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The value of an idea lies in the using of it.
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Abstract

In the past few years, there has been a growing focus on semantic segmentation, which in-
volves assigning each pixel in an image to a specific label from a given set[69].The use of
autoencoder architectures has been explored by numerous computer vision researchers in an
attempt to develop models capable of learning both the semantics of an image and a low-level
representation of it. When utilizing an autoencoder architecture, the input undergoes encoding
to produce a low-dimensional representation. This representation is subsequently leveraged by
a decoder to reconstruct the original data. The presented approach involves a combination of
convolutional neural networks (CNNs) and transformers to form an ensemble, as detailed in this
work. Ensemble methods rely on multiple models being trained and utilized for classification,
with the ensemble combining the outputs of individual classifiers. By capitalizing on the vary-
ing strengths of each classifier, this approach enhances the overall performance of the system.
Distinct loss functions are employed to ensure diversity among the individual networks. The
ensemble method employs a combination of the DeepLabV3+, HarDNet, and PVT environ-
ments, with varying backbone networks. Additionally, a novel loss function is presented, which
integrates the Dice and Structural Similarity Index. To assess the proposed ensemble, a com-
prehensive empirical evaluation is conducted on six real-world scenarios, namely polyp, skin
segmentation, leukocyte segmentation, butterfly identification, microorganism identification,
and radiology segmentation. The proposed model has achieved state-of-the-art performance on
these scenarios.
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Chapter 1

Introduction

Medical imaging is an essential component of modern healthcare, allowing clinicians to accu-
rately diagnose, treat, and monitor diseases, with applications ranging from colorectal cancer
detection to brain tumor segmentation and prostate cancer diagnosis. However, the effective-
ness of these procedures relies heavily on the accuracy of image analysis, making the need for
automated, highly accurate systems in medical image analysis ever more critical.

Colorectal cancer (CRC), the third most common and deadly cancer in the United States, is
often linked to adenomatous polyps. Although colonoscopy is the standard method for detecting
and removing these polyps, the accuracy of this process is hindered by several factors such as the
physician’s expertise and the characteristics and location of the polyp. As a result, research has
indicated that colonoscopies can miss 6% to 28% of colorectal polyps [23], leading to interval
CRCs, which make up 5% to 8% of all CRC cases. To address this issue, deep-learning-assisted
diagnostic tools have been developed to identify polyps in colonoscopy videos, thus improving
the quality of colonoscopy screenings [11][105][66][104].

In the realm of brain tumor segmentation, precision is paramount for diagnosis, treat-
ment planning, and monitoring treatment response. The Brain Tumor Segmentation Challenge
(BraTS) has encouraged the development and comparison of models for this purpose, with
recent high-performing models employing deep neural networks and encoder-decoder architec-
tures[48].

Prostate cancer, the second most common cancer among men globally, also stands to ben-
efit from advancements in machine learning techniques. Current diagnostic methods such as
prostate-specific antigen (PSA) blood tests and transrectal ultrasound (TRUS) biopsies present
limited efficacy due to their low specificity and sensitivity. However, encoder-decoder CNNs
show promise in enhancing prostate cancer diagnosis, staging, and treatment management by
effectively segmenting prostate T2W MRI images[54].

One of the most significant challenges in developing these automated systems is the lack of
large, accurately annotated datasets for training. This is particularly challenging in the medical
field, where data collection and annotation can be costly and time-consuming. Furthermore,
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CHAPTER 1. INTRODUCTION

without adequate data, models risk overfitting, meaning they become too specialized to their
training data and underperform on new, unseen instances. To address this, many strategies
have been developed. One of the most promising is data augmentation. In this thesis, simple
and traditional data augmentation techniques such as flipping, rotating, cropping, and color
transformations like the separation of RGB color components and the introduction of noise have
been explored in detail. These methods can significantly improve the size and variety of datasets,
which in turn can enhance the resilience of deep learning models.

While the focus of this thesis is on simpler methods, it is worth noting that there are more
advanced techniques in the realm of data augmentation that present substantial potential. Exam-
ples include the utilization of Generative Adversarial Networks (GANs) which create synthetic
instances from a dataset, maintaining attributes similar to the original data. Additionally, there
are meta-learning approaches like Neural Augmentation and Feature Transform that push the
boundaries of conventional augmentation. While these complex methods are beyond the scope
of this work, they represent a vibrant and evolving field of study in deep learning. Harnessing
the potential of advanced data manipulation and augmentation can lead to breakthroughs in
various fields. This brings us to the exploration of innovative models that show promise outside
the realm of medical imaging but could hold potential within it. The Segment Anything (SA)
project [57], designed for natural image segmentation, is one such model that has demonstrated
promising results. While its effectiveness for medical imaging is not fully confirmed, the SA
model could potentially be utilized as a post-processing tool to refine the outputs of medical
image segmentation models. The project’s principle of a "data engine" that continually col-
lects and refines data could also inspire similar strategies in the medical field. In this way,
the innovative methodologies of the SA project may contribute to advancements in medical
image segmentation research. However, the applicability of the SA model and similar models
to medical imaging warrants further investigation to ensure their effectiveness and accuracy in
this critical context.

To tackle the issues of limited and weak annotations common in medical image segmentation
datasets, techniques such as gamification [102] have been introduced as a human-in-the-loop
strategy. This innovative approach transforms the annotation task into a game, engaging users
through the thrill of competition. Such human-in-the-loop strategies can indeed be pivotal,
especially when exact annotations are hard to come by.

Yet, as annotations become sparser or less precise, the importance of algorithmic adaptations
rises. In this vein, there’s a burgeoning interest in weakly supervised learning. For instance,
Graph Convolutional Networks (GCNs) [40] have been making strides, achieving state-of-the-art
performance in Weakly Supervised Semantic Segmentation (WSS). Notably, the HyperGraph
Convolutional Networks for Weakly Supervised Semantic Segmentation (HyperGCN-WSS)
stands out, capturing intricate spatial and structural nuances from instances within the dataset.

Within the scope of this thesis, while our main approach has been rooted in supervised
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CHAPTER 1. INTRODUCTION

techniques, the landscape of weakly supervised methods warrants discussion. In fact, these
techniques aim to produce semantic segmentation masks for medical images with minimal
guidance, often capitalizing on image-level annotations. A prevalent strategy in this domain
involves the use of class activation maps (CAMs) for generating pixel-level masks. However,
CAMs can sometimes miss the mark, either omitting vital parts of the object or inadvertently
including irrelevant background. To address these imperfections, the BoundaryFit module [78]
was introduced, bridging the gap between the preliminary CAM prediction and the subsequent
mask refinement stage, enhancing object boundaries for a more accurate segmentation mask.

Further innovation in this space can be seen with the advent of the weakly supervised
segmentation method, TransWS [116]. This method, grounded in Transformers and end-to-end
learning, skillfully utilizes image-level labels for the classification branch, treating the CAM
rendered by the classifier as pixel-level pseudo-labels for the segmentation branch. By merging
the insights from both the segmentation and classification branches, TransWS achieves a more
nuanced and precise segmentation outcome.

For a considerable period, identifying objects in images was exclusive to humans [67]. It
took more than 14 years to match an untrained human’s performance in the ImageNet compe-
tition. The complexity increases when the job involves not only recognizing the object in an
image but also determining its borders. This is referred to as semantic segmentation, and it
involves categorizing every pixel in an image in machine learning. The performance enhance-
ments associated with implementing machine learning models have made this task applicable to
numerous real-life situations [36][11]. For example, in clinical settings, it can aid in detecting
polyps, and in skin and blood analysis, object identification can assist in visually identifying
the existence of various ailments. Furthermore, this task is utilized in autonomous vehicles to
recognize objects in the vehicle’s vicinity, in the classification of environmental microorganisms,
and numerous other applications. The conventional method is to develop a system consisting
of two modules: an encoder and a decoder. The first module is trained to capture the seman-
tic features of the input image and create a low-dimensional representation of it. The second
module is then trained to reconstruct the original input image from this compressed feature
vector. U-Net [74] was one of the earliest systems developed for semantic segmentation, and
it utilized the aforementioned approach. Autoencoders [4][13][61] were also implemented to
perform this task because they can acquire semantic low-level representations of an image using
the encoder module and reconstruct the original input from the compressed representation. The
excellent results achieved by autoencoders have led many researchers and practitioners in the
field of computer vision to adopt them. However, the performance of autoencoders, along with
other classification technologies, is heavily influenced by architectural configuration and other
settings, commonly known as hyperparameters, which require tuning.

Hyperparameter tuning involves determining the optimal values for specific attributes of
the model. This is a domain-specific task that necessitates knowledge of the field as well as
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CHAPTER 1. INTRODUCTION

proficiency with the applied machine learning methods, resulting in significant effort and time
consumption. In light of this, optimizing hyperparameters emerges as a pivotal step for achieving
peak performance in machine learning models, especially within the realm of CNN architec-
tures. Numerous techniques have been devised for this intricate task of hyperparameter tuning.
Among these are Grid Search (GS), Random Search (RS), Bayesian Optimization (BO), Nelder
Mead (NM), Simulated Annealing (SA), Particle Swarm Optimization, and Evolutionary Algo-
rithms. Yet, with the marked surge in hyperparameters intrinsic to modern CNN architectures,
this optimization venture is becoming ever more convoluted. Notably, some methods have yet to
encompass every hyperparameter integral to CNN design. On the forefront of advancements in
CNN hyperparameter optimization, we find techniques like Sequential Model Based Optimiza-
tion (SMBO), Gaussian Process based Bayesian Optimization, and evolutionary approaches. In
scenarios demanding high-dimensional hyperparameter optimization, tree-based models such
as Tree structured Parzen Estimators (TPE) and Random Forests have showcased commendable
outcomes. At its core, irrespective of the technique harnessed, hyperparameter optimization
stands paramount for extracting the zenith of performance from a machine learning model.

The "no-free lunch" theorem in machine learning states that there cannot be a single model
that performs optimally on all datasets. Given this, another approach involves employing sets of
classifiers, often weak or shallow, and combining their predictions to form the system’s output.
These frameworks are known as ensemble methods. Ensemble methods involve training multiple
classifiers on the same dataset in a manner that ensures each model generalizes differently in the
training space. While ensembles can yield state-of-the-art outcomes in numerous domains, it is
critical to ensure certain properties, such as enforcing diversity among the set of classifiers.

Integral to the performance of these classifiers, beyond their architecture, is the choice
of their guiding metric: the loss function. The right loss or objective function can signifi-
cantly elevate a model’s performance. Literature broadly categorizes loss functions into four
groups: Distribution-based, Region-based, Boundary-based, and Compounded. Distribution-
based losses, as exemplified by Binary Cross Entropy, arise from the distribution of labels.
Region-based ones aim at maximizing the overlap between predictions and ground truths. In
contrast, Boundary-based losses focus on minimizing the distance between these two. Lastly,
compounded functions combine characteristics of various losses.

Throughout the course of my research, I’ve delved into creating a novel loss function tailored
for semantic segmentation, particularly in the medical imaging arena. A recurrent challenge in
this space is the class imbalance, with the positive class often underrepresented. Our proposed
loss function aspires to tackle this by incorporating strategies that counteract the effects of such
imbalance.

Returning to ensemble methods, this thesis presents a new ensemble technique for seman-
tic segmentation based on convolutional neural networks (CNNs) and transformers. Here,
the diversity among the individual classifiers is enforced by utilizing distinct loss functions
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and implementing various forms of data augmentation. Our approach merges DeepLabV3+,
HarDNet-MSEG, and Pyramid Vision Transformers models. We evaluated our model on six dis-
tinct scenarios, including polyp detection, skin detection, leukocyte recognition, environmental
microorganism detection, butterfly recognition, and radiology segmentation. After developing
the proposed solution, we conducted a comprehensive empirical evaluation, which compared
our approach to state-of-the-art solutions. Our assessment revealed promising results that were
frequently superior to the best available methods.

A new architecture has emerged from the realm of natural language processing (NLP), where
researchers explore ways to grasp the meaning of text and automate tasks such as summarization
or translation. This novel model, known as Transformer, employs a self-attention mechanism,
enabling the system to concentrate on specific parts of the input. Transformers have also found
use in computer vision tasks and often achieve comparable or even superior performance to
CNNs. However, as with other machine learning models, their primary limitation lies in the
requirement for vast amounts of data to train a stable and high-performing system. Two recent
medical domain approaches, TransFuse [117] and UACANet [55], employ different techniques.
The former integrates CNN kernels and Transformers, while the latter blends U-Net and a
parallel axial attention autoencoder. Regardless of the architecture, the objective is to acquire
information at both local and global levels.

