2 − t1)

(2.44)

For N →∞ we can define a measure of the path-space known as the Wiener

measure [35, 41]. By substituting (2.44) into (2.40) we get:

N∏
i=1

dWi

(4πhD)1/2
e−

1
4Dh

∑
i(Wi−Wi−1)2

(2.45)

which is the desired probability of following a given path.

Taking the limit h→ 0 and N →∞, we can write the exponential in (2.45)

in the continues limit as

e
− 1

4D

∫ t
t0
dτ( dW

dτ
)2

(2.46)

If we then integrate the expression in (2.40) over all the intermediate points,

which is equivalent to a sum over all possible paths, as all the integrands

are Gaussians and the convolution of two Gaussians is again a Gaussian, we

recover the result of (2.46) for the probability density of the Wiener process.

Hence we have expressed the probability density as a path-integral Wiener

integral [25, 35]

P (W, t|W0, t0) =

∫
D[W (τ)]e

− 1
4D

∫ t
t0
dτ( dW

dτ
)2

(2.47)
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where the expression inside the integral is the continuous version of the in-

tegral in (2.40), over all possibile values of the intermediate points.

2.5 Linear response at equilibrium

Let us present a brief description of the path-space approach to the response

in equilibrium [29]. A dynamical ensemble gives the weight of a trajectory

[X] = (xs, 0 ≤ s ≤ t) of the system the expectation value of an observable

O = O[X] can be written as

〈O〉 =

∫
D[X]P [X]O[X] =

∫
D[X]e−A[X]Peq[X]O[X] (2.48)

where D[X] is the formal notation for the volume element on the path-space,

Peq is the equilibrium path-probability distribution and we denote with

P [X] = e−A[X]Peq[X] (2.49)

the path-probability distribution of the perturbed system, with action A.

At the initial time (t = 0), the system is in equilibrium and the two path-

probabilities P and Peq differ only because P is in the perturbed ensemble.

Since we are at equilibrium, we can assume time-reversibility, which implies

the invariance Peq(T [X]) = Peq[X] under time-reversal T .

We can decompose the action A into a time-antisymmetric E and a time-

symmetric F term

A =
1

2
(F − E) (2.50)

with T E = −E and T F = F , as they do depend on time because they are

defined on paths [X] in the time-interval [0, t].

These are the two components of the action:

• the entropic term (E) given by correlation between the observable and

the entropy produced in response to perturbation
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• the frenetic term (F ) related to the volume of transitions or changes

performed in response to perturbation

Expanding (2.48) around equilibrium we get:

〈O〉(h) = 〈O〉(0) − 〈A[X]O[X]〉(0) (2.51)

Remembering that Peq(T [X]) = Peq[X], the time-reversed observable gives

us:

〈OT 〉(h) = 〈O〉(0) − 〈A (T [X])O[X]〉(0) (2.52)

If we then subtract (2.53) from (2.51) we get

〈O −OT 〉(h) = −〈{A [X]A (T [X])}O[X]〉(0) (2.53)

to linear order in perturbation.

Now, using that A[X]−A(T [X]) = −E[X] [29] we get

〈O −OT 〉(h) = 〈E[X]O[X]〉(0) (2.54)

If we are studying an observableO[X] = O(xt) that depends on the final time

t, we have O(T [X]) = O(x̃0), where x̃0 is the initial point of the trajectory

with the sign of momentum flipped. And, since we are at equilibrium:

〈O(x̃0)〉(0) = 〈O(x0)〉(0) = 〈O(xt)〉(0) (2.55)

Placing this result in (2.54) we finally get

〈O(xt)〉(h) − 〈O(xt)〉(0) = 〈E[X]O(xt)〉(0) (2.56)

In other words, at equilibrium the response is completely given by the cor-

relation with the dissipative part in the action: the entropy flux, E.
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2.6 The problem with path-integration

This scheme can be successfully applied to many out of equilibrium processes,

where we have a mechanical or even a thermal perturbation [6].

There is, however, a particular case where this approach finds some problem.

Let us assume that we have two oscillators with a single degree of freedom

[4]:

ẋt = −k1xt +
√

2D1Γ
(1)
t , ẏt = −k2yt +

√
2D2Γ

(2)
t

where Γ
(1)
t and Γ

(2)
t are two independent Gaussian white noises and D1 and

D2 are the temperature-dependent diffusion constants . If the two diffusion

constants are equal, then the two processes have the same support: their

typical trajectories look the same and events that have zero probability for

one, also have zero probability for the other process. This is not true if

D1 6= D2, even if D1 − D2 = h very small (but still not zero): the two

motions remain mutually singular and there is no density of one with respect

to the other [32].

We can illustrate this problem in terms of path-integration: let us try to

mimic the weight

∼

[
−
∫ 1

0
ds
Ḃ2(s)

4T

]
(2.57)

of a Brownian path xt =
√

2TB(t) at temperature T on a discrete time grid

of mesh size ∆t = 1/N in the unit time-interval [t0 = 0, tN = 1] and let us

assign real variables bi to each time ti = 0, 1/N, 2/N, ..., 1. The Brownian

weight resembles the density

PT [b] =

(
N

4πT

)N/2
exp

[
− N

4T

N−1∑
i=0

(bi − bi+1)2

]
(2.58)

fixing b0 = 0.

