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Facoltà di Scienze Matematiche Fisiche e Naturali

Dipartimento di Fisica e Astronomia ‘Galileo Galilei’

TESI DI LAUREA MAGISTRALE IN FISICA TEORICA

Spatial distribution of species in

ecosystems using statistical

mechanics techniques

Relatore: Prof. A. Maritan

Co-relatore: Dr. S. Suweis

Laureando: Adorisio Matteo





Dedicated to my Parents.





Contents

Introduction 1

1 Spatial structure and patterns in macroecology 5

1.1 Spatial structure and patterns . . . . . . . . . . . . . . . . . . . 5

1.2 Measuring biodiversity: spatially explicit indicators . . . . . . . 7

1.2.1 Species Area Relationship . . . . . . . . . . . . . . . . . 8

1.2.2 Endemic Area Relationship . . . . . . . . . . . . . . . . 11

1.2.3 Species turnover and two point correlation function . . . 11

1.3 Understanding spatial structure: different approaches . . . . . . 12

1.3.1 Deterministic and stochastic dynamical models . . . . . 12

1.3.2 Maximum entropy approach . . . . . . . . . . . . . . . . 15

1.3.3 Spatial point processes . . . . . . . . . . . . . . . . . . . 15

2 Statistical mechanics and information theory 19

2.1 Maximum entropy approach: a brief overview . . . . . . . . . . 20

2.2 Maximum entropy probabilities . . . . . . . . . . . . . . . . . . 22

2.3 The inverse problem . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A spatial maximum entropy model 29

3.1 MaxEnt at works: the case of a tropical forest . . . . . . . . . . 29

3.1.1 The spatial correlation function . . . . . . . . . . . . . . 31

3.1.2 The spatially explicit maximum entropy model . . . . . . 31

3.2 The inferred couplings . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Patterns from our model: results and discussion . . . . . . . . . 36

3.3.1 A preliminary result: the relation between Mα and hα in
the case Jα = 0 . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Correlation function C(r) . . . . . . . . . . . . . . . . . . 40

3.3.3 The species area relationship (SAR) . . . . . . . . . . . . 43

3.3.4 The endemic area relationship . . . . . . . . . . . . . . . 47

4 Conclusion and perspectives 53

4.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



A Simulation techniques 57

A.1 The Wang Landau algorithm . . . . . . . . . . . . . . . . . . . . 57

A.1.1 How to calculate the density of state . . . . . . . . . . . 58

A.2 The Wang-Landau scheme . . . . . . . . . . . . . . . . . . . . . 59

A.2.1 Ergodicity and detailed balance . . . . . . . . . . . . . . 61

B Details of various calculations 63

B.1 The maximum entropy solution . . . . . . . . . . . . . . . . . . 63

B.2 Convex optimization: the gradient descent algorithm . . . . . . 65







Introduction

Probably nobody took him literally when Boltzmann, almost a century ago,

talking about statistical mechanics anticipated that

The wide perspectives opening up if we think of applying this science

to the statistics of living beings, human society, sociology and so on,

instead of only to mechanical bodies, can here only be hinted at in a

few words.

Since Boltzmann’s statement statistical mechanics emerged as a natural theory

that can investigate the properties of a system with an enormous amount of

interacting entities . The scope of the formalism is almost as unlimited as the

range of the natural phenomena and in principle it is applicable to matter in

any state whatsoever. The success of statistical mechanics in revealing universal

properties of inanimate matter is considered one of the most significant result.

The term universal property is used in this context to emphasize the remark-

able property of those systems, which seems physically unrelated, but share,

somewhat unexpectedly, some non-trivial large scale properties. Somehow the

extension of the statistical mechanics tools to investigate the living matter was

a natural pathway driven by three main aspects.

One is related to the concept of complex system. Loosely speaking, a complex1

system can be describe as a system where the combination “many entities +

interactions” can drive it (e.g. ecosystems, the brain, financial markets) to

develop macroscopical properties not directly deducible from the rules that

“move” the single entities at some microscopical scale. For an outstanding ex-

ample (not to mention the brain) we can think about ants colonies and their

capacity to solve complex tasks [41].

The second is linked to a sort of ubiquity of certain “regularities” in a variety

1Although the term complexity as been mathematically quantified in the case of ecological
community networks [1, 32, 51] its use is sometime abused.
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of systems considered as complex. For example power law like distributions of

meaningful system related quantities emerge in a variety of situations. For ex-

ample the patch-size distribution of the vegetation in arid ecosystems [27, 45],

the distribution of time intervals between a large earthquake and the next

one [34] or the metabolic rates with the mass of an organism [7] follow a power

law distribution. Reference [37] represents an elementary and nicely written

review on power laws in various fields.

The last is linked to the quantity of data regarding lots of complex systems that

in the last years started to grow at an incredible pace allowing the scientist to

test their models. From the brief description above it seems that statistical me-

chanics is naturally built to explain collective behaviours, regardless the details

of the entities and the kind of interactions, in the combination “many entities

+ interactions”.

We will see that statistical mechanics and statistical inference are closely re-

lated [26]. This allow to take advantage of all the tools that have been developed

to solve problems in statistical mechanics and use them in inference problems.

Progressively, these methods have been applied to a priori unrelated disciplines

and a prototypical example is the fact that the same class of models describing

magnetic materials can be successfully applied to understand neural networks

even if atoms and neurons have few things in common at the respective micro-

scopic scale.

In general the three cornerstones of the natural sciences are: reproducible ex-

periments, theory and simulations. In some sense, in the case of ecosystems and

in particular the ones at large spatial scales that represents the central argu-

ment of this work, the role of experiments is missing because we have to face the

fact that we have the system here and now. Furthremore, natural ecosystems

are characterized by striking diversity of forms and functions. Their complexity

derives by the tremendous number of mechanisms acting simultaneously onto

the systems. After that observation the study of this kind of systems can seem

hopeless and the methods of investigation can appear system dependent but the

data collected in different part of our globe and at different scales revealed that

ecosystems share common features that are system independent (an example

can be the fact that there are signals that the micro- and macrorganisms spatial

biodiversity are similarly organised [14]). In this direction, the great importance

of microecology resides in the fact that the use of bacteria, algae and protozoa

guarantees the reproducibility of the experiments. In fact, these species can

be easily maintained in laboratory and have rapid generation times. On the

contrary the macroecology suffers the lack of reproducibility of the experiments

2



due to the large spatiotemporal scales involved. The experiments can lead to

the understanding and a possible unification of patterns that are observed in

ecological systems at different spatial scales providing significant insights on

their determinants thus linking the realm of micro and macro ecology.

With this big picture in mind we will focus on a general analysis of a maximum

entropy model that at the end will be applied to the case study of a rainforest

community to understand the spatial organisation of the community. Statistical

mechanics will be present with two main roles: as a theory that can face the

investigation of “many entities + interactions” and as an inference tool.

The chapters are organised as follows:

• Chapter 1

We briefly explain the importance of considering explicit spatial models

and we describe what kind of patterns is natural to investigate when

facing the problem of characterising an ecosystem. We introduce the

concept of β-diversity and briefly summarise some approaches that are

used to investigate ecosystems.

• Chapter 2

In this chapter the role of statistical mechanics emerges as an inference

tool starting from the knowledge of partial information about the system.

The central idea that will emerge is that if data are sufficient and the

inference algorithm is good enough, some of the actual features of the

system will eventually be detected.

• Chapter 3

The tools introduced in the previous chapter will be applied to a case

study to develop a spatial model maximum entropy with the aim to de-

scribe the structure of a rainforest ecosystem by means of the patterns

introduced in Chapter 1. We will use the numerical algorithm explained in

Appendix A and the theoretical tools exposed in detail in Appendix B.

• Chapter 4

We summarise here the results and we compare our model to other ap-

proaches to understand the range of applicability and the future direc-

tions.
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Chapter 1

Spatial structure and patterns in

macroecology

Here we give a brief overview of the kind of patterns that can be studied in

a quantitative approach to macroecology. The concepts of species area rela-

tionship, endemic area relationship and the analogue of a two point correlation

function are introduced.

1.1 Spatial structure and patterns

The massive presence of detectable and sometimes repeated patterns in Nature

stimulated the scientific community to develop theoretical models that try to

explain this regularity. In particular, spatial ecology is a specific branch of

ecology concerned with the identification of spatial patterns and their relation-

ships to ecological phenomena. Organisms in nature are discrete entities that

interact only within their immediate neighbourhood and therefore are neither

distributed uniformly nor at random. They tend instead to form characteristic

spatial patterns like patchy structures. This spatial variance in the environment

creates diversity in communities of organisms, as well as it affects the commu-

nity stability, dynamics and pattern generation. These spatial effects have been

however ignored for a long time by most ecologists due to the difficulties related

to their modelling.
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Spatial structure in macroecology

From a theoretical point of view, in fact, the extension of non spatial models

to spatial ones has brought to the increase of the number of observed phenom-

ena [50].

Some early research was done on the spatial distribution of plants but this was

predominantly from a statistical point of view. Little consideration was given

to model the distributions observed, or to predict how spatial patterns could

arise.

The idea that the presence of a spatial component in a model could lead to the

formation of spatial patterns was first proposed by Alan Turing [52]. Turing

showed that a system of two chemical species could exhibit spatially uniform

steady states which were stable in the absence of diffusion processes but which

were driven unstable by diffusion. If one think diffusion as a stabilizing mech-

anism, this result is quite counterintuitive and shows that complex phenomena

can arise as the result of the interplay between fundamental units.

Turing’s work has been then generalized to describe the generation of biological

patterns using relatively simple set of interactions [35]

Once pattern are detected and described, we can seek to discover the determi-

nants of pattern, and the mechanisms that generate and maintain those pat-

terns. Anyway, by understanding the mechanism one can predict properties

and test them. In fact, since “correlation doesn’t mean causation” we must go

beyond the analysis of statistical correlations between measured quantities. A

comprehension of the underlining processes is therefore crucial to clarify the

evolution of the species and their ecosystem.

At a glance an ecosystem may appear as very complex and a complete un-

derstanding of it is challenging. Indeed, an ecosystem is composed by various

species of plants and animals with different biological characteristics and in-

teracting in different ways (e.g. competition, symbiosis and predation). The

existence of macro-ecological patterns suggests that there are some more gen-

eral principles behind particular biological processes. Recent studies have, in

fact, documented spatial patterns of microbial diversity that are qualitatively

similar to those observed for plants and animals [14].

In the last years neutral models of biodiversity have been introduced [23].

6



Spatial structure in macroecology

Hubbell has given an extensive description of a unified neutral1 theory of biodi-

versity relevant for the description of taxons where trophically similar2 species

such as trees in forests are competing for resources. In this kind of dynamic the

system obeys a zero-sum rule, i.e. every death is rapidly followed by the birth

of an individual belonging to the same or to a different species such that the

total number of individuals is conserved.

This is at variance with the so-called “ecological niche theories” for which the

fitness of the species to an environment is the relevant feature for the dy-

namic of the system. The neutral models provides a “null model” to which

actual data can be compared and the influence of other mechanisms can be

assessed. Neutral models achieved good results at reproducing empirically ob-

served macroscopic patterns in communities such as tropical forests [53, 5].

