
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

From Data Cleaning to Predictive Models:

A Strategic Approach to Analyzing Bus

and Ship Trajectories

Supervisor Master Candidate
Prof. Lamberto Ballan Satria BagusWicaksono
University of Padova

Co-supervisor Student ID
Prof. Esteban Zimanyi 2105082
Université libre de Bruxelles

Academic Year
2023-2024

ii

I dedicate this thesis to mymom, my partner, my dad, andmy brother. Your
unwaveringencouragementandlovehavemeanttheworldtomeandhelped
me through every step of this journey.

iv

Abstract

Trajectory data holds significant potential for advanced analytics, driven by the development
of sophisticated models and tools. This thesis aims to unlock this potential by addressing the
challenges inherent in trajectory data,meticulously preprocessing the data, andperformingpre-
dictive analysis. We present two use cases: the primary use case focuses on predicting battery
consumption in electric buses, while the secondary use case involves predicting ship trajecto-
ries. These contributions have important implications for enabling intelligent transportation
systems (ITS) and promoting greener urban transportation, as well as enhancingmaritime nav-
igation and safety.
In the primary use case, our research thoroughly examines and preprocesses the trajectory

data, employingmethods such as mapmatching, trajectory segmentation, and linear interpola-
tion. Additionally, we enrich the trajectories with semantic information to create a clean and
usable dataset for prediction tasks. In the predictive analysis, we compare a baselinemodel with
a deep learning model, with the latter outperforming the former, achieving an RMSE of 1.31
kWh and an R2 score exceeding 80%.
In the secondaryuse case, we apply similar preprocessing techniques, including the detection

of temporal and spatial gaps in the trajectory data. The predictive analysis reveals that the best
prediction accuracy is achieved with a 30-minute observation window, predicting 5 minutes
into the future, resulting in a MAPE of 1.2% and a mean distance error of 0.35 kilometers
from the actual trajectories.

v

vi

Contents

Abstract v

List of figures x

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Movement and Trajectories . 1
1.2 Analysis and Prediction on Trajectory Data 2
1.3 Challenges in Analyzing and Predicting Trajectory Data 3
1.4 Addressing the Challenges and Contributions 4
1.5 Structure of the Thesis . 5

2 Literature Review 7
2.1 Trajectory Data . 8

2.1.1 Trajectory Data Representation 8
2.1.2 AVLData . 9
2.1.3 AIS Data . 10

2.2 Trajectory Data Cleaning and Preprocessing 11
2.2.1 MapMatching . 12
2.2.2 Trajectory Segmentation . 13
2.2.3 Semantic Trajectories . 15

2.3 Trajectory Data Prediction . 16
2.3.1 Predicting Vehicle Battery Consumption 17
2.3.2 Predicting Ship Trajectories . 18

2.4 Trajectory Data PredictionModel . 19
2.4.1 Aritficial Neural Networks . 19
2.4.2 Recurrent Neural Networks . 21

2.5 EvaluationMetrics . 24
2.6 Summary . 25

3 Data Preprocessing for the Electric Bus Usecase 27
3.1 Dataset Overview . 28

vii

3.2 Data Exploration . 29
3.2.1 GPS Inaccuracies . 29
3.2.2 Discontinuities and Frequencies in Bus Trajectories 30
3.2.3 Cumulative Battery Energy Consumption 31
3.2.4 Dataset Context Deficiency . 32

3.3 Data Cleaning . 33
3.3.1 MapMatching . 33
3.3.2 Segmenting the Trajectories . 36
3.3.3 Estimating Battery Consumption 38
3.3.4 Enhancing Dataset Context . 39

3.4 Building the Data Preprocessing Pipeline 40
3.4.1 Road Segment Battery Consumption 41
3.4.2 Validation of Road Segment Consumption Calculation 41
3.4.3 Building the Data for Prediction 42

3.5 Summary . 43

4 Prediction for the Electric Bus Usecase 45
4.1 Building the PredictionModels . 45
4.2 Preparing and Analysing the Dataset . 46

4.2.1 Adding Temporal Information . 47
4.2.2 Inspecting the Weather . 47
4.2.3 Analyzing Trips . 48

4.3 Establishing the Baseline Model . 50
4.3.1 Feature Selection and Engineering 50
4.3.2 Training the Models . 51
4.3.3 Baseline Models Validation . 52

4.4 Applying LSTMModel . 54
4.4.1 Defining the Sequences . 55
4.4.2 Embedding the Categorical Features 56
4.4.3 LSTMModel Development . 57
4.4.4 Model Parameters . 58
4.4.5 Training the Model . 59
4.4.6 LSTMModel Validation . 59

4.5 Comparative Analysis betweenModels . 60
4.6 Summary . 61

5 Ship Trajectory Prediction Usecase 63
5.1 Overview . 64
5.2 Data Preprocessing . 64

5.2.1 Analyzing the Trajectories . 65
5.2.2 Cleaning the Trajectories . 67

viii

5.3 Ship Trajectory Prediction . 70
5.3.1 Defining the Sequence for Prediction 71
5.3.2 Explaining the Model . 72
5.3.3 Hyperparameters Tuning . 73
5.3.4 Training the Model . 74
5.3.5 Prediction Results . 75

5.4 Summary . 76

6 Conclusion and FutureWork 79
6.1 Conclusion . 79
6.2 Future Work . 81

References 82

Acknowledgments 91

A Appendices 93
A.1 Appendix A . 94
A.2 Appendix B . 95

ix

x

Listing of figures

2.1 Map matching algorithm [1] . 12
2.2 (a) Segmented trajectories by spatial gaps [1] (b) Segmented trajectories by

temporal gaps [1] (c) Segmented trajectories by stay points [2] 14
2.3 Neural networks architecture [3] . 21
2.4 Illustration of an RNN architecture [4] . 21
2.5 Illustration of an LSTM architecture [4] 23

3.1 A day of vehicle trajectory . 29
3.2 Unprocessed points along the bus road network 30
3.3 Possible stopping points in trajectories . 31
3.4 Cumulative battery consumption (kWh) throughout the day 32
3.5 Map matching result . 36
3.6 Segmented trajectories . 37
3.7 Linear interpolation of battery consumption (kWh) over time 38
3.8 Battery consumption estimation at the road segment level 41
3.9 Data cleaning and preprocessing pipeline 43

4.1 Mean battery consumption (kWh) by (a) day of the week (b) time range . . . 47
4.2 Mean battery consumption (kWh) by (a) rain condition (b) temperature . . . 48
4.3 Tripdistributiondensity for all trajectories by (a) duration (hours) (b) distance

(km) . 49
4.4 Gini importance of each features . 51
4.5 Number of optimal parameter searches using K-fold and grid search 52
4.6 Architecture of the prediction model . 57
4.7 Prediction RMSE (kWh) by duration of the trips 61
4.8 (a) Comparison of predicted vs. actual battery consumption (kWh) in the 50-

60 minutes range (b) Comparison of predicted vs. actual battery consump-
tion in the 20-25 kWh range . 61

5.1 Distribution of vessels’ trajectories durations (hours) 66
5.2 Distribution of vessels’ average SOG (knots) 66
5.3 (a) Ship SOG (knots) attribute over the entire course (b) Ship trajectories over

the entire course . 67
5.4 Distribution of ships’ trip durations (hours) after gap splitting 68

xi

5.5 Distribution of ships’ trip durations (hours) after cleaning by minimum du-
ration and number of points . 69

5.6 Cleaned ships’ trajectories . 70
5.7 Model architecture for prediction . 72
5.8 Model prediction on a straight trajectory 75
5.9 Model prediction on a trajectory with turns 76

xii

Listing of tables

3.1 Filtered primary dataset: Attributes and data types 28
3.2 Trajectory attributes for map matching . 34
3.3 Configuration parameters for map matching 34
3.4 Parameters for stop detection . 37
3.5 OpenMeteoWeather History API parameters 39
3.6 Difference between daily ground truth and aggregated segment consumption 42

4.1 Prediction dataset attributes . 46
4.2 Baseline models performance comparison 53
4.3 Baseline models performance comparison by vehicle 54
4.4 Trajectory dataset definition . 55
4.5 Input sequences and their corresponding targets 55
4.6 Input sequences with padding . 56
4.7 Embedding dimension of categorical attributes 57
4.8 Hyperparameters for training . 58
4.9 Model performance by metrics . 59
4.10 Overall comparison between the baseline and LSTMmodels 60

5.1 Range and default values of AIS attributes [5] 65
5.2 AIS attributes used for data prediction . 65
5.3 Sequences for the prediction . 72
5.4 Hyperparameters for training . 74
5.5 Performance comparison for a 30-minute windowwith varying prediction steps 75

A.1 AIS data structure . 94

xiii

xiv

Listing of acronyms

POI Points of Interest

RNN Recurrent Neural Networks

GPS Global Positioning System

AIS Automatic Identification System

AVL Automatic Vehicle Location

VTS Vessel Traffic Services

MMSI MaritimeMobile Service Identity

HMM HiddenMarkovModel

ARIMA Autoregressive IntegratedMoving Average

SAX Symbolic Aggregation Approximation

LSTM Long Short-TermMemory

MLP Multilayer Perceptron

MSE Mean Squared Error

RMSE Root Mean Squared Error

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ID Identification Number

kWh kilowatt-hours

GTFS General Transit Feed Specification

RFE Recursive Feature Elimination

SOG Speed Over Ground

COG Course Over Ground

ROT Rate of Turn

xv

xvi

1
Introduction

1.1 Movement and Trajectories

Movement data is ubiquitous, encompassing human movement, vehicle movement, and ani-
mal movement. This data provides valuable insights into patterns or phenomena withinmove-
ment. Furthermore, movement data can be extensive, consisting of numerous smaller seg-
ments. For instance, examining a person’s movement over an entire day reveals several smaller
movements, such as trips to the supermarket or going for a run. These smaller sets of move-
ments, or segments, can be defined as trajectories [6].

To understand these smaller segments better, we need a clear definition. Trajectory data is
defined as a series of occurrences that match the time-referenced, recorded locations of moving
objects [7]. Thismeans a trajectory contains spatial information about the location of an object
and temporal information that is referencedby the spatial data, providing a comprehensive view
of the movement. Integrating both spatial and temporal information in trajectory data offers
an overviewof the evolution of objectmovement, which is highly valuable in various real-world
applications.

The real-world applications of trajectory data are numerous. One notable example is in pub-
lic transportation. By recording the movement of a bus from start to finish, we can obtain
information regarding the bus’s trajectories, including stops and variations in routes depend-
ing on the day. Another example is tracking shipmovement; we canmonitor a ship throughout

1

its journey, knowing its location at any given time. However, modeling trajectory data solely
based on spatial and temporal information has its limitations.
One of the primary limitations of raw trajectory data, which includes only spatial and tem-

poral information, is its lack of context. According to Ferrero et al. [8], adding information
about the locations visited by an object, referred to as Points of Interest (POIs), can enhance
the contextual understanding of the trajectory. Additionally, there are challenges in balancing
the accuracy of data with privacy concerns. The abundance of spatial and temporal informa-
tion can be maliciously exploited by attackers to extract sensitive information, such as home
addresses, personal preferences, and even medical data [9]. Conversely, the accuracy of this
data is essential for providing precise analyses. Nevertheless, new techniques continue to be
developed to address these issues effectively.

1.2 Analysis and Prediction on Trajectory Data

With the limitations and difficulties inherent in representing trajectory data, specialized tools
have been developed to facilitate trajectory data analysis. One such example is MobilityDB
[10], a PostgreSQL extension that allows for the analysis and processing of spatio-temporal
data. Additionally, the development of MobilityDB has led to the creation of other trajectory
analysis tools, such as PyMEOS [11], which enables analysis and preprocessing in a Python
environment. Similarly, tools like MovingPandas [12] provide comprehensive functionalities
for performing trajectory data analysis.

These new technologies have significantly simplified the processes of analyzing and prepro-
cessing trajectory data, thereby enhancing the insights and analytics derived from such data.
Advanced analysis and preprocessing capabilities are nowmore accessible, allowing for efficient
transformation and representation of trajectory data. For instance, interpolation of trajectory
data based on location and time can be easily performed using these tools. Visualization of
trajectory data has also become more straightforward, facilitating better understanding and
interpretation. Moreover, the advanced preprocessing capabilities of these tools enable the in-
tegration of trajectory data with other advanced techniques, such as deep learning.

Deep learning has gained considerable popularity in recent years, driven by advancements
in techniques and increased computational power. This has made it possible to uncover hid-
den patterns within trajectory data. Given the sequential nature of trajectory data, deep learn-
ing techniques are well-suited for analyzing such data. Techniques like Recurrent Neural Net-
works (RNNs) [13], which can learn patterns from sequences, are particularly effective. By

2

combining these tools and techniques, we can perform more in-depth analysis and make pre-
dictions based on trajectory data.
Whenperformingpredictions using deep learning techniques, trajectory data typically needs

to be preprocessed first [14]. This preprocessing is crucial as it prepares the data for analysis by
performing preliminary steps and transforming the data into a format suitable for deep learn-
ingmodels. Preprocessing steps may involve representing the trajectory data in different forms,
such as aggregating trajectories or downsampling them. This comprehensive preparation en-
sures that the deep learning models can accurately interpret and analyze the data, ultimately
leading to more reliable and insightful predictions. This capability opens up numerous real-
world applications, enabling advancements in fields such as transportation, healthcare, and ur-
ban planning.

One real-world application involves analyzing aviation data. For example, MobilityDB has
been used to analyze busy hours for flights or congested areas in the sky [15], demonstrating the
importance of these tools in data analysis. In this thesis, a specific application focuses on the in-
telligent transportation system, predicting battery consumption frombus trajectory data. This
is crucial for developing green transportation systems and optimizing battery usage. Despite
these advancements in tools and techniques, there are still challenges that need to be addressed
in the future.

1.3 Challenges in Analyzing and Predicting Trajec-
tory Data

Analyzing and predicting trajectory data present significant challenges, even with the advance-
ments in techniques and tools. One of the primary challenges is the varying characteristics of
trajectory data. These variations can include spatial resolution (ranging from fine to coarse),
spatial dimensions (2D or 3D), temporal resolution (from sparse to frequent sampling), sam-
pling intervals (regular or irregular), and the overall size of the data [14].

These differences in characteristics add complexity to the preprocessing of trajectory data.
Applying the right techniques and tools to handle these variations is crucial. For instance, man-
aging spatial dimensions requires careful representation of each spatial information type, such
as Point or LineString. Additionally, the characteristics of the data influence how it should be
cleaned. Cleaning trajectory data for vehicle movement differs significantly from cleaning tra-
jectory data for humanmovement. Proper preprocessing is essential as it forms the foundation

3

for building accurate predictive models.
In predicting trajectory data, correctly modeling the problem is critical to achieving reli-

able predictions. For example, trajectory prediction tasks often involve forecasting the next
sequence based on historical data. Accurately defining the problem helps in selecting appropri-
ate techniques for model development. In real-world scenarios, the challenges vary depending
on the specific task and context of the trajectory data.
In this thesis, the primary use case involves predicting battery consumption from electric

bus trajectory data. This task presents several challenges in the data prerprocessing, including
Global Positioning System (GPS) inaccuracies, the sparsity of trajectory data (recorded every 30
seconds), handling missing values and adding context from the raw trajectories. These issues
must be carefully addressed to develop an accurate predictive model. Additionally, further
challenges arise in ensuring the quality and reliability of the model predictions.

The secondary use case involves trajectory prediction for ship movement data, particularly
using the Automatic Identification System (AIS) dataset. This use case faces similar challenges,
such as GPS inaccuracies and data cleaning requirements. These issues are common in the
analysis and prediction of trajectory data, necessitating a strategic approach to address them
effectively.

1.4 Addressing the Challenges and Contributions

In this section, wewill discuss how to address the challengesmentioned in the previous section,
focusing on those presented in the primary and secondary use cases. We will explore specific
strategies for data preprocessing andpredictivemodeling, highlighting our contributions to the
field. By systematically addressing these challenges, we aim todemonstrate the effectiveness and
versatility of our approach in overcoming them.

One of the challenges in our primary use case is preprocessing the raw bus trajectories in the
form ofAutomatic Vehicle Location (AVL) data. To address this, wewill define a data pipeline
strategy to extract the necessary information from the bus trajectories before feeding it into the
prediction model. This data pipeline will include data cleaning and preprocessing techniques
such asmapmatching, linear interpolation, and stop detection. Additionally, we will augment
the data with contextual information such as weather and elevation data. It is also necessary to
aggregate the trajectory data to ensure it is comprehensive and ready for model building.

After preprocessing the data, our next challenge is to build an accurate predictive model
from our trajectory data. To address this, we will employ a strategic approach that begins with

4

developing a baseline model, followed by iterative improvements to enhance prediction perfor-
mance. We will evaluate the predictions using metrics such as MSE and standard deviation
to assess both the performance and consistency of our models. This systematic approach en-
sures that we can refine our models effectively, leading to more reliable predictive outcomes
and laying the groundwork for our key contributions.
Building on this foundation, our contribution through this approach to predicting electric

consumption from electric bus trajectory data includes the creation of a comprehensive data
pipeline for processing bus trajectory data within public transportation networks. Addition-
ally, we will develop a predictive model to forecast battery consumption based on this data.
This work will aid in creating greener cities and increasing the efficiency of public transporta-
tion networks by optimizing planning and routing based on forecasted battery consumption.
Ultimately, this will enhance our contributions to intelligent transportation systems.
Additionally, we are including a secondary use case to demonstrate the versatility of our ap-

proach across different types of trajectory data. This ensures that our methods are robust and
adaptable to various real-world scenarios. The challenges in this use case involve building a
comprehensive data pipeline to process our AIS dataset, which includes data cleaning and pre-
processing.
Building on the insights gained from addressing these challenges, additional contributions

from both use cases will include the development of predictive models for these datasets and
the integration of preprocessing andmodeling techniques into a cohesivemethod for trajectory
prediction on dense trajectory data. Overall, these two use cases will contribute to advancing
intelligent transportation systems.

1.5 Structure of the Thesis

In this section, wewill outline the structure of the thesis, which is organized to address the chal-
lenges identified in previous sections and to present our systematic approach to solving them.
Bydetailing the organizationof each chapter, we aim toprovide a clear road-mapof the research
process, methodologies, and findings. This structured overview will help readers understand
the logical progression of our work and the contributions made through our research.

