
 
 

UNIVERSITÀ DEGLI STUDI DI PADOVA 

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE 

TESI DI LAUREA MAGISTRALE IN BIOINGEGNERIA 

 

DEVELOPMENT OF AN EXTENSIBLE CLOUD APPLICATION FOR THE 

MANAGEMENT, ANALYSIS, AND REMOTE SHARING OF 

ELECTROENCEPHALOGRAPHIC DATA, COMPATIBLE WITH MICROMED 

BRAIN QUICK SOFTWARE 

 

Relatore 

Dott. Ing. Marco Castellaro 

Candidato 

Antonio Marittimi 

Matricola 2038150 

Correlatore 

Prof. Giovanni Sparacino 

Dott. Ing. Raffaele Orsato 

Dott. Alberto Pellizzon 

 

A.A. 2023/2024



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Contents 

Contents 

Contents ................................................................................................................................................. iii 

Abstract: .................................................................................................................................................. v 

1.    Electroencephalography .......................................................................................................... 1 

1.1    The electroencephalogram .............................................................................................. 1 

1.2    EEG signal ............................................................................................................................... 2 

1.3    Recording system and electrode placement ............................................................ 5 

1.4     Derivations .................................................................................................................... 10 

1.5    Electrodes montages ....................................................................................................... 12 

1.6    Clinical applications ........................................................................................................ 14 

2.    Brain Quick Software® ............................................................................................................ 17 

2.1    Graphic user interface .................................................................................................... 17 

2.2    Main software features ................................................................................................... 19 

3.    Overview of cloud platforms for EEG management .................................................. 22 

3.1    Cloud computing models ............................................................................................... 24 

3.2    CloudVeneto platform overview ................................................................................ 27 

3.3    Available solutions for EEG management in a cloud platform ..................... 28 

4.  Methods: platform design and implementation ........................................................... 38 

4.1    Django core .......................................................................................................................... 38 

4.2    Django components ......................................................................................................... 39 

4.3    Brain quick cloud  architecture .................................................................................. 47 

4.4    Front-end functionality .................................................................................................. 62 

5.  Results: platform deployment in CloudVeneto .............................................................. 70 

5.1    Client setup .......................................................................................................................... 70 

5.2    Server setup ........................................................................................................................ 73 

5.3    Worker setup ...................................................................................................................... 75 

5.4    Validation and testing ..................................................................................................... 76 

6.  Documentation ............................................................................................................................ 79 

6.1    Superuser ............................................................................................................................. 79 



iv 

 

6.2    User groups ......................................................................................................................... 81 

6.3    Users ....................................................................................................................................... 82 

6.4    Analysis ................................................................................................................................. 83 

7.  Conclusion and future directions ........................................................................................ 88 

7.1    Virtual machines configuration .................................................................................. 88 

7.3    Deployment example ...................................................................................................... 88 

7.4    Future improvements ..................................................................................................... 92 

Bibliography ....................................................................................................................................... 98 

Acknowledgements ................................................................................................................. 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Abstract: 

 

This thesis focuses on integrating technologies such as electroencephalography 

(EEG) and cloud computing in the development of an application built with 

Python and Django for sharing and analyzing EEG data. This application is 

designed to be compatible with Micromed Brain Quick software, extending the 

functionalities of these systems and enabling more efficient management of EEG 

data. The main objective is to provide a platform that facilitates the remote 

sharing of EEG data and patient information. Using the cloud computing 

paradigm, the thesis proposes an innovative approach to storing, accessing, and 

managing data through the web, resulting in increased flexibility and ease of 

access for healthcare professionals. This allows them to request specific analyses 

and access EEG data anytime and from anywhere. The developed system 

leverages the capabilities of the Python programming language and the Django 

framework to create an intuitive user interface and a scalable architecture. The 

application can invoke specific analyses, integrating new algorithms into the 

workflow and enabling distributed processing on worker machines. This 

approach contributes to improving the overall system efficiency, facilitating 

collaboration and knowledge sharing in the field of electroencephalography. 



1 
 

1.    Electroencephalography 

1.1    The electroencephalogram 

 

Human brain is comparable to a machine which is constantly processing 

information coming from the external environment. We always need to take care of 

what happens in our space, and we do this by collecting data from our senses. All 

this information is then funneled inside our central nervous system (CNS), which is 

capable of processing tons and tons of data. The information flow from the outside 

to our CNS is ruled by action potentials, a phenomenon caused by chemical and 

electrical cellular activities that propagates among nervous cells. 

The cellular activity can be recorded in terms of signals, which analysis is an 

indicator of physiological state of the subject. 

Electroencephalography is the science concerning the recording and the analysis of 

bioelectrical signal coming from brain nervous cells, the Electroencephalogram 

(EEG). Data coming from brain is key in the field of neuro-disorders diagnostics and 

has many clinical applications, above all: 

 

• Epilepsy diagnosis 

• Patient monitoring during anesthesia surgery 

• Brain tumor detection 

• Quantification of deficits in brain activity 

• Study of sleep phases 

• Study of EEG rhythm under effect of drugs or meditation 

 

German physiologist and psychiatrist Hans Berger (1873 - 1941) is credited with 

recording the first human EEG brainwaves in 1924, after previous experiments 

performed on dogs and rabbits starting from 1890 with Adolf Beck.  

Berger is considered as the inventor of electroencephalograph, a device to record 

EEG signals, described by David Millet "as one of the most surprising, remarkable, 

and momentous developments in the history of clinical neurology". 

 



2 
 

Nowadays, the EEG recording is obtained by applying sensors, small metal discs 

called electrodes, on the scalp. The electrodes pick up and record electrical events 

occurring in the underlying cerebral cortex. The collected EEG signals are then 

amplified, digitized, and sent to a computer or mobile device for storage and data 

processing. A key feature of electroencephalography is that the exam is non-

invasive, and thus can be executed on all patients, independently from their health 

state. 

Traces are recorded with a temporal resolution in milliseconds [ms], allowing 

real time analysis. Normally, EEG signals are in the microVolt [µV] range and have 

different frequency components. 

 

1.2    EEG signal  

Analyzing brain signals with Fourier’s Transform algorithm, it’s possible to 

extrapolate the frequencies that compose EEG data and to identify several areas, 

with distinct amplitudes and characteristics along the cerebral cortex. Different 

frequencies correspond to different cerebral functions. Those listed below are the 

most relevant in clinical practice. 

 

 

Figure 1: Main EEG components and related frequencies [3] 

 



3 
 

• Beta (β) rhythm (frequency range from 14 Hz to about 30 Hz), is divided  

into slow β (13.5-18 Hz) and fast β (18.5-30 Hz) and has an average electrical 

voltage of 19 µV (8-30 µV ). They are most closely associated with being conscious 

or in an awake, attentive and alert state. Low-amplitude beta waves are associated 

with active concentration, or with a busy or anxious state of mind. Beta waves are 

also associated with motor decisions (suppression of movement and sensory 

feedback of motion). 

