
UNIVERISITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA MAGISTRALE IN

INGEGNERIA INFORMATICA

TESI DI LAUREA MAGISTRALE

3D OBJECT RECOGNITION WITHOUT
CAD MODELS FOR INDUSTRIAL ROBOT

MANIPULATION

RELATORE: Dott. Stefano Ghidoni

CORRELATORE: Ing. Roberto Polesel

LAUREANDO: Luca Benvegnù

09 Ottobre 2017
ANNO ACCADEMICO 2016/2017

Abstract
In this work we present a new algorithm for 3D object recognition. The goal

is to identify the correct position and orientation of complex objects without
using a CAD model, input as main current systems. The approach we follow
performs feature matching. The characteristics extracted belong only by shape
information to achieve a system independent to brightness, colour or texture.
Designing opportune settable parameters, we allow recognition also in presence
of small deformations.

One of its industrial applications is bin-picking that consists in identification
and extraction of article disposed in a box. In this way products can be available
for further processing. We tested our algorithm in both ideal and real environ-
ments with several object types, analysing quality and precision. We used two
different 3D cameras based on structured light: Photoneo PhoXi and Microsoft
Kinect v1.

Sommario
In questo progetto si presenta un nuovo algoritmo per il riconoscimento di

oggetti 3D. Lo scopo è identificare la corretta posizione e orientazione di ogget-
ti complessi senza usare un modello CAD, input dei principali sistemi attuali.
L’approccio seguito è il feature matching. Le caratteristiche estratte riguardano
solamente la forma dell’oggetto per realizzare un sistema indipendente dalla lu-
minosità, colore o trama. Progettando degli opportuni parametri modificabili, si
permette il riconoscimento anche in presenza di piccole deformazioni.

Una delle applicazioni industriali è il bin-picking che consiste nell’indivi-
duazione ed estrazione di articoli disposti all’interno di un cassone. In questo
modo i prodotti possono essere resi disponibili per successive lavorazioni. Si è
testato l’algoritmo sia in ambiente ideale che reale con diverse tipologie di og-
getti analizzando qualità e precisione. Si sono usate due telecamere 3D basate
su luce strutturata: Photoneo PhoXi e Microsoft Kinect v1.

Contents

Contents

List of Figures

List of Tables

1 Introduction 1
1.1 Analysis of task issues . 2

2 State of art solutions 5
2.1 Mathematical model creation 5
2.2 Aspects graphs . 6
2.3 Machine learning . 7
2.4 Feature matching . 8

3 Description of 3D object recognition system 13
3.1 Keypoint extraction . 14

First level keypoints . 14
Second level keypoints . 18

3.2 Feature description . 20
Lines description . 20
Circle description . 20

3.3 Scan preprocessing . 21
Farthest first traversal . 21
K-means . 22
K-median . 23
Comparison of clustering algorithms and final implementation . 24
Algorithm to find object count 26

3.4 Feature matching . 29
Rotation matrix computation 31

3.5 The algorithm execution flow 34

CONTENTS

4 Implementing details and tools used 35
4.1 Point Cloud Library . 35

MLESAC . 36
PROSAC . 36

4.2 3D Cameras . 39
Photoneo . 39
Microsoft Kinect v1 . 42

4.3 Kreon Baces arm . 45

5 Results 47
5.1 Test in ideal environment . 48

Recognition with clean data . 48
System behaviour in presence of noise in target point cloud . . . 49

5.2 Recognition of the model in multiple object types scene 50
5.3 Tests on real objects recognition 51

Cup recognition . 53
Pump component recognition 54

5.4 Tests with Microsoft Kinect v1 58
5.5 Measures of precision . 62

Position and orientation precision 64
Tolerance to displacements . 71
Bin picking precision . 74

6 Conclusions 79

References 81

List of Figures

2.1 Examples of super-quadratics . 6

3.1 Algorithm general steps . 13
3.2 Results of both first keypoints extractors 18
3.3 Graphic for k-means clustering execution time with and without Far-

thest First Traversal as first step . 26
3.4 Transformation from 3D scene to 2D scene deleting undercuts . . . 27
3.5 Features matching schema . 30
3.6 Identification of the reference system orientations 31

4.1 Comparison between RANSAC and MLESAC in goodness of output 37
4.2 Comparison between RANSAC and PROSAC in recognition 39
4.3 Photoneo sensor . 39
4.4 PhoXi 3D Scanner M range values 40
4.5 Microsoft Kinect v1 sensor . 43
4.6 Kinect results both in infra-red projection and depth-image compu-

tation . 43
4.7 Bases measuring arm . 45

5.1 Ideal model created for test in ideal environment 48
5.2 Results of test in ideal environment without noise 49
5.3 Results of test in ideal environment with noise 50
5.4 Results of test for detection task 52
5.5 Model and target used in cup recognition test 53
5.6 Results of cup recognition test . 53
5.7 Model and target used in pump component recognition test 55
5.8 Results of pump component recognition test [first part] 56
5.8 Results of pump component recognition test [second part] 57
5.9 Recognition of a rabbit shaped ornament 58
5.10 Scene of pears recognition . 60
5.11 Recognition of pears (first scene) 60

List of Figures

5.12 Recognition of pears (second scene) 61
5.13 Coat rack model . 62
5.14 Template and its use . 63
5.15 Positions computed with configuration 0 65
5.16 Error distribution in computed position with configuration 0 66
5.17 Orientations computed with configuration 0 66
5.18 Error distribution in computed orientation with configuration 0 . . . 67
5.19 Positions computed with configuration 1 69
5.20 Error distribution with configuration 1 69
5.21 Orientations computed with configuration 1 70
5.22 Error distribution in computed orientation with configuration 1 . . . 70
5.23 Positions computed with configuration 0 71
5.24 Displacement size computed with configuration 0 72
5.25 Positions computed with configuration 1 73
5.26 Displacement size computed with configuration 1 73
5.27 Positions computed in disposition 0 76
5.28 Orientations computed in disposition 0 76
5.29 Positions computed in disposition 1 77
5.30 Orientations computed in disposition 1 77

List of Tables

3.1 Results of k-means clustering with and without Farthest First Traversal 26

4.1 Time execution comparison between RANSAC and PROSAC (times
expressed in milliseconds) . 38

4.2 PhoXi 3D Scanner M characteristics 41
4.3 Microsoft Kinect v1 characteristics 44

5.1 Set-up for test in ideal environment without noise 48
5.2 Set-up for test in ideal environment with noise 49
5.3 Set-up for support and ornament detection 51
5.4 Set-up for cup recognition . 54
5.5 Set-up for pump component recognition 55
5.6 Set-up for Kinect recognition . 59
5.7 Set-up for coat rack recognition (configuration 0) 64
5.8 Set-up for coat rack recognition (configuration 1) 64
5.9 Averages of position error . 75
5.10 Variances of position error . 75

Chapter 1

Introduction

In the world of automation and robotics there are a lot of applications that
cannot be achieved without 3D object recognition. This task allows to identify a
target in the scene starting by a model: in this way a robot can acquire informa-
tions about the environment or bring object to process or transport and provide
it for further manufacturings.

A particular application that is linked with object recognition is bin-picking:
targets are scattered in a box as an assembly-chain output and the aim is to
pick them out to a predetermined position in the space. In a more complex
version, targets are positioned randomly so the problem is called random-bin-
picking. This is an open challenge for robotics: even though some companies
and researchers have just developed some working systems, there are a lot of
aspects that are still unresolved. In detail these software need a CAD model
of the target as input and this imposes to create it. In addition the presence
of deformations and the absence of a descriptor model, for example in natural
products (ex. apples, which no one is perfectly equal to the others), are still been
studying. Some systems also take advantage of singular characteristics and are
designed to recognize only a precise object type.

In this work we address bin-picking problem to build basis for a general
recognition algorithm not sensible to small deformations. The aim is to achieve
a system for different object types using only shape information. This allows
the robot to work in the dark or in condition of variable brightness and object
colour or texture. Another important aspect of the proposed method is that we
start from a scan and not from a CAD model. The advantages are linked to fast
production of subject description and system versatility: with this work we want
to manipulate also objects that have not a model to be set as input.

All the project is designed in cooperation with Euclid Labs. This company,
with offices in Nervesa della Battaglia (TV), designs and develops hi-tech solu-
tions for robotics and industrial automation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Analysis of task issues
There are several problems linked to recognition aimed to bin-picking, the

main are:

• detection of the specific object among others: in the scene there are several
elements that can be part of the environment, objects equal or not to the
model and so on. A first difficulty is to choice what of these are real targets
and discard the subjects that are not;

• computation of its position and orientation: in bin-picking task this is a
very crucial point. We need the position to know where is the target and
the orientation to understand the pose, perform collision avoidance in path
planning and place it correctly;

• identification of the grip point: to grasp an object is essential to find a
point where this operation can be executed more easily than in other parts.
Quite always this point is established a priori but we have to compute its
position in the scene to move robot toward it;

• computation of predicted position accuracy: in particular the identification
of grip points, object position and orientation need great precision. In
several cases objects are very small or grasping is performed in a specific
part to exploit shape characteristics. Knowing recognition reliability, we
can pick the object without a doubt or decide to re-do the procedure from
another scan to be more precise;

• sensibility to clutters: targets can be partially hidden for lacks of details in
scan or undercuts. The object should be recognized as well;

• time execution: all the computations must be done as fast as possible not
to slow down the entire production-chain. The efficiency is crucial.

In addition to bin-picking problems, using a scan as model input, we have to
manage noise that characterizes data. CAD models are technical drawings that
represent precisely all object sides and are not affected by errors. Point cloud
noise can be caused by the unlucky combination of 3D camera technology and
object materials or by low sensor precision. In order to propose this work to
an industrial context it is important to check system robustness to noise: the
knowledge of usability bounds is crucial not to have problems on the field.

Also repeatability is a basic property of this system: with same input we
must return the same output. These to avoid some uncertainties on results.

1.1. ANALYSIS OF TASK ISSUES 3

This report is organized as follows: in Chapter 2 we will present state of art
systems and approaches to object recognition. These are not all the studies that
we have analysed to design our algorithm but are the most significant and the
ones that give us the insights about the way to forward.

In Chapter 3 we will present the procedure with its algorithms, issues found
and solutions adopted.

We will continue in Chapter 4 with implementation details such as libraries,
tools, 3D camera and measuring instruments used in system realization and eval-
uation.

One of the most important part is Chapter 5 where we will discuss our quali-
tative and quantitative tests that remark pro and cons of this work. We will focus
on precision analysis in different contexts and difficulties.

In the end in Chapter 6 we will report conclusions and future improvements.

Chapter 2

State of art solutions

State of art systems adopts mainly four different approaches. They are based
on: the creation of a mathematical object model, aspect graphs, machine learning
and feature matching. Every solution has some advantages and disadvantages
that we are going to explain in the following sections.

2.1 Mathematical model creation
The first approach that we have studied in literature is based on the creation

of a mathematical model of the object. This solution is adopted in particular for
the reconstruction starting by noisy data but it can be exploited to our aim with
proper modifications. Indeed, they use a lot of parameters that can excessively
slow down recognition, that is a higher-level process.

An example of these procedures is generalized spline models [1] that can
deform locally subject to generic continuity constraints. This appears to be well
suited to shape reconstruction but by contrast it needs a drastic information re-
duction and shape abstraction in order to support efficient matching in object
databases of manageable size. For this application cylinder, sphere, pyramid or
prism models can be more easily used since they are compactly characterized by
a small set of parameters.

In this scenario D. Terzopoulos and D. Metaxas proposed a new model-
ing, suitable also to recognition of deformable objects called deformable super-
quadratics [2, 3]. The goal is to create a new family of models that combines
membrane splines with parametrized ellipsoids. In this way they obtained great
expressive power: splines are free-form and locally deformable, thanks to their
shape control variables that provide many local degrees of freedom, and super-
quadric ellipsoids are globally deformable. The authors also controlled deformi-
ties applying physical forces to obtain a sort of object state prediction. Therefore

5

6 CHAPTER 2. STATE OF ART SOLUTIONS

Figure 2.1: Examples of super-quadratics

they must also characterize the model with its physical properties such as flexi-
bility, malleability, compressibility and stiffness as well as its mass and energy.
The final result is composed by several degrees of freedom: a translation vector,
a quaternion for the rotation, a scale, three radial aspects and two squareness
parameters.

It is a powerful instrument but its complexity is a drawback. We have just
discussed the importance not to use too parameters in the modeling. Not con-
sidering number of degrees of freedom, the prediction of environmental forces
needs to a simulation and it is not adaptable to context changes. Furthermore this
model solves deformation problem but not the recognition of natural product or
other not modelable objects where the deformities are not predictable.

2.2 Aspects graphs

Another solution explored in literature is based on construction of the aspect
graph of the object starting by a 3D model [4]. In this data structure nodes are
different object aspects or views and edges represent physical nearness. The
recognitions are performed executing a sort of feature matching between target
and aspects to find the best match. The data are organized in a graph to cleverly
research the right view in the database.

The issues linked to this procedure are: how many object aspects we have
to acquire to realize an accurate system and how this data can be obtained. The
risk is to consume too much memory and build a very slow system.

2.3. MACHINE LEARNING 7

2.3 Machine learning
One of the most important differences between rigid and deformable objects

is that the latter can change their physical state, their grasping point and their
pose. Using machine learning we could train a model to recognize them using
an off-line simulation.

This is the basic idea of Y. Li C. F. Chen and P. K. Allen’s work to estimate
category and pose from a set of depth images [5]. It is the first project in the
deformable object recognition world that focuses not only on labeling but also on
position and orientation identification. Indeed P. F. Felzenszwalb R. B. Girshick
D. McAllester and D. Ramanan described an algorithm based on mixtures of
multi-scale deformable part models trained using a discriminative procedure [6];
M. Pedersoli A. Vedaldi J. Gonzàlez and X. Roca improved the part-based model
by doing a multiple-resolution hierarchical layer structure which increased the
detection accuracy [7].

Y. Li C. F. Chen and P. K. Allen’s new approach proposes to crate simulated
models in order to increase time efficiency and accuracy. In this way data are
not affected by errors or noise, therefore there is no need to any preprocessing to
clean the input: computations can be executed quickly and in ideal conditions.
Another advantage is that this solution is cheaper than to acquire with 3D cam-
eras a lot of object scans: to train a Support Vector Machine numerous frames
are necessary. In a bin-picking context, robot could see whatever object side
therefore data must be caught from different points of view. The authors report
that they simulated 90 cameras positioned on a geodesic dome.