Chapter 2will review the necessary literature relevant to addressing the challenges and build-
ing our solution. This chapter will begin with an overview of trajectory data, followed by the
techniques required for cleaning and processing it, and conclude withmethods for developing
predictive models.

5

Building on this foundation, Chapter 3 will provide an in-depth discussion of our primary
use case. This includes a detailed examination of the dataset, the construction of our data
pipeline, and the validation of our preprocessed data from the data pipeline.

Continuing from the data pipeline construction, Chapter 4 will describe the process of
building the predictive models. We will start from the baseline and progressively improve it,
detailing the metrics used for evaluating our predictions and presenting our analysis of the pre-
diction results.

Extending our approach, Chapter 5 will deepen the exploration of our challenges by inte-
grating the secondary use case. This chapter will explain the entire prediction process, from
building the data pipeline to assessing the prediction results for this additional scenario.

Finally, Chapter 6 will present the conclusion, summarizing our key findings and reflecting
on howwe addressed the challenges in both use cases. It will also discuss the broader impact of
our findings on intelligent transportation systems and outline potential future work.

6

2
Literature Review

In this chapter, we will introduce the necessary literature that forms the foundation of our the-
sis, with a focus on intelligent transportation and maritime navigation. This review explores
the methodologies and techniques employed in trajectory data representation, cleaning, pre-
diction, and evaluation, laying the groundwork for the experimental studies presented in sub-
sequent chapters.

The literature review is organized into several sections, each systematically addressing key
areas relevant to our research. We begin in Section 2.1, which introduces trajectory data, its
various representations, and the types of trajectory data considered in this study. Building on
this understanding, Section 2.2 focuses on themethods used for cleaning trajectory data, partic-
ularly emphasizing mapmatching, trajectory segmentation, and the enrichment of trajectories
with semantic context.

Transitioning from data cleaning to predictive analysis, Section 2.3 explores the tasks of pre-
diction within trajectory data, with a specific emphasis on intelligent transportation and mar-
itime navigation domains. This section also discusses the methods used for performing these
prediction analysis.

Building on this, Section 2.4 examines the application of deep learning techniques, high-
lighting relevant architectures and their effectiveness in processing trajectory data. To ensure
the robustness and accuracy of our models, Section 2.5 outlines the evaluationmetrics applied
throughout this thesis. Finally, Section 2.6 concludes the chapter by summarizing the key in-
sights from the literature review.

7

2.1 Trajectory Data

Trajectory data is a fundamental concept in understanding the movement patterns of objects
over time and space. According to Spaccapietra et al. [16], a trajectory can be defined as a
segment of an object’s movement that is delimited by a specific time interval [tbegin, tend], where
it is described as a continuous function from the time interval to space. Additionally, Zheng
[2] defines a trajectory as a trace generated by a moving object, represented as chronologically
ordered points, with each point comprising both spatial and temporal information.
Spaccapietra et al. [16] further explain that a trajectoryhas twokey facets: the geometric facet

and the semantic facet. The geometric facet includes the spatio-temporal recordings during the
object’smovement, while the semantic facet encompasses the trajectory’s characteristics and its
application-specific meanings. This combination of spatial, temporal, and semantic informa-
tion is crucial as it enables more complex analyses of trajectory data, such as understanding
movement patterns, optimizing routes, or predicting future movements.

2.1.1 Trajectory Data Representation

After understanding the definition of trajectory data, it is important to explore how trajectory
data is represented. According to Spaccapietra et al. [17], there are three primary representa-
tions of trajectory data: continuous, discrete, and segmented. Continuous trajectories typically
consist of a finite sequence of spatio-temporal information, supplemented by an interpolation
function that allows for the retrieval of these details at any given instant within the time inter-
val [tbegin, tend]. In contrast, discrete trajectories are composed of a finite list of spatio-temporal
positions without providing continuity in the movement of the object. These continuous and
discrete trajectories are common forms of representing trajectory data and are often referred to
as raw trajectories.

Segmented trajectories, on the other hand, are defined by a step function thatmaps the inter-
val [tbegin, tend] to a finite set of values, with each value defining an annotation or ”episode” in the
trajectory. Understanding these representations is crucial, as they form the foundation for how
trajectory data is structured and analyzed. For instance, the continuous anddiscrete trajectories,
typically contain basic location and time information and serve as the base representation for
many types of trajectory data. Additionally, the segmented representation is closely linked to
trajectory segmentation techniques and semantic trajectories, providing a foundation formore
advanced topics in trajectory analysis. All these representations and definitions are discussed

8

in detail by Spaccapietra et al. [17]. Building on this foundational understanding of trajectory
data representation, we can now introduce and define the types of data utilized in this thesis,
which will be explained in the following sections.

2.1.2 AVLData

An AVL system is used to track vehicle locations and has become a critical component of in-
telligent transportation systems. In public transportation, particularly for buses, AVL systems
are widely employed to monitor and manage bus movements and positions. As explained by
Hickman [18], AVL systems in buses operate by communicating their positions at periodic
frequencies, such as every 30 or 60 seconds, through polling. In addition to location and times-
tamp data, AVL systems can capture other relevant information, providing not only real-time
tracking but also a comprehensive historical record of movements, enriched with contextual
information.

Additionally, as explained by Furth et al. [19] and cited inGerstle [20], there are two types of
AVL data: location-at-time data and time-at-location data. Location-at-time data aligns with
Hickman’s definition [18], where buses report their location via the Global Positioning Sys-
tem (GPS) at specific times, capturing the bus positions with corresponding timestamps in a
periodicmanner. Time-at-location data, on the other hand, is collectedwhen a bus passes a par-
ticular location, meaning that the timestamps may not be evenly spaced depending on when
the bus reaches those locations.

Given these definitions, data from AVL systems, especially location-at-time data, can be
treated as trajectory data. Each position point from the AVL data within a given time interval
can be considered a discrete trajectory. With the application of an interpolation function, this
data canbe represented continuously. Furthermore, by employing step functions andmapping
trajectory data to a set of values, it can be represented as segmented trajectories. This enables
more advanced analytics, such as in the work by Ankit et al. [21], where AVL data was used to
predict bus arrival and journey times.

Ourprimarydataset, which focuses on thebattery consumptionof abus, is essentially location-
at-time AVL data collected at 30-second intervals. In addition to positional information and
timestamps, the dataset includes contextual data differentiated by signal attributes such as bat-
tery percentage, battery autonomy, total distance, and cumulative battery consumption. Each
signal attribute value provides specific data relevant to its context, which is crucial for analyz-
ing battery usage patterns. For our analysis, we will specifically focus on cumulative battery

9

consumption. A detailed overview of the data structure will be presented in Chapter 3.

2.1.3 AIS Data

AIS is a vital tracking mechanism that enables vessels to broadcast essential information, such
as identification, speed, and course, to other ships and Vessel Traffic Services (VTS) stations
[22]. AIS plays a crucial role in enhancing maritime safety by facilitating search and rescue
operations and supporting the advancement of sophisticated maritime systems. As outlined
by Aremu [5], AIS data is categorized into three primary types: dynamic, static, and voyage-
related information.

Dynamic information includes variables that fluctuate throughout a voyage, such as time,
position, speed, course, and heading. In contrast, static information comprises attributes that
remain constant, such as the Maritime Mobile Service Identity (MMSI), ship type, and other
fixed characteristics. Additionally, voyage-related information, including the vessel’s destina-
tion and estimated time of arrival, is also transmitted.

As described in [5], dynamic information is typically transmitted every 2 to 10 secondswhen
the vessel is in motion and every 3 minutes when it is anchored. Voyage-related information
is broadcast every 6 minutes. This comprehensive dataset offers detailed insights into a vessel’s
spatial and temporal position, along with supplementary contextual information. Due to its
composition,AIS data is often categorized as trajectory data, incorporating bothpositional and
temporal elements. Devogele et al. [23] provide a detailedmethodology for processing rawAIS
position data into structured trajectories, highlighting the importance of converting raw data
into usable trajectory information. This processed trajectory data is essential for numerous
applications, including trajectory prediction analysis, which has been explored in a variety of
studies [24, 25, 26].

In this study, we employ a secondary dataset comprising AIS data from Danish Maritime
Authority [27], the structure of which is detailed in Table A.1 in the Appendix. The dataset
conforms to the standard AIS attributes discussed earlier, providing a solid foundation for our
analysis. However, not all available information from the AIS dataset will be utilized in our
analytics. In Chapter 5, we will detail how specific elements of this dataset are incorporated
into our analysis and prediction tasks.

10

2.2 Trajectory Data Cleaning and Preprocessing

After determining how we will represent our data and understanding the specific type of our
dataset, it is essential to establish the foundation and techniques for preprocessing and cleaning
our trajectory data. Proper preprocessing is crucial because the quality of the trajectory data
directly impacts the accuracy of the subsequent analysis, such asmovement pattern recognition
and prediction tasks.

From a broader perspective, Parent et al. [28] describe the process of transforming raw trajec-
tories into more manageable and reliable representations. This process includes cleaning raw
trajectory data, performing map matching, and compressing trajectory data, offering a general
overviewof the key steps involved inpreprocessing and cleaning. Various studies have proposed
different approaches to trajectory data cleaning, each tailored to the specific characteristics of
the trajectories and the intended applications.

For instance, addressing inaccuracies in positioning systems like GPS, Marketos et al. [1]
emphasize the need for both basic and advanced cleaning techniques. They discuss methods
such as applying thresholds to filter out erroneous data points, alongside more sophisticated
solutions like the Kalman Filter [29], which corrects these points by estimating their true posi-
tions. In cases where trajectories are influenced by external factors such as road networks, map
matching becomes an indispensable technique. This method corrects errors by aligning the
trajectories with the appropriate paths, a topic that will be explored in detail in subsequent
sections.

Another approach to trajectory data cleaning is introduced by Li et al. [30], who propose
a data-driven method known as the historical trajectory point cloud, offering a novel solution
for trajectory cleaning. Complementing this, Zheng [2] presents a comprehensive overview
of trajectory data preprocessing techniques, including trajectory segmentation, noise filtering,
and stay point detection. Together, these methods establish a robust framework for effectively
handling trajectory data, ensuring that the cleaned data is accurate and ready for subsequent
analysis.

In alignment with these methodologies, our thesis will focus on map matching as the pri-
mary technique for cleaning the trajectory data in our primary dataset. Additionally, we will
focus on trajectory segmentation and the incorporation of semantic information, further refin-
ing our dataset to support advanced analytical tasks.

11

2.2.1 MapMatching

Mapmatching is an established technique used to correct GPS inaccuracies and errors, particu-
larly in trajectories constrained by road networks. For trajectories confined to a road network, a
map-matching algorithmworks by aligning each trajectory point with the corresponding road
segment. This process produces new coordinates that are accurately matched to the road net-
work, effectively removing inaccurate points that fall outside the network.

The concept of map matching can be visualized in Figure 2.1, where trajectory points are
aligned with the appropriate road segments. In the figure, the trajectory is represented by
points Pi and road segments Sj, with points P1, P3, and P4 successfully map-matched to their
corresponding road segments. However, point P2 has multiple potential road segment candi-
dates, S1 and S2, illustrating a common challenge in map matching. Different map-matching
approaches address this challenge in various ways, determining how to accurately align points
with the correct segment.

Figure 2.1: Map matching algorithm [1]

Chao et al. [31] discuss several approaches tomapmatching, including the similaritymodel,
state-transition model, and candidate evolving model. A basic approach involves directly map-
ping trajectory points to the nearest road segment, but thismethod is prone to errors as it works
solely on closeness, similar to the similarity model. To improve accuracy, more sophisticated
approaches, such as the state-transition model, take the object’s movement into account. In
this thesis, we will focus on the state-transition model, specifically the HiddenMarkovModel
(HMM), due to its widespread adoption and the availability of several production-ready open-
source solutions.

One of the major advancements in map matching using HMM is the work by Newson et
al. [32], who developed a novel algorithm for implementing map matching. This algorithm is
particularly robust, having been tested on lower frequency data with higher levels of noise. In

12

their approach, road segments are modeled as HMM states, and the noisy vehicle positions are
treated as state measurements. The objective is to match each position measurement with the
corresponding road segment state, a logical choice given that state transitions are constrained
by the actual road network. This approach is further supported by calculating measurement
probabilities to determine which measurements are associated with particular road segments,
and transition probabilities to estimate the likelihood of movement between road segments.
The transition probability is calculated based on the distance traveled.

Thesemeasurement and transition probabilities are then utilized by theViterbi algorithm to
calculate the optimal path. The Viterbi algorithm works with the HMM to identify the most
likely sequence of states and observations. The results of this algorithm are impressive; even
with a sampling frequency of 30 seconds, the algorithm performs well withminimal error, and
at higher sampling intervals, it demonstrates robustness to noise, with standard deviations as
large as 50meters. This algorithm forms the basis for the implementation of open-source tools
such as Valhalla*, which use it in their map matching modules.

Interestingly, while the algorithm developed by Newson et al. [32] is not the first HMM-
based map matching algorithm, it has become one of the most frequently cited in the litera-
ture. Previous researches [33, 34], andmore recent studies [35, 36] have also developedHMM-
based approaches, underscoring the popularity and widespread adoption of this method in
map matching models. In our thesis, we will specifically employ the map matching approach
using the HMM model with the Viterbi algorithm, as implemented by the open-source tool
Valhalla in its map matching modules. This will enable us to preprocess our AVL data, which
contains erroneous GPS points, and allow us to perform advanced preprocessing as described
in Chapter 3.

2.2.2 Trajectory Segmentation

In addition to the map matching algorithm, another crucial strategy for preprocessing and
cleaning our data is trajectory segmentation. This method is particularly effective for man-
aging complex datasets by breaking down trajectories into smaller, more manageable segments.
As discussed in the previous section, segmented trajectories are one of the key representations
of trajectory data.

Spaccapietra et al. [17] describe segmented trajectories as subsequences of tuples ordered
by temporal information, where all the time intervals are disjointed. This approach, as illus-

*Valhalla open source routing engine

13

https://valhalla.github.io/valhalla/

trated in Figure 2.2, demonstrates how trajectories can be divided into segments Si, resulting
in distinct, non-overlapping segments. Segmentation not only simplifies the analysis but also
provides an opportunity to uncover patterns that may be hidden within the larger trajectory.

(a) (b)

(c)

Figure 2.2: (a) Segmented trajectories by spatial gaps [1] (b) Segmented trajectories by temporal gaps [1] (c) Segmented
trajectories by stay points [2]

Zheng [2] emphasizes that trajectory segmentation is valuable not only for managing com-
plexity but also for revealing unseen patterns within subsets of the data. By focusing on smaller
segments, we can better understand specific behaviors or movements that might be obscured
within the full trajectory. This granular approach to trajectory analysis highlights the impor-
tance of segmentation in enhancing the clarity and usability of trajectory data.

There are several approaches to segmenting trajectories. One such approach is discussed by
Marketos et al. [1], who explore segmentation in the context of reconstructing raw trajectories
using key parameters. These parameters—including temporal gaps, spatial gaps, maximum
speed, noise duration, and tolerance distance—are crucial in determining how raw trajecto-
ries are segmented. By applying these parameters, we can systematically segment trajectories,
thereby making the dataset easier to manage and analyze.

Onepractical application of these parameters is illustrated in Figure 2.2, where segmentation
is performed using temporal and spatial gaps. As shown, when the gap between two spatio-
temporal points exceeds the threshold, a new segment is created. This method not only helps
in organizing the data but also aligns with the previously discussed benefits of segmentation,
reinforcing its importance in trajectory preprocessing.

14

Anotherparameter in reconstructing trajectories involves theuseof tolerancedistance,which
defines themaximumdistance between two positions of the same object for it to be considered
stationary [1]. Closely related to this concept, Zheng [2] introduces the idea of stay points,
where objects remain stationary for a certain period. Detecting these Stay Points allows us to
transform trajectory data into more meaningful representations, as illustrated in the following
equation adapted from [2]:

T = {T1,T2,T3, . . . ,Tn} ⇒ S = {S1 → S2 → S3, . . . , Sn}

Here, each Sj segments includes trajectory points Ti that are separated by stay points. This
refined segmentation process not only helps in managing the complexity of trajectory data but
also facilitatesmore advanced analyses bydistinguishingbetween stationary andnon-stationary
points. Figure 2.2, illustrates how stay points SPi, depicted in red circles, can be used to define
segments in the data.

In this thesis, we apply these concepts to segment our trajectories, thereby producing smaller
trips and managing the complexity of the trajectory data. For our primary dataset, we use the
Stay Point approach to segment the trajectories, a process that will be detailed in Chapter 3. In
our secondary dataset, we combine temporal gaps and spatial gaps to construct the trajectories,
as will be explained in Chapter 5.

2.2.3 Semantic Trajectories

Another important aspect of building trajectories is the addition of semantic information to
raw trajectory data. Spaccapietra et al. [17] define semantics in this context as any representa-
tion of a trajectory that has been enriched with contextual data or transformed to addmeaning
to the raw data. This enrichment process enables us to create semantic trajectories, where the
added contextual information provides deeper insights into the trajectory data.

The next crucial step in processing trajectory data is enriching it with semantic information.
Parent et al. [28] describe semantic enrichment as the process of enhancing raw trajectories
with contextual repositories to produce a set of semantically annotated trajectories. Addition-
ally, Marketos et al. [1] provide a practical framework for constructing these semantic trajecto-
ries. Their approach involves first segmenting the trajectory data into episodes, followed by an-
notating these segments with relevant contextual information, such as regions, lines, or points.

The first step in this framework is constructing episodes or segments. Once these segments
are established, they can be enriched with additional context. One approach is to annotate the

15

trajectories with regions by performing spatial joins with data sources containing geo-objects,
thereby adding geographical context. Another method is to annotate the segments with lines,
such as road networks, which adds a further layer of meaning. Techniques like map matching,
mentioned earlier, are particularly useful for this purpose. Finally, adding points of interest
helps identify significant stop episodes within the trajectories, further enriching the dataset
with valuable insights.

By applying thesemethods, we can significantly enhance the semantic value of our trajectory
data. In Chapter 3, we demonstrate how these approaches are used to annotate trajectories
with lines through map matching and to enrich them with geographical information. This
added semantic information proves invaluable, enabling us to extract more detailed behaviors
and insights from our trajectories, ultimately leading to more informed analysis and decision-
making.