Taking the derivative of the expected value for an observableO(b) = O(b1, ..., bN )
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with respect to temperature we get the response formula:

1

2T

∫
RN

db

[
1

2T

N−1∑
i=0

(
bi − bi+1

1/N

)2 1

N
−N

]
O(b)PT [b] (2.59)

in between [.], we have the rescaled quadratic variation

AN (b) ≡ 1

2T

N−1∑
i=0

(∆bi)
2

∆t

1

N
−N (2.60)

which has PT -mean zero, but its variance∫
RN

db1db2...dbNA2
N (b)PT [b] ∝ N

is diverging with N →∞.

When we try to apply the scheme we have previously presented to processes

kept out of equilibrium with different temperatures, problems of incommen-

surability arise. Mathematically we can say that the two processes are not

absolutely continuous with respect to each other [32].

This problem has been overcome in some cases, either introducing an explicit

time-discretation to avoid divergence in the response [4, 43] or relaying on

a rescaling of the stochastic dynamics in order to derive regular results [16].

More recently, it has been derived a well-defined thermal response formula

by standard path-integral techniques [15], but this method is applied only

to overdamped dynamics, otherwise the calculations become unfeasible.

We would be interested in obtaining a fluctation-response relation for ther-

mal perturbations of a system with full Hamiltonian dynamics and operating

out of equilibrium.

There is, however, a result of the path-integral approach to out of equi-

librium linear response that we want to keep in mind. We have shown in

the previous section that, in equilibrium, the response is completely given

by the correlation with the dissipative part in the action (2.56). This is not
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in general true out of equilibrium.

The line of reasoning is essentially unchanged when we are studying linear

response out of equilibrium. We can write (2.53) as:

〈O〉(h) = 〈O〉(0) − 〈A[X]O[X]〉(0) (2.61)

where we denoted with (h) some stationary nonequilibrium state where we

study the response. We can still decompose A in E and F , that now refers,

respectively, to excess in entropy flux and in dynamical activity with respect

to the unperturbed nonequilibrium stationary state. Substituting that into

(2.61) we simply get

〈O〉(h) − 〈O〉(0) =
1

2
〈S[X]O[X]〉(0) − 〈F [X]O[X]〉(0) (2.62)

Now the frenetic contribution enters as second term in the linear response.

It is a non-dissipative term, as it involves time-symmetric changes (remem-

ber that F = FT ), related, in particular, to dynamical activity and time-

symmetric currents. Therefore, we are interested also in studying separately

the two terms of linear response.

In the next chapter we will introduce a model for a semi-stochastic system

and we will show an algorithmic solution for the thermal response problem

for that model.



Chapter 3

Model

In order to achieve a better comprehension of the linear response to temper-

ature changes in systems kept out of equilibrium by heat fluxes, we need a

simple model of a conductive solid to study. We will consider a Fermi-Pasta-

Ulam chain connected to two thermal reservoirs at two different temperatures

as a minimal model of a system conducing heat. We will avoid the patholog-

ical white noise term in the dynamics, as discussed in 2.6; the thermalization

of the extremes of the chain is, instead, implemented algorithmically.

3.1 The Fermi-Pasta-Ulam model

T1 T2

1 2 i-1 i i+1 n-1 n

Figure 3.1: Sketch of the model: the oscillators in the chain feel a Fermi-

Pasta-Ulam interaction between them, while the first and last are kept at

temperatures T1 and T2 by Andersen thermostats.

In the early 1950s, considering what numerical investigations could be

perormed on a first generation digital computer at Los Alamos National

Laboratory, Enrico Fermi suggested to Stanislaw Ulam and John Pasta that

27
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the foundations of statistical mechanics could be explored [26]. The model

used in the studies was a discretization of a nonlinear spring which quartic

order is given by a potential in form

U =
N−1∑
i

r2
i

2
+ α

r3
i

3
+ β

r4
i

4
ri ≡ xi+1 − xi (3.1)

with N unit masses and unit harmonic coupling. The apparent contradiction

of the results of the original Fermi-Pasta-Ulam (FPU) experiment conducted

in 1953 and 1954 [17] with the hypothesis that essentially any nonlinearity

would lead to a system exhibiting ergodic behaviours has become known

as the Fermi-Pasta-Ulam Problem1, that is still an interesting subject of

studies in Statistical Mechanics [18]. But the Fermi-Pasta-Ulam model also

opened the way to the use of computers to study fundamental questions on

the foundations of Statistical Mechanics and is still used as a simple model

of a complex system, as in our case.

We have chosen the Fermi-Pasta-Ulam as a minimal model of heat conduc-

tion: the thermal fluctuations propagates from the thermalized oscillators

along the chain due to the interaction between oscillators. If the tempera-

tures are set to different values, it is an interesting toy-model for a system

driven out of equilibrium by a heat flux.

For our purposes, we have settled on α = −1.5 and β = 1. As we can see on

figure 3.2, this gives us a potential that is:

• well-contained, so that a particularly strong fluctuation do not cause

the system to diverge;

• non-symmetric, so that an increase on fluctuation leads to a mean

increase of the length of the chain (positive thermal expansion), as we

expect from a real system;

• with a single minimum, to simplify the study of the system.
1For a review of the current understanding of this paradox, see [19].
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(r
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Figure 3.2: FPU potential (U) with α = −1.5 and β = 1

3.2 Thermal reservoirs

This is the core of our solution to the thermal response problem. Both ends

of the chain are connected to a thermal reservoir, with a defined temperature.