As noted earlier, semantic segmentation plays a crucial role in numerous contexts. For
example, autonomous vehicles employ semantic segmentation to recognize objects in the vehi-
cle’s vicinity and make safe decisions accordingly. Deep learning techniques are also widely
used in skin detection, ranging from face detection to hand gesture recognition. However, deep
learning approaches have encountered certain challenges in this domain, such as background
clutter that impedes the accurate detection of hand gestures in real-world settings. CNNs have
also demonstrated their efficacy in this area, as demonstrated by the works of Roy et al. [104]
and Arsalan et al. [99]. In the former, the authors propose using a skin detection-based CNN to
improve the hand detector’s output. In contrast, the latter work introduced a CNN with residual
skip connections, OR-Skip-Net, which reduces the computational burden of the network while
handling challenging skin segmentation tasks. This is reached by directly transferring data from
the initial layer to the last layer of the network. CNNs are also used for automatic sign language
translation [42]. In [49], a comparative analysis of multiple leading technologies on a variety of
skin detection benchmarks is presented via a comprehensive empirical evaluation.

Leukocyte recognition and classification can be automated using deep learning, aiding
medical practitioners in diagnosing blood-related diseases. The analysis can be performed
through histogram-based techniques or iterative algorithms like GrabCut, which can segment
white blood cells. This technique has been utilized in recent studies [61][33].

The aim of this study is to address semantic segmentation by introducing a new ensemble
method that uses DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers backbones.
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To promote diversity among individual classifiers, various loss functions and data augmentation
approaches are adopted. The proposed approach is evaluated on six different scenarios, and
the results are compared with existing frameworks. The empirical evaluation indicates that the
proposed method produces results that are comparable or superior to state-of-the-art levels.

The remainder of this thesis is organized as follows. In Section 2, we present an in-depth
overview of the prior studies and research carried out in the field of image segmentation,
with a specific focus on skin segmentation and the optimal sample size for medical imaging
segmentation. In Section 3, we elaborate on the techniques used in this research, such as the
topologies, loss functions, and data augmentation methods. The results in Section 4 demonstrate
that our best ensemble approach outperforms other methods. The separate sections for skin
segmentation and radiology segmentation in this thesis are included to highlight the distinct
characteristics and challenges in each area, and to allow for a more in-depth examination of
each. Lastly, in Section 5, we present our conclusions and suggestions for future work.

6



Chapter 2

Related Work

The primary goal of semantic segmentation is to recognize objects within an image and delineate
their boundaries [71]. Its significance extends to several practical applications, including medical
diagnosis [12] and autonomous vehicles [37]. As previously stated, this method assigns a class
label to each object at the pixel level in an image. For deep semantic segmentation, the Fully
Convolutional Network (FCNs) is an early Deep CNN (DCNN) used to replace the last fully
connected layer of a CNN architecture with a fully convolutional layer. By doing so, the network
is capable of generating pixel-level predictions and solving the issue of semantic segmentation
[62]. As the proposed method in this study is based on DCCN, the succeeding discussion
will concentrate on DCCN semantic segmentation approaches. For image segmentation using
other deep learning models, such as recurrent neural networks and attention and generative
models, the reader is directed to [64]. The incorporation of an autoencoder unit in FCN enables
the creation and training of deconvolutional networks. An autoencoder unit is comprised of
an encoder network, usually a pre-trained CNN like VGG or ResNet, followed by a decoder
network. The encoder’s objective is to extract features that will generate a latent image, while
the decoder is responsible for reconstructing the image. U-Net is a widely used autoencoder
for semantic segmentation [84]. The autoencoder in U-Net reduces the image’s dimensions
while also enlarging the input feature size and resolution to enable segmentation. SegNet is
another frequently used autoencoder for semantic segmentation [5]. VGG serves as the encoder
network, and unlike other networks, the input of the decoder in SegNet is not the anticipated
output of the encoder. Instead, the max pool indices of the corresponding encoder layer are fed
to each decoder layer in SegNet. This architecture enables SegNet to consume less memory
and perform better in segmentation tasks. [93]. Several other deep segmentation methods
use the transformer [53], a deep learning approach initially created for text comprehension
and summarization. Remarkably, the transformer’s structure appears to imitate the human
brain’s vision process, making it simple to extend this segmentation method to computer vision.
The transformer builds on autoencoder units but incorporates a self-attention mechanism that
analyzes the input information in great detail while simultaneously processing the rest of the
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information. According to [64], the training process involves two steps:

1. Training the model on a large dataset to set the weights in a way that enables the model to
generalize better to a more extensive solution space.

2. Fine-tuning the model on a smaller dataset to improve its performance on the specific task
at hand.

Because the complexity of the attention operator is quadratic, some reduction of the input size
is necessary, which is accomplished by initially dividing the image into patches [34], a preva-
lent technique in computer vision. The image is then subjected to linear transformation and
position embeddings, producing the input to the transformer encoder. An instance of utilizing
this segmentation method in the medical field is TransFuse [118], which merged the ability of
CNN kernels to capture local information with the transformer to represent information at a
more advanced level. UACANet is an alternative method that accounts for both local and global
information levels. It involves using U-Net and a parallel axial attention encoder and decoder
[56]. Google has developed a successful line of evolving networks called DeepLab[20], which
is widely used for semantic segmentation. DeepLab uses atrous convolution to increase the filter
window size and maintain computational efficiency, by upsampling the output of the last convo-
lution layer using a dilation rate. DeepLabV3 enhances DeepLab by: 1) using a combination of
cascade and parallel units for convolutional dilation, and 2) incorporating batch normalization
and 1x1 convolutions in Atrous Spatial Pyramid Pooling. DeepLabV3+ [22] further improves
upon DeepLabV3 by introducing a decoder that employs point-wise convolutions to operate
on the same channel but distinct locations, as well as depth-wise convolutions that process on
the same location but distinct channels. HarDNet-MSEG [45], which was designed for polyp
segmentation, is another example of a DCCN. HarDNet uses HarDNet68 [16], a CNN with an
encoder-decoder architecture that has demonstrated success in various computer vision tasks,
as its backbone. HarDNet’s decoder architecture was inspired by the Cascaded Partial Decoder
[111], which is recognized for its efficiency in precisely identifying prominent objects. Prior to
feeding the encoder’s output to the decoder, a Receptive Field Block [60] enhances the features
by incorporating various receptive fields.

2.1 Skin Segmentation

The upcoming paragraphs will introduce the latest developments in skin segmentation. Notably,
a deep learning architecture has been put forward to address the challenges associated with
low-resolution grayscale images, particularly those captured using the SPAD array camera [75].
Moreover, the network is designed specifically for facial skin segmentation. The proposed
colorization network from [6] is adapted slightly to suit the specific application, and then fine-
tuning is applied. To tackle the challenge of facial skin segmentation, a dedicated dataset [75]

8
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is presented, which is created by merging two pre-existing datasets, MUCT and Helen. The
resulting dataset comprises 6000 grayscale facial images, each accompanied by a corresponding
skin labeling mask. For an extensive examination of skin cancer detection, the reader can consult
a recent survey on the use of Deep Learning Techniques for skin cancer detection [30].

Recent research has highlighted the continued significance of Convolutional Neural Networks
(CNNs) in the realm of skin detection. Two recent papers, OR-Skip-Net [2] and a novel skin
detection CNN model [86], provide examples of this. The former is a fully convolutional network
with outer residual paths that extend from the encoder to the decoder. The latter model features
three convolution layers, a down-sampling layer, a flatten layer, and fully connected layers.
The Skinny network [98] builds upon the U-Net architecture and offers distinct benefits over
certain architectural components, such as inception modules and dense blocks, by effectively
incorporating both local and global pixel descriptions. A new approach for addressing skin
detection issues is presented in [29], which employs a zero-sum game theory model. In this
model, the classification problem is viewed as a competition between two players, namely skin
and non-skin pixels. To apply this approach, the image is divided into small patches or regions,
and each region is assessed and classified utilizing a group of classifiers. If all classifiers are in
agreement, the patch is classified accordingly, but if there is a difference in prediction, the patch
is deemed conflicting. The classifiers used include those based on color space thresholding and
artificial neural networks. This technique has the potential to minimize the identification of
non-skin regions as skin.

One of the earliest techniques proposed for detecting skin among many others is rule-based,
including methods based on thresholding. The concept behind color space thresholding is to
identify pixels of a specific color, which in this case is skin color. In [65], the skin color
thresholds for two of the most widely used color models, HSV and YCbCr, are presented. The
HSV color model is comprised of three elements: hue, saturation, and value, which represent
the cylindrical coordinates of an RGB color model. On the other hand, YCbCr is composed of
three components: luma, chrominance blue, and chrominance red, that can be trivially computed
from RGB values.

In [100], a new dataset of abdominal skin images generated from Google images is in-
troduced. The dataset comprises 1400 images that have been manually segmented to depict
the abdomen of individuals from diverse ethnic groups. Specifically, the dataset includes 700
images depicting people with dark skin and another 700 images depicting people with light skin.
Additionally, some of the images portray individuals with higher body mass indices, and others
display individuals with tattoos.
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2.2 Determining the Optimal Sample Size for Segmentation
in Medical Imaging

As stated in Chapter 7 of [41], deep learning models are frequently utilized in complex fields,
such as image processing, which is the primary focus of the thesis. These models are used to
simulate the entire universe, as the true generation process in these fields essentially requires it.
The authors suggest that in reality, managing complexity in deep learning is not a straightforward
task of determining the appropriate size of the function space F . This is because the correct
size of the function space may be as vast as the entire universe. It is worth noting that there
exists a significant gap between the learning problems and models studied by statistical learning
theory or other theoretical results (such as classification using support vector machines), and the
problems and models currently employed in deep learning (such as semantic segmentation of
images using DeepLabV3+). In the empirical evaluation of deep learning models, the optimal
classifier is obtained by utilizing a large function space with the right amount of regularization.
This helps to minimize the generalization error without affecting the training error.

According to [41, Chapter 11], if the performance on the training data is unsatisfactory,
collecting more data is not an effective solution. Instead, it is more beneficial to either use
a more complex model or adjust the hyperparameters values to improve the result. Even if a
larger model and a better learning algorithm are employed, the performance on the training data
may still be poor. In such a scenario, it is advisable to assess the quality of the training data,
specifically the presence of noise and accurate input, and gather new, clean data with a broader
set of features.

Another scenario occurs when the performance on the training data is good, but the result
on the test set is poor. In this situation, it is crucial to gather more data. However, in medical
applications, obtaining more data can be a challenging task as it can be difficult to find medical
experts, and there may also be concerns related to patient and hospital privacy. In such cases,
alternative options include reducing the complexity of the model and increasing regularization.

The relationship between the size of the training set and the generalization error curve can be
useful in determining the amount of data required to achieve a desired performance in a specific
application.

The aforementioned guidelines are aimed at practitioners, who use machine learning as a
mere tool.

According to Widrow’s rule of thumb for multivariate analysis, it is recommended that the
sample size, 𝑛, should be at least ten times larger than the number of parameters that need to
be estimated ([108]). However, this guideline may not always provide the optimal sample size
and may result in either an underestimation or overestimation, depending on the circumstances
([15].

The aim of sample-size determination methodologies (SSDMs) in machine learning, espe-

10



CHAPTER 2. RELATED WORK

cially in medical imaging, is to determine the appropriate number of images needed to achieve a
desired performance for an algorithm ([7]). Essentially, there are two types of SSDMs: model-
based and curve-fitting. Curve-fitting SSDMs rely on empirical evaluation to determine the
performance of an algorithm with respect to the size of the training sample. These approaches
can further be divided into two categories: learning curve-fitting and linear curve-fitting. The
goal of learning curve-fitting methods is to model the correlation between the size of the training
set and the classification accuracy. Typically, the curve obtained through curve-fitting SSDMs
follows an inverse power law function ([38]). Using the learning curve approach, [8] discovered
that a sample size of 75-100 is sufficient to evaluate a classifier that is not perfect but performs
well in biospectroscopy.
The required number of images per class to achieve an overall classification accuracy (OCA) of
82% was determined to be 10000 images by Rokem et al. (2017)[83]. Conversely, Cho et al.
(2015) [25] calculated that 4092 images per class would result in an OCA of 99.5%. The dif-
ferences in the results of these two studies can be attributed to the variations in the subsampling
method, machine learning model, and application used.
The linear curve-fitting approach examines the relationship between the area under the receiver
operating characteristic curve and the inverse of the training data size.

Shao et al. (2013) [90] introduced the SSNR-based protocol, a straightforward and effec-
tive method for determining the minimum training sample size in gene expression microarray
technology. This protocol not only provides an estimate of the minimum sample size but also
predicts the performance of classifiers with minimal prior information.