Recently, McGill [33] proposed a minimal set of rules that different neutral

models share and with which different communities pattern can be explained.

Two of this assumptions are also useful to justify our model (see Chapter 3)

and they are:

• Intraspecific clustering

• Individuals of different species are placed without regard to individuals

of other species

The assertion that species are placed independently is also in apparent con-

tradiction to the vast literature in ecology devoted to the study of species in-

teractions. However, evidence for the importance of species interactions stems

mostly from species-poor communities (see [55] and references therein).

1.2 Measuring biodiversity: spatially explicit

indicators

One step forward in finding a rationale behind the overwhelming complexity of

an ecosystem can be achieved by introducing quantities that can be measured.

1One of the major assumption of Hubbell is the biological neutrality of all the species in
the ecosystem. In few words, all the species are equal competitors with the same per capita
chances of dying and reproducing.

2living organisms exist within webs of interactions with other living creatures , the most
important of which involve eating or being eaten (trophic interactions). We can say that two
species are in the same trophic level when for example they compete for the same resources.
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Spatial structure in macroecology

The ever increasing amount of data of real ecosystems is useful to test theo-

ries and no progress can be made until aspects of the community have been

quantified. Without these data there is nothing to explain. Field biologists

have defined lots of indices and quantities trying to capture some universal and

recurrent property about biodiversity. Because of the difficulty of conducting

controlled, replicated experiments at large scales, theory plays an important

role in investigating these concepts.

Due to the complexity of systems under examination it is not easy to find a

single and meaningful quantity describing the biodiversity of the system. At a

first stage it can be defined as the number of coexisting species in the ecosystem

in it but this definition lacks of spatial significance. In fact, as we mentioned

above, spatial structure is generaly a fundamental feature characterizing an

ecosystem. During the last years two different concepts appeared among others:

the α-diversity and β-diversity. The first one is a measure of the biodiversity in

a single place considered perfectly uniform (e.g. number of species). The latter

instead is spatial explicit measure of the biodiversity.

To quantify the biodiversity of a system we will focus on the class of β-diversity

indicators. In fact, we will consider two kind of quantities that have spatial

meaning.

One is the relation between the number of species per sampled area, or the

species area relation (SAR), and the other is the endemic area relationship

(EAR) that express the mean number of species completely contained in an area

(endemic in the area). Another function that will be quantitatively introduced

in chapter 3 is the two-point correlation function of species occupancy. This

correlation function can give important insights on the spatial organization and

persistence of species.

1.2.1 Species Area Relationship

Using the words of MacArthur [30] “To do science is to search for repeated pat-

terns, not simply to accumulate facts”. So the effort of the scientific community

in developing theories about the way ecosystems or communities are organized,

orbits around the attempt to discover robust patterns that can be quantified

within systems and compared across them.

Hereafter we give a brief overview on the species area relation that will be

investigated in this work with the techniques described in Chapter 2.
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Spatial structure in macroecology

Figure 1.1: Example of the triphasic behaviour of the SAR curve. It is
concave at local scales, approximately linear at regional scales, and finally
convex at continental scales.

The SAR is defined as the average number of species S present in an area a

of the ecosystem under study. This curve measures the species richness of the

ecosystem and also the spatial variations of biodiversity. Since the early works

of Arrehnius (e.g. [2]) this quantity has been investigated both theoretically and

experimentally and the most commonly used form in literature is a power-law

function like:

S = caz (1.1)

Despite the seminal work of Gould [13], focused on the importance of the c

coefficient, all the attention has been devoted to the exponent z. In fact, the

behaviour of z has been experimentally investigated in relation to different

variables [42]. The exponent z of the power law is in some sense related to bio-

diversity. If the number of individuals grows linearly with the sampled area [30],

z = 1 describes the case of maximum biodiversity: the numbers of individuals

and the number of species grows isometrically.

In real ecosystems z < 1 and the growth of the number of species with the

area is sub-linear and the typical values of z range from 0.1 to 0.4. When

observations are extended to very short and very large spatial scales, the SAR

presents a triphasic behaviour as shown in Fig. 1.1.
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The SAR under the hypothesis of random distribution of individuals

In this section we present one of the first models proposed for the SAR [9] based

on the hypothesis of random distributed individuals.

Let’s assume to have, in a given study area A, S species with abundances

{Ni, i = 1, 2, ..., S}. If the Ni individuals of species i are randomly distributed

in A, the probability of finding a particular individual of a given species in a

sub area a is a/A. Therefore, the number of individuals, ni, of a given species

in the area a follows a binomial distribution:

p(ni|a) =

(
Ni

ni

)( a
A

)ni (
1− a

A

)Ni−ni
(1.2)

so the probability of absence (ni = 0) is p(0|a) = (1 − a/A)Ni and the one of

presence of at least one individual of the species i is 1 − (1 − a/A)Ni . At this

point we can give the expressione for the SAR in the case of random distributed

species:

SAR(a) = S −
S∑
i=1

(
1− a

A

)Ni
(1.3)

which depends only on the abundaces Ni. It is thus possible study how the

shape of the SAR changes as a function of the different species-abundace dis-

tribution [9, 21].

When we consider a = A the probability p(0|a) = (1 − a/A)Ni exactly zero

meaning that we have probability one to find a particular species. In this sense

the random placement model is well defined for finite finite system and it can

represents a good null model.

Anyway, in nature individuals of most species are rarely randomly distributed

through space. Departures from randomness result in aggregated species with

the effect that the probability of presence of the species in a sampling area

a, should be less than that under random distribution. In Chapter 3 we will

propose a random placement model based only on presence/absence data and

not on species abundances but we will see this effect in our model where we

consider an intraspecific interaction.
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1.2.2 Endemic Area Relationship

The SAR curve gives information on the number of species present in a given

area A. In this case a species, to be present, must have at least one individual

inside the sampled area. A second quantity has been introduced in order to

measure the number of species completely contained in the area A. We refer to it

as the endemic area relation (EAR). Even if the EAR was less studied than SAR

its use is fundamental to understand the behaviour of ecosystems under external

disturbances such as habitat destruction. In principle one can think that the

EAR and the SAR can be directly related but as we will show lately, only in

a very special and biologically unrealistic case, when all species are randomly

and independently distributed in space, is it possible to derive the EAR from

the SAR [19]. Although species area relationship has traditionally been applied

to estimate extinction rates following habitat loss, it is now established that

applying EARs can yield very different and perhaps more accurate predictions

The EAR under random distribution of individuals

Under the hypothesis of randomly placed individuals it is easy to derive an

expression for the EAR as well. Using the definition of the EAR given in

section 1.2.2 we can thus consider the probability p(Ni|a) of finding all the

individuals Ni of the species i in the sub area a. All the species are independent

and thus the EAR under the random placement of individuals is:

EAR(a) =
S∑
i

( a
A

)Ni (1.4)

In Chapter 3 the EAR will be investigated and an expression for the random

placement EAR in the case of presence absence framework will be derived and

then compared to the same quantity for an interacting model.

1.2.3 Species turnover and two point correlation func-

tion

The spatial dispersion of individuals of species is central in ecological theory.

Patchiness, or the degree to which individuals are aggregated or dispersed, is

crucial to understand how a species uses resources, how it is used as a resource,

11



Spatial structure in macroecology

and to understand its reproductive biology. As the distance between sites in-

creases, conditions of growth become more different, and it will become more

likely that species found at one site do not occur at another. Thus, species

composition will change as one moves across a region, a phenomenon called

“turnover”. It can be quantified with a 2-point correlation function for the

species occurrence and it was proposed as a meaningful tool to acquire in-

formation about what controls diversity in ecological communities [10]. Since

in this work we will work on a lattice we give an expression for this 2-point

correlation function in Chapter 3.

1.3 Understanding spatial structure: different

approaches

Different approaches have been proposed to build reliable ecological models all

aimed to understand ecosystems structure, in particular to explain the SAR

S-shaped curve. Before presenting our own approach (fully described in Chap-

ter 3) and in order to understand how it differentiates from other commonly

used methods, we give here a brief review of the state-of-the-art on ecosystem

modelling.

1.3.1 Deterministic and stochastic dynamical models

Let’s start considering one of the first spatially implicit model proposed by

Levins to describe patch dynamics. It considers only the trade off between

colonization and extinction. Levins made the simplifying assumption that all

patches are of the same size and that migration is global, equally likely among

any pair of populations and patches. The set of local populations inhabiting

the network of patches is called the metapopulation3, the size of which is given

by the fraction of occupied patches, denoted by p. Anyway, the purpose of

theoretical models is to isolate, for a theoretical study, some feature of real

populations that happens to be of interest and not to account for as many real

details as possible.

3In a nutshell the metapopulation approach consider a spatially structured community as-
sembled into local patches linked by migration of organisms that has effect on local communi-
ties. This vision is different from the classical approach where in a population all individuals
are equally likely to interact
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Spatial structure in macroecology

In this purpose, Levins considering only the trade-off between colonization and

extinction proposed a metapopulation dynamic described by the equation:

dp

dt
= cp(1− p)− ep (1.5)

where e is the rate of extinction and c rate of colonization4. This system presents

a global stable equilibrium:

p∗ = 1− e

c
(1.6)

that for e/c < 1 imply that the metapopulation is predicted to persist in the

habitat. Even if it is a logistic equation Levins’ model was considered some-

thing new in population ecology and a first step towards further quantitative

research in this field. Actually, in the literature regarding metapopulation mod-

els the Levins’ model is often considered a mean field model since it is based on

the assumptions that all patches are equally connected to other patches. The

mean-field assumption is a good approximation when the physical environment

is homogeneous. As conditions depart from those above, the mean-field ap-

proach becomes less and less appropriate. For example a lack of mixing can

generate clumped distribution around individuals that deviate from the spatial

averages. Heterogeneity in local environmental conditions becomes especially

important if organisms only interact over short distances. Short range interac-

tions have been identified by numerous theoretical models as a key mechanism

able to maintain biodiversity [28, 8]. So the mean field approximation become

weak when local populations have clumped distributions in space, either for

environmental or dynamical reasons. In fact, in this case different populations

are not likely to be equally connected.

In 1997, a work by Hanski et al. [16] in the field of metapopulation dynamics

generalised this extinction-colonization dynamics in the case of an heteroge-

neous habitat to give some predictions for the species area relationship. In this

case a pool of S species subdivided into a set of R patches is dynamically de-

scribed by a generalization of equation (1.5) for the probability pij(t) of species

i being present on patch j at time t:

4This is the well known logistic equation ẋ = αx(1− x/K) with α = c− e and “carrying
capacity” K = 1− e/c
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dpij
dt

= ci(t)(1− pij)− eijpij (1.7)

where ci(t) ∝
∑

j pij is the colonization rate and eij the extinction rate for the

species i in the island j.

Assuming particular expression for ci(t) and eij and studying the equilibrium

probability p∗ij =
c∗iKij

1+c∗iKij
the model predicts z values ranging from 0.1 to 0.455.