This is modeled with an algorithm that updates the velocity of the extremal

oscillators with a value extracted from the equilibrium probability density

at the temperature of the reservoir.

Peq(v) =

√
m

2πkbT
e
− mv2

2kbT (3.2)

We can therefore set the temperature of the reservoir by changing the param-

eter T in the distribution, and later change it to model a thermal perturba-

tion of one of the reservoirs. Thermal fluctuations then naturally propagate

in the chain due to the Fermi-Pasta-Ulam interaction between the oscilla-

tors. Since our goal is to study a non-equilibrium model, the two thermal

reservoirs are at two different temperatures T1 and T2

The velocity is not updated at fixed time intervals, but the length of every
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update interval is stochastic with a simple exponential distribution:

P (∆t) ∝ e−
∆t
τ (3.3)

with τ a fixed parameter of the simulation, the same for both thermal reser-

voirs.

This technique is called Andersen thermostat [2] and was the first thermo-

stat proposed for molecular dynamics, allowing one to model the dynamics

of molecules in a canonical ensemble (where the total number of particles,

the volume and the temperature are conserved).

We also note that this technique does not require the extremes of the chain

to be in a fixed position, as in physical contact with a thermostat, in order

to keep them at the fixed temperature.

3.3 Susceptibility

A thermal perturbation of the system can be written as an increase in tem-

perature of one thermal reservoir:

T2 → T2 + h

We will denote the probability of a trajectory [X] of a system with thermal

reservoirs at temperatures T and T ′ as PrT,T ′ [X] and the mean value as

〈·〉T,T ′ ; at the beginning of every trajectory these are fixed at T1 and T2.

It is, of course, possible to obtain the susceptivity of the system directly from

the definition, computing the mean of an observable O both in a perturbed

and unperturbed simulated system, if we assume h to be small enough

χO(t) '
〈O(t)〉T1,T2+h − 〈O(t)〉T1,T2

h
(3.4)

Instead, our goal is to write the susceptivity in form of a correlation function

between the observable and other quantities, a non-equilibrium analogue of

Kubo’s formula (2.26). First of all, we write the mean value of an observable
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O in a perturbed system, using the path-integral approach we illustrated in

section 2.4

〈O(t)〉T1,T2+h =
∑
[X]

Pr
T1,T2+h

[X] · O(x(t)) (3.5)

where
∑

[X] is the sum over all possible trajectories of the system.

We can multiply and divide this expression for the probability of a trajectory

[X] in the unperturbed system PrT1,T2 [X]

=
∑
[X]

Pr
T1,T2

[X]
PrT1,T2+h

PrT1,T2

[X] · O(x(t))

but this is equal to the mean value of a quantity PrT1,T2+h

PrT1,T2
[X] in the unper-

turbed system

=

〈
PrT1,T2+h

PrT1,T2

[X] · O(x(t))

〉
T1,T2

(3.6)

As we can see, it is possible to compute the mean value of an observable O in

the perturbed system as the mean value of this new observable: O multiplied

by the ratio of the probability of the trajectory in the two systems, in the

unperturbed system. The only thing left to do is to compute this ratio.

Our model is semi-deterministic: only the velocity updates are stochastic,

the evolution of the system is deterministic. We can therefore write this

term as the ratio of the two Maxwell-Boltmann probability of every velocity

update and compute PrT1,T2+h

PrT1,T2
as a product of these ratios:

PrT1,T2+h

PrT1,T2

[X(t)] =

n(t)∏
α

√
m

2πkbT1
e
−
mv2

1,α
2kbT1

√
m

2πkb(T2+h)e
−

mv2
2,α

2kb(T2+h)

√
m

2πkbT1
e
−
mv2

1,α
2kbT1

√
m

2πkbT2
e
−
mv2

2,α
2kbT2

=

n(t)∏
α

√
T2

T2 + h
e
v2
2,α
2

h
T2(T2+h) (3.7)

where we assumed kb = 1 and m = 1, α is the index of the velocity update

and n(t) is the number of velocity updates before time t; the product is over

all the velocity updates until time t.
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Therefore, if we are able to simulate a great number of trajectories of the

system without perturbation and compute PrT1,T2+h

PrT1,T2
[X(t)] for each of them,

we can obtain the mean value of the perturbed observable without a direct

measure on a perturbed system

〈O(t)〉T1,T2+h =

∑
[X]

PrT1,T2+h

PrT1,T2
[X(t)] · O(x(t))

N
(3.8)

where N is the number of trajectories.

If we expand this formula we get, at the first order,

PrT1,T2+h[X]

PrT1,T2 [X]
(t) = 1−

n(t)∑
α

√
T2

T2+he
hv2

2,α
T2(T2+h) (T2 − 2v2

2,α + h)

2(T2 + h)2

∣∣∣∣∣
h=0

h+O(h2)

= 1−
n(t)∑
α

T2 − v2
2,α

2T 2
2

h+O(h2)

where, as before, the sum is over the velocity updates in the trajectory [X]

before time t. If we assume h to be very small, we can limit ourselves to the

first order and therefore we are able to write the susceptibility

χO(t) = lim
h→0

〈O(t)〉T1,T2+h − 〈O(t)〉T1,T2

h

= lim
h→0

〈O(t)〉T1,T2 + h〈
∑n(t)

α

T2−v2
2,α

2T 2
2
O(t)〉T1,T2 − 〈O(t)〉T1,T2

h
=

=

〈
n(t)∑
α

v2
2,α − T2

2T 2
2

O(t)

〉
T1,T2

(3.9)

where the sum is over all the velocity updates before time t. As we can see,

we have lost an explicit dependency from the size of the perturbation h.