Narayana et al. (2020) [72] conducted a thorough investigation into the effect of training
size on segmentation accuracy in multiple sclerosis. The authors employed a learning curve
approach, plotting the accuracy against the size of the training set and using an inverse power
law. The following equation, as introduced by [72], shows the relationship between accuracy
(Y), training set size (X), and the parameters of the learning curve (𝑎, 𝑏1, 𝑏2):

𝑌 = (1 − 𝑎) − 𝑏1𝑋
𝑏2 (2.1)

The results of the study indicate an improvement in performance as the training size increases.
Specifically, with a training size of 50 or more, the results for lesion segmentation are exceptional.
Conversely, a training size of 10 is sufficient to achieve good results for gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF).

According to Willemink et al. (2020)[109], having a large training set size alone is not
enough to achieve optimal results. It is also important to properly curate, investigate, categorize,
and apply the image data in a clinical context. Furthermore, Fang et al. (2021[35] show that the
benefits of increasing the training size progressively become less significant.

In the study by Fang et al. (2021)[35], the U-Net network was utilized to examine fourteen
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regions of interest, including the brainstem, spinal cord, eyes, lenses, optic nerves, temporal
lobes, parotids, larynx, and body. The results indicated that for six of the organs, the optimal
outcome was achieved using 800 training images, while a smaller training size of 600 or 400
was needed for the remaining organs.

In another study focused on the impact of training sample size, Wulms et al. (2022)
[112] emphasized the significance of having a sufficient training size for accurate prediction of
white matter hyperintensity volume. Their tests revealed that as the training size increases, the
accuracy of the predictions improves. Several methods have been introduced in the literature
for enhancing classification performance without expanding the sample size. Some of these
methods include:

• ensemble techniques;

• data augmentation techniques;

• weakly supervised learning and, more recently, few-shot/zero-shot learning;

• domain adaptation techniques, particularly transfer learning for deep neural networks;

• regularization techniques.
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Methods

3.1 Topologies

3.1.1 DeepLabV3+

In this study, we delve into the DeepLabV3+ model. DeepLab is composed of a series of
autoencoder models, as described by Chen et al. (2018)([19]), and has demonstrated remarkable
success in multiple fields of application, as reported in Zheng et al. (2021)([121]). The following
are some of the key features that contribute to DeepLab’s success:

• Improved resolution is achieved through the use of dilated convolutions, reducing the
impact of pooling and stride.

• The Atrous Spatial Pyramid Pooling technique allows for data to be gathered at multiple
scales.

• The combination of CNNs and probabilistic graphic models results in accurate object
boundary identification.

DeepLabV3 introduces two key improvements: the use of a 1 × 1 convolution in Atrous Spatial
Pyramid Pooling and the inclusion of batch normalization, as well as a combination of cas-
caded and parallel convolutional dilation modules. In this work, we employ the DeepLabV3+
model([21]), an improvement on the series of models proposed by Google. The key innovation
in this network is its decoder, which includes both depth-wise and point-wise convolutions. The
depth-wise convolutions work in the same location but across distinct channels, while the point-
wise convolutions operate on the same channel across distinct locations. In order to develop
a diverse set of models within a framework, we can focus on different aspects of the network
architecture. Each architecture model has its own distinct features.
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Figure 3.1: DeepLabv3+ [21] employs an encoder-decoder structure to enhance the capabilities
of DeepLabv3. The encoder module uses atrous convolution at multiple scales to encode multi-
scale contextual information, while the decoder module, which is simple yet effective, refines
the segmentation results along the boundaries of objects.

3.1.2 HardNet

HarD-Net(Harmonic Densely Connected Net-work) , as described in the paper by Chao et
al. [17] 1, is a model that takes inspiration from Densely Connected Networks. One of the
advantages of HarD-Net is its efficient use of memory, achieved by reducing the number of
connection layers in comparison to DenseNet, leading to lower concatenation costs. Moreover,
the input-to-output channel ratio is balanced due to the increase in the channel width of the
layers, resulting in an increase in its connections.

3.1.3 PVT

The Pyramid Vision Transformer (PVT) [31] 2 is a transformer network that does not use any
convolutional layers. Its goal is to obtain a high-resolution representation starting from a detailed
input. The model’s computational cost is reduced through a progressive shrinkage in the form
of a pyramid, along with the depth of the model. A spatial-reduction attention (SRA) layer has
been added to further reduce the complexity of the system.

1https://github.com/james128333/HarDNet-MSEG - Last access on June 30th, 2022
2https://github.com/DengPingFan/Polyp-PVT - Last accessed on June 30th, 2022
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Figure 3.2: The Pyramid Vision Transformer (PVT) [31] has an architecture consisting of four
stages, each containing a patch embedding layer and a Li-layer Transformer encoder. These
stages follow a pyramid structure, with the output resolution progressively decreasing from high
(4-stride) to low (32-stride).

3.2 Loss Function

3.2.1 Generalized Dice Loss

The Dice Loss is derived from the Sorensen-Dice coefficient, which is a commonly used metric to
evaluate the performance of semantic segmentation models [69]. The Sorensen-Dice coefficient
measures the similarity between two images on a scale from 0 to 1. To address the challenge of
using Dice Loss for multiclass problems, the Generalized Dice Loss was introduced [95]. The
Generalized Dice Loss formula compares the predicted values Y with the target values T. It is
represented as:

𝐿𝐺𝐷 (𝑌,𝑇) = 1 −
2 ∗∑︁𝐾

𝑘=1 𝑤𝑘 ∗
∑︁𝑀
𝑚=1𝑌𝑘𝑚𝑇𝑘𝑚∑︁𝐾

𝑘=1 𝑤𝑘
∑︁𝑀
𝑚=1 (𝑌2

𝑘𝑚
+ 𝑇2

𝑘𝑚
)

(3.1)

Here, K represents the number of classes, M represents the number of pixels. The formula
incorporates a weighting factor 𝑤𝑘 , which is used to emphasize on a specific region. The weight
is inversely proportional to the label frequency for the given class k. The weight calculation is
represented by the equation:

𝑤𝑘 =
1

(∑︁𝑀
𝑚=1 𝑇𝑘𝑚)

2 (3.2)
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3.2.2 Tversky Loss

One challenge that often arises in image segmentation is the imbalance in class distribution. To
address this problem, the Tversky Loss was proposed [87]. This loss is based on the Tversky
Index, which is an extension of the dice similarity coefficient. The Tversky Index employs two
weighting factors, 𝛼 and 𝛽, to balance the trade-off between false positives and false negatives.
When both 𝛼 and 𝛽 are set to 0.5, the Tversky Index reduces to the Dice Similarity coefficient.
The Tversky Index measures the similarity between the predicted values Y and the ground truth
values T for a specific class k. The formula is expressed as:

𝑇 𝐼𝑘 (𝑌,𝑇) =
∑︁𝑀 𝑚 = 1𝑌𝑝𝑚𝑇𝑝𝑚∑︁𝑀

𝑚=1𝑌𝑝𝑚𝑇𝑝𝑚 + 𝛼∑︁𝑀
𝑚=1𝑌𝑝𝑚𝑇𝑛𝑚 + 𝛽∑︁𝑀

𝑚=1𝑌𝑛𝑚𝑇𝑝𝑚
(3.3)

Here, 𝑝 refers to the positive class, 𝑛 to the negative class, and 𝑀 is the total number of
pixels. The Tversky Loss formula is expressed as:

𝐿𝑇 (𝑌,𝑇) =
𝐾∑︂
𝑘=1

(1 − 𝑇 𝐼 𝑘 (𝑌,𝑇)) (3.4)

where 𝐾 is the number of classes. In this study, the weights are assigned as 𝛼= 0.3 and
𝛽= 0.7, which means more emphasis was given to false negatives.

3.2.3 Focal Tversky Loss

Cross-entropy (CE) is one of the widely used distribution-based loss functions. It works towards
reducing the difference between two probability distributions, without any preference for larger or
smaller regions. Numerous variations of the cross-entropy loss have been introduced in literature,
including Binary Cross-Entropy and Focal loss [59]. Binary Cross-Entropy is a straightforward
application of CE to binary classification problems. On the other hand, Focal loss aims to
give more attention to challenging examples by down-weighting well-classified ones. This is
achieved by incorporating a modulating factor 𝛾 > 0.Focal Loss (𝐿𝐹) is particularly effective
in scenarios where foreground and background classes are imbalanced. Similar loss functions
that incorporate the 𝛾 factor to focus on hard examples are the Focal Tversky Loss [59] and
Exponential Logarithmic Loss [110].

𝐿𝐹𝑇 (𝑌,𝑇) = 𝐿𝑇 (𝑌,𝑇)
1
𝛾 (3.5)

By using the Tversky Index, the Focal Tversky Loss manages to strike a favorable balance
between precision and recall.
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3.2.4 Focal Generalized Dice Loss

Inspired by the Focal Tversky Loss, we introduced the 𝛾 factor to Generalized Dice Loss to
create Focal Generalized Dice Loss. This loss function emphasizes smaller regions of interest
and down-weights commonly occurring examples. In our experiments, we set 𝛾 to 4/3.

𝐿𝐹𝐺𝐷 (𝑌,𝑇) = (𝐿𝐺𝐷 (𝑌,𝑇))
1
𝛾 (3.6)

3.2.5 Log-Cosh Type Losses

The Log-Cosh Dice Loss is a combination of the Dice Loss and the Log-Cosh function,
which is commonly used in regression tasks to smoothen the curve. The Log-Cosh func-
tion, log(cosh (𝑥) ), approximates to 𝑥2/2 for small values of 𝑥, and |𝑥 | − log(2) for large values
of 𝑥. The Log-Cosh Generalized Dice Loss can be expressed as:

𝐿𝑙𝑐𝐺𝐷 (𝑌,𝑇) = log(cosh(𝐿𝐺𝐷 (𝑌,𝑇))) (3.7)

In our experiments, we were motivated by Log-Cosh Dice Loss to make other loss function
curves smoother. We introduce Log-Cosh Binary Cross Entropy Loss, Log-Cosh Tversky Loss,
and Log-Cosh Focal Tversky Loss, which are all variations of Binary Cross-Entropy Loss,
Tversky Loss, and Focal Tversky Loss. The only distinction is the inclusion of the Log-Cosh
term. Specifically, Log-Cosh Focal Tversky Loss can be defined using the following formula:

𝐿𝑙𝑐𝐹𝑇 (𝑌,𝑇) = log (cosh (𝐿𝐹𝑇 (𝑌,𝑇))) (3.8)

3.2.6 Neighbor Loss

A novel loss function called Neighbor Loss [114] has been recently proposed. This loss function
can be interpreted as a cross-entropy that incorporates weights for each pixel based on its
eight neighboring pixels. The aim is to account for the spatial correlation among neighboring
pixels. The weight assigned to a pixel is determined by the number of neighbors that have a
prediction different from that of the center pixel. Similar to Focal Loss, Neighbor Loss attempts
to handle difficult samples by incorporating a threshold t and a binary indicator function 1•,
which excludes easily classified pixels. Despite this approach, our experiments indicate that
Neighbor Loss exhibits poor performance, and as a result, we do not include it in our proposed
ensemble.
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3.2.7 SSIM Loss

SSIM Loss [80] is an image quality estimation metric that originates from the Structural simi-
larity (SSIM) index [106]. The formula for SSIM is given as:

𝑆𝑆𝑖𝑚 (𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)(︁
𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1
)︁ (︁
𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
)︁ (3.9)

where 𝜇𝑥 , 𝜇𝑦, 𝜎𝑥 , 𝜎𝑦, and 𝜎𝑥𝑦 denote the local means, standard deviations, and cross-covariance
for images x and y, and 𝐶1, 𝐶2 are regularization constants. The SSIM Loss between an image
Y and its corresponding ground truth T is defined as:

𝐿𝑆 (𝑌,𝑇) = 1 − 𝑆𝑆𝑖𝑚 (𝑌,𝑇) (3.10)

We also introduce a modification, 𝐿𝑀𝑆 (𝑌,𝑇), which is defined similarly to 𝐿𝑆, but instead of
using the SSIM index, it employs the Multiscale Structural Similarity (MS-SSIM) index.