Changing object position also the grasping point changes. To solve this prob-
lem researchers establish manually 20-50 gripping points.

After this processing there is feature extraction phase: authors used dens-
eSIFT [8, 9] (a variant of SIFT algorithm [10]) to identify and describe keypoints
not to have sensibility to rotation and scale changes. On these features two-level
SVM classifier is trained: one in order to recognize the object category and one
to find the grasping point.

Referring also to other works, such as the one of H. Tehrani Niknejad, A.
Takeuchi, S. Mita and D. McAllester [11] or the second of B. Kim, S. Xu and S.
Savarese [12], we can create a general scheme about this approach:

1. acquire training set to construct a complete model of the object;

2. extract from these data the features that describe the target;

3. train SVM or other machine learning models to obtain a good classifier
given an objective function computed from the features;

8 CHAPTER 2. STATE OF ART SOLUTIONS

4. analyse the scene with the classifier to recognize the object and identify its
location in 3D space.

The results obtained with this process are fascinating: they can detect targets
that are in several positions and with a significant degree of deformity caused
by movements or extreme rotations. The first method explained was tested on
clothes that are a very difficult target for the infinite different positions that can
take and for deformation entities reached. The authors reported that the accu-
racy of recognition is always up to 70% and in case of shorts they are correctly
detected 9 times over 10.

But this method has some disadvantages: to realize a good training, it needs
a large quantity of data acquired from different points of view in order to rep-
resent every object side. This can be expensive considering execution time and
achievement costs. To give a number: in [11] the researchers collected 553 im-
ages with 854 vehicles. This can be done once for all if the goal is well defined
and it doesn’t change over time. But the approach is not applicable to a system
that could be used in the industrial world where every company has different tar-
gets to recognize. A second drawback is that this technique firstly analyses data
in 2D space to obtain a less accurate but faster recognition, and then 3D infor-
mations to improve precision. For this reason features are also HOG gradients
histograms or SIFT output. These are invariant to image scaling and rotation,
and partially to changes in illumination and 3D camera viewpoint. But they are
difficultly applicable in a 3D environment like the our because they exploit other
information than only shape1.

2.4 Feature matching
Another approach that several researchers’ works describe is feature match-

ing. The literature is full of examples but the following ones capture the attention
for some interesting aspects.

The first that we have analysed is the A. K. Jain Yu Zhong and S. Laksh-
manan’s work [13]. They approached the problem of object localization and
identification like a process of matching a deformable template to the object
boundary in an input image. The prior shape information is specified as a sketch
or binary template. This prototype template is not parametrized, but it contains
edges information. Deformed templates are obtained by applying parametric
transforms to the prototype, and the variability in template shape is achieved by
imposing a probability distribution on admissible mappings. Among all such

1Point Cloud library has just realized an implementation of SIFT in 3D but it needs of a
intensity field that isn’t always available.

2.4. FEATURE MATCHING 9

transformations, the one that minimizes a Bayesian objective function is se-
lected. The objective function consists of two terms: the first plays the role of
a Bayesian data likelihood (it is a potential energy that links edge positions and
gradient directions in the input image to the object boundary specified by the de-
formed template) and the second corresponds to a Bayesian prior that penalizes
large deviations from the prototype. Deformable template minimizes the objec-
tive function by iteratively updating transformation parameters to alter template
shape so that the best match with image edges is obtained.

This was an interesting work since it reaches high accuracy having only edge
data. Starting from a sketch or little information as a binary image they can
recognize hands, saxophones, towers... on real images. They only concerned 2D
cases but some ideas can be transported to 3D space.

A. C. Berg T. L. Berg and J. Malik focused on the correspondence problem:
how can we establish algorithmically that two points, one of the model and one
of the target, are the same? [14] The particularity of their work is that they
didn’t start from specific keypoints to realize the matches, but from some points
sampled randomly from edges. This is interesting because they skipped the step
of a deterministic feature extraction. The description of selected points can be
done in several ways: SIFT [10], Shape context [15] or Geometric Blur [16].
They also observed that if i and j are points on the model corresponding to
i′ and j′ respectively, the vector from i to j, rij should be consistent with the
vector from i′ to j′, ri′j′ . If the transformation from one shape to another is a
translation accompanied by pure scaling, these vectors must be scalar multiples.
If the transformation is a pure Euclidean motion, lengths must be preserved. The
process ends with the smoothness of the transformation from one shape to the
other. This enables to interpolate the transformation to the entire shape, given
just the knowledge of the correspondences for a subset of the sample points. In
order to characterize the transformations they used regularized thin plate splines.

Another work adds new hierarchical agglomerative clustering method to fea-
ture matching to find regions of similar transformations between model and tar-
get. M. Cho, Jungmin Lee and K. M. Lee in [17] based their approach on two
insights:

• Bottom-up aggregation strategy: they started from confident correspon-
dences and progressively merge them with reliable neighbours to make
sure that inliers can be effectively collected in spite of enormous dis-
tracting outliers. For example, seed-based exploration methods [18, 19,
20] prove that object recognition performance can be boosted by such a
bottom-up aggregation with iterative match-propagation;

• Connectedness between parts: for deformable objects, feature correspon-

10 CHAPTER 2. STATE OF ART SOLUTIONS

dences do not form global compactness in their pairwise geometric simi-
larity owing to deformation, but deformed parts are locally connected by
some mediating parts. Thus, a connectedness criterion should be consid-
ered for clustering the feature correspondences on deformable objects.

The procedure that they realized uses affine covariant region detectors [21,
22] for feature extraction and SIFT [10] for descriptions as many other works in
literature. The matching phase started computing the description differences
from target and model features identifying the best matches. Then for each
match is built a cluster so that every cluster contains a single match. With an
iterative process, at each step two clusters that are the most similar are merged
in a single one. The dissimilarity function has two weighted components: pho-
tometric and geometric. The first is defined by the Euclidean distance between
corresponding SIFT descriptors of model and target feature; the second is the Eu-
clidean distance from feature positions applying an homograph transformation.
Setting the stopping condition with a maximum similarity value, they obtained a
dendrogram where outliers are never selected for the merging phase. At the end,
convex hull or clusters with size lower than a pre-selected threshold are deleted
2.

Their approach provides reliable feature correspondence, object-level multi-
class clustering and outlier elimination in an integrated way. Its control parame-
ters are simple and intuitive and it does not require a global energy formulation,
strong global constraints, nor a specified number of clusters. Moreover, it is very
robust to distracting outliers arising from clutter in real-world images.

From these examples, feature matching approach schema can be written as
follows:

1. feature extraction: both model and target are analysed to find some dis-
tinctive characteristics such as particular shapes, texture, edges, keypoints
and so on. These are useful to summarize object composition;

2. feature description: the points found in the previous step must to be de-
scribed unambiguously so that the single feature cannot be confused with
another;

3. feature matching: here the features that have the most similar description
between model and target are matched. This phase recognizes same object
parts in the two data;

2For cluster size we mean the number of its elements. For convex hull dimension we indicate
a geometric measure of the space occupied

2.4. FEATURE MATCHING 11

4. post process of matches: in this step the matches are analysed to discard
errors.

Most of the studied papers concerns about 2D procedures but the ideas can
be translated into 3D space with only a few changes. Feature extraction meth-
ods exposed works fine on 2D environment but are too expensive in execution
time with three-dimensional informations. Our work pretends to not use colour
or brightness data so these algorithms like SIFT cannot be used. However the
approach is general and not strictly dependent to the specific object type. The
model is not a complex representation of the target and does not must be pre-
processed with long execution time. The system resulted is very versatile and in
agreement with our goals.

Chapter 3

Description of 3D object recognition
system

In this section we are going to present our system and the main designed
algorithms. The basic idea is founded on a feature matching approach that gives
more versatility and less sensibility to brightness or colour changes. Indeed,
we use only shape information to be independent of environment and context
variations. Using some customizable parameters we can control the difference
between descriptions in order to consider two features as correspondent. The
result is a system insensible also to little target deformations.

As we reported in Figure 3.1 the algorithm can be divided into 4 steps:

1. scan preprocessing: we prepare the point cloud for the following pro-
cesses. In this way we can elaborate well structured and less noisy data.
The importance of this phase will be clear in following sections;

2. keypoint extraction: to build a system that is less sensible to noise as pos-

Figure 3.1: Algorithm general steps

13

14CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

sible, keypoint extraction is divided into two levels that are run in cascade.
The first part is composed by two different algorithms that we call Normals
gradient analysis and Neighbourhood analysis. Their goal is to focus on
two specific shape characteristics: curvature peaks and edges. The latter
compacts the information into a few points to reduce matches combina-
tions number;

3. feature description: in this step we describe the characteristic points se-
lected in the previous step. This description is based on local analysis in
order to be independent from the point of view. Two features that describe
the same object characteristic in several scans must have quite identical
descriptions;

4. feature matching: finally we compare the points descriptions to find the
best correspondences. The output of the whole algorithm will be the rota-
tion matrix and the translation vector that transport the model to the target.

Points 2 and 3 are executed in the same way for both model and target. There
are some differences in the implementation of scan preprocessing caused by the
fact that the model is scanned alone, it is just one and it is acquired knowing the
scene and its position; but targets are numerous in the same point cloud and we
cannot have any other information.

In the following sections we are going to explain in detail each step and
used algorithms. To be clearer on the explanation we will start from keypoints
extraction skipping the first phase. Indeed, the role of preprocessing could be
really understood only by knowing the other phases.

3.1 Keypoint extraction

First level keypoints

The goal of this phase is to sample the scan and return as output only the
points that bring some fundamental informations about object shape. In our
first approach we identified these characteristics with curvature peaks. The most
important advantage is that we can extract features also from curved objects
that have not significant edges. We remark that also borders are identified as a
discontinuity and will be considered as relevant points. To implement this we
design an algorithm that analyses surface normals gradient.

3.1. KEYPOINT EXTRACTION 15

Algorithm 1 Normal gradient analysis
1: procedure EXTRACT KEYPOINTS(point cloud, s, n)
2: keypoints
3: for each point in point cloud do
4: peak index← findPeak(point, n, 0, s, 0)
5: if (peak index = −1) then
6: keypoints← peak index

7: return keypoints
8:
9: procedure FIND PEAK(point, n, α, s, step)

10: neighbourhood← getKNearestPoint(n)
11: pivot normal← getNormal(point)
12: max angle← 0
13: max angle point← −1
14: for each neighbour in neighbourhood do
15: neighbour normal← getNormal(neighbour)
16: temp angle← computeRotationAngle(pivot normal, neighbour normal)
17: if (|temp angle| > max angle) then
18: max angle← temp angle
19: max angle point← neighbour

20: if (step < 1 ∧max angle < s) then
21: return -1
22: if (max angle > α) then
23: step← step+ 1
24: return findPeak(max angle point, n,max angle, s, step)
25: else
26: return point

Normals gradient analysis

Pseudo-code is reported in Algorithm 1. The input is composed by the point
cloud and two parameters that describe the degree of sensibility (s) and the
neighbourhood size in terms of points number (n). The general procedure is
quite simple: we focus on each point and, moving on the normal gradient of its
area, we find the position where curvature reaches a peak. This is what does the
function findPeak in broad terms at line 4. The value -1 is a marker to identify
when the point area is flat and there are no curvature peaks. So only when the
function result is not equal to -1 it is considered valid and it is added to the final
container.

The most important part is findPeak function. Firstly we have to compute

16CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

the neighbourhood composed by n points. Then for each neighbour we compare
its normal direction with the one of pivot 1 finding an angle that describes the
variation. We save the neighbour that produces the maximum angle and we
repeat the procedure focusing on this point until one of the following stopping
conditions is verified:

• at the first step, before using any recursive calls, the maximum angle found
is lower than the sensibility s: to manage scan noise we consider a toler-
ance threshold for flat regions;

• the direction change registered in the previous step is greater than the cur-
rent: in this case we find a peak.

Neighbourhood analysis

The drawback of Normals gradient analysis is that with subjects composed
by constant curved regions or flat surfaces we cannot extract much information.
Furthermore, in case of undercuts, normals do not show any direction change:
this is a problem because we cannot distinguish real edges and blind spots, and
the algorithm does not return any point. Indeed undercuts are empty regions of
the scan that correspond to parts of the object that are not visible from the camera
viewpoint for the presence of clutters caused by other object sides.

To avoid this problem we consider all these cases interesting and useful for
the following computations. In agreement with this decision we designed a sec-
ond algorithm for the first level keypoints extraction called Neighbourhood anal-
ysis.

In Algorithm 2 we report the pseudo-code. The input is composed by the
point cloud and two parameters that represent the radius search for neighbour-
hood (∆r) and the minimum distance between pivot and neighbourhood centre
to establish if it belongs to an edge or not (∆p). Initially, for each point we search
the other points that are close to it 2 (line 4). Then we compute the centroid po-
sition of this group (line 5): if this is distant more than ∆p, the point in exam is
labelled as a keypoint and it is added in the output list (lines 6, 7, 8).

This algorithm works thanks to the observation that when neighbourhood
centroid is far from pivot, it means that the majority of its neighbours is placed
in a precise direction and is not completely around it. This is the case that char-
acterizes an edge.

1We call pivot the focused point
2the neighbourhood is defined as the set of points that has a distance lower than ∆r

3.1. KEYPOINT EXTRACTION 17

Algorithm 2 Neighbourhood analysis
1: procedure EXTRACT KEYPOINTS(point cloud,∆p,∆r)
2: keypoints
3: for each point in point cloud do
4: neighbourhood← getNeighbourhood(point cloud, point,∆r)
5: centroid← computeCentroid(neighbourhood)
6: distance← computeDistance(points, centroid)
7: if (distance ≥ ∆p) then
8: keypoints← points

9: return keypoints

Algorithms comparison

Comparing this solution with the previous one we can observe that:

• the two methods are complementary: while the former fails when objects
are regular and sharp-cornered for the presence of undercuts, the latter
selects too few points when surfaces are curved and there are no edges;

• neighbourhood analysis does not require normals computation: this is an
advantage for execution time;

• both the implementations need a fast algorithm to compute the neighbour-
hood: KdTree representation of the point cloud can help [23, 24];

• in this work we design a system that uses only one algorithm but not both.
A future improvement could be the cooperation of these methods to have
more informations about the model.