3.4 Entropic and frenetic terms

Since we are dealing with non-equilibrium, we expect that the susceptibility

(3.9) can be written as the sum of two terms [4], as we previously discussed

in section 2.6:
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• an entropic term (E), related to the entropy produced in response to

perturbation, that is asymmetric under time reversal;

• a frenetic term (F ), related related to the volume of transitions or

changes performed in response to perturbation, that is symmetric un-

der time reversal.

When the perturbation is performed around equilibrium, T1 = T2 = T and

all the forces are conservative, the entropic and frenetic contributions com-

bine to give back the Kubo formula

χeqO = E + F = 2E (3.10)

We are therefore interested in writing the susceptibility as a sum of a time-

symmetric and time-antisymmetric term, both of them are to be written in

form of a correlation between the observable and another quantity.

Let us call f [X] a function of the trajectory [X] and [X∗] the same trajectory

run in reverse. It is possibile to write its symmetric and antisymmetric part

for time reversal as, respectively, the semisum and semidifference of itself

and its time reversed

S{f} =
1

2
(f [X] + f [X∗]) A{f} =

1

2
(f [X]− f [X∗]) (3.11)

Likewise we can write the symmetric and antisymmetric part of
∑

[X] f [X]

as:

S

∑
[X]

f [X]

 =
1

2

∑
[X]

(f [X] + f [X∗])

A

∑
[X]

f [X]

 =
1

2

∑
[X]

(f [X]− f [X∗])

where, since there is one-to-one correspondence between a trajectory and its

reverse, we have wrote it as a sum only over [X]. We now have to write in
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these forms the susceptibility we recovered in section 3.3:

χO(t) =

〈
n(t)∑
α

v2
2,α − T2

2T 2
2

O(t)

〉
T1,T2

(3.12)

The only time-dependent variable is v2,α, the updated velocity of the oscil-

lator connected to the perturbed reservoir. During the forward process, the

velocity of that oscillator evolves accordingly to the dynamics of the Fermi-

Pasta-Ulam chain until the moment of the update, when it is changed to a

new value.

Let us call vb2,α the velocity of the oscillator the instant before the update

with index α. In the time-reversed of the same project the oscillator would

have to evolve to a velocity v2,α and then be updated to a velocity vb2,α.

Therefore the time-reversed of the updated velocity will be −vb2,α. Remem-

bering (3.9) we can therefore write the frenetic term as

F =
1

2

〈
1

2T 2
2

∑
α

[
(v2,α)2 − T2 + (vb2,α)2 − T2

]
O(t)

〉
T1,T2

=

=
1

4T 2
2

〈∑
α

[
(v2,α)2 + (vb2,α)2 − 2T2

]
O(t)

〉
T1,T2

≡ 〈A(t)O(t)〉T1,T2
(3.13)

and the entropic term as

E =
1

2

〈
1

2T 2
2

∑
α

[
(v2,α)2 − T2 − (vb2,α)2 + T2

]
O(t)

〉
T1,T2

=

1

4T 2
2

〈∑
α

[
(v2,α)2 − (vb2,α)2

]
O(t)

〉
T1,T2

≡ 〈B(t)O(t)〉T1,T2
(3.14)

And of course if we sum these two terms we get the linear response function

E + F =
1

4T 2
2

〈∑
α

[
(v2,α)2 + (vb2,α)2 − 2T2 + (v2,α)2 − (vb2,α)2

]
O(t)

〉
T1,T2

=
1

4T 2
2

〈∑
α

2
[
(v2,α)2 − T2

]
O(t)

〉
T1,T2
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=

〈∑
α

(v2,α)2 − T2

2T 2
2

O(t)

〉
T1,T2

= χO(t)

We have been able to write a non-equilibrium analogue of the Kubo formula:

the susceptibility to a thermal perturbation is expressed in form of a corre-

lation between the observable and another quantity. This quantity can be

written as a sum of an entropic and a frenetic term.

We have avoided the problems related to mathematical pathologies of the

white noise illustrated in section 2.6 with an algorithmic reformulation of

the thermal reservoir.

In the next chapter we will test these results with a computer simulation

of our model.
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Chapter 4

Simulation

In order to test the results of the previous chapter, we have build a simula-

tion of our model in the programming language C++.

This program will measure different observables and their linear susceptibil-

ity in two different ways:

• direct measure: the program will simulate both the unperturbed and

perturbed system and compute the mean of the observables in the two

systems, obtaining the susceptibility as

χO(t) '
〈O(t)〉T1,T2+h − 〈O(t)〉T1,T2

h
(4.1)

• sum of the frenetic and entropic terms: the program will only

consider the data from the unperturbed system to compute the fre-

netic and entropic terms we have derived in section 3.4, obtaining the

susceptibility as the sum of these two terms.

4.1 Structure of the simulation

In order to compute the mean of dynamic observables, we need to simulate

a great number of trajectories of our system from a stationary state.

It is more reasonable, both for computational cost and the stability of the

37
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Initialization

Extract time interval 
to next update

Set new velocities 
to extremal oscillators

Transient to  
stationary state

Trajectories

Computing means

Output

Create variables and  
set up initial conditions.

Evolve the system until 
it gets to a stationary state.