Although the SAR is considered one of the most ubiquitous and robust pattern

observed in different ecosystems at different scale and latitude, one should bear

in mind that historically this power-law relation has been chosen to fit field data

and its choice was not grounded on biological or dynamical considerations.

Beyond deterministic models, such as the one described by equation (1.7), we

mentioned before the development of the so called “neutral models” [23] that

gave a firm theoretical ground for observed biodiversity patterns.

The generalization of neutral models to describe spatial systems has been per-

formed both analytically and numerically [58, 12, 43, 38]. Durrett and Levin [12]

proposed the voter model with a speciation parameter equal for all the species
6 as a natural benchmark where to investigate the importance of spatial inter-

actions in ecological systems.

Zillio et al. [58] using a spatially explicit master equation approach found an

analytical expression for a two-point spatial correlation function thus giving

this model an analytical predicting power for this spatial pattern. From the

work of Zillio et al. one can also understand the importance of neutral models

as null models. In fact, they also generalized the model to include the Janzen-

Connell effect7 to better reproduce the spatial patterns. As a result the voter

model shows the triphasic behaviour for the SAR [38] and a dependence of z,

the exponent of the power-law function, from the speciation rate.

5In the case of ci(t) ∝
∑
j pij(t)Kij with Kij the carrying capacity of the species i on

patch j and choosing eij ∝ K−1ij (from empirical reasoning) one is able to find p∗ij . Then a
species area relantionship can be obtained as

∑
i p
∗
ij .

6The voter model is a stochastic model. First defined by Liggett [29] has been thoroughly
studied without speciation. The main results are that in a finite lattice, or in an infinite
lattice with dimensionality d ≤ 2 the system develop a stable state of monodominance (in
our case we can think that a given species prevails on the other).

7Janzen and Connell postulated that there is an increased mortality rate of seeds and
seedlings near adults that arises from the presence of pests that are host specific, i.e., special-
ized to that type of tree, and observational evidence supports this conclusion. This results
in a negative density-dependent effect at short distance.
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1.3.2 Maximum entropy approach

More recently, approaches based on information theory and in particular the

method of maximum entropy8 have also been proposed [4, 18] and in the work

described here we will use this maximum entropy formalism endowing it with

a spatial explicit component.

A key issue in a maximum entropy approach is to identify a group of mean

quantities that represent a constraint for the system under examination. After

that one can build a probability distribution that has these constraints as mo-

ments of the distribution. Even if the approach in [18] is not spatial explicit,

the authors assume three quantities as fundamental to built a maximum en-

tropy model to predict spatial pattern such as the SAR. All the ecology in this

approach is in the selected constraints and these quantities are the total area of

the ecosystem, total number of individuals and the total (sum over individuals)

metabolic rate. Coupling this parameters to the maximum entropy method the

authors are claim that they able to describe the SAR and EAR.

1.3.3 Spatial point processes

Other classical approaches are represented by the study of spatial point pro-

cesses. This method focuses on understanding quantities like the SAR in terms

of the underlying spatial abundance distribution [21, 15] rather than predict-

ing the SAR from an explicit dynamical model. These processes are built to

reproduce the behaviour of individuals (sessile organisms) structured in spatial

clusters. Specifically they are built using simple rules: the centers of clusters

are distributed in space with a constant density independent of each other.

Each cluster is populated by a random number of individuals (drawn from a

given distribution) and the distance of each individual from the center of the

cluster is drawn from a given distribution. For example a central spatial point

process is the homogeneous spatial Poisson point process. To built it imagine

to subdivide a given area into sub areas and assign to them a set of n points

with abundance drawn from a Poisson distribution with a certain mean. For

each sub-region generate n couple of uniform number and use them as the co-

ordinates of the n points. The Poisson spatial process represents a benchmark

model and it serves for the construction of more complicated models. In Sec-

tion 1.2.1 we presented the random placement model as a prototypical finite

8We will describe the method in the following Chapters
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spatial point process. The Poisson process mentioned before can be considered

as a version of random placement model for infinitely large areas and in fact

the probability to find a particular species in the largest area becomes one only

for an infinite area9.

Using the Poisson spatial process Grilli et al. [15] can reproduce the triphasic

behaviour of the SAR with the assumption of neutrality and independence of

all the species.

Without the approximation of the infinite landscape assumption other mod-

els [57] has been considered to describe the clustering of species in finite land-

scapes. In [3] the authors use a wide class of spatial stochastic point processes to

investigate the spatial structure and in particular the downscaling10 of species

in an ecosystem.

These point processes are formulated in continuous space and each point is

placed regardless of any resolution used to subdivide the region. Superimpos-

ing a grid with a varying unit cell size on the study region, one can see how a

fixed pattern of spatial locations of individuals looks under different resolutions.

Another “geometrical” approach [17], with the assumption that the spatial dis-

tribution of species is self-similar and fractal found a confirmation from field

data on birds in Czech Republic [49] and claimed that a power-law SAR can

be generated considering a community with a fractal spatial distribution.

r u x z }
Summary of the chapter

Without claiming to be complete we presented macroecological patterns with

spatial significance. For the species area relationship (SAR), the most studied

pattern, we sketched some method of investigation currently used. The endemic

area relationship (EAR) and a two point correlation function to understand

structure and spatial persistence of ecological communities were also mentioned.

All these patterns will be presented again in Chapter 3 were we quantitatively

analyse their behaviour using the framework of a maximum entropy model.

9The probability to find n out of N individuals in an area a for a given species is Ppois(n) =

exp(−µ)µ
n

n! with µ = N
A a = ρa.Thus the probability to find at least one individual is p =

1− e−ρa. Then the probability to find at least one individual for a = A is p = 1− e−N (less
than one). We conclude that in general this model can be used for all species densities much
greater than A−1

10The word downscaling refers to the process of inferring the structure of the ecosystem at
finer spatial scales starting from information at wider scale
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In the next Chapter we describe the maximum entropy method as a general

method of inference with which we justify our approach.

17





Chapter 2

Statistical mechanics and

information theory

“It is remarkable that a science

which began with the

consideration of games of chance

should have become the most

important object of human

knowledge.”

Pierre-Simon Laplace

“The first reaction of nearly everybody on hearing of a mysterious principle

called maximum entropy with a seemingly magical power of extracting more in-

formation from incomplete data than they contain, is disbelief.

The second reaction on sensing that there does seem to be something in it, is

puzzlement. How is it possible that a quantity belonging to thermodynamics

could escape from that setting and metamorphose itself into a principle of rea-

soning able to resolve logical ambiguities in situations that has nothing to do

with thermodynamics?”.

The words above are the ones of Jaynes about the maximum entropy method,

an inference framework already present at the very beginning of statistical me-

chanics formalization.

In this Chapter we introduce the theoretical framework giving a brief description

of the maximum entropy method and the rationale behind it. We can consider
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this a key chapter because it presents the techniques that we use throughout

our work.

2.1 Maximum entropy approach: a brief overview

An useful explanation of how to gain knowledge about a system characterised

by a huge number of degrees of freedom starting from a minimal set of infor-

mation, from empirical measurements, is given by the work of Jaynes [24, 26].

In Jaynes’ works statistical physics and information theory walk side by side

and the former is regarded as a way to draw inferences from partial information

about the system under examination. Hereafter to explain the method of max-

imum entropy we will briefly describe a classical example and then generalize

to give a more formal explanation.

To base our problem on a practical ground suppose that a dice, with the usual

six faces, has been rolled a very large number of times; if we only know that

the average result is m̄ = 4.5, we can ask what probability should we assign

for the various outcomes 1 to 6. We call pi the probability for the outcome i

(i = 1. . . . , 6).

At this point we only own the information about the average of the results and

since:

m̄ =
∑
i

ipi = 4.5 (2.1)

we can rule out the uniform distribution (pi = 1
6

for all i) Jaynes has sug-

gested that in this type of situation we should make the assignment by using

the principle of maximum entropy that is to choose probability assignment for

each configuration that maximize the function:

S[p] = S(p1, · · · , p6) = −
∑
i

pi ln pi (2.2)

subjected to the given constraints. In the case of pi = 0 for some i the value

of the corresponding summand 0 ln 0 is taken to be 0 consistent with the limit:

lim
pi→0

pi ln pi = 0.

If we knew nothing but
∑

i pi = 1 the result will be the uniform pdf pi =

1/6 ∀i. Apart from the mean value of the outcomes we have always the

constrain on the normalization of the probability:
∑

i pi = 1.
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Maximizing S[p] under this constraints we get1:

pi =
1

Z(λ)
eλi with Z(λ) =

∑
i

eλi (2.3)

Due to the form of pi it’s easy to see that the theoretical mean value of the

outcomes computed with p can be expressed as:

〈m〉 =
∂ lnZ(λ)

∂λ
(2.4)

from which we can impose 〈m〉 = m̄:

m̄ =
∂ lnZ(λ)

∂λ
(2.5)

Solving this equation (numerically) for λ we obtain a probability like the one

shown in fig. ??:

Figure 2.1: Probability for the unfair dice with
∑

i ipi = 4.5. The straight
line represents the pi = 1/6∀i

This example is trivial but it shows the power of maximum entropy principle

as a inference method and its data based starting point. It is reasonable to ask

why the function (2.2) should be particular favoured as a selection criterion.

Concluding this qualitative overview we can state that a criterion of maximum

1for the details see appendix B
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entropy based on the functional (2.2) is highly consistent and any other choice of

“information measure” will lead to inconsistencies (e.g. negative probabilities2).

In fact Shore and Johnson (see [40] and references therein) views the maximiza-

tion of entropy as a fundamental requirement for ensuring that inferences drawn

from data satisfy basic self-consistency requirements of probabilities.

As Shannon wrote “the real justification of these definitions,however, reside in

their implication” and using the words of Jaynes “many years of use of the

maximum entropy principle has not revealed any inconsistency; and of course

we do not believe that one will ever be found.”

To introduce the maximum entropy principle in a more general form we can

think to a typical situation where the state of our system can be specified by a

variable ~σ, the “micro state” of the system.

While statistical mechanics methods successfully describe macroscopic systems

in terms of thermodynamic variables directly related to the microscopic be-

haviour, it is not immediately clear how to use its principles to build models of

systems that are “not in thermal equilibrium”. In other words it is not clear

how to choose the right variables resembling the thermodynamic ones that can

be manipulated using statistical mechanics techniques.

2.2 Maximum entropy probabilities

As mentioned before a typical information on a micro state of a system can

be described by a vector ~σ of N (binary) components leading to W = 2N

different states. To state the problem once and for all let us denote an observed

realization of the system by σ̂. Our goal, is to find a probability distribution

p~σ which avoids bias and reproduces given empirical constraints. Here, the

empirical constraint can be thought as a function φ(σ̂) = φ̂. The great advance

provided by information theory lies in the discovery that there is a unique,

unambiguous functional S({p~σ}) that quantifies the “amount of uncertainty”

of a system:

S({p~σ}) ≡ −
∑
~σ

p~σ ln p~σ (2.6)

2A mere fact is that the singularity of the logarithm in (2.6) ensure pi ≥ 0
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The fact that Jaynes treated statistical mechanics as an “exercise” in infer-

ential calculus somehow bridges statistical mechanics (in particular the works

of Gibbs) and information theory in the particular case of equal probabilities

(p~σ = 1/W,∀i) that substituted into equation (2.6) resembles the well known

expression:

S = kB lnW (2.7)

where kB is the Boltzmann’s constant and W the number of microscopical state

of the system.