3.2.8 Different Functions Combined Loss

When working with imbalanced data, like in the case of early cancer detection, there is a potential
trade-off between high precision and low recall. To address this issue, Generalized Dice Loss
employs a recurrent method that reduces the impact of class imbalance by introducing a weight
𝑤𝑘 , which is the inverse of the label frequency. A drawback of Dice Loss is that it represents
a harmonic mean of false positives and false negatives. To ensure that no lesion is overlooked,
it is crucial to have the flexibility to balance false positives and false negatives, with a tendency
towards weighting false negatives higher, as doctors do. To focus the model on challenging
cases and harness the advantages of both Focal Generalized Dice Loss and Focal Tversky Loss,
we merged them:

𝐶𝑜𝑚𝑏1(𝑌,𝑇) = 𝐿𝐹𝐺𝐷 (𝑌,𝑇) + 𝐿𝐹𝑇 (𝑌,𝑇) (3.11)

An alternative approach to down-weighting simple examples is to blend Log-Cosh Dice Loss,
Focal Generalized Dice Loss, and Log-Cosh Focal Tversky Loss. In this situation, we regulate
the non-convex behavior of the curve by incorporating the Log-Cosh technique:

𝐶𝑜𝑚𝑏2 (𝑌,𝑇) = 𝐿𝑙𝑐𝐺𝐷 (𝑌,𝑇) + 𝐿𝐹𝐺𝐷 (𝑌,𝑇) + 𝐿𝑙𝑐𝐹𝑇 (𝑌,𝑇) (3.12)

Lastly, we suggest a fusion of the SSIM Loss and the Generalized Dice Loss:

𝐶𝑜𝑚𝑏3(𝑌,𝑇) = 𝐿𝑆 (𝑌,𝑇) + 𝐿𝐺𝐷 (𝑌,𝑇) (3.13)
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3.2.9 Cross Entropy

The cross-entropy (CE) loss function offers a way to quantify the dissimilarity between two
probability distributions. The objective is to reduce this dissimilarity, and as a result, it does not
exhibit any bias towards small or large regions.

When working with imbalanced datasets, this can pose a problem. Therefore, the weighted
cross-entropy loss was introduced to address this concern and has been shown to generate
well-balanced classifiers in imbalanced scenarios [3].

The equation for weighted binary cross-entropy can be found in 3.14. Here, 𝑇 represents the
ground truth label image, and 𝑇𝑖𝑘 refers to the true value of pixel 𝑖, which can either be 0 or 1.
If pixel 𝑖 belongs to class 𝑘 , 𝑇𝑖𝑘 is equal to 0; otherwise, it is 1.

𝑃 represents the prediction for the output image, and 𝑃𝑖𝑘 is the probability of the 𝑖-th pixel
belonging to the 𝑘-th class, computed using the sigmoid activation function. In contrast, the
softmax activation function is employed for 𝑃 to obtain probabilities.

𝑤𝑖𝑘 denotes the weight assigned to the 𝑖-th pixel of the image belonging to class 𝑘 . To
calculate these weights, we applied average pooling over the mask using a 31x31 kernel and a
stride of 1, taking into account non-maximal activations as well.

𝐿𝑊𝐵𝐶𝐸 = −
𝐾∑︂
𝑘=1

𝑁∑︂
𝑖=1

𝑤𝑖𝑘𝑇𝑖𝑘 log (𝑃𝑖𝑘 ) (3.14)

Here, 𝐾 corresponds to the number of classes, while 𝑁 refers to the number of pixels.

3.2.10 Weighted intersection over union

Intersection over Union (IoU) loss is another widely recognized loss function that was initially
proposed in [81]. The original formulation is as follows:

𝐼𝑜𝑈 =
|𝑃 ∩ 𝑇 |
|𝑃 ∪ 𝑇 | (3.15)

Here, 𝑃 and 𝑇 represent the predicted and ground truth label images, respectively.
Regrettably, the symbols used for Intersection and Union are non-differentiable as 𝑃 and

𝑇 must be either 0 or 1. However, since this is not true for 𝑃, the original equation was
approximated as follows:

𝐼𝑜𝑈′ =
|𝑃 · 𝑇 |

|𝑃 + 𝑇 − 𝑃 · 𝑇 | (3.16)

In this formula, 𝑃 · 𝑇 denotes the element-wise multiplication of 𝑇 and 𝑃. The denominator
subtracts the “intersection” between 𝑃 and 𝑇 to avoid counting the intersection twice.
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After converting the set operators to arithmetic ones, the formula becomes differentiable,
enabling us to compute the gradient.

However, IoU is a performance metric used to evaluate the quality of predictions, with a
value of 1 denoting a flawless prediction. As a result, the loss function takes the following form:

𝐿 𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈′ (3.17)

This loss function is used to quantify the error between the predicted and ground truth label
images.

Nonetheless, we face the same challenge encountered earlier with CE since it can be chal-
lenging to determine the labels for object boundaries in general. As suggested in [26], we adopt
the same approach as before and use weighted Intersection over Union (𝑤𝐼𝑜𝑈) instead of the
standard IoU.

The formula for the weighted Intersection over Union loss is as follows:

𝐿𝑊𝐼𝑂𝑈 = 1 − |𝑤𝑃𝑇 |
|𝑤 (𝑃+𝑇) −𝑤𝑃𝑇 | = 1 −

∑︁𝑁
𝑖=1 𝑤𝑖𝑘

∑︁𝐾
𝑘=1 𝑇𝑖𝑘𝑌𝑖𝑘+1∑︁𝑁

𝑖=1
∑︁𝐾
𝑘=1 𝑤𝑖𝑘 (𝑇𝑖𝑘+𝑌𝑖𝑘−𝑇𝑖𝑘𝑌𝑖𝑘 ) + 1

(3.18)

In this equation, 𝑁 corresponds to the number of pixels, and 𝐾 represents the number of
classes. The previously mentioned method is employed to calculate the weights 𝑤𝑖𝑘 . 𝑇𝑖𝑘 and 𝑌𝑖𝑘
refer to the ground truth and predicted values, respectively, for pixel 𝑖 belonging to class 𝑘 . In
order to avoid division by zero, we add 1 to both the numerator and denominator.

3.2.11 Structure Loss

Drawing on the insights from [46], we combine the weighted Intersection over Union and
weighted binary-crossed entropy loss functions[67]. The resulting loss function is expressed as
follows:

𝐿
′
𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 𝐿𝑤𝑏𝑐𝑒 (3.19)

To enhance the diversity in the deep learning network, we have altered the original loss
function as follows: rather than using avgpool over the mask, we apply it over the predictions.

We assign a weight of 2 to the binary-crossed entropy loss to give it greater significance.

As a result, the final loss function becomes:

𝐿𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 2𝐿𝑤𝑏𝑐𝑒 (3.20)
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3.2.12 BoundExpStructure

In order to enhance the model’s ability to identify small structures within a highly imbalanced
dataset, we have combined three loss functions: Structure Loss, Boundary Loss, and Exponential
Logarithmic Loss.

The Structure Loss function is used to capture the global structural information of the
image, while the Boundary Loss function is used to improve the detection of boundaries. The
Exponential Logarithmic Loss function, on the other hand, is designed to handle the class
imbalance in the dataset.

The final loss function, named BoundExpStructure, is expressed as:

𝐿𝐵𝑜𝑢𝑛𝑑𝐸𝑥𝑝𝑆 = 𝐿𝐵𝑜𝑢𝑛𝑑 + 𝐿𝐸𝑥𝑝 + 𝐿𝑆𝑡𝑟 (3.21)

By combining these loss functions, we are able to achieve better performance in identifying
small structures and detecting boundaries, even in the presence of highly imbalanced data. This
can be particularly important in medical imaging applications, such as the early detection of
cancer, where small lesions and accurate boundary detection are critical for proper diagnosis
and treatment.

3.2.13 Boundary Enhancement Loss

The Boundary Enhancement Loss, proposed in [113], is a loss function designed to focus
explicitly on the boundary areas during training. This loss function has shown good performance
without requiring any pre- or post-processing of the image or a specific network architecture.

The Laplacian filter L(·) is a key component of the Boundary Enhancement Loss, as it
generates strong responses around the boundaries and returns zero elsewhere. Specifically,
when the Laplacian filter is applied to a mask 𝑆, it produces the following expression:

L(x, y) = 𝜕2𝑆

𝜕𝑥2 + 𝜕
2𝑆

𝜕𝑦2 (3.22)

Using the Laplacian filter has the advantage of being relatively easy to achieve through a
series of convolution operations. The approach involves computing the difference between the
filtered output of the ground truth labels and the filtered output of the predictions.

The boundary enhancement loss is defined [113] as:

𝐿𝐵𝐸 = | |L(𝑇) − L(𝑌 ) | |2 =

|︁|︁|︁|︁|︁|︁|︁|︁𝜕2(𝑇 − 𝑌 )
𝜕𝑥2 + 𝜕

2(𝑇 − 𝑌 )
𝜕𝑦2

|︁|︁|︁|︁|︁|︁|︁|︁
2

(3.23)

The 𝑙2 norm is denoted by | | • | |2 in equation 3.23. This operation can be easily performed
as explained in the original paper by Yang et al. [113].
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We will combine Dice Loss and Boundary Enhancement Loss, along with Structure Loss,
in a weighted manner based on the approach in the paper. The resulting loss function can be
expressed as:

𝐿𝐷𝑖𝑐𝑒𝐵𝐸𝑆 = 𝜆1𝐿𝐷𝑖𝑐𝑒 + 𝜆2𝐿𝐵𝐸 + 𝐿𝑆𝑡𝑟 (3.24)

The optimal results were obtained when we set 𝜆1= 1 and 𝜆2= 0.01

3.2.14 Contour-aware Loss

The Contour-aware Loss, initially introduced in [24], is a loss function that utilizes a weighted
binary cross-entropy loss. The objective of these weights is to prioritize the borders of the image
by assigning them greater significance.

The Contour-aware Loss utilizes a morphological gradient edge detector, which calculates
the difference between the dilated and eroded label map. The resulting map is then smoothed
with Gaussian blur for better results. This process generates a spatial weight map, which can be
formulated as:

𝑀𝐶=𝐺𝑎𝑢𝑠𝑠 (𝐾• (𝑑𝑖𝑙𝑎𝑡𝑒 (𝑇) −𝑒𝑟𝑜𝑑𝑒 (𝑇))) +1 (3.25)

The operations 𝑑𝑖𝑙𝑎𝑡𝑒(𝑇) and 𝑒𝑟𝑜𝑑𝑒(𝑇) represent dilation and erosion with a 5 × 5 kernel,
respectively. The hyperparameter 𝐾 is used to assign high values to contour pixels and was
empirically set to 5. The matrix with a value of 1 in each position is denoted as 1.

The loss computation can be expressed using the following equation:

𝐿𝐶= −
𝑁∑︂
𝑖=1

𝑀𝐶
𝑖 ∗ (𝑇𝑖∗log (𝑌𝑖) + (1−𝑇𝑖) ∗log (1−𝑌𝑖) ) (3.26)

The final loss can be computed using the contour-aware loss 𝐿𝐶 and the structure loss 𝐿𝑆𝑡𝑟 :

𝐿𝐶𝑆=𝐿𝐶+𝐿𝑆𝑡𝑟 (3.27)

3.3 Data Augmentation

The goal of data augmentation techniques is to enhance performance by expanding the pool of
training data without the need to gather new data. This is achieved by creating synthetic samples
that either replicate the original ones with modifications or are automatically generated to possess
the same statistical characteristics as the real samples, or both. Not only does data augmentation
enhance classification accuracy, but it has also been found to enhance generalization and serves
as a regularizer. The method used to generate additional samples is based on the classification
field. A comprehensive review of data augmentation techniques for deep learning can be found
in [91].
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Essentially, methods for augmenting image data can be categorized into two main groups:

1. Image manipulations for data augmentation can be classified into several categories.
Geometric transforms, such as rotation, flipping, warping, cropping, and others, can
modify the spatial layout of the image. Filters like low-pass filters and noise injection can
add noise to the image. Random erasing, as proposed by [123], is another technique that
replaces random regions of pixels with a constant value or noise. Statistical methods, such
as equalization and color casting, can transform the color space of the image. Additionally,
per-pixel weighted mixes of other images can be employed to generate new images.

2. Deep learning techniques for image data augmentation include several approaches. Feature
space augmentation involves using the lower-dimensional representations of images output
by intermediate layers of convolutional neural networks to generate new data. Adversarial
training is another approach that uses an auxiliary network to produce synthetic images
that can mislead the main network. Generative modeling is another popular approach that
employs a generative adversarial network (GAN) to generate synthetic images that are
similar to real ones. While there are other options available, GANs are the most widely
used due to the high quality of the images they produce. Neural style transfer is another
technique that utilizes an auxiliary network to transfer the style of one image to another
while preserving the original content. These deep learning approaches are powerful tools
that can significantly improve the performance of image classification models.

Data augmentation techniques can be combined to further increase the number of available
samples. For instance, synthetic images generated using deep learning approaches can undergo
basic image manipulation to produce even more variations. However, as noted by [91], it is not
always guaranteed that combining different techniques will improve performance.

In addition, data augmentation and ensemble techniques can also be combined to enhance
model performance. For example, [70] propose an ensemble approach based on a kind of
bagging, where multiple classifiers are trained on different training sets generated by combining
fourteen data augmentation approaches. By using a variety of data augmentation techniques and
training multiple classifiers on the resulting datasets, this approach can improve the accuracy
and robustness of the model.