Observe dynamic variables  
along many trajectories 
in both perturbed and  
unperturbed systems.

Compute means of 
dynamic variables.

Output of results in a  
human readable format.

Figure 4.1: Flowchart of the simulation

simulation, to simulate a single long trajectory and split it into smaller fixed-

length time intervals, long enough for both a meaningful evolution of the

system under the perturbation and to consider each interval independent

from the previous one.

But how do we get the system to a stationary state? Since we are not in

equilibrium we do not know the stationary probability function, we cannot

derive the stationary state from theory. What we can do is let evolve the

system for a long time before beginning to measure the observables we are

interested in. As we can see in figure 4.2, an observable of the chain (in this

case, the length of the chain) gets more stable after 1500÷ 2000 time-units,

but we have chosen to wait 5000 time-units before considering our system to

be in a stationary state.

After that, we split the trajectory in time-intervals. As we can see in fig-

ure 4.3, at the beginning of every interval the state of the system is copied:

this copy will evolve separately and its second thermal reservoir will have

a higher temperature T h2 = T2 + h, in order to simulate the thermal per-

turbation; this is the perturbed system. At every time-step of the interval,
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Figure 4.2: Length of the chain after the beginning of the simulation. We can

see the system approaching a stationary state after 1500÷ 2000 time units.

Copy unperturbed state  
into perturbed state

Evolve separately both 
states for a given time

Multiply dynamic 
variables for A and B.

Reset variables and  
delete perturbed state.

Figure 4.3: Flowchart of the time interval
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both the system will evolve as in figure 4.4 and both observables and the

quantities A(t) (3.13) and B(t) (3.14) are computed.

The observed values of the dynamic variables in both the perturbed and

Evolve chain dynamics

is countdown 
over?

Extract velocities 
from thermostats 

and set countdown

Compute 
dynamic variables

Compute 
A(t) and B(t)

yes

no

Figure 4.4: Flowchart of a single time-step

unperturbed state are immediately processed in order to compute mean and

variance (as discussed in section 4.5) at the end of the simulation. The ob-

served values of dynamic variables in the unperturbed state, A(t), and B(t)

are stored until the end of the trajectory when the entropic and frenetic term

are computed for all the observables, which are processed to later compute

mean and variance. These variables are then deleted before a new trajectory

begins.

After a given number of trajectories, the simulation is over. The mean values

and variances of the susceptibility for every observable are computed both

directly, as in equation (3.4), and as the sum of the frenetic and entropic

terms.

The results are outputted in a human readable plain-text format.
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4.2 Chain dynamics

Since we already have an expression for the Fermi-Pasta-Ulam potential

(3.1), we now need a suitable numerical method to solve the ordinary differ-

ential equation (ODE)

ẍ = −∇U(x) (4.2)

Let us consider the Taylor expansion of a function y(t) of t around t0

y(t0 + ∆t) = y(t0) + ∆t y′(t0) +
1

2
∆t2 y′′(t0) +O(∆t3) (4.3)

If we limit ourselves to the first order of ∆t we get

y′(t0) ≈ y(t0 + ∆t)− y(t0)

∆t
(4.4)

this is a first-order method to solve ODEs and it is called the Eulero method

[34], but it is unsuitable for our model (and to most practical uses) due to

two major issues.

First of all the local error, given by how we have truncated the Taylor expres-

sion, is approximately proportional to ∆t2 and that leads to a global error

(the error at a fixed time t after how many steps the method needs to take

to reach that instant) proportional to ∆t.

Secondly, we have to take into account the great instability of the Eulero

method: the numerical solution grows very large for equations where the ex-

act solution do not. While this issue does appear in all numerical methods,

the Eulero method is particularly susceptible to instability and this cannot

practically be limited by reducing the integration interval.

There is an extensive literature of alternative numerical methods [34]. We

have chosen for our simulation the velocity Verlet method since it allows a

sufficient accuracy at a limited computational cost.

Where Eulero method uses the forward difference approximation to the first

derivative in differential equations of the first order, Verlet integration can be
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seen as using the central difference approximation to the second derivative;

we can compute the acceleration at the step n as:

an =
∆2xn
∆t2

=
xn+1−xn

∆t − xn−xn−1

∆t

∆t2
=
xn+1 − 2xn + xn−1

∆t2
(4.5)

and then we can write the value of x at the n+ 1 step as:

xn+1 = 2xn − xn−1 + an∆t2 (4.6)

and the acceleration is known from the Fermi-Pasta-Ulam potential.

There is an alternate formulation of this method, called velocity Verlet ; this

method is mathematically equivalent to the Verlet, but it is not numerically

equivalent and is superior on a computer with finite precision [37]

xn+1 = xn + vn∆t+
1

2
an∆t2 (4.7)

vn+1 = vn +
an + an+1

2
∆t (4.8)

The local error in position is proportional to ∆t4 and ∆t2 in velocity, while

the global error is proportional to ∆t2 in position and ∆t in velocity.