In Figure 3.2 we report the results obtained applying these two algorithms to
the scan in the left: the right-top output derives from Normals gradient analysis
and the right-bottom one from Neighbourhood analysis. It might seem that the
second result is the best for definition and precision but this is not true: both the
approaches show different object aspects. Normal gradient analysis gives more
importance to the curvature changes. This can be seen in the bottom part of the
pump component where borders start the bulge to reach the central hole. Here a
lot of points, that the other algorithm filters out, are maintained. We notice also
that some edges are not well defined caused by undercuts. In these regions there
is no information about normals direction changes therefore they are considered
regular. Neighbourhood analysis instead focuses on edges so the output remarks
borders.

18CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Figure 3.2: Results of both first keypoints extractors

Second level keypoints
With the previous step we have obtained a scan sample with a reduction of

around 4-5% points 3 but it is not enough. To realize an efficient feature match-
ing, keypoints must be fewer in order to produce less combinations and have
more specific descriptions. This means that a second sampling step is necessary.
The idea is to collapse group of first level keypoints into only one point and pre-
serve all the necessary information about the group in its description. Clustering
is done in agreement with the previous approaches: each group is a particular
line or circle extracted from object shape. We decide to search for these 2D
features for the ease of their mathematical model that implies fast research time.

To realize this procedure we use Random Sample Consensus (RANSAC)
[25]. Algorithm 3 reports the pseudo-code. Given a model that requires a min-
imum of n data points to instantiate its parameters and a set of data points P
such that the number of points in P is greater than n (|P | > n), it randomly
selects a subset S1 of n data points from P and instantiates the model. It uses
the instantiated model M1 to determine the subset S ′1 of points in P that are,

3This data is acquired in the same context of Figure 3.2 applying both algorithms. The
exact result is a sample from 16 816 points to 678 (first algorithm) and to 802 points (second
algorithm). This means a reduction respectively of 4.03% and 4.76% that reaches an average
of 4.39%. It is important to remark that this is only a general estimation because these values
change a lot varying parameters. The aim is to give a quantitative idea of the algorithms effects
on real data.

3.1. KEYPOINT EXTRACTION 19

within some error tolerance, inliers of M1. The set S ′1 is called consensus set of
S1. If |S ′1| is greater than some threshold t, which is a function of the estimate of
errors number in P , it uses S ′1 to compute (possibly using least squares) a new
modelM ′

i . If |S ′i| is lower than t, it randomly selects a new subset S2 and repeats
the above process. If, after some fixed number of trials, no consensus set with
t or more members has been found, it either solves the model with the largest
consensus set found, or terminates in failure.

For example, given the task of fitting an arc of a circle to a set of two-
dimensional points, the RANSAC approach would select a set of three points
(since three points are required to determine a circle), compute the centre and ra-
dius of the implied circle, and count the number of points that are close enough to
that circle to suggest their compatibility with it (their deviations are small enough
to be measurement errors). If there are enough compatible points, RANSAC
would employ a smoothing technique such as least squares, to compute an im-
proved estimation for the parameters of the circle, now that a set of mutually
consistent points has been identified.

At the end, the points that are not included into any 2D features are deleted.
Applying this algorithm to find lines and circles and setting properly the thresh-
old we can obtain a good feature extraction that summarizes the object with at
least 60-80 points.

Algorithm 3 Random Sample Consensus
1: procedure FIND MODEL(P,model, n, t,max trials num)
2: model found← false
3: M ′

1

4: trials num← 0
5: while (!model found) do
6: S1 ← randomSelection(P, n)
7: M1 ← instantiateModel(model, S1)
8: S ′1 ← exctractPoints(P,M1)
9: if (|S ′1| ≥ t) then

10: M ′
1 ← computeConsensusModel(model, S ′1)

11: model found← true
12: else if (trials num > max trials num) then
13: return failure
14: trials num← trials num+ 1

15: return M ′
1

20CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

3.2 Feature description
Running the previous algorithms in cascade, the scan is filtered and a group

of characteristic points called keypoints are returned. The goal of the current
step is to describe unequivocally the extracted features. This means that lines
and circles are processed differently.

Lines description
Once we find a line with RANSAC we collapse all the points that compose

it into a single one that we decide to be its centre. Note that for some clutters or
interruptions generated by the previous filters, this point there could not be in the
point cloud or could not exist in the real scene. This is not an issue: we delete
all line points and replace them with the centre.

We compose the feature description with several fields:

• feature type: we save the information that the point represents a line and
not a circle;

• line orientation: this data can be directly acquired from RANSAC model
coefficients;

• centre position: to compute this information we consider a point selected
randomly in the line. Then, we find the two farthest points, one to the left
and one to the right. These are the two line extremities therefore in order
to compute the centre we have to average their positions;

• line length: once we computed line extremities, the Euclidean distance
between these points is its length.

We use these properties inspired by vector mathematical characterization
(module, direction and way).

Circle description
The same process that we designed for lines is implemented for circles. Also,

in this case the point that we use to represent the cluster is its centre. The fields
that we use to describe circles are:

• feature type: we save the information that the point represents a circle and
not a line;

• normal to the surface;

3.3. SCAN PREPROCESSING 21

• centre position;

• radius length;

All of these characteristics can be easily retrieved from RANSAC model
coefficients. We decide to use them as feature description because they are the
circle mathematical model parameters.

3.3 Scan preprocessing
In order of execution this phase is the first. Here the goal is to properly

prepare the input data to following processes. This is the unique step that is
different between model and target. When we are analysing models, the only
thing to do is to remove the floor, planes and everything in the scene that is
not the subject. This can be done once manually using some software of 3D
computer graphics.

When we are analysing targets there are several problems that are generated
by the lack of scene knowledge and the probable presence of more than one
object to recognize. In particular the presence of several elements (targets and
other in the environment) causes problems to RANSAC. Indeed when it finds
a line or a circle in the pointset that contains more points than a threshold, it
considers as inliers all the points in the line direction or in the circumference,
without checking that they belong to the same object. The major negative effects
are seen in lines search and are amplified during the description phase: the length
will be distorted by the presence of other inliers and its value will never find a
correspondence in the model. This event happens quite always even though it
might seem to be sporadic.

For this reason we apply a segmentation at the starting point to produce a
point cloud for every element. This is presented as a centre-based clustering
problem where final clusters are the objects: this approach is quite reasonable
assuming that, when points are close to each other, they are assembling a subject.
The three principal centre-based clustering algorithms are Farthest-first traversal,
K-means and K-median [26]. Their goal is to find the given number of centres
minimizing a specific objective function that characterizes them. The final parti-
tion is always obtained associating each point to the cluster of the nearest centre.

Farthest first traversal
The aim of this algorithm is to solve K-centre approach. The objective func-

tion that characterizes this method is:

22CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Φkcenter(C) =
k

max
i=1

max
a∈Ci

d(a, ci). (3.1)

The procedure goal is to minimize the maximum distance, computed for all
the clusters, between a cluster element and its centre. In order to implement this,
we chose as centres the points that are the farthest to each other. The pseudo-
code is shown in Algorithm 4. The function at line 4 finds the farthest point from
the other centres set. We remember that the distance between a point and a set is
the minimum one between the point and an element that belongs to the set. The
starting point is selected randomly.

Algorithm 4 Farthest First Traversal
1: procedure FIND CENTRES(P, k)
2: S ← 0
3: for i = 0 to k do
4: ci ← findFarthestPoint(S)
5: S ← S ∪ ci
6: return S

K-means
In this case the objective function is:

Φkmeans(C) =
k∑
i=1

∑
a∈Ci

(d(a, ci))
2 (3.2)

so the algorithm, called Lloyd’s [27, 28], must minimize the sum for all
clusters of the sum of square distance between each point and its cluster centres.
The procedure is more complex than the previous and it is well explained by the
pseudo-code in Algorithm 5.

It is based on the observation, that can be easily proved, that centroid is the
point that minimizes the sum of square distance of all the cluster elements. We
remember that the centroid c of a pointset P can be computed with the follow
equation:

c(P) =
1

|P |
∑
x∈P

x. (3.3)

The algorithm starts from a random sample of k centres (where k is given
clusters number), partitions the pointset with the general procedure explained in
the general section (3.3), computes objective function value and the centroids.

3.3. SCAN PREPROCESSING 23

Algorithm 5 Lloyd’s algorithm
1: procedure FIND CENTRES(P, k)
2: S ← getRandomSet(P, k)
3: Φ←∞
4: stopping condition← false
5: while stopping condition do
6: (C1, C2, ..., Ck;S)← partition(P, S)
7: for i = 1 to k do
8: c′i ← getCentroid(Ci)

9: C ← (C1, C2, ..., Ck; c
′
1, c
′
2, ..., c

′
k)

10: if (Φkmeans(C) < Φ) then
11: Φkmeans(C)← Φ
12: S ← c′1, c

′
2, ..., c

′
k

13: else
14: stopping condition← true

15: return C

Then, it starts an iterative phase where it computes once again the partition using
centroids as new centres and objective function value. It compares this value
with the previous one and if it is lower it continues the loop. Otherwise if there
is no improvement, the stopping condition is verified and the algorithm returns
the last centres.

In the literature we can find several improved versions that obtain better re-
sults like K-means++ that does not start from a random sequence of centres. In
this last implementation the selection is driven by a distribution function that
privileges the farthest points [29, 28].

K-median
The objective function of this approach is the following:

Φkmedian(C) =
k∑
i=1

∑
a∈Ci

d(a, ci). (3.4)

This problem is quite similar to k-means but it uses distances without squar-
ing them. The points that minimize the function are called medoids and their
meaning is almost equal to centroids one with a little difference: centroids can
not belong to the pointset but the medoids do. The algorithm that solves this
approach is Partitioning Around Medoids and its pseudo-code is reported in Al-
gorithm 6. It starts with a random sequence of centres selected from the pointset

24CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Algorithm 6 Partitioning Around Medoids
1: procedure FIND CENTRES(P, k)
2: S ← getRandomSet(P, k)
3: C ← partition(P, S)
4: stopping condition← false
5: while stopping condition do
6: stopping condition← true
7: for each p ∈ P − S do
8: for each c ∈ S do
9: S ′ ← (S − c) ∪ p

10: C ′ ← partition(P, S ′)
11: if (Φkmedian(C ′) < Φkmedian(C)) then
12: stopping condition← false
13: C ← C ′

14: exit both for-each loop
15: return C

and computes the partitioning. In the next steps it implements a sort of local
search: it tries to substitute each centre with one other point in the pointset.
When it finds a replacement that produce a lower objective function value, it
save this and restarts searching with new centres sequence. The procedure stops
when any improvement is found.

This algorithm is quite inefficient and it is very slow with large pointsets. So
there is another algorithm called K-medoids that minimize the same objective
function of PAM in the same way as Lloyd’s algorithm, with the only difference
that it computes medoids and not centroids.

Comparison of clustering algorithms and final implementation
These three algorithms have pros and cons. Farthest-First traversal is very

simple to implement and fast with few centres. It is also very sensible to outliers:
in presence of isolated points frequently it chooses these as centres for their
distance from the others. A characteristic of the partitioning obtained with this
procedure is to have clusters with a greater size and some others that contain
few points. But if in the pointset there is not noise the result is very good.
Another drawback of this technique is that increasing the number of centres,
time execution increases exponentially.

Both the issues are almost solved by the second algorithm. Considering all
the distances as a sum in the objective function, the outliers contribution is aver-
aged by the other elements. In addition, K-means is less sensible as the centres

3.3. SCAN PREPROCESSING 25

number increases, although, when there are less clusters, Farthest First Traversal
is faster.

K-median tries to improve independence to noise deleting square elevation.
This bestows less importance to large distances and their contribute is mainly
averaged by the others. Despite this improvement, the execution is slower be-
cause, in k-medoids, to compute a medoid it is necessary to find centroid first,
and then to discover its nearest point in the pointset.

For this reason we decide to use k-means approach implementing Lloyd’s
algorithm with a minor change. At the beginning, we avoid to use a random
sequence of points as centres because the result depends on it: each particular
initial set produces a different clustering. In addition, starting every time with
a different configuration, we introduce a degree of randomness that can have
effects on the reproducibility of tests. Observing that usually objects are not so
numerous we find the initial sequence with Farthest First Traversal. This choice
seems to slow down the execution because it introduces more operations but in
practice our test proves that not only it increases algorithm quality performances
but also it speeds up the execution and gives more stability.

In Figure 3.3 we report our test results. Here we apply five times k-means
clustering in 2 different scenes (one of some cups and one of some pump com-
ponents; the scans can be seen in Section 5.3) with and without Farthest First
Traversal (FFT) in the first step. We obtain that using a random configuration
at the beginning, the algorithm is almost always slower. Analysing the average
and variance in Table 3.1 we notice that the use of FFT gives more stability
also in execution time. The reasons of this improvement are that we have fewer
objects so k-centre approach does not show its inefficiency and k-means starts
with a good centres sequence, so it only needs a few iterations to verify stopping
conditions.

After this analysis we decided to use this k-means new version to perform
clustering.

We add also a new procedure to avoid cases in which some output clusters
are composed by only one or two points. This happens when a scan is unclear
and for the presence of noise some points are too far from the others: in this situ-
ation the best way to optimize k-means objective function is to consider smaller
clusters that contain only these outliers. Our modification consists of removing
elements from the pointset if they compose a cluster with less than 3 points and
re-executing clustering from the beginning. This solution is time-consuming but
extremely important: a bad clustering can cause wrong recognitions or failures.

26CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Figure 3.3: Graphic for k-means clustering execution time with and without
Farthest First Traversal as first step

Test Average (ms) pointset (ms2)

Cups with fft 11303 301187,8
Cups without fft 19455 48711249

Pump components with fft 38468 1476205
Pump components without fft 66901 7,23 ×108

Table 3.1: Results of k-means clustering with and without Farthest First Traver-
sal

Algorithm to find object count

An issue of these clustering algorithms is that they require the number of
final clusters as input. This means that we have to know the objects number in
the scene and this a-priori knowledge is a strong system limitation. When we are
analysing a box to perform bin picking is quite impossible to count the products
that are seen by the scanner. In addition this knowledge makes less automatic
our algorithm and necessities of human interactions. So we implemented a new
procedure to count the number of parts to be analysed independently.