2.3 Trajectory Data Prediction

Navigating the spatio-temporal context of trajectory data presents significant challenges. How-
ever, with a solid understanding of how to define, represent, preprocess, and clean this data, we
are now well-positioned to conduct more advanced analyses. One such analysis involves mak-
ing predictions based on our datasets. It is crucial to approach predictive modeling with care,
given that trajectories encompass not only spatio-temporal aspects but also their associated se-
mantic contexts.

Research in this field has extensively explored various predictive modeling tasks using trajec-
tory data. In their review paper, Graser et al. [14] outlined several common prediction tasks
that utilize trajectory data. These include trajectory prediction, arrival time estimation, and
subtrajectory classification, which are often applied to dense trajectory datasets.

In addition to these tasks, predictive modeling can also extend to more specific applications.
For example, tasks like next location prediction, anomaly detection, synthetic data generation,
and location classification are typically performed on aggregated trajectory data. Other studies
have explored predictions related to environmental and vehicle performance metrics, such as
emission prediction [37], electric vehicle range estimation [38], and fuel consumption forecast-
ing [39].

Applying these predictive tasks to our trajectory data provides concrete use cases and demon-
strates the practical application of our preprocessed and cleaned datasets. Building on this
foundation, we introduce two key use cases: predicting electric bus battery consumption as

16

our primary focus and predicting ship trajectories using AIS data as a secondary focus.

2.3.1 Predicting Vehicle Battery Consumption

Our primary use case with the AVL bus dataset involves analyzing battery consumption by
vehicles over specific trips. This analysis is critical for developing smarter transportation plan-
ning strategies, which ultimately contribute to greener urban transport systems. To establish
a robust foundation for our approach, it is essential to review related research on fuel usage
prediction, as these methodologies provide valuable insights and draw parallels to studies on
battery consumption.

Prior research in fuel consumptionpredictionhas provided valuable insights that are directly
applicable to battery consumptionmodeling. Statisticalmodels, such as regression andAutore-
gressive IntegratedMoving Average (ARIMA), have been widely utilized to predict fuel usage,
as demonstrated in studies byKabir et al. [40] andCappiello et al. [37]. Additionally, machine
learning methods, particularly the random forest approach, have been successfully applied in
this context, as evidenced by the work of Yao et al. [41] and Perrotta et al. [39].

Furthermore, advancements in prediction techniques, including artificial neural networks,
have significantly enhanced the accuracy of fuel consumption forecasts. Studies in [40, 41, 42]
have shown how these more advanced models can capture complex, nonlinear relationships in
the data. These developments in fuel consumption prediction have naturally led to their adap-
tation and application in the context of battery consumption prediction for electric vehicles.

Research specifically targeting battery consumption has also employed various statistical
modeling techniques. For instance, studies in [43, 44] have explored different approaches to
predicting battery usage. Caewer et al. [44] utilizedmultiple linear regressionmodels, with one
model incorporating kinematic factors and another integrating acceleration variables, both ag-
gregated over entire trips. Additionally, they developed amicro-model to predict consumption
on a more granular level, such as micro-trips. These studies demonstrated that more detailed
models tend to offer greater accuracy. However, the micro-model’s regression coefficients did
not fully align with the physical principles of battery consumption, even though it achieved
accuracy comparable to other models, suggesting potential for further refinement and explo-
ration.

More recent studies have explored the use of deep learning techniques for battery consump-
tion prediction. For example, Bundgaard et al. [45] applied deep learning features to predict
battery consumption at the trip segment level, achieving notable advancements. Similarly, in

17

Zarei et al. [46], deep learning combined with Symbolic Aggregation Approximation (SAX)
filteringwas employed to predict battery consumption in electric buses. This approach demon-
strated significant improvements in accuracy compared to traditional regression models, high-
lighting the effectiveness of deep learning methods.

In this thesis, we aim to leverage both statistical and deep learning models. Regression will
serve as our baseline model due to its interpretability, which provides a clearer understanding
of the predictor variables. In parallel, we will employ more advanced deep learning models to
further enhance prediction accuracy. The detailed methodology and implementation of these
models are discussed in Chapter 4.

2.3.2 Predicting Ship Trajectories

A secondary use case that we can explore with our AIS dataset, which contains ship trajectories,
is trajectory prediction. While not the primary focus of our study, predicting future ship tra-
jectories is nonetheless crucial for enhancing maritime navigation safety, as these predictions
can help prevent collisions and assist in planning new courses for ships. A classical approach to
trajectory prediction has its origins in the field of computer vision.

In computer vision, prior research on predicting future trajectories, such as that conducted
in [47, 48, 49], primarily addresses short-term prediction. These studies utilize deep learning
models to predict short-term human movement trajectories and include additional context
related to human interactions or environmental segmentation in the prediction process. Re-
search dealing with long-term trajectory prediction, such as [50], also employs deep learning,
incorporating techniques like transfer learning to extend the prediction horizon. Additionally,
[51] adopts a probabilistic method for long-term prediction.
A similar application has been implemented in the context of ship trajectory prediction. For

example, [25, 52, 53] have developed trajectory prediction models using deep learning tech-
niques that incorporate environmental context, while [54] employs probabilistic methods for
prediction. Amore general approach, involving the creation of a framework for trajectory pre-
diction, has been proposed by [55, 56]. Specifically, [55] enhances trajectory prediction for on-
line usage by focusing on streaming data, whereas [56] concentrates onbuilding a deep learning
framework for trajectory prediction.

However, these approaches often introduce a degree of complexity. A simpler method, as
proposed by [24], involves using a straightforward deep learning model combined with linear
and spline interpolation to predict future ship trajectories. This approach relies only on ship

18

speed and geographical coordinates (latitude and longitude) for the prediction.
In our research, as a secondary use case, we will utilize the same approach by employing

a straightforward deep learning model and using the same features, which will be detailed in
Chapter 5. This secondary use case aims to demonstrate the flexibility of our methodology,
drawing from consistent knowledge in representing, preprocessing, and cleaning trajectory
data.

2.4 Trajectory Data PredictionModel

In the previous section, we observed that several applications of trajectory data prediction uti-
lize deep learning methods for their analysis. These deep learning algorithms have been exten-
sively studied and, due to their robustness, have been successfully applied to the trajectory data
domain. One of the most common and well-researched deep learning methods for prediction
analysis on trajectory data is the use of RNN.

In [57], the authors employed the RNN architecture to exploit the sequential nature of
trajectory data. Additionally, recent studies byGraser et al. [14, 58] indicated that RNN-based
architectures account for 39% of recent publications related to the application of deep learning
to trajectory data. This popularity is largely due to the fact that trajectories can be naturally
viewed as sequences orderedby their timestamps,makingRNN-based architectureswell-suited
to capture and exploit the sequential attributes inherent in trajectories.

In the following sections, we will provide an overview of Artificial Neural Networks as a
foundation for our deep learning model, followed by a discussion on RNN architecture. We
will then focus on one of its most prominent variants, the Long Short-TermMemory (LSTM)
network. These sections will explain how these architectures are constructed and emphasize
the specific properties that make them particularly effective for predicting sequential data.

2.4.1 Aritficial Neural Networks

One of the foundations of deep learning is the feedforward neural network, also known as the
multilayer perceptron (MLP). Goodfellow et al. [4] describe that the goal of this network is
to approximate some function f∗. Additionally, in this specific network, there is no feedback
from the output back through themodel, which iswhy it is called a feedforwardneural network.
Next, we can examine this network by looking at its components.

19

As explained by Nielsen [3], these networks are composed of small components called neu-
rons. One of the earliest approaches to modeling a neuron is the perceptron, developed by
Rosenblatt [59]. The perceptron takes each input andmultiplies it by a weight. The output of
the perceptron is influenced by a threshold, known as the bias, which determines the neuron’s
activation. The operation of the perceptron can be mathematically expressed as a dot product
between the weights and the inputs, represented as w · x, with the bias added, resulting in the
following equation [3]:

f = w · x+ b

Output =

0 if f ≤ 0

1 if f > 0

Instead of using the perceptron’s step function, other activation functions can be used within
neurons. With the perceptron, a small change in the weight or bias can cause the output to
flip, which is often too extreme. To address this issue, the sigmoid function can be introduced,
allowing for continuous inputs and producing a smoother transition in the output. The sig-
moid function is applied as follows: σ(w · x + b). The sigmoid function is described by the
following equation [3]:

σ(z) =
1

1+ e−z

The choice of activation function is not limited to the sigmoid; other functions can be used
depending on the desired behavior of the network. This selection of functions, known as acti-
vation functions, is crucial in determining the output of each layer.

As illustrated in Figure 2.3, the complete structure of a feedforward neural network is de-
picted, where each layer comprises a set of neurons. This network architecture includes hidden
layers, which are responsible for additional computations before the final output is produced.
The formal structure of this network can be described as outlined by Goodfellow et al. [4],
where the network function is represented as f(x) = f3(f2(f1(x))). In this formulation, f1 cor-
responds to the first layer, f2 and f3 represent the subsequent layers, and during the training
process, each layer is iteratively adjusted to approximate the optimal function f∗(x).
While feedforward neural networks are effective for approximating complex functions in

model building, they have certain limitations. Specifically, these networks do not incorporate
feedback from the output back into the network, which restricts their ability to maintain state

20

Figure 2.3: Neural networks architecture [3]

or context across different layers. To address this limitation, other types of neural networks
have been developed that integrate feedbackmechanisms, allowing the network to retain infor-
mation over time. One such network is RNN,which will be discussed in the following section.

2.4.2 RecurrentNeural Networks

Recurrent neural networks (RNN), as described by [4], are a class of neural networks specifi-
cally designed toworkwith sequential data. Whenpresentedwith a sequenceof inputs, x1, . . . , xt,
an RNN can learn the dependent patterns within the sequence by maintaining a memory of
previous computations.

Figure 2.4: Illustration of an RNN architecture [4]

As depicted in Figure 2.4, anRNNcan be conceptualized as a loop that recursively processes
the sequential data, with each iteration referencing the previous timestep. When this loop is un-
folded, it becomes apparent that each layer within the RNN corresponds to a specific timestep
of the input sequence. The operations of the RNN can be mathematically formalized as fol-

21

lows, based on the equations provided in [4]:

f(t) = b+W · h(t− 1) + U · x(t) (2.1)

h(t) = tanh(f(t)) (2.2)

o(t) = c+ V · h(t) (2.3)

In these equations, the matricesW, U, and V represent the weights that connect different
parts of the network. Specifically,W is the weight matrix for the connections between hidden
states, U is the weight matrix for the connections from the input to the hidden state, and V is
the weight matrix for the connections from the hidden state to the output.

Equation 2.1 describes the computation at each timestep t, where the function f(t) is com-
puted by combining the previous hidden state h(t− 1), the current input x(t), and a bias term
b. The current hidden state h(t) is then obtained by applying the tanh activation function to
f(t), as shown in Equation 2.2. Finally, the output activation o(t) is calculated by adding a bias
vector c to the weighted hidden state h(t), as expressed in Equation 2.3.

From the equationwe can see whyRNN is powerful in taking sequence input, since it incor-
porated the previous hidden state in the current time step as the part of the equation. However
this not without a problem, Hochreiter in [60] and Bengio et al. [61], described that major
drawbacks for this RNN network is the vanishing gradient problem and the difficulties learn-
ing much more longer sequences. Hence, in [60] new variant of RNN network is inroduced,
which called Long-term short memory (LSTM).

LSTM networks introduce the capability to control the flow of information, selectively re-
taining what is essential and discarding what is irrelevant. As illustrated in Figure 2.5, this flow
management is achieved through structures known as gates. The LSTM cell comprises three
primary gates: the input gate, the forget gate, and the output gate. Each gate serves a specific
function, as represented by the following equations [4]:

f(t)i = σ

bfi +
∑
j

Uf
i,jx

(t)
j +

∑
j

Wf
i,jh

(t−1)
j

 (2.4)

As shown inEquation2.4, the forget gate’s primary role is todeterminewhether information
from the previous timestep should be retained or discarded. This decision is made by applying

22

Figure 2.5: Illustration of an LSTM architecture [4]

a sigmoid activation function to the hidden state of the previous timestep.

s(t)i = f(t)i s(t−1)
i + g(t)i σ

bi +
∑
j

Ui,jx(t)j +
∑
j

Wi,jh(t−1)
j

 (2.5)

g(t)i = σ

bgi +
∑
j

Ug
i,jx

(t)
j +

∑
j

Wg
i,jh

(t−1)
j

 (2.6)

The input gate, as seen in Equation 2.5 and Equation 2.6, governs the extent to which new
input information should be integrated into the cell state. This update process involves a com-
bination of information from the forget gate, which decides the retentionof previous cell states,
and the input gate, which determines the amount of new information to be incorporated.

h(t)i = tanh
(
s(t)i

)
· q(t)i (2.7)

q(t)i = σ

boi +
∑
j

Uo
i,jx

(t)
j +

∑
j

Wo
i,jh

(t−1)
j

 (2.8)

Finally, the output gate, as described in Equation 2.8 and Equation 2.7, determines whether
the information fromthe current hidden statewill be transmitted as output. In these equations,
b∗,U∗, andW∗ represent the bias, input weight, and recurrent weight at each gate, respectively.

The introduction of these gates significantly enhances the LSTM’s ability to manage infor-
mation flow, making it more effective than a standard RNN, particularly when working with

23

longer sequences. By controlling the retention and update of information through the input,
forget, and output gates, LSTM networks address the limitations of traditional RNNs in han-
dling long-term dependencies. In this thesis, we employ LSTM as the primary model for both
prediction analyses, which will be discussed in detail in Chapter 4 and Chapter 5.

2.5 EvaluationMetrics

To evaluate our predictive analysis, wewill define themetrics used and provide the rationale be-
hind their selection. The evaluationmetrics chosen are straightforward and have been selected
to facilitate easy interpretation of our results. As discussed in [62], common quantitative mea-
sures for assessing the performance of regression models include Mean Squared Error (MSE)
and Root Mean Squared Error (RMSE). Additionally, the R2 Score can be used to assess the
model’s ability to explain variance in the data. We will use these metrics to evaluate our models
and will also explore the Mean Absolute Error (MAE) and Mean Absoulute Percentage Error
(MAPE).

R2 Score: The R2 score, or coefficient of determination, as explained by [62], indicates the
proportion of the variance in the dependent variable that is predictable from the independent
variables. This metric helps compare the predictive performance of models by indicating how
well they explain the variance in the data. The formula for the R2 score is as follows:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

MSE:MSE is calculated by taking the average of the squared differences between the actual
andpredicted values. MSE is sensitive to outliers, as it disproportionately penalizes larger errors.
The formula for MSE is given by:

MSE =
1
n

n∑
i=1

(yi − ŷi)
2

RMSE: RMSE is similar to MSE but is more interpretable, as it is on the same scale as the
data. It is calculated by taking the square root of the MSE and is also sensitive to outliers. The
formula for RMSE is:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

24

MAE: As explained by [63], MAE is a more natural measure of average error in prediction
results. It is less sensitive to outliers compared toMSE, as it simply averages the absolute differ-
ences between the actual and predicted values. The formula for MAE is:

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣

MAPE: Similar to MAE, MAPE calculates the mean of the percentage error between the
actual data and predicted data. It is particularly useful when we want to express the error as a
percentage. The formula for MAPE is:

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100

Defining these evaluationmetrics is crucial. In our primary use case, theR2 score andRMSE
will be used for comparative analysis between the baseline and deep learningmodels, providing
a clear evaluation of predictive performance. In the secondary use case, RMSE andMAPEwill
be employed to measure the deviation of the predicted values from the actual data.

2.6 Summary

In this literature review, we have thoroughly and extensively explored the foundational liter-
ature that underpins our thesis. We began by examining the literature on trajectory data, fo-
cusing on how to preprocess, clean, and use this data for predictive analysis. This review is an
integral part of our research as it provides the guidelines for our approach and identifies the
gaps that our study aims to fill.

Our research is focused on applying foundational theories regarding trajectories to tangible,
real-world applications. We started by understanding the characteristics of trajectories, draw-
ing upon studies such as [2, 16, 17]. We then adopted an extensive and exhaustive approach to
preprocess and clean our trajectory data, informed by the work of [1, 28, 32]. Finally, we exam-
ined methods for our predictive analysis by reviewing prior predictive analysis tasks in [14, 38]
and studies regarding deep learning models in [3, 4].

Based on our literature review, [6] provided a comprehensive overview of all aspects of tra-
jectories, including their applications. Our research extends this theoretical foundation by in-
corporating more modern and practical approaches, utilizing tools such as MobilityDB [10],

25

PyMEOS [11], MovingPandas [12] , and Valhalla to represent and process trajectory data. In
the application phase of our research, we adopt advanced tools for predictive analysis, integrat-
ing deep learning models across both of our use cases.

In our primary use case, which involves predicting electric bus battery consumption, prior
research, such as [42, 45, 46], has applied deep learning models to predict vehicle energy con-
sumption. However, these studies do not extensively address the trajectory aspect. In our re-
search, we thoroughly investigate our dataset and carefully transform it into a more meaning-
ful representation using the foundational theories we have reviewed. Techniques such as map
matching and trajectory segmentation are employed. In the prediction analysis, research in
[46] is the most closely related to our work, as it also predicts electric bus energy consumption
using public transportation data. However, we extend this approach by incorporating road
segment information as suggested in [45].
To complement our analysis, we provide a secondary use case predicting ship trajectory data,

following the same approaches in representing and preprocessing trajectories. This secondary
use case offers a different perspective, demonstrating the versatility of our approach by employ-
ing concepts such as temporal and spatial gaps detection. In the prediction task, abundant
research has been conducted in the field of trajectory prediction, including [47, 48], with a
particular focus on ship trajectory prediction in [24, 25, 52]. Our approach is most similar to
[24, 25], as we utilize the same prediction model. However, their approach is more focused on
the characteristics of AIS datasets, whereas our research emphasizes general trajectory data.
In conclusion, we will conduct predictive analysis on trajectory data, basing our methods

on foundational literature related to trajectories. We will represent, preprocess, and clean our
data, and employ advanced models such as deep learning to perform the predictive analysis.

26

3
Data Preprocessing for the Electric Bus

Usecase

Given the vast amount of trajectory data available, particularly in urban environments, one
significant application of trajectory prediction is to enhance intelligent and eco-friendly trans-
portation systems, especially public transit. By leveraging trajectory data, we can implement
smart planning strategies in public transportation to improve trip efficiency and minimize en-
ergy consumption. This is increasingly important with the growing adoption of electric ve-
hicles, particularly in Europe. As a preliminary step toward smart planning, we can begin by
predicting the battery consumption of vehicles during their trips.