• Alpha (α) rhythm (frequency range from 7 Hz to 13 Hz), is the basic 

rhythm present in EEG, also called ”Berger rhythm”; it is possible to distinguish the 

slow α (8-9 Hz), the intermediate α (9-11.5 Hz) and rapid α (11.5-13 Hz), with an 

average amplitude of 30 µV. It is often associated with a relaxed, calm, and lucid 

state of mind. Alpha waves can be found in the occipital and parietal regions of the 

brain. They can be induced by closing one’s eyes and relaxing, and they are rarely 

present during intense cognitive processes like thinking, mental calculus and 

problem-solving. In most adults, alpha waves range in frequency from 9 to 11 Hz. 

• Theta (θ) rhythm (frequency range from 4 Hz to 7 Hz) detected in EEG 

measurement is often found in young adults, particularly over the temporal regions 

and during hyperventilation. It is divided into slow θ (4-6 Hz) and rapid θ (6-7.5 

Hz), with an average voltage of 75 µV. In older individuals, theta activity with an 

amplitude greater than about 30 millivolts (mV) is seen less commonly and could 

be index of brain disorders. In normal conditions the theta phase occurs in the first 

minutes of falling asleep, when a subject is still in a state of drowsiness, where it is 

then alternated by graphemes called sleep spindles. 

• Delta (δ) rhythm (frequency range from 0 Hz up to 4 Hz) are 

predominantly found in infants. Delta waves are associated with deep sleep stages 

in older subjects. They have been documented interictally (between seizures) in 

patients with absence seizures, which involve brief, sudden lapses in attention. 

Delta rhythms can be present during wakefulness — they are responsive to eye-

opening and may be enhanced by hyperventilation as well. They are predominant 

in childhood, occur during general anesthesia of a subject, in some brain diseases 

or in general dysmetabolic diseases, such as hyperazotemia. Delta waves have an 

average voltage of 150 µV. 

 

Other frequencies bands with clinical interest include: 



4 
 

• Gamma (γ) rhythm, a pattern of neural oscillation in humans with 

frequency between 25 and 140 Hz, correlated with large-scale brain network 

activity and cognitive phenomena such as working memory and attention. 

• High Frequency Oscillations (HFO) are brain waves with frequency 

faster than 80 Hz, generated by neuronal cell population. They are present in 

physiological state during sharp waves and ripples - oscillatory patterns involved 

in memory consolidation processes. HFOs are associated with pathophysiology of 

the brain like epileptic seizure and are often recorded during seizure onset. It 

makes a promising biomarker for the identification of the epileptogenic zone [4]. 

 

Figure 2: EEG frequencies components, from Delta to Gamma [5] 

 

 



5 
 

 

Figure 3: Spatial localization of EEG rhythms [5] 

 

1.3    Recording system and electrode placement 

The recording system for EEG signals, known as an electroencephalograph, 

comprises an acquisition module for gathering signals from the scalp through 

measurement electrodes integrated into a specially designed headset worn on the 

patient's head. Additionally, there is a signal processing module and a unit for 

displaying and storing the collected data. 

 



6 
 

 

Figure 4: EEG recording system scheme [6] 

 

Precise positioning of electrodes on the scalp is key to obtaining accurate 

derivations and maximizing the signal-to-noise ratio during recording. Herbert 

Jasper introduced the 10-20 system at the 1957 Brussels IV International EEG 

Congress, offering a standardized method for electrode placement. Widely 

acknowledged internationally, this approach uses anatomical landmarks to ensure 

consistent electrode positioning. Its foundation lies in establishing a correlation 

between electrode locations and specific areas of the cerebral cortex, thereby 

ensuring comprehensive coverage of all regions of the brain. 

The numerical labels "10" and "20" in the 10-20 system correspond to the 

distances between neighboring electrodes, representing either 10% or 20% of the 

overall distance (front-back or right-left) across the skull. This total distance is 

determined by specific anatomical landmarks on the scalp: the nasion and inion 

guide the front-back direction, while the two preauricular points guide the right-

left direction. Using these landmarks, electrode placement is calculated along these 

directions based on pre-defined proportions: 10% is measured from the anatomical 

landmarks for the first electrode in that direction, and 20% is used for the 

subsequent electrodes. For instance, Fp1 is positioned at 10% of the total distance 

from the nasion, and Fz is then located at 20% of the total distance from Fp1. 



7 
 

 

 

Figure 5: The 10-20 system with front-back (nasion to inion) 10% and 20% electrode distances 

[7] 

 

The designation of each electrode is indicative of the general brain region it covers. 

When moving from the front to the back, the electrode letters are assigned as 

follows:  

 

• Pre-frontal or frontal (Fp) 

• Frontal (F) 

• Central line of the brain (C) 

• Temporal (T) 

• Parietal (P) 

• Occipital (O) 

 

For electrodes situated between these lines, a combination of multiple letters is 

employed in an order from front to back. This primarily pertains to systems with 

higher electrode density. Additionally, the letters M and A are occasionally utilized 

to denote the mastoids or earlobes, respectively. These locations are typically 

included to serve as reference points for offline signal analysis. 

In practical application of the SI 1020 method for electrode placement on 

the scalp, it is essential to draw precise lines from specific anatomical reference 

points. These foundational lines, perpendicular to each other, can be outlined as 

follows: 

 



8 
 

1. Antero-posterior middle line (Figure 6): this line connects the nasion 

(upper hairline of the nose) to the inion (prominence at the base of the 

occipital bone) while passing through the vertex. Along this line, the 5 

standard positions are identified. To determine the placement of the 

fronto-polar point (Fpz) and occipital point (Oz), they are located at 10% 

of the total distance from nasion and inion, respectively. All other points 

along this line are calculated at 20% intervals between Fpz and Oz. The 10-

20 system gets its name from this precise calculation of distances between 

electrodes. The middle electrode, as per the ideal arrangement, should be 

positioned exactly in the midpoint between nasion and inion. 

 

Figure 6: Electrodes placement representation on Anterior-posterior middle line, going from 

Fpz to Oz [5] 

 

2. Latero-lateral coronal line (Figure 7): this line connects the right and left 

preauricular points through the central vertex point. Along this line, the 

temporal electrodes are placed at 10% of the total distance, starting from 

the preauricular point. The lateral central electrodes are then situated at 

20% intervals from the temporal points and the median central point [5]. 