Actually, Gibbs imagined an ensemble of all the possible configurations of a

system of N particles with each configuration being a potential microstate i of

the entire system3.

Therefore the macrostate of a system is described by a probability p~σ to be

in the state ~σ. Gibbs characterized the preferred macrostate as the one that

maximizes the entropy given some constraints. If Clausius stated that the

entropy of a system tends to increase Gibbs founded his work on the stronger

assumption that entropy must increase up to the maximum value permitted by

whatever constraints (conservation of energy, volume molecules numbers, etc.)

are imposed.

The dice example we proposed above made use of a Lagrange multiplier λ

to optimize the entropy subjected to a constrain. In fact the same method

of Lagrange multipliers can be used to obtain the Gibbs distribution for the

canonical ensemble in the case we fix the average energy of the system:

Ē =
∑
~σ

E~σp~σ

Using β as a Lagrange multiplier we end up with the expression for pi that

characterizes the canonical ensemble4:

p~σ =
1

Z
e−βE~σ

3introducing the ensemble Gibbs shifted a little the viewpoint. In fact he generalized
the work of Boltzmann, that in fact considered only non interacting systems, to systems of
interacting particles (for a crystal clear explanation see [25])

4β is directly linked to the temperature T of the system at equilibrium via the thermody-
namic relation 1

T = ∂S/∂Ē
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In that case each of the microstate ~σ has a fixed number N of particles.

Obviously the analysis can be extended to include other constraints thus gen-

erating other distributions. For example the grand canonical ensemble is de-

scribed by:

p~σ =
1

Z
e−βE~σ−γN~σ

obtained with the additional constrain
∑

~σ p~σN~σ = N̂ (in this case γ is directly

related to the chemical potential µ). Each microstate ~σ is characterized by E~σ

and N~σ.

In other words Gibbs’ use of the second law of thermodynamic to predict equi-

librium states was virtually identical in rationale with the maximum entropy

inference method that we are going to describe. The experimental confirma-

tion of Gibbs’ thermodynamic predictions and the success of maximum entropy

predictions outside thermodynamics are just two illustrations of the power of

that theory.

Anyway, Gibbs classical statistical mechanics predictions also turned to be in-

correct (e.g. specific heats) and this was as important as the right predictions.

In fact in inductive inference and in particular in the maximum entropy theory

if the predictions do not agree with the experimental data we have not “’failed’

but instead discovered something new.

Some of the predictions could be wrong and those instances will open the door

to new basic knowledge. Therefore, entropy and maximum entropy principle

can be used as a tool to learn.

An information-based view of the rationale behind Jaynes’ work is to recog-

nize that we are concerned with the prediction of reproducible macroscopic

behaviour from a description of the microscale trough probability distribution

of the configurations.

To set up the mathematical framework we can think to start from a set of M

measured quantities Φ̂ = {φ̂µ}Mµ=1 the experimental or empirical values of the

set Φ = {φµ(~σ)}Mµ=1.

We also introduce M parameters g = {g1, · · · , gM} that will serve as Lagrange

multipliers. We want to find the probability distribution p(~σ|g) such that the

mean quantities calculated with that p(~σ|g) reproduce the measured ones:

〈φµ(~σ)〉g ≡
∑
{~σ}

p(~σ|g)φµ(~σ) = φ̂µ (2.8)

At this point, in order to satisfy the fact that p(~σ|g) must be normalized, we
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can enlarge the set of multipliers and constraints adding a parameter g0 linked

to the constrain
∑
{~σ} p(~σ|g) = 1 equivalent to take φ0(~σ) = 1 = φ̂0.

Using p instead of p(~σ|g) for readability, we want to find a maximum for the

functional:

H[p] = S[p]−
M∑
µ=0

gµ(〈φµ(~σ)〉g − φ̂µ) (2.9)

notice that 〈φµ(~σ)〉g is a functional of p as well (see eq. (2.8)).

As we show in the appendix B this operation returns a probability distribution:

p(~σ|g) = exp

(
M∑
µ=0

gµφ
µ(~σ)

)
(2.10)

Since the partition function Z in statistical mechanics ensures the normalization

of the probability distribution we can rewrite equation (2.10) by eliminating g0

as:

p(~σ|g) =
1

Z(g)
exp

(∑
µ>0

gµφ
µ(~σ)

)
(2.11)

where Z(g) =
∑
{~σ} exp

(∑
µ>0 gµφ

µ(~σ)
)

. It is useful to remember that from

Z(g) we can obtain mean quantities as:

〈φµ(~σ)〉g =
∂ lnZ(g)

∂gµ
(2.12)

Concluding this section we can identify g0 = − lnZ(g) and βH(~σ) = −
∑

µ>0 gµφ
µ(~σ)

as the Hamiltonian of the system.

The analogy with statistical mechanics is complete if we remember that the

reduced free energy F (g) = − lnZ(g).

The maximum entropy principle presented above is often invoked in order to

justify the model (2.10) as the simplest one (i.e., with higher entropy) which

is able to explain a given set of empirical averages. However, why choose the

probability that maximizes the entropy? In Gibbs case, an equilibrium argu-

ment could be used and citing Boltzmann “in most cases the initial state of

a system will be a very unlikely state. From this state the system will steadily

evolve towards more likely states until it has finally reached the most likely state,

i.e. the state of thermal equilibrium”.
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Anyway, what about cases of general inference? As Shannon described, if en-

tropy is thought of as a measure of information, then one should choose the

probability that includes the least amount of information, just the information

given. In other words, other probabilities could be chosen that satisfy the con-

straints, but the probability that maximizes the entropy is the least informative

or as someone say, the most honest (based only on the data and not on other

assumptions). In effect, on the space of probability distributions a “general-

ization” of the entropy, the Kullback-Liebler divergence can be thought as a

“metric” (it lacks the property of symmetry, see Appendix B). Thus with this

tool we can measure distances between probability distribution.

Even though we ended up with a probability distribution that is but the Gibbs’

distribution valid at thermodynamical equilibrium, Jaynes saw the Gibbs’ for-

malism of equilibrium statistical mechanics as a general form of statistical in-

ference that could be extended to non-equilibrium systems, as well as to other

problems requiring prediction from insufficient data. Indeed, a general non-

equilibrium “state” is not a single stationary state as in the equilibrium case

but rather a “path” through state space.

2.3 The inverse problem: from Φ̂ to g

Typically the problem considered by statistical mechanics is to find the ob-

servables associated with a given statistical model described by a probability

distribution. Usually this is called the direct problem.

In our work we faced the opposite task, the inverse problem. As described in

chapter 3, given a vector Φ̂ of empirical averages we had to find a coupling vec-

tor g∗ such that the maximum entropy probability (2.10) was able to reproduce

Φ̂ when g = g∗.

The method used in this work is presented in Appendix B Section B.2 where

we show that to find g∗ we can optimize the function

H(g) = lnZ(g)−
∑
µ>0

φ̂µgµ (2.13)

The choice of the function above can be justified using information theory

where the Kullback-Liebler divergence (see Appendix B) can be considered a
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“distance” on the space of probability distributions. Thinking in this terms we

will use the Kullback-Liebler divergence to find the coupling vector g∗ that min-

imise the “distance” between the true probability distribution and the inferred

one.

r u x z }
Summary of the chapter

We presented maximum entropy method as a general inference technique. Its

characteristics places it at a crossroads between several disciplines such as sta-

tistical physics, information theory, quantitative biology [44, 48] and theoretical

ecology [4, 18]. Based on some quantitative knowledge about the system we

showed how it is possible to choose a probability distribution for the configura-

tions of the system subjected to macroscopic constraints.

In the next Chapter we will describe how we developed and tested our model

starting from this inference method.
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Chapter 3

Inferring ecosystem organization

with a spatial maximum entropy

model

In this chapter we explain how using the techniques briefly presented in Chapter

2 we are able to investigate the emergent organization of a tropical forest. We

try to describe observed pattern counting only on mean occurrence and pairwise

correlations extracted from presence/absence data. We will analyse two cases.

Firstly we focus on the whole ecosystem (considering all the species). Then,

since it is difficult to include rare species in census counts, having a theory or

a method that reliably predicts useful patterns is of enormous value. Thus we

will analyse the case of rare species as well.

3.1 MaxEnt at works: the case of a tropical

forest

Characterizing an ecosystem assembly can be done using different information.

The number of individuals, or the abundance, of a species in an area is a funda-

mental ecological parameter (for example it is crucial when making management

and conservation decisions).

However, unless the scale is very fine or localized (e.g., in an accessible habitat or

permanent forest plot devoted to scientific investigation), abundance informa-

tion is not available. At coarse or regional scales for many species, information
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on commonness and rarity is, at best, limited to a map of their presence or

absence.

Although not as rich in information as the species abundances data where the

number of individuals for each species is known, presence/absence data are cru-

cial to the understanding of ecosystem functioning. Presence absence data store

a “low level” information that anyway is sufficient to investigate biodiversity

indicators such as the species-area relation, the endemic area relation and the

correlation function which can reveal important information of the underlying

community structure.

From abundance data to presence absence data

We focus our analysis on spatial data coming from the tropical rainforest of

Barro Colorado Island (BCI), Panama. The censused data represent position

of all the individuals in an area of 50 hectares (500 × 1000 m2) containing

about 350000 individuals subdivided in about S = 300 species. For the BCI

ecosytem we own information on the abundaces of species but in order to test

our approach we transform abundaces in presence/absence dataPresence/ab-

sence data has been obtained dividing the surveyed area in N = 256 cells and

assigned at each of the cell a variable σαi for i ∈ {1, · · · , N} and α ∈ {1, · · · , S}
such that σαi = 1 when species α is present at the cell i and σαi = 0 if it is

absent. Applying this procedure we end up with lattice like configurations ~σα,

one for each species (see Figure 3.1).

Figure 3.1: From spatial data to presence absence data
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3.1.1 The spatial correlation function

We subdivided the area in N plots and we defined the occupancy two point

correlation function (hereafter correlation function) on the lattice. Given two

sites i and j at distance rij (measured in units of nearest neighbours sites) we

define the correlation function for the species α as:

Cα(r) =

∑
i 6=j

σαi σ
α
j δ(r − rij)∑

i 6=j
δ(r − rij)

(3.1)

where δ is the Kronecker delta. Averaging over the species we define the corre-

lation function for the entire ecosystem made of S species:

C(r) =
1

S

∑
α

Cα(r) (3.2)

The results about the correlation function will be described in Section 3.3.2

where we will compare our model to the one of randomly distributed species.

3.1.2 The spatially explicit maximum entropy model

We define the configuration of the system (in our case the BCI) as {~σα}Sα=1

with σαi ∈ {0, 1}. Following the analysis presented in Chapter 2 we can build

our maximum entropy model.

