UNIVERSITA DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics

Final Dissertation

The formal loop space approach to classical and

quantum Hamiltonian systems

Thesis supervisor Candidate

Prof. Paolo Rossi William Guidetti

Academic Year 2022/2023






Abstract

In this thesis we focus on the study of the formal loop space and its applications to
classical and quantum Hamiltonian systems. In particular in the first part of this work
we generalize the basic tools of finite dimensional differential geometry to the formal
loop space defining in this environment the notions of function, Poisson bracket between
functions, coordinate transformation, multivector and Poisson cohomology. The Second
part is spent on the exposition and the proof of two fundamental theorems on Poisson
geometry of the formal loop space: the Dubrovin and Getzler Theorems. These results
allow to simplify the form of Poisson brackets of a particular type (called hydrodynamic)
by means of an appro- priate change of coordinates on the formal loop space. In particular
the Getzler theorem can be viewed as a generalization of the Weinstein theorem in finite
dimensional Poisson geometry.
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Introduction

In this thesis we will discuss the goemetry of a particular infinite dimensional manifold,
the loop space. This object can be constructed considering all the loops on a given finite
dimensional manifold M, i.e. the maps of the type u : S; — M (one can choose a degree
of regularity for loops). We will not discuss structural aspects of the loop space (as the
topology) but we are interested in a algebraic formal treatment in order to describe a
Poisson structure on it. In this work the manifold will consists in a finite dimensional
vector space. In the first chapter there will be a simple recap of the finite dimensional
Poisson geometry. The second chapter will be dedicated to the introduction of the basic
notions characterazing the formal loop space. The basic object is the following ring of
polynomials: R
A = Cl[u*]][uzso][[€]],

where uj_ , denotes formally the k-derivative of the loop map. Given this ring, called the
differential polynomials ring, one can define the notion of function (called local functional)
on the formal loop space. The space of local functionals will be denoted with K, while its
elements will be suggestively denoted as

[ s,

and the reason of this notation will be clarified in details. After giving the concept of
function, we will be ready to define the Poisson bracket structure on the formal loop
space: as in the finite dimensional case this will be a map from A x A to A and it will be
given by the following formula:

of dg ~
igy = | dp—KM — A
{f;9} / e KM fgeh,
where 5%# is the so called variational derivative and

K™ =YKoy
n>0

is called Hamiltonian operator (the K" coefficients are differential polynomials). We will
impose a fixed degree for the K}" coefficients and the Hamiltonian operators satisfying
this degree constraint are called of Hydrodynamic type. In particular the ¢ — 0 limit of
an Hamiltonian operator of hydrodynamic type is simply given by the following relation:
K" =" (u")0p + b)Y (u")u,
where V5" (u*) = —gt°T%,. The notation for the two coefficients reminds the one used
for a metric tensor and an affine connection. This is not accidental as we will see. An-
other important concept in the study of differential geometry is the change of coordinates
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transformation: we will be able to extend this notion also to the formal loop space. The €
parameter is introduced to allow the correct definition of this type of transformation. The
group of change of coordinates transformations is called Miura group. The last part of
the second chapter will be dedicated to extend the notions of k-form and k-multivector to
the formal loop space. The last chapter is the main chapter. Indeed the last part of this
work will be dedicated to the detailed discussion of two important theorems regarding the
structure of Hamiltonian operators of hydrodynamic type. Let us start from the first one.
This result is known as Dubrovin-Novikov theorem ([6]) and, in a certain sense, allows us
to associate some finite dimensional differential objects to the Hamiltonian operators of
hydrodynamic type. In particular we will consider the e = 0 limit of Hamiltonian operators
of hydrodynamic type written above. First of all we will show that g#” and I'y” transform
respectively as a (2,0) tensor and an affine connection (as we have said before the notation
was not accidental). After that, we will be ready to prove the theorem. The theorem
states that an hydrodynamic type Poisson bracket (with the Hamiltonian operator in the
e = 0 limit and g"” non degenerate) satisfies the antisymmetry and the Jacobi conditions
if and only if

o g = g"F ie. g, is a metric on the target space V.

e I'),, are the Christoffel symbols corresponding to the Levi-Civita connection of the
metric g,

e The curvature tensor associated to I'},, vanishes.

Therefore an Hamiltonian operator of hydrodynamic type associated to a Poisson bracket
satisfying the antisymmetry and Jacobi conditions can be transformed (using the flat
coordinates) in such a way that the zero order of its e expansion is of the form

" Ox,

where n*" is a non degenerate constant symmetric matrix. We will also comment another
similar result, known as Gringberg conditions ([9]), regarding the case in which ¢g"” can
be degenerate. The second theorem, known as Getzler theorem ([8]), can be viewed as a
generalization of a famous result of the finite dimensional Poisson geometry, the Weinstein
theorem. It states that there exists a Miura transformation bringing any Hamiltonian
operator of hydrodynamic type to the canonical form

KM =" 0y,

where n*¥ is a non degenerate constant symmetric matrix. We will prove it in all the
details. Therefore the Dubrovin-Novikov theorem allows us to transform the zero order
of the e expansion of an hydrodynamic type Hamiltonian operator in the canonical form
written above, while the Getzler theorem allows us to get rid of all the other orders of the
expansion. We will prove this result in all the details. At the end of this work we will
have proved two powerful tools for the study of this formal envoriment. In the conclusion
we will comment some application of this formalism.



Chapter 1

Summary of finite-dimensional
Poisson geometry

In this first section we give a brief recap of the Poisson manifold in the finite dimension
case.

Definition. A Poisson algebra (P,{-,-}) is a commutative associative algebra P with a
Lie nracket {-,-} satisfying the Leibniz rule:

{f.gh} ={f,gth +g{f, b} (1.0.1)
for any f,g,h € P.

Definition. A Poisson Manifold (M,{-,-}) is a smooth manifold with a structure of
Poisson algebra {-,-} on the commutative associative algebra C*°(M).

It can be proven (due to the Leibniz rule) that for any Poisson bracket it exists a unique
tensor field IT : TM ATM such that {f, g} = II(df,dg) for any f,g € P. In a local system
of coordinates z!, ...., 2™ the Poisson bracket can be written in the following way:

9 b g o . Of dg
I(z) =1IY(2) — — < IIY(2) = {2, 2’ =1IIY - 1.0.2
() =T (@) 5o T ) = o' T} ) & (. 0Hw) = M (@)% 0% (102)
where the derivates are calculated in x and the Jacobi identity reads
o1 210 CLIG) | L
e+ —— 1" 4 11" =0 1.0.3
Ok + Ok + Ok ( )

Definition. A Casimir function on a Poisson manifold (M,{,}) is a function f €
C>*(M) satisfying {f,g9} =0 for any g € C*(M).

Now we present a theorem that it’s important in the study of the Poisson geometry.

Theorem (Weinstein). Let (M,I1) a Poisson manifold and p € M. There exists a chart
(U, ooy 2™ (1 ey Gy Yy o, y%) with p € U such that

0 o 1, 0 0
=— AN+ -c" -\ — 1.0.4
m(@) = 5 A e+ 555 A g (10.4)
with ¢ (p) = 0. Moreover if II has constant rank 2n and corank k we can choose a

Weinstein chart on M (U, z', ..., 2™ (1, ooy Coy s ooy yF) such that ¢9 = 0 for any element
of U.



Another important tool in the study of the Poisson manifold is the Schouten-Nijenhuis
bracket.

Definition. Let A* := I'(AFT'M) be the space of multivectors. The Schouten-Nijenhuis
bracket is the unique bilinear pairing

[ ] s A" x A™ — ATl (1.0.5)
that satisfies the following properties:
o [f,g]=0 VfgeC™.

o The restriction of [-,-] on A' x A' coincides with the Lie bracket of vector fields (the
SN bracket is an extention of the Lie bracket of vector fields to A™ x A™).

o [B,A]=(—-1)""[A,B] with A€ A", BecA™ (graded antisymmetry condition).

¢ [A,BAC] = [A,BJAC + (-1)™™tVUB A [A,C] with A€ A", B € A™ (graded
Leibniz rule).

Remark. One can show that I1 antysimmetric is Poisson if and only if [ILII] = 0 and
that the following relation holds (called graded Jacobi identity):

(=1)*™[[A, B], Cl+(=D)!™[[C, A], Bl+(-1)*[[B,C],A] =0 with Aec A¥ BeAl,CeA™.
(1.0.6)

This definitions allow us to define the Poisson cohomology. Indeed one can be prove
the following result:

Theorem. Let 11 € A2. Then
[IL [, A]] =0 VA e A" (1.0.7)

So if we consider the following sequence

oy AneL Ay pn A gl (1.0.8)
with dip = [II,-], we obtain a cochain complex and it’s natural to define the Poisson

cohomology as
_ Ker(dp : A — A"t

HpE = . 1.0.
T Im(dy : Av—1 — AP) (1.09)
Remark.
HY = Cas(M) (1.0.10)
and A c A2 A
H2 {AcA’] [LA]=0} (1.0.11)

- {Ae A A=LxIT for some X €A}
As last step of this chapter we recall the flat coordinates theorem, useful in the following;:

Theorem. Let M be a manifold (of dimension n) and V a connection on TM. Then a
local system of coordinates (yi,....,yn) such that V%% =0 Va,B =1,....n exists if
Ay

and only if the curvature tensor R and the torsion tensor T vanish.
As a consequence of this theorem, we have the following corollary:
Corollary. Let M be a (pseudo-)Riemannian manifold . If the tensors T and R wvanish,

there exists a system of coordinates in which the metric tensor g,, is constant.
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Chapter 2

Formal loop space

The loop space is the set of functions u : S' — V where V is a N-dimensional vector space
with a basis e1, ..., en and x is the coordinate on S', so that u® = u®(z) is the component
along e,, of such loop. One can describe this kind of space intruducing some structures on
it. For example one can try to define a topology on it. However we are not interested in
this kind of problems but instead in a formal algebraic treatment. So in the following we
introduce the objects that it allows us to carry on this kind of anlysis. In this chapter the
reference works are [12] and [7].

2.1 Differential polynomials and local functional

Definition. Let K be a commutative ring. A formal power series is a sequence {an fnen C
K which we write as a =Y ,° ja,u”. We denote the set of formal series as K[[u]] and it
inherits the structure of a ring from K.

The constituent elements of the formal loop space are the so called differential polyno-
mials.

Definition. The ring of differential polynomials is

~

A = Cllu"J[ug>ol[[€]], (2.1.1)

i.e the set of formal series with respect to the € parameter where the commutative ring is
the polynomials ring in uy, with coefficients consisting in formal series in u* (with C as
commutative ring).

We will denote in some circumstances u; with w 2., . The role of the ¢ parameter will
N
k—times

be clarified below. We endow A with the grading

deg(e) = -1 and deg(upsg) =k, (2.1.2)

and we denote by Al the set of homogeneous differential polynomials of degree d. An
essential object in the study of the formal loop space is the natural extention to A of the
x-derivative, i.e. the operator 0, : A — A defined as

o O
ax ::Zuk_i_lw, (213)
k>0 k
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where we adopt the Einstein convention for the Greek indeces. This operator has some
important properties that we could use in the following: it satisfies the Leibniz rule for
the product of two elements of A and therefore

n

ag(f-g):Z@)a’;f-ag—kg with  f,g € A. (2.1.4)

k=0

Lemma. It holds the following identity in A:

0 0 , o _

Proof.

n n

0 0 o) o [of
2 0)re ] s [
[(911% } / T;) oug! [ ntl 9,8 = " ous | oug

2.1.
5 O o= )
n>0 auﬁ ’ aug—l
O
As a consequence of this result we have the following corollary.
Corollary (Exchange property). For any f,g € A we have:
> 8(8‘9””5)6@ = 0, (;9";(939 (2.1.7)
n>0 Un n>0 Un
Proof.
> 20 lory =50, (k) ora+ X 5ol —ona -
nso YUn n>0 Un n>1 U1
_ 6f 1 f n+1
=> 0, ((%%) %9+ 5 %aw =
n>0 n>0
(2.1.8)
= Ox <8j(; 29) =
n>0 n
) ( O g,
uOé
n>0 n
O

Now we can define the set whose elements can be interpreted as functionals defined through
Sti-integration over A :

Definition. The space L
A = A/(imd, @ Cl[e]]). (2.1.9)

1s called space of local functional and its elemnts are called local functionals.