9 
 

 

Figure 7: Electrodes placement representation on Latero-lateral coronal line, going from T4  to 

T3 [5] 

Building upon the foundation of the perpendicular lines mentioned earlier, which 

help define electrode positions, we can determine the locations of electrodes 

aligned longitudinally alongside the middle line and those situated on the two 

coronal frontal and parietal lines. These lines extend respectively to the front and 

back of the coronal line that intersects the vertex. Frontopolar electrodes (Fp2 and 

Fp1) find their place along the longitudinal line, positioned at 10% of the lateral 

distance from Fpz. Conversely, for occipital electrodes (O1 and O2), the 10% 

calculation is made in relation to Oz. The inferior frontal (F8 and F7) and posterior 

temporal (T6 and T5) electrodes are positioned at 20% intervals along this line, 

originating from Fp/Fp1 to O1/O2. As for the remaining frontal (F4 and F3) and 

parietal (P4 and P3) electrodes, they are situated along the coronal frontal and 

parietal lines, maintaining an equal distance between the medial and temporal lines 

on each side. The 10-20 system quickly established a standard electrode placement 

on the scalp, facilitating consistent result comparison across laboratories globally. 

However, this method, not immune to criticism, has paved the way for higher-

resolution application techniques, such as the 10-10 and 10-5 systems. [5] 

The 10-10 system for instance, employing 81 electrodes, enables a more 

detailed identification of scalp localizations. 



10 
 

 

Figure 8: 10-10 electrodes placement, with reference to 10-20 channels  [5] 

 

1.4     Derivations 

 

When examining the representation of the brain's bioelectric signal on an EEG trace, 

various factors come into play. Beyond the electrode placement on the scalp, the 

way these electrodes are linked to amplifiers is a critical aspect. In the realm of 

electroencephalography, the synergy between electrodes and their connection to 

the amplifier, involving mounts and leads, holds indispensable importance. This 

practice is rooted in historical significance and practical considerations. Typically, 

the EEG is portrayed as a series of traces, illustrating the dynamic changes in 

potential differences over time. In the traditional analog EEG setup, each trace 

originates from connecting two electrodes to amplifiers and filtering it. 

Subsequently, the captured signal travels through a galvanometer, an instrument 

designed for measuring small electrical currents, before being transcribed by a 

writing pen. 

The evolution to digital EEG has seen a transition to computer hardware and 

software handling the entire process. Despite this shift, each trace, whether 

originating from an analog device or processed by a computer, retains its 

characterization as a channel. This persistent categorization emphasizes the 



11 
 

ongoing significance of tracing electrical activity for a comprehensive 

understanding of brain function.  

The primary types of derivation in EEG recordings include: 

 

1- Referential Derivations (Common Reference, Average Reference): 

 

Common-Reference Mode: Each scalp electrode is referenced to a common 

electrode placed at a specific point, denoted as x. The challenge lies in finding a 

neutral common reference electrode, free from contamination by other electrical 

potentials and biological body potentials—an ideal but rare scenario. The major 

drawback of common referencing is referential contamination, wherein electrodes 

near a potential peak cause voltage change in all referenced electrodes. Equi-

potential electrodes with the reference reach zero, while those less engaged with 

the reference exhibit a pseudo-positive response. In theory, understanding the 

distribution of potential should be straightforward given a known electric field. 

However, in practice, the process is reversed.  

Average-Reference Mode, also known as the mathematical reference, introduced 

in 1950 by Goldman and Offner, overcomes many common reference issues. It 

involves considering the average potential of all electrodes as the reference, 

allowing for a more stable and less contaminated baseline. The mathematical mean 

of a series of numerical values ensures that the sum of differences from the mean is 

zero, resulting in positive or negative deflections on the EEG trace relative to the 

zero value of the reference. [5] 

 

2- Bipolar Derivations: 

 

In bipolar derivations, potential differences are calculated between pairs of 

electrodes arranged along longitudinal or transversal chains. These chains share a 

common electrode between two successive channels. Consequently, an event 

beneath a specific electrode generates an equal but opposite deflection in the two 

adjacent electrodes preceding and following it in the electrode chain. This approach 

provides a localized perspective on potential changes between electrode pairs. Due 

to the highly variable nature of EEG patterns—ranging from focal to diffuse, 

transient to persistent—there isn't a single optimal derivation that can effectively 

capture all types of brain activity. One crucial consideration in lead selection is the 



12 
 

distance between electrodes, particularly in the context of common active and 

bipolar leads. 

In bipolar leads, the paired electrodes have small and equal distances, 

accentuating the portrayal of rapid EEG activities. On the other hand, common 

active reference leads feature larger and unequal distances between electrodes, 

facilitating signal amplification and better highlighting slow activity. Illustrated in 

Figure 4, the visualization of a real epileptic focus undergoes changes when 

recorded with digital equipment, depending on the lead used—whether it's a 

bipolar lead, medium referential (AVG), or active common referential (G2). These 

variations in lead types contribute to nuanced representations of brain activity, 

showcasing the importance of thoughtful lead selection in EEG recordings. 

 

 

 

 

 

Figure 9: How real epileptic focus changes depending on the derivation visualized in bipolar 

and referential derivation. Seizure spikes are highlighted in red [5] 

 

1.5    Electrodes montages 

 

Talking about montages in electroencephalography concerns how electrodes are 

connected to the recording channel. EEG laboratories and technicians employ 

various montages for routine recordings, making it difficult to exchange 



13 
 

information among specialists. To address this, the International Federation of 

Clinical Neurophysiology (IFCN) and the American Clinical Neurophysiology 

Societies (ACNS) have issued fitting guidelines. The different assemblies are known 

as longitudinal bipolar (LB), transverse bipolar (TB), or referential (R), each 

designed for 16, 18, and 20 channels. 

 

In summary, key recommendations include: 

 

• Simultaneously record from at least 16 EEG channels. 

• Position at least 21 electrodes following the 10-20 system. 

• Utilize bipolar and referential assemblies. 

• Clearly specify electrode connections at the start of each derivation using 

a simple and easily understood mode. 

• In bipolar leads, maintain continuous lines with equal interelectrode 

distances. 

• Ensure antero-posterior electrode progression. 

 

Figure 5 shows routinely used bipolar montages based on the number of electrodes 

applied, considering the patient's head size. For common reference mounting, 

international guidelines suggest using the right auricle (A2) as a reference for right 

electrodes and the left auricle (A1) for left electrodes. In digital 

electroencephalography, G2 can also serve as an active reference, positioned on the 

midline anterior to Fz [5]. 