3.3.1 DA1

DA1 is a basic data augmentation which involves performing horizontal and vertical flips, as
well as 90° rotations, on the input images.
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Figure 3.3: Original image and label.

Figure 3.4: Application of DA1 to images.
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Figure 3.5: Original image and label.

3.3.2 DA2

DA2 incorporates both shape-based and color-based transformations to produce eleven artificial
images for each image in the dataset.

The transformations applied are:

1. Shift the image horizontally.

2. Shift the image vertically.

3. Rotate the image by a randomly selected angle between 0° and 180°.

4. Apply horizontal or vertical shear employing the function "randomAffine2d".

5. Flip the image horizontally or vertically.

6. Adjust the brightness levels by adding the same values to each RGB channel.

7. Adjust the brightness levels by adding different values to each RGB channel.

8. Add speckle noise by using the function "imnoise".

9. Apply the technique “Contrast and Motion Blur”, illustrated below.

10. Apply the technique “Shadows”, illustrated below.

11. Apply the technique “Color Mapping”, illustrated below.

3.3.3 Contrast and Motion Blur

The process of transforming the image involves two consecutive modifications. The first step
involves adjusting the contrast of the original image, either by increasing or decreasing it.
Subsequently, a filter that emulates camera movement is applied. A pair of contrast-modifying
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Figure 3.6: Application of DA2 to images.

Figure 3.7: Application of DA2 to labels.
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functions have been incorporated, however, only one of the two is randomly selected and applied
to the image. The first contrast modification function involves an equation represented as follows:

(𝑥 − 1
2 )
√︂

1 − 𝑘
4√︂

1 − 𝑘 (𝑥 − 1
2 )2

+ 0.5, where 𝑘 ≤ 4 (3.28)

By manipulating the parameter 𝑘 , the contrast of the image can be adjusted. Specifically,
a decrease in contrast can be achieved when 0 < 𝑘 ≤ 4, while an increase in contrast can be
obtained if 𝑘 < 0. In the case where 𝑘 = 0, the image remains unchanged. The code selects
a random value for the parameter 𝑘 from a set of four predefined ranges. These ranges are as
follows:

• U(2.8, 3.8) → This range leads to a hard decrease in contrast.

• U(1.5, 2.5) → This range leads to a soft decrease in contrast.

• U(-2, -1) → This range leads to a soft increase in contrast.

• U(-5, -3) → This range leads to a hard increase in contrast.

The second contrast function employed in the code is defined by :

𝑦 =

⎧⎪⎪⎨⎪⎪⎩
1
2 (

𝑥
0.5 )𝛼, 0 ≤ 𝑥 < 1

2

1 − 1
2 (

1−𝑥
0.5 )𝛼,

1
2 ≤ 𝑥 ≤ 1

(3.29)

In this function, the contrast is controlled by the parameter 𝛼. Specifically, an increase in
contrast occurs when 𝛼 > 1, a decrease in contrast occurs when 0 < 𝛼 < 1, and the image
remains unchanged when 𝛼 = 1. The value of the parameter 𝛼 is randomly selected from one
of four possible ranges in the code. These ranges are:

• U(0.25, 0.5) → This range results in a hard decrease in contrast.

• U(0.6, 0.9) → This range results in a soft decrease in contrast.

• U(1.2, 1.7) → This range results in soft increase in contrast.

• U(1.8, 2.3) → This range results in hard increase in contrast.

3.3.4 Shadows

To create the final image, a shadow is added to either the left or the right side of the original
image. This is accomplished by multiplying the intensities of each column of the image with
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the following equation:

𝑦 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{︁
0.2 + 0.8

√︁
𝑥

0.5 , 1
}︁

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1

min
{︃
0.2 + 0.8

√︂
1−𝑥
0.5 , 1

}︃
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 0

Certain artificial images may consist entirely of background pixels. To eliminate such images,
those with less than 10 foreground pixels are discarded.

3.3.5 Color Mapping

By altering the color map of an image, a new image can be generated. Specifically, it’s feasible
to match the colors of one image to those of another image. We created pairs of images by
combining any image from the original training set with another image chosen randomly from
the same set. We utilized the Stain Normalization toolbox, which offers this capability in three
distinct versions:

• RGB Histogram Specification

• Reinhard

• Macenko

3.3.6 JPEG approach

The JPEG (Joint Photographic Experts Group) standard was defined in the years 1986-1992 by
working groups set up by two organizations, the CCITT (Consultative Committee on Interna-
tional Telegraph and Telephone) and the ISO (International Organization for Standardization)
with the following goals:

• Use the most advanced techniques then available.

• Allow the user to vary the compression ratio as desired.

• Create an algorithm independent of content, size, and image resolution.

• Keep computational complexity low.

More recent techniques, based on fractals and wavelets (e.g. JPEG 2000) have superior perfor-
mance but require computational complexity considerably larger. For this JPEG is still the de
facto standard in many fields of multimedia (from digital cameras to the Web). In this work,
we exploit the idea of JPEG, to create our augumented images. In particular, starting from the
original images, the subsequent steps were followed:
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Figure 3.8: Application of the jpeg data augmentation technique.

1. Divide the image in 8 x 8 blocks.

2. Compute DCT separately, for each block.

3. Every element of each 8 x 8 block of DCT coefficients is divided by the corresponding
coefficient of a quantization table Q. The tables of quantization are multiply by a scale
factor 𝛼 reflecting the degree of compression you want to achieve. In our code, we set
𝛼 = 5.

4. Compute the inverse of DCT separately, for each block.

Finally, given the compressed image, two operations were performed:

• horizontal flip;

• vertical flip.

3.3.7 Alternating Vertical Shift

The "Alternating Vertical Shift" method divides the image into alternating vertical strips and
randomly shifts each strip up or down by a random amount.

3.3.8 Alternating Horizontal Shift

The "Alternating Horizontal Shift" technique takes a set of training images and labels and
applies horizontal shifts to alternating horizontal strips in a symmetric manner. The strip height
is chosen randomly within the specified minimum and maximum height range. For each strip,
the function shifts the content to the left, while the following strip is shifted to the right. The
process is repeated for all alternating strips in the image.
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3.3.9 Alternating Diagonal Shift

The "Alternating Diagonal Shift" function takes a set of training images and labels, and applies
diagonal shifts to alternating square regions in a symmetric manner. The size of the square
regions is chosen randomly within the specified minimum and maximum size range. For each
square region, the function shifts its content diagonally towards the top-left corner, while the
content of the next square region (in both x and y directions) is shifted towards the bottom-right
corner.

3.3.10 Random Shift with Black or Wrap

The "Random Shift with Black or Wrap" method, for each image, randomly shifts the image left
or right by a random amount within the specified shift width. Then, it either fills the resulting
empty space with a black strip or wraps the cut piece around to the other side.

3.3.11 Random Shift Up Down with Black or Wrap

The "Random Shift Up Down with Black or Wrap" function, for each image, randomly shifts
the image up or down by a random amount within the specified shift width. Then, it either fills
the resulting empty space with a black strip or wraps the cut piece around to the other side.

3.3.12 Random Rectangles Mix and Blackout

The "Random Rectangles Mix and Blackout" function takes a set of training images and labels,
and applies random rectangle transformations to each image. The function either blacks out the
rectangle or mixes it with another random rectangle from the same image. It creates a specified
number of rectangles (default is 10) with random sizes and positions within the given minimum
and maximum size range.

3.3.13 Random Rectangle Rotation

This technique selects a random number of small rectangles with random dimensions and
positions, then rotates each rectangle by a random angle to simulate added noise.

3.3.14 Random Rectangle Flip

This method selects a random number of small rectangles with random dimensions and positions,
then flips each rectangle randomly, vertically or horizontally to simulate added noise.
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3.3.15 Random Rectangle Brightness

This function selects a random number of small rectangles with random dimensions and po-
sitions, then apply brightness to each rectangle by a random amount of brightness to simulate
added noise.
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Results

We perform a thorough empirical evaluation to assess the performance of our ensemble system.
This evaluation includes a comparison with multiple state-of-the-art models for a comprehensive
analysis of our system. The empirical evaluation is conducted on six real-world scenarios in-
cluding polyp segmentation, skin segmentation, leukocyte identification, butterfly identification,
microorganism identification, and radiology segmentation.

4.1 Metrics

The performance of our system has been evaluated through two commonly used metrics: the
Dice score and the Intersection over Union (IoU). The following formula shows how these
metrics are calculated using true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).
The Dice score (also known as the F1-score in binary classification tasks) is a measure of the
performance of a semantic segmentation model that takes into account both precision and recall.
It is calculated as a weighted average of these two metrics and can be defined mathematically
as:

F1-score = Dice =
2 · |𝐴 ∩ 𝐵|
|𝐴| + |𝐵 | =

2 · TP
2 · TP + FP + FN

(4.1)

The Intersection over Union (IoU) metric measures the overlap between two masks by
dividing the shared area by the total area of both masks combined. This is mathematically
defined as:

𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | =

TP
TP + FP + FN

(4.2)

The labels A and B refer to the predicted mask and the ground truth map, respectively.
As the input size of the models used in our experiments differs from the original image size,
we resize the images accordingly. However, to ensure consistency and enable comparison, we
always resize the predicted masks back to their original dimensions.
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Table 4.1: Datasets for Skin Segmentation. ECU dataset is split in 2000 images for training and
2000 for test set. For ECU, we considered the subset of images that were not used in the training
phase.

Tag Name #Samples Ref. Available
CMQ Compaq 4675 [51] Ask Authors
HGR Hand Gesture Recognition 1558 [52] Yes
MCG MCG-skin 1000 [47] Ask Authors
PRT Pratheepan 78 [96] Yes
SFA SFA 1118 [14] Ask Authors
SCH Schmugge dataset 845 [89] Yes

VMD Human activity recognition 285 [88] Yes
ECU ECU Face and Skin Detection 2000 [77] N/A

UC UChile DB-skin 103 [85] Ask Authors
VT VT-AAST 66 [1] Ask Authors

4.2 Datasets

4.2.1 Skin segmentation (SKIN)

The skin detection task involves distinguishing the regions of an image that correspond to "skin"
and "non-skin," which is essentially a binary classification problem[28]. In this thesis, we adopt
the methodology proposed by Lumini et al. [63], which employs a small training set of 2000
images from the ECU dataset [77], as well as ten diverse datasets, listed in Table 4.1. Following
the original testing protocol proposed by Lumini et al. [63], we calculate the Dice coefficient
(i.e., F1-score) at the pixel level rather than the image level, and average the results over the
entire dataset. In our experiments, we utilize resized images of dimensions 352×352 for all the
datasets.
To facilitate research in the field of skin detection, several color image datasets with annotated
ground truth are available. It is crucial to employ a standard and representative benchmark
to perform a fair empirical evaluation of skin detection methods. In Table 4.1, we present a
summary of some of the most widely used datasets, along with a brief description of each of
them in this section.

Jones and Rehg’s Compaq dataset (2002) is among the earliest and most widely used large-
scale skin datasets. It comprises images acquired by crawling the Web, containing a total of
9731 images with skin pixels (though only 4675 images with segmented skin regions are in-
cluded in the ground truth), as well as 8965 images with no skin pixels. The dataset has been
widely utilized to test and compare various methods, but due to the lack of a standardized testing
protocol, the comparisons made using this dataset may not always be impartial. Additionally,
the ground truth for this dataset was obtained through an automated software tool, resulting in
imprecise outcomes.
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The HGR dataset, created by Kawulok, Kawulok, Nalepa, et al. in 2014, is a collection
of images for gesture recognition. The dataset also includes ground truth binary masks that
indicate the presence of skin. It consists of 1558 images representing Polish and American sign
language gestures, captured with both controlled and uncontrolled backgrounds. The dataset is
segregated into three subsets, namely HGR1, HGR2A, and HGR2B. During the testing phase,
the size of the images in subsets HGR2A and HGR2B was downsized by a factor of 0.3.

The MCG skin database is a collection of 1000 images sourced from the internet to ensure
the inclusion of challenging backgrounds, varying ambient lighting conditions, and a diverse
range of human races. The ground-truth annotations were generated through manual labeling,
although they may not be entirely accurate, as features such as eyes, eyebrows, and even bracelets
may have been mistakenly labeled as skin.

Tan, Chan, Yogarajah, and Condell (2012) developed the Pratheepan dataset, which con-
sists of a limited set of 78 images that were randomly downloaded from Google. The dataset
is categorized into two groups: FacePhoto, which contains 32 single-subject images with plain
backgrounds, and FamilyPhoto, which encompasses 46 images with elaborate backgrounds and
multiple subjects.