First of all we identify the constraints Φ̂α. We assume that all the fundamen-

tal information of the spatial organization of a species α are enclosed in two

constraints, its occurrence1 M̂α defined as:

φ̂1
α = M̂α =

∑
i

σ̂αi (3.3)

and its nearest neighbours correlation function2 Êα defined as:

φ̂2
α = Êα =

∑
〈i,j〉

σ̂αi σ̂
α
j (3.4)

1Given that we have defined the problem on a lattice the occurrence of species must not
be confused with its abundance. Actually, increasing the resolution the occurrence tends to
the abundance

2The normalised nearest neighbour correlation function (r = 1) is defined as Cα1 =
1
Nb

∑
〈i,j〉 σ

α
i σ

α
j where Nb is the number of nearest neighbours pairs
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where the notation
∑
〈i,j〉 means summation over nearest neighbours sites. This

quantity is directly linked to equation (3.1) with r = 1.

We consider only pairwise interactions neglecting all higher order interactions.

Obviously the dominance of pairwise interactions on the higher order ones is not

automatically satisfied and this aspect as been discussed [46, 47] (for maximum

entropy models applied to study the properties of neural activity). To recall

the notation of Chapter 2 we identify:

Φ̂α = {φ̂1
α, φ̂

2
α} = {M̂α, Êα} (3.5)

In addition we introduce a simplification concerning the interaction between dif-

ferent species: we consider the species as non interacting deciding to describe

only the intraspecific interaction.

At a first glance this can be regarded as a really strong approximation but as

shown in Volkov et al. [54] for the BCI forest the effects of interspecific pairwise

interactions are relatively weak compared with intraspecific ones. Volkov et al.

using a maximum entropy approach and a dynamical approach described by

stochastic birth/death equations, also suggests that higher order interactions

involving three species are negligible. Furthermore, the few studies that ex-

tensively estimate interaction strength suggest that distributions of interaction

strength tend to be skewed toward few strong and many weak interactions [56].

At this point we have all the ingredients that are necessary to build our max-

imum entropy model. Thus assuming that the community patterns are only

linked to the constraints imposed by Φ̂α we have to find the maximum entropy

distribution that is least biased by the information not taken into account.

Let us define:

Φα = {φ1
α, φ

2
α} =

{∑
i

σαi ,
∑
〈i,j〉

σαi σ
α
j

}
(3.6)

and the conjugated couplings (the Lagrange multipliers of Chapter 2):

gα = {hα, Jα} (3.7)

Following the prescription of the principle of maximum entropy we end up with:

p(~σα|gα) =
1

Z(gα)
exp

Jα∑
〈i,j〉

σαi σ
α
j + hα

∑
i

σαi

 (3.8)
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Fixing the nearest neighbour two-point correlation and the mean species occur-

rence we obtain the standard Ising model3.

Due to the fact that we do not have interspecific interactions (individuals inter-

act only with conspecifics), our probability distribution P({~σα}) for the system

of S species factorizes out such as:

P({~σα}) =
S∏
α=1

p(~σα|gα) (3.9)

Using a physical expression we can define a sort of “ecosystem” reduced Hamil-

tonian as:

βH({~σα}) = −
∑
α

Jα∑
〈i,j〉

σαi σ
α
j + hα

∑
i

σαi

 (3.10)

For ecosystems, hα may be interpreted as a uniform parameter capturing envi-

ronmental effects that may favour the presence of the species α (hα > 0) or its

absence (hα < 0).

Instead, Jα is an intraspecific coupling and Jα > 0 favours clustering of the

species whereas Jα < 0 suppresses it (see fig. 3.3 for an example). This two

behaviours have a biological explanation and in particular the case of Jα < 0

can be related to the Janzen-Connell effect. In fact according to this effect in

tropical rainforests there exist pathogens that specifically target a tree species

making the areas directly surrounding the parent tree (the seed producing tree)

inhospitable for the survival of seedlings. Since the pathogens are found com-

monly around the parent tree those seedlings that are farthest from their par-

ents have a competitive advantage and the resulting effect can be that the given

species is over-dispersed on the region.

3.2 The inferred couplings

With the maximum entropy probability (3.8) we evaluate the mean values

〈Mα〉g and 〈Eα〉g (evaluation of mean values is explained in Appendix A).

Imposing:

〈Mα〉g = M̂α and 〈Eα〉g = Êα (3.11)

3actually the Ising model with couplings J̄ and h̄ is usually expressed with binary variables
si = {−1, 1}. The change of variable si = 2σi − 1 links the two formalisms and one obtain
the relation between the couplings (h, J) and (h̄, J̄): J̄ = J/4 and h̄ = h/2 + J .
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we are able to find the couglings g = (h, J) (see Appendix B Section B.2). The

results are presented and commented in Figures 3.4 - 3.2.

The analysis comprehends three sets of inferred couplings:

• Random Placement Model

It is equivalent to a non interacting case (Jα = 0). The value of hαrpm is

calculated knowing only Mα as explained in Section 3.3.1

• Interacting model

Both hα and Jα are inferred knowing M̂α and Êα calculated from the

empirical configurations σ̂αi

• Scrambled data

In this case hαrnd and Jαrnd are inferred knowing M̂α (the same as before)

and Êα
rnd the nearest neighbours correlation function of random a config-

uration obtained by reshuffling the σαi among the various sites

Using this analysis we compare the results for the three different situations

listed above with the aim to understand the “degree of randomness” for the

BCI ecosystem. Then with the inferred coupling of the interacting model we

will investigate the correlation function the SAR and the EAR considering all

the species and only the rarest ones4.

3.2.1 Highlights

The aim of the previous analysis was to reveal the “degree of randomness”

of the BCI system analysed at scale imposed by setting N = 256. Despite

the few cases with Jα < 0 it is evident from Figure 3.2 that the J ’s of the

interacting model are positive and significantly different from the Jrnd’s of the

random spatial distribution. This suggests that the species in the ecosystem

are clustered. Figure 3.3 shows an example of two species with quite the same

M̂α but opposite Jα values.

The additional analysis for the hrnd’s and Jrnd’s was conducted to show that

the case of the random placement model (Jα = 0 ∀α) is equivalent to spa-

tially uncorrelated species. In fact, the hrnd’s are equals to the hrpm’s of the

random placement model for all the values of M̂α (Figure 3.4). On the other

4Here we consider rare a species that is present in a fraction from to of the sites
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Figure 3.2: Histograms of the couplings J’s obtained for the interacting
model (orange) and for scrambled data (blue). The inset shows the scatter
plot between the two set of J’s. Each circle has a dimension proportional to
M̂α. As expected the Jrnd’s inferred for scrambled data have a pronounced
pick around zero. The positive mean of the J ’s relative to BCI configuration
reveals that species tend to form clustered structures. The two dashed line
represent the mean of the two histograms.

hand the Jrnd’s (Figure 3.2) have almost zero mean and a small variance (i.e.

σ2 ≈ 0.007). Instead, the comparison between the h’s of the interacting

model and the hrpm of the random placement model shows significant differ-

ences between the two sets (Figure 3.5). For completeness Figure 3.6 shows the

comparison between the h’s and the hrpm’s.

Another evidence of the non randomness of the ecosystem organisation is shown

in Figure 3.7 where we compare the nearest neighbours correlation for a random

configuration to the one of the BCI system at fixed M̂α. The fact that Ê is

greater than Êrnd signals the tendency of species to form clusters. This charac-

teristic is also shown in Figure 3.8 where the total “energy” of the interacting

case is greater then the one of the random placement. Anyway, the top right

part of this plot shows equality between the two models. These are the cases

of both negative Jα and hα (Jrnd and hrnd) and small values of Ê and M̂ (Êrnd

and M̂).
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Figure 3.3: An example of two species with opposite J values. Case a)
the lattice configuration (left) and the real spatial distribution (right) of a
species with Jα < 0 b) the same as in case a) for a species with Jα > 0. In
the case a) M̂α = 14 and in the case b) M̂α = 15.

3.3 Patterns from our model: results and dis-

cussion

In the previous section we have presented the maximum entropy model used in

this work. In this section we use it to explain how we can investigate biodiver-

sity indicators introduced in Chapter 1.

One of the main goal of this work is to investigated the structure of the ecosys-

tem in terms of β-diversity (i.e. correlation function, SAR and EAR), using

only the knowledge of M̂α and Êα for each of the species.
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Figure 3.4: Histograms of the h’s obtained (see section 3.3.1) with the
random placement model (blue) and with scrambled data (orange). The
inset shows the scatter plot between the two set of h’s with the straight line
representing equality. Each circle as a dimension representing the value of
M̂α. The inset shows that as expected h’s values for the random placement
model and for scrambled data are highly correlated (the darker area of the
histogram is the overlapping region). The dashed lines represent the mean
of the histograms and in this case are practically equal

3.3.1 A preliminary result: the relation between Mα and

hα in the case Jα = 0

To build our model we made the approximation of non interacting species. In

this brief section we explain the simplest model in which intraspecific interaction

is suppressed as well. We call it the random placement model and we use it

as a basis of comparison for our results. The random placement model was

introduced for the first time by Coleman [9] to study the SAR under different

hypothesis on the species abundances distribution. Our framework does not

require species abundances and the random placement model we use is based

on the species “abundances” measured by the number of occupied sites.

When intraspecific interactions are absent, J = 0 (the case of infinite tempera-

ture for the Ising model), presence or absence in a particular site is indipendent
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Figure 3.5: Histograms of the h’s inferred in the case of interacting model
(orange) and random placement model (blue). The inset shows the scatter
plot between the two sets of h’s with the solid line representing equality.
The size of the circles in the inset is proportional to M̂α. The dashed line
in the histograms represent the mean values of the h’s. The outliers for the
interacting model in the range 15 < h < 20 correspond to cases of high M̂α

and Êα.

from the other sites.

In this case the probability p(~σ|g) introduced in section 3.1 takes the form:

p(~σα, hα) =
1

Z(hα)
exp

(
hα
∑
i

σαi

)
(3.12)

and the partition function Z:

Z(hα) =
∑
{~σ}

exp

(
hα
∑
i

σαi

)
=
(

1 + ehα
)N

(3.13)

thus,

〈M(~σα)〉hα =
∂ lnZ(hα)

∂hα
(3.14)
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Figure 3.6: The information summarised by this figure is practically the
same of the figure 3.5 due to the fact that hrnd’s and hrpm’s are practically
equal (see fig. 3.4).

Imposing the condition that averages must reproduce observed ones means:

〈M(~σα)〉hα = N
1

1 + e−hα
= M̂α (3.15)

Defining m̂α = M̂α

N
the previous equation fixes hα to:

hα = ln

(
m̂α

1− m̂α

)
. (3.16)

Thus imposing only the constrain to reproduce the mean occurrence M̂α is

equivalent to fix the coupling hα. This results we’ll be useful in the following

when we will analyse the β-diversity In fact for each one of the patterns we

will analyse the one predicted by the random placement model and by the

interacting one.
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Figure 3.7: The nearest neighbours correlation of species configurations
Ê is compared to the ones obtained for configurations with the same M̂α

and a random spatial distribution of species’ presence sites. The size of the
circles represents the value M̂α and the solid line equality. For big values
of M̂α (upper right) Ê is practically equal to Êrnd. Instead it is greater for
intermediate (central part) and lower (bottom left) values of M̂α. The inset
shows a zoom for the configurations of rare species (lower M̂α)

3.3.2 Correlation function C(r)

As we said before, one of the first analysis involved the correlation function

defined in equation (3.2).