 

 



14 
 

 

Figure 10: Spectral peaks montage maps. Lines correspond to subtractions used to 

calculate spectral peaks. From left to right, top to bottom: Counterpart Bipolar, 

Longitudinal Bipolar, Crossed Bipolar, Biauricular reference, and Cz reference [7] 

 

1.6    Clinical applications 

 

EEG stands as a fundamental diagnostic and monitoring tool within the realm of 

clinical neurophysiology, showcasing a wide range of applications for brain 

function analysis. Its significance is particularly pronounced in various clinical 

scenarios, with each application contributing uniquely to the understanding and 

management of neurological disorders. EEG is a non-invasive procedure, making it 

well-suited for individuals of all age groups, allowing doctors to observe and 

analyze brain activities without the need for invasive measures. Beyond its non-

invasiveness, the EEG excels in its ability not only to record abnormal activities 

within the brain but also to pinpoint their specific locations. 

One of the primary clinical roles of EEG lies in the diagnosis and 

classification of epilepsy. By capturing and analyzing abnormal electrical activity in 

the brain, such as epileptic spikes and waves, EEG aids in determining the specific 

type of epilepsy a patient may be experiencing, thereby guiding tailored treatment 

approaches. Beyond diagnosis, EEG assumes a critical role in the long-term 

monitoring (LTM) of patients with epilepsy, offering continuous observation to 

capture and characterize seizure activity. This meticulous process, often coupled 

with video recording, allows clinicians to correlate clinical events with their 



15 
 

corresponding electroencephalographic patterns. Moreover, EEG plays a key role in 

assessing patients experiencing altered states of consciousness. Whether 

individuals are in a coma or facing unexplained periods of confusion, EEG patterns 

become an instrument to comprehend the underlying neurological conditions 

contributing to these altered states. 

In the realm of sleep medicine, EEG is a fundamental tool for evaluating 

various sleep disorders, uncovering abnormalities associated with conditions such 

as sleep apnea or parasomnias, contributing significantly to the field of sleep 

medicine. 

During surgery, particularly in procedures involving the brain, real-time 

EEG monitoring has been proved as a valuable ally. It provides insights into the 

ongoing functionality of the patient's brain, particularly in surgeries where patients 

need to be awake or when there exists a risk of compromising critical brain regions. 

The versatility of EEG extends to the evaluation of a spectrum of 

neurological disorders, including brain tumors, encephalopathies, and 

neurodegenerative diseases. By capturing distinctive patterns, EEG becomes a 

diagnostic tool, guiding clinicians toward the identification and understanding of 

underlying pathologies. Additionally, EEG finds application in the assessment of 

brain injuries, playing a crucial role in delineating the extent and location of 

traumatic brain injuries and other forms of cerebral damage. 

Even in the domain of psychiatry, though less specific than in neurological 

disorders, EEG offers valuable insights. It aids in the assessment of certain 

psychiatric conditions, such as schizophrenia and mood disorders, where 

discernible patterns may hint at underlying brain dysfunction.  

Beyond its clinical applications, EEG holds a prominent place in research 

settings, contributing to the study of brain function and cognitive processes. 

Researchers leverage EEG to explore the intricacies of memory, attention, 

perception, and various other cognitive functions. Furthermore, EEG biofeedback, 

also known as neurofeedback, emerges as a therapeutic avenue. This innovative 

approach employs real-time EEG data to train individuals in controlling specific 

brainwave patterns. Its applications span conditions such as attention-

deficit/hyperactivity disorder (ADHD) and anxiety. 

 



16 
 

In essence, EEG emerges not merely as a diagnostic tool but as a comprehensive and 

indispensable asset in the clinical landscape, offering invaluable insights that shape 

diagnostic pathways and create tailored therapeutic strategies [1][2][5]. 

 

 

 

 

Figure 11: Example of a sleep study setup, with the main signals involved [8] 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

2.    Brain Quick Software® 

Brain Quick Software® stands as Micromed's leading product in the EEG market. 

This advanced software serves as a solution for managing various aspects of EEG 

and Video EEG processes, including acquisition, review, Long Term Epilepsy 

Monitoring (LTM), Stereo EEG, and Ambulatory EEG/PSG. Brain Quick Software® 

relies on File Manager, an intuitive archive interface that oversees both basic and 

advanced archive operations. Specifically, it facilitates fundamental patient and 

exam operations through Create, Read, Update, and Delete (CRUD) functionalities. 

Among its capabilities are the copying or moving of patients from one resource to 

another, as well as the transfer of exams between resources and patients/exams 

filtering. The software also automates patient migration from one resource to 

another post-acquisition and ensures the automatic archiving of patients after 

reporting. From File Manager, users are able to launch Brain Quick Acquisition 

directly, allowing to start the recording of a new Video EEG exam or to access 

existing Video EEG Exams through Brain Quick Review. The synergy between 

Brain Quick Software® and File Manager thus provides a user-friendly and 

comprehensive platform for EEG management. 

 

2.1    Graphic user interface 

 

The user can easily start File Manager using its dedicated icon. As soon as File 

Manager starts up, user is automatically projected in one of the available resources, 

displaying all existing patients. 

 



18 
 

 

 

Figure 12: File Manager interface at startup [9] 

 

In Figure 12, the organizational structure of File Manager is illustrated. In 

particular, the patients' list is featured on the left, providing a comprehensive view, 

while all available exams for each patient are presented on the right. The resources 

panel on the extreme right facilitates navigation among different resources. At the 

top section, File Manager's functionalities are arranged into tabs within a Ribbon 

Bar. Of particular interest is the Brain Quick Tab within this Ribbon Bar, situated on 

the upper part. This tab serves as a hub for various actions, allowing users to initiate 

a new EEG or Video EEG acquisition, create a new report, and access other 

advanced functions (refer to Figure 13).  

 

 

 

Figure 13: Brain Quick Tab with all available functionalities [9] 

 

Always from archive view, double clicking on a EEG exam, Brain Quick is directly 

started, allowing to review the existing trace (Figure 14). 



19 
 

 

 

 

Figure 14: How Brain Quick Software appears reviewing an EEG [9] 

 

The interface of Brain Quick Software presents a similar organization, containing a 

title bar from which it is possible to view patient’s information, and a ribbon bar 

divided into tabs, which give access to all review functions. Both Brain Quick 

Software and File Manager offer the possibility to customize Ribbon Bar, defining 

desired functions to be present in each tab. 

 

2.2    Main software features 

 

Brain Quick Software is a comprehensive tool designed to support physicians in the 

recording, reviewing, and analysis of data obtained from Micromed digital 

acquisition systems. Its versatile application extends to EEG, LTM, PSG, useful for 

neurophysiological studies. For instance, the software is equipped for specialized 

tasks, such as cortical and photic stimulation during electroencephalography 

examinations (stereo EEG), in conjunction with specific Micromed stimulators. 