We have implemented this method in our simulation with a four step algo-

rithm (figure 4.4), repeated at every time step:

1. Store the previously calculated an in another variable;

2. Calculate xn+1;

3. Derive an+1 from the Fermi-Pasta-Ulam potential (3.1) using xn+1,

since it only depends on position;

4. Calculate vn+1.

The stability of the system is also greatly improved, but we still have to

be careful about the length of the integration interval ∆t in order to avoid

instability in the simulation.
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4.3 Thermal reservoirs

Extract new velocities 
from Maxwell-Boltzmann

Extract time interval 
to next update

Wait the end of  
the interval

Set new velocities 
to extremal oscillators

Figure 4.5: Flowchart of the thermal reservoir

As we have discussed in section 3.2, the thermal reservoirs are imple-

mented algorithmically, updating the velocities of the extremal oscillators

with values extracted from the Maxwell-Boltzman probability distribution

after a stochastically generated time.

We have chosen to use the BOOST.Random library, a well-documented open

source library of pseudo-random number generators and distributions [31].

The pseudo-random generator we used in our simulation is the mt19937, a

Mersenell-Twister generator [30]; while 7% slower and requiring 85% more

memory than its related mt11213b, it gives us a longer cycle: 219937 − 1

instead of 211213 − 1. Since our simulation does not use much memory, we

consider it a valid trade-off.

The one-dimensional Maxwell-Boltzman distribution

ρT (v) =

√
m

2πkbT
e
− mv2

2kbT (4.9)

can be seen as a Gaussian distribution with mean µ = 0 and variance σ2 =

kbT/m. Since we are not interested in using a particular set of units, we can

choose one where kb = m = 1, therefore, remembering the proprieties of the
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Gaussian distribution, we can write

ρT (v) =
√
TN(0, 1) (4.10)

where N(0, 1) is the Gaussian distribution with zero mean and variance σ2 =

1. In this way, we can use normal_distribution from the BOOST.Random

library, which maps the distribution given by the chosen generator to a nor-

mal distribution, to extract a velocity from the Maxwell-Boltzmann distri-

bution of the thermal reservoir; this value is then set as the velocity of the

connected oscillators. This is done separately for both thermal reservoirs,

each with its temperature.

The algorithm does not update the velocity at a fixed interval but after

a time distributed as

P (∆t) ∝ e−
∆t
τ (4.11)

After every update, the number of time steps before the next update is

extracted from this distribution: when the countdown gets to zero, the ve-

locities of both reservoirs are updated again (figure 4.5).

This is implemented using uniform_real_distribution, a uniform real dis-

tribution from the BOOST.Random library; by applying some algebra to

(4.11), we get

Nsteps = −τ log(U(0, 1))

∆t
(4.12)

where U(0, 1) is the uniform real distribution limited between 0 and 1 and

∆t is the size of the time step. The result is a real number but the number

of steps must obviously be an integer: the value is truncated.

The parameter τ regulates the coupling of the reservoirs with the system;

an higher value would reduce their effects on the chain, while a smaller one

adds noise to the dynamics of the system. We have set τ = 1 in arbitrary

time units.
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4.4 Observables

We have chosen and defined within the formalism of this system three dif-

ferent observables we will measure to study their response to a thermal per-

turbation. Since we are studying their evolution during every interval, they

are implemented as an array with a time index.

4.4.1 Chain length

The observable chain length (L(t)) is the sum of the distances between the

oscillators. It is computed at every time step by summing in a cycle over all

the oscillators (except the first one) the distance between the position of the

oscillator and the previous one:

L(t) =
n∑
i=1

xi(t)− xi−1(t) (4.13)

4.4.2 Fermi-Pasta-Ulam potential energy

The observable Fermi-Pasta-Ulam potential energy (U(t)) is the value of the

sum of the Fermi-Pasta-Ulam potential over all the oscillators. It is, again,

computed at every time step with a sum on a cycle over all the oscillators:

U(t) =
N−1∑
i

[
r2
i (t)

2
+ α

r3
i (t)

3
+ β

r4
i (t)

4

]
ri(t) ≡ xi+1(t)− xi(t) (4.14)

4.4.3 Kinetic energy of thermalized oscillators

The observable kinetic energy of thermalized oscillators (K(t)) is the value

of the kinetic energy of the oscillators connected to thermal reservoirs (the

first and last one in the chain). It is computed at every time step:

K(t) =
1

2

(
m1v

2
1(t) +m2v

2
2(t)

)
=
v2

1(t) + v2
2(t)

2
(4.15)

since we have set m1 = m2 = 1.
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4.5 Statistical variance

In order to be able to confront different estimates of a physical quantity, in

our case the susceptibility, we need to compute its statistical variance.

Since we have a large number of trajectories that we assume independent

from each other and identically distributed, we can assume that physical

quantities that we measure along these trajectories are realizations from

independent and identically distributed variables yi with V ar(yi) = σ2 <∞.

Therefore we can apply the central limit theorem to the estimator mean

defined as:

ȳ =
1

M

M∑
i

yi (4.16)

and, since it is a stochastic variable itself, compute its variance as:

σ2
ȳ = V ar(ȳ) =

1

M2
V ar(

M∑
i

yi)
(iid)
=

1

M2

M∑
i

V ar(yi) =
σ2

M
. (4.17)

Since σ2 is not known, we need to estimate it using its classical sample

variance estimator, defined as:

σ̂2 = s2 =
1

M − 1

M∑
i

(yi − ȳ)2 (4.18)

and thus estimate σ2
ȳ as

σ̂2
ȳ =

s2

M
. (4.19)

An algorithm based on 4.18 would be a two-pass algorithm as it would need to

cycle two times across the data, first to compute the mean then the variance.

For our data size, this is computationally unfeasible: we need a single-pass

algorithm.