12



Al will denote the d degree part of A. We can interpret the map []:f¢€ A— [f] € A
as a formal integral functional defined over A because it’s the simplest map satisfying the
most basic property of the integral defined on a space of loops, i.e. the linearity and the

~

fact that [0A] = 0 (le. [(9zf)dx = 0) (see [5]). According to this intepretation, the
equivalence class of f(uf,€) € A will be denoted as f = [ f(uf,e)dz. As a consequence
of this definition, we have that | f'gdx = — [ fg'dx since 0,(f)g + 0x(g)f = 0=(fg). We
will call this property integration by parts. As last step we introduce the concept of

change of coordinates in the formal loop space.

Definition. A change of coordinates transformation is a differential polynomials of
the form

~ ok

@ = a*(u*,e) € A with det (8%1\5*0) . (2.1.10)
Now it’s clear why we have introduced the parameter e: its importance lies in the fact
that it allows us to invert the change of coordinates transformation solving the ODE
u® = u*(u}, €) order by order in e through the formal Frobenius method. What we obtain
is the differential polynomial u® = u®(a}, €). So, introducing the ¢ parameter, we are able
to invert every change of coordinates transformation defined above and then the set of this
transformation is a group that we denote with M. This group is called Miura group.
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2.2 Poisson bracket

In this section we want to introduce a Poisson structure on the space of local functional A.
In order to do that we have to define a new object, the so called variational derivative.

Definition. The variational derivative is the operator 5%& A A defined as

— = (-0 8uk . (2.2.1)

k>0

Proposition. 2;(Imd, & C) =0 for any a =1,...., N.

Proof.
1) B & 0
(S’Ltia ax—kzm( ax) Oaugoax—
- Z(_ax)k o|0zo0 i + 0 =
= oug ~ Ouj_,

k20 5 (2.2.2)
= Z(_aac + Z k+1 o aa

k>1 auk L k>0 Ou;

0 0
k+1 o _ k+1 Y

— Z g Z( Or) o Juz 0

k>0 k>0

]

This result is important because it says us that 5—& is well defined also on A. Therefore

5ua : A — A. Another important property for the following parts is the Leibniz rule for
the variational derivative (see [2]).

Proposition (Leibniz rule). For any f,g € A we have

5ua ZTakf g+z ) f - Takg, (2.2.3)
k>0 k>0
where 5
n .
Tok :—Z<k>(—8m) koaTg' (2.2.4)
n>k
Proof.
0 _ w( Of Jg _
M(f'g)_g(_ax) <awg 'g+f'8wg> -
_ nn_nfkﬁ'_k nn_nfkﬂ‘_k_
_sz(al’) 3a(8ﬂf)g+zzk(aﬂﬁ) aa(ax)f—
n>0 k=0 Wn n>0 k=0 Wn
= Tarf - (=0:) g+ (=02)" f - Tag,
k>0 k>0

(2.2.5)
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since

Zzn: <Z> =23 (Z) (2.2.6)

n>0 k=0 k>0n>k
O
Remark. 5
Tao=—. 2.2.7
0= 54 (2.2.7)
Lemma.
(-Toz,k 00, = a,k—1 Vk € N, (228)
where T p—1 = Tap00; =0 .
Proof. If k> 1
n e 0
Ta,koa = <k‘>( az) koauraloaa:—
n>k
_ ny n—k+1 i ny. n—k 0 _
-2 () oo+ Z (1) oo
n>k n>k n
-y (<n+1> B <n)) (—a, )k Oia_‘_ % _
= k k ugy — duy_, (2.2.9)
n n—k+1 9 9
- (—0,) _ =
_ n g yn—k+1 0
B Z <k:—1)( Os) ou®
n>k—1
= Ja,k—1
Ifk=0
8
_ _ n+1 _
To1=Top 00y = Z (—8,) aua + Z = 0. (2.2.10)
n>0 n>1 Un
O
Now we'’re ready to define the Poisson structure on A.
Definition. The Poisson bracket on the space of local functional A is defined as
{,}K[A\X]\\%Z\\
_ —~ _ 6f i o~ (2.2.11)
7] (g g = K’“’ A
f,9e A= {f;g}k / T (W €
where
K = "KWol with K e AF7H (2.2.12)

J=0
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The differential operator K is called Hamiltonian operator. We will see in the following
sections that imposing a fixed degree for the K" coefficients allows us to avoid convergence
problems. We can lift the bracket {-;-}x to a new map defined in the following way:

{-;-}: ﬁx?\—)ﬁ
Jedgeho (g =320 < 59>€A (2.2.13)

= oult ouv

compatible with {-; -}k since [{f;g}dz = {f;g}K (where f = [dxf). Indeed
/{f grde = /dx <K“”;5V> =
v 67
/dazz <8us> G &fy - (2.2.14)
s>0
— [dnghrm 28— Figh.

(5u“ 5u”

where we’ve integrated by part iteratively and we’ve used the fact that the variational
derivative is well defined on A. The operator in A

{59} (2.2.15)
defined Vg € K, will be indicated as Dj-.

Remark. It’s obvious from the definition given above that
/degf ={f;g}x with f cA and f= /d;rf. (2.2.16)

Therefore one can define Dgf := [dxDyf.
The fact the we’ve chosen the K ]“ v ¢ A1 implies that
K™ e—o = g (u)0y + O (u)uy, (2.2.17)

as simple consenquence of the degree counting. We will always assume that " is non-
degenerate. This kind of Poisson brackets are called brackets of hydrodynamic type.
We will see in the next chapter that requiring the antisymmetry condition and the Jacobi
identity for the Poisson bracket imposes some interesting conditions on g"”(u) and b5” (u).
This result is known as Dubrovin-Novikov theorem. Let us report an useful lemma
for the next discussion.

Lemma. For a Poisson bracket on the formal loop space {-; -}k, the Jacobi condition is
equivalent to

[Dg; D) f = Dy | (2.2.18)
where [Dg; Dy] - = Dg (Dy-) — Dy (Dg-).

Proof.

0 =Dy (Dyf) — Dy (Dgf) = Diggyp f =
={fiMx; 9k — {0} hy —{Fi {h; g} Y i = (2.2.19)
={iM}k: 3tk + {{g: Y W + {{h: 9}k i
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Now we will define how an Hamiltonian operator transforms under a Miura transformation:
if K* is the Hamiltonian operator associated to a certain Poisson bracket, its Miura
transformation under @ € M is

K = (L")t o K*P o LY, (2.2.20)
where 54 -
u” U

L5 =) (=0,)°0— and (L*)" = s 2.2.21

5 ;a)oaug and (L")} gau?a (2221)

As last step of the section concerning the Poisson brackets we will prove some important
theorems regarding the connection between local functional and differential polynomials
(see |11]). The first one is the following:

Theorem (First variational principle). Let f € C[[u*]][u}]| be a differential polynomials.

If

[dzsa=0 v € Cliuuiol (2.2.22)
then f = 0.
Proof. Since f € Cl[u*]][uj-], it has the structure f = f(u*,uj,....,uy,), where n is the

highest value reached by k in f. Choosing g = 1, we have that

/dacf = 0= f=0,h, (2.2.23)

for some h € C[[u*]][uj-,]. This implies that f depends on wu,, linearly. Indeed if f will
depend on (u})! with [ > 1, h would depend on (u})!*! and therefore f should depend on
uy,1- But n is the highest value reached by k in f. So u;, can appear in f only linearly.
Moreover f (if it isn’t vanishing) has to depend at least on uj since it’s the image of the
0, operator. So let us assume that f is non vanishing (n > 1). Now, choosing g = f, we
obtain

/dfo =0= %(ﬂ) =0 Vac{l,..,N}, (2.2.24)

since the image of the 9, operator is contained in the nucleous of the variational deriva-
tive. Defining f&”) = (u*,uj,....,ur) the coefficient of u

& we have (due to the linear
dependence of f on ug)

0= 0 (L) = ot 2 e2s)

dug, \ du® Jus? a7 o
So fé") =0 Va € {l,..,N}. But this is a contradiction since we are assuming non
trivial dependence of f on ug,. Therefore f = 0. O

We can generalize this theorem to A.

Theorem. Let f € A be a differential polynomials. If
/dacfg =0 VgedA, (2.2.26)
then f = 0.
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Proof. Since f € fl, it has the following structure:

F=Y " fue® with  fi € Cllu]][ufsol. (2.2.27)
k>0

Therefore, restricting the choice of g to € C[[u*]][u}. ], from the hypothesis condition we
get:

fg=0shy with A3hy=>> he® (b € Cllu|[ufso]) =
k>0

=Y (fug) € =D (0chi) € = frg = by VE €N,
k>0 k>

(2.2.28)

Now we can apply the previous theorem to fi obtaining that fr = 0 k& € N. Therefore
f=0. O

The second theorem is very important for the following parts: we will use it in the proof
of the Dubrovin-Novikov theorem. We call it second variational principle.

Theorem (Second variational principle). Let X* € C[[u*]|[uj- ] with Vu € {1,....,N}. If
for any f € Cllu*]][uj-,] we have

of
p _
/d:zX S =0, (2.2.29)

then X* = cu’f with ¢ € C.

Proof. Let us denote Z,(f) = 5%” <X”i). In our hypothesis Z,(f) = 0 for any v €

dut
{1,...,N} and f € C[[u*]][uj-,]. Calling P the highest value reached by the derivative
loop index of X#, if it’s not vanishing, we know that X* depends linearly on u} since
[ dzX* =0 (choose f = ut) and that P > 1, as discussed in the previous proof. Therefore
X* has the following form:

XH=XE(u*, . up ) up + X8 (0. up_y). (2.2.30)

We are now ready to prove the statement. The relations that we will use in the following
part will be proven in the appendix. From now on the Einstein convention isn’t at work.
Let us suppose that X*# isn’t vanishing and that P = 2p is a even number. Then, choosing
f= #(uﬁ)% we get

Z
0 “y(f) = Xp 4+ XL =0. (2.2.31)
oul p
Therefore X} = 0 for all the values of the indices, in contradiction with our assumptions.
1
So let us consider P = 2p + 1 an odd number. Choosing f = (71%” (uZ_H)Q, we obtain
the following relations (they hold for P > 1):
0= 8ZN(f) — Xﬁ _ MY XH
Qusp :
0*Z oxXl
0= ui“(f) = (1 + 26" —E- (2.2.32)
OuypOup up_,
Z XK
0=" ",ff) =2 8M0 + 0. X/
Auyp up_,

18



The first relation of ([2.2.32)) implies that X} = 0 for any v # u, while the second one of
1)p+1

(2.2.32) says us that X/, doesn’t depend on u},_;. Moreover, choosing f = (= - (ug+1)3,
we get for P > 3

0Z,(f) _ <2 ox¥

oul, o + 0, X) up, — PXflup 5 =

(2.2.33)

= —PX!ul, , =0,

where we’ve used the third relation of found before. It follows that X/, = 0 for any
value of the indices, in contradiction with our assumption. Up to this pomt We Ve proved
that P ¢ N—{1}. Regarding the P = 1 case, firstly we can prove that 37 =1 CUY 5uu = Ozhy
for any c € C and f € Cl[u*]][u}~ ], with hy € C[[u*]][u},] (we will prove this fact in the
appendix). Therefore, for any f € C[[u*]][u}. ], we have