Furthermore, it offers the capability to monitor physiological measurements, 

including Intracranial Pressure (ICP), Brain Tissue Oxygen (PbtO2), Cerebral 

Perfusion, Heart Rate (HR), and Blood Oxygen Saturation (SpO2), sourced from 

interfaced third-party medical devices [9]. 



20 
 

While the software provides predefined functional analysis tools, it is 

essential to emphasize that the results from these tools should not replace critical 

interpretation and clinical conclusions. Therefore, the use of Brain Quick Software 

is intended for qualified individuals, such as physicians, technicians, or healthcare 

professionals educated in biopotential recording, and serves more as a Clinical 

Decision Support System. Consequently, the utilization of BQ Software should 

always occur under the supervision of a physician or a qualified technician. The 

software supports international usage by offering multiple language options, 

accommodating characters from various languages, including non-character 

languages like Chinese and Norwegian. Functionally, BQ Software is designed to be 

multifaceted, enabling the management of archived and non-archived historical 

studies, remote reviews of ongoing studies performed by the SystemPlus Evolution 

acquisition system, report creation and template management, multiview 

examinations, initiation of new EEG recordings based on predefined or selected 

protocols, and creation of new histories and reports along with the management of 

report templates. 

File Manager is able to work into 2 different operative conditions: 

• Standalone Environment: machine serves both as a client and as a server 

• Distributed Environment: a machine serves as a server, while all other 

machines in the system serve as clients. This configuration offers lots of 

advantages, such as settings centralization, central logs management, 

notifications management. 

 

In terms of configuration, both Brain Quick Software and File Manager operate 

on three levels: 

 

• User Level: Individual settings unique to a specific user in an environment, 

encompassing preferences such as color preferences, panels disposition, 

interface customization. 

• Unit Level: Settings unique for all users on a specific machine, covering 

configurations like electrode positions, event definitions, average (AVG) 

reference configuration, specific paths and acquisition list configuration. 

Each unit setting has the possibility to be centralized, to be spread in all 

machines of the system. 



21 
 

• Central Level: Settings applied universally to all machines and users 

within the system, including aspects like Internationalization, Language, 

Notch configuration, File Manager labels. 

 

 

 

 

 

 

 

 

 

 



22 
 

3.    Overview of cloud 

platforms for EEG management 

In the landscape of modern computing, the emergence of cloud platforms has 

transformed the way organizations manage and deploy their digital infrastructure. 

The essence of cloud computing lies in its ability to provide on-demand access to a 

myriad of computing resources over the internet. In this chapter, the goal is to dive 

in the world of cloud platforms and explore the diverse array of available solutions 

that define the contemporary market in EEG segment. The concept of a cloud 

platform, signifies more than a technological innovation: organizations, both large 

and small, are increasingly relying on cloud platforms to streamline processes, 

enhance scalability, and optimize resource utilization.  

Cloud computing allows individuals and organizations to access computing 

resources over the internet, including applications, physical and virtual servers, 

data storage, development tools, and networking capabilities. These resources are 

hosted in a remote data center managed by a cloud services provider (CSP), who 

offers them through a subscription fee or usage-based billing. The term cloud 

computing also includes the technology that makes it work. This involves 

virtualized IT infrastructure, where servers, operating system software, 

networking, and other components are abstracted using special software. This 

abstraction allows pooling and division of resources, irrespective of physical 

hardware boundaries. For instance, a single hardware server can be divided into 

multiple virtual servers. Virtualization enables cloud providers to optimize the use 

of data center resources. Many corporations adopt the cloud delivery model for 

their on-premises infrastructure to achieve maximum utilization and cost savings 

compared to traditional IT. This model also provides self-service and agility to end-

users.  

Compared to traditional  IT services, cloud computing provides several 

advantages: 

 



23 
 

1. Cost Reduction: Cloud computing allows you to offload the costs and 

efforts associated with purchasing, installing, configuring, and managing 

on-premises infrastructure. 

 

2. Improved Agility and Time-to-Value: Organizations can quickly use 

enterprise applications, reducing the waiting time for IT responses, 

hardware setup, and software installation. Cloud empowers users, 

especially developers and data scientists, to access software and support 

infrastructure independently. 

 

3. Scalability: Cloud offers elasticity, enabling the scaling of capacity based 

on demand. This avoids the need to purchase excess capacity during slow 

periods, and the global network of cloud providers helps distribute 

applications closer to users worldwide. 

 

Whether at home or work, individuals likely engage in cloud computing daily 

through applications like Google Gmail, streaming media such as Netflix, or cloud 

file storage like Dropbox. According to industry analyst Gartner, global end-user 

public cloud spending is projected to reach nearly USD 600 billion in 2023 [10]. 

 

 



24 
 

Figure 15: Major advantages of cloud computing [11] 

 

3.1    Cloud computing models 

 

Cloud computing services come in three primary models: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS), 

and organizations often utilize a combination of these [10]. 

 

• Software-as-a-Service (SaaS) refers to cloud-based applications 

accessible through web browsers, desktop clients, or APIs. Users typically 

pay a subscription fee, and SaaS offers benefits such as automatic upgrades 

and data protection, as application data is stored in the cloud. 

 

• Platform-as-a-Service (PaaS) is useful for software developers, providing 

an on-demand platform with hardware, software stack, infrastructure, and 

development tools. Cloud providers host everything, allowing developers 

to easily manage and scale applications. PaaS often involves container 

technology, like Docker, which virtualizes the operating system. 

 

• Infrastructure-as-a-Service (IaaS) offers on-demand access to 

fundamental computing resources over the internet, including physical 

and virtual servers, networking, and storage. Users can scale resources as 

needed, reducing the need for large upfront investments. Unlike SaaS and 

PaaS, IaaS provides users with granular control over computing resources. 

 

Another less common model is serverless computing, or Function-as-a-Service 

(FaaS). It delegates backend infrastructure tasks like provisioning and scaling to the 

cloud provider. This allows developers to focus only on application code and 

business logic. Serverless operates on a per-request basis, automatically scaling 

infrastructure in response to demand. Users only pay for resources used during 

application runtime, eliminating costs for idle capacity. FaaS allows developers to 

execute specific functions in response to events, with the cloud provider managing 

everything else—physical hardware, virtual machine operating system, and web 



25 
 

server software—in real-time. Billing for FaaS starts when execution begins and 

stops when it concludes, making it advantageous [10]. 

 

 

 

Figure 16: Three main cloud computing models [12] 

 

Cloud computing comes in various forms, each tailored to specific needs: 

 

1- Public Cloud 

 

Public cloud involves a cloud service provider delivering computing resources over 

the public internet. These resources range from Software-as-a-Service (SaaS) 

applications to individual virtual machines, hardware, and complete 

infrastructures. Access can be free or sold via subscription or pay-per-usage 

models. The provider is responsible for managing data centers, hardware, and 

infrastructure, ensuring high-bandwidth network connectivity. Public cloud 

operates in a shared environment, hosting millions of customers in leading 

platforms like Amazon Web Services (AWS), Google Cloud, IBM Cloud and Microsoft 

Azure. Many enterprises are transitioning to public cloud for its scalability, 

elasticity, and efficiency, allowing flexible adjustments to changing workloads while 

minimizing resource waste and reducing spending on on-premises infrastructure. 