In predicting battery consumption, prior research such as [45, 46] has focused on electric ve-
hicle data. Specifically, [45] focused on predicting battery consumption for electric cars, while
[46] concentrated on electric buses. In this use case, we will focus on predicting electric bus
consumption using bus trajectories in the form of AVL data.

Section 3.1 provides a brief overview of our dataset. Section 3.2 explores the challenges
present in our data. Section 3.3 explains how we address these challenges and clean the data.
Section 3.4 offers a comprehensive overview of our data cleaning pipeline to build the data for
prediction. Finally, Section 3.5 summarizes the steps taken and outlines potential improve-
ments.

27

3.1 Dataset Overview

In order to build a comprehensive analysis and develop a predictive model for forecasting bat-
tery consumption from an electric bus trajectory, it is crucial to thoroughly explain the dataset
and acknowledge the associated constraints. By doing so, we can establish a clear path and strat-
egy for implementing an effective data preprocessing method, which serves as the foundation
for constructing our prediction model.

Understanding the specifics of ourdataset is thefirst step in this process. Theprimarydataset
comprises bus trajectories collectedover aperiodof 20days. This dataset includes key attributes
such as the vehicle identification number (ID), the recorded signal values, and the geographical
position of the bus, represented by latitude and longitude coordinates. The recorded signals
consist of battery autonomy, battery percentage, cumulative vehicle distance, and cumulative
battery consumption.

For the purposes of our thesis, we focus on the cumulative battery consumption signal. This
filtered dataset retains essential information including the vehicle ID, cumulative battery con-
sumption measured in kilowatt-hours (kWh), and geographical coordinates. Each trajectory
point in the dataset is also timestamped, which is crucial for accurately sequencing the trajec-
tory points. The timestampdata plays a critical role in our analysis, enabling precise reconstruc-
tion of the bus trajectories. Table 3.1 provides detailed information regarding the data type of
each attribute.

Attribute Datatype

T Timestamp
Vehicle ID String

Cumulative Battery Consumption Integer
Latitude Float
Longitude Float

Table 3.1: Filtered primary dataset: Attributes and data types

By understanding the structure and constraints of our dataset, we can establish a robust
foundation for our subsequent analysis. This knowledge allows us to identify and address po-
tential issues that could impact our predictive model’s performance. In the next section, we
will conduct a preliminary analysis of the dataset, identifying specific challenges and outlining
the steps necessary for effective data preprocessing.

28

3.2 Data Exploration

A thorough investigation of the constraints and limitations within our dataset allows us to
strategically address these challenges and build a comprehensive data preprocessing pipeline.
This step is vital before proceeding with the development of our prediction model. By recog-
nizing and tackling these issues, we can implement themost suitable techniques to improve the
quality and accuracy of our dataset.

3.2.1 GPS Inaccuracies

After understanding the structure of our dataset, it is essential to examine the characteristics of
the data to identify any challenges that need to be addressed through data preprocessing. One
of the first aspects to consider is the nature of our trajectories. By plotting the trajectories on
a map, we can inspect our raw data visually. Figure 3.1 illustrates the spread of one vehicle’s
trajectory over a single day, depicted in blue, along with the bus road networks depicted in
orange.

Figure 3.1: A day of vehicle trajectory

As shown in Figure 3.1 the trajectories are primarily concentrated along bus road networks,
with slight deviations in certain areas. This visualization allows us to assess the general path
followed by the vehicle. However, to gain a more comprehensive understanding of the data,
it is necessary to closely examine the individual points within the trajectory. This detailed in-
spection can reveal specific data points and their alignment with the actual bus road networks.

29

Figure 3.2 provides a closer look at these individual points within the trajectory, highlighting
how they align with the bus routes and where deviations occur.

Figure 3.2: Unprocessed points along the bus road network

From Figure 3.2, it is evident that points do not align perfectly with the bus road networks
depicted on the map. This discrepancy is expected, as GPS data is not always precise. Under-
standing these inaccuracies is crucial for refining our data preprocessing methods to improve
the overall accuracy of our predictive model.

3.2.2 Discontinuities and Frequencies in Bus Trajectories

Another important aspect to consider from our trajectory data is that buses do not travel con-
tinuously throughout the day but make several stops along their routes, either to charge their
batteries or to wait for the next scheduled trip. This is illustrated in Figure 3.3, where several
points close to each other are indicated in pink. Detecting these stop points is important as it
allows us to refine our algorithms and segment the bus trajectory more precisely.

30

Figure 3.3: Possible stopping points in trajectories

These issues, coupled with the dataset’s frequency, further complicate our analysis. The
frequency of our dataset introduces additional challenges. Our data points are recorded every
30 seconds, or 0.03 Hz, typically resulting in a 30-second gap between each trajectory point.
However, not all data points adhere strictly to this frequency; some gaps can be as large as
7 hours 40 minutes, resulting in frequencies as low as 0.00003 Hz, creating a much sparser
trajectory. Importantly, no trajectory points are recorded with a gap shorter than 30 seconds.
This sparsity presents a significant challenge in accurately estimating battery consumption. In
comparison, previous studies [45, 46] have utilized datasets with frequencies of 1 Hz and 0.1-
1 Hz, respectively. Thus, our dataset is notably more sparse at 0.03 Hz, complicating the data
analysis and preprocessing tasks further.

3.2.3 Cumulative Battery Energy Consumption

In addition to the sparsity of the dataset, the battery consumption value is calculated cumula-
tively, adding complexity to analyzing energy consumption at a finer granularity, such as at the
trajectory point level. Figure 4.1 shows the cumulative battery consumption over a day. As we
can see, the consumption gradually increased from zero to the maximum consumed for that
day. Additionally, we observe slight fluctuations in the consumption data, and in some cases,

31

Figure 3.4: Cumulative battery consumption (kWh) throughout the day

the readings can drop to zero at the end due to issues with the reading device. This cumula-
tive nature of the data, necessitates additional preprocessing steps to address these challenges
effectively.

3.2.4 Dataset Context Deficiency

Moreover, wemust consider the context within our dataset, which includes spatial and tempo-
ral information. The spatial context is represented by the position of the vehicle throughLongi-
tude and Latitude, while the temporal information is provided by the timestamp value. These
two pieces of information are sufficient to reconstruct the trajectory and show the changes in
cumulative battery consumption over time. However, they do not fully capture the reality of
the situation, leading to challenges in accurately reflecting the factors influencing battery con-
sumption. Addressing these contextual limitations is crucial for improving the accuracy of our
predictive model.

This lack of context can lead to problems in capturing more variables that affect battery
consumption. Having more context from the dataset will help capture more variables and en-

32

able more accurate predictions of battery consumption. Knowing this, we will need to add
context to our dataset that might affect the prediction of battery consumption, but we must
do this carefully to ensure data integrity and accuracy. By thoroughly investigating the con-
straints and limitations of our dataset, we can strategically address these challenges to build a
comprehensive data preprocessing pipeline. This is an important step before developing our
prediction model.

3.3 Data Cleaning

In this section, we will systematically address the various issues in our dataset and provide a
thorough explanation of the algorithms, techniques, and tools used to resolve these problems.
We will begin by addressing the GPS inaccuracies. Next, we will tackle the issue of disconti-
nuity in the bus trajectories. Following that, we will address the challenges associated with the
cumulative battery consumption values in our dataset. Finally, we will explain how we added
additional context to enhance the dataset.

3.3.1 MapMatching

We recognize the issues related to GPS inaccuracies in our dataset, and addressing these inaccu-
racies is crucial for our analysis. Handling bus trajectory data presents specific challenges, such
as the need to correct the inaccurate GPS points and align them with the road network. This
correction process, known as map matching, enhances the precision of the GPS locations by
aligning them with the actual road network.

A straightforward approach to tackle GPS inaccuracies is to snap the inaccurate GPS points
to the nearest points on the road network. However, this method is not optimal because it
does not consider the sequential order of the points. More sophisticated algorithms, such as
those utilizing fuzzy logic or HMM [64], provide better solutions by maintaining the order
and context of the points. Employing these advanced techniques can significantly improve the
accuracy of the matched GPS points in our dataset.

In this study, we utilize a HMM-based map matching algorithm, specifically the Viterbi
search algorithm. This method is widely used and supported by tools such as Leuven Map
Matching [35] and Valhalla Meili. We selected Valhalla Meili for its comprehensive documen-
tation and efficient C++ implementation *, accessed via its trace route API.

*Valhalla Meili implementation details

33

https://valhalla.github.io/valhalla/meili/implementation_details/

For implementing map matching with Valhalla, we group the data by vehicle per day. This
grouping ensures that the map matching process handles an optimal amount of data while
retaining sufficient information about the trajectory. Table 3.2 illustrates the trajectory param-
eters passed to the map matching algorithm. Latitude and longitude are used to derive the
map-matched trajectory, and time data maintains the sequence of the trajectory points. These
trajectory points, combinedwith other parameters for mapmatching, are essential for themap
matching process.

Attribute Type

Latitude Float
Longitude Float
Time Integer

Table 3.2: Trajectory attributes for map matching

Table 3.3 outlines the parameters used for map matching. The search radius parameter, set
to 10 meters, defines the radius within which the algorithm searches for corresponding road
segments, enhancing accuracy. The shape match parameter specifies the map matching algo-
rithm, and the costing algorithm is set to ’bus’ to ensurematching on bus road networks. With
these parameters configured, we can execute the map matching process.

Parameters Value

Search Radius 10m
ShapeMatch map snap
Costing bus

Table 3.3: Configuration parameters for map matching

After defining the parameters, we apply the map matching algorithm as shown in Algo-
rithm 3.1. This algorithm processes each trajectory by combining it with the map matching
parameters to accurately align the trajectory with the corresponding road segments. In addi-
tion to generating themap-matched points, we also extract further information about the road
segments to facilitate additional preprocessing of our dataset.

The output of themapmatching process includes a map-matched trajectory with new coor-
dinates for each point, alongwith the relevant road segment details. These attributes are crucial
for estimating energy consumption at the road segment level. Furthermore, we calculate the

34

distance traveled along each segment, which aids in precise distance estimation. This processed
data will form the foundation for further analysis in subsequent stages.

Algorithm 3.1MapMatching Function
Require: trajectory T
1: parameters = get_parameters()
2: map_matched_trajectory = callValhallaMapMatch(T ,

parameters)
3: for point in map_matched_trajectory
4: road_segment_ids = get_road_segment_id(point)
5: road_segment_length = get_road_segment_length(point)
6: distance_along_road_segment = get_distance_along_road_segment(point)
7: end for
8: return (map_matched_trajectories, road_segment_ids,

road_segment_length,
distance_along_road_segment)

Following the application of the map matching algorithm, we have obtained cleaned trajec-
tories that are accurately alignedwith the bus road network. Figure 3.5 illustrates the difference
between the trajectories before and after applying the map matching process. The red points
indicate the positions before map matching, while the blue points indicate the positions after
map matching. The next step involves segmenting the trajectory data, which will be detailed
in the following section.

35

Figure 3.5: Map matching result

3.3.2 Segmenting the Trajectories

Previously, we noted that buses do not travel continuously throughout the entire day; instead,
they have stops between their trips. To distinguish between actual bus trips and stops, we need
to segment the trajectory data. By segmenting the trajectory and dividing the bus data into
individual trips, we obtain a clearer representation of battery consumption during these trips.

There are several approaches to segmenting the data. Onepossible approach is usingGeneral
Transit Feed Specification (GTFS) information from thebus schedule. However, this approach
is challenging due to the nature of our data, which lacks necessary information such as the
specific routes served by the vehicles or the bus stops visited during the journey. Additionally,
deviations from the route, or if the bus is running too early or too late from the schedule, are
not captured in the GTFS data. Therefore, we need an alternative method for segmenting the
trajectory.

A viable approach is to detect when the vehicle stops for a certain duration. This approach
is based on the logic that a vehicle typically stops before starting another trip according to its
schedule. By identifying these stopping points, we can segment the trajectory accordingly, sep-
arating the periods when the bus is stationary fromwhen it is moving. This allows us to define
different trips, with stopping points serving as the boundaries between trips.

To achieve this, we utilize the stop detection tools provided by MovingPandas [12] using

36

Figure 3.6: Segmented trajectories

version v0.18.1 [65]. We define parameters for detecting stops, as depicted in Table 3.4. The
tool works by collecting points within a defined radius and, if the duration within that radius
meets the minimum threshold, assigning those points as stopping points. The result of this
stop detection process is a set of points identified as stops, which we can then use to split the
trajectory.

Parameters Value

MaximumRadius 100m
MinimumDuration 240 seconds

Table 3.4: Parameters for stop detection

After splitting the trajectory based on the stopping points, we obtain segmented trajecto-
ries. As shown in Figure 3.6, the segmentation results in several segments, including stopping
segments. These segmented trajectories allow us to distinguish between actual bus trips and pe-
riods when the bus is stationary. This distinction is valuable for building the data pipeline for
our predictive model. In the following section, we will discuss how we handle the cumulative
battery consumption values in the dataset.

37

3.3.3 Estimating Battery Consumption

Another significant issue we encounter is that our battery consumption values are cumulative.
This poses a problem, as we cannot determine the consumption value at each trajectory point.
Knowing the value at each trajectory point is crucial as it serves as a basis for estimating con-
sumption at each road segment. To estimate this value, we will employ linear interpolation.

Linear interpolation is a useful technique for estimating battery consumption at specific
points in time. It is a straightforward method, making it a viable option given the limitations
and constraints of our data. Since our dataset includes temporal information, we can leverage
this to perform linear interpolation. Figure 3.7 illustrates how we apply linear interpolation
using temporal data.

Figure 3.7: Linear interpolation of battery consumption (kWh) over time

To explain this further, suppose we have a battery consumption value X bounded by times-
tampsT1 andT2. We can interpolate the battery consumption values at all points betweenT1
and T2. For each value in the trajectory, we create time bounds and interpolate for all points
that lie within these bounds.

After applying linear interpolation, we obtain an estimated consumption value for each tra-
jectory point. This estimation is crucial as it allows us to determine the battery consumption
for each road segment. These values will be utilized in the subsequent section, where we will
add more context to our dataset.

38

3.3.4 Enhancing Dataset Context

As mentioned in the previous section, one of the challenges in our dataset is the lack of con-
textual information. To represent conditions more accurately, we will enrich the data with
weather information, elevation data, and road grade details for each road segment. To achieve
this, wewill utilize open-sourceAPIs to obtain additional data and combine it with our dataset.
We begin by adding weather context.

Capturing weather-related information in our dataset is crucial, as factors such as tempera-
ture, rainfall, and wind can significantly influence bus battery consumption. Environmental
conditions impact the efficiency and energy usage of the bus, making it essential to include
them in our analysis. We obtain this weather information using the OpenMeteo API [66],
which provides comprehensive historical weather data. By integrating this data, we can better
understand and model the external factors affecting battery performance.

Theweather dataset fromOpenMeteo has a spatial resolution of nine square kilometers and
a temporal resolution of one hour. To integrate this data, we call theOpenMeteoAPIwith spe-
cific parameters, as explained in Table 3.5. Given the nine square kilometers spatial resolution,
a single query is sufficient to cover the areas included in our dataset. We focus on requesting the
most relevantweather information thatmay impact battery consumption, such as temperature
variations, precipitation levels, andwind speed and direction. This enriched dataset will enable
us to build a more accurate predictive model by accounting for the environmental conditions
in which the buses operate.

Parameter Value

timezone Europe/Berlin
hourly temperature_2m, relative_humidity_2m, precipitation,

wind_speed_10m, wind_direction_10m, sunshine_duration
location Coordinate of the dataset

Table 3.5: OpenMeteo Weather History API parameters

After obtaining the weather information, wewill further enhance our dataset by incorporat-
ing elevation and road grade (the gradient level of the road) for each road segment. Since our
dataset does not contain embedded elevation information, we will utilize external data from
the Tinitaly 1.1 dataset [67]. Tinitaly provides raster elevation data with a 10-meter resolution
for Italy, which is sufficiently precise.

To integrate the elevationdata intoourdataset, wefirst need to gather the spatial information

39

of our road segments. This can be achieved using a tool called Overpass Turbo †, which allows
us to extract the coordinates that define our road segments. Once we have these coordinates,
we can overlay them on the Tinitaly 1.1 raster dataset to obtain the corresponding elevation
data.

With the spatial information in hand, we then use PostgreSQL with the PostGIS extension
to retrieve the elevation data from the Tinitaly 1.1 dataset. This process involves obtaining
elevation values for each coordinate within the road segments. Using this elevation data, we
can calculate the average elevation for each segment. Additionally, we compute the average
road segment grade and angle, as described by Equation 3.1 and Equation 3.2

grade =
(

elevation_change
horizontal_distance

)
× 100 (3.1)

angle = deg(arctan
(
grade
100

)
) (3.2)

These calculations involve determining the grade for each consecutive pair of coordinates
within a road segment and then averaging these values to get the overall grade and angle for
the segment. This detailed analysis allows us to understand the characteristics of each road
segment, such as whether it is primarily inclining or declining and the overall steepness. This
enriched data provides a more comprehensive understanding of the road conditions affecting
battery consumption.

3.4 Building the Data Preprocessing Pipeline

After addressing the issues in our dataset, we can move on to building the data preprocessing
pipeline. Since our goal is to estimate battery consumption, wewill break down the problemby
estimating consumption at the road segment level. First, we need to calculate battery consump-
tion for each road segment. After that, we will validate our calculations against the dataset to
ensure they remain within the cumulative values of the actual dataset. Finally, we will explain
the final dataset used to build our prediction model.

†Overpass Turbo tools for getting road segment informations

40

https://overpass-turbo.eu//

3.4.1 Road Segment Battery Consumption

Since we have estimated the battery consumption value for each trajectory point, we can now
utilize this data to calculate the battery consumption for each road segment. From the map
matching results, we obtain information about the road segments traversed between two tra-
jectory points, including the length of each road segment and the proportion of the segment
that has been traversed. Using this information, we can estimate the battery consumption for
each road segment.