The SFA dataset, developed by Casati, Moraes, and Rodrigues in 2013, is comprised of
images from the FERET (876 images) and AR (242 images) face databases that have been man-
ually labeled with moderate precision. The SFA dataset is organized into folders to segregate
the 1118 original images (ORI), 1118 ground truth (GT) masks, 3354 skin samples (SKIN), and
5590 non-skin samples (NS), which vary in dimensions from 1 to 35×35. For the purposes of
the study, ORI/GT was used to evaluate the model’s performance.

The Schmugge skin dataset, developed by Schmugge, Jayaram, Shin, and Tsap in 2007, is
a compilation of 845 images obtained from various face datasets, including the UOPB dataset,
AR face dataset, and University of Chile database. The dataset is accurately labeled, with all
images classified into one of three categories: skin, not-skin, or don’t care.

The Human activity recognition dataset encompasses EDds2, LIRIS3, SSG4, UT5, and
AMI6 datasets. These datasets exhibit a diverse range of scenarios, viewing distances, and
resolutions, making skin detection a challenging task due to various factors such as illumination
changes and poor visibility. The dataset consists of 285 images, and the corresponding ground
truth was generated at the pixel level for approximately 50 images from each dataset. The
evaluation set includes more than 870,000 skin pixels.
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ECU (Phung, Bouzerdoum, & Chai, 2005) skin and face datasets which comprise approxi-
mately 4000 color images that are annotated with ground truth that is relatively accurate. The
dataset is a significant challenge because it features a diverse range of skin types, lighting con-
ditions, and background scenes.

The UChile (Ruiz-Del-Solar & Verschae, 2004) consists of 103 images captured in a variety
of lighting situations and intricate backgrounds. While the dataset’s ground truth annotations
were produced with reasonable precision, some images may not have precisely delineated bound-
aries between skin and non-skin pixels.

The VT-AAST image database is a collection of color face images developed by researchers at
Virginia Tech and the Arab Academy for Science, Technology, and Marine Transport. Its purpose
is to help researchers evaluate how well automatic face detection algorithms and human skin
segmentation techniques work. The dataset contains four parts: a set of 286 color photographs
with over 1,000 faces captured in various settings, a set of the same images in a different file
format, a set of image files that contain manually segmented human skin regions, and a set of the
same skin regions in grayscale. Anyone can access the database online for free, as long as it’s for
noncommercial use. The dataset contains images of diverse indoor and outdoor scenes captured
by consumer-grade digital cameras from different manufacturers. The original images are in
JPEG format, while the compressed ones are in GIF format with 300x225 pixels per image.
The images have a size range of 3 to 5.2 megapixels and depict a variety of backgrounds, facial
expressions, poses, and orientations, as well as differing luminance conditions and structural
features such as hair, beards, mustaches, and glasses. Moreover, the dataset comprises images
of people of various genders and races.

The manual segmentation method employed in the dataset is used to isolate skin areas in
each image and is expected to aid in the creation of automated skin detection systems. The
dataset is valuable to face detection research since it provides a vast collection of images that
can be used as a benchmark for the development and comparison of face detection and skin
segmentation algorithms, addressing a previously unfulfilled need.

4.2.2 Segmentation in Radiology: VinDr-RibCXR

The VinDr-RibCXR dataset ([73]) is a small, publicly accessible collection of 245 anterior-
posterior chest X-ray images and corresponding masks, created by expert annotators. It is
designed for the segmentation and labeling of the anterior and posterior ribs (as shown in
Figure 4.1). The raw DICOM format images were obtained from the VinDr-CXR dataset, and
all patient information has been removed to maintain privacy. The labeling tool, VinDr Lab,
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Figure 4.1: Examples of images from the VinDr-RibCXR dataset together with ground truth
masks adopted in our experiments.

was used by experts to segment and annotate the 20 individual ribs (L1 to L10 for the left ribs
and R1 to R10 for the right ribs) at the pixel level. The resulting masks were stored in a JSON
file for future use in training instance segmentation models. VinDr-RibCXR is considered the
first publicly available dataset with annotations for individual rib segmentation, covering both
anterior and posterior ribs.

4.2.3 Polyp segmentation (POLYP)

Segmenting polyps from colonoscopy images is a difficult task that involves differentiating
between the low contrast background of the colon and the polyp foreground pixels. Our study
presents results based on a well-known benchmark [44] available on GitHub1, which includes
five datasets for polyp segmentation (Kvasir [50], ColonDB [9], CVC-T [101] and ETIS [92]
and ClinicalDB [10])). The training set is made up of 1450 images, mostly from the largest
dataset (Kvasir) with 900 images and ClinicalDB with 550 images. The remaining images are
used for testing, with 100 from Kvasir, 380 from ColonDB, 60 from CVC-T, 196 from ETIS,
and 62 from ClinicalDB, following common practices in the field. In these datasets, we use
resized images with a size of 352×352.

1 https://github.com/james128333/HarDNet-MSEG
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Kvasir

The KVASIR dataset [50] is a collection of images taken during endoscopic procedures in the
gastrointestinal tract. It was created as part of the medical multimedia challenge hosted by
MediaEval. The images in the dataset were annotated and verified by medical doctors and
include 8 different classes, including three anatomical landmarks, three pathological findings,
and two other classes related to the polyp removal process. In total, the dataset contains 8,000
endoscopic images, with 1,000 images for each class. The data for the study was gathered at the
Vestre Viken Health Trust (VV) in Norway using endoscopic equipment. VV is made up of four
hospitals that provide healthcare to 470,000 individuals. One of these hospitals, the Baerum
Hospital, has a large gastroenterology department and will contribute more data to the dataset
in the future. The images were meticulously labeled by medical experts from both VV and the
Cancer Registry of Norway (CRN). CRN is an independent institution under Oslo University
Hospital Trust that focuses on researching and gaining new knowledge about cancer. It is also
responsible for the national cancer screening programs with the goal of early detection and
prevention of cancer death.

COLON-DB

The COLON-DB dataset 4.2 [9] was created to evaluate the effectiveness of techniques for
segmenting and describing images. It features 15 random cases, each annotated by medical
experts who identified all sequences that contained polyps. The experts then selected a random
sample of 20 frames per sequence, with a size of 500×574 pixels, and cropped the central portion
of the images to exclude any non-functional black borders. They made sure that each of the 20
frames showed a distinct viewpoint of the scene. The dataset only includes frames that contain
a polyp in order to maximize the diversity of the images. It comprises 300 images that showcase
a variety of polyp appearances. You can access the COLON-DB dataset by following this link:
http://mv.cvc.uab.es/projects/colon-qa/cvccolondb.

CVC-T

The CVC-EndoSceneStill dataset (CVC-T)[101] is a benchmark for endoluminal scene object
segmentation created by combining two datasets, CVC-ColonDB and CVC-ClinicDB, and con-
tains 912 images from 44 video sequences taken from 36 patients. The CVC-ColonDB contains
300 images with polyp masks from 13 polyp video sequences, while the CVC-ClinicDB con-
tains 612 images with polyp and background (mucosa and lumen) masks from 31 polyp video
sequences. The annotations have been updated to include lumen, specular highlights, and a void
class for black borders. The dataset is split into three sets: training (60%), validation (20%), and
test (20%) with one patient not appearing in multiple sets. The training set includes 20 patients
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Figure 4.2: The figures (a) to (o) show examples of the various types of polyps present in each
colonoscopy video of the COLON-DB database. The polyps are highlighted by blue contours,
corresponding to video 1 to video 15 respectively. [9]

and 547 frames, the validation set includes 8 patients and 183 frames, and the test set includes
8 patients and 182 frames.

ETIS

The primary dataset [9] is used to construct the ETIS dataset [92], which involves segmenting
each image into five regions. A gastroenterology specialist divides the image into five thumb-
nails, each representing a region of interest (ROI). The first thumbnail (a) depicts the polyp,
while the other four thumbnails (b-e) depict non-polyp regions. The final dataset comprises
1,500 images, with 300 images displaying polyps and 1,200 images displaying non-polyps. To
ensure accuracy and precision, each image is labeled by a specialist. This comprehensive dataset
facilitates the development and training of machine learning models to detect and identify polyps
in medical images, which is crucial for the early diagnosis and treatment of colorectal cancer.

CVC-ClinicDB

CVC-ClinicDB [10] database was developed in partnership with the Hospital Clinic of Barcelona,
Spain. The database comprises 612 polyp images with a size of 576 x 768, which were extracted
from 23 standard colonoscopy video studies using white light. To ensure diversity in polyp
appearance, sequences containing a polyp were extracted from each study, and frames with poor
visualization quality or high levels of patient preparation were excluded. The resulting database
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Figure 4.3: Here is an example of how the learning/testing ETIS database [92] is created from
the primary data in [9].

contains 31 frame sequences, each with an average of 25 frames, and a total of 31 different
polyps.

The authors manually created a ground truth for each frame by defining a mask on the region
covered by the polyp. They also provided ground truth for specular highlights to assess the
impact of image preprocessing on polyp localization results.

4.2.4 Leukocyte segmentation (LEUKO)

The task of leukocyte recognition involves the segmentation of white blood cells from the
background, which is essential for the diagnosis of numerous diseases, including leukemia and
infections. In our experiment, we utilized the LISC database [82], which is freely available
and contains 250 hematological images that were extracted from the peripheral blood of eight
healthy individuals. The database can be accessed at 2. High-resolution images (720x576
pixels) were obtained and manually labeled to segment ten distinct types of leukocytes. In this
study, our focus is on the segmentation performance and not classification. As recommended
by the dataset authors, we employ a 10-fold cross-validation testing protocol where Dice results
are computed at the image level, averaged for each fold, and then across all 10 folds. We use
resized images with dimensions of 513x513 for this dataset.

2 http://users.cecs.anu.edu.au/∼ ℎ𝑟𝑒𝑧𝑎𝑡𝑜 𝑓 𝑖𝑔ℎ𝑖/𝐷𝑎𝑡𝑎/𝐿𝑒𝑢𝑘𝑜𝑐𝑦𝑡𝑒%20𝐷𝑎𝑡𝑎.ℎ𝑡𝑚
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4.2.5 Butterfly identification (BFLY)

The butterfly identification task [103] in our study utilized the public dataset from 3, which has
also been used in prior research.
The Butterfly Identification (BFLY) dataset includes ten distinct butterfly species selected for
their unique features and characteristics. Unlike "top-level" categories such as people, cars, or
bicycles, butterfly species have limited "global" characteristics that can be utilized to differentiate
between them, such as part configurations. To gather data for the ten categories, natural text
descriptions were acquired from the eNature online nature guide.
To ensure comparability with previous studies, we followed the testing protocol recommended
by the dataset authors, which involves a four-fold cross-validation with 624 training images and
208 test images per fold. We resized the images in the dataset to 513×513.

4.2.6 Microorganism identification (EMICRO)

The microorganism identification task in our study utilized the EMicro dataset [119], which is
publicly available at 4 (accessed on 20 April 2022).
EMicro is a subset of the Environmental Microorganism Image Dataset Sixth Version (EMDS-
6), consisting of 1680 images, with 21 distinct classes of EM images, each consisting of 40
images. Thus, there are 840 unique images, and each of them has a corresponding ground
truth (GT) image, bringing the total number of GT images to 840. Several individuals have
significantly contributed to the production of the EMDS-6 dataset, which involved collecting
images between 2012 and 2020. In particular, The EMDS-6 dataset features GT images were
produced by Prof. Dr.-Ing Chen Li, M.E. Bolin Lu, M.E. Xuemin Zhu, and B.E. Huaqian Yuan
of Northeastern University in China. The GT images adhere to defined labeling rules in which
the foreground region containing the microorganism is designated white, while the background
is marked black.
To ensure comparability with the original paper, we divided the dataset such that 37.5% of the
images were allocated to the test set. We resized all images in the dataset to a uniform size of
513×513.

4.3 Experiments

4.3.1 Skin Segmentation

We aim to highlight the significance of deep learning techniques by comparing the results of our
ensemble with those reported in a recent survey [63]. The results of various methods developed

3http://www.josiahwang.com/dataset/leedsbutterfly/
4https://figshare.com/articles/dataset/EMDS-6/17125025/1
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Figure 4.4: The provided samples include images and corresponding masks for polyp segmen-
tation, skin segmentation, leukocyte identification, butterfly recognition, and microorganism
identification [67].

Table 4.2: Performance (Dice=F1-score) in the skin detection problem. Best performance in
bold.