The algorithm is based on the assumption that only close points can represent
parts of the same object. This is not always true because in scans there are several
undercuts. In this way also points that in the point cloud are far from each other
can belong to a single object. It is the case of Figure 3.4a where we can see that
the handle is not in close contact with the cup or that there are a lot of empty
spaces where there would be cup body.

Our solution is to transform a 3D scene into a 2D one that is seen from the

3.3. SCAN PREPROCESSING 27

camera viewpoint. In order to implement this we fix a depth value on z axis 4

building a plane. Then for each point we compute the line that links this point
with camera position and we select the intersection with fixed plane. In this way
we find point position for 2D point cloud. This must delete completely undercuts
and return a point cloud where only close points belong to the same object. In
the next step with a simple hierarchical clustering, implemented using Euclidean
distance, we can discover the right number of clusters to have in each of them
a single subject. Counting clusters with a lot of elements we compute objects
number. In Algorithm 7 is reported the pseudo-code.

This works fine with time of flight camera but there is an issue in structured
light technology: in these instruments the sources are two and undercuts can be
caused by both occlusions to the projector light propagation and to the camera
view. Indeed, camera cannot acquire data if it cannot see a particular region or
if there is no known light pattern on it. The correct undercuts elimination is
obtained having a perfect subject knowledge to compute clutters direction, but
we do not have this information. We partially solved this problem deleting the
greatest undercuts that we notice are caused by the farthest source. So the change
of algorithm described above is line computation: its direction is from focused
point to the farthest source.

The results are shown in Figure 3.4b where we report the 2D transformation
of 3D cups scene. The greatest effects are visible on the handles that now are in
close contact with the other object part and the point of view does not allow to
see some undercuts.

(a) 3D cups scene (b) 2D cups transformation

Figure 3.4: Transformation from 3D scene to 2D scene deleting undercuts

4we decide to use centroid z value but every other choice works

28CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Algorithm 7 Objects number computation
1: procedure COMPUTE OBJECTS NUMBER(r, camera position,
projector position, min cluster size)

2: z ← centroid.z
3: 2D point cloud← ∅
4: for each point in point cloud do
5: camera distance← computeDistance(point, camera position)
6: projector distance← computeDistance(point, projector position)
7: if (camera distance ≥ projector distance) then
8: line← computeLine(point, camera position)
9: else

10: line← computeLine(point, projector position)

11: intersection← findIntersection(line, z)
12: 2D point cloud← 2D point cloud ∪ {intersection}
13: clusters← hierarchicalClustering(2D point cloud, r)
14: count← ∅
15: for each cluster in clusters do
16: if (cluster.size ≥ min cluster size) then
17: count+ +

18: return count

This is a good input for an hierarchical clustering that creates group of points
that are distant less than a threshold (a good value could be 1 or 1.5 mm). This
technique is totally different from centre-based clustering explained in the pre-
vious subsections. Firstly it does not need the final groups number and does not
necessarily build spherical regions. In the agglomerative approach it starts with
a cluster for every points and merge the closest until the minimum distance be-
tween cluster is greater than the threshold. A downside of this procedure is that
it is computationally onerous.

We remark that this method does not guarantee to compute perfect clusters.
For the presence of some other undercuts the output is also composed by little
groups of few hundred points that corresponds to isolated objects parts. To count
the right targets number we have to consider only the greatest clusters that have
thousands of elements. Once we return this count we can perform centre-based
clustering.

3.4. FEATURE MATCHING 29

3.4 Feature matching
In this phase the input is composed by the features and their descriptions

of both model and target. The goal is to find correspondences between them
to compute objects similarities and identify their position and orientation in the
scene. The output is a rotation matrix and a shifting vector that describe the
model transformation to reach the same pose of the recognized subject.

We remember that there are two different features extracted: lines and cir-
cles. Their properties are just described in Section 3.2. In what follows we are
going to explain the procedure implemented in this work assuming that we are
matching lines. This is to simplify the description: there are no differences in
lines or circles matching but the first is more intuitive and the figures are more
easily understood. In the end we will present also the second case.

In Figure 3.5 there is a schema of the matching phase: spheres represent
keypoints and segments their orientation. Firstly we select a model keypoint that
we call M1 (Figure 3.5a) and we search in the target descriptions list a keypoint
with similar characteristics (Figure 3.5b). In detail we analyse the type and line
length. When we find a target keypoint with a difference in the description lower
than a threshold, we consider it as a possible match. Therefore we call it T1 and
go on with the analysis extracting a second model keypoint, M2 (Figure 3.5c).
At this moment we compute a first rotation matrix to find the transformation for
M1 orientation to reach the displacement vector between M1 and M2. In this
way we can compute the direction to move T1 to reach T2: once we have the
displacement module we can find its position. But if we use this transformation
in the target scene we cannot be sure to find the correct region for a second
keypoint that matches with M2: we have another degree of freedom that is line
roll. Therefore, once we have applied the transformation to T1 orientation, we
must consider a toroid, centred on the line and dimensioned to touch the just
computed point, as a region where all the points, that belong to it, are valid for
a match (Figures 3.5d and 3.5e). When we have selected target keypoints in this
area, we compare their description with M2 and we elect as correspondent the
one with the smallest difference (Figure 3.5f). Considering not only the type and
length but also the orientation, we compare these values with some thresholds to
be sure that the two points are similar (the nearer description could be extremely
different from the model point one because it is relative to the value of the other
target keypoints description). Once we have executed these operations we block
all degrees of freedom and we can find the transformation to obtain the target
points position starting by the model (Figure 3.6)

This procedure must be applied to every model keypoint and for each of
them, changing the first match with the other target keypoints. In this way the
output is composed by several rotation matrices, so the computation of a score is

30CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

(a) Starting with a model keypoint M1 (b) We find a target keypoint T1with similar
description

(c) We select another model keypoint M2 (d) Analysing the rotation and shifting
transformation between M1 and M2 we
find a toroidal region where could be tar-
get keypoint T2

(e) In this region we could find several tar-
get keypoint

(f) We select the one that has most similar
description to M2

Figure 3.5: Features matching schema

3.4. FEATURE MATCHING 31

Figure 3.6: Identification of the reference system orientations

necessary to evaluate the best one. Finally we apply the transformation to each
model keypoint to find its corresponding position in the target and we search
around this area a target keypoint with similar characteristics. The final score is
the number of matches over the number of the model features.

The complete pseudo-code of the algorithm is reported in Algorithm 8. We
can find two shifts at lines 4 and 8: they are necessary to quickly compute rota-
tion matrices.

When we are matching circle features, the procedure is the same: the only
difference is that the orientation is the circle normal and the length is the radius
size.

In order to solve only the detection problem, we can introduce a score thresh-
old. In this way all the final transformations with a number of matches lower than
the set parameter can be considered invalid or wrong and discarded. If there is
no valid result the object is not detected so there is no subject in the scene similar
to the model.

As we can see from the explanation, a crucial point of this algorithm is the
computation of rotation matrices. In the next section we are going to describe
how to calculate these and how we use them.

Rotation matrix computation
A rotation matrixR is a matrix used to perform a rotation in Euclidean space.

Its main property is that R × Rt = I so this means that Rt = R−1. One of its
effects is that its determinant is 1 or -1 5. In case of det(R) = -1 the transformation
that it represents is a rotation plus a reflection.

5det(R) · det(Rt) = det(I)⇒ det(R) · det(R) = det(I)⇒ det(R)2= 1⇒ det(R) = ± 1

32CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

Algorithm 8 Features Matching
1: procedure FIND TRANSFORMATION (descriptionsmodel, descriptionstarget,

∆p,∆l,∆o)
2: M ← ∅
3: for each M1 in descriptionsmodel do
4: shift(model,M1)
5: for each T1 in descriptionstarget do
6: if (M1.type 6= T1.type ∨ |M1.lenght− T1.length| > ∆l) then
7: continue
8: shift(target, T1)
9: for each M2 6= M1 in descriptionsmodel do

10: displacement←M2.position
11: rotation1 ← computeRotation(M1.orientation, displacement)

12: rotation2 ← computeRotation(M1.orientation,M2.orientation)

13: module displacement← computeNorm(M2.position)
14: position ← rotation1 ∗ T1.orientation ∗

module displacement
15: orientation← rotation2 ∗ T1.orientation
16: possible matches← ∅
17: for angle = 0 to 2π do
18: new position← rotate(angle, T1.orientation, position)

19: point← findNearKeypoint(position1,∆p)
20: T2 ← getKeypointDescription(point)
21: if (checkSimilarity(T2,M2,∆l,∆o)) then
22: closeness← computeCloseness(T2,M2)
23: possible matches ← possible matches ∪

[T2, closeness]

24: T2 ← findMaxCloseness(possible matches)
25: transformation← computeTransformation(M1,M2, T1, T2)

26: score← computeScore(transformation)
27: M ←M ∪ [transformation, score]

28: shift(target,−T1)
29: shift(model,−M1)

30: return getBestScoredTransformation(M)

3.4. FEATURE MATCHING 33

Focusing on our context, this matrix has 3x3 size and can be generally ex-
pressed in the following way: cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ
uyux(1− cos θ)− uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ
uzux(1− cos θ)− uy sin θ uxuy(1− cos θ) + uz sin θ cos θ + u2z(1− cos θ)

where u is rotation axis and θ is rotation angle [30]. The most complex

situation to compute this matrix is when we know two vectors and we want to
find the transformation between them. In this case we do not know both the axis
and the angle but they can be easily computed: the first can be obtained with
the cross product between the vectors, the module of this result is sin θ and the
module of the dot product is cos θ. This is what the function computeRotation at
lines 11 and 12 in Algorithm 8 does.

Rotate at line 18 is simpler because as input it takes the first vector, the angle
and the axis. θ and u are known, it computes rotation matrix and multiplies this
with the vector. The output is vector rotated of an angle θ with respect to the
axis u.

In the explained procedure we do not treat the transfer of rotation data from
the model reference system to the target one. This change complicates the prob-
lem because the rotation axis direction varies quite often. We start by computing
the angle (θM1disp) and the axis (uM1disp) between M1 orientation and M1-M2

displacement vector. Then, we do the same with M1 and T1 orientation. Using
the last transformation we can rotate uM1disp to obtain its correspondent vector
in the target context (uT1disp). At this point we can rotate T1 orientation respect
to uT1disp of θM1disp. To find T2 orientation we can do the same than the first step
computing axis and angle between M1 and M2 orientation.

We have to remark two points:

• all the rotations described must be done with a vector of norm equal to 1
(direction without module information);

• the previous procedure finds a possible T2 position and orientation but we
have to consider also the line roll. Therefore, in the following steps we
have to check in the toroid centred on the first computed position.

The last computation that we are going to explain produces the rotation ma-
trix that describes the transformation to overlap the model to the recognized
object in the target scene (line 25). As input we have four keypoints matched
in pairs: M1 → T1 and M2 → T2. The final transformation (R) is computed by
adding the contributes of two factors: the rotation between M1 and T1 orienta-
tion (R1) and the one between the new M2 orientation (obtained multiplying R1

34CHAPTER 3. DESCRIPTION OF 3D OBJECT RECOGNITION SYSTEM

for M2 original direction) and T2 orientation (R2):

R = R1 ∗R2.

This can be applied to both positions and orientations because all the object
transformations in exam are rigid. If there are some small deformations we can
insert a threshold for the position and the orientation differences to add a degree
of tolerance.

3.5 The algorithm execution flow
In the previous sections we analysed in detail all the algorithms that compose

our work. In order to review what we have explained until now, we are going to
show all the processing phases that are applied to a point cloud to recognize an
object model in its scene.

Firstly, we have to create a model of the object that we are recognizing. In a
point cloud that contains it, we select its area and remove any other particulars
that not belong to it. This phase must be performed manually with a 3D graphic
software. Then we continue analysing this selection: we find the first level key-
points with Normals gradient analysis or Neighbourhood analysis and among
these points we find circles and lines with RANSAC. Then, we save the centre
of every feature and its description that is composed by length, direction and
position for the lines and radius size, the normal to the surface and the position
for the circles.

Now we have to obtain the same information in the target scene, therefore
we acquire a scan and we remove box floor (if it is visible) with RANSAC. To
correctly analyse every object we must to create a single point cloud for each
of them. Therefore we count the targets simulating a 2D view of the scan to
reduce as much as possible the undercuts and finding, with hierarchical cluster-
ing, groups of close points of a reasonable size. This count is used as input of a
centre-based clustering that splits the scene. For each point cloud we apply the
procedures just explained for the model.

Once we have computed the feature description for both model and target
we continue with the matching phase in order to find correspondences between
them. Based on these matches we compute a transformation to overlap the model
point cloud on a target: according to the number of correspondent points that are
closed each other we establish a score value that describe the accuracy of this
transformation. Choosing the best score and verifying that this score is greater
than a threshold, we return the position of recognized object.

Repeating this last phase for each element we can find all the occurrences of
the model subject in the scene.

Chapter 4

Implementing details and tools used

In this chapter we present the instruments used in acquisition and measuring
phase and we describe some implementing details.

The main part of this code is produced in Visual Studio environment using
C#, a programming language object-oriented developed by Microsoft within its
.NET initiative and later approved as a standard by Ecma and ISO.

4.1 Point Cloud Library
In order to achieve this work we needed to a library where we could find the

basic data structures and some operative algorithms. For this aim the ideal tool is
Point Cloud Library (PCL) [31] a standalone open project for 2D/3D image and
point cloud processing. It is developed in C++ so we have designed a Wrapper
to use this library in our working set.

Thanks to this tool we can exploit its data structure (point cloud), all the
input/output methods (ex. to load and write point cloud, to convert the differ-
ent extensions such as ”.pcd” or ”.ply”), RANSAC and algorithms to compute
normals.

In particular RANSAC implementation has played an important role for the
number of available mathematical models, both 2D and 3D. At this moment
the features searched among first level keypoints are only two-dimensional but
we have just designed the structure for future introduction of three-dimensional
models. Another advantage is that several versions of RANSAC are imple-
mented. We tried three of them: Maximum Likelihood Estimation SAmple Con-
sensus (MLESAC)[32], PROgressive SAmple Consensus (PROSAC)[33] and
the standard RANSAC.

In order to compare these versions we use a scan acquired for bin-picking
of a component pump that connects two tubes. This data belongs to a project

35

36 CHAPTER 4. IMPLEMENTING DETAILS AND TOOLS USED

that is been developing by Euclid Labs company and for this reason was easily
available. All experiments in this Section are executed considering this context.
The same scene will be used in Section 5.3 to make other qualitative tests.