Figure 3.8: Battery consumption estimation at the road segment level

To accomplish this, we employ a straightforward approach for estimating segment consump-
tion. As illustrated in Figure 3.8, we calculate the segment consumption using the proportion
of the traversed segment length relative to the total distance traveled between points A and B.
By applying this proportion to a simple equation, shown in Equation 3.3, we can obtain the
segment consumption value.

segment consumption =

(
segment_length
total_length

)
× Battery consumption value (3.3)

Furthermore, after calculating the battery consumption for each road segment, we account
for cases where two trajectory points fall within the same segment. In such instances, we aggre-
gate the segment consumption values of the consecutive points within the same road segment.
This approach ensures that we have comprehensive consumption data for each road segment.
The next step involves validating our calculations to ensure accuracy and consistency with the
cumulative values in the dataset. By doing so, we can confirm the reliability of our data and its
suitability for further analysis.

3.4.2 Validation of Road Segment Consumption Calculation

Now that we have calculated the segment consumption, the next step is to validate our dataset.
To accomplish this, we need a method to ensure the accuracy of our consumption estimates.

41

Our approach for validation involves comparing the cumulative battery consumption values
with the sum of all road segment consumption values. This method is straightforward and
effective.
However, we face challenges due to the precision of the cumulative values being limited to

integers, which results in the loss of detailed information, especiallywhenbattery consumption
data remains constant at the end of the trajectory. Additionally, the map matching algorithm
may remove erroneous trajectory points, leading to missing values in the cumulative battery
consumption data.

Attribute Value

Mean 0.815476
Standard Deviation 0.578912

Table 3.6: Difference between daily ground truth and aggregated segment consumption

To assess the validity of our consumption estimates, we will use the standard deviation and
the mean difference between the maximum cumulative value from the dataset and the summa-
tion of all road segment battery values. Table 3.6 depicts these differences, showing that the
spread and the mean difference are sufficiently small. This indicates that our dataset is reliable
for estimating battery consumption and building a predictive model.

3.4.3 Building the Data for Prediction

After calculating the road segment consumption and addressing the issues in our dataset, we
have developed a comprehensive data preprocessing pipeline. Figure 3.9 illustrates the com-
plete data preprocessing pipeline. This pipeline includes all the steps from raw data collection
to the final preparation of road segment battery consumption data. Each stage in the pipeline is
designed to ensure the data is accurate, comprehensive, and ready for input into our predictive
model.

With this robust preprocessing pipeline, we have a reliable base dataset that can be effectively
used for building and training our prediction model. This comprehensive approach ensures
that our data is well-prepared to yield accurate and meaningful predictions about battery con-
sumption.

42

Figure 3.9: Data cleaning and preprocessing pipeline

3.5 Summary

In this chapter, we have thoroughly explained how we explored and addressed the challenges
in the dataset. Our exploration involved identifying problems within the dataset and uncov-
ering the challenges present. Furthermore, we developed a careful approach to address these
challenges and applied appropriate techniques to resolve them. These techniques are crucial
for effectively addressing the issues in the dataset.

Techniques such as map matching are essential, as they clean inaccurate GPS positions and
help identify the road segments associated with each GPS point. Additionally, segmenting
the trajectory aids in identifying stopping points in our dataset, dividing the trajectory into
several smaller trips for more detailed analysis. Linear interpolation is used to estimate battery
consumption at the trajectory point level, providing a more granular understanding of energy
usage.

Building on these techniques, we ensure the quality of the extracted data compared to our
raw data by employing metrics such as mean and standard deviation to measure daily battery

43

consumption differences. This evaluation method resulted in a mean of only 0.8 kWh per day
and a standard deviation of 0.5 kWh, indicating a high level of consistency in our estimation
process.
However, while our current methods have proven effective, there is room for further en-

hancement, particularly in the estimation of battery consumption. By utilizingmore advanced
interpolation methods that account for unseen factors in the trajectory data, we can improve
accuracy beyond linear interpolation. Additionally, incorporating detailed traffic information,
roundabouts, and vehicle speed could further enrich our dataset. The authors in [68, 69] high-
light the significant effects of roundabouts and speed on electric vehicle battery consumption,
suggesting that these factors should be integrated into our prediction models for improved ac-
curacy.

In conclusion, we have employed an exhaustive approach to address the challenges present
in our vehicle trajectory dataset. We have successfully estimated battery consumption at the
road segment level and validated it against the raw trajectory dataset using daily consumption
levels. However, further improvements are worth exploring to enrich the dataset and to refine
the estimation of battery consumption from cumulative values.

44

4
Prediction for the Electric Bus Usecase

In this chapter, we will explain the process of building prediction models from preprocessed
trajectory data to predict battery consumption, step by step, starting with the baseline model
and progressing tomore advancedmodels. To facilitate this progression, Section 4.1 will detail
the construction of the prediction model, outline the goals of the prediction, and describe the
validation process for the model. Section 4.3 will provide a step-by-step guide on building our
baseline model and analyzing the important features from the dataset.

Following the baseline model, Section 4.4 discusses how we incorporate recurrent neural
networks to enhance the prediction capabilities of our model. Section 4.5 then compares the
performance of the baseline model with our recurrent neural networks model. Finally, we will
summarize the findings of this chapter in Section 4.6.

4.1 Building the PredictionModels

After preprocessing our dataset through the data preprocessing pipeline, we obtained cleaned
data with the additional context we need. Table 4.1 shows the cleaned data after preprocessing,
highlighting additional information regarding road segments and temperature. To build better
predictions, we can further enrich the dataset by analyzing it and extracting more features.

Using this enriched dataset, our objective is to predict battery consumptionwith ourmodel.
Specifically, we aim to generate predictions at the road segment level and then aggregate these
predictions to obtain a daily forecast. We plan to conduct the predictions iteratively, starting

45

with simple models and progressively moving to more complex ones. Initially, we will develop
and validate a baselinemodel, followedbymore complexmodelswhichwill be validated against
the baseline.
Thebaselinemodelwill employ a simple regression technique, enabling us to understand the

relationship between predictor variables and the predicted values. Subsequently, we will inte-
grate more complex models, specifically Deep Neural Networks, to uncover hidden patterns
within our dataset. It is essential to validate thesemodels to assess their predictive performance.

We will validate the models using various performance metrics. RMSE will be used to eval-
uate prediction accuracy, while the standard deviation of predictions will assess consistency,
and the R2 score will be used to assess model quality. By comparing these metrics, we can de-
termine whichmodel performs better in terms of accuracy and reliability. This comprehensive
approach will enable us to select the most effective model for predicting battery consumption.

Attribute Data Type

Vehicle ID String
T Timestamp

Road Segment ID String
Battery Consumption Float

Trip ID String
Temperature Float
Humidity Float

Precipitation Float
Wind Speed Float

Wind Direction Float
Average Elevation Float
Average Grade Float
Average Angle Float

Table 4.1: Prediction dataset attributes

4.2 Preparing and Analysing the Dataset

Before building the prediction model, we will explore the features of our dataset to identify
patterns and extract additional information. We will start by analyzing the temporal informa-
tion our dataset, and exploiting it to get broader view of its effect to the battery consumption.
Additionally we will also look into the weather information to gain additional insights from
the data.

46

4.2.1 Adding Temporal Information

We achieve this by adding details about the day of the week, indicating which day each trajec-
tory belongs to. Additionally, we divide the time into hourly bins to provide a broader view
regarding the battery consumption. This helps us identify patterns such as rush hours or the
impact of holidays on battery consumption. Figure 4.1 illustrate the distribution of road seg-
ment consumption based on the day of the week and the time range.

In our analysis, we observed an upward trend in battery consumption during weekends and
on Monday. Additionally, the mean battery consumption is relatively higher in the morning
compared to the rest of the day, with a sudden spike towards the end of the day. This tem-
poral context, as shown in the data, enables us to discern clearer patterns that affect battery
consumption. Incorporating this enriched dataset provides valuable insights for our analysis
and modeling, enhancing our understanding of the factors influencing battery usage.

(a) (b)

Figure 4.1: Mean battery consumption (kWh) by (a) day of the week (b) time range

4.2.2 Inspecting theWeather

After analyzing the temporal information, we will also examine weather factors to determine
howprecipitation and temperature affect battery consumption. This focus is due to the impact
weather has on the utility usage of a bus, consequently affecting its performance. Wewill begin
by inspecting the effect of precipitation.

To analyze precipitation, we will categorize it for easier interpretation. According to [70],
precipitation can be classified into four distinct levels: no rain, light rain, moderate rain, and
heavy rain. After preprocessing the precipitation data, we will examine its impact on battery
consumption. As shown in Figure 4.2, there is no significant difference in mean battery con-

47

sumption between no rain and moderate rain. However, during light rain, battery consump-
tion is noticeably lower. Furthermore, our observations indicate a correlation between temper-
ature trends and battery consumption, with increases in temperature leading to lower rates of
battery consumption.
Incorporating these weather data analyses with the temporal information, we can integrate

additional features—day of the week, time range, and rain status—into our model. This will
aid in feature importance analysis, as we will use a decision tree-based model to determine the
significance of each feature.

(a)

(b)

Figure 4.2: Mean battery consumption (kWh) by (a) rain condition (b) temperature

4.2.3 Analyzing Trips

Subsequently, by segmenting our data into multiple trips during the cleaning process, we can
closely examine the characteristics of these trips within our trajectory data. This analysis allows
us to better understand the nature of the trips and how theymight influence battery consump-
tion prediction. We begin by examining the duration of the trips. As shown in Figure 4.3, the

48

average trip length is 26minutes and 10 seconds, with 99% of the trips lasting less than 66min-
utes and 38 seconds. This indicates that the trips in the dataset are of moderate duration, with
the longest trips being relatively manageable in length.

(a)

(b)

Figure 4.3: Trip distribution density for all trajectories by (a) duration (hours) (b) distance (km)

In addition to trip duration, we also analyze the distance of the trips. As illustrated in Fig-
ure 4.3, the average trip distance is 3.35 kilometers, with 99% of the trips covering less than
7.18 kilometers. These findings suggest that the trips are sufficiently long to provide mean-
ingful data for analysis, yet not excessively long, ensuring that the dataset remains practical for

49

modeling and prediction tasks. This analysis confirms that the trips contain enough data to
support accurate and reliable predictions.

4.3 Establishing the BaselineModel

In this section, we will explain the process of building our baseline model. Establishing a base-
line model is crucial as it provides a foundation for comparison with more complex models. A
simple and interpretable model serves as a starting point, allowing us to understand the basic
patterns in the data and set a benchmark for future improvements.

Following feature selection, we introduce techniques to choose the best model, ensuring
robustness and accuracy. The final step involves validating the model to confirm its predictive
performance. Additionally, we will experiment by creating separate models for each vehicle
type and comparing their performance with our baseline model. This comparison will help us
understand the nuances in the data and refine our approach.

4.3.1 Feature Selection and Engineering

One of the methods that will assist us with feature selection is utilizing tree-based algorithms.
In [71, 72], the authors explored the use of random forests and Gini importance for feature
selection. In this study, we will employ a Random Forest Regressor to determine the most sig-
nificant features using Gini importance. Wewill fit our training dataset into the random forest
regression model and obtain the Gini importance for each feature. Figure 4.4 illustrates the
Gini importance of each feature. As demonstrated, features such as mean elevation, segment
length, and average angle are among the most crucial for making accurate predictions.

50

Figure 4.4: Gini importance of each features

After obtaining the candidate features through Gini importance, we will further preprocess
our data. Specifically, we will translate the categorical features using one-hot encoding. This
approach is optimal because converting categorical data intonumerical featuresworks bestwith
linear regression, which we will use for our baseline model.
Additionally, we will scale the values of our data using a scaler to normalize the feature mag-

nitudes. Normalizing the features is crucial because it ensures that all features are on a similar
scale, preventing features with larger magnitudes from dominating the learning process and
mitigating the effects of differing units of measurement across features. After implementing
these preprocessing steps, we will have a complete dataset ready to feed into our model.

4.3.2 Training theModels

Tobuild our baselinemodel, wewill begin by splitting our dataset into training and testing sets.
Additionally, wewill utilizeGrid Search andCrossValidation to obtain the optimal parameters
for our models. We will also explore different combinations of models: one trained on the
entire training set of all vehicles and others trained on training data divided by each vehicle.
The datasetwill be split into training and validation sets using a 70-30 ratio. This split ratio is

chosen to ensure thatwehave sufficient data for trainingwhile retaining enough validationdata
to assess the generalizability of our predictions. The data will be split based on individual trips,
ensuring that the training and validation sets contain distinct, non-overlapping trips, allowing
us to more effectively evaluate the model’s ability to generalize to unseen data.
After splitting the data, the next step is to identify the best parameters for our models. We

51

aim to determine the optimal number of features for use in our regression algorithm. For this,
wewill employGrid SearchwithCross Validation andRecursive Feature Elimination (RFE) as
estimators. This approach ensures that the number of features used in the regression algorithm
is optimal.
Figure 4.5 illustrates the effect of the number of features on the performance of the Linear

Regressionmodel. Through this method, we determined that using 28 features is the most op-
timal. Subsequently, we will utilize these parameters in building our Linear Regression model
and fit the training data to the model.

Figure 4.5: Number of optimal parameter searches using K‐fold and grid search

In addition to the model trained on data from all vehicles, we will also train separate models
for each vehicle, resulting in a total of 15 models. This approach allows us to evaluate perfor-
mance and determine whether individualized models perform better in capturing the specific
data of each vehicle. The rationale behind this is that each vehicle might behave differently.
However, the drawback is that more models need to be trained if the number of vehicles in-
creases.

4.3.3 BaselineModels Validation

After training our models, the next step is to validate their performance using the test dataset.
This validation involves comparing the predicted battery consumption for each trip against
the actual consumption values from the raw, unprocessed data, which serves as the ground
truth. We will use RMSE to quantify the deviation of the predicted values from the actual
values. Additionally, we will calculate the standard deviation to assess the consistency of the

52

predictions, and the R² score to evaluate the models’ ability to approximate the actual values
based on the predictor variables.
We will compare the performance between the model trained on data from all vehicles, re-

ferred to as the Unified Vehicle Model, and the models trained separately on data from differ-
ent vehicles, referred to as Individual Vehicle Models. The first comparison, as depicted in
Table 4.2, aggregates the predictions for all trips.

R2 RMSE STD

Individual Unified Individual Unified Individual Unified

0.457 0.491 2.285 2.213 2.284 2.206

Table 4.2: Baseline models performance comparison

The Unified Vehicle Model performs slightly better than the Individual Vehicle Models.
However, both models exhibit relatively low R² scores, with values below 0.5, indicating that
neither model can explain more than 50% of the variance in the data. The RMSE for each trip
is approximately 2.2 kWh, which is amoderate value. However, the standard deviation is quite
high, also around 2.2 kWh, suggesting considerable variability in the predictions. In the next
section, we will analyze the performance at the individual vehicle level to determine whether
training a model for each vehicle offers any advantages.
In Table 4.3, it is evident that theUnifiedVehicleModel outperforms the Individual Vehicle

Models in terms of overall performance. However, the Individual VehicleModels demonstrate
greater stability. The RMSE for the Unified Vehicle Model is generally lower compared to
that of the Individual Vehicle Models. When examining the R² scores, we observe that both
models exhibit relatively low scores for most vehicles, indicating a limited ability to explain the
variability in the data.

53

R2 RMSE Std

Vehicle Individual Unified Individual Unified Individual Unified

Vehicle 1 0.638 0.575 1.703 1.845 2.116 2.214
Vehicle 2 0.375 0.434 2.127 2.024 2.157 2.139
Vehicle 3 0.357 0.304 2.204 2.293 2.409 2.555
Vehicle 4 -0.015 -0.014 2.479 2.478 2.276 2.264
Vehicle 5 0.513 0.506 2.135 2.149 2.377 2.433
Vehicle 6 0.368 0.412 2.727 2.631 2.718 2.782
Vehicle 7 0.387 0.433 2.474 2.380 2.060 2.131
Vehicle 8 0.183 0.274 2.214 2.087 1.968 1.966
Vehicle 9 0.446 0.443 2.584 2.593 2.674 2.679
Vehicle 10 0.568 0.627 1.905 1.770 2.333 2.576
Vehicle 11 -0.010 -0.025 2.515 2.535 2.379 2.567
Vehicle 12 0.268 0.317 1.899 1.834 1.972 2.023
Vehicle 13 0.778 0.811 2.079 1.921 3.629 3.802
Vehicle 14 0.102 0.223 2.269 2.111 2.496 2.500
Vehicle 15 0.617 0.683 2.499 2.274 3.382 3.595

Table 4.3: Baseline models performance comparison by vehicle

Overall, our predictions weremade at the road segment level and validated against the actual
consumption values at the trip level. This approach was chosen to provide a more comprehen-
sive understanding of the predictions and to enable meaningful analysis, particularly in deter-
mining the battery consumption for each trip. The results indicate that both baseline models
generally exhibited relativelymoderate performance, with anRMSEof approximately 2.2 kWh
and R² scores below 0.5, suggesting that the models were unable to explain more than half of
the variance in the data. Additionally, no significant benefit was observed in training themodel
individually for each vehicle. Consequently, we have decided to use the Unified VehicleModel
as the baseline for our predictions.

4.4 Applying LSTMModel

After building our baseline model, we aim to improve our predictions to make them more
accurate and consistent. One approach is to utilize deep learning methods. Given that our
dataset contains over 200,000 trajectorypoints, deep learningmodelsmaybeparticularlyuseful
in uncovering hidden patterns within the data. To select the appropriate model, it is crucial to

54

thoroughly understand the nature of our data.
The trajectory data can essentially be viewed as a sequence sorted by timestamp. Similarly,

road segments within the trajectory can also be considered as sequential data. This sequential
nature suggests that attributes from previous sequences might influence the battery consump-
tion of subsequent ones. In this context, we can employ RNN, particularly LSTM networks.
LSTM networks are well-suited for handling sequence data as their architecture maintains

and regulates the flow of information over extended periods. The authors in the previous re-
search [45, 46] have successfully utilized LSTMs for prediction tasks. In this study, we will in-
corporate embedding layers to represent categorical features within our model. To determine
the optimal parameters, we will conduct hyperparameters tuning. After building the model,
we will validate it using the same metrics as the baseline model: RMSE and R² for measuring
model performance, and standard deviation to assess the consistency of the predictions.

4.4.1 Defining the Sequences

Toconstruct the sequences,we employ a rollingwindowapproachonour trajectorydata. Specif-
ically, we use a window size of four. In this setup, the first three sequences within each window
serve as the input, while the fourth sequence is used as the output for prediction. Table 4.4 is
the trajectory data that we will process as sequences, and as shown in Table 4.5 here is how we
define the sequences with window size of four from the trajectory data.