Under the hypothesis of Jα = 0 it’s trivial to see that 〈σiσj〉hα = 〈σi〉hα〈σj〉hα
does not depend on the distance rij:

Cα
rpm =

∑
{~σ} e

hα
∑
k σkσiσj

Z(hα)
=
( 1

1 + e−hα

)2
=

(
M̂α

N

)2

(3.17)
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Figure 3.8: Total “energy”. This figure shows the relation between
βHα

rnd and βHα. The upper right corner corresponds to the region where
both βHα

rnd and βHα are positive related to the cases of negative couplings

and small Ê and M̂

Since hα is directly determined by M̂α the correlation function become:

Crpm(r) =
1

S

∑
α

m̂2
α (3.18)

In general we expect that the correlation function of a system decays for long

distances r. On the contrary, looking at the data (fig. 3.9) this ecosystem

presented a peculiar behaviour. In fact the two point correlation function com-

puted from the data decays until a certain distance and then begin to increase.

This behaviour can be explained looking at how species are distributed over

the region. In fact, they accumulate on the border and this effect coupled with

the fact that large distances have poor statistics imply the feature observed.

The fact that species are densely present on the edges is due to topographical

and soil nutrient variability effect. In effect, it was found that between 30%

and 40% of the species are non randomly distributed with respect to soil nutri-

ent variation [6]. For this reason we studied the two point correlation function

truncated at shorter distances and we analysed the system up to a distance

r < rmax ≈ 12 lattice units.
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Figure 3.9: The correlation function extracted from species configurations.
Poor statistics and some peculiarities in species spatial distribution are re-
sponsible for greater values of the correlation function at larger distances.
The dashed vertical line shows the maximum distance considered in our
study, rmax ≈ 12 lattice units.

Correlation function results

The behaviour of the correlation function in the two analysed cases is pretty well

described by the interacting model only at short distances (Figures 3.10 and

3.11). It is evident that a random placement model is insufficient to describe the

correlation function and that the system is far from being randomly organised

(in agreement with the analysis of the couplings Jα’s summarised by the fig. 3.2).

Introducing an interaction between nearest neighbours sites improve the results

in particular in the case of rare species. Imposing Êα = 〈Eα〉g ensures that

the correlation function at r = 1 is the same for the interacting model and the

data. We think that the aforementioned peculiarities in the topography and soil

nutrients distribution over the field are responsible for the differences between

the correlation function of the interacting model and the one of the data. In
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Figure 3.10: The correlation function for all the species. The analy-
sis was developed with N = 256 sites. The red line represents the correlation
function for the random placement model (eq. 3.18). The blue line is the
correlation for the interacting model expressed by (3.2) (numerical).

fact, variability on the conditions of the environment are more likely to occur

between distant sites and that can influence the behaviour of the correlation

function.

3.3.3 The species area relationship (SAR)

We introduced the SAR in chapter 1 as a biodiversity indicator capable to

synthesize spatial properties of species assembled community and we defined it

as the average number of species S present in an area A.

This means that in the area A we count all the species that have at least one
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individual. We can express it as:

SAR(A) =
S∑
α=1

〈
χA({σ})

〉
gα

(3.19)

where

χA({σ}) =

1, if ∃ i ∈ A : σi = 1

0, otherwise

This mathematical expression simply states that we count a species every time

we find a cell were it is present.
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Figure 3.11: The correlation function for rare species The analysis
was developed with N = 256 sites. The black points representing data are
completely contained in the 1σ confidence interval of the interacting model
that is able to reproduce the decay of correlation function at short distances.
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The SAR in the random placement model

Our theoretical framework does not require an hypothesis on the form of species

abundances to derive an expression for the SAR. Using only presence/absence

data and more precisely the number of occupied sites we can deduce an analyt-

ical expression for the SAR in a random placement model using equation (3.19)

in the non interacting case (Jα = 0).

We define the probability of having an individual of the species α in the site i

as

pi,α ≡ 〈δσαi ,1〉hα =
1

1 + e−hα
(3.20)

Given the expression for hα (eq. 3.16), pi,α becomes

pi,α = m̂α =
M̂α

N
(3.21)

independent of the particular site.

If we denote |a| the size of the sampled area5 the contribution to the SAR at

area a by the species α is:

SARα(a) =

|a|∑
k=1

(
|a|
k

)
pki,α(1−pi,α)|a|−k = 1−(1−pi,α)|a| = 1−(1−m̂α)|a| (3.22)

Concluding, the SAR for a random placement model can be expressed as

SARrpm(a) =
S∑
α=1

SARα(a) = S −
S∑
α=1

(1− m̂α)|a| (3.23)

The case for Jα 6= 0 cannot be analytically solved so we computed the SAR

numerically.

Species Area Relationship results

Figures 3.12 and 3.13 show respectively the SAR for all the species in the

ecosystem and for the rare ones. In both the models the SAR obviously converge

to the total species richness due to the fact that the probability to find a species

on the largest surveyed area is one.

The fact that the correlation function overestimate the one of the data for

5In our case the area is measured in number of plot so |a| range from 1 to N
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distances greater then 20 lattice units it is reflected on the prediction of the

SAR. In fact if we think the correlation function as the probability that two sites

have in common the same species a lower value of the correlation function means

a lower probability to find an individual of the same species. To quantify the

reliability of the predicted SAR with the two models we evaluated the difference

between the predicted species richness with the one extracted from the data

(inset Figures 3.12 and 3.13). Although the differences between prediction and

data in both models present a peak at an intermediate area the differences for

the interacting model are always smaller (approximately by a factor of 2).

Furthermore, the overall positive mean of the Jα’s (see Figure 3.2) produce a

clustering of the individuals that has the effect of decreasing the mean number

of species respect to the one of the random placement model. Although our

approach does not consider the species abundances the results for the random

placement model agree with the conclusions of previous works [39] where the

authors report inadequacy of the random placement model for three rainforest

ecosystems.
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Figure 3.12: SAR for all the species The SAR over all the sampled areas
(left) with the inset that shows the differences between data and the two
models (red for random placement and blue for interacting model); the right
column shows a magnification for small (top) and large regions (bottom).
The grey area represents the 2σ confidence interval for the interacting model
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Figure 3.13: SAR for the rare species The SAR over all the sampled
areas (left) with the inset that shows the differences between data and the two
models (red for random placement and blue for interacting model); the right
column shows a magnification for small (top) and large regions (bottom).
The grey area represents the 2σ confidence interval for the interacting model

3.3.4 The endemic area relationship

In the same way we computed the SAR here we give an expression for the en-

demic area relationship (EAR). Due to the fact that a species is called endemic

in the area a if it is completely contained in it we must find the area a that

completely contains the species [20].

It is equivalent to say that the species is absent in ac the complement of a.

Taking advantage of this fact and of the independence of the species we write

the EAR for area a as:

EAR(a) =
S∑
α=1

EARα(a) (3.24)

where EARα(a) reads:

EARα(a) =
〈
δ ∑
i∈ac

σi,0

〉
gα

(3.25)
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The Kronecker delta imposes the condition of endemicity of α over the area a.

Using the definition of 〈·〉gα we explicit the expression 3.25 as:

EARα(a) =
Za(gα)

ZA(gα)
(3.26)

Here Za(gα) and ZA(gα) are the partition function evaluated respectively in a

subconfiguration of area a and on the whole lattice of area A.

EAR in the random placement model

As before, the random placement model is a specific case of 3.26, the one with

Jα = 0. Thus the contribution of species α to the EAR is:

EARrpm
α (a) =

Za(hα)

ZA(hα)
=

(
1

1 + ehα

)A−|a|
(3.27)

The fact that hα is fixed by the mean occupation m̂α allows us to rewrite 3.27

as:

EARrpm
α (a) = (1− m̂α)A−|a| (3.28)

To conclude we want to show a property that relates the SAR and EAR only in

the case of a random placement model. In fact they can be obtained one from

the other:

EARrpm(a) = S − SARrpm(A− a) (3.29)

Thus only in a very special and biologically unrealistic case, when all species

are randomly and independently distributed in space, it is possible to derive

the EAR from the SAR. Since the EAR can be used to estimate the species

extinction rate by habitat loss, the one obtained from the SAR has been used

in the past but as shown in [20] this produces overestimate extinction rates.

Endemic Area Relationship results

Figures 3.15 and 3.14 show respectively the EAR for all the species in the

ecosystem and for the rare ones. In both the cases the EAR is practically zero

for the initial range of small areas. In fact a sampling frame with an area of

a size sufficient to contact the species for the first time is always less than the

sample area needed to encompass the entire range of the species. The SAR

48



Ecosystem organisation: a spatial model

is constructed from sample areas of first contact, and the EAR is constructed

from areas of last contact and for this reason the EAR grows very slowly at

the beginning. Then, as shown in the two figures, it is “forced” to reach the

total number of species in the largest plot (loosely speaking all the species are

endemic in the largest area). For the EAR the interacting model seems to
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Figure 3.14: EAR for all the species. The EAR over all the sampled
areas (left) with a zoom of the intermediate area region (right). The two
figures show the curve of the interacting model (blue) with the 1σ confidence
interval (grey area) and the one for the random placement (red). The data
are represented by black dots. The inset shows the differences between the
two models. As in the case of the SAR the differences between the two
models are sensible (approximately a factor of 2).

better reproduce the data within the 1σ confidence interval. However, the data

are completely contained in the 2σ confidence interval. The inset of the main

plot in Figures 3.15 and 3.14 shows that for A ≈ 100 (plot units) the random

placement model for presence/absence data drastically deviates from the data.

In this case the introduction of the interaction improves the prediction because

with a Jα > 0 a species tends to cluster and there is a higher probability to

sample an area that completely contains the given species. A clear example is

shown in Figure 3.3. Somehow, the same considerations made for the SAR apply

here. In fact in the case of the SAR the random placement model overestimates

the data while here it underestimates the EAR extracted from the data. Even

if in (3.29) we state that the EAR is the “mirror image” of the SAR we stress
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Figure 3.15: EAR for the rare species. The EAR over all the sampled
areas in the case of rare species. The interacting model (blue) and the random
placement model (red) reach the same value for the largest A because the
every species is completely contained in the surveyed area. As in the case
of the analysis for all the species the EAR for the random placement model
underestimate the data by approximately a factor of two.

that this is not a rule and so an overestimating SAR does not automatically

translate to an EAR that underestimates the data [20].

r u x z }
Summary of the chapter

Using the techniques introduced in Chapter 2 we suggested the use of a spatially

explicit maximum entropy model to understand the spatial structure of an

ecosystem. Starting from species abundances data we shifted to a “low level”

information framework were only presence or absence of the species are known.