N 5f
= =0. 2.2.34
/da:#EZI cur s 0 (2.2.34)

So ZN L culf 5‘2; can be a possible form of X#. Now we will prove that this form is the
most general. According to the three relations found above (they are true for P > 1),

we know that the most general form could be X# = c#uf + X} (u*), with %ffﬁ =0 and
c# € C. Choosing [ = %(u“)Q, we obtain that

)
0=2,.(f)= Sut (Fuffut —G—X{fu“) =

oy (2.2.35)
= Muf — Oy (ctut) + 8u2 ut + X = X[
This means that X* = c#u¥. Finally, choosing f = f(u*), we have
N N
5 of >’f of
0=2, = Ho i~ H — "9, | == —
(/) ouv z_:lc "1 Gun Z_:lc < L our oum out
"= . (2.2.36)

N
0% f
- TR
;(c c)uf T

Since this relation holds for any f = f(u*) € C[[u*]][u},], we must have c# = ¢” for any
value of the indices. So we have proved that cu} with ¢ € C is the most general form for
X*#. This ends the proof. ]

Remark. This result holds almost in the same way in A. Indeed, writing explicitly X"
as series of powers of € with coefficients in C[[u*]|[uf o] and choosing f € C[[u*]][uj],

we obtain: 5
3 e /dqu of _ /dxX,’:(s‘]; 0 Vk>0. (2.2.37)
k>0

Finally, applying the previous theorem to X}, for any k >0, we get:

Xt = Z cpul'et = chek uf = c(e)uf. (2.2.38)
k>0 k>0

c(e)
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2.3 Hamiltonian integrable system

Definition. An Hamiltonian evulotionary PDEFE is a formal partial differential equa-
tions of the form

_ Sh -~
Ou® = {u*;h} = KO‘”(S—V with he A and a=1,..,N. (2.3.1)
U
h is called Hamiltonian of the system. The solution of this equations is a formal power
series of the form u®(z,t*,€) € Cl[x, t*, €]].
Given this notion, we can define the concept of integrable system on the formal loop space.

Definition. An integrable system, or an integrable hierarchy, is an infinite system
of Hamiltonian evulotionary PDFEs

(5715’,1

2.3.2
Suv’ (2:3.2)

where the generating Hamiltonians of the system Eg,d e A with B=1..,Nd>0
satisfy -
{haiihs;} =0 Va,B,ij. (2.3.3)

The solution of this system is a formal power series of the form u®(x,t%,€) € Cllz, tX, €].
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2.4 Forms on formal loop space

In this section we will introduce the notion of k-forms on the formal loop space. Let us
start by giving the definition. In first place we denote with du$ (o € {1,....., N},s > 0)
the generators of the forms space. The formal wedge product between the generators is
introduced imposing the standard exchange property, i.e.

Sugt A Augt = (1) N dugr (A L A gl (2.4.1)

51 S5(k)

with ¢ € P, and N, denoting the number of exchanges associated to o. Therefore a
k-form is defined as

W= — Z Wary 130055 0Usy A veee A OUGE, (2.4.2)

815000,8 >0

where wa, s;,.....an,s, € A are differential polynomials antisymmetric w.r.t the simoultane-
ous permutations
Qp, Sp < O, Sg- (2.4.3)

For the previous formula we require that only a finite number of coefficients are non
vanishing. The reason of this choice will be clarified later. We will indicate the space of
the k-forms with A and with F = @k>0 A the space of formal forms. It’s clear that

.Ao = A. The exterior product between forms is introduced tracing the finite dimensional
case: indeed, if w € Ak and ¢ € Al, then wA( € AkH and it is given by
1
(w/\C)alsl,----,ak+l5k+l = W Z (_1)N0w0¢a(1)50(1)?----?Oéa(k)sa(k)Caa(k+1)5a(k+1)%----%Oéa(kJrl)Sa(kH)‘
0E€EP,

(2.4.4)
This wedge product has the same property of the one defined in the finite dimensional
case. We can extend the action of 0, to F implementing the following rules:

Dpdu® = 6u’,

(2.4.5)
83;(0.)1 VAN CUQ) = Opw1 A wy + wy A Opws.
This allows us to define the space of /A\k as
Ay, = Ap/(imdy & C[[e]]). (2.4.6)

Also here Ao — A. Another ' important tool in the study of k-forms on the formal loop
space is the differential 0 : .Ak — -Ak+1 (VE > 0), defined in the same way of the finite
dimensional case, i.e.

1 Ow
dw=r Y| DTS | A UG A A Bug (2.4.7)

" 81,000,850 \ £>0 t
As in the finite dimensional case, the differential & satisfies the relation 6> = 0 in J.
Indeed, for any w € &F, we have

02
Fw= Y ———8uf NG ASuGE A A SuGE =
S1yeeesSkyt,p >0 au?aup
0? (2.4.8)
- — Z W(Walsl;.m;aksk)(sug VAN 5? N 5u(sl11 VANRTORIVAN 6“?: =
81500038k, p>0 7t P

= —5w.
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This implies that 62w = 0 for any w € F. Since
do0yw=0,00w YwedT, (2.4.9)

the differential is also well defined as operator ¢ : Kk — Kkﬂ (Vk > 0). This is explained
by the following lemma:

Lemma.

0:0,) =0 in . (2.4.10)

Proof.

1
00 dpw = 170 Z ax(wa131§--~~§ak3k)5u?1l A A 5“35 + Z walsl;““;akskam(éu?ll ARREA 5“35) -

k!
81500.-,8220 §15000,8 20

1 0 1 0
T Z duy (Oaaysis...sapsy) Ouf AGUGH Ao Adugh + 7 Z @ (Wars;.iapsi) -
81 4eey Sk, >0 81 4eey Sk, >0
SOu A Or(Gug! A ... A Sugl) =
1 0 1 0
=7 Z O (30‘ (Wa181;-~.~;ak5k)> dug A dug! Ao Adugl + %! Z e . (Wansise.sapsi) -
k! $14eeySpe,t>0 Uy 814085 0,61 U1
1 0
FOuf N GUGH A A BUGE — > S (@ansissogse) O A GUE A A SuGE+
: t

S14eee 55 20,820

1 8 o o (0%
+ il Z Ewa (Warstisapsy) Oz (Oug Adugh Ao A 6u$:) =

S14eee5Sk,t2>0 t

0 o o o 1 0
ol Z Oy (E)ua (walsl;----;aksk)> dug A dugl A ... A dugk + 0 Z S (Waysronasy) °

814eeeeySk,t2>0 t S14ee0ySE,t2>0 t
-0z (dug N dug! A ... A ugh) = 0y 0 dw
(2.4.11)

O
An useful theorem regarding the differential ¢ is the following one (we will not prove this
result):

Theorem. The differential 6 produces an exact sequence, i.e. dw = 0 for w € ﬁk iff
w=0w for aw € Ap_1 (fork>1).

Another important observation is that, for every [w] € Kk, there exists a representative of
the form

N 1
YT - >,

S1yeeeesS

Sk 7

Waysazsa;..saps, N OUST AGUGE A ... A dugk (2.4.12)
k

where Way;asss:....;00s, 15 Obtained moving away the derivatives from ug! = 956 (for any
s > 1) in w through integration by parts and dividing the result by k. The coefficients
Dariagsai...aps, Will be called reduced component of [w]. The reduced components are

still antysimmetric under the simoultaneous exchange of the pairs (a;s,) with p > 1. We
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report only the explicit formula of the reduced components for the 2-forms since it will be
useful in the following parts. The coefficients are given by the formula

- 1¢ t -
Wag;ags = D) Z Z (_1)t (S _ T‘> ai—i_T Swalt;agr- (2.4.13)
r=0t>s—r

One can prove that the reduced components have also another exchange property, i.e.
Waz,ars = Z(_l)t+1agt;s@a1,agt- (2.4.14)
t>s

Finally it is useful for the following parts to write down explicitly the condition dw = 0
in the case of a 2-forms whose components are of the reduced type. This condition, for a
w € Ay whose components are of the reduced type, reads

t+s m—s ¢ 1™ m gm—r—s aa)a;ﬁt_r 8(:)7;045 &D%m =0
ZZJFZZ(—)(TJI (auz@>+auf_3ug_’

m=s r=0 m>t+s+1 r=0

(2.4.15)
for any «, 8,7 € {1,....., N} and s,t > 0 and where (Tms) is the multinomial coeffient
defined in the following way:

k
s s!
= ith > ts. 2.4.16
<t1....tk> t1! tk!(s e i tk)' we 5= ; s ( )
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2.5 Multivectors on formal loop space

In this section we will introduce the notion of multivectors on the formal loop space with
special emphasis for the concept of local bivectors, necessary for the proof of the Getzler
theorem. Let us start introducing the space of the differential polynomials depending on
multiple loop indeces:

At = (P AF, (2.5.1)
k>0
where
AF = [[u(z1)s, ooy u(zp):]] [u(ml);lzo, ....,u(a:k);kzo] [[€]] (2.5.2)
and x1,....,zr € S1. We can also generalize the space of local funtionals in the following
way:
At = P A, (2.5.3)
k>0
where
AP = AF)(C P Imdy, @ ... ® ITmdy,). (2.5.4)

An elements f(u(z1), ..., u(zp),....) € AF will be denoted as
/f(u(xl),....,u(xk),....)dxl....dxk. (2.5.5)

The gradation of these spaces is a simple generalization of the one given for A.

Remark. It’s obvious that
Ag=A'=A and Ay=A'=A. (2.5.6)

Here N0 = f/l\o =C.

Let us introducethe generators of the space of multivectors. They are denoted with 8%1
(v € {1,....,N},s > 0). The formal wedge product between the generators is introduced
imposing the standard exchange property, i.e.

_5 _9 —(—1N0—(9 Aoh—
Ougt(zy) " Ousk () el (o)) OuslE (To(r))

Sa(1) So (k)

. (2.5.7)

with ¢ € P, and N, denoting the number of exchanges associated to o. Then a k-vector
on the formal loop space is defined as

a= Z QP Bt (y (20, (), g (1), o, Ug (21)) BL A A BL’
S1pm39 >0 Qus, (1) Qusy (1)
(2.5.8)
where P15t Bk (), oo w(@g), ue (1), ooy vz (21)) € AF are differential polynomials
antisymmetric w.r.t the simoultaneous permutations
Bps Sps Tp > By, Sq» Tq- (2.5.9)

We will indicate the space of the k-vector with V¥ and with V = Di>o V the space of the
multivectors. As for forms space F, we can endow V with the natural exterior product: if
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a € VF and B e Vk ,then a A € VE+! and its coordinates are defines as follows:

(a A 7)6131"“"5k+15k+l = Z (—I)N”ozﬁa(l)so(l)7“"750(1«)50(’@) (xg(l), o Tar (k) u(mo(l)), - u(l‘o(k)), )

UEPk+l
. pyﬁo(kJrl)So-(kJrl),~~..7Bo-(k+l)so(k+l) ($a(k+1)7 oes T (o) u(xa(k+l))7 o u(xg(k+1)), ).
(2.5.10)
We can now define the contraction of a k-vector a € V¥ with k 1-forms wl, ... Wk e ﬁl.

This is an element of A and it reads

AWy eeeey W L1 )y eeee)enen O.)U(k) u\xr R
SOl k'/s %xwék "ol (W) )l ) ) (2.5.11)

P B (y (), (), ) de .

From this definition, we can understand why we have to define the forms as finite linear
combinations (while the multivectors don’t have this constraint). If we had defined both
forms and multivectors as infinite linear combiination of base elements, the contraction
between them could have contained an infinite number of similar polynomials and therefore
presented convergence problems. Also other objects that we will consider in the following
parts would be affected by this kind of divergence behavior. The choice of considering only
finite sums on the definition of the forms allows us to avoid these convergence problems.
This constraint will be relaxed imposing a gradation on the forms and multivectors spaces.
Let us define the Lie derivative along a vector field of a multivector.