MLESAC
This algorithm is a generalization of RANSAC estimator. It adopts the same

sampling strategy as RANSAC to generate putative solutions but chooses the
one that maximizes the likelihood rather just the number of inliers.

We have tested this version comparing it with original RANSAC. The results
are very good in time execution because both for lines and circles MLESAC
spends only 1 or 2 milliseconds instead of 7 or 9 milliseconds for lines and 50 or
60 milliseconds for circles. But analysing the other performances we decide to
not use it. In particular with the same parameters value 1 the original algorithm
finds 30 lines and 19 circles against 1 and 18 of the new version. Another qual-
itative comparison is between goodness of extracted features. There is not an
objective evaluation but we can see that the underlined geometric forms have a
greater meaning in RANSAC output than in MLESAC. The only way to justify
this sentence is to show the results: in Figure 4.1 we report first line and circle
that the two methods found (underlined points over white scan).

PROSAC
The goal of PROSAC algorithm is to obtain the same result of RANSAC in

a faster way. So to better understand its improvements we have to dedicate few
lines on a possible RANSAC implementation (to a general algorithm description
we refer to Section 3.1). It is viewed as a black box that generates N tentative
correspondences, the error-prone matches are established by comparing local
descriptors. The set U of tentative correspondences contains an a priori unknown
number I of correct matches (inliers). The inliers are consistent with a global
geometric model that is found by fitting a model to a randomly selected subset of
U . The hypothesize-and-test loop is terminated when the probability of finding
a superior solution falls below a pre-selected threshold.

The time complexity of RANSAC depends on N (number of tentative cor-
respondences), I , and the complexity m of the geometric model. The average
number of samples drawn is proportional to (N

I
)m.

PROSAC introduces a new sample-and-test matching approach. The method
achieves large computational savings (with speed-up factors of the order of 102

1we fixed threshold for the minimum number model points and error toleration to be consider
inlier

4.1. POINT CLOUD LIBRARY 37

(a) MLESAC first circle found (b) RANSAC first circle found

(c) MLESAC first line found (d) RANSAC first line found

Figure 4.1: Comparison between RANSAC and MLESAC in goodness of output

compared to RANSAC) by exploiting the linear ordering structure of U . The
ordering is defined at least implicitly in all commonly used local matching meth-
ods, because the set of tentative correspondences is obtained by first evaluating
a real-valued similarity function q(·) that is subsequently thresholded to obtain
the N correspondences. Correlation of intensities around points of interest [34],
Mahalanobis distance of invariant descriptors [35] or the ratio of distances in
the SIFT space of the first to second nearest neighbour [10] are commonly used
examples of q(·). In PROSAC, samples are semi-randomly drawn from progres-
sively larger sets of tentative correspondences. The improvement in efficiency
rests on the mild assumption that tentative correspondences with high similarity
are more likely to be inliers. More precisely, it assumes that the ordering defined
by the similarity used during the formation of tentative matches is not worse than
random ordering.

The main difference between RANSAC and PROSAC is the first step sam-
pling: unlike in RANSAC in PROSAC the samples are not drawn from all data,
but from a subset of the data with the highest quality. The size of the hypothesis

38 CHAPTER 4. IMPLEMENTING DETAILS AND TOOLS USED

generation set is gradually increased. The samples that are more likely to be
uncontaminated are therefore examined early. In fact, PROSAC is designed to
draw the same samples as RANSAC, only in a different order.

The comparison between these two algorithms almost confirms the just ex-
plained theoretical aspects. As test we execute the feature extraction phase on
pump components: we note execution time, features extracted and final result of
recognition task.

In Table 4.1 we report execution time comparison: data are expressed in
milliseconds and represents the time spent to extract the features. This test can
be executed in this way thanks to the fact that the features found with both the
versions are exactly the same. We can see first five lines and circles: the greatest
differences are in time to find circles. Analysing all the data (25 lines and 17
circles) and using PROSAC we compute an average improvement of 4 ms that
reaches 23.4 ms considering only circles. Until now, this is in agreement with
the algorithm goal but we successively find a discrepancy: studying accurately
the results we discover that RANSAC finds more features then the other (30 lines
and 19 circles) setting the same parameters value2. These more extractions seem
to have greatly effects on final results. Indeed in a test, that we will describe in
detail in Section 5.3, we compare the recognition of a pump component using
both RANSAC and PROSAC: the former well recognizes 10 of 12 objects but the
latter only 8. In Figure 4.2 we show a case where RANSAC identifies correctly
subject position and orientation but PROSAC does not. In white we can see the
box scan with the objects inside it; in red there is the projection of the model as
result of the final transformation computed.

At the end of this analysis we decide to continue to use RANSAC privileging
precision and accuracy despite execution time.

Feature RANSAC PROSAC Feature RANSAC PROSAC

Line 0 7 10 Circle 0 67 22
Line 1 9 8 Circle 1 57 52
Line 2 6 8 Circle 2 49 23
Line 3 6 7 Circle 3 45 3
Line 4 6 7 Circle 4 40 41

Table 4.1: Time execution comparison between RANSAC and PROSAC (times
expressed in milliseconds)

2we fixed threshold for the minimum number model points and error toleration to be consider
inlier

4.2. 3D CAMERAS 39

(a) Recognition with RANSAC (b) Recognition with PROSAC

Figure 4.2: Comparison between RANSAC and PROSAC in recognition

4.2 3D Cameras
In this section we are going to describe 3D cameras that we use to test our

algorithm performance. All are based on structured light projection: one is an in-
dustrial camera (Photoneo [36]) and the other a user-consumer (Microsoft Kinect
v1 [37]).

This technology is composed by two physical sensors: a projector that throws
known pattern in the scene, and a scanner that recognizes the pattern and analysing
light deformations allows shape objects reconstruction [38].

In the following there are all sensors details.

Photoneo

Figure 4.3: Photoneo sensor

40 CHAPTER 4. IMPLEMENTING DETAILS AND TOOLS USED

Figure 4.4: PhoXi 3D Scanner M range values

A conventional structured light technique is derived from a stereo vision.
This method, that is inspired by the nature of a human vision, exploits data ac-
quired in the same moment from two close cameras positioned in a known place.
Finding the correspondences of points in the two frames, it is possible to com-
pute their position in 3D space by triangulation. While the idea is very simple,
the technique is computationally complex and requires a well textured object.
Due to the real-world restrictions, the technique is not suitable for industrial use.

For these reasons many companies focuses on different sensor based on
structured light. As we have just explained, a camera is interchanged by a pat-
tern projector which emits a well defined structure illumination. Source of light
pattern can be a conventional 2D projector similar to the ones used for multime-
dia presentations. Both the sensors must be focused on the same scanning area
and posed in well known positions, determined by a system calibration.

In Photoneo the projector emits a set of coding patterns projected in a suc-
cession, one after another. These coding patterns encodes a spatial information.
Camera captures the scanning area once per every projected pattern. For ev-
ery image point A, the algorithm decodes the spatial information encoded in the
succession of the intensity values captured by this point. This spatial informa-
tion encodes the corresponding “image point B” in the view of the projector, as
in stereo video approach. With the correspondence, the algorithm computes an
exact 3D position of the object point.

The advantages of this technique are that it works irrespectively of object

4.2. 3D CAMERAS 41

Mode High res mode High speed

Depth Map resolution 3.2M points 0.8M points
Point size 0.33 mm 0.66 mm

Absolute accuracy ≤ 100 µm ≤ 100 µm
Z noise ≤ 100 µm ≤ 100 µm

FPS 2.5 fps 5 fps
Data acquisition time 400 ms 200 ms
Data acquisition time 4 s 2 s
3D points throughput 16 Million points per second

GPU NVIDIA Maxwell 1 TFLOPSwith 256 NVIDIA CUDA Cores

Table 4.2: PhoXi 3D Scanner M characteristics

texture, high 3D reconstruction and speed of acquisition.
One of the greatest problem of light structured based systems is the com-

plexness of pattern projectors. The conventional design based on DMD (Digital
Micromirror Device) or LCD technology is expensive and optically ineffective.
The most of the light created is lost in the system due to the complex optical
set-up. This light is than converted to heat. Due to the nature of light sources
used in these systems, the depth of field is very limited.

The improvements of Photoneo PhoXi family is that they use an own pro-
jection system based on coherent laser radiation. They emit light of a specified
wavelength in addition to high quality glass bandpass filters used in a camera op-
tics. Moreover the system delivers outstanding resistance to other light sources
even in challenging indoor environments with multiple lights. The result is high
depth of field similar to laser line triangulation systems [39].

The hardware specifics are:

• latest CMOS sensors from Sony to deliver an excellent performance with
a small energy footprint;

• industry leading camera sensing performance made by Ximea;

• NVIDIA Jetson platform, to make system as enough powerful to execute
advanced reconstruction algorithms with high resolution and fps;

• PhoXi capturing and processing pipeline is capable of delivering 16 mil-
lion measurements per second, either in 3.2 megapixels at 5 fps, or 0.8
megapixels at 20 fps.

42 CHAPTER 4. IMPLEMENTING DETAILS AND TOOLS USED

Figure 4.4 shows the range values of a specific product of Photoneo PhoXi
family, PhoXi 3D Scanner M, and in Table 4.2 we report its performances. The
data meanings are [40]:

• Depth map resolution: maximum number of measured points (resolution
of camera sensor);

• Point size: distance between two measured points on the plane perpendic-
ular to the camera in the focus distance from the sensor;

• Absolute accuracy: precision of point measurement. It is the standard
deviation of the measurement error in the whole measuring range of the
device;

• Z noise: standard deviation of the noise (measured on a diffuse surface
with 80 percent albedo). The noise level describes the quality of the sensor
to capture local surface details. The noise distribution of the sensor is
similar to Gaussian;

• FPS: maximum number of triggered frames per second, in fastest acquisi-
tion mode;

• Data acquisition time - best case (white diffuse objects): fastest possible
acquisition time;

• Data acquisition time – worst case (dark objects): longest expected acqui-
sition time;

• 3D points throughput: number of 3D points that can be reconstructed in a
second in sequential scans.

Microsoft Kinect v1
Microsoft Kinect, announced in June 2009 under code name ”Project Natal”,

is based on structured light built for commercial use. Its production changed 3D
camera trade because it combines medium-high precision with low costs.

It is a mix of Microsoft built software and hardware. Kinect v1 hardware
includes a range chip set technology PrimeSense, which developed a system
consisting of an infra-red projector, camera and a special microchip that gener-
ates a grid from which the location of a nearby object in 3 dimensions can be
ascertained. The depth sensor combines projector with a monochrome CMOS
sensor, which captures video data in 3D under any ambient light conditions. The
sensing range of the depth sensor is adjustable [37]. In the bar there is also a low
definition RGB camera: for this reason Kinect is considered a RGB-D sensor.

4.2. 3D CAMERAS 43

Figure 4.5: Microsoft Kinect v1 sensor

In Figure 4.6 we report a view of the infra-red points that are projected in
the scene and the reconstruction of the same environment as a depth-map. It
is interesting to see how the sensor works and what performances produces. In
Table 4.3 there are its characteristics [41].

A considerable improvement in resolution and 3D image quality is given by
Fusion mode. This system reconstructs a single scanning starting by multiple
acquisitions from different viewpoints tracking objects and camera position and
orientation. Steps to realize this procedure are [42]:

1. depth map to point cloud conversion: here it computes depth float value of
each point starting from colour and calibration informations;

2. it computes global/world camera pose to track sensor position and orien-
tation. To do this it can use two different algorithms of tracking: NuiFu-
sionAlignPointClouds that allows to align two point clouds even if they
are acquired from two viewpoints or from the same view but not in the

(a) Infra-red points projection (b) Kinect depth-map

Figure 4.6: Kinect results both in infra-red projection and depth-image compu-
tation

44 CHAPTER 4. IMPLEMENTING DETAILS AND TOOLS USED

same instant; AlignDepthToReconstruction that provides a more accurate
camera tracking but it is sensible to object movements on the scene;

3. fusion on the same volumetric scene vision of the environment, thanks to
position data computed in the previous step. In this way empty region in
a frame can be filled from informations acquired in the next moments. An
essential procedure is to compute average point position to reduce noise.
It is important to fuse these data continuously;

4. as last step it establishes a reference system (that quite always corresponds
to the current sensor pose) and shares point cloud with values referred to
it.

Limitations to this reconstruction are linked to the only depth stream use.
Indeed, if we are scanning a quite planar scene or objects with little variations
in depth, tracking performs with fusion algorithm fails and results are very bad
[42]. For this reason it is important to not position the camera to have a top view
of the environment. In our tests we place the sensor in a top position but we
orient it with an angle of around 45 degrees respect the scene.

Using this acquisition mode we reach a resolution of around 1 ∼ 2 mm per
voxel.

Parameter Value on Microsoft Kinect v1

Color camera 640 x 480 [640 x 480 at 30fps]
Ir camera 1280 x 1024 [640 x 480 at 30fps]

Operation Range 0.8 m - 3.5 m
Field Of View 58◦ H, 45◦ V , 70◦ D

Spatial resolution 3 mm (at 2 m distance)
Depth resolution 1 cm (at 2 m distance)

Table 4.3: Microsoft Kinect v1 characteristics

4.3. KREON BACES ARM 45

4.3 Kreon Baces arm

Figure 4.7: Bases measuring arm

Another important instrument used to test our algorithm precision is Kreon
Baces arm. It is a measuring arm with six axis that has a tip with three buttons
to allow software control. The configuration reported in Figure 4.7 is used to
take measures touching the point: arm ends with a sphere of 4 mm of diameters.
There is another configuration that inserts an handle to add new axis (they be-
comes seven) and Kreon scanners: this allows to take measures without touching
points.

The conveniences of this arm in measuring are its lightness to easily move
it in every environment, its precision that allows a point repeatability lower than
tenth of millimetre, and the presence of buttons on the tip. This last feature is
essential to take measure alone, programming an opportune control software.
Another plus is the use of a foot pedal to do the same tasks as tip buttons but
leaving hands to move the arm without pressing need [43]. This guarantee more
freedom in measuring.

Kreon provides different versions of this arm that differences mainly in di-
mensions and materials. Some products are made in aluminium some others in
carbon-fibre: in this way they can offer light and stable instruments that are ideal
for metrological applications, reverse engineering, digitization, inspection, rapid
prototyping and so on.