Although the knowledge of the average presence of a given species in an area and

the probability that two neighbouring sites have in common the given species

constitutes the minimal information about spatial organisation of species they

are sufficient to deduce the global spatial organisation of species on the entire
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area. We tested the model comparing the results for predicted biodiversity

indicators to the data of a rainforest in Barro Colorado Island, Panama.
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Chapter 4

Conclusion and perspectives

This project was thought and developed with the spirit of a feasibility study.

We studied a maximum entropy model with the purpose of investigating the

spatial organisation of a rainforest ecosystem. The theoretical framework we

propose is based on a minimal quantity of information regarding the system:

i) the average presence of a given species in an area and ii) the probability that

two neighbouring sites have in common the given species. For this reason we

can build the model using only presence/absence data instead of species abun-

dances.

We think that this kind of approach is appealing from both the practical and

theoretical point of view. The practical reason is that detailed data of species

abundances are present only for few cases limited to restricted geographical

regions and a world wide characterisation of species abundances sounds like a

titanic task for obvious reasons. On the other hand we think that the theoreti-

cal reason is closely linked to the concept of universality, an idea that has a deep

meaning in Physics and in particular in statistical mechanics. Loosely speak-

ing universality emerge macroscopically when the processes are independent of

the microscopic details and analysing a system using presence/absence data

can be regarded as a coarse grained analysis. Thus, developing a framework

based on a “low level” kind of information can help to identify essential and

universal features characterising living systems. Indeed, the interest regarding

the β-diversity of an ecosystem and in particular the Species Area Relationship

(introduced in Chapter ??) goes beyond the analysis tailored to a particular

ecological system. The universal shape of this emergent pattern naturally at-

tracts contributions from multiple fields of investigation.
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The results presented in Chapter 3 are a first step in this direction. In fact, the

spatial correlation function predicted by the random placement model and the

interacting model are very different, in particular the interacting model better

reproduces the data at small distances (Figures 3.10 and 3.11), but this aspect

does not translate to completely different shapes for the SAR and EAR. In other

words, the correlation function can be sensible to environmental factors [39] (e.g.

topography, soil differentiation, water resources) but this has minor effects on

the SAR and EAR that can be fairly well reproduced by the interacting model

improving the prediction of the random placement model.

To highlight the novelty of our approach among the other modelling frameworks,

we briefly report the essential ingredients of two works that use the maximum

entropy approach to investigate the ecosystems structure 1.3.2. Harte et al. [18]

use the maximum entropy model based on the knowledge of some “high level”

prior information. Apart from the ecosystem total area the authors consider

other three ecosystem related quantities: the total number of species in that

area, the total number of individuals across those species, and the metabolic

energy rate summed over all those individuals. Using these information they can

investigate the SAR and other ecosystem meaningful patterns. Nevertheless, in

their predictions space is never explicitly considered.

The other work we cite is the one of Azaele et al. [4] on the characterisation

of ecosystem structure from the point of view of interspecific interaction. In

our case we build the maximum entropy model considering only intraspecific

interaction and a “microstate” of the system is described by σαi for the species

α in the plot i. Furthermore, we infer the couplings from a single realization.

Instead in [4] they consider a “microstate” ~σ = (σ1, . . . , σS) containing only the

species presence or absence in the whole area and they infer the couplings from

the first and the second empirical moments 〈σα〉emp and 〈σασβ〉emp calculated

from an high number of “microstates” collected over the area of interest. Thus

in this case the authors neglect spatial correlations.

In this way they end up with the maximum entropy probability

p(~σ) =
1

Z
exp

(1

2

∑
α 6=β

Jαβσασβ +
∑
α

hασα

)
(4.1)

with Jαβ and hα determined by the empirical averages. The goal of their anal-

ysis is to reveal the network of interactions between the species and we briefly

described it to understand how our model can be considered a complementary
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investigation.

Concluding, the Ising model in our work emerged in a natural way as a second

order spatially explicit maximum entropy model for binary data. For this reason

the role of Statistical Mechanics is twofold. On the one hand it is present as

a natural framework to study systems with an high number of entities and on

the other one it has all the characteristics to be considered a powerful inference

method.

4.1 Perspectives

We conclude this thesis with a few clues for further work. Some of them can be

considered as straightforward extensions, the others request much more effort

and an extension of the theory presented in this thesis.

• Application to other databases

A natural extension is the application of this method to other species

abundance databases to test the validity and robustness of our results

obtained for the BCI forest.

• Upscaling and downscaling of biodiversity

If we know the number of species at a specific regional scale what can we

say for smaller (downscaling) and larger (upscaling) areas of the system ?

A first step towards the answer could be the analysis of the BCI restricted

to a sub-areas (not necesseraly connected) to understand what kind of

information we can extract starting from this partial knowledge.

• Criticality Empirical evidence has proliferated that living systems might

operate at the vicinity of critical points with examples ranging from

spontaneous brain activity to flock dynamics (see [22, 36] and references

therein). In a recent work [31] the authors focused on the statistical prop-

erties of inferred models and argued that inference procedures are likely to

yield models which are close to a phase transition. In other words, follow-

ing their results we should end up with the couplings g in a neighborhood

of the critical point1 gc where det χ̂, the determinant of the Fisher infor-

mation matrix, diverges in the case of infinite systems (see fig. 4.1). We

1For the Ising model with variable σi = {0, 1} the critical point is
gc = (hc, βJc) ≈ (−3.52, 1.76)
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will investigate if these results can be used to develop a method usefull

to characterise a living system as critical.

Figure 4.1: This figure shows the determinant of the Fisher information
matrix (coloured background) on the (h, J) plane with superimposed inferred
couplings (black open circles) for the BCI ecosystem (see section 3.2). The
big green point represents the critical point (hc, Jc). A big fraction of the
inferred couplings occupy a region where detχ̂ assumes high values.

• Detection of Janzen Connell effect

In Chapter 3 we mention the Janzen-Connell effect and the fact that this

biological effect can be related to the cases with Jα < 0. Comparing the

list of species having Jα < 0 with the species for which the Janzen-Connell

effect has been detected on the field we found 5 common cases out of 11.

Thus, another direction of this work should be to understand the validity

of our model to give some hints on the presence of this effect.
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Simulation technique: the Wang

Landau algorithm

A.1 The Wang Landau algorithm

Even if the 2d Ising model was exactly solved in the case of zero external field,

generalizations of it to comprehend the behaviour of the system in an external

field or to analyse important quantities of finite size systems have no exact so-

lution and one has to resort to expansion techniques or to simulation approach.

Computer simulation now plays a major role in statistical physics, particu-

larly for the study of phase transitions and critical phenomena. The standard

Markov Chain Monte Carlo (MCMC) methods, like the Metropolis algorithm,

allow to obtain a random sample from a certain probability distribution for

which direct sampling is difficult due to the large number of possible states the

system can have. Refinements to the Metropolis algorithm to solve the critical

slowing down1 have been proposed (e.g. the Swedsen and Wang algorithm and

the Wolff’s one).

These algorithms can be classified as cluster flip algorithms because, unlike the

Metropolis one that use single spin flip techniques, they implement flip of en-

tire clusters of equal spins. More recently new and efficient algorithms have

begun to play a role in allowing simulation to achieve the resolution which is

needed to accurately characterize the investigated systems. One of this is the

Wang-Landau algorithm of which we explain the crucial aspects here after.

1At the critical point observables’ fluctuations increase and the relaxation time tend to
diverge. Consequences are that data obtained around the critical parameter are not so reli-
able.
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A.1.1 How to calculate the density of state

One of the most important quantities in statistical physics is the density of

states (DOS) g(E), i.e. the number of all possible states (or configurations)

for an energy level E of the system, but direct estimation of this quantity

has not been the goal of simulations. Instead, most conventional Monte Carlo

algorithms such as Metropolis importance sampling, Swendsen-Wang cluster

flipping, etc. generate a canonical distribution P (E) ∼ g(E)e−βE at a given

temperature (β = 1
kBT

). Such methods do not allow to make prediction for

a wider range of temperatures and multiple runs are required if we want to

know thermodynamic quantities over a significant range of temperatures. If we

can estimate the density of states g(E) with high accuracy for all energies, we

can then construct canonical distributions at essentially any temperature and

this allows us to slove the inverse problem introduced at the end of Chapter 2.

Given that the density of states does not depend on temperature the model

is essentially “solved” when one knows the g(E) of the system described by

the Hamiltonian H. The main object of statistical mechanics approach is the

partition function Z . If σ is a certain configuration of the system with energy

E, then the partition function can be rewritten using the g(E):

Z(β) =
∑
{σ}

e−βH(σ) =
∑
E

g(E)e−βE (A.1)

Then for example the statistical average of an observables f directly related to

the energy E is:

〈f(E)〉β ≡
∑

E f(E)g(E)e−βE

Z(β)
(A.2)

The Wang-Landau algorithm is an iterative procedure where an histogram of

the energy distribution is generated during a random walk in the energy space.

At the beginning the method starting from no knowledge of g(E), gradually

approach the true profile of the density of states by “guiding” the random

walker to visits more frequently those energy regions where the density of states

is smaller.

There could also be the case where one wants to determine quantities ρ (e.g. the

order parameter or the correlation function) that are non directly linked to the

energy. Therefore the random walking must be performed on a two dimensional
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space (E, ρ) and the density of states g(E, ρ) will be 2-dimensional too. In this

case the statistical average of observables f(ρ) must be calculated as:

〈f(ρ)〉β ≡
∑

E

∑
ρ f(ρ)g(E, ρ)e−βH(E,ρ)

Z(β)
(A.3)

where now Z(β) =
∑

E

∑
ρ e
−βH(E,ρ).

In the following section we will present the structure of the Wang-Landau algo-

rithm both in the case of one and two dimensional random walking. In the first

case the system under examination is the two dimensional Ising model with

nearest neighbours interaction in zero external field described by the reduced

Hamiltonian:

βH = −J
∑
i

∑
j=nn(i)

σiσj ≡ −JE (A.4)

When we consider also the presence of an external perturbation then our Hamil-

tonian is:

βH = −J
2

∑
i

∑
j=nn(i)

σiσj + h
∑
i

σi ≡ −JE − hM (A.5)

In both cases J represents the coupling interaction and h is an external influ-

ence. Regardless of the values the variables σi can assume ({−1,+1} or {0, 1})
we call E the interaction energy and M the magnetization of the system.

A.2 The Wang-Landau scheme

With the aim to show how the Wang-Landau works we will refer to the Hamil-

tonian ( A.4). In this method random walk in discrete energy space of a spin

system is performed by flipping spins in a random manner. A random walker

without any bias tends to visit regions of energy where g(E) is greater. The

random walk is developed by flipping spin at random but instead of implement-

ing the Metropolis recipe to choose the probability of acceptance of the random

move, the idea of the WL sampling is to visit the space in a manner that allows

us to obtain a “flat” energy histogram. In fact if we visit the energy state E
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with probability P (E) ∼ 1
g(E)

then a flat histogram is generated for the energy

distribution. Since the density of states g(E) is not known a priori all g(E) are

set equal to a common constant value, say 1 at the beginning of a simulation.