Definition. Let £ € V! and a € V¥ be a vector field and a k-vector in V. Then the Lie
derivative of o along &, denoted by Liegay, is a k-vector defined as

(Lzega)ﬁlsh Brsk —ZZfﬁ (9( ) P15 Bk Sk ZZ fﬁj ’ xﬂ aPrs1sBi—18j-1.7t, . Brsk
t

=1 >0 =1 >0 ut (z;)
(2.5.12)
Definition. A multivector o € V is translation invariant iff
Liey,q=0- (2.5.13)
The translation invariant maltivectors have some interesting properties.
Lemma. The components of a translation invariant o € V¥ read
Pt Besk (y(20), o u(ag), ue (1), oo Ug (21)) (2.5.14)
= 35 0. 0 O AP (), ey (), g (21), ey un(2)) o
where A%V % (u(1), ooey Tk, Ug (1), oo, ug (xg)) are differential polynomials antisym-
metric w.r.t. simoultaneous permutations
Bp, &p > By» Zq- (2.5.15)

Proof. To give an idea of the general proof we discuss the k = 1, i.e. the vector field case.
From the condition of translation invariance Lieg, x—q for a vector field X, we get (using
the fact that 0, = ,,~¢ U%H%)

X
0= (Lieg,X)* = > ul Ha =) 086541 X" = 9, X — XL (2.5.16)

n>0 “n n>0
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Therefore X5t = 9, X for any value of a € {1,...., N} and S > 0. Applying iteratively
this relation, we obtain

X =9 X0 ae{l,.., N} s>0. (2.5.17)
So we have A* = X0, O

Lemma. The contraction (2.5.11) for a translation invariant k-vector a € VE is a well
defined map a(-) : A% — AF,

Proof. Let’s prove it in the case k = 1 (the general case is a simple generalization). Then
if w = ;h with w, h € Ai(i.e. w§ = d:hf + h;;l with hgl = 0 for every f € {1,...., N}),
we have

alw) = /Z aﬁ’swgdx = /Z@;AB (8th3 + hgﬁl) dx =
s>0

s>0
- / > 0.h505A d + / S hy 0, 005 AP de = / >~ (0eh5034% + b0, 0 034 dr =
s>0 s>1 s>0

_ / 0, (W33A%) di = [0].
(2.5.18)

Therefore if w” = ' + d,h with w’,w” € Ay, then a(w') = a(w’). O
Now that the exterior algebra and the Lie derivative on V have been defined, one can
define the Schouten - Nijenhuis bracket on V. i.e. the unique bilinear pairing

[ s VF X Vs VEHSL ith k1> 1, (2.5.19)

satisfying the property listed in the first chapter. We will report explicitly (in the last
part of this chapter) the expressions of the Schouten - Nijenhuis bracket only for the
multivectors interesting for the proof of the Getzler theorem. The following step consists
in considering a particular extension of the notion of translational invariant multivector ,
i.e we want to include the possibility for the coefficients to be of the form

0= Z 0553y (U(T1), Ug (1), ....) 6062 (21 — 29)003) (21 — 23)....60F) (21 — xp.),

(2.5.20)

5(52)(1‘1 — $2)5(s3)($1 — x3)(5(sk)<.1‘1 — xk) : .Zl\k — .2[\ (2.5.21)

(with sq,....,59 > 0) acts on f(x1,.....,xr) = f(x1, ooy zp, u(x1), ooy u(xg), ..0n) € AF in the

following way (we will denote the image of the delta operator with the integral notation):
/f(:vl, ooy )00 (@) — ) ...0) (@) — ) das....dxy = Oy © e @O F(Ty ooy Tk g

(2.5.22)

Remark. Here there is an abuse of notation: indeed the integral denotes both the ele-
ments of A" and the image of the delta operators. However this ambiguity will not cause
problems in the understanding of the formulas. The meaning of the integral will be clear
from the context.
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Definition. A local k-vector is a translation invariant k-vector whose components A%t
have the form described by the formula (2.5.20), i.e.

APk = N RO () g (3), .. )00 (21 — 29)603) (21 — w3).... 60 (21 — ).

P2y---,Pk >0
(2.5.23)

At the moment we assume that only a finite number of coefficients o, s,,.... s, in (2.5.20)
are non vanishing in order to avoid the convergence problems described above. We will
denote the space of local k-vectors with Afoc and with Ajpe = @y Afoc the space of local

vectors. /AXZOC is not closed w.r.t. to the exterior product but the following result holds.
Lemma. Kloc is closed w.r.t. the Schouten-Nijenhuis.
The next formula gives us the explicit form of the contraction in the case of a local k-vector.
Lemma. For a local k-vector a € /AX;“OC, the formula (2.5.11)) for the contraction (as a map
o) s AF¥ — A) becomes
(Wi, ey i) = /Bg‘;,’ o (u(), ug(z), e wa, (u(@), ug (), ) OP2W2 (u(2), ug (2), -...)
...ng’%uak (u(x), ug(z),....)dz,

(2.5.24)
where Wo,, = Y~ (—1)°05we;, is the reduced form of wP € A (p< k).
The delta operators satisfy some remarkable properties.

Lemma.

/(5 x1—22)....0(x1—xk) fdze....dx) = /5 Tp—21)....0(xp—2p—1)0(Tp—Tpi1)....0(xp—xk) fdxa...

(2.5.25)
for any p <k and f € A*.

Lemma. Let f € A2 be a differential polyniamial depending only on one loop variable.
Then

s —y)fly) = <§> 5P~ (z — y) £ (). (2.5.26)

q=0

Proof. Let g € A2. Then

p
[ 3@ = watean =05 1ate. ., =3 (1) 1@ o, =

-3 <> 0 [ 879~ g)gte,v)d =/Z<§) 500z — y)g(z,y)dy.
O
Lemma. Let f € A2, Then
[ 89wty = [ (109~ sy, (2.5.27)
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Proof.

/ 5 (y — ) f(z,y)dy = / (—1)°6(y — )05 f (2, y)dy = / (—1)°6(z — ) () dy =
= (—1)58;]"(1: Y)|oe = /5 x—y)f(z,y)dy.
Il

Let’s now discuss how we can choose a gradation the space of the local multivector. In
order to do that, we have to assign a degree to the delta operators. In particular

degs®(z —y) =s+1 with s> 0. (2.5.28)

Then we can choose a subset of the local k-vector space (for any & > 0) whose elements
o € V¥ are such that

degA“t% =k Vay,...,op €{1,....,N}. (2.5.29)

From now on we will intend with Kf (for any k > 0) the subset of the local k-vectors
whose elements have degree k and with Aloc the direct sum of these subsets. A% coincides

loc
A The coefficients of an element of Allo .

> = Z LAY (u(), ..., uF (), (2.5.30)

k>1

can be decomposed in the following way:

with A% (u(x), ..., uk(z)) € A and degA® =k (k > 0), while the coefficients of an element
of A  read as
AP =Nk and, (2.5.31)
k>0

where
A = 37 AP (), e (2))00H ) (@ — ), (2.5.32)
s<k+1

with Azi(u(x), ..,u®(z)) € A and degAZ’é,)5 =5 (k>0,0<s<k+1). Gradating the space
of multivectors allows us to relax the constraints given in the previous parts. For example
the constraint that we have put on Bp, 7% (non vanishing only in a finite number) is no
more satisfied if we choose a gradated local k-vector. However this choice doesn’t lead to
convergence problems for the objects that we have defined before since the fixed degree
of the multivectors allows the presence of a finite number of terms proportional to a fixed
power of e. One can gradate also the space of the forms and relax the constraint that
we have put on them. In the last step of this section we will study some property of the
element of A7  since the Poisson structures are particular contractions of these objects (as
in the finite dimensional case). Let’s start writing explicitly the form of the coefficients of

a generic element of Alzo .- The first property to investigate is the antisymmetry condition.

Lemma. The antisymmetry condition,i.e. A5 (x,1y) = —AP*(y,x), reads

AP (), ug (), ....) :Z( 1)”1( )85 LA (u(), ug (2), ....). (2.5.33)

s>t
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Proof. Let f € A2. Then

[ 45w 0), )y = [ 37 A2 0w, (0), )5y — ) iy =

s>0

/Z 1)* A (u(y), uy(y), .- )0 (z — y) fdy =

s>0

= S0 [ Al )6 )iy =

s>0

/ > Z (i) 927t AB (u(x), up (), ... )0 (@ — y) fdy =

s>0 t=0

/ZZ ( >3S PA (u(), g (), ... )00 (@ — y) fdy,

t>0 s>t

where we've used (2.5.26) and (2.5.27). Then, using A% (z,y) = —AP*(y,z), we obtain
the thesis. O

Remark. Suppose that A5 # 0 iff s = 0 and ALY is a costant matriz. Then, from the
previous result, we can deduce that Ag” s an antisymmetric constant matriz. In the case
that the only non vanishing term is AY” and this is a constant matriz, we obtain that A"
18 a symmetric constant matrix.

Let us investigate the connection between the definition of Poisson bracket that we have
given in the previous sections and the bivectors. Let f,g € A. Then

= | g ({8 e | [ it () o=t i,

where wi =3 o KE6) (z —y) € A2 _ (it’s evident that the gradation of the elements

of Klro coincides with the coefficients gradation of the Hamiltonian operators of hydrody-

namic type). Therefore the Poisson brackets of hydrodynamic type on A can be written
as contractions of bivectors, as in the finite dimensional case. This is incomplete since we
haven’t discussed how the antisymmetry condition and the validity of the Jacobi identity
characterize the associated bivector. This is explained by the following result (as in the
finite dimensional case, we will not prove this theorem):

Theorem. The bracket associated to w € ZA\IQOC s of the Poisson type, i.e. it satisfies the
antisymmetry condition and the Jacobi identity, iff [w;w] = 0.

We are ready to introduce the Poisson cohomology. The definitions will be the same
of the finite dimensional case. In first place let us define the cohomology differential
associated to a w € AloC of Poisson type, i.e. satisfying [w;w]. It reads as
Bt AE. = AFEL (k> 0)
Op = [@;0] € AFFY with o e AL,

loc

(2.5.35)

This satisfies the fundamental property characterizing the differentials.

Lemma. 92a =0 for any o € Kloc.
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Proof. From the graded Jacobi identity of the Schouten-Nijenhuis bracket we obtain

0 = [@; [0 a]] + [a, [@; 0] + [ [@; a]] = 2 [@; [@; o] = 2820, (2.5.36)
=0
with o € Kloc- ]

Then the complex
O, Nk—1 %o, Xk o, Fk+1 Oa
e S AT AR S AT 2 (2.5.37)

has a natural notion of cohomology.
Definition. The Poisson cohomology is defined as

i Ker (8@ : IAXfOC — KfO'E)
ok —

w

_ ~ Wk > 0. (2.5.38)
Im (9 Rt = Af,)

Finally we write down explicitly the form of dza = [w;a] for a generic a € /A\IQOC and
AL, > @ = n§'(z —y) (the coefficients of a are AM =37 ALY6%(x —y)). Tt reads as

~ OAM + HATH
R B R D DI ] (AR A == P
Oug_y r>0,q<t—1 q autqul

vy
+ Z (—1)rtr+t (€ Tt o 04, 7P| 6O (2 — )6 (z — 2)
q r “\ou? '
q<s,qg+r+t>1 q+r+t—1

(2.5.39)

This expression seems problematic. In particular the second summation seems to be
divergent due to the the fact that the sum index r is arbitrary big. But it isn’t since the
degree of « is fixed. Indeed consider the decomposition of « as power of €. It’s
not difficult to find the following relation:

A= AL (2.5.40)
E>0,k>s—1

Therefore the term AY” contains €* for k > s — 1. This means that, varying s, the term
€® (with k fixed) is contained in A%” only for s < k + 1. And this implies that the second
summation doesn’t diverge since there is only a finite number of terms proportion to a
fixed power of € to vary of the sum index. For the sake of completeness, let us report
explicitly the form of Oy f = [w; f] with f € /A\?OC and 0, X = [w; X]| with X € [A\lloc. The
first one reads

of

Klloc 2 [(J‘_j; f]“ = 77’“/61 duv’

(2.5.41)

while the second one reads

0Xv oxX* t+1 _ [ 0X7

— YW o - av ERY poat—s (s+1)(,.