 

2- Private Cloud 



26 
 

 

Private cloud is an environment where all cloud infrastructure and resources are 

dedicated to and accessible by a single customer. It combines cloud benefits like 

elasticity and scalability with the control, security, and customization of on-

premises infrastructure. Typically hosted in the customer's data center, a private 

cloud can also be hosted by an independent provider or built on rented 

infrastructure in an offsite data center. Private cloud is a preferred choice for 

companies dealing with regulatory compliance or handling sensitive data like 

confidential documents, intellectual property, personally identifiable information 

(PII), medical records, or financial data. Building private cloud architecture 

according to cloud-native principles allows organizations the flexibility to migrate 

workloads to public cloud or run them in a hybrid cloud environment when ready. 

 

3- Hybrid Cloud 

 

Hybrid cloud combines public and private cloud environments, connecting an 

organization's private cloud services with public clouds into a flexible 

infrastructure for running applications and workloads. The goal is to establish a 

blend of public and private cloud resources, allowing organizations to choose the 

optimal cloud for each application or workload. Hybrid cloud provides flexibility to 

move workloads seamlessly between the two clouds as needed, enhancing 

technical and business objectives more efficiently than relying solely on public or 

private cloud. 

 

4- Multicloud and Hybrid Multicloud 

 

Multicloud involves using two or more clouds from different providers, offering 

flexibility and access to various services. Enterprises often leverage multiple cloud 

services, including SaaS, PaaS, and IaaS, from leading public cloud providers. Hybrid 

multicloud extends this concept, combining two or more public clouds with a 

private cloud environment. Organizations opt for multicloud to avoid vendor lock-

in, access a diverse range of services, and promote innovation. Managing multiple 

clouds can be challenging due to differing tools, data transmission rates, and 

security protocols. Multicloud management platforms provide visibility across 

multiple provider clouds through a centralized dashboard, aiding development, 



27 
 

operations, and cybersecurity teams in monitoring and managing the environment 

effectively [10]. 

 

3.2    CloudVeneto platform overview 

 

CloudVeneto operates as an OpenStack-based cloud infrastructure. Users can create 

Virtual Machines (VMs) tailored to specific requirements, including operating 

systems, software configurations, and preferred hardware specifications like 

processors and memory size. The platform also provides storage options, 

encompassing block storage (attachable volumes for virtual instances) and object 

storage. Beyond fundamental resources, CloudVeneto extends its services to 

higher-level functionalities, including management of multiple resources. Despite 

functioning as a unified cloud service, CloudVeneto strategically distributes its 

resources across two distinct data centers: Padova (hosted at INFN Padova within 

the University of Padova's "Dipartimento di Fisica e Astronomia") and INFN 

Laboratori Nazionali di Legnaro. CloudVeneto is currently built on the Yoga version 

of the OpenStack middleware [13].  

   CloudVeneto infrastructure is available to the users and collaborators of 

the different Departments of the University of Padova, among which Information 

Engineering Department (DEI) [13]. 

   In the realm of the cloud, projects, also referred to as “tenants”, serve as 

distinct organizational entities. Their primary function is to effectively organize and 

segregate users and their associated resources. Each project is allocated specific 

quotas delineating resource usage and covering aspects like virtual machines, 

cores, memory, and storage. While a project can be personalized for a single user 

(termed a personal project), most common scenarios involve shared projects which 

accommodate multiple users, often aligning with experiments, organizations, or 

research groups. Users have the flexibility to participate in multiple projects 

simultaneously, allowing them to seamlessly switch between different endeavors. 

Within the CloudVeneto infrastructure, projects typically align with experiments or 

research groups. Notably, each project designates a project manager, usually the 

team leader, who assumes responsibility for managing membership requests 

within the project, deciding whether to accept or decline these requests [13]. 

Cloud instances are initially deployed on private networks, requiring 

access through a designated gate machine. For CloudVeneto, the specific gate host 



28 
 

(gate.cloudveneto.it) serves this purpose. Instances created within INFN and 

certain UniPD DFA projects are automatically accessible from the Local Area 

Networks (LANs) of INFN Padova/UniPD Physics Department. and INFN-LNL. This 

allows users to directly connect to VMs via SSH from desktops within these 

locations, eliminating the need for the gate machine. If a VM within the Cloud needs 

to provide a service accessible from the Internet, it can be assigned a public IP. 

Control over service/port accessibility is managed through security groups (to be 

discussed later) and firewalls on relevant VMs [13]. 

 

3.3    Available solutions for EEG management in a 

cloud platform 

 

After discussing the fundamentals of cloud platforms and their infrastructures, this 

chapter dives into a specialized healthcare domain, exploring current solutions for 

managing EEG signals within the realm of cloud computing. EEG data management 

presents distinctive challenges, and within cloud platforms, solutions try to 

overcome issues related to storage, analysis, and access to signals data and patients’ 

information.  

Four case studies will be considered to analyze the market existing 

solutions for EEG management in cloud platforms, providing technical details about 

the environment and the technologies used. 

 

3.3.1 ReportFlow: an application for EEG visualization and reporting using 

cloud platform 

ReportFlow is a cloud-based system, developed with the aim to improve the process 

of reporting and delivering electroencephalograms. In a scenario of continuous 

development of Information Communication Technology (ICT) systems, the cloud 

represents a practical solution to the problems of storing and sharing a large 

amount of electronic health records (EHR) or other types of health data, providing 

several benefits to the user and organization. It allows for higher productivity 

compared manual exchange of data. However, some security requirements for data 

sharing in cloud computing systems must be guaranteed. Thus, the provider must 

ensure data security and privacy of sensitive information, especially in complex 

domains like healthcare [14]. 



29 
 

   The application has been developed to solve the problem related to the 

delay in reporting EEGs and evoked potentials of children at the IRCCS Centro 

Neurolesi Bonino Pulejo in Messina, Italy. The delay was mostly due to geographical 

distance and the need for a neuropsychiatrist to get to the structure each time. This 

caused delays up to a couple of days. The team developed, in Python programming 

language, a PC application called ReportFlow for sharing instrumental 

examinations among members of a clinical team including staff from different units. 

ReportFlow exploits the public cloud platform and a PKI (encryption) system for 

security warranty [14].  