Method PRT MCG UC CMQ SFA HGR SCH VMD
GMM 0.581 0.688 0.615 0.600 0.789 0.658 0.595 0.130
Bayes 0.631 0.694 0.661 0.599 0.760 0.871 0.569 0.252
SPL 0.551 0.621 0.568 0.494 0.700 0.845 0.490 0.321
Cheddad 0.597 0.667 0.649 0.588 0.683 0.767 0.571 0.261
Chen 0.540 0.656 0.598 0.549 0.791 0.732 0.571 0.165
SA1 0.613 0.664 0.567 0.593 0.788 0.768 0.482 0.199
SA2 0.693 0.755 0.663 0.645 0.771 0.806 0.594 0.156
SA3 0.709 0.762 0.625 0.647 0.863 0.877 0.586 0.147
DYC 0.599 0.680 0.663 0.618 0.569 0.616 0.613 0.275
SegNet 0.730 0.813 0.802 0.737 0.889 0.869 0.708 0.328
U-Net 0.787 0.779 0.713 0.686 0.848 0.836 0.671 0.332
DeepLab 0.875 0.879 0.899 0.817 0.939 0.954 0.774 0.628
Vote1 0.717 0.754 0.670 0.666 0.737 0.849 0.625 0.269
Vote2 0.811 0.816 0.81 0.772 0.854 0.949 0.700 0.481
Vote3 0.812 0.841 0.829 0.773 0.902 0.950 0.714 0.423
Vote4 0.879 0.878 0.897 0.819 0.944 0.967 0.776 0.620
Hardnet 0.913 0.880 0.900 0.809 0.951 0.967 0.792 0.717
PVT 0.920 0.888 0.925 0.851 0.951 0.966 0.792 0.709
Ensemble 0.927 0.894 0.932 0.868 0.954 0.971 0.797 0.767

for skin detection are displayed in Table 4.2. The significant improvement in performance
from SegNet to Ensemble is largely due to the adoption of deep learning and attention-based
techniques. As shown in Table 4.2, the Methods Vote𝑥 represent a combination of handcrafted
methods and deep learning approaches reported in [63]. The training for both Hardnet and
PVT was done using the Adam optimization algorithm and with the inclusion of DA1 data
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augmentation.
We tested various combinations of HardNet and PVT for the ensemble, incorporating dif-

ferent data augmentations and loss functions. All of these combinations delivered better results
compared to previous models. We only present the highest performing ensemble method in
this work. The ensemble method involves combining the individual predictions of two HardNet
models trained with SGD, two HardNet models trained with the Adam optimizer, and two PVTs.
Each pair of segmentators has one model trained with DA1 data augmentation and the other
with DA2 data augmentation, and the predictions are combined using the sum rule. The ensem-
ble method exhibits improved performance compared to the individual classifiers employed as
baselines. The results demonstrate that the ensemble method outperforms the single individual
classifiers employed as baselines. This supports the idea that incorporating diverse individual
classifiers, which generalize differently in the training space, can result in an enhancement of
the final performance of the ensemble, as noted in [27]. This improvement can be attained by
varying the type of data augmentation or the types of individual classifiers utilized.

4.3.2 Radiology Segmentation

This section showcases new experiments on semantic segmentation of ribs in chest radiographs,
which are examined as a case study. The training and testing samples used in the experiments
are sourced from VinDr-RibCXR dataset ([73]). The experiments have a threefold objective: (1)
investigating the learning potential of some state-of-the-art models for semantic segmentation,
as well as evaluating the effectiveness of (2) ensembles and (3) data augmentation when dealing
with small datasets like the one used in this study.

For semantic segmentation, we utilize DeepLabV3+ network. In this case study, we investi-
gate ResNet101 ([43]), a popular CNN that utilizes the input block to obtain a residual function.
Specifically, we employ the pre-trained ResNet101 model on the VOC segmentation dataset with
the proposed parameters (to avoid overfitting, the parameters remain identical for all datasets
under examination):

1. initial learning rate = 0.01;

2. number of epochs = 10 (utilizing DA1, which is the simpler data augmentation method.)
or 15 (using DA2, the more sophisticated data augmentation method that generates a larger
training set, resulting in slower convergence);

3. momentum = 0.9;

4. L2 Regularization = 0.005;

5. Learning Rate Drop Period = 5;
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6. Learning Rate Drop Factor = 0.2;

7. Random selection of training images every epoch;

8. Optimizer = SGD (Stochastic Gradient Descent).

This study employs two distinct protocols: the first protocol follows the recommendation
of [73], while the second protocol employs a reduced training set, while the test set remains
unchanged. For greater clarity, the following are the specifics of the protocols:

• TRUE_Full: the training set comprises 196 images, and the remaining 49 images are used
for the test set.

• TRUE_10: the training set is composed of 10 images, and the test set remains the same
as in TRUE_Full, which consists of 49 images.

For the first experiment, we use the TRUE_Full protocol and DA1 as the data augmentation
technique. For each image, its mask M is randomly chosen and then mutated. The resultant
mask is obtained by assigning the upper left region to the positive class and the lower right
region to the negative class:

• M(1:200,1:200) = 1,

• M(301:end,301:end) = 0.

The inspiration for this experiment is based on the discoveries of [115], where it is demonstrated
that popular convolutional networks utilized for image classification can effortlessly adapt to
random labeling of the training data. Our semantic segmentation results support these obser-
vations, as we can see from Figure 4.5, where the loss and accuracy metrics converge despite
training being conducted with random masks. However, the performance on the test set is
notably poor, with a Dice score of 0.386.

Likewise, for the second experiment, we adopt the protocol recommended in the source
paper, but this time we associate each image with its corresponding actual mask. This exper-
iment reveals faster convergence and an improvement in the Dice metric on the test set, which
corresponds to 0.776, in comparison to the first experiment. However, it results in a higher final
loss.

Several methods were tested, which involved different ensembles generated using the sum
rule, where the models were merged by adding their scores. The outcomes of these experiments
are provided in Table 4.3.

1. RN101 is a distinctive model that incorporates Resnet101 as the backbone and DeepLabV3+
as the architecture.
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Figure 4.5: Convergence with random masks.

Figure 4.6: Convergence with actual masks.
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Model LOSS DA TRUE_10 TRUE_Full

RN101 𝐿GD3.1 DA1 0.590 0.776
RN101 𝐿GD3.1 DA2 0.711 0.826

ERN101(10) 𝐿GD3.1 DA1 0.598 0.779
ERN101(10) 𝐿GD3.1 DA2 0.719 0.831
ELoss101(10) Many Loss DA1 0.654 0.785
ELoss101(10) Many Loss DA2 0.729 0.852

ELoss101_2(10) Many Loss DA1 0.656 0.800
ELoss101_2(10) Many Loss DA2 0.731 0.862
ELossMix(10) Many Loss DA1/DA2 0.719 0.833

ELossMix_2(10) Many Loss DA1/DA2 0.719 0.846
Unet [73] 0.765

Feature Pyramid Network [73] 0.829
Unet++ [73] 0.834

Table 4.3: Outcomes achieved with various ensembles.

2. ERN101(𝑁) is a group of 𝑁 RN101 models combined as an ensemble.

3. ELoss101(10) is made up of 10 RN101 models, each utilizing DA1 as the data augmenta-
tion technique, but with a distinct loss function. Specifically, the ensemble is formulated
as:

2 × 𝐿𝐺𝐷 + 2 × 𝐿𝑇 + 2 × 𝐶𝑜𝑚𝑏1 + 2 × 𝐶𝑜𝑚𝑏2 + 2 × 𝐶𝑜𝑚𝑏3

For example, the term 2 × 𝐿𝐺𝐷 indicates two RN101 networks created by utilizing Gen-
eralized Dice Loss.

4. ELossMix(10) is an ensemble comprising 10 models created by utilizing the same five
loss functions as ELoss101(10). However, this time, for each model associated with a
specific loss function, two training sets are computed, one utilizing DA1 and the other
employing DA2.

5. ELoss101_2(10) is similar to ELoss101, with the sole difference being the utilization of
LDiceBES instead of 𝐿𝑇 .

6. ELossMix_2(10) is comparable to ELoss101, except for the fact that LDiceBES is em-
ployed instead of 𝐿𝑇 .

The objective here is to ascertain the effectiveness of ensembles when applied to small
datasets, such as the one used in our study.

The outcomes presented in Table 4.3 indicate that the quality of segmentation tasks is sig-
nificantly influenced by the training dataset. In our tests, we observed that enlarging the training
sample size led to a more reliable and impartial model.

46



CHAPTER 4. RESULTS

Substituting 𝐿𝑇 with LDiceBES in ELoss101_2(10) and ELossMix_2(10) enhanced the out-
comes, as shown in [68]. In addition, using the DA2 data augmentation technique resulted in a
performance improvement over the DA1 method. This is especially noticeable when comparing
the outcomes of ELoss101(10) with those of ELossMix(10). In various scenarios, including
polyp segmentation, skin segmentation, leukocyte identification, butterfly and micro-organism
identification, as reported in [68], ELossMix(10) outperformed ELoss101(10). One potential
explanation for this difference in performance could be the relatively small size of the VinDr-
RibCXR dataset used in this study. As part of our future research, we intend to explore this
aspect further by utilizing our models for a variety of applications.
Upon comparing our models with those presented in [73] - specifically U-Net, Feature Pyra-
mid Network (FPN), and U-Net++ [73] - we can see that ELoss1012(10) combined with DA2
achieved the highest score for both the reduced and full sample sizes.

4.3.3 Other Segmentation Applications

Given the objective of this thesis to investigate techniques for enhancing the diversity of en-
sembles, we present the outcomes of several baseline classifiers and ensembles using various
network architectures in Table 4.4. All of these ensembles were combined with the DA1 data
augmentation technique, as outlined in section 3.3.1. All of the tests presented were conducted
solely utilizing the Dice loss. Additionally, due to space constraints, we only provide the average
performance value for the polyp dataset among the group of datasets. Every ensemble is created
by combining N models (N=1 indicates a standalone model), which are distinguished only by
the variation in the randomization of the training process:

1. RN18 is a single DeepLabV3+ segmentator, which incorporates Resnet18 as the backbone
(pretrained in ImageNet);

2. ERN18(N) is a collection of N RN18 networks, all pretrained in ImageNet, which are
combined as an ensemble;

3. RN50 is a solitary DeepLabV3+ segmentator that uses Resnet50 as the backbone (pre-
trained in ImageNet);

4. ERN50(N) is a group of N RN50 networks combined as an ensemble;

5. RN101, as outlined in the previous section (4.3.3);

6. ERN101(N), as outlined in the previous section (4.3.3);

The outcomes presented in Table 4.4 reveal that even though the overall performance of the
models increases when transitioning from the standalone variant to an ensemble, the gain is not
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Polyp Leuko BFly EMicro Avg
RN18 0.806 0.897 0.960 0.908 0.887
RN50 0.802 0.895 0.968 0.909 0.889
RN101 0.808 0.915 0.976 0.918 0.898
ERN18 0.821 0.913 0.963 0.913 0.895
ERN50 0.807 0.897 0.969 0.918 0.893
ERN101 0.834 0.925 0.978 0.919 0.907

Table 4.4: The Dice score achieved by the suggested ensembles in the five benchmark datasets
is presented in the table, with the last column (AVG) showing the mean performance across all
the datasets.

as significant as anticipated, implying that the individual techniques are already quite robust. It
is possible that this result is related to the design of the DeepLabV3+ network. The network’s
internal modules employ atrous convolutions either in series or in parallel to capture multi-scale
context by utilizing multiple atrous rates. The proposed solution, intended to address the issue
of segmenting objects at varying scales, mimics an ensemble approach by combining activations
obtained at different levels of the encoder. As a result, the segmentation obtained is very stable.
The most effective approach is to employ ResNet101 as the backbone.

Ablation studies

The initial ablation study pertains to assessing various loss functions to enhance the diver-
sity of the models and augment the ensemble’s performance. Table 4.5 displays the results of
RN101 utilizing the various tested/proposed loss functions and compares them to the dice loss
as the baseline, and DA1 as the data augmentation method. To save space, we only present the
average performance of the polyp and skin datasets among the dataset set. Next, the stand-alone
networks are merged into ensembles, always employing the sum rule:

1. ELoss101(10) as detailed in the above section 4.3.3.

2. ELossMix(10) as detailed in the above section 4.3.3.

3. ELossLarge(10) is a collection of ten networks. The networks trained using (LGD, LT,
Comb1, Comb2, Comb3) employ DA2 as the augmented training set, whereas the net-
works trained utilizing the novel loss functions assessed in this thesis (L𝑆𝑇𝑅, L𝐵𝑜𝑢𝑛𝑑𝐸𝑥𝑝𝑆,
L𝐷𝑖𝑐𝑒𝐵𝐸𝑆, L𝑀𝑆, L𝐶𝑆) are combined with DA1.