[@; X] 005 30— y) §>O uz " +t§> (=1) (SH)?? 0y (aug> 0 (@ — y)-
R r> >s

loc

(2.5.42)

Also for [w; X]* the convergence problems are avoided thanks to the fixed degree of X.
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Chapter 3

Theorems for Poisson bracket of
the hydrodinamic type

In this chapter we will present two important theorems for the study of the Poisson
geometry on the formal loop space with Hamiltonian operator of hydrodynamic type.
The first one, the Dubrovin-Novikov theorem, is related to the antisymmetry of the
Poisson bracket and the validity of the Jacobi identity as we have anticipated in the first
chapter. The second one, the Getzler theorem can be viewed as a generalization of the
Weinstein theorem that we have described in the first chapter.

3.1 Dubrovin-Novikov theorem

Let consider the Hamiltonian operator of hydrodynamic type defined in the previous sec-
tion that, in the limit € = 0, it assumes the form

KM |0 = g""(u)0x + b5 (u)uy. (3.1.1)

Let us define I'}, = —g,uaby” where g, = (¢")~! (we have assumed that g"” is nonde-
generate). As first step we prove a prelimanary proposotion that it specifies how ¢g"” and
'}, transfrom under a change of coordinates on the target space V.

Proposition. Let v® = v*(u) be a smooth change of coordinates on the space target V.
Then

e g" transforms as a (2;0) tensor.

e '), transforms as an affine connection.
Proof. Notice that we can regard a change of coordinates on the target space V as a Miura
transformation for which a%(uf;€) = @“|c=o. Then

v i
0" nd (1) = 2% (3.1.2)

LV
oud’

5= 9P

since the Miura transformation depends only on u. This implies that

R 0) = g () (0 (Gs)) + oo ) + G525 (il
(3.1.3)

31



Now, if we rewrite K using the inverse coordinate transformation u®(v), we obtain
ovt ov”

K" (0) = K3 (ufo)) = 9o (u(o)) g () g™ (u(0)) 0t
v Zyv u’ v v uf
(G (00 5 () G (0™ u(0) 4 5 (o)) 5 ) 5 0095 )
(3.1.4)
Therefore we have found that
9 (0) = T ((w) s ((0)g ()
vH 2V u’ vH v U
B (0) = 2 ) S o) 2 (1) )+ T (1)) D o) 2 () )
(3.1.5)

and this proves that ¢g"” transforms as a (2;0) tensor under a change of coordinates.
Regarding '), using the identities g"*(u(v))gaw (u(v)) = glu’i (u(v))g%(v) = 65 and the
tensor transformation relation for g, (v) = Ju () Qub (v)gas(u(v)) , we obtain

vk ovv
u® uf 2 u® uf v
D 0) = ()BT (0) = — o (0) T () 5ot () + o () T (1) o () D ().
(3.1.6)

Applying 6u>‘( (U))gZ: (u(v))g:ﬁ( ) to both side of (3.1.6) and moving the first term of
the second side to the first one we get

v vV ub U 207
B () G () 5 ()T () + fL( ) (W) = TS, (ue)), (.17

that it’s the transformation under change coordinates of an affine connection. This ends
the proof. 0

Now we’re ready to present the Dubrovin-Novikov theorem, proved in 1983 by the two
mathematicians from which it takes its name.

Theorem (Dubrovin-Novikov, [6]). Let K* be an Hamiltonian operator of hydrodynamic
type (with g"¥ nondegenerate) associated with the Poisson bracket {-;-} k. Then the Pois-
son bracket {-; -} i |e=0 is antisymmetric and satisfies the Jacobi identity if and only if these
conditions are satisfied:

o gl = g"F i.e. g, 18 a metric on the target space V.

e '), , are the Christoffel symbols corresponding to the Levi-Civita connection of the
metric gy .

e The curvature tensor associated to FZW vanishes.
Proof. We will follow the proof contained in [3]. We start proving the direct implication.

Imposing the antisymmetry of the Poisson bracket and the validity of the Jacobi identity,
we will prove the following relations

gNV — gVM
gt
HY L
b b = o s,
bgl/g'ya — b?yu/g’yp L
obve obre
LpUpYQ  puop YV o oy B v
BB — b)Y =g (8m auﬂ>'
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Once we will prove these relations, we will be able to prove the thesis. Let us assume the
antisymmetry condition (valid for Vf, g € A)

{f:9}YK)ozo + {3 FYK)so = 0. (3.1.9)

Therefore, if we consider two differential polynomyals f, g € ﬁ, we have

/d:v [” o, <59> + 29 g, ( of ) +—f(bﬁ”+b$“) 7 59} 0. (3.1.10)

OuH ouv duY SuH ouH xéu

Using the relation (integration by parts)

09 wug (OF _/ 09 \ wn0f _ Of 99" 99
/daj5” Or ((5u“>_ @z | =0 sur )7 St Sur duy T eun | (3.1.11)

we obtain

6f n v 59 Ly m aguu 59
— — e | — — =0. 1.12
/ dr 2 [(g ") 0 ( R N A L. (3.1.12)

Now we can apply the second variational principle to (3.1.12) obtaining:

v v 59 v v 8.9,/# (Sg i
(9" = g"™") 0s (W) + (b’; + biH — am) Sor cgle)ul Vg€ A. (3.1.13)

Choosing g = (721)17 (ug)2 with p > 1 and v € {1,...., N}, one gets

og'H
(9" — ") uspia + <bx” + b — S ) ul, = cq(e)uf. (3.1.14)

Since g"” and b4"” depend only on u*, the identity holds if and only if ¢,(e) = 0 and

g =g =0

Hg¥H (3.1.15)
DY 4 bt — =0

ouY ’

for any p,v € {1,...., N}. We have proved the first two relations of . It’s easy to
see (simply using the identity derived in the previous steps) that also implies the
antisymmetry condition of the bracket. So we have proved that a bracket is antisymmetric
iff the relatlons ) hold. In order to prove the last two conditions, we will exploit the
Jacobi identity. Indeed let us assume the Jacobi identity in A ie.

{{f;g}mgzo; B}K|€:0 + {{f;g}mezo; B}K|€:0 + {{f;?]}mezo; E}K\e:o =0 Vf,g,he 7\7
(3.1.16)
equivalent to (as we’'ve seen before)

[Dg; Dy) f = Dyginy,e f- (3.1.17)
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This means that, for any f,g,h € f/l\, we have

— p— 9 af n g pY 69 m r-af 67]1 o 9 87f
0=F=[d 8u%( gur e i (m))aK 5uP /dmzaua 2 ul;

m>0 m>0 m
5h 5 of 5 (5 5h
ny-us [ 70 m oy g _ n g po 9 qevp O —
% K <5u ))633}( <5u”> 8 gul O <5u0‘ <5u”K 5u5>)
of ) 59 5h ) 5h 59
= — U G m ol npocuB [ 20 mprav [ 79
[ [ (o (22 (30) - 5 v (3 e (32

5 [ dg oh
_H ke [ vp 2t —
i (i ()
_ Of gn 9 09 \\ gmpeas (90 _ O (gens [ O\ gmpear (99
- Jur S o | e (v (32 o () - e (v (1) e (2

n>0
5 (o .. 0h
— (Mo KB
(5u0‘ <6u” 5u5)>] ’

(3.1.18)

where we’ve used the exchange property 2.1.7) in the last step. Now, applying the Leibniz
rule for the variational derivatives on the last member of the previous relation, i.e.

0 (99 g Oh o9 v3 )29 g vg [ Oh
Suo <5u”K 5u6> 2 Tk (=0n) <K 5u5 (0" 5 K\ Gus

k>0 k>0
(3.1.19)

and the Leibniz rule for the x-derivatives and the partial ones, we obtain

O n [ an u u @ @ m
p= /dx a[A()+A(2) Alyy + BY] /dx 4ty + Aly + Al + B

(3.1.20)
where

dghv dg oh A u3)

Al = . KoP

(1) Py O <(5u> <(5u ) iy “oun 5 M
9g"° Sh 5q o ) b“ﬁ h 5q
AN . [ — KCW _ T
@) ou® 0 (5u5> <6u”> rt (5 > <6u”>

(3.1.21)

g [0 (1) 5 (2 0)

®3) du? Ou® Sub 5u” ou 5u5

o (09 0057u) ok
T\ duv oug  duf

+
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(3.1.22)

In the previous steps we’ve used the exchange property in B* in order to factorize the
hamiltonian operator K*“ and we’ve exploited the following properties:

Sh n\ . . [0g"8 Sh G, Sh
T vB n—k |99 _5 (2L v 9 (o (21 _
(oo (5)) - 2 (1o [ () =075 (- (55)).

_891/,8 5h n n—k VB 0 (Sh
= a ‘9xw5°k+§k<k>aw {9 s \% (57 ) )|
B (3.1.23)

since ¢¥? depends only on u* and

(w0 (35)) - 5 (o 1657 (5%) o (0. (35)] -

e (M) (o iy 0(2))]
(3.1.24)

since bzﬁ uz depends only on u* and u}. One can prove that
BY=0 VYf,gheA (3.1.25)

and we will prove this fact in the appendix. It’s easy to see that the vanishing of the B*
terms implies that
5f 6g ) sh R
/dm S owr ol J 09 7 0h T (3.1.26)

ik Sum Sur Sub
j,k=0,1,2

where ( 5‘22;)(‘) oL ( *) and C’J",f # are differential polynomials depending on Uf oo (We

ou*

will explicitly see this fact in the following parts). This is due to the fact that the A?*)

terms contain ( 5‘3; ) ® with ¢ < 2 and they do not contain terms of the form 82* [( 5%*)(j)]

(with 4,5 € N). Now, applying the second variational principle, we obtain that

g 6g 0 5p ()
‘kZOI 20‘;1]{:557” W = Cgh(f)uﬁl. (3127)
j7 = bl

Choosing g = (_21)l (uy) and h = (_l)p (ug) with I,p > 2 and v, 8 € {1,...., N}, we get

Z C’“Vﬂu2l+ju§p+k cgn(€)ul. (3.1.28)
jk=0,1,2
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Since C]‘.Lkuﬁ depend on uj_, and 2/ + j,2p + k > 4, the previous formula is a sum of
independent terms and therefore the relation is verified if and only if ¢gn(€) = 0 and

P =0, (3.1.29)

for any value of the indices. If we choose v = 3, the previous argument holds if one takes
2p — 2k > 2 in order to avoid the presence of dependent terms, i.e terms of the type
ur vy and vXuY with m = s and n = r. Indeed the necessary condition to the presence
of this terms is 21 + j = 2p + k for some j, k € {0,1,2}, equivalent to 2l — 2p = k — j.
Since k — j < 2, taking 2] — 2p > 2, we avoid the undesired presence of the dependent

contributions. Let us calculate the C’;‘,;’ﬁ terms. It’s easy to see that the contributions to

the coefficients CJ”,: P coming from Al&) are (denoted by C(“f;fk)

p ovs”
ctip = (S s O )t

o1 = \ Gue Crwe

pvB " aB, v
C(1)10 = S b5 g (3.1.30)

b af
Clyg, = <a M +bg”b»‘y‘5> uy

o8 _ 99" o

(D11 = Fya
vB _ uv o«
Cliyz = b6"9 ’
vB vB
CéLl)Qk = 05)12 =0 Vke {0, 1,2}.