At every step of the random walk g(E) is modified by a multiplicative factor

f > 1 and the updated g(E) is used for the next step of random walk. The

modification factor f is controlled carefully in the following iterations and finally

when f ≈ 1 the density of states g(E) converges very close to its true value.

The accuracy of the estimated density of states depends on many factors such

as the final value of the modification factor, flatness criterion or system size.

What follows is a kind of flow chart that explains how the Wang-Landau algo-

rithm develops.

1. Initialization. At the very beginning of the simulation, we can not

know a priori the g(E) so we choose g(E) = 1, h(E) = 0 (the histogram

of energy that will become ”flat”) and f = e > 1 (the Euler number)

2. Random Move. Spin a flip at random. We jump from state i to j

3. Accept or reject ? The move is accepted or rejected depending on the

following probability:

pacc(i −→ j) = min

(
1,
g(Ei)

g(Ej)

)
(A.6)

This means that we accept the move if g(Ej) < g(Ei) or if r (uniform

random number in [0, 1]) is such that r < g(Ei)
g(Ej)

. In the contrary we retain

the configuration i.

4. If j is accepted then g(Ej) = fg(Ej) and h(Ej) = h(Ej) + 1. In the case

i is accepted g(Ei) = fg(Ei) and h(Ei) = h(Ei) + 1

5. Operations 2, 3 and 4 must be repeated till a flatness criterion for h(E)

is satisfied. Generally one check for flatness after 104 Monte Carlo sweeps

(one sweep correspond to a number of spin flip equal to the total number

of spins). Given that a perfect flatness cannot be reached one criterion

could be minEh(E)
〈h(E)〉 > p. The parameter p can be choosen regarding the

precision one wants to achieve and the complexity of the system. 〈h(E)〉
is the mean value of the histogram over the energy bins.

6. Reset and update When flatness is reached the histogram h(E) must

be resetted (h(E) = 0) and f → f
1
n for n ≥ 2
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7. Steps from 2 to 5 must be repeated until f fall below a predefined value

close to unity (e.g. 1 + 10−6)

A.2.1 Ergodicity and detailed balance

Every MC simulation algorithm must satisfy two properties: ergodicity and

detailed balance.

Briefly by ergodicity we mean that starting from any configuration we can reach

by repeated random moves any other possibile configuration of the system. Any

MC algorithm based on single spin flip satisfies the request of ergodicity because

in a sequence of successive steps we can find a path that connects the starting

configuration to any other.

The request to satisfy the detailed balance equation impose that the probabili-

ties of moving into a state or leaving it is the same. At the very beginning the

density of states g(E) in the WL algorithm change rapidly. This means that

the acceptance rule is modified during the simulation by the factor f . For this

reason at this stage the detailed balance condition can not be satisfied. When

f → 1 the g(E) undergoes finer and finer adjustmenents and at this point the

detailed balance condition is very close to be obeyed.

Using (A.6) the ratio between ingoing and outgoing probabilty can be expressed

like:

P (Ei → Ej)

P (Ej → Ei)
=
g(Ei)

g(Ej)
(A.7)

In fact when f is close to unity g(E) is weakly modified and the above equation

becomes the detailed balance condition:

1

g(Ei)
P (Ei → Ej) =

1

g(Ej)
P (Ej → Ei) (A.8)

with P (Ei) ∼ 1
g(Ei)

.
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Details of various calculations

B.1 The maximum entropy solution

Suppose that the discrete variable σ describing the system can take values

(σ1, ..., σW ) , W = 2N in the case of N binary variables, and that we have M

different functions of σ,

φµ(σ), µ = 1, · · · ,M (B.1)

We want them to have expectations values:

φ̂µ(σ) = 〈φµ(σ)〉 =
∑
σ

pσφ
µ(σ) (B.2)

togheter with: ∑
σ

pσ = 1 (B.3)

To find the pσ’s that have maximum entropy subjected to all the constraints

simultaneously we add g = (g0, · · · , gM) Lagrange multipliers and then we

apply a variation:

δ
(
S + (g0 − 1)

∑
σ

pσ +
M∑
µ=1

gµ
∑
σ

pσφ
µ(σ)

)
=

∑
σ

( ∂S
∂pσ

+ (g0 − 1) +
M∑
µ=1

gµφ
µ(σ)

)
δpσ = 0
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using ∂S
∂pσ

= −1− ln pσ the result is:

pσ = exp
[
g0 +

M∑
µ=1

gµφ
µ(σ)

]
(B.4)

The normalization (B.3) implies:

exp(g0)
∑
σ

exp
[ M∑
µ=1

gµφ
µ(σ)

]
= 1 (B.5)

Defining the partition function as:

Z(g1, · · · , gM) =
∑
σ

exp
[ M∑
µ=1

gµφ
µ(σ)

]
(B.6)

we obtain g0 = − lnZ(g1, · · · , gM).

It is now clear how to write down explicitly the expectation value φ̂µ using B.4:

φ̂µ = eg0
∑
σ

φµ(σ)e
∑M
µ=1 gµφ

µ(σ) (B.7)

equivalent to

φ̂µ =
∂ lnZ

∂gµ
(B.8)

Substituting the expression (B.3) inside the entropy functional we can calculate

his extreme value that is:

S∗ = −g0 −
M∑
µ=1

gµφ̂
µ (B.9)

As written by Jaynes “our Lagrange multiplier argument has the nice feature

that it gives us the answer instantaneously. It has the bad feature that after we

done it, were not quite sure it is the answer”.

In effect δS = 0 shows only that the entropy is stationary and to complete the

argument we must show that (B.9) is the global property rather than just a

local extremum or a stationary point.

To prove that (B.4) has this global property let us suppose that we have in

addition another pdf qσ that also satisfy the same constraints (B.2) of pσ.

We define:

DKL[q, p] =
∑
σ

qσ ln
qσ
pσ

= −S[q]−
∑
σ

qσ ln pσ (B.10)
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it is known as the Kullback-Liebler divergence and it represents a sort of “met-

ric” (it is not symmetric, DKL[p, q] 6= DKL[q, p]) on the space of probability

distributions. We show that DKL[q, p] ≥ 0. Using lnx ≤ x− 1 we can write:∑
σ

qσ ln
pσ
qσ
≤
∑
σ

qσ

(pσ
qσ
− 1
)

= 0 (B.11)

that means:

S[q] ≤ −
∑
σ

qσ ln pσ (B.12)

At this point we can substitute (B.4) for pσ obtaining:

S[q] ≤ −
∑
σ

qσ

M∑
µ=0

gµφ
µ(σ) = −

M∑
µ=0

gµφ̂
µ = S∗ = S[p] (B.13)

In words, within the family of all distributions q that satisfy the constraints B.2

the distribution that achieves the maximum entropy is the canonical distribu-

tion p given in eq. B.4.

Concluding, we want to notice that the inequalities S[p] ≥ 0 and K[q, p] ≥ 0

(the last evaluated in the special case qσ = 1/W ) give us the range in which

S[p] is contained:

0 ≤ S[p] ≤ lnW (B.14)

The two interval extremes correspond respectively to complete certainty pσ = δσσ′

and complete uncertainty where having no more information than
∑

σ pσ = 1

we choose pσ = 1/W .

B.2 Convex optimization: the gradient descent

algorithm

What follows briefly explain how to infere the vector g of couplings capable of

reproducing mean observed values.

Consider a convex, differentiable function H(g) : RM → R. Then for each point

g it exists a gradient ∇H(g) = (∂g1 , · · · , ∂gM )H(g) and a positive semidefinite

Hessian matrix χ(g) with elements χµν = ∂gµ∂gνH(g).

Using the gradient we can define a descent direction v = −∇H(g).
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This means that for all g it exists an ε such that:

H(g − ε∇H(g) ≤ H(g) (B.15)

To find the minimum g∗ of H(g) means to solve ∇H(g) = 0. If it can’t be

analytically solved, starting from a point g(0) we can built an iterative scheme:

g(k+1) = g(k) − ε∇H(g(k)) (B.16)

that ensures we can reach a global minimum g∗ of H(g).

Applying this ideas to the function (for a justification see below):

H(g) = lnZ(g)−
∑
µ>0

φ̂µgµ (B.17)

allows us to find the couplings g∗ such that 〈φµ〉g∗ = φ̂µ.

In fact, since ∂gµH(g) = 〈φµ〉g − φ̂µ, finding a global minimum is equivalent to

state:

〈φµ〉g = φ̂µ (B.18)

We only have to prove that this minimum exists and it is unique and so that

H(g) is convex (i.e. ∂2gµgνH ≥ 0).

For this purpose we define the susceptibility matrix (the Fisher information

metric in information theory):

χµν = − ∂2F

∂gµ∂gν
(B.19)

where F (g) = − lnZ(g).

It represents the Hessian of H(g) and its properties ensure that the minimum,

if exists, is global.

In fact we briefly demonstrate that χµν is a positive semidefinite matrix. Just

to make things more fluid to read we indicate 〈·〉g ≡ 〈·〉, p(~σ|g) ≡ pσ and

φµ(~σ) ≡ φµσ.

From the definition (B.19) it follows that:

χµν = 〈φµφν〉 − 〈φµ〉〈φν〉 =
∑
σ

pσ (φµσ − 〈φµ〉) (φνσ − 〈φν〉) (B.20)
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Using this rearrangement it is straightforward to prove that for any vector x

the quadratic form
∑

µ,ν>0 xµχµ,νxν is greater or equal to zero. Indeed,

∑
µ,ν>0

xµχµνxν =
∑
σ

pσ

[∑
µ

xµ (φµσ − 〈φµ〉)

][∑
ν

xν (φνσ − 〈φν〉)

]

=

〈[∑
ν

xν (φνσ − 〈φν〉)

]2〉
≥ 0 (B.21)

in fact this result holds for every pσ.

The use of the function (B.17) can be justified using the the Kullback-Liebler

divergence. It was defined in the previous section We recall here that it is

defined as:

DKL[q, p] =
∑
σ

qσ ln
qσ
pσ

= −S[q]−
∑
σ

qσ ln pσ (B.22)

Although it doesn’t satisfy the symmetry condition nor the triangular inequality

it has some of the properties of a metric. It is always non negative (see (B.11))

and is zero if and only if p = q moreover it is a convex function in p and q

(see [11]).

If q is the true probability distribution that generates the observed averages

and p is the maximum entropy probability (B.4) the Kullback-Liebler reads:

DKL[q, p] =
∑
σ

qσ ln
qσ
pσ

= −S[q] + lnZ(g)−
∑
σ

qσ
∑
µ>0

gµφ
µ
σ (B.23)

Since that: ∑
σ

qσφ
µ
σ = φ̂µ (B.24)

we rewrite (B.23) as:

DKL[q, p] = −S[q] + lnZ(g)−
∑
µ>0

gµφ̂
µ (B.25)

The expression above is the function (B.17) up to a constant. Regarding it as

a function of g the minimum of the “distance” between p and q is found when

〈φµ(σ)〉g = φ̂µ.
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