   The cloud platform used in this study is Google Drive online storage of G-

Suite. The provider’s account (i.e., the IRCCS), which has unlimited storage space, is 

used to set and manage a shared drive with employees. The shared drive contains 

three different folders, which are accessible to employees according to their 

responsibilities (roles) within the company. The first folder, shared in read-only 

mode, includes all certificates; the second folder, shared in read/ write mode, 

includes the EEGs recorded (i.e., XML files containing both the EHR and the 

diagnostic examination, for each patient); and the third folder shared only to 

physicians and administrative staff, includes the EEGs reported. To keep in sync, the 

local folder with Cloud folder the Google Drive File Stream application was used, 

running on Windows and Mac OSX, while the Google Drive Ocamlfuse was used on 

Linux OS. Figure 17 highlights the workflow and delivery process, while Figure 18 

highlights the related specific flow chart [14]. 

 



30 
 

 

Figure 17: The EEG reporting and delivering process [14]. 

 

 

 

Figure 18:  Flow chart of the EEG reporting and delivering process [14]. 

The use of ReportFlow demonstrated that there has been a significant reduction 

of average times in both EEG exam reporting (t=19.94; p<0.001) and delivering 

(t=14.95; p<0.001). Moreover, the rate of phone calls to patients was significantly 

lower (χ2=94.87; p<0.001), the number of EEG/EP exams performed increase of 

20%, and the child neuropsychiatrist was able to visit about 30% of outpatients 

more than before. Finally, with the introduction of ReportFlow, about 68% of exam 

reports were delivered completely digitally [14]. 

Therefore, the use of ReportFlow supported the hospital in cost-saving (e.g. for 

paper, stationery, phone calls) and facilitated the patients as well. Using ReportFlow 

the reporting process becomes independent by the location: technicians can take 

the diagnostic examination everywhere, also in patients’ homes using a portable 

EEG recorder, and the physician can visualize and evaluate the EEG tracing at any 

time, even from a remote location. Moreover, the EEG report is instantly available, 

and the administrative staff can archive it in real-time, while the application 

automatically delivers it to the patient. The comparative pre-post analysis showed 

promising preliminary results of performance, although the application is still in 



31 
 

the testing phase. Notably, the report delivering service was sensitively speeded up 

due to the improvement of the whole process [14]. 

 

3.3.2 EMOTIV: Mobile and Secure EEG Cloud Database 

Emotiv Inc. is a privately held bio-informatics and technology company developing 

and manufacturing wearable electroencephalography (EEG) products including 

neuroheadsets, software development kits (SDK), software, mobile apps, and data 

products. The company uses a shared cloud platform to save EEG data. With 

EMOTIV Cloud, brain data collected using company’s headsets and software suite 

is automatically and securely captured in a cloud platform. This enables unlimited 

storage, fast processing, and secure internal behavioral and brain data comparison 

without the constraints of labs or local machines. EMOTIV Cloud unlocks new use 

cases for researchers, developers, enterprises and individuals to securely collect, 

backup and analyze a trove of EEG data anywhere [15].  

Users can securely store and access your EEG data from any location, knowing that 

it is fully protected and private. EMOTIV employs industry-standard encryption 

protocols to guarantee the secure transfer and storage of EEG data.  

In fact, EEG datasets are automatically uploaded to the platform, allowing users to 

access them on multiple devices from any location and to share findings instantly 

with the whole team. The advanced capability in mobile EEG data recording and 

sharing goes beyond the constraints of traditional EEG data collection methods 

[15]. 

   When group of neuroscientists, statisticians, and physicists engages in 

brain research, they utilize an anonymized edition of EEG data housed in EMOTIV 

Cloud. Through actively participating in EMOTIV EEG cloud database, developers, 

researchers, and citizen scientists play a vital role in expediting comprehension of 

the human brain. The data generated by the community amplifies EMOTIV capacity 

to refine algorithms and precisely gauge EEG signals for the benefit of our users. 

   MOTIV Cloud is available by default in all EMOTIV applications and is 

supported by all available headsets. The workflow is very simple, a recording 

system is made of a headset (Figure 15) and a software named EmotivPRO available 

on App Store and Play Store. 

 



32 
 

 

Figure 19: EPOC-X headset by EMOTIV [15] 

 

After data acquisition, user has the possibility to analyze and save data recordings 

locally or to secure them in EMOTIV cloud (Figure 20). 

 

 

Figure 20: EmotivPRO basic workflow [15] 

 

3.3.3 Brain Science: A Cloud-based Data Platform for Efficient EEG Data 

Management, Collaboration, and Analysis 

To ensure the overall success of a neuroscience study, multiple researchers may 

collaborate concurrently to accelerate the progress of the study in different tasks. 

Therefore, a platform that can improve the efficiency of each task is critical for 

accelerating the entire research project. The collected data represent valuable 



33 
 

resources that warrant careful management for data security and to support 

subsequent analyses [16]. The availability of hardware resources, such as 

computing power, could also limit researchers in their choice of specific analysis 

strategies. While a host of tools and platforms exist to aid in various aspects of EEG 

research, the need for a comprehensive solution that combines data management, 

collaboration, and data analysis remains a key challenge. 

The study introduces a cloud-based data analysis collaboration platform to 

address the broader needs of neuroscience research beyond EEG data analysis. 

Recognizing the collaborative nature of tasks like experiment arrangement and 

data collection, the platform aims to enhance efficiency in data management, 

research collaboration, and EEG data analysis. By providing cloud-based services 

for storage, computing, analysis, sharing, and collaboration, the platform 

streamlines the development of EEG-related experiments. 

The platform's system architecture follows a browser-server model 

(Figure 21). Its backend, hosted on a cloud server, allows users to interact with 

cloud-based data through a front-end browser. The cloud server includes an 

administrative database, an EEG file database, and a computation server for storing 

administrative data, EEG files, and processing extensive EEG data, respectively. The 

platform comprises four core modules: data management, data visualization, data 

query, and data analysis. Users can wirelessly upload EEG data or use a hard drive, 

supporting common neuroscience storage formats like EDF, BDF, and CNT. 

Uploaded data undergoes a quality check, with accepted data stored on the file 

server. JavaScript frameworks facilitate data visualization, and Elasticsearch 

powers the search function, constructing retrieval indexes and sorting files based 

on signal similarity. The analysis function employs the MNE algorithm library, 

allowing researchers to upload and share custom algorithm files for EEG analysis. 

 



34 
 

 

Figure 21: Architecture of the platform, starting from local laboratories to cloud data 

storage. 