We would be tempted to apply formula of subtraction of squares [28]:

s2 =
1

M(M − 1)

M M∑
i

y2
i −

(
M∑
i

yi

)2
 (4.20)

Unfortunately, if the dataset we are dealing with is very large and its dis-

tribution has a variance significantly smaller than the mean, the terms in
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the subtraction in (4.20) will coincide up to a certain significant figure: this

would result in a loss of significant figures thus leading to an incorrect result

[23, 39]. This is what happens in our case.

There are many algorithms to compute the variance that are more numeri-

cally accurate [13, 27]. We have chosen the Welford method [23, 39], a simple

one-pass algorithm that is arithmetically equivalent to (4.20). It is an itera-

tion formula for deriving the corrected sum of squares for N values from the

corrected sum of squares for the first (N − 1) of these.

We define recursively two quantities:

Tk = Tk−1 + (yk − Tk−1)/k Sk = Sk−1 + (yk − Tk−1)(yk − Tk) (4.21)

with S1 = 0 and M1 = X1. After iterating over all the data, we get:

X = TN/M σ2
X = SN/M (4.22)

This is implemented in our program using the C++ class RunningStat1.

In order to test our implementation we have generated different sized

samples from a Gaussian distribution with known mean and variance using

the BOOST libraries, as discussed in section 4.3, and computed s2 both with

our implementation of the Welford algorithm and the subtraction of squares

formula. To highlight the problem, we have set a variance five order of mag-

nitude smaller than the mean (µ = 105, σ2 = 1).

As we can see in figure 4.6, the subtraction of squares formula gives very

incorrect results for large samples, while the Welford method gives a better

estimate as the sample size increase (figure 4.7), at a very small computa-

tional cost (∼ 5%), as shown in figure 4.8.

1Which can be found here: johndcook.com/blog/standard_deviation

johndcook.com/blog/standard_deviation
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Figure 4.6: Difference between estimated and real variance, both methods.

Figure 4.7: Difference between estimated and real variance, Welford method.
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Figure 4.8: Difference in computational time.
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Chapter 5

Results

5.1 Equilibrium

We are interested in testing our simulation by confronting its results with

known quantities; in order to do so we place the system in equilibrium by

setting the thermal reservoirs to the same temperatures (T1 = T2 = T = 0.1)

and confront the results with those from the known equilibrium probability

density function.

The parameters we have set for this simulation are:

Parameter Variable Value

Number of oscillators N 10

Number of trajectories repeat 105

Length of the time step dt 0.005

Temperature of the first thermostat T1 0.1

Temperature of the second thermostat T2 0.1

Perturbation amplitude h 0.01

Length of the interval interval 70

Length of transient to stationary state stable 5000

51
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(a) Distribution of the distance between oscilators.
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(b) Distribution of the velocities.

Figure 5.1: Equilibrium distribution and reconstruction from simulation.
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We have recorded, after reaching the stationary (in this case also equilibrium)

state, the distance between the oscillators and their velocities the probability

density function for these observable is easily obtained as:

Peq(r) ∝ e
−U(r)
kbT Peq(v) ∝ e−

mv2

2kbT (5.1)

with U(r) the Fermi-Pasta-Ulam potential (3.1) and, as previously discussed,

m = kb = 1. As we can see in figures 5.1b and 5.1a, we can be satisfied by the

quality of the reconstruction of the probability density from the simulation.

We are also interested in seeing how our simulation reconstructs the form

of the susceptibility at equilibrium. If we are around equilibrium and all

forces are conservatives, as in our case, we expect the sum of the entropic

and frenetic terms to give us the Kubo formula

χeqO = E + F = 2E =
1

2T 2
2

〈∑
α

[
(v2,α)2 − (vb2,α)2

]
O(t)

〉
T1,T2

(5.2)

In other words, at equilibrium the response is completely given by the corre-

lation with the dissipative part in the action. This is exactly what happens

in our simulation, as we can see in figure 5.2: F coincides with E and their

sum E + E = 2E gives us the susceptibility at equilibrium.

5.2 Out of equilibrium

Beside what we already discussed, the final simulation has been set with the

following parameters, which have been mostly empirically fine-tuned from

the data of many previous simulations:
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(a) Susceptibility of the chain length to an increase of T2 at equilibrium.

(b) Susceptibility of the Fermi-Pasta-Ulam potential energy to an increase of T2 at equi-

librium.

(c) Susceptibility of the kinetic energy of the oscillators connected to thermal reservoir to

an increase of T2 at equilibrium.

Figure 5.2: Estimates of susceptibility at equilibrium to an increase of T2

with error bars at one sigma: direct measure and sum of the frenetic (F )

and entropic (E) terms.
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Parameter Variable Value

Number of oscillators N 10

Number of trajectories repeat 106

Length of the time step dt 0.005

Temperature of the first thermostat T1 0.1

Temperature of the second thermostat T2 0.2

Perturbation amplitude h 0.01

Length of the interval interval 70

Length of transient to stationary state stable 5000

In particular, the length of the interval has been set to allow for the full evo-

lution of the linear response for the observables L(t) and U(t), while K(t)

has a very fast evolution and requires a shorter time to get to its final value.

With these parameters, a simulation requires over 57 hours on the available

machine (∼ 0.2 seconds per interval).

The susceptibility of the kinetic energy of the oscillators connected to ther-

mal reservoir is shown in figure 5.5 for a shorter time since it has a faster

evolution then the other observables, as we could expect since we are mea-

suring the oscillators directly connected to the thermal reservoir and the

perturbation does not have to flow through all the system.