Chapter 5

Results

In this chapter we are going to explain our tests to evaluate the performances
of this new approach. We reproduce multiple scenes with different objects using
two 3D cameras. We work in both ideal and real environment to compare the
theoretical results and the practical ones.

It is crucial to say that in every case we use the same configuration with
Neighbourhood analysis to extract first level keypoints. The only parameters
that we can change from an example to the other are:

• Ransac size: this is the lower threshold given to RANSAC algorithm. It
means that the lines and circles that it returns must have at least this num-
ber of inliers;

• Ransac threshold: it measures the tolerance to consider a point as an inlier
of a geometric model;

• Neighbourhood position range: it is an input of the algorithm for first level
keypoints extraction. It is the threshold that manages the displacement of
the neighbourhood centre to consider the pivot as an edge point or not;

• matches parameters: these are the tolerance on position, orientation, length,
radius size and score used in the feature matching phase.

These values change in order to match the camera characteristic (as resolu-
tion), object shape complexity and scan goodness. This last variable is deter-
mined by the object physical properties such as reflection, transparency and so
on.

In the following sections we analyse singularly each test, specifying set-up
and results obtained.

47

48 CHAPTER 5. RESULTS

5.1 Test in ideal environment

Recognition with clean data
The first test goal is to check if the feature matching phase is designed and

implemented correctly. We build a model in simulation composed by two circles
and two lines: this is the ideal output of a perfect first level keypoints extrac-
tor made from a scan without noise. In this way we delete all the components
that could prevent the recognition. With this test we can also implement a first
qualitative estimation of precision. The created model can be seen in Figure 5.1.

After the model creation, we also build a target scene. Our aim is to check
some different transformations in terms of angle size and axis direction. There-
fore we rotate the model point cloud using singularly x, y and z axis and for
each of them we vary the angle in {π

5
; 2π

5
; 3π

5
; 4π

5
}. We save all the results and

put them in the same data structure adding appropriate translations. Finally, we
perform the recognition, skipping the first level keypoint extraction step, with
the set-up shown in Table 5.1.

In Figure 5.2 we report the results of this test. Points in red represent the
projection of the model on the target environment obtained multiplying it with
the computed rotation matrix. In white there are the target points. In all the
recognitions we notice a perfect match between the projection and target points:

Figure 5.1: Ideal model created for test in ideal environment

Parameter Value Parameter Value

Ransac size 40 Matching length 10 mm
Ransac threshold 1/10−3 mm [circles/lines] Matching radius size 10 mm

Neig. position range -1 Matching position 2 mm
Score - Matching orientation 0.25 rad

Table 5.1: Set-up for test in ideal environment without noise

5.1. TEST IN IDEAL ENVIRONMENT 49

(a) Rotation axis = x (b) Rotation axis = y (c) Rotation axis = z

Figure 5.2: Results of test in ideal environment without noise

changing axis or angle size the results remain equal. The proof of coincidence is
the presence of some white points between the two red ones. We reported only 3
results obtained with different axis and rotation angles to have some examples.

System behaviour in presence of noise in target point cloud
The second test in ideal environment checks the robustness to noise. To do

this we adopt the same model of Figure 5.1 but we insert a settable degree of
error in the target scene. In detail we replace the position of each target point
with another, selected randomly from a neighbourhood with size equal to the
input value. Our goal is to repeat the experiment with several degrees of error
to find the threshold beyond which the system does not work correctly. For this
check we use the model feature description computed in the previous test to start
from clean informations. The parameters set-up is described in Table 5.2 and
they are not changed during trails.

Parameter Value Parameter Value

Ransac size 40 Matching length 10 mm
Ransac threshold 1/0.5 mm [circles/lines] Matching radius size 10 mm

Neig. position range -1 Matching position 2 mm
Score - Matching orientation 0.25 rad

Table 5.2: Set-up for test in ideal environment with noise

The results are illustrated in Figure 5.3 and are divided into 2 parts. We
remember that the target scene is composed by the model copied and rotated
into twelve different positions in the same point cloud. The first result part (first
line of images) represents three recognitions applied to the same model transfor-
mation with different degrees of error (0.3 mm; 1 mm; 2 mm); the second part
(second line of images) represents the same recognitions with the same three
degrees of error but applied to another model transformation. We show these ex-

50 CHAPTER 5. RESULTS

(a) Best case with 0.3 mm of
noise

(b) Best case with 1 mm of
noise

(c) Best case with 2 mm of
noise

(d) Average case with
0.3 mm of noise

(e) Average case with 1 mm
of noise

(f) Average case with 2 mm
of noise

Figure 5.3: Results of test in ideal environment with noise

amples because the first is the best in terms of precision and the latter explains an
average behaviour. Indeed in images 5.3a,5.3b and 5.3c we can notice that until
the noise is lower than 2 mm, the model is perfectly contained in the target. In
5.3d, 5.3e and 5.3f model is not well recognized already with an error degree of
1 mm. In general we obtained 12 good identifications of position and orientation
over 12 with 0.3 mm of noise, 9 with 1 mm and 2 with 2 mm.

We analyse this result to try to understand why the recognition fails. This
is caused prevalently by RANSAC that, having as input unclean data, does not
find the same lines and circles of the model in the target. In this way there are
no common extracted features and the matching phase does not return enough
correspondences to perform the recognition. This means that the first level key-
point extraction is crucial: its role is to clean the input point cloud and allow to
focus only on a few but important points.

This is a qualitative analysis and its goal is only to understand the behaviour
of the presented system. To find an exactly error and precision evaluation we do
specific tests visible in Section 5.5.

5.2 Recognition of the model in multiple object
types scene

Here we focus on the detection task: in a scene with different object types we
have to identify the one that corresponds to the model. So we will not analyse the

5.3. TESTS ON REAL OBJECTS RECOGNITION 51

precision for the position and orientation estimation but only for the recognition
of the right element.

To test this capability we create a point cloud with the scan of 3 different
subjects: a jar, an ornament with a robot shape and a support. We analyse the
scene in several executions changing the model given as input: in the first we
recognize the support, in the second the robot and in the last the jar. In Table 5.3
there is the set-up. In the case of the jar, we have to consider a greater threshold
score (precisely 0.4) because it is a simpler shape than the others. This fact
produces only a few features therefore the recognition is more sensible to errors:
only 2 or 3 matches are needed to label an element as our target because they
exceed 10% of keypoints. Increasing this threshold the algorithm must to find
more matches to select a subject so few errors are irrelevant. In Figure 5.4 we
can see that giving in input a particular object with the right parameters in the
same scene, only the corresponding target is detected. It is important to remark
that the scans used as model are different than the ones used to compose the
environment.

They are all acquired using Photoneo camera.

5.3 Tests on real objects recognition

In this section we are going to present some examples of recognition in real-
life contexts. To underline our system versatility we recognize other two objects:
pump components and cups. In the previous tests we have just handled 3 differ-
ent subjects and the transition from one to the other caused only one parameter
change. In this case more settings must be modified because we have not only
to detect the right object but also identify its exactly position and orientation. In
addition the selected models are rather symmetrical: this complicates a lot the
identification of the right orientation.

In the next subsection we are going to explain the set-up and the results.

Parameter Value Parameter Value

Ransac size 40 Matching length 15 mm
Ransac threshold 5 mm Matching radius size 15 mm

Neig. position range 0.5 mm Matching position 10 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.3: Set-up for support and ornament detection

52 CHAPTER 5. RESULTS

(a) Support detection

(b) Robot detection

(c) Jar detection

Figure 5.4: Results of test for detection task

5.3. TESTS ON REAL OBJECTS RECOGNITION 53

Cup recognition
The test on cups is quite interesting because it shows three important aspects

of our work performances:

(a) Cup model (b) Scene of recognition

Figure 5.5: Model and target used in cup recognition test

(a) Item 0 (b) Item 1

(c) Item 2 (d) Item 3

(e) Item 4

Figure 5.6: Results of cup recognition test

54 CHAPTER 5. RESULTS

Parameter Value Parameter Value

Ransac size 40 Matching length 10 mm
Ransac threshold 2 mm Matching radius size 10 mm

Neig. position range 0.5 mm Matching position 10 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.4: Set-up for cup recognition

• its behaviour in case of symmetrical objects: only the handle can establish
a direction of the subject;

• its behaviour in case of similar but not equal items: there are two different
cup types. One is smaller and more curved, the other is taller and narrower;

• its behaviour in case of clutters: cups are positioned randomly and show
different sides to the camera. This is similar to the problem of clutters
because not all the parts are visible (for example in several cups there is
not an handle).

As we can see in Figure 5.6 with the set-up of Table 5.4 all cups are well
recognized. When an handle is visible, the model is also positioned in the right
orientation. An example is Figure 5.6b where we can see that the handle, in red,
of the model overlaps the white one of the target. In some cases like Figure 5.6a
or 5.6e model completes the lack of information of target and matches perfectly
with the known parts.

Pump component recognition
Here we retrieve scans used in RANSAC versions evaluation in Section 4.1.

It is an example of application in actual industrial context: Euclid Labs has to
realize a bin picking system to extract a series of pump components that link two
tubes for a company of Caldiero (VR). To study our algorithm performances we
select scans acquired here and we apply these as input. The camera used is
always the Photoneo and the parameters set-up is reported in Table 5.5.

As we can see in Figure 5.8 there are some recognitions that perfectly com-
pute both position and orientation. Items 0, 1, 3, 6 are examples of this precision:
the shifted and rotated model overlaps completely the object. Other results are
less accurate but can be considered correct for the error entity: items 4, 5, 8, 9,
10 and 11 register right position but little wrong orientation. This inaccuracy
would be reduced applying Iterative Closest Point (ICP) or other algorithms to

5.3. TESTS ON REAL OBJECTS RECOGNITION 55

Parameter Value Parameter Value

Ransac size 50 Matching length 60 mm
Ransac threshold 5 mm Matching radius size 60 mm

Neig. position range 0.6 mm Matching position 20 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.5: Set-up for pump component recognition

(a) Pump component model (b) Scene of recognition

Figure 5.7: Model and target used in pump component recognition test

align the point cloud. Items 2 and 7 are examples of wrong object direction com-
putation. These results are consistent with score values: the first groups show a
match between more than 40% of keypoints, the second in a range of 33% and
40%, the last less than 33%. It means that we can set a threshold to select only
the elements with an high accuracy and pick these: successively we can acquire
another scan and re-execute the procedure to recognize also the others. Indeed
the errors can be caused by scan defects that compromise RANSAC output. In
some cases it happens that, for the presence of other points that represent noise,
lines and circles with more inliers are positioned too differently than the model
so our algorithm cannot perform matches.

56 CHAPTER 5. RESULTS

(a) Item 0 (b) Item 1

(c) Item 2 (d) Item 3

(e) Item 4 (f) Item 5

Figure 5.8: Results of pump component recognition test [first part]

5.3. TESTS ON REAL OBJECTS RECOGNITION 57

(g) Item 6 (h) Item 7

(i) Item 8 (j) Item 9

(k) Item 10 (l) Item 11

Figure 5.8: Results of pump component recognition test [second part]

58 CHAPTER 5. RESULTS

5.4 Tests with Microsoft Kinect v1

To give more completeness to our work we try to use our algorithm with
other sensors. The selected alternative is Microsoft Kinect v1 because it is a
largely used camera and it was easily available. In addition it is an interesting
product for its low price and medium resolution.

The goal of these recognitions is to show the independence of the system to
high resolute scans and its applicability with other sensors, different than Pho-
toneo. Obviously the scanning quality has effects on results precision and it is
important to choose correctly the sensor according to the task characteristics.
We also take the chance to underline the versatility by using other object types
as model and to test the recognition of deformable subjects: as a rigid model,
we study the algorithm behaviour with an ornament shaped like a rabbit and as
a non-rigid the one with pears.

Considering the parameter configuration, we use for both tests the values
reported in Table 5.6. The only considerable changes comparing the set-up with
Photoneo are about Ransac size and Neighbourhood position range: these are the
most strictly linked to sensor resolution. The first represents a points number so
if point cloud has less resolution it means that there are less points to describe the
scene and consequently the inliers number of a particular mathematical model
decreases. The second is a distance of neighbourhood centroid so if neighbours
are farther also this parameter must increase: if it was not all points would be so
far from the other to be considered in the edge. So these changes are necessary
and quite intuitive.

In Figure 5.9 are reported the results of the rabbit ornament recognition.
Model and target belong to different point clouds but are referred to the same

(a) Rabbit shaped ornament (b) Recognition result

Figure 5.9: Recognition of a rabbit shaped ornament

5.4. TESTS WITH MICROSOFT KINECT V1 59

Parameter Value Parameter Value

Ransac size 0 Matching length 60 mm
Ransac threshold 5 mm Matching radius size 60 mm

Neig. position range 3 mm Matching position 10 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.6: Set-up for Kinect recognition

specimen in distinct places. As we can see the recognition produces good results:
both position and orientation are computed correctly and the model overlaps the
target. This precision can be verified for the rabbit ears and nose where the
shapes are more clearly identifiable with human eyes.

The pear recognition is more interesting for the analysis of the system be-
haviour in presence of deformations. To remark diversities of every sample
we report in Figure 5.10 targets used. In this case the fruit is not elongated or
stretched and we not mechanically cause deformities: as deformation we mean
that it does not exist a pear that is identically equal to another. These natural dis-
crepancies can be considered as shape changes from the software point of view.
This test means that our algorithm adapts well to the recognition of objects that
are similar but not perfectly equal to the model.

In Figures 5.11 and 5.12 we report two results obtained analysing two differ-
ent scenes: one with a pear randomly positioned on a table and one with targets
well placed in a stand up position. It is clear that model does not overlap the
elements in all its points but every object is not perfectly equal to the others
therefore the opposite would be impossible. What is important is that the system
matches features correspondent but not identical and computes correctly the po-
sition and orientation. Red points are sufficiently close to the white ones to try
to perform grasping. With this recognition we can also present the partial no-
sensibility to distinct point of view between model and target. Partially because
if a target shows a side about which we do not have any information our system
will not recognize it.

The model is extracted from the first scene and used equally in the first and
second scan.