The results shown in Table 4.5 demonstrate that the newly proposed loss functions achieve
performance similar to the Dice loss function and can be viewed as a valuable starting point
for creating an ensemble. The findings indicate that combining networks trained using diverse
loss functions is a successful approach for creating an ensemble, as evidenced by the superior
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LOSS Polyp Skin Leuko BFly EMicro Avg
RN101 LGD3.1 0.808 0.871 0.915 0.976 0.918 0.898
RN101 LSTR3.20 0.809 0.869 0.930 0.964 0.901 0.895
RN101 LBoundExpS3.21 0.803 0.874 0.928 0.978 0.901 0.897
RN101 LDiceBES3.24 0.819 0.869 0.922 0.969 0.904 0.897
RN101 LMS 0.813 0.860 0.920 0.972 0.920 0.897
RN101 LCS3.27 0.823 0.873 0.917 0.967 0.911 0.898

ERN101 LGD3.1 0.834 0.878 0.925 0.978 0.919 0.907
ELoss101 Many loss 0.842 0.880 0.925 0.980 0.921 0.910
ELossMix Many loss 0.851 0.883 0.936 0.983 0.924 0.915

ELossLarge Many loss 0.848 0.883 0.944 0.984 0.922 0.916

Table 4.5: The table presents the performance (Dice) of some stand-alone methods and ensem-
bles in the five benchmark datasets, with variations in the loss function. The last column, AVG,
represents the average performance.

performance of ELoss101 and ELossLarge in comparison to ERN101(10). This outcome
becomes even more apparent when the approach is employed for dissimilar problems.

It’s important not to underestimate the importance of modifying the training set, as demon-
strated by the successful combination of various data augmentations and loss functions in the
ensemble labeled as ELossMix. It’s worth noting that ELossMix and ELossLarge show compa-
rable performance.

The second ablation study focuses on assessing various architectures, and Table 4.6 presents
the results of evaluating the performance of the previously mentioned approaches in conjunction
with different data augmentation techniques. The labels "DA1" and "DA2" correspond to the
techniques outlined in section 3.3. "DA1/2" signifies that the ensemble was created by combining
networks trained using both DA1 and DA2. The training of HardNet-MSEG involves the use
of two distinct optimizers, namely SGD (referred to as H_S) and Adam (referred to as H_A).
The ensemble labeled FH is formed by combining multiple instances of HardNet-MSEG that
were trained using different optimizers. The original paper that introduced PVT recommends
training the model using the AdamW optimizer, which is the approach adopted for this study.
The loss function used for training both HarDNet-MSEG and PVT is identical to that described
in their respective original papers.

Table 4.6 presents additional ensembles:

1. PVT(2) refers to an ensemble created by combining two instances of PVT. The "sum rule"
approach is employed to combine PVT trained with DA1 and PVT trained with DA2;

2. FH(2) ensemble is composed by two instances of H_S (one trained with DA1 and the other
with DA2) and two instances of H_A (one trained with DA1 and the other with DA2).
This are combined using the sum rule approach;
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DA Polyp Leuko BFly EMicro Avg
ELossMix(10) DA1/2 0.851 0.936 0.983 0.924 0.924

H_A DA1 0.840 0.923 0.977 0.914 0.914
H_A DA2 0.854 0.945 0.982 0.912 0.923
H_S DA1 0.816 0.889 0.969 0.894 0.892
H_S DA2 0.847 0.917 0.976 0.901 0.910
FH DA1 0.859 0.913 0.980 0.915 0.917

FH(2) DA1/2 0.862 0.934 0.982 0.916 0.924
PVT DA1 0.854 0.954 0.975 0.920 0.926
PVT DA2 0.855 0.954 0.984 0.919 0.928

PVT(2) DA1/2 0.855 0.957 0.984 0.922 0.930
FH(2)+2×PVT(2) DA1/2 0.875 0.955 0.985 0.924 0.935
E10_FH2_PVT2 DA1/2 0.875 0.953 0.985 0.926 0.935

Table 4.6: The performance (measured by Dice score) of individual methods and ensembles
across five benchmark datasets is reported.

3. FH(2)+2xPVT(2) is formed by applying the weighted sum rule to the FH(2) and PVT(2)
ensembles. The weight assigned to PVT(2) is such that its contribution to the ensemble is
equivalent to that of FH(2), taking into account the fact that FH(2) includes four networks
while PVT(2) comprises only two.

4. E10_FH2_PVT2 = ELossMix(10)+(10/4)×FH(2)+(10/2)×PVT(2), is created by applying
the weighted sum rule to the ELossMix(10), FH(2), and PVT(2) ensembles. The weights
assigned to each ensemble member ensure that they contribute equally to the overall
ensemble, noting that ELossMix(10) is formed by applying the sum rule to 10 instances
of DeepLabV3+.

Based on the results presented in Table 4.6, the following conclusions can be made:

1. PVT(2), FH(2), and ElossMix(10) demonstrate comparable performance, with the excep-
tion of the Leuko dataset, where PVT(2) outperforms both FH(2) and ElossMix(10);

2. PVT(2) yields only a marginal improvement over the performance of the standalone PVT
model. Similarly, the performance gain achieved by FH(2) over the best performing
standalone HardNet model (i.e., H_A combined with DA2) is also modest;

3. The optimal performance is achieved by combining multiple architectures, with the
"FH(2)+2×PVT(2)" ensemble striking the ideal balance between complexity and per-
formance.

Comparison with the literature
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Method Kvasir ClinicalDB ColonDB
IoU Dice IoU Dice IoU Dice

FH(2)+2×PVT(2) 0.874 0.920 0.894 0.937 0.751 0.826
ensemble in [69] 0.871 0.917 0.886 0.931 0.697 0.769

HarDNet-MSEG [44] 0.857 0.912 0.882 0.932 0.66 0.731
PraNet [44] 0.84 0.898 0.849 0.899 0.64 0.709

SFA[44] 0.611 0.723 0.607 0.700 0.347 0.469
U-Net++ [44] 0.743 0.821 0.729 0.794 0.41 0.483

U-Net [44] 0.746 0.818 0.755 0.823 0.444 0.512
SETR [122] 0.854 0.911 0.885 0.934 0.69 0.773

TransUnet [18] 0.857 0.913 0.887 0.935 0.699 0.781
TransFuse [117] 0.870 0.920 0.897 0.942 0.706 0.781
UACANet [55] 0.859 0.912 0.88 0.926 0.678 0.751
SANet [107] 0.847 0.904 0.859 0.916 0.670 0.753
MSNet [120] 0.862 0.907 0.879 0.921 0.678 0.755

PVT [32] 0.864 0.917 0.889 0.937 0.727 0.808
SwinE-Net [76] 0.870 0.920 0.892 0.938 0.725 0.804

AMNet [94] 0.865 0.912 0.888 0.936 0.690 0.762

Table 4.7: The performance of various models (measured by Dice and IoU scores) on the Kvasir,
ClinicalDB, and ColonDB datasets for polyp segmentation is reported.

To facilitate comparison with other methods in the literature, we provide a comprehensive
evaluation of our top-performing ensembles across the various datasets for polyp segmentation.
The results are presented in full in Table 4.7 and Table 4.8.

The creators of the LEUKO dataset reported an IoU score of 0.842, while the ensemble
FH(2)+2xPVT(2) achieves a higher IoU of 0.916.

The authors of the EMicro dataset reported a Dice score of 0.884, while the ensemble
FH(2)+2xPVT(2) achieves a higher Dice score of 0.924.

Several approaches have been evaluated for the BFLY dataset (refer to [39]), and the two
most effective methods reported in prior research are:

1. According to the findings presented in [39], an IoU score of 0.950 was achieved;

2. According to the findings presented in [97], an IoU score of 0.945 was achieved.

The proposed ensemble of this thesis, FH(2)+2xPVT(2), surpasses the previous state-of-the-
art methods, achieving an IoU score of 0.970.

Undoubtedly, the ensemble enhances the performance of the best performing standalone
network (i.e., PVT combined with DA2). However, a notable drawback of this approach is
that the optimal ensemble consists of six distinct networks, which entails six times the RAM
requirements and six times the inference time compared to a single network. Moreover, despite
the use of an ensemble, the inference time remains quite fast, and with the current GPU
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Method ETIS CVC−T Average
IoU Dice IoU Dice IoU Dice

FH(2)+2×PVT(2) 0.717 0.787 0.842 0.904 0.816 0.875
ensemble in [69] 0.663 0.740 0.829 0.901 0.790 0.852

HarDNet-MSEG [44] 0.613 0.677 0.821 0.887 0.767 0.828
PraNet [44] 0.567 0.628 0.797 0.871 0.739 0.801

SFA[44] 0.217 0.297 0.329 0.467 0.422 0.531
U-Net++ [44] 0.344 0.401 0.624 0.707 0.570 0.641

U-Net [44] 0.335 0.398 0.627 0.710 0.581 0.652
SETR [122] 0.646 0.726 0.814 0.889 0.778 0.847

TransUnet [18] 0.66 0.731 0.824 0.893 0.785 0.851
TransFuse [117] 0.663 0.737 0.826 0.894 0.792 0.855
UACANet [55] 0.678 0.751 0.849 0.910 0.789 0.850
SANet [107] 0.654 0.750 0.815 0.888 0.769 0.842
MSNet [120] 0.664 0.719 0.807 0.869 0.778 0.834

PVT [32] 0.706 0.787 0.833 0.900 0.804 0.869
SwinE-Net [76] 0.687 0.758 0.842 0.906 0.803 0.865

AMNet [94] 0.679 0.756 - - - -

Table 4.8: The Dice and IoU scores for polyp segmentation on the ETIS and CVC-T datasets are
reported, and the overall average across all five datasets (Kvasir, ClinicalDB, ColonDB, ETIS,
and CVC-T) is also presented.

architectures, it does not pose a challenge in most cases. While it could be a concern in certain
applications, such as autonomous driving, it is not a significant issue in the context of the
segmentation problems addressed in this thesis. For instance, a solitary network of HarDNet-
MSEG can achieve a processing speed of 86.7 images per second when executed on a GeForce
RTX 2080 Ti GPU.

We carried out an extra experiment to identify the best possible set of models to include in
the final ensemble. To accomplish this, we set aside a validation set and focused our analysis
solely on the two problem domains that comprised multiple test sets, namely polyp and skin
segmentation. To validate our results for the polyp segmentation problem, we utilized the Kvasir
test set, and for the skin segmentation problem, we utilized the ECU test set. To identify the
most effective subset of networks in terms of the Dice performance metric on the validation
set, we employed sequential forward floating selection (SFFS) [79]. The performance of both
ensembles did not meet our expectations, and in both datasets, our top-performing approach
(i.e., FH(2) + 2xPVT(2)) outperformed them. We have encountered an overfitting issue in both
instances where the test images vary greatly from one another. Thus, to ensure the selection of
a dependable network, a more extensive validation set is necessary, along with a wider range of
diverse variations that can potentially occur in an image.

In conclusion, we conduct Q-statistic tests to further verify our concept of constructing
ensembles. To demonstrate the level of diversity among the networks in the ensemble, Yule’s
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Q-statistic [58] was employed. The Q-statistic ranges from −1 to 1 after computation, with a
value of zero indicating statistically independent classifiers.

Table 4.9: Average Q-statistic.

Ensembles Average Q-Statistic
ERN101(10) 0.975

ELOSS101(10) 0.952
ELOSSMIX(10) 0.921

FH(2) + 2 × PVT(2) 0.925
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Chapter 5

Conclusion

In computer vision, the task of classifying each pixel in an image is referred to as semantic
segmentation.
Semantic segmentation is a crucial task in various fields, such as autonomous vehicles, where it
enables the identification of surrounding objects, and in medical diagnosis, where it enhances the
early detection of potentially harmful pathologies and reduces the risk of severe consequences.
In this study, we achieve state-of-the-art performance by proposing various segmentation ap-
proach ensembles. Our evaluation includes:

1. Experimenting with different loss functions;

2. Implementing various data augmentation techniques;

3. Utilizing different network topologies, including convolutional neural networks and trans-
formers (such as DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers);

The ensemble is ultimately aggregated using the sum rule.
We evaluated our proposed ensemble on six benchmark datasets, which include polyp detection,
skin detection, leukocyte recognition, environmental microorganism detection, butterfly recog-
nition, and radiology segmentation, and achieved state-of-the-art results.
Our experiments on rib semantic segmentation also revealed that deep networks for semantic
segmentation, as observed in [115] for image classification, have the ability to learn random
masks quite well.
The fact that deep networks still hold some level of ambiguity is supported by this evidence.
Furthermore, there exists a positive correlation between sample size and segmentation perfor-
mance.
In our future work, we plan to reduce the complexity of ensembles through methods such as
pruning, quantization, low-ranking factorization, and distillation.
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