We can see that there is a good agreement between the susceptibility

directly measured from the simulation and the form that we derived in sec-

tions 3.3 and 3.4, divided in symmetric and antisymmetric part: the frenetic

(F ) and the entropic part (E); since we are no longer in equilibrium, these

contributions are both important to correctly reconstruct the susceptibility

as it is clear from the figures in this section.

5.2.1 Susceptibility at different temperatures

The temperature of the thermal reservoirs has an effect on the susceptibility

of our model. In order to show it, we have performed different simulations
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(a) Estimates of χL: direct measure and sum of the frenetic (F ) and entropic (E) terms.

(b) Frenetic (F ) and entropic (E) contributions to χL.

Figure 5.3: Susceptibility of the chain length to an increase of T2 with error

bars at one sigma.
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(a) Estimates of χU : direct measure and sum of the frenetic (F ) and entropic (E) terms.

(b) Frenetic (F ) and entropic (E) contributions to χU .

Figure 5.4: Susceptibility of the Fermi-Pasta-Ulam potential energy to an

increase of T2 with error bars at one sigma.



58 CHAPTER 5. RESULTS

(a) Estimates of χK : direct measure and sum of the frenetic (F ) and entropic (E) terms.

(b) Frenetic (F ) and entropic (E) contributions to χK .

Figure 5.5: Susceptibility of the kinetic energy of the oscillators connected to

thermal reservoir to an increase of T2 with error bars at one sigma.
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with the same parameters of table 5.2 and the following temperatures:

T1 0.11 0.1 0.2 0.1 0.5 0.1 10−2 0.1 10−3 0.1 10−4

T2 0.1 0.11 0.1 0.2 1 10−2 0.1 10−3 0.1 10−4 0.1

5.2.2 Moving farther from equilibrium

Let us consider how susceptibility is affected by a change of the thermostats’

temperatures, while maintaining the perturbed thermostat (T2) at a higher

temperature than the other (T1). We can see in figure 5.6 that, as we might

expect, the farther we move from equilibrium the more susceptibility varies

from its value at equilibrium.

We also note the model with T1 = 10−2 T2 = 0.1 presents a positive frenetic

and a small entropic term.

5.2.3 Inverting the heat flux

We are also interested in considering how the direction of the heat flux affects

susceptibility at different temperatures by exchanging the temperatures in

the two thermostats. We note that this has no significant effect in the two

first cases, as we can see in figure 5.7, but this does not mean that the

dynamics of the system is unaltered: in figure 5.8 we see that the entropic

and frenetic terms are dramatically altered by the inversion of the heat flux.
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(a) Susceptibility of the chain length to an increase of T2.

(b) Frenetic term of the susceptibility of the chain length to an increase of T2.

(c) Entropic term of the susceptibility of the chain length to an increase of T2.

Figure 5.6: Susceptibility of the chain length to an increase of T2 with error

bars at one sigma in models with T2 > T1.
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(a) One thermostat at T = 0.1, the other at T = 0.2.

(b) One thermostat at T = 0.1, the other at T = 0.11.

(c) One thermostat at T = 0.1, the other at T = 10−3.

Figure 5.7: Susceptibility of the chain length to an increase of T2 with error

bars at one sigma in models both with T2 > T1 and T1 > T2.
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(a) One thermostat at T = 0.1, the other at T = 0.2.

(b) One thermostat at T = 0.1, the other at T = 0.11.

(c) One thermostat at T = 0.1, the other at T = 10−3.

Figure 5.8: Frenetic (F ) and entropic (E) terms of the susceptibility of the

chain length to an increase of T2 ,with error bars at one sigma, in models

both with T2 > T1 and T1 > T2.



Chapter 6

Conclusions

We have studied the linear response to a thermal perturbation of a con-

ductive system driven out of equilibrium by an heat flux. By modeling the

effects of the thermal reservoir with an algorithm based on Andersen ther-

mostats [2] instead of explicit white noise terms, for the first time we obtain

a fluctuation-response relation for thermal perturbations of a system with

full Hamiltonian dynamics and operating out of equilibrium, thus extending

previous results available only for systems evolving via overdamped stochas-

tic equations or Markov jump processes [11].

Since for t→∞ the susceptibility of potential energy (χU ) and length (χL)

are generalizations of, respectively, the specific heat and the thermal expan-

sion coefficient, we can see that they are not simply connected to a stationary

correlation with the heat absorbed from the thermal reservoirs, as it is the

case in equilibrium, but we have to also consider a non-dissipative, or fre-

netic, contribution.

As we remarked in section 3.1, the interaction between the oscillators in

our system has a single minimum in order to simplify our study. It would

be interesting to further study more complex interactions that have multiple

minimum; this could be a road to the study of complex systems that present,

out of equilibrium, a negative susceptivity [3, 44].

63
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Resources

The code of the program can be found at github.com/federicodambrosio/

fpu-simulator. This code is published under the free license BSD 3-Clause

License (opensource.org/licenses/BSD-3-Clause).

The simulations in chapter 5 have been run on the last version of the code,

on September 15th 2016.

The BOOST Libraries can be found at boost.org. The BOOST.Random

library is currently being integrated into the C++ Standard Library.

Included in the code there is the RunningStats class file from John D. Cook’s

blog at johndcook.com/blog/standard_deviation.
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