60 CHAPTER 5. RESULTS

Figure 5.10: Scene of pears recognition

Figure 5.11: Recognition of pears (first scene)

5.4. TESTS WITH MICROSOFT KINECT V1 61

Figure 5.12: Recognition of pears (second scene)

62 CHAPTER 5. RESULTS

5.5 Measures of precision

Figure 5.13: Coat rack model

This section is about quantitative tests to analyse our system precision in
different situations and tasks. While the other trials are presented to only show
qualitative performance changing object model and adding noise or clutters, this
one gives precise information of error measures about the reccognition of both
position and orientation, repeatability and tolerance to the displacement.

For this test we use two instruments that we have just presented in Sections
4.2 and 4.3: Photoneo to acquire scans and Baces Arm to take measures. An
issue is represented by the fact that these two products return data referring to
their own reference system: to allow their cooperation is necessary to calibrate
one respect to the other. Our choice is to calibrate Baces respect Photoneo. To
do this we scan the working area marking with a black marker four points on
the environment. It is better if these points are not coplanar, therefore three of
them belong to a table plane and the last to a cardboard box positioned on the
table. Using PCL visualizer we extract them and compute homogeneous matrix
to translate Photoneo coordinates values into Baces ones. To achieve correctly
all the procedure we must to consider also the sphere diameter of the arm tip:
this inserts an approximation that we try to reduce as much as possible. During
measures acquisition we position the tip in a perpendicular direction to x-y plane
and we subtract 2 units to the final z value1.

All the following recognitions are realized given as input a little coat rack
with a suction cup to apply it on a bath wall. The object model is seen in Figure

1remember that sphere is 4 mm of diameter and that the measure represents its centre posi-
tion

5.5. MEASURES OF PRECISION 63

(a) Template (b) Template application on coat rack

Figure 5.14: Template and its use

5.13. We select this subject to remark the versatility of our system and to have
more agility during test: for its size and lightness it can be easily handled and
moved around the environment. In addition, the suction cup is used to fix objects
on the table: in this way it will not change its position during scans acquisition.

It is important also to mark two points on coat racks to measure precisely
displacements and errors. These marks must have two basic characteristics: they
have to represent the same relative position in the object and they must be easily
visible in scans. To solve these problems we realize a wood template with two
holes used to apply two adhesive felts. This mould is handmade milling wood
and reproducing the exactly shape and size of the coat rack: to prove template
precision we apply it on the subject and ascertain that all is blocked and nothing
can move. In Figure 5.14 we report mould and its application.

We perform three tests:

1. we scan the same scene with the object in a fixed place several times to
analyse precision in position and orientation estimation and repeatability;

2. we acquire several scans in the same environment moving the object to 3
known poses to see sensibility to position changes and to measure preci-
sion in displacement computation;

3. we perform recognition to bin-picking placing randomly three coat racks
on a table.

Parameters configurations can be seen in Tables 5.7 and 5.8. We use two
settings because one has more relaxed constraints and can be used in several

64 CHAPTER 5. RESULTS

Parameter Value Paramter Value

Ransac size 10 Matching length 10 mm
Ransac threshold 2 mm Maching radius size 10 mm

Neig. position range 0.5 mm Matching position 5 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.7: Set-up for coat rack recognition (configuration 0)

Parameter Value Paramter Value

Ransac size 10 Matching length 10 mm
Ransac threshold 2 mm Maching radius size 10 mm

Neig. position range 0.5 mm Matching position 2 mm
Score 0.1 Matching orientation 0.25 rad

Table 5.8: Set-up for coat rack recognition (configuration 1)

different contexts, the other reaches the greatest precision and shows the best
system behaviour. The first two tests are made with both the configurations; the
latter is executed only with less strict constraints to allow the system to be more
robust to noise and position changes.

In the following subsections we are going to present the details of every
quantitative test.

Position and orientation precision
In this test we block one coat rack in a position and acquire 22 scans of

the same scene. We extract from the first 3D image the object model and we
execute the recognition on all the others. To measure the precision of the com-
puted object position and orientation we consider the two points marked with
the adhesive felts described above. We save their position manually in the model
exploited PCL visualizer and then we use the transformation computed by the
system to find their position in the scene. The next step is to apply an homoge-
neous matrix to the result to translate the values in Baces arm coordinate system.
Comparing these final positions with the ones measured by Baces we can com-
pute the error entity. To evaluate also the orientations we must to consider that
scans are acquired with the object positioned on a table so z value might not
change from a point to the other and we can simplify the problem in a 2D space.
We compute the line that links both marked points and its grade in x-y plane.
Comparing final values obtained with found and acquired position we can also

5.5. MEASURES OF PRECISION 65

evaluate orientation error.
The goal is to compute the precision of our algorithm regarding the object

position and orientation estimation. The repetitions of the procedure for 22 scans
helps to remove systematic errors in the measurements. Considering only a sin-
gle object without changing its place in the environment we simplify the task to
do a first test of precision; in the others also this simplification will be overtaken.
Another thing that is evaluated in this phase is the sensitivity to scan quality
because we use as input data all the acquisitions without even discarding one.

To be clearer and more precise in the results explanation, we add some graphs
that show different peculiarities of our experiments.

In Figure 5.15 we represent the output of the recognition task: with light
colours we indicate computed positions of two grip points (that are the points
selected with PCL visualizer), red for the first and blue for the second, and,
with the correspondent dark tonalities, real point position acquired by Baces.
Here, we notice that in all the trials the object is well identified both in position
and orientation. The errors are almost always lower than 2 mm, except in one
case where the distance with the real position reachces 7 mm. In addition, our
system estimates better grip point 1 than 2: this is an effect of the orientation
computation. The first one is closer to the object centre therefore it suffers less
direction error repercussions. In order to better analyse the inaccuracies and their
distribution we report two other graphs shown in Figure 5.16. The upper function
shows the times that a certain error is registered and the other its distribution
with the average for both grip point 1 and 2. An important characteristic is
that the largest part of the differences respect to real positions is grouped very

Figure 5.15: Positions computed with configuration 0

66 CHAPTER 5. RESULTS

Figure 5.16: Error distribution in computed position with configuration 0

Figure 5.17: Orientations computed with configuration 0

5.5. MEASURES OF PRECISION 67

Figure 5.18: Error distribution in computed orientation with configuration 0

close to the average. This allows to recognize a sort of a Gaussian distribution,
that is clearer in first representation with the bell. In this case we cannot see
it perfectly for the low number of repetitions but it is quite identifiable. This
has an important consequence: it means that our algorithm returns with a high
probability a position close to the average.

Considering all the errors independently for grip point 1 and 2 we compute an
average of 1.82 mm for the first and 2.09 mm for the second. The correspondent
variance is 2.24 mm2 and 2.28 mm2. This is not a great precision but the quality
of a system is always linked to its application context. We can observe that our
algorithm cannot be used for too small objects but it has other advantages that
we have just explained in other results.

We have to make different considerations about orientation errors. The same
graphs as for positions are shown: Figure 5.17 represents computed object di-
rection for each scan analysis and Figure 5.18 error distribution. We observe
that all the outputs are concentrated near the real value with no evident outliers.
Function development recalls a Gaussian bell even though there is not an evident
peak at average value that is 2.48 ◦. The variance is 2.27 ◦2 and the maximum
registered error is 5.34 ◦. As a final note, we can repeat that there is no perfect
recognition but it is enough in contexts with not too small objects.

All these measurements are acquired with parameters configuration of Ta-

68 CHAPTER 5. RESULTS

ble 5.7. As we have just said we try to see the best behaviour of our system
re-executing the test with more strict constraints. Graphs in Figure 5.19,5.20,
5.21 and 5.22 are referred to settings in Table 5.8. For the largest part of re-
sults, positions are computed correctly with a higher precision (see Figure 5.19):
this is an obvious consequence to the fact that the algorithm searches compati-
ble keypoints in a smaller area near the predicted place than the previous case.
Observing distribution error in Figure 5.20 we can easily identify Gauss bell for
the first grip point. Indeed, in the second there is a great global maximum but
the presence of another local peak at 3 mm gives to the function a strange shape.
It means that there are some outliers all concentrated in a small error range.
Anyway, they are only four outliers in over 22 different elements.

Bells are narrower than in the previous case (Figure 5.16) and this is in agree-
ment with the computed variances: 0.37 mm2 for point 1 and 1.52 mm2 for point
2. Also the averages show an improvement: 1.23 mm for the first and 1.66 mm
for the second.

Orientation estimation is penalized by the four outliers in grip point 2 posi-
tion. Indeed, we can notice in the error distribution (Figure 5.22) two first peaks
at the beginning and then some lower ones that extend the bell base of over 6 ◦.
All these observations are coherent with the computed data: even though the
average improves reducing at 2.22 ◦, the variance reaches 2.60 ◦2 .

The system behaviour concerning the orientation estimation is the same for
both the configurations. We cannot say the same for the position computation
that increases of around 0.5 mm.

5.5. MEASURES OF PRECISION 69

Figure 5.19: Positions computed with configuration 1

Figure 5.20: Error distribution with configuration 1

70 CHAPTER 5. RESULTS

Figure 5.21: Orientations computed with configuration 1

Figure 5.22: Error distribution in computed orientation with configuration 1

5.5. MEASURES OF PRECISION 71

Tolerance to displacements
Here we are going to analyse the precision for relative positions and dis-

placements estimation. Therefore we choose the same coat rack of the previous
test as the object to recognize and we shift it into 3 different positions. The
displacements are of known and precise quantities: 10 cm along x-axis, 10 cm
along y-axis and 10 cm along both. To guarantee the correctness of the direction
and the movement size, we use a graph paper positioned according to the Baces
arm reference system. In this way, shifting the coat rack, for example only along
the longest sheet margin, we register changes only in the y-axis value.

We acquire six scans in the first and second position and seven in the third.
As a model we use the point cloud of the coat rack acquired before moving it. In
this case we cannot use data of another context because the position is essential
in order to correctly compute the displacements.

The test is executed in the following way: with our algorithm we estimate
the positions of the two grip points and with Baces we measure their real one.
Comparing the known displacements quantities with the ones computed sub-
tracting the estimated object positions with the ones of the model, we measure
our system precision.

We propose two graphs to explain the results. The first one (Figure 5.23) is

Figure 5.23: Positions computed with configuration 0

72 CHAPTER 5. RESULTS

Figure 5.24: Displacement size computed with configuration 0

prone to similar observations of the previous test: it reports the positions com-
puted with the procedure considering all displacements. In this case statistics
are worse: average error for grip point 1 is of 2.5 mm and for grip point 2 of
3.66 mm with a variance respectively of 1.55 mm2 and 4.35 mm2.

Another aim of this graph is to contextualize the experiments and gives to the
reader a clearer idea of what are the displacements and their directions. Model
was placed in bottom-left corner.

The most interesting graph is the one in Figure 5.24 that shows the displace-
ments compute by our algorithm: red for the first position, blue for the second
and green for the third. The operations solved to obtain presented data are shown
in the following equations:

displacementx =
1

|S|
∑
s∈S
|bx − ax|

displacementy =
1

|S|
∑
s∈S
|by − ay|

displacementz =
1

|S|
∑
s∈S
|bz − az|

where S is the set of scans, b is grip point 1 position measured by Baces
and a is the one computed by our algorithm. We decide to split measurements
in each component value to underline the precision reached. As we can see
by vertical bars, our computations is completely in accordance with the real
one. The greatest differences between Baces and our system computations are
registered along z axis and are about 1.7 or 2.7 mm. In detail they are:

• in position 1 about 0.32 mm on x, 0.39 mm on y and 2.74 mm on z;

5.5. MEASURES OF PRECISION 73

Figure 5.25: Positions computed with configuration 1

Figure 5.26: Displacement size computed with configuration 1

• in position 2 about 1.02 mm on x, 1.08 mm on y and 0.88 mm on z;

• in position 3 about 0.44 mm on x, 0.52 mm on y and 1.68 mm on z.

All these data are referred to the results obtained using parameters config-
uration of Table 5.7; trying to increase precision we use second settings (Table
5.8). We can see improvements just in position graphics (Figure 5.25) where all
points are close each other and to the real positions. There are no outliers and

74 CHAPTER 5. RESULTS

the averages are lower: 1.74 mm and 2.56 mm. Variance decreases only for the
second point to 2.58 mm2 while for the first it remains stable around 1.6 mm2.

Observing displacements size (Figure 5.26) the improvement is immediately
clear: all the errors around zero values are deeply reduced or disappeared. This
is remarked also by the data that show differences of about 1 or 2 mm in only
one case: the others are all lower than 0.3 mm. In detail we find errors:

• in position 1 about 1.4 mm on x, 0.23 mm on y and 0.03 mm on z;

• in position 2 about 0.3 mm on x, 0.02 mm on y and 0.18 mm on z;

• in position 3 about 2.08 mm on x, 0.14 mm on y and 0.21 mm on z.

The presented results underline that the system registers with great precision
the position changes and can measure well relative distances between objects in
the scene. About the estimation of absolute subject place they do not add any
information to our previous knowledge.

Bin picking precision
The last test is about bin picking. To simulate this task, we place randomly

three coat racks of the same type on a table. Computing the two marked points
position in the recognized targets we can compare these poses with the ones
measured by Baces and find the error value. We perform the recognition using
the model acquired in the first of these three tests: in this way we evaluate our
algorithm giving as input a subject acquired in a different moment. Another
complication in addition is the use of a scene composed by more than one tar-
get randomly positioned (it includes also orientation changes). Together these
difficulties reduce the gap with real applications.

We repeat this procedure with two different object dispositions and for every
configuration we acquire 7 scans.

Figures 5.27, 5.29, 5.28 and 5.30 represent results obtained in this test and are
organized as follow: the first two show grip points computed and real positions,
the last two evaluate identified object orientations compared with the real ones.
Graphs are two for each measurement type because we evaluate two different
targets dispositions.

Starting by the position analysis we can confirm what we have just explained
in the other tests: to be more clear we report two tables that list single and total
averages and variances (Tables 5.9 and 5.10). We note that grip point 1 position
is always more precise than grip point 2 that also registered a greater variance.
The total statistics are in perfect agreement with data shown in Subsection 5.5.