Trajectory Feature 1 Feature 2 Target

T1 T1F1 T1F2 T1Y
....
Tn TnF1 TnF2 TnY

Table 4.4: Trajectory dataset definition

Input Sequence Target

[{T1F1,T1F2}, {T2F1,T2F2}, {T3F1,T3F2}] T4Y
[{T2F1,T2F2}, {T3F1,T3F2}, {T4F1,T4F2}] T5Y
[{T3F1,T3F2}, {T4F1,T4F2}, {T5F1,T5F2}] T6Y
[{T4F1,T4F2}, {T5F1,T5F2}, {T6F1,T6F2}] T7Y

Table 4.5: Input sequences and their corresponding targets

55

Additionally, we incorporate padding into the windows to enhance our data and address
cases where the sequence length is less than the window size. The windows with padding are
shown in Table 4.6 We use zero as the padding value to indicate that the padding contains no
information. This approach ensures that we do not lose information at the beginning or end
of the sequences. The rolling windows with padding will be used to implement the sequence
of our dataset effectively

Input Sequence Target

[{0, 0}, {0, 0}, {0, 0}] T1Y
[{0, 0}, {0, 0}, {T1F1,T1F2}] T2Y

[{0, 0}, {T1F1,T1F2}, {T2F1,T2F2}] T3Y
[{T1F1,T1F2}, {T2F1,T2F2}, {T3F1,T3F2}] T4Y
[{T2F1,T2F2}, {T3F1,T3F2}, {T4F1,T4F2}] T5Y

Table 4.6: Input sequences with padding

4.4.2 Embedding the Categorical Features

Our dataset also contains categorical features, such as the day of the week and the time range.
To handle these categorical features, we will use an embedding layer within our model. In-
stead of one-hot encoding the categorical data, using embeddings can capture more complex
relationships between the categories.

The embedding layer is defined with a size ofN×M, whereN is the number of unique cat-
egories andM is the dimension of the embedding. The embedding dimension is determined
according to [73] as the fourth root of the number of unique categories. Using this approach,
we can apply the formula in Equation 4.1. This rule of thumb allows us to quickly determine
the embedding dimension.

M = round(num_of_categories1/4) (4.1)

Table 4.7 depicted the size of the categories and resulted embedding dimensions based on
the Equation 4.1. As we can see, the resulted embedding dimension for day of week and time
range is only two considering we only have seven categories and 19 categories respectively for
these two attributes. This shows that our categories is not that complex as we do not need a lot
of dimensions to capture the relationship.

56

Name Number of Categories Embedding Dimension

Day of Week 7 2
Time Range 19 2

Table 4.7: Embedding dimension of categorical attributes

4.4.3 LSTMModel Development

After creating the sequences fromour data and explaining the embedding of our attributes, the
next step is to build our LSTMmodel. Wewill provide an in-depth viewof our LSTMnetwork
architecture and incorporate the embedding layer to process the categorical information from
our attributes.

Figure 4.6: Architecture of the prediction model

Figure 4.6 shows the architecture of ourmodel, which involves the embedding layer, LSTM
layers, anddense layers. To explain themodel, wefirst take the input, which includes categorical
information. The categorical information is passed to the embedding layer. The weights in
the embedding layer are initialized using Xavier initialization [74], a standard procedure that
yields better performance compared to randomweight initialization. We then concatenate the
categorical information from the embedding layer with the input.

After concatenation, the input is passed through our LSTM layers, to capture the temporal
information from our data. The first and second LSTM layers each have 128 units, followed
by a final LSTM layer with 64 units. The output from the LSTM layers is then passed to the
dense layers, which have 64 and 32 units, respectively. These dense layers, are used to capture

57

intrinsic patterns in the data beyond the temporal dependencies.
To further refine the model, we incorporate dropout layers between the dense layers to en-

hance generalization. Additionally, we introduce an activation function to add non-linearity
to our network, ensuring it can learn complex relationships within the data. Specifically, the
LSTM layers use the tanh activation function, while the dense layers use the ReLU activation
function. Finally, the output layer, is designed with a single unit, as we are predicting the bat-
tery consumption of the electric bus.

4.4.4 Model Parameters

Hyperparameters Value

Activation ReLU, PReLU, leaky ReLU
Optimizer Adam, Adagrad, sgd, RMSProp

Learning Rate 0.05, 0.001, 0.0005
Batch Size 32, 64, 128

Sequence Length 3, 4, 5
Epoch 30
Patience 10
Delta 0.0005

Table 4.8: Hyperparameters for training

After developing the model architecture, we will outline the configuration of our hyperpa-
rameters for training. The training process will span 30 epochs, with early stopping imple-
mented to enhance training efficiency. The early stopping parameters are configured with a
patience of 10 and a delta of 0.0005, meaning that if the validation loss does not improve by
more than 0.0005 for 10 consecutive epochs, the training will be halted.
The hyperparameter search is conducted using a grid search algorithm, facilitated by the

WandB tool*. To limit the search space, hyperparameters are tuned individually, and the best
resulting parameter is selected based on the tuning results. Table 4.8 shows the selected hyper-
parameters and the candidates.

We will utilize the Leaky ReLU activation function [75], a variant of ReLU that addresses
the dying neurons problem. Additionally, we will employ the Adam optimizer [76], which
effectively combines the benefits of Adagrad [77] and RMSProp [78]. The optimizer will be

*Weights & Biases: The AI Developer Platform

58

https://wandb.ai/site

configured with a learning rate of 0.001 to ensure a balanced learning pace. The batch size will
be set to 64, and the sequence length will be set to four.

4.4.5 Training theModel

After defining all the parameters, the next step is to train the model. The dataset is split into
three splits: 50% for training, 20% for validation, and 30 % for testing. This split ensures suffi-
cient data for trainingwhilemaintaining the same size for the testing data as the baselinemodel.
Once the data split is defined, we proceed with training the model.

During training, themodel is trained on the training dataset and validated against the valida-
tion dataset in each epoch. The validation loss is monitored to determine whether the model
has reached convergence, utilizing the early stopping mechanism we implemented. Further-
more, we save the best model weights based on the validation loss. These best weights are then
loaded and used to evaluate the model against the testing dataset.

4.4.6 LSTMModel Validation

The next step is to validate the model’s performance using the testing dataset. We will evaluate
themodelwith the samemetrics as the baselinemodel: RMSE andR² score to assess the quality
of the predictions, and standard deviation to evaluate the consistency of the predictions.

RMSE STD R2

1.315 1.31 0.820

Table 4.9: Model performance by metrics

First, we validate themodel’s overall performance. As shown inTable 4.9, themodel demon-
strates good and consistent predictions, as indicatedby theR² scores, RMSE, and standarddevi-
ation values. AnRMSE of 1.315 kWh suggests that the predictions do not deviate significantly
from the actual values for each trip. Additionally, with an R² score of 0.820, the model is able
to explain a substantial portion of the variance in the data. The model also shows consistency
in its predictions, with a standard deviation around 1.31 kWh.

Overall, the LSTM model shows a marked improvement in prediction accuracy compared
to previousmodels. The next step is to compare this LSTMmodel with the baselinemodel and
provide more detailed insights into the model’s performance and its behavior on our dataset.
This analysis will allow us to examine the predictions in greater depth.

59

4.5 Comparative Analysis betweenModels

In this chapter, we present a comparative analysis between the baseline model and the LSTM
model. The comparative analysis employs metrics such as RMSE and R2 to assess model accu-
racy and prediction quality, while the standard deviation (Std) is used to evaluatemodel consis-
tency. We will analyze the overall performance of the model first, and looks into the prediction
based on the duration of the trip.

As illustrated in Table 4.10, the LSTM model outperforms the baseline model in terms of
prediction quality, accuracy, and consistency. The LSTM model shows significant improve-
ments across all metrics compared to the baseline. However, to gain further insights, we will
also compare the predictions based on trip duration to uncover any underlying prediction pat-
terns.

Overall RMSE Overall R2 Overall Std

Model LSTM Unified LSTM Unified LSTM Unified

Value 1.315 2.213 0.820 0.491 1.31 2.206

Table 4.10: Overall comparison between the baseline and LSTM models

As shown in Figure 4.7, the RMSE values in the predictions exhibit a pattern based on trip
duration. Generally, the longer the trip duration, the slightly less accurate the model becomes.
This trend is expected, as the prediction is built from the road segment level; longer trips involve
more segments, leading to a compounding of errors at the aggregated battery consumption
prediction at the trip level.

Additionally, there is a noticeable deviation in the predictions for trips with durations be-
tween 50 and 60 minutes. To explore this further, we examine the values within this specific
duration bin. As shown in Figure 4.8, the usual battery consumption for trips lasting 50 to 60
minutes is typically under 20 kWh. However, for this particular trip, the actual battery con-
sumption is 23 kWh. This discrepancy likely leads the model to underestimate the prediction.
To extend the analysis, we will examine predictions with similar consumption values.

As shown in Figure 4.8, other trips with battery consumption values in the range of 20-25
kWh in the real data are predicted more accurately by the model. This suggests that, for this
particular trip, there may be an unseen factor not captured by our predictors, leading to the
spike in battery consumption and impacting the model’s performance. However, aside from

60

Figure 4.7: Prediction RMSE (kWh) by duration of the trips

this anomaly, the model generally performs well and can reliably predict battery consumption
for most trips, particularly when using the LSTMmodel.

(a) (b)

Figure 4.8: (a) Comparison of predicted vs. actual battery consumption (kWh) in the 50‐60 minutes range (b) Comparison
of predicted vs. actual battery consumption in the 20‐25 kWh range

4.6 Summary

In this chapter, we constructed our prediction models step by step, starting with the baseline
model implemented using Linear Regression due to its simplicity and ease in explaining the
variables. We experimented with building a Unified Vehicle Model, trained on data from all
vehicles, as well as Individual Vehicle Models, where each model was trained on data from a

61

single vehicle. Progressing from the baseline model, we employed recurrent neural networks,
specifically LSTM, to develop a more advanced model by treating the data as a sequence, lever-
aging the fact that the trajectories were already sorted by timestamp. This sequential approach
allowed us to capture dependencies over time, leading to amore nuanced understanding of bat-
tery consumption patterns. Subsequently, we conducted a comparative analysis between the
baseline and LSTMmodels to better understand their performance differences.
Our analysis demonstrated that training individualmodels for each vehicle did not yield per-

formance gains, leading us to adopt the Unified Vehicle Model as our baseline. In comparing
the LSTM model with the baseline, the LSTM model consistently showed superior perfor-
mance. By incorporating an embedding layer, the LSTMmodel effectively captured complex
relationships within the categorical features. Additionally, by modeling the data as a sequence,
the LSTM was able to account for the influence of prior sequences on the current sequence’s
battery consumption.
We also observed that the duration of the trips impacted prediction performance, with the

models being relatively sensitive to certain outliers. Specifically, for trips with unusually high
consumption compared to similar trips of the same duration, our model tended to underesti-
mate the predictions. This suggests that incorporating additional contextual factors, such as
vehicle load, speed, or traffic information, could enhance model performance in future itera-
tions.
Overall, our models, particularly the LSTM model, demonstrated the ability to generate

reliable and accurate predictions of battery consumption across trips.

62

5
Ship Trajectory Prediction Usecase

Trajectory prediction is a fundamental problem in the analysis of trajectory data. The pre-
diction of an object’s future movement has been extensively studied, particularly in the field
of computer vision, with a significant focus on human trajectory prediction. Prior research
in this area, such as [47, 48, 49], has primarily addressed short-term human trajectory predic-
tion. Additionally, there has been substantial research on predicting longer-term trajectories,
as demonstrated by studies like [50, 51]. Beyond computer vision, trajectory prediction has
also been applied to raw trajectory data across various domains.

The raw trajectories contain latitude and longitude information, along with additional con-
textual details about the trajectory. According to [14], prior research has been conducted in
diverse environments, including maritime, artificial, and urban settings. In the maritime envi-
ronment, trajectory prediction can be utilized to implement intelligent transportation systems.
This application allows for better control of sea traffic, thereby enhancing safety at sea. In this
chapter, we will focus specifically on the maritime environment, with an emphasis on predict-
ing future ship trajectories as a use case. By doing so, we aim to contribute to the development
of more efficient and safer maritime navigation systems.

To provide a structured approach to this research, Section 5.1 provides a brief overview of
our ship prediction use case. Section 5.2 discusses the challenges and approaches in cleaning
ship trajectory data. Section 5.3 outlines our approach to predicting ship trajectories. Finally,
Section 5.4 summarizes the work done and suggests future improvements for this chapter.

63

5.1 Overview

To illustrate the diverse approaches required for addressing various problems and challenges in
predicting trajectory data, another use case is incorporated. This case aims to demonstrate that
trajectory data necessitates distinctmethodologies depending on the specific issue at hand. Fur-
thermore, it highlights the management of different types of trajectory data, including larger
datasets and denser trajectories. In this use case, we will utilize the AIS dataset provided by the
Danish government [27].
A prevalent issue associated with the AIS dataset is predicting ship trajectories based on his-

torical data. Numerous studies have explored this domain. For instance, the author in [24]
utilized an LSTM network with a TimeDistributed dense layer to predict ship trajectories in
the Strait of Singapore, whereas the author in [25] employed LSTM alongside additional fea-
ture engineering to forecast ship trajectories near Sweden.

These trajectory prediction tasks present several challenges that necessitate meticulous data
processing and precise prediction methods. The inclusion of this use case will demonstrate
the extensive range of applications for trajectory data prediction and underscore the unique
challenges posed by varying trajectory data contexts.

5.2 Data Preprocessing

In this use case, we will utilize the AIS dataset provided by the Danish government, which
encompasses comprehensive historical ship data from the waters surrounding Denmark, with
records spanning from 2006 to the present. Given the extensive volume of data, our analysis
will be confined to a three-day period, and aboundingboxwill be applied to limit the area of the
trajectory. This approach ensures a more manageable dataset for preprocessing and analysis.

Our analysis will focus specifically on tanker, cargo, and passenger ships. We will exclude
moored, anchored, and aground ships based on their status. Furthermore, we will filter the
AIS data based on attributes such as SpeedOverGround (SOG),CourseOverGround (COG),
Rate of Turn (ROT), and heading, ensuring these attributes fall within valid ranges as detailed
in Table 5.1. This initial filtering stage will facilitate more sophisticated preprocessing of our
dataset.

The original dataset comprises various pieces of information beyond spatial and temporal
data. To maintain simplicity, as shown in Table 5.2, we will only incorporate key attributes
from the dataset. The primary attributes used in our analysis will be timestamp, latitude, lon-

64

Attribute Unit Valid Value N.A Default Value

Longitude Degrees [-180, 180] 181
Latitude Degrees [-90, 90] 91

Rate of Turn (ROT) Degrees / m [-127, 127] 128
Speed Over Ground (SOG) Knots [0, 102.2] 102.3
Course Over Ground (COG) Degrees [0, 359.9] 360.0

Heading Degrees [0, 359] 511

Table 5.1: Range and default values of AIS attributes [5]

gitude, and SOG. In the following sections, wewill provide an in-depth explanation of our data
preprocessing methods before making any predictions.

Attribute Datatype

MMSI String
T Timestamp

Longitude Float
Latitude Float

Speed Over Ground (SOG) Float

Table 5.2: AIS attributes used for data prediction

5.2.1 Analyzing the Trajectories

Beforeproceedingwith thedata cleaningprocess, it is essential to thoroughly explore ourdataset
to understand its characteristics and uncover any underlying patterns. This preliminary analy-
sis will provide a foundation for the subsequent data cleaning steps. We will analyze the trajec-
tories grouped by the MMSI number of each ship.
Figure 5.1 presents the average duration of the ship journeys, which is approximately 21

hours, with only 25% of journeys lasting less than 3 hours and 25 minutes. Additionally, the
average distance of the ship trajectories, indicating that on average, each ship travels 62 kilo-
meters. These extensive voyages do not imply continuous sailing; there may be stops or gaps
in the trajectories due to lost signals or errors in signal transmission. Consequently, it will be
necessary to segment these long trajectories into smaller, more manageable segments.

Building on the observation of lengthy trajectories, we will also examine the SOG of the
ships. Analyzing the SOG provides insights into the velocity variations of vessels at sea. As
depicted in Figure 5.2, the average SOGdistribution reveals that the average speed over ground

65

Figure 5.1: Distribution of vessels’ trajectories durations (hours)

is approximately 2.59 knots, with 25% of the ships traveling at a speed of 0.23 knots, which
is almost zero. This suggests that many ships travel slowly, with some nearly stopping during
their journeys.

Figure 5.2: Distribution of vessels’ average SOG (knots)

To gain a more detailed understanding, we will further analyze the SOG data. Figure 5.3
shows the evolution of the SOG for a particular ship, highlighting variations in speed and in-
stances where the SOG is zero or very low and also highlight the ship trajectory over time. We
observe that the ship accelerates at times and then decelerates, maintaining a SOG near zero.
This analysis suggests that it may be beneficial to remove these stopping points to refine our

66

data further.

(a) (b)

Figure 5.3: (a) Ship SOG (knots) attribute over the entire course (b) Ship trajectories over the entire course

With the insights gained from this preliminary analysis, we are now prepared to move on to
the trajectory cleaning process. In the following section, we will explain the methods used to
clean the trajectory data and prepare it for prediction.

5.2.2 Cleaning the Trajectories

After analyzing the trajectories, the next step is to clean the data before making predictions.
This step is crucial as it ensures the creation of a clean dataset for our predictive models. In this
cleaning process, we will utilize tools such asMobilityDB [10] and PyMEOS [11]. These tools
simplify data preprocessing by providing native functions to handle trajectory data effectively.

67

Figure 5.4: Distribution of ships’ trip durations (hours) after gap splitting

To begin the cleaning process, wemust address the long voyages of the ships, as theremay be
gaps in the journeys. We define a gap as a 10-minute interval between consecutive timestamps
or a 10-kilometer distance between points. Using these criteria, we will split the trajectory data
at these gaps. This process will be carried out using MobilityDB in PostgreSQL, as demon-
strated in Listing 5.1.