The C’é’;fk can be obtained from C’é‘fifk simply exchanging the indices and the functions

in the %ollowing way

Clyi(g,h) = CEy 7" (g = hoh = g). (3.1.31)

As regards Cél;fk, we will explicitly calculate them in the appendix since it’s a long cal-
culation. Having the explicit form of the C]‘.Lkuﬁ as function of g"” and b4, we are able to
write down the equations associated to the vanishing of these coefficients. Between these
equations, the interesting relations are

ove’ o0

,
STt (bg”biﬁ—bzﬁbawgw =G

) u, + By (uyuul

e (3.1.32)

v vs 09"
Cly” = bi'g™ + g (bof ~ ) |

\

where we don’t write down explicitly Eﬁg A (u*) since it isn’t useful at this point. Since the

uvB
¥

coefficients D5 and Ef;g # depend only on u*, the vanishing of chy # occurs if and only if

Dﬁ,wﬁ and Efy‘gﬂ vanish individually, i.e.
Cht? =0 «= DL = B° + B =0 Yp,v,B8,7,0 € {1,.... N}, (3.1.33)
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0

where for Ef;g B we've considered the fact that u}um is invariant under v <+ 6. The vanishing

equations leading to desired relations are DX”” = 0 and C4¥? = 0. Indeed from C/Y° =
we obtain

89”5

_ B B _

0= b6"g™" +ba" g™ — o g™ =
— bgugaﬁ + bgﬂga” _ (bzﬁ + bgy) goz,u _ (3.1.34)

_ bgz/gaﬁ _ bgugau’

where we’ve used the symmetry and the compatibility conditions (3.1.15)). This is exactly
the third relation of (3.1.8). From D4 = 0 we have

obe g by’
ou” ou®
that it’s exactly the fourth relation of (3.1.8). We have proved the four relations (3.1.8]).

We're ready to conclude the proof of the direct implication. The first relation is clearly
the symmetry condition of the tensor g"”. So g, (i.e. its inverse) defines a metric on the

0 = bibe? — by 4 ghe (3.1.35)

target space V. Inserting b5 = —g"°T'y,, in the second relation we obtain
agwj y77es i | Ze% i)
0 +g" T, + 97T, =0, (3.1.36)

that it’s the compatibility condition of the Christoffel symbols I't, with the metric g,,.
Adopting the same substitution in the third relation, we obtain

g,uaguﬂrﬁ — gﬂagVﬁrﬁ = FIB,B = 1_‘,304’ (3137)

Le. the torsionless condition of the connection represented by I'y,. Therefore I'y, are
the Christoffel symbols of the Levi-Civita connection of the metric g,,,. Lastly the fourth
relation leads to

0, vnoa 0
Y (gT) + g

UT N (T a a Vo

g"'T). (3.1.38)

Using the Leibniz rule and the compatibility condition for the terms containing the deriva-
tive of g (i.e 89 = —g"°Th, — §"°Tay), We obtain

(6%
g MY IS —T2TY ) = — oy T8 + oy Y g (g T, 4+ g T, )T
T Bn yT ﬁn g g g g g g T ’l’]ﬂ

ou” ouP
— " (g Ty + g TY TS,
(3.1.39)
from which it follows
ore e
1% n T T8 _ _
979" <Fm w6~ Ul + 505 ~ B > =0= R;,"3=0. (3.1.40)
Rry%s

R;.%g are the components of the curvature tensor associated to F;Yw. Therefore we have
proved that the curvature tensor vanishes. We have concluded the proof of the direct
implication. The inverse implication is quite simple. Indeed the hypothesis allow us to use
the flat coordinanates (we remind you that in the first part of this section we have proved
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that g" and Fg” transform respectevely as a (2,0) tensor and an affine connection). In
these coordinates the Hamiltonian operator becomes

K™ = kv, (3.1.41)

where n*¥ is a constant non degerate symmetric matrix. Finally it is easy to prove that
K'# satisfies the jacobi identity and antisymmetry condition. The proof of this result is
similar to the one that we’ve done for the direct implication. The details are present in
[2]. This ends the proof of this theorem. O

As last step of this section we want to underline another result that can be deduced from
what we’ve done in the proof of the Dubrovin-Novikov theorem. Indeed The Dubrovin-
Novikov theorem holds if the ¢g"” tensor is non degenerate. But from its proof is simply
derivable another result, valid in the degenerate case.

Theorem (Grinberg, 1985). (/9]) Let K* be an Hamiltonian operator of hydrodynamic
type associated with the Poisson bracket {-;-}x. The Poisson bracket {-; -}i|e=o is anti-
symmetric and it satisfies the Jacobi identity if and only if the conditions

g = g"H

aghv
wy o pup

by + b = ou
B g = bV gt

oy o (3.1.42)
ouY oub

s [(2 O e (o ]
ouPd ouy | oun our ) P

cyclic(p,v,a)

bgybga _ bgab’)’l’ — gLW <

are satisfied for any value of the free indices.

Proof. From the proof of the Dubrovin-Novikov theorem, we have that
g = g'¥
Dgh (3.1.43)

ouY

b+ b =

holds iff the bracket is antisymmetric. Concerning the Jacobi identity, we have found that,
without using the non degeneracy conditions, the Jacobi identity is identically equivalent
to

() (k)
pp 0f 09 77 oh T
/dx | > Ch S5 5up =0 YmvBE{l N}, (3.1.44)
7,k=0,1,2
with C? = DFP (u*)ul, + Eggﬁ(u*)ulug In turn we have seen that (3.1.44) holds iff
C]“]é/ A =0 for any value of the indices. Afterwards we have proved that nywﬁ = 0 and

Cly # = 0 are indentically equivalent to

bﬁ” g = bg‘”gw

(122 Naed pnop YV Ly ﬁ Y
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and it’s not difficult to show that Ef;gﬁ + ng;ﬁ = 0 (coming from (3.1.32))) is equivalent to

oW OB\ o (OB U a
Z [(auﬂ_au'}/ bn + <8u77 — 8U’Y bﬂ —O Vu,l/,a,ﬁ,ne{l,....,N}.
cyclic(p,v,a)
(3.1.46)
Finally we will prove in the appendix that the other relations (i.e. CJ“,;’ B = 0 with (j, k) #

{(0,0);(0,2)}) can be obtained using (3.1.42)). This ends the proof since we have proved
that C%/” = 0 for any value of the indices iff (3.1.42) holds. O

The last observation of this section is the following one: in general we will not consider
Poisson structures in the limit of ¢ = 0. But we have proved the Dubrovin-Novikov theorem
for Hamiltonian operators in this limit. Is the direct implication of the Dubrovin-Novikov
true also for the zero order of the general case? The answer is yes since the order division
given by the e parameter implies that zero order of the Hamiltonian operator satisfies the
antisymmetry and the Jacobi conditions if the Hamiltonian operator satisfies them.
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3.2 Getzler theorem

In this section we will prove Getzler theorem, important for the study of the formal loop
space. Let us write down the statement of the theorem.

Theorem (Getzler). (/8/) Let K" be a Hamiltonian operator of hydrodynamic type, i.e of
the type (3.1.1) (with g"* non degenerate). There exists a Miura transformation bringing
any Poisson structure of hydrodynamic type to the canonical form

KM = pd,, (3.2.1)

where n*¥ is a non degenerate constant symmetric matriz.

We will work adopting the distributionl formalism. Let us introduce an important result
useful for the proof of this theorem.

Lemma. Let w = n*§'(x — y) be the canonical form. Then any cocycle in H or in H2
is trivial.

Proof. We will not prove explicitly the triviality of the e—vanishing element of H} because
it’s not interesting for the following parts. However we will use this result during this
proof. Let us start considering the closure condition dga = 0 m ) for o € A?
(o =" g A5 (2 — y)). This leads to

v Yh
0A} 7767 + Z 1)atrts (q +r+ 8) ar (aAq-H“-‘rs) nﬁu+

9.8
a s—1 r>0,qg<t— 1 a T 8utqul

oA
+ Z (_1)q+r+t <CI+T +t>8£ ( - 5—q ) nﬁu =0,

r
q<s,qtr+t>1 q auq+r+t71

loc

(3.2.2)

for any p,v,vy € {1,...., N} and s,t € N. In the following, the relations will be valid for
any possible value of the free indices. It’s clear that the first term of the previous formula
is defined if s > 1, while the second one is defined if ¢ > 1. Now, choosing s =t = 0,

(3.2.2) leads to
vy vy
O (MO ) H=0= 0 _ (3.2.3)

dub Suf

(only the third term of (3.2.2)) is non vanishing). Since degA;” = 1, the solution of the
last equation is

Al = 9, B, (3.2.4)
where B* € A. Using s = 0 and ¢ > 0, (3.2.2) becomes
S (q * ) o ( Ostr ) P Y (e < + ’f)a ("9?57 ) o
7>0,q<t—1 " 8“1‘,7(171 rt>1 iy g
(3.2.5)

where we’ve used the fact that the third term is defined only if ¢ = 0. The first term of the

previous relation can be obtained as derivative w.r.t. uf_l of the antisymmetry condition
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for Af”. Indeed

aA“’y v T 8 7
0 =SS (A =
Ouy_y r>0 Ouy_y

TH
N N L
q aut_l_q

r>0 g<min(r;t—1)

=3 Y -yt <q>a; qaa;w -

r>q q<t—1

== > (—1)’"+q(r+q>8 8’4’75"1 ,
ou tﬁflfq

r>0q¢<t—1 q

(3.2.6)

where in the second step we’ve used the exchange property (2.1.5). Then we have

0= i > (- Tﬂ(“)@ ( 04 )nm_
8ut 1 r+t>1 oul Uppp—1 (3.2.7)
0AL 4 <r+1> L <8A’” -
= - v —1)" o/l [einV g L ¥
8uf_1n T;I( ) t 8u,@ 7

The right hand of the previous relation is clearly the term proportional to 5(“1)(3: )
of dga” with (a7)? := Ag'y, as one can see from (2.5.42). This implies that dza? = 0
(since also the term proportional to §(z — y) is vanishing for (3.2.3)) and therefore (a?)”
is a cocycle of H.. Using the first part of the lemma, we can assert that there exist
N differential polynomials ¢!, ....,¢" such that ¥ = 0pq". Defininig the vector field
z = Zszo quV%, it’s easy to see that the equivalent cocycle to «,

o =a+ 0gz, (3.2.8)
has the coefficient A;)“ Y equal to zero, i.e. AZ)“ ¥ = 0. Indeed the term proportional to
d(z —y) in (2.5.42)) is —77“0‘(’935(‘;%¥ = —0yq" that is equal to —A}”. Using this fact, we will

able to show that o/ = 9ph for a vector field h € A}, and that o = 9 (h — 2) as desired.
Firstly, let us lower the indices of Azﬁ throught the inverse of the matrix n*:

Gusws = My op AL for s> 1. (3.2.9)

One can prove that

sl = Ootly0 (3.2.10)
Guvs = arw,u;us—l + Wyws—2 for s>2,
for some differential polynomial Wy, ,,O,wu Ul evnnes € A. The first relation is derivable in

the same way of (3.2.3)), choosing in s =1 and t = 0 From these relations, one can
prove that wyys satlsﬁes the ant1symmetry condition ) for the reduced 2-form and
that wy.s is closed w.r.t. the J-differential (see the detaﬂs in [7]). Since the J-differential
produces an exact sequence, there exists a 1-form ¢ = ¢,dut such that w = d¢. Finally
it’s easy to see that the components of the vector field that we're searching are simply

given by ht = nt"¢,,. O
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This result is fundamental for the proof of Getzler theorem. Indeed we will use the vanish-
ing of Al20c to prove the following lemma that, basically, ends the proof. It is understood
from now on that the Dubrovin-Novikov theorem has been applied, i.e. for a bivector

a € Klro the coefficients A’[fﬂ are the elements of a non degenerate constant symmetric

matrix.