5.5. MEASURES OF PRECISION 75

Grip point 1

mm object 1 object 2 object 3

scene 1 1.97 1.91 2.77
scene 2 1.97 2.5 1.59

total 2.02

Grip point 2

mm object 1 object 2 object 3

scene 1 3.1 3.29 4.29
scene 2 3.2 4.13 2.7

total 3.16

Table 5.9: Averages of position error

Grip point 1

mm2 object 1 object 2 object 3

scene 1 0.96 1.42 1.63
scene 2 1.71 1.1 0.83

total 1.37

Grip point 2

mm2 object 1 object 2 object 3

scene 1 4.78 1.422.83 5.57
scene 2 5.73 4.57 3.54

total 4.22

Table 5.10: Variances of position error

Analysing the orientations we have some good estimations accompanied by
others less accurate. In Figure 5.28 that describes first disposition, we find two
objects that are well recognized also in their directions: the blue real measure
is perfectly contained in a group of very close computed orientations except for
an outlier; the green one is the same but with a set of outliers with a bigger
cardinality. Red measurements are not as good as the other because the real
value is not in the middle of a group of samples: it seems to be an outlier. Similar
considerations can be done for the second dispositions: green elements in Figure
5.30 are close to real value; in red region Baces measurement is an inlier of the
group but there are not so many neighbours; the blue case is the same of the red
elements in the first disposition.

All these qualitative observations are in agreement with extracted statistics.
In the first disposition the worst orientation computation is of object 1 (colour
red in the image) with an average error of 4.8 ◦. The best is object 2 (blue)
with an average error of 2.7 ◦ and the last is object 3 (green) with 4 ◦. In the
second displacement the precision is higher but there is not so much difference
concerning general behaviour. The worst case is object 2 with an average error
of 4.8 ◦; the best is object 3 with 1.5 ◦; in the middle there is object 1 with 3.4 ◦.

The average of all errors is 3.54 ◦.

76 CHAPTER 5. RESULTS

Figure 5.27: Positions computed in disposition 0

Figure 5.28: Orientations computed in disposition 0

5.5. MEASURES OF PRECISION 77

Figure 5.29: Positions computed in disposition 1

Figure 5.30: Orientations computed in disposition 1

Chapter 6

Conclusions

With this work we introduce a new approach for 3D object recognition. Its
peculiarity is that we use as input an object point cloud as model and not its
CAD model. This includes noise management and less precise information: for
this reason the presented method needs of several steps that must be executed on
cascade. Starting with box floor removal, we analyse the scene to find objects
number, then we cluster the scene to obtain a point cloud for each of them.
Further steps are executed for every cluster and consist in selection of points that
represent normals gradient peaks or edges, lines and circles fitting among them
and their reduction to the centre and finally the description of these last features.
The recognition ends with feature matching and the choice of the best computed
transformation to overlap model on the target.

We use two 3D cameras to acquire scans, both based on structured light:
Phoxi Photoneo and Microsoft Kinect v1. Thanks to the presence of a projector
and a camera that recognizes the pattern emitted, this technology allows its use
also in dark environments and it is not sensible to brightness changes.

Using only shape information we realize a system that can work in different
contexts. Its results quality does not depend on several changes such as light or
colour intensity and object texture.

Our tests show that this approach is very versatile since we recognized sev-
eral objects with different characteristics. We make trials with square supports,
ornaments shaped like robot and rabbit, jar, cups, pump components, pears and
coat racks: they have different dimensions and shapes, some more complex than
the others. Cups were of two not equal types and they were acquired with a lot
of undercuts that played the role of clutters. Pump components are symmetrical
adding difficulties to the orientation estimation. Pears are natural products and
their model does not exist: every sample has dissimilarities respect the others.
Coat racks have different colours and are smaller that the other objects.

We perform our tests in several contexts: some are executed in ideal environ-

79

80 CHAPTER 6. CONCLUSIONS

ment to check correctness of only specific algorithm parts, some other in lab and
one represents a real industrial problem. The results prove insensibility to partial
clutters and small objects deformations in addition of object type, dimension and
texture. The symmetries generate little inaccuracies in orientation estimation but
they are overtaken with successively scan and execution repetitions.

Precision measurements reveal that our system can reach an error in position
estimation of 1.23 mm but the average is around 2 mm. Concerning orientation
the average error is around 3,5 ◦ with a best case of 2,2 ◦. These results describe
correct recognition but not so precise to manage very small objects or to work in
particular contexts that require high accuracy. This does not allow its application
to solve all industrial problems. Despite this inaccuracy in absolute positions
estimation, we find great precision computing displacements entity. Our tests
measure errors lower than 0.5 mm.

Future improvements will be focused on execution time and precision.
We could increase speed adding parallel code in Cuda exploiting that in the

algorithm there are few specific operations that are run for each point of the scan.
A procedure designed like this is suited to parallelization. Also clustering could
be improved in execution time: instead of use Farthest First Traversal to find
starting sequence of centres we could design an opportune distribution function
to bring points scanning the data structure only once, inspiring by K-means++.
This would be more efficient also in presence of many elements to cluster.

The introduction of an alignment algorithm, like Iterative Closest Point or
others, could improve precision and reach higher level of accuracy also with
symmetric and small objects. The procedure choice will be done considering
trade-off between performance in execution time and results quality. We could
also exploit the search of 3D mathematical models in second level keypoint ex-
traction to describe better some particular object shapes. In addition introducing
cooperation between Normals gradient analyis and Neighbourhood analysis we
could acquire information in case of both too regular and complex objects.

Adding these advances we will expand the applicability of this project in
many other industrial contexts.

References

[1] S. Wold. Spline functions in data analysis. Technometrics, 16(1):1–11,
1974.

[2] D. Terzopoulos and D. Metaxas. Dynamic 3d models with local and global
deformations: deformable superquadrics. pages 606–615, Dec 1990.

[3] Wikipedia. Superquadrics — wikipedia, the free encyclopedia,
2017. https://en.wikipedia.org/w/index.php?title=
Superquadrics&oldid=770878683; [Online; accessed 26-August-
2017].

[4] C. M. Cyr and B. B. Kimia. 3d object recognition using shape similiarity-
based aspect graph. 1:254–261 vol.1, 2001.

[5] Y. Li, C. F. Chen, and P. K. Allen. Recognition of deformable object cate-
gory and pose. pages 5558–5564, May 2014.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, Sept
2010.

[7] M. Pedersoli, A. Vedaldi, J. Gonzàlez, and X. Roca. A coarse-to-
fine approach for fast deformable object detection. Pattern Recognition,
48(5):1844 – 1853, 2015.

[8] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T. Free-
man. SIFT Flow: Dense Correspondence across Different Scenes, pages
28–42. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[9] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspondence across
scenes and its applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(5):978–994, May 2011.

81

https://en.wikipedia.org/w/index.php?title=Superquadrics&oldid=770878683
https://en.wikipedia.org/w/index.php?title=Superquadrics&oldid=770878683

82 REFERENCES

[10] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov 2004.

[11] H. Tehrani Niknejad, A. Takeuchi, S. Mita, and D. McAllester. On-road
multivehicle tracking using deformable object model and particle filter with
improved likelihood estimation. IEEE Transactions on Intelligent Trans-
portation Systems, 13(2):748–758, June 2012.

[12] B. Kim, S. Xu, and S. Savarese. Accurate localization of 3d objects from
rgb-d data using segmentation hypotheses. June 2013.

[13] A. K. Jain, Yu Zhong, and S. Lakshmanan. Object matching using de-
formable templates. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(3):267–278, Mar 1996.

[14] A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition
using low distortion correspondences. 1:26–33 vol. 1, 2005.

[15] S. Belongie, J. Malik, and J. Puzicha. Matching shapes. 1:454–461 vol.1,
2001.

[16] A. C. Berg and J. Malik. Geometric blur for template matching. 1:I–607–
I–614 vol.1, 2001.

[17] M. Cho, Jungmin Lee, and K. M. Lee. Feature correspondence and de-
formable object matching via agglomerative correspondence clustering.
pages 1280–1287, Sept 2009.

[18] Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Simultaneous Ob-
ject Recognition and Segmentation by Image Exploration, pages 40–54.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[19] J. Kannala, E. Rahtu, S. S. Brandt, and J. Heikkila. Object recognition and
segmentation by non-rigid quasi-dense matching. pages 1–8, June 2008.

[20] Minsu Cho, Young Min Shin, and Kyoung Mu Lee. Co-recognition of
Image Pairs by Data-Driven Monte Carlo Image Exploration, pages 144–
157. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[21] J Matas, O Chum, M Urban, and T Pajdla. Robust wide-baseline stereo
from maximally stable extremal regions. Image and Vision Computing,
22(10):761 – 767, 2004. British Machine Vision Computing 2002.

[22] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant inter-
est point detectors. International Journal of Computer Vision, 60(1):63–86,
Oct 2004.

REFERENCES 83

[23] Jon Louis Bentley. Multidimensional binary search trees used for associa-
tive searching. Commun. ACM, 18(9):509–517, September 1975.

[24] A. Nuchter, K. Lingemann, and J. Hertzberg. Cached k-d tree search for
icp algorithms. pages 419–426, Aug 2007.

[25] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Commun. ACM, 24(6):381–395, June 1981.

[26] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Classification: ba-
sic concepts, decision trees, and model evaluation. Introduction to data
mining, 1:487–568, 2006.

[27] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, March 1982.

[28] D. Arthur and S. Vassilvitskii. K-means++: the advantages of careful seed-
ing. Proc. of ACM-SIAM SODA, pages 1027–1035, 2007.

[29] Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and
Sergei Vassilvitskii. Scalable k-means++. Proc. VLDB Endow., 5(7):622–
633, March 2012.

[30] Wikipedia. Rotation matrix — wikipedia, the free encyclopedia,
2017. "https://en.wikipedia.org/w/index.php?title=
Rotation_matrix&oldid=794324319"; [Online; accessed 24-
August-2017].

[31] Pcl home page, August 2017. http://pointclouds.org/.

[32] P.H.S. Torr and A. Zisserman. Mlesac: A new robust estimator with appli-
cation to estimating image geometry. Computer Vision and Image Under-
standing, 78(1):138 – 156, 2000.

[33] O. Chum and J. Matas. Matching with prosac - progressive sample consen-
sus. 1:220–226 vol. 1, June 2005.

[34] Zhengyou Zhang, Rachid Deriche, Olivier Faugeras, and Quang-Tuan Lu-
ong. A robust technique for matching two uncalibrated images through
the recovery of the unknown epipolar geometry. Artificial Intelligence,
78(1):87 – 119, 1995. Special Volume on Computer Vision.

[35] Tinne Tuytelaars and Luc Van Gool. Wide baseline stereo matching based
on local, affinely invariant regions.

"https://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=794324319"
"https://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=794324319"
http://pointclouds.org/

84 REFERENCES

[36] Photoneo. Photoneo focused on 3d. http://www.photoneo.com/;
[Online; accessed 25-August-2017].

[37] Wikipedia. Kinect — wikipedia, the free encyclopedia. https:
//en.wikipedia.org/w/index.php?title=Kinect&
oldid=788947752; [Online; accessed 25-August-2017].

[38] Wikipedia. Structured-light 3d scanner — wikipedia, the free ency-
clopedia, 2017. https://en.wikipedia.org/w/index.php?
title=Structured-light_3D_scanner&oldid=800713424;
[Online; accessed 20-September-2017].

[39] Photoneo. Phoxi 3d scanner technology overview. http://
www.photoneo.com/phoxi-3d-scanner/; [Online; accessed 25-
August-2017].

[40] Photoneo. 3d scanning knowledge base photoneo wiki. http://wiki.
photoneo.com; [Online; accessed 25-August-2017].

[41] C. Andujar. Kinect. Universitat Politecnica de Catalunya, Barcelona Tech;
http://www.cs.upc.edu/˜virtual/RVA/CourseSlides/
Kinect.pdf; [Online; accessed 25-August-2017].

[42] Microsoft. Kinect fusion, 2017. https://msdn.microsoft.
com/en-us/library/dn188670.aspx; [Online; accessed 17-
September-2017].

[43] Kreon. Baces measuring arm, 2017. https://
kreon3d.com/scanning-arms-portable-cmm/
baces-measuring-arm-portable-cmm/; [Online; accessed
14-September-2017].

http://www.photoneo.com/
https://en.wikipedia.org/w/index.php?title=Kinect&oldid=788947752
https://en.wikipedia.org/w/index.php?title=Kinect&oldid=788947752
https://en.wikipedia.org/w/index.php?title=Kinect&oldid=788947752
https://en.wikipedia.org/w/index.php?title=Structured-light_3D_scanner&oldid=800713424
https://en.wikipedia.org/w/index.php?title=Structured-light_3D_scanner&oldid=800713424
http://www.photoneo.com/phoxi-3d-scanner/
http://www.photoneo.com/phoxi-3d-scanner/
http://wiki.photoneo.com
http://wiki.photoneo.com
http://www.cs.upc.edu/~virtual/RVA/CourseSlides/Kinect.pdf
http://www.cs.upc.edu/~virtual/RVA/CourseSlides/Kinect.pdf
https://msdn.microsoft.com/en-us/library/dn188670.aspx
https://msdn.microsoft.com/en-us/library/dn188670.aspx
https://kreon3d.com/scanning-arms-portable-cmm/baces-measuring-arm-portable-cmm/
https://kreon3d.com/scanning-arms-portable-cmm/baces-measuring-arm-portable-cmm/
https://kreon3d.com/scanning-arms-portable-cmm/baces-measuring-arm-portable-cmm/

	Contents
	List of Figures
	List of Tables
	Introduction
	Analysis of task issues

	State of art solutions
	Mathematical model creation
	Aspects graphs
	Machine learning
	Feature matching

	Description of 3D object recognition system
	Keypoint extraction
	First level keypoints
	Second level keypoints

	Feature description
	Lines description
	Circle description

	Scan preprocessing
	Farthest first traversal
	K-means
	K-median
	Comparison of clustering algorithms and final implementation
	Algorithm to find object count

	Feature matching
	Rotation matrix computation

	The algorithm execution flow

	Implementing details and tools used
	Point Cloud Library
	MLESAC
	PROSAC

	3D Cameras
	Photoneo
	Microsoft Kinect v1

	Kreon Baces arm

	Results
	Test in ideal environment
	Recognition with clean data
	System behaviour in presence of noise in target point cloud

	Recognition of the model in multiple object types scene
	Tests on real objects recognition
	Cup recognition
	Pump component recognition

	Tests with Microsoft Kinect v1
	Measures of precision
	Position and orientation precision
	Tolerance to displacements
	Bin picking precision

	Conclusions
	References