Listing 5.1: Splitting trajectory at defined gaps

trip = unnest(
sequences(

tgeompointSeqSetGaps(
array_agg(tgeompoint(

st_transform(geom, 25832), T
)
ORDER BY T),
interval '10mins', 10000
)

)
)

These commands will identify and split sequences that have gaps exceeding the definedmax-
imum time interval or distance. By segmenting the trajectories at these gaps, we can effectively
manage significant interruptions in the data, converting one extensive trajectory into multiple
separate trips. This step is crucial for ensuring the accuracy and reliability of our subsequent
analysis. In addition to this, we also filter out trips where the speed is less than 2 knots, as

68

traveling at such a slow speed can be considered stationary in the data.
After applying this function, multiple trips will be obtained from a single trajectory. It is

important to assess the duration and length of the processed trajectories with gaps. As shown
in Figure 5.4, 50% of the trips have a duration of only 0.09 hours (or 5 minutes), which is too
short for our prediction purposes. Additionally, 25% of the trips have a distance of less than
44 meters, which is insufficient for meaningful trajectory analysis. Therefore, further filtering
is necessary to ensure the data is suitable for prediction.

Figure 5.5: Distribution of ships’ trip durations (hours) after cleaning by minimum duration and number of points

To address this, we will set aminimum trajectory duration of 15minutes and aminimumof
40 points per trajectory. This ensures that each trip contains sufficient information for accu-
rate trajectory prediction. As shown in Figure 5.5, the average duration is now approximately
1 hour and 43 minutes, as short trips have been removed from the data. Furthermore, the av-
erage distance is now approximately 27 kilometers, with 25% of the trips being less than 4.9
kilometers in distance. These adjustments result in longer, but still manageable, trips for the
trajectory analysis.

Additionally, ourdataset contains irregular timegapsbetween trajectorypoints, which could
affect prediction accuracy. To mitigate this issue, we will resample our dataset at one-minute
intervals. This standardizes the trajectory data, ensuring that each minute has a corresponding
trajectory point. After completing this step, the trajectory cleaning process will be finalized.

Upon completing these steps, we will have a cleaned trajectory dataset ready for prediction.
Figure 5.6 illustrates the cleaned trajectory data after the data preprocessing steps. In the subse-
quent section, we will elaborate on how trips are defined for our trajectory analysis, providing
essential context and framework for the prediction process.

69

Figure 5.6: Cleaned ships’ trajectories

5.3 Ship Trajectory Prediction

After cleaning our AIS dataset, the next step is to predict the ship trajectories. To build an
effective trajectory prediction model, we can conceptualize the trajectory data as a sequence.
Since our data is sampled at one-minute intervals, we can utilize the first X minutes of the
sequence to predict the subsequent Y minutes.

Using this sequential information,we can train ourmodel to predict future trajectories. One
approach is to employ a Recurrent Neural Network (RNN) to identify patterns within the se-
quence. A suitable variant of RNN for this purpose is the Long Short-TermMemory (LSTM)
network, which is designed for longer sequences and performs better in mitigating issues such
as the exploding gradient problem compared to vanilla RNNs. This can be combined with
convolutional layers.

Convolutional layers can exploit the spatial dependencies in our dataset. By leveraging these
layers, we can extract spatial dependencies from the latitude and longitude information in the
dataset and then combine them with the recurrent layers.

After constructing the model, we can perform predictions using the dataset. To demon-
strate the flexibility of our model, we will conduct predictions with different prediction steps,
utilizing a 30-minute window of historical data as the basis for our predictions.

We will evaluate the prediction performance using several metrics. The mean distance from
the predicted points to the ground truthwill provide an overall measure of accuracy. Addition-
ally, we will use RMSE and MAPE to further analyze the deviation of predicted coordinates

70

from the actual trajectory coordinates. These evaluations will help us comprehensively assess
the accuracy and reliability of our model.

5.3.1 Defining the Sequence for Prediction

To generate predictions with our model, it is essential to define the sequence from our dataset.
This step is crucial as it structures the data for input into our network. Our dataset consists of
multiple trajectories, and each trajectory is composed of several trajectory points. The defini-
tion of a trajectory point is provided in Equation 5.1.

T = {Latitude,Longitude, Speed Over Ground} (5.1)

Given this data, we need to establish the window size and the prediction steps for ourmodel.
In this example, let us define the window size as five and the prediction step as one. Formally,
we can define the window size for prediction as in Equation 5.2 and since we aim to predict
the subsequent sequence based on the window size, the prediction steps can be defined as in
Equation 5.3.

W = {T1,T2, ...,Twindow_size} (5.2)

P = {Twindow_size+1, ...,Twindow_size+prediction_steps} (5.3)

Additionally, wewill use a rollingwindow approach,meaning thatwewillmove thewindow
size’s starting position and the prediction step’s starting position one time step at a time. As
shown in Table 5.3, the trajectory data has been split into windows for prediction and the cor-
responding prediction size. With awindow size of five, we use the first five sequences to predict
the subsequent sequence, in this case, one step ahead. This method allows for the flexibility to
define differentwindow sizes and prediction steps, which can be adapted for various prediction
scenarios. Since the trajectory data is sampled at one-minute intervals, we can conveniently use
minutes as the unit to define our window size and prediction steps.

71

Window Prediction

{T1, ..., T5} {T6}
... ...

{Tn, ..., Tn+4} {Tn+5}

Table 5.3: Sequences for the prediction

5.3.2 Explaining theModel

After defining our sequence, we can proceed to build the model for trajectory prediction. In
this section, we will explain the architecture of the model, the rationale behind each layer, and
the loss function used for the prediction. Figure 5.7 illustrates the general architecture of our
model.

Figure 5.7: Model architecture for prediction

The convolutional layers are configured with 128 and 64 filters, respectively. These layers
are applied to the latitude and longitude data to exploit the spatial dependencies present in the
trajectory. Following the convolutional layers, the results are concatenatedwith the non-spatial
features and then fed into the recurrent layers.
The recurrent component of our model comprises two Long Short-TermMemory (LSTM)

layers, each containing 250 units. These LSTM layers are specifically designed to capture tem-
poral dependencies within the sequences. In addition, we integrate a time-distributed dense
layer, tomodel non-linear relationshipswithin thedata. The incorporationof the time-distributed
dense layer enables the computation of outputs for each timestep of the LSTM, rather than
solely the final timestep. Each time-distributed dense layer is configured with 150 units. After
processing through the time-distributed dense layer, the model generates the predicted trajec-
tory.

72

Simultaneously, to enhance the model’s learning capability, we apply activation functions
to each layer. In the convolutional and time-distributed dense layers, we use the Rectified Lin-
ear Unit (ReLU) activation function to mitigate issues such as the vanishing gradient problem
during training. For the recurrent layers, we employ the tanh activation function, which is
commonly used in recurrent networks due to its ability to handle the vanishing gradient prob-
lem and sustain long-range dependencies. By carefully selecting these activation functions, we
ensure that each component of the model contributes effectively to the overall prediction per-
formance.

Distance =
√
(x2 − x1)2 + (y2 − y1)2 (5.4)

Furthermore, we have designed a custom loss function for thismodel based on theEuclidean
distance between coordinates. Given that we are using the planar representation of our coordi-
nates, the distance between two points is calculated using the formula shown in Equation 5.4.
Themean squared distance is then used as the loss function for training. This custom loss func-
tion aims to minimize the distance between the predicted trajectory and the actual trajectory,
thereby ensuring that the predicted trajectory closely approximates the actual trajectory.

5.3.3 Hyperparameters Tuning

After defining themodel, the next step is to tune the hyperparameters. To implement hyperpa-
rameter tuning, we are usingWandb as the tool to search for the optimal hyperparameters. We
employ Bayesian search to tune our parameters, running itmultiple times to prune improbable
candidates and limit our search space. This approach allows us to efficiently identify the best
hyperparameters without exhaustively iterating through every possible combination.

As shown in Table 5.4, we list all possible parameters considered for hyperparameter tuning
and the selected hyperparameters for training. Additionally, we incorporate an early stopping
mechanism in our training process. This means that if no improvement in validation loss is
observed after a certain number of iterations, known as the patience parameter, the training
process will be halted. This ensures efficient use of computational resources and prevents over-
fitting.

73

Hyperparameter Value

LSTM layers 1, 2, 3
LSTM hidden size 150, 250, 300

Batch size 64, 128, 256
Dense layer size 50, 100, 150
Optimizer adam, adagrad, rmsprop, sgd

Learning rate 0.0005, 0.001, 0.005
Epoch 50
Patience 20
Delta 0.5

Table 5.4: Hyperparameters for training

5.3.4 Training theModel

Additionally, we need to define the training, validation, and test splits to train our model effec-
tively. For our case, we will allocate 60% of the data for the training set, 20% for the validation
set, and the remaining 20% for the testing set.

We will train the model by iterating through a number of epochs and validating it against
the validation set using our custom loss function to obtain the validation loss. Throughout the
training process, we will monitor the best validation loss and use the corresponding weights to
make predictions on the test set. Moreover, we will define metrics for evaluating our predic-
tions.

As mentioned earlier, we will use several metrics to assess the prediction performance, pri-
marily RMSE and MAPE. These metrics measure the deviation of the predicted latitude and
longitude from the actual values in the test dataset. Additionally, we will calculate the mean
Euclidean distance from our planar trajectory representation of the latitude and longitude to
evaluate the real-world distance between the predicted and actual trajectories.

After defining these parameters, the next step is to evaluate our model. We will define sev-
eral window sizes and prediction steps to demonstrate the model’s flexibility. Specifically, we
will use a fixed window size of 30 minutes to predict the next 1, 5, 10, 20, and 30 minutes of
trajectory data. By using a fixed window size, we can analyze the effect of forecasting longer
trajectories on our prediction model.

74

5.3.5 Prediction Results

In this section, we will discuss the prediction results using the metrics explained in the previ-
ous section. We have defined several prediction steps using a window size of 30 minutes for
the trajectory data. As shown in Table 5.5, the error increases with the length of the predic-
tion steps. This is because predicting longer sequences is inherently more challenging, and the
model needs to capture dependencies over longer intervals.

Length Steps RMSE MAPE Mean Distance Epoch

30 min 1 min 0.002461 2.347% 0.489 km 30
30 min 5 min 0.001943 1.269% 0.357 km 31
30 min 10 min 0.002834 2.416% 0.506 km 49
30 min 20 min 0.006603 5.827% 1.242 km 24
30 min 30 min 0.009515 6.847% 1.538 km 24

Table 5.5: Performance comparison for a 30‐minute window with varying prediction steps

For the RMSE of the predictions, all models resulted in an RMSE of less than 0.01 degrees
for the coordinates. Additionally, the MAPE of the predictions yielded less than 10%, indicat-
ing that the predicted coordinates are reasonably accurate. We also examined themean distance
in kilometers, and for all predictions, the difference from the real trajectory was less than two
kilometers. On average, the model required approximately 30 epochs to train.

Figure 5.8: Model prediction on a straight trajectory

The best performance was observed with prediction steps of 5 minutes from the 30-minute
window, even compared to predicting 1-minute trajectories. Although themodel achieved low
RMSE and a low mean distance between the predicted and actual trajectories, it struggles to
accurately predict turns or stopping points. This limitation is illustrated in Figure 5.9, where
deviations from the actual path are evident during maneuvers.

75

Figure 5.9: Model prediction on a trajectory with turns

Conversely, the model managed to predict the trajectory on straight trajectory segments, as
shown in Figure 5.8. In these scenarios, the model demonstrates its ability to predict withmin-
imal error, maintaining high accuracy and consistency. Overall, the prediction model exhibits
strong performance in terms of accuracy and consistency, particularly for shorter prediction
steps and straight trajectory segments.

5.4 Summary

To summarize this chapter, our trajectory prediction process begins with preprocessing the
dataset. The data preprocessing starts with uncovering information such as average speed over
ground, duration, and distance of the trajectories. Following this, we split the trajectories based
on gaps to extract individual trips. Subsequently, we filter out short trips based on the number
of points and the duration of the trips. Finally, we resample the trajectory data to one-minute
intervals to handle irregularities, resulting in a cleaned dataset.

Despite our exhaustive approach to data cleaning, there are opportunities to extend these
methods by detecting anomalies in the ship trajectories to further eliminate erroneous points.
Methods such as those proposed in [79] could be integrated into our data cleaning process. Ad-

76

ditionally, instead of solely relying on speed over ground readings from the dataset, we could
estimate the speed to achieve more accurate measurements. These improvements warrant fur-
ther investigation to assess their impact on prediction accuracy.
For prediction, the optimal step for our 30-minute window is a 5-minute prediction win-

dow. This configuration achieved an RMSE of 0.001943 and aMAPE of 1.269%with the real
coordinates, with a mean distance of 0.357 km from the actual trajectory. However, improve-
ments are needed, especially in predicting maneuvers in the trajectory.
To enhance prediction accuracy, we can draw ideas from other trajectory prediction do-

mains. For instance, [49] demonstrated the use of navigation pooling, whichmeasures crossing
probability from past observations to determine possible new position candidates. We could
apply a similar approach by dividing our trajectory data into grid cells andmeasuring the prob-
ability of trajectory crossings within these cells. This approach poses a challenge for the ship
dataset due to the vast areas covered and the sparsity of the trajectories.

In conclusion, we successfully cleaned the dataset and applied trajectory prediction for the
ship trajectorypredictionuse case,withpotential improvements for futurework. Cross-domain
knowledge from other trajectory prediction problems, particularly human trajectory predic-
tion, may also offer valuable insights for enhancing our predictions.

77

78

6
Conclusion and Future Work

6.1 Conclusion

In this thesis, we applied the theoretical foundation regarding trajectories and extended its use
to more advanced approaches for predictive analysis using deep learning models. We carefully
preprocessed our trajectory data, identified the challenges, and applied appropriate methods
to address them. In our predictive analysis, we developed a deep learning-based model, specifi-
cally an LSTMnetwork, to perform predictive analysis on our trajectory data, recognizing that
trajectories can be modeled as sequences ordered by their timestamps.

To demonstrate our approach, we presented two use cases, with the primary focus on pre-
dicting the battery consumption of electric buses. This primary use case enabled us to iden-
tify several key contributions. While previous research often involved data preprocessing, the
emphasis was primarily on model improvement rather than on the trajectory data itself. In
contrast, our approach involved a comprehensive cleaning and preprocessing of the trajectory
data, guided by theoretical frameworks. This process beganwith data cleaning, followed by tra-
jectory segmentation, and enriching the trajectories with semantic information to make them
more meaningful for analysis.

In addition to these preprocessing steps, our work addressed specific challenges associated
with moderate-frequency data, sampled at 1/30 Hz, as opposed to the high-frequency data
typically used in prior studies. Handling this moderate-frequency data required careful consid-

79

eration; in this context, the map matching algorithm still performed reasonably well, allowing
us to accurately retrieve the road segment data.

Finally, we tackled the challenge of working with cumulative battery consumption values, a
problem not commonly addressed in previous research, which often relied on pointwise data.
To address this, we utilized linear interpolation to estimate pointwise consumption values from
the cumulative data. By grounding our methods in robust theoretical principles and refining
our data through these processes, we successfully transformed our raw trajectories into clean,
analyzable datasets that are well-suited for predictive analysis.

In the predictive analysis, we incorporated a baseline linear regression model and compared
its performancewith our LSTMmodel. The LSTMmodel outperformed the baseline in terms
of RMSE and demonstrated better quality as indicated by the R2 score. We evaluated our data
at the trip level to provide more meaningful results. Our LSTMmodel achieved an RMSE of
1.31 kWh and an R2 score of 0.820 for energy consumption at the trip level.

Additionally, we included a secondary use case involving the prediction of a ship’s trajectory.
In this use case, we followed similar techniques and preprocessing steps to clean the data, using
the same theoretical foundation. This secondary use case demonstrates the versatility of our
approach and its underlying theoretical principles. Techniques such as spatio-temporal gaps
detection, and trajectory sampling were used to clean and segment the data.

For the predictive analysis in this secondary use case, we used an LSTMmodel to predict the
ship’s trajectory over different time steps within a 30-minute time window. Our experiments
showed that the best prediction was achieved for a 5-minute prediction within the 30-minute
window, with a MAPE of 1.2% and a mean distance error of only 0.357 kilometers from the
actual trajectories.

In conclusion, our method, grounded in the literature on trajectory analysis and supported
by careful identification of the challenges related to trajectory data and its preprocessing, has
been demonstrated through its application in twouse cases. Our research builds on the theoret-
ical foundation by integrating more recent and practical approaches. In the primary use case,
we addressed existing gaps in the prediction of electric bus battery consumption. Addition-
ally, a secondary use case was provided to further illustrate the application of the techniques
established as our theoretical basis.

80

6.2 FutureWork

As for the future work, a more generic approach that can handle all types of trajectories, from
data cleaning to prediction analysis, would be highly beneficial. Potential research in this area
has been conceptualized in [80], though a complete implementationhas yet tobe realized. Such
an approach would reduce redundancy when working with different sets of trajectories, pro-
viding a more unified method for handling various types of trajectory data.

In our primary use case, investigating more advanced estimation functions to improve the
accuracy of pointwise consumption data could be highly valuable. Additionally, instead of
extracting data at the road segment level, we coulddefine segments between twobus stops along
a route. This approachwould providemoremeaningful insights into our predictions, allowing
us to analyze changes in consumption between bus stops. Furthermore, incorporating more
comprehensive information regarding traffic conditions and utilizing larger datasets, such as
multiple years’ worth of data, would significantly enhance our analysis.

For the second use case, we plan to explore techniques from trajectory prediction in com-
puter vision, as these methods have the potential to improve the accuracy of our trajectory pre-
dictions, particularly in better handling turns within the predicted trajectories. Additionally,
incorporating contextual information, such as the presence of land within the trajectory or the
interaction with other ships, is another avenue we will explore. These techniques, which have
been effectively used in human trajectory prediction, could offer valuable insights in maritime
contexts as well.

81

82

References

[1] G.Marketos, M. L. Damiani, N. Pelekis, Y. Theodoridis, and Z. Yan, “Trajectory collec-
tion and reconstruction,” inMobilityData: Modeling,Management, andUnderstand-
ing. Cambridge University Press, 2013, ch. 2, pp. 23–41.

[2] Y. Zheng, “Trajectory data mining: An overview,” ACM Trans. Intell. Syst. Technol.,
vol. 6, no. 3, pp. 1–4, May 2015.

[3] M. A. Nielsen,Neural Networks and Deep Learning. Determination Press, 2015, cre-
ative Commons Licence.

[4] I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning. MIT Press, 2016.

[5] J. A. Aremu, “Quality assessment of maritime AIS data,” Master’s Thesis, Novia Uni-
versity of Applied Sciences, Jul 2023.