Lemma. ([{]) Let o € Klzoc be a bivector such that [o; o] = 0. Considering the expansion

of o in powers of €, i.e. a =) 1+ oy, there exists a vector field Klloc 35X =310 .
for which holds the following relation :

o =T (ag) Vk >0, (3.2.11)

where ag has coefficients rapresented by a non degenerate constant symmetric matrix
(Dubrovin-Novikov theorem) and

1 . .
TX = > ———Lie} o...o Lie% (3.2.12)
J14+2jo+...+kjr=k ! ’

1s called Schur polynomial operator of order k.

Proof. The proof will be done by induction. The case k& = 1 is very simple: indeed
expanding the relation [a; a] = 0 in powers of €, we obtain

> fousas] =0, (3.2.13)

itj=l

valid for any [ > 0. Then for [ = 1 we get the condition 2[ag; 1] = 0, i.e. «ay satisfies
the closure condition of 0,,. Therefore, for the previous lemma, there exists a vector field
X € /A\lloc such that a1 = 0,, X1 = Liex, ap. In order to prove the induction step, we have
to use the following identity (that we will not prove):

T¥ (s al) = 3 [T¥(0): T ()], (3.2.14)
i+j=l

true for any o € /AXZQOC and X € /A\lloc (remind that the vector field enters in the definition of
the Schur operator). Let us assume that (3.2.11)) is true for ¥ < n and X, ...., X,, € A}

loc
are the associate vector fields. Then consider as n + 1 field the vanishing one. We will

denote with T}, the k-order Schur polynomial associated to (X1, .ery X, 0), while T}, will
denote the k-order Schur polynomial associated to (X1, ..., X;,) and T;,+1 will be the Schur
operator for which holds the identity (3.2.11)) for £k =n 4 1. It’s clear that

Tk =T, VkE<n= Tk(ao) = Tk(ao) = Q. (3.2.15)

Using what we’ve just written and the condition [a; ] = 0, the relation (3.2.14) becomes

0= Tusalfooiao) = Y [7¥ () ¥ (a0)| =2 [a0iTusalao)] + Y0 [ousy]
i+j=l i+j=l,i,j#0

=2 [ao; TAn+1(ao)} — 2 [0 o],
(3.2.16)

where in the last step we have used the relation (3.2.13)). Therefore we have proved that
|20 i1 = Tut1(00)] = (@t = Tuta(a0) = 0 (3:2.17)
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and that there exists a vector field X,,41 € Klloc (for the previous lemma) such that

any1 — Tny1(ag) = Liex,,,, ap. (3.2.18)

So Xy41 is the vector field that we are looking for since T}, 1 = Liex,,,,ao + Tn+1(ao) =
an+1.- We have proved the lemma. O

Remark. Note that the k-order Schur operator is nothing but the terms of the expansion
in € powers of the exponential operator

eLiem — ezkzo Eka_ (3219)

1

Therefore the lemma that we’ve proved says us that there exists a vector field X € Kl oc

such that 4
a = el®x (ag). (3.2.20)

Now we can find a Miura transformation that transforms the Poisson bivector « in «g
through the relation . Indeed let us consider the coefficients A? of X defined by
the previous lemma (A” are the coefficients that allow us to write down the vector field
X in the form X =) ., ;Aﬂ%) and the associated PDE

o8
%‘ﬁ(u:,e) = AP(ute) VB el ..,N}, (3.2.21)

with the boundary condition @7 (u?, )leso = uP for any B € {1,...., N} (we want to preserve
the A’[ET of the Poisson bivector since it has already the correct form due to the Dubrovin-

Novikov theorem). The solution is of degree 0 (since its derivative w.r.t. to € has to be of
degree 1) and the Jacobian of @°(u, €)|._, is the identity. Therefore it can be viewed as
a Miura transformation. The following lemma is the one that allows us to end the proof
(we will not prove this lemma).

Lemma. Let’s consider the Miura transformation obtained as solution of (3.2.21)). Then
the Miura transformation of the Poisson bivector o can be written as
oM = eliex (q), (3.2.22)

where X is the vector field defining the PDE (3.2.21]).

So the Miura transformation that we were searching is the solution of (3.2.21f) where X
is the vector field found out applying the Schur operator lemma. The proof is completed.
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Conclusion

The theorems that we have proved in this work are fundamental results for the study of
Hamiltonian systems using the formal loop space approach in a classical sense. For exam-
ple these methods are suitable to investigate integrable systems, in particular integrable
hierarchies. The paradigmatic integrale hierarchy is the Kortewegde Vries hierarchy (see
[5],]1]). But it’s the quantization of these structures that offers some interesting challenge.
We will mention some of them. A very interesting question regards the validity in the case
of the formal loop space of the result that M. Kontsevich (1998 Fields medallist) has ob-
tained in the finite dimensional Poisson geoemtry enviroment. More precisely, the results
obtained by Kontsevich concern the so called deformation quantization. This is a way of
quantizing theories (used in mathematics) done without the explicit representation of the
observables algebra through an Hilbert space, but just describing evolution inside an ab-
strat non-commutative associative algebra. This abstract associative algebra is obtained
deforming the commutative algebra of the classical observables, i.e. function belonging
to C°°(M), through the introdution of a parameter denoted with A (since we want that
a classical limit exists). The interesting deformations class is the one whose elements
are called star products. Between these star products, there is a natural way to define
equivent star products. Defined these objects, as one can immagine, it’s not difficult to
give also a notion of deformation of a Poisson structure and of equivalence between them.
The beautiful result obtained by Kontsevich ([10]) gives us a way to construct explicitly a
bijective map between the equivalence class of star products and the equivalence class of
Poisson deformations. Therefore studying the class of Poisson strucutures deformations
allows us to extract informations about the deformations of the observables algebra. An
interesting question, for example, is if the quantization of the observables algebra is unique
up to isomorphisms. This result is obtained considering finite dimensional manifold. Is
the Kontsevich theorem true also when the manifold is infinite dimensional as in the case
of the formal loop space? This is still an open question. Another interesting subject is the
one regarding the discovery of E. Witten and Kontsevich about the relationship between
KdV and the topology of the moduli spaces of stable algebraic curves (referece work [13]).
This result is known in the branch of algebraic geometry as Witten Conjecture (even if
it is a theorem since it has been proved by Kontsevich). This discovery has opened some
interesting directions on the study of the connection between integrable systems, Quantum
field theories and String theory. To see some references, read the introduction of [7].
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Appendix A

Second variational principle

A.1 Proof of the derative relations

In this section we will prove all the derivative relation used in the proof of the second
variational principle. Let us start by P even considering Z, <( Dl (up)Q) (Einstein’s

convention not at work):

(L) - s (5t x5t

=oF <Z X“up> +of (Xhulh) + R(u*, ...,usp_y) = (ALI)
N
Z Susp + Xhubp + R(u*, ..., uzp_q).
Then it’s evident that 57
Bo— XU 4 oA XE, (A.1.2)
ou’ a
2P
Passing to the P = 2p + 1 case, we have
N
(_1)p+1 4 v
Z, <2(u5+1)2 =5 ZXL‘upu’fDH + Xfuhp, | (A.1.3)
v=1

Isolating the terms proportional to u3p, ;, one obtain

(=1)ptt 2 P o P
ZM <2(u5+1) > = 8:p+ ZXIA/LU; - 827 (Xﬁullé-kl) + R(U*a ....,UEP) =

v=1

N (A.1.4)
= ZX’jung — Xtubp, + R(u", ..., u5p),
v=1

that it leads to 57

b= X5 — "X} (A.1.5)
o’ .
2P+1

Now, from Z, ((_21)p (uﬁ)2) we have to isolate the terms proportional to ujpu}p (in this

calculation we will use the fact that X}’ = 0 for any v # pu):
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A (71)p+1 o 2 _anl aXﬁ o, H _aP XH Y 8P+1 XM 12 R =
H 92 (UPH) - Y GU’IQ 1UPUP+1 x( uuPJrl)+ x ( ,uuP)+ =

m
= aii(“ Wl — PO, (XPYubp + (P + 1)0, (XM )ulep + OF (X )kt + R =
P—1

X} X}, o B o | ot
Y UP“2P+ Z Z Up | Usp + Oy Z Z Up, | up + R =
Up— v=1m<P—1 U1 v=1m<P-1 U1
ox! Y ox) ax!
= e ulul 4+ Z Rl | ubp + Z —FEuhp | uh + R,
Up_1 —1 4p—1 —up_,

(A.1.6)

where R contains the terms not proportional to u5pu}p. Therefore it’s evident that

2 M
0 Z“l, — (14 20™) 0X,

9l (A.1.7)
duby ,Out,

L,
oulp_y

Isolating the terms proportional to u}p, one finds that (also here we will use the fact that
X! =0 for any v # p and the fact tha X}, doesn’t depend on u}, ;)

(=Pt 2 p1 [ OX}i P P+1 po1 [ OXY
% <2<u5+1> = 087 (g ) ulpulpy ) —OF (Xfud) + O (Xfuly) + 087 (o
P-1 P—1
=0
+ ol tHXE) + R =
oxl Nooxt
= — PO, X[l + (P + 1) Xfubip 4+ 70— n u"P+Z —usp + R,
Ou v=1 aup_l
896qu21>
(A.1.8)

where R contains the terms not proportional to u3p. Clearly this implies that

o
0%y _p, XH+2 0%,
usyp Oulp_y

(A.1.9)

The last relation requires that computations of Z,, ((712:7“ (u;f +1)3) (also here we will use

the fact that X} = 0 for any v # p and the fact tha X}/ doesn’t depend on u},_,):

(—prt! § (<~ (p
2y (6(“Z+1)3 Sut Z I U?-z“§+l+2(Xﬁ“;f3 +Xp) | =
p

P
(PN am [(OX} p
= Z (1) (l>8x <6uM Uplip_ l“p+l+2> N Z <l>af(Xﬁ“l;’—l“g+l+2)+
=0 m<P-2

=0

p p
p - D
+ l>(_a”")P (Xfubupy )+ <l)(_8’”)p+l+2(Xﬁu?“’1?_l)+
(A.1.10)
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P D oxHt b
m m P l
£33 0 (])or (G- + 3 (1) 00O
1=0 m<P-1 m 1=0
p
£ ()

l

I
o

(A.1.11)

We've to isolate the terms proportional to uhp,. From the first terms of the previous
formula we don’t get any term since P — [l < Pand p+1+2 < P+ 1 while m < P —2

(from the derivative of X} it’s not possible to have terms since it depends at most on

ug p_5). Therefore we can get at most terms proportional to ug p_1- From the second term

we obtain

P
—Z < )8 X“up lup+l+2) = —Xﬁugpug+2 — PO, (X“upﬂ)ugp —pXﬁugPungZ + R=

=—(P+p+ 1)X/’jugpu§+2 — PaxXﬁugPuZH + R,
(A.1.12)

since we get a ug p term deriving P times u‘lﬁ,fl for I = 0, deriving P-1 times up_;, , for
| = p (so we have to derive 1 time X//) and deriving P times Up 4o for I =p—1. From
the third term one get

p
p _
> <l> (=02)" N (Xpupupy, o) = = Xfiubpup o + R, (A.1.13)
1=0

since from uf, we can get ug p putting [ = 0. There is another contribution coming from
ug 4140 in the case P < 3. Indeed the maximum values reached by the derivative index
of ug+l+2 after the application of 0, isp+1+ 2+ P — [ = 3p + 3 for which the following
inequalities holds:

3p+3>22P=4p+2 <= p<1 <= p=0,1. (A.1.14)

In the case P = 3 (p = 1) one can verify that the terms coming from uz 140 vanish: this is
why the relation that we are proving holds for P > 3. Indeed we get the following terms:

Xfug( —ug + ug ) =0. (A.1.15)
~~ ~~
p=1,1=0 p=1,l=1

In the P = 1 case there isn’t the elison of terms as in the N = 3 case. From the fourth
term we get

P

p
E (l) (fax)p+l+2(Xﬁu’]f-,u’1§_l) =(P+1)0, (X#upﬂ)ugp — pXﬁugPungQ =
=0

= (P +1—p)Xhul, qubp + (P +1)0: Xfuhpul, 4,
(A.1.16)

where we'used the same arguments used above (also here there is the N = 3 elision of the
extra-term). From the fifth term we have

p M Iz
m (P am [ 0X 0X,
2 2, (Y <l)a$ (8%@2 P Z“”) :&LTO”ZH“/;PJF& (A.1.17)

1=0 m<P—1 P-1
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where we’ve applied the same arguments used above. The sixth term doesn’t have terms
proportional to uh, for N > 3. In the case N = 3 one can verify in the same way described
above that the terms proportional to uf, vanish. The extra- terms elision for the N = 3
case is present also in the seveth term. Moreover, applying 85 1 (l=p)to XF, we get

£ b 142 8X6L
3 < l) (o) = DXt R (A.L18)
=0 P-1

Finally, summing all the terms proportional to u’; p» we get the desired relation:

0Z, oxy
= (2% + 0. X! |t | — PXF . A.1.19
o ( oy, ) o e AL
A.1.1 Exactness of cu} 2L
u
In this section we will prove that
of
drcut! = =0 A.1.20

for any f € C[[u*]][u}] (this is true also in A). In order to prove this fact, let us introduce
two operators. The first one is called generalized momentum operator.

Definition. The generalized momentum operator of type (t, s), for a,s > 0, is defined

in A as
Puts =Y (1) <k : s) o o 8#6 : (A.1.21)
>0 t+s+k

where p € {1,...., N} is the direction index. Moreover for s = —1 we can define the
momentum operator as

Put,—1 au? ) (A.1.22)
Fort = s =0 we have that p,00 = %
The second one is called Energy operator.
Definition. The Energy operator is defined in A as (for s > —1)

Es =) ul'puis (A.1.23)

t>1

We denote with E = Ey — 17 (where 1 is the identity operator in .;L\)
For this two operators the following theorem holds:
Theorem. In A the following operatorial identities hold:

® Dut,s© Op = Pu,t,s—1

® 0,0 Put,s = Pujt,s—1 — Put—1,s

. (%OE:—u‘féu%.
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Proof. For the first identity we have

k+s 0
k k
Pu,t,s © 8w = (_1) ( >8gg o aﬂc -
go § Ouyy gy,
k 0 0
k>0 Ou i pa aut-l—s-i—k
-1 0
k>0 y Ol s 1 k>1 5 Mty
0 k+s k+s—1 0
s B () (et
Mty o1 =1 s s Uit stk—1
0 k+s—1 0
Utts—1 > 5= A
Pu,t,s—1
(A.1.24)
The other two identities are a consequence of the first one. Indeed
k+s 0
k k+1
k>0 +s+k
A.1.25
k>0 My sy My gy
= Pu,t,s © aa: — Put—1,s = Pu,t,s—1 — Puit—1,s
and
Oy 0 Ey = Z Oy © (ufp%to) =
t>1
= Z u¢+1pu7t,0 + Z Uﬁax O Pu,t,0 =
t>1 t>1
= Zufpu,tq,o + Z Uy (Pt —1 = Ppt—10) =
t>2 t>1 (A.1.26)
= —ufpuo0+ ) u =
1w, ; t aut .
0
= —uypp00 + Z“tﬂa =
>0
= —u‘fpu,op + Oy
O
From ({A.1.26)) it’s clear that any f €€ C[[u*]][uf-] (or A)
uof
cuy s = 0z (—cE(f)), (A.1.27)

as we wanted to prove.
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Appendix B

Dubrovin-Novikov theorem

B.1 Vanishing of B* coefficients

First, let us remind the definition of B*:

o [ dg oh o [ 6h 8g
B RV m ap _ fHB —_).ogm av _—J
o (ot (1) o (0 0) ) o (2 50 () o (w2

m>0

o () e pear ()5 (ear (s (0. ()

k>0

0 oh
vB,y_~ [ 2%
i ()

From the first and the third terms we have

o [ 6g 5h 5h
2 af o v -
K (Z Fus <5u> o (K (m)) K (Zf’ak (K w))
m>0 k>0
T 9%g Sh 3 dg Sh
. g . l . af _ qopo l+k k vB .
* (ml>0( %) <8u?§z6“zy % <K 5uﬁ>)) N (k T T lauly(ax) (K 5“5>)

>0,I<k

&g Sh 9
= KM =k_ 979 gmti [ peap O _ eme T .
(Z Z < > %:) augl@ul”af” < Sub Z (-1 ok lauly

_ ke

(B.1.1)

m,1>0 k=0 1>0,k>1

() (K”B(;ZLB)> =

l
l 0%g oh dg
— K,ul/ -1 k -0, -k m+1 Kozﬂ _ K,LLO( -1 l—‘rer' _ .
(5 5o s () o 3 oo

1>0,k>1
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@) (5755) ) =

dg oh dg Sh
v k m--1 oY o m l+m v
= K" ( > (-1 ‘.Tl,’kau%({)er <K BM)) - K* ( > (1) ‘.Ta,mauly(azﬁ <K BM)) =

m,k>0 1,m>0

=0
(B.1.2)

This result will be used to show the vanishing of the other terms. Let us consider the
fourth term. We have

[ (o (22) o (oo o ()
o [ (e (1) o (i (o ()]
o [geenr (2 (0(3)

[ (o (i) o o (0(05)|
o[ () 5 (e (i (o (2))
(752 ) s (0 (35|

e [ (e ) ()
oo [ (700 () e (2)

Following the same steps for the fifth term, we obtain the following contributions:

R Qo (@) o (s ()

n

= K" Z(—@z)k

_ Kk

dg"® _ 8g sh
_a.\k v I
k§>0( Oz) ( o Uz 6u’/> Tak <6u5>] )

(B.1.3)

dg oh
I ! E _ k vB, vy —
k>0
dg oh og"? _ 6g oh
:_KWE:_zk v, KMOIE:_rk Y .
L>0( %) <b7 uxé“”) Terk <5Uﬁ> ! k>0( %) <8u7 e ) Tk \5ur ) |

o4



where we’ve used the compatibility condition in the last step (second equation of (3.1.15))).
Finally, considering the sum of the second, fourth and fifth terms, we have

o (5 () 132) o [ () 5 (o

m=>0 k>0
(e ()] [t (28) 5 () (s ()]

L0 Sh
k>0

k>0

0 oh dg
_ K}LB E o | g _ ke
( Jul <5u > % ( 5u”>)

k>0

o [ oh 5g Sh 5g
_ up Y am av . Qo _1\k G k v “I _
(B e () ) o (g () () =

since this has the same structure of (B.1.2), which it’s vanishing. This implies that B* =
0 VYped{l,...,N}
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: w3
B.1.1 Calculation of C(S)jk

First, let us reintroduced the A%

A

(3) coeflicients:

(B.1.6)

From the last member of the previous relation, it’s simple to derive C*. vB Vi, j € {0,1,2}:

(3)jk

v o | abyﬁ 8byﬁ (%Vﬁ e
Cé)go = 9" | =0 ((91:0‘ ) Uy — a#ugz + 8ﬁ(b5f) —aﬁug + 8$(bgﬁ) b ug
CMVB _ gua _ 8(?'];5 o+ 28;5(17”5) + by,Bb,uaue

(3)10 ou® * « o Vg Yx

(3)01 ou® ou®

v v3
Clygy = g" |0, (89> - Py 20,00 e

vp
+ bgauz [—89 + bgﬁ}

wvB _  po |
0(3)11 =9 e o }
HavP
v _ e} g v
Oé)oz —gt 5o + ghopP

Cé“;ﬁ — guabuﬁ

v v vB
Clayor = Clayia = Clapnn = 0-

(B.1.7)

o6

59 dg"P h 5g (b”ﬂ 1) oh
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K 5u” u T\ dub tsu ou¥ Qu® x(;ug s 5 B ~ 5ul/ ba Sub

]



B.1.2 Dependence of the vanishing relation

In this section we will prove that, using

g = g'*
oghv

ouY

e —yrgm (Cly’ = 0)

BV 4 bUH =
(B.1.8)

oby abre
vpyo apYv B vp _
PRI — bEODY = gt ((w au6> (DEP = 0),

the other coefficients (i.e. C’;.‘kuﬁ with (4, k) # {(0,0); (0,2)}) vanish automatically Yu, v, 3,0, €

{1,...N}.

o CWB C’{‘Qyﬁ, Cwﬂ

They are automatically vanishing since there aren’t terms of the type ( ;*)(2) ( 5‘21 )Z with
ie€{1,2}.

o CQLOVB
Chy? = byPger — phlger (B.1.9)
This is clearly the third relation written above.
o Cﬁ”B
,uzzﬁ ag;w afB aguﬁ av yorel vB
Cy e T g 9 +g —aa+2b
= (0 4 b g7 = (b7 03) g + g (—bﬁ” +077) = (B.1.10)
— bgugaﬁ . bguga/,n +b2ugaﬁ . b,g,ugcxu +bgﬁga,u . bgﬁgau — 0,
N—— SN——
be” 9P b g>? b4P gon

where in the second step we’ve used the second relation and in the last step the third one.

o C’(‘ffﬁ

bhY ub a9\ oY’
ch” = (8 P +b‘“’b°‘5> W= O a4 g —835( . >— Lo +

ou® ou ou® ou® ou®
bgﬁ‘f'bg'u b;ﬁ—&—bg”
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(B.1.11)
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Since the parentesis argument depends only on u*, we have that C4{’ # Vanishes if and only

if the parentesis argument vanishes V+y € {1,...., N}. So we have
Ba 8b5’/ . bﬁybau _buabﬁu + bl agozﬁ - 8bgy poe b,uubaﬁ _ bu,@bau _abzﬁ op g 8[)2’8 ap
ou® o o ¢ ouy dur 7 @ a %y T guad aur !
ﬁa 6b bﬁl/ba,u, _bng"?B_;'_bgﬁb’%u
v 8 oppv v By
— g 8b bﬁljbau buabﬂu o =g 89(1 8b0¢ gua — gﬁoc aba Sy 6ga bﬁy 89‘1# aba
our > ouy ouY ou” > ouy > ouy ouY
_bgl/ 8dgoiyﬂ
_ Y rpv of By au
- au»y (ba g ) 8 'Y(ba ) 07
Vg

(B.1.12)

where we’ve used iterately all the relations.

o Cly g

g;wc> —

pHs v
S (Z g+ bzﬁb3”> ul + g | =gl + 20: (00| + b
g 5 OB dg> SN (RN |,
B («%a i AL L L i S A v

(B.1.13)

Since the parentesis argument depends only on u*, we have that Cf’ # Vanishes if and only
if the parentesis argument vanishes V+y € {1,...., N}. So we have

g Rl g 10 OO ovsP
ag - b’oycﬁ _ 5 ’Ya gow _ bgﬁ 89 - bgﬁbgu _ 8 - + 2gua 5 Oc’Y + bgﬁbua uz —
\qﬁ-/ “ " - vBia vB 9gXH
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oy’ 509 ovs° dg™ o
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where we’ve used iterately all the relations.
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