[6] C. Renso, S. Spaccapietra, and E. Zimányi, Eds., Mobility Data: Modeling, Manage-
ment, and Understanding. Cambridge University Press, 2013.

[7] G.Andrienko,N.Andrienko, P. Bak,D.Keim, and S.Wrobel,VisualAnalytics ofMove-
ment. Springer Science & Business Media, 2013.

[8] C.A. Ferrero, L.O.Alvares, andV.Bogorny, “MultipleAspectTrajectoryDataAnalysis:
Research challenges and opportunities,”GeoInfo, pp. 56–67, 2016.

[9] J. Zhao, J. Mei, S. Matwin, Y. Su, and Y. Yang, “Risk-aware individual trajectory data
publishing with differential privacy,” IEEE Access, vol. 9, pp. 7421–7438, 2021.

[10] E. Zimányi, M. Sakr, A. Lesuisse, and M. Bakli, “MobilityDB: A mainstream moving
object database system,” in Proc. 16th Int. Symp. on Spatial and Temporal Databases
(SSTD). ACM, 2019.

[11] E. Zimányi, M. Duarte, and V. Diví, “MEOS: An open source library for mobility data
management,” in Proc. 27th Int. Conf. on ExtendingDatabase Technology (EDBT),May
2024.

83

[12] A. Graser, “MovingPandas: Efficient structures for movement data in Python,”
GI_Forum, vol. 7, pp. 54–68, 2019.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,”Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[14] A. Graser et al., “MobilityDL: A review of deep learning from trajectory data,” Geoin-
formatica, 2024.

[15] A.Broniewski,M. I.Tirmizi, E. Zimányi, andM. Sakr, “UsingMobilityDBandGrafana
for aviation trajectory analysis,” Engineering Proc., vol. 28, no. 1, p. 17, 2023.

[16] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot,
“A conceptual view on trajectories,” Data Knowledge Engineering, vol. 65, no. 1, pp.
126–146, 2008.

[17] S. Spaccapietra, C. Parent, and L. Spinsanti, “Trajectories and their representations,” in
Mobility Data: Modeling,Management, and Understanding. Cambridge University
Press, 2013, ch. 1, pp. 3–23.

[18] M. Hickman, “Bus Automatic Vehicle Location (AVL) systems,” in Assessing the Bene-
fits and Costs of ITS. Springer, 2004.

[19] P. G. Furth, B. Hemily, T. H. J.Muller, and J. G. Strathman,Using Archived AVL-APC
Data to Improve Transit Performance and Management, ser. TCRP Report. Trans-
portation Research Board of the National Academies, 2006, no. 113.

[20] D. G. Gerstle, “Understanding bus travel time variation using AVL data,”Master’s The-
sis, Massachusetts Institute of Technology, 2012.

[21] A. Taparia and M. Brady, “Bus journey and arrival time prediction based on archived
AVL/GPS data using Machine Learning,” in Proc. 2021 7th Int. Conf. on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), 2021.

[22] H.M. Perez, R.Chang, R. Billings, andT. L.Kosub, “Automatic Identification Systems
(AIS) data use inmarine vessel emission estimation,” inProc. 18th Annual Int. Emission
Inventory Conf., vol. 14, 2009.

84

[23] T. Devogele, L. Etienne, and C. Ray, “Maritime monitoring,” inMobility Data: Mod-
eling, Management, and Understanding. Cambridge University Press, 2013, ch. 11,
pp. 221–239.

[24] A. W. Multazam, “Maritime data open access and analytic,” Master’s Thesis, National
University of Singapore, Jul 2020.

[25] N.Mehta, “Ship trajectory prediction in confined waters,”Master’s Thesis, Norwegian
University of Science and Technology, Jul 2023.

[26] D. Nguyen and R. Fablet, “A Transformer network with sparse augmented data rep-
resentation and Cross Entropy Loss for AIS-Based vessel trajectory prediction,” IEEE
Access, vol. 12, pp. 21 596–21 609, 2024.

[27] Danish Maritime Authority, “AIS data,” https://www.dma.dk/safety-at-
sea/navigational-information/ais-data, 2024.

[28] C. Parent et al., “Semantic trajectories modeling and analysis,” ACM Comput. Surv.,
vol. 45, no. 4, aug 2013.

[29] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans.
ASME J. Basic Eng., vol. 82, no. Series D, pp. 35–45, 1960.

[30] L. Li, X. Chen, Q. Liu, and Z. Bao, “A data-driven approach for GPS trajectory data
cleaning,” inDatabase Systems for Advanced Applications. Springer, 2020.

[31] P. Chao, Y. Xu, W. Hua, and X. Zhou, “A survey on Map-Matching algorithms,” in
Databases Theory and Applications. Springer, 2020.

[32] P. Newson and J. Krumm, “Hidden Markov map matching through noise and sparse-
ness,” in Proc. 17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Informa-
tion Systems, 2009.

[33] B.Hummel, “Mapmatching for vehicle guidance,” inDynamic andMobileGIS. CRC
Press, 2006.

[34] J. Krumm, “A markov model for driver turn prediction,” in Society of Automotive Engi-
neers (SAE)World Congress,, 2008.

85

[35] W.Meert andM.Verbeke, “HMMwith non-emitting states formapmatching,” inProc.
European Conf. on Data Analysis (ECDA), Paderborn, Germany, July 2018.

[36] J.-H. Haunert and B. Budig, “An algorithm for map matching given incomplete road
data,” in Proc. 20th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Informa-
tion Systems. ACM, 2012.

[37] A.Cappiello, I. Chabini, E.Nam,A. Lue, andM.A. Zeid, “A statisticalmodel of vehicle
emissions and fuel consumption,” inProc. 5th Int. IEEEConf. on Intelligent Transporta-
tion Systems (ITSC), 2002.

[38] B. O. Varga, A. Sagoian, and F. Mariasiu, “Prediction of electric vehicle range: A com-
prehensive review of current issues and challenges,”Energies, vol. 12, no. 5, p. 946, 2019.

[39] F. Perrotta, T. Parry, and L. C. Neves, “Application of machine learning for fuel con-
sumption modelling of trucks,” in Proc. 2017 IEEE Int. Conf. on Big Data, 2017.

[40] R. Kabir, S. M. Remias, J. Waddell, and D. Zhu, “Time-series fuel consumption predic-
tion assessing delay impacts on energy using vehicular trajectory,” Transportation Re-
search Part D: Transport and Environment, vol. 117, p. 103678, 2023.

[41] Y. Yao, X. Zhao, C. Liu, J. Rong, Y. Zhang, Z. Dong, and Y. Su, “Vehicle fuel consump-
tion prediction method based on driving behavior data collected from smartphones,” J.
Adv. Transp., vol. 2020, p. 9263605, 2020.

[42] S. Kanarachos, J. Mathew, andM. E. Fitzpatrick, “Instantaneous vehicle fuel consump-
tion estimation using smartphones and recurrent neural networks,”Expert Systems with
Applications, vol. 120, pp. 436–447, 2019.

[43] F. C. López and R. Álvarez Fernández, “Predictive model for energy consumption of
battery electric vehicle with consideration of self-uncertainty route factors,” J. Cleaner
Prod., vol. 276, p. 124188, 2020.

[44] C. De Cauwer, J. VanMierlo, and T. Coosemans, “Energy consumption prediction for
electric vehicles based on real-world data,” Energies, vol. 8, no. 8, pp. 8573–8593, 2015.

[45] J. H. Bundgaard, B. B. T.Madsen, and C. P. Nørskov, “Using spatial and temporal con-
text for predicting energy consumption of electric vehicles,” Aalborg Universitet, Tech.
Rep., 2019.

86

[46] P. Zarei, “Data-driven power estimation of electric buses using deep LSTM neural net-
works and symbolic aggregate approximation filtering,” Master’s Thesis, University of
British Columbia, Dec 2020.

[47] F. Bartoli, G. Lisanti, L. Ballan, and A. Del Bimbo, “Context-aware trajectory predic-
tion,” in Int. Conf. on Pattern Recognition (ICPR). IEEE Computer Society, Aug
2018.

[48] L. F. Chiara, P. Coscia, S. Das, S. Calderara, R. Cucchiara, and L. Ballan, “Goal-driven
self-attentive recurrent networks for trajectory prediction,” in IEEE/CVFConf. on Com-
puter Vision and Pattern RecognitionWorkshops (CVPRW), 2022.

[49] M. Lisotto, P. Coscia, and L. Ballan, “Social and scene-aware trajectory prediction in
crowded spaces,” in IEEE/CVF Int. Conf. on Computer Vision Workshop (ICCVW),
2019.

[50] S. Das, G. Camporese, S. Cheng, and L. Ballan, “Distilling knowledge for short-to-long
term trajectory prediction,” preprint arXiv:2305.08553, 2024.

[51] P. Coscia, F. Castaldo, F. A. Palmieri, A. Alahi, S. Savarese, and L. Ballan, “Long-term
path prediction in urban scenarios using circular distributions,” Image andVision Com-
puting, vol. 69, pp. 81–91, 2018.

[52] S. Mehri, A. A. Alesheikh, and A. Basiri, “A contextual hybrid model for vessel move-
ment prediction,” IEEE Access, vol. 9, pp. 45 600–45 613, 2021.

[53] P. Han, M. Zhu, and H. Zhang, “Interaction-aware short-term marine vessel trajectory
predictionwith deep generativemodels,” IEEETrans. Ind. Inf., vol. 20, no. 3, pp. 3188–
3196, 2024.

[54] G. Spadon et al., “Building a safermaritime environment throughmulti-path long-term
vessel trajectory forecasting,” CoRR, vol. abs/2310.18948, 2023.

[55] P. Petrou et al., “Argo: A big data framework for online trajectory prediction,” in Proc.
16th Int. Symp. on Spatial and Temporal Databases (SSTD). ACM, 2019.

[56] Y. Suo, W. Chen, C. Claramunt, and S. Yang, “A ship trajectory prediction framework
based on a recurrent neural network,” Sensors, vol. 20, no. 18, p. 5133, 2020.

87

[57] A. Ip, L. Irio, and R. Oliveira, “Vehicle trajectory prediction based on LSTM recurrent
neural networks,” in Proc. 2021 IEEE 93rd Vehicular Technology Conf. (VTC), 2021.

[58] A. Graser, A. Naghibzadeh-Jalali, J. Lampert, A. Weißenfeld, and K. Janowicz, “Deep
Learning from Trajectory Data: A review of deep neural networks and the trajectory
data representations to train them,” in Proc. Workshop on Big Mobility Data Analytics
(BMDA), G. Fletcher and V. Kantere, Eds., vol. 3379, 2023.

[59] F.Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brainmech-
anisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep., 1961.

[60] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets
and problem solutions,” Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 6, no. 2, pp. 107–116, 1998.

[61] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157–166, 1994.

[62] M. Kuhn and K. Johnson, Applied PredictiveModeling. Springer New York, 2013.

[63] C. J. Willmott and K. Matsuura, “Advantages of the Mean Absolute Error (MAE) over
theRootMeanSquareError (RMSE) in assessing averagemodel performance,”Climate
Research, vol. 30, no. 1, pp. 79–82, 2005.

[64] M. Hashemi and H. A. Karimi, “A Critical Review of Real-Time Map-Matching Al-
gorithms: Current issues and future directions,” Computers, Environment and Urban
Systems, vol. 48, pp. 153–165, 2014.

[65] A. Graser et al., “MovingPandas: v0.18.1,” May 2024.

[66] P. Zippenfenig, “Open-Meteo.com weather API,” Jan 2024.

[67] S. Tarquini, I. Isola, M. Favalli, A. Battistini, and G. Dotta, “TINITALY, a digital el-
evation model of Italy with a 10 meters cell size (Version 1.1),” Istituto Nazionale di
Geofisica e Vulcanologia (INGV), 2023.

[68] R. Sasse David, E. Zimányi, K. Torp, and M. Sakr, “Roundabouts and the energy con-
sumption of electrical vehicles,” in Proc. 16th ACM SIGSPATIAL Int. Workshop on
Computational Transportation Science (IWCTS). ACM, 2024.

88

[69] ——, “Speed and energy consumption for electrical vehicles,” in Proc. 15th ACM
SIGSPATIAL Int. Workshop on Computational Transportation Science (IWCTS).
ACM, 2022.

[70] Meteorological Service of Canada, Manual of Surface Weather Observations
(MANOBS), 7th ed., Meteorological Service of Canada, Canada, Jan 2013.

[71] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, W. Petrich, and F. A. Ham-
precht, “A comparison of Random Forest and its Gini Importance with Standard
Chemometric Methods for the feature selection and classification of spectral data,”
BMC Bioinformatics, vol. 10, p. 213, 2009.

[72] K.-Q. Shen, C.-J. Ong, Z. Hui, X.-P. Li, and E. Wilder-Smith, “A feature selection
method for multilevel mental fatigue EEG classification,” IEEE Trans. on Biomedical
Engineering, vol. 54, no. 7, pp. 1231–1237, 2007.

[73] V. Lakshmanan, S. Robinson, and M. Munn, Machine Learning Design Patterns.
O’Reilly Media, 2020.

[74] X. Glorot and Y. Bengio, “Understanding the difficulty of training Deep Feedforward
Neural Networks,” in Proc. 13th Int. Conf. on Artificial Intelligence and Statistics (AIS-
TATS), 2010.

[75] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., “Rectifier nonlinearities improve neu-
ral network acoustic models,” in Proc. International Conference on Machine Learning
(ICML), vol. 30, no. 1, 2013.

[76] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd
Int. Conf. on Learning Representations (ICLR), 2015.

[77] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” J. of Machine Learning Research, vol. 12, no. 7, 2011.

[78] S. Ruder, “An overview of gradient descent optimization algorithms,” preprint
arXiv:1609.04747, 2016.

[79] S.Guo, J.Mou, L.Chen, andP.Chen, “Ananomalydetectionmethod forAIS trajectory
based on kinematic interpolation,” J. of Marine Science and Engineering, vol. 9, no. 6,
2021.

89

[80] M.Musleh, “Towards a unified deep model for trajectory analysis,” in Proc. 30th ACM
SIGSPATIAL Int. Conf. on Advances inGeographic Information Systems. ACM, 2022.

90

Acknowledgments

These past two years studying in the BDMA program have been very hard and full of struggle,
especially while working on this thesis. Without the help of others, I would not have survived
this master’s program.
I would like to extend my deepest gratitude to my supervisors, Prof. Lamberto Ballan and

Prof. Esteban Zimanyi. Prof. Ballan, who graciously agreed to supervise my thesis, provided
invaluable guidance throughout the entire process. I am also immensely grateful to Prof. Este-
ban Zimanyi, who involved me in his lab during the thesis work and encouraged me to discuss
my ideas with other lab members.
I would also like to express my sincere thanks to Prof. Mahmoud Sakr, whose advice was

instrumental in guiding my thesis experiments.
I want to thank the lab members with whom I collaborated this semester. Their input and

guidancemade a significant difference, andwithout their support, completing this thesiswould
have been much harder.
Finally, I want to thank my best friend Luis, who has helped me get through this thesis and

motivated me during this difficult process. Thank you very much.

91

92

A
Appendices

93

A.1 Appendix A

Attribute Datatype Description

Timestamp Timestamp Timestamp from the AIS basestation
Type of mobile String Describes the type of target

MMSI String MMSI number of the vessel
Latitude Float Latitude of message report
Longitude Float Longitude of message report

Navigational status String Navigational status from AIS message
ROT Float Rate of Turn from AIS message
SOG Float Speed over ground from AIS message
COG Float Course over ground from AIS message

Heading Float Heading from AIS message
IMO String IMO number of the vessel

Callsign String Callsign of the vessel
Name String Name of the vessel

Ship type String Describes the AIS ship type of this vessel
Cargo type String Type of cargo from the AIS message
Width Float Width of the vessel
Length Float Length of the vessel

Type of position fixing device String Type of positional fixing device from the AIS message
Draught Float Draught field from AIS message

Destination String Destination from AIS message
ETA Timestamp Estimated Time of Arrival, if available

Data source type String Data source type
Size A Float Length from GPS to the bow
Size B Float Length from GPS to the stern
Size C Float Length from GPS to starboard side
Size D Float Length from GPS to port side

Table A.1: AIS data structure

94

A.2 Appendix B

All codes and implementation related to this project are available at the following GitHub
repository:
https://github.com/satriabw/master-thesis

95

https://github.com/satriabw/master-thesis

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Movement and Trajectories
	Analysis and Prediction on Trajectory Data
	Challenges in Analyzing and Predicting Trajectory Data
	Addressing the Challenges and Contributions
	Structure of the Thesis

	Literature Review
	Trajectory Data
	Trajectory Data Representation
	AVL Data
	AIS Data

	Trajectory Data Cleaning and Preprocessing
	Map Matching
	Trajectory Segmentation
	Semantic Trajectories

	Trajectory Data Prediction
	Predicting Vehicle Battery Consumption
	Predicting Ship Trajectories

	Trajectory Data Prediction Model
	Aritficial Neural Networks
	Recurrent Neural Networks

	Evaluation Metrics
	Summary

	Data Preprocessing for the Electric Bus Usecase
	Dataset Overview
	Data Exploration
	GPS Inaccuracies
	Discontinuities and Frequencies in Bus Trajectories
	Cumulative Battery Energy Consumption
	Dataset Context Deficiency

	Data Cleaning
	Map Matching
	Segmenting the Trajectories
	Estimating Battery Consumption
	Enhancing Dataset Context

	Building the Data Preprocessing Pipeline
	Road Segment Battery Consumption
	Validation of Road Segment Consumption Calculation
	Building the Data for Prediction

	Summary

	Prediction for the Electric Bus Usecase
	Building the Prediction Models
	Preparing and Analysing the Dataset
	Adding Temporal Information
	Inspecting the Weather
	Analyzing Trips

	Establishing the Baseline Model
	Feature Selection and Engineering
	Training the Models
	Baseline Models Validation

	Applying LSTM Model
	Defining the Sequences
	Embedding the Categorical Features
	LSTM Model Development
	Model Parameters
	Training the Model
	LSTM Model Validation

	Comparative Analysis between Models
	Summary

	Ship Trajectory Prediction Usecase
	Overview
	Data Preprocessing
	Analyzing the Trajectories
	Cleaning the Trajectories

	Ship Trajectory Prediction
	Defining the Sequence for Prediction
	Explaining the Model
	Hyperparameters Tuning
	Training the Model
	Prediction Results

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Acknowledgments
	Appendices
	Appendix A
	Appendix B