The research administrator can assemble a team, enabling collaboration and 

record-keeping on the platform. During the data collection phase, researchers can 

create projects to document essential details of EEG experiments, including subject 

information and experiment schedules. All experiment-related data, such as 

location, duration, participants, and devices used, is recorded on the platform for 

efficient management and retrieval. The platform also facilitates easy uploading of 

experiment-generated data, associating it with relevant details such as the 

operator, subject, and device. In the data analysis phase, researchers responsible 

for analysis tasks can utilize the platform's built-in support for common analysis 

tasks like EEG data filtering, time-frequency analysis, and EEG topomaps. They can 

also upload custom EEG analysis code files. The computation server executes 

defined analysis tasks sequentially, storing the data and results on the platform. The 

platform provides a user-friendly interface for analysis functions, eliminating the 

need for researchers to write and execute code. Researchers can save defined 

parameters as fixed schemes, streamlining future analyses. The platform also 

allows researchers to choose whether to make custom schemes public or private, 

facilitating collaboration among researchers [16]. 

 



35 
 

 

Figure 22: Brain Science platform user interface [16] 

 

The platform facilitates the collection, management, and computation of large 

batches of EEG data, ultimately enhancing the efficiency of EEG experiments and 

promoting the development of neuroscience research [16]. 

 

3.3.4 Cloud Infrastructure for Storing and Processing EEG and ERP 

Experimental Data 

The field of electroencephalography (EEG) and event-related potentials (ERP) 

involves expertise from diverse domains such as signal processing, database 

management, and hardware. Additionally, laboratory personnel handling 

experiments need comprehensive knowledge of the entire process, including data 

collection, storage, processing, and result presentation within a complex chain of 

activities. The adoption of cloud computing allows for the distribution of 

responsibilities, which can be either partially outsourced to a paid service or 

divided among individual experts who may not necessarily be situated in the same 

laboratory. The team developed a complex cloud platform for storing and 

processing experimental data. It contains a data storage, a library of signal 

processing methods, and a simple GUI allowing users to easily control the whole 

system [17]. 

 



36 
 

 

 

Figure 23: Graphic User Interface of the platform [17] 

The platform has been validated using a deep learning analysis algorithm on ERP 

signals. Key aspects include robust and secure data storage for collected data, linear 

execution of data processing operations with the need for parallel execution in 

tasks like classification employing deep learning methods [17]. 

Commonly employed open-source technologies for data storage and 

processing in distributed environments encompass Apache Hadoop and Apache 

Spark. Apache Hadoop, designed for executing massive parallel jobs, serves as a 

shared space for data and computational resource access. It comprises multiple 

technologies within its ecosystem. The Hadoop Distributed File System (HDFS) is 

utilized for high-throughput access to distributed data. 

 

Figure 24: Platform architecture, from client to data processing on server [17] 



37 
 

 

The architecture of the system has been developed as shown in Figure 24. 

A cloud part of the architecture is a docker image containing on the left side: A 

Hadoop distributed file system (HDFS) implemented in the Cloudera platform. On 

the right side: The remote server operating the data analysis package. The server 

accesses data via a data reader and communicates with the client GUI program via 

the REST API. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

 

4.  Methods: platform design 

and implementation 

This section will provide a comprehensive technical description of the plugin 

developed to integrate with Micromed Brain Quick Software. The entire codebase 

is written in Python, leveraging the Django framework for efficient management of 

the database, queries, and URLs. 

4.1    Django core 

 

Django is as an open-source web framework written in Python programming 

language. It is used by some of the largest websites in the world including 

Instagram, Mozilla, and NASA, but also lightweight enough to be a popular choice 

for weekend side projects and startups. Its "batteries-included" philosophy ensures 

that a skilled developer can rapidly create a robust website with a rich set of tools 

and features [19]. 

 A web framework is a standardized software that simplifies and abstracts 

common challenges in website development. It addresses tasks such as database 

connection, server deployment, URL routing, security, and user registration. 

Python, a popular programming language, is recognized for its friendliness, power, 

and robust ecosystem, notably with frameworks like Django. Django, aligning with 

Python's philosophy, offers built-in features, robust security practices, and 

extensive documentation. It is known for stability, infrequent breaking changes, 

and a vibrant ecosystem of third-party applications. Major updates are released 

approximately every nine months, with regular security and bug fix patches. 

Django's ecosystem includes third-party applications visible on Django 

Packages, with popular ones often integrated into Django itself over time. The 

framework is regarded for its maturity, stability, and continuous improvement 

within a well-defined release schedule [19]. 

 



39 
 

4.2    Django components 

 

Django deals with projects, structured and ordered fodders with different files (see 

Figure ). The main project folder, often named after the project itself, acts as the 

central hub. This folder contains files and subfolders, starting with the 

“settings.py” file, which contains configuration settings for the entire project, 

covering aspects like databases, time zones, installed apps, and static files. 

Management of URLs is handled by the “urls.py” file, specifying how different URLs 

should be processed and connecting them to specific views. Entry points for WSGI 

and ASGI servers, essential for communication between the Django application and 

the web server, are provided by the “wsgi.py” and “asgi.py” files. Django projects 

are made up of apps, each residing in its own folder. App folders contain key files 

like “views.py” for defining views, “models.py” for defining database models, and 

a “templates” folder for HTML templates. These apps collectively contribute to the 

functionality of the entire project. Database models are defined in the “models.py” 

file within each app, using Django's ORM system to structure database tables. Static 

files, including CSS, JavaScript, and images, are stored in the “static” folder. HTML 

templates reside in the “templates” folder, often organized within each app. These 

templates dynamically generate HTML content based on data from views, 

contributing to the project's overall structure. Database schema changes are 

tracked in the “migrations” folder, where developers create and apply migrations 

to keep the database structure updated. The “manage.py” file is a command-line 

utility offering various functionalities, such as running the development server and 

applying migrations, simplifying project management tasks [18]. 

This well-organized structure in Django facilitates the development 

process, making it modular, scalable, and more straightforward to manage. 

 



40 
 

 

Figure 25: Example of folders structure in a Django project, with reference to project folder and 

app folder 

 

4.2.1    Templates  

In web development, Django relies on templates to dynamically generate HTML 

content. A template incorporates static HTML components and utilizes a special 

syntax to outline the insertion of dynamic content. Regardless of the chosen 

backend, Django maintains a standardized API for loading and rendering templates. 

Loading involves locating the template based on a given identifier and 

preprocessing it, typically involving compilation into an in-memory representation. 

Rendering encompasses the interpolation of the template with context data, 

ultimately producing the final string [18]. 

 The Django template language employs a text document or a Python string 

as a template, incorporating specific constructs that the template engine recognizes 

and interprets. The fundamental elements within this language are variables and 

tags.  

When rendering a template, it is accompanied by a context. During 

rendering, variables are substituted with their corresponding values, retrieved 

from the context, and tags are executed. The remainder of the content is output as 

it appears [18]. Django templates utilize a double curly brace notation, like {{ 

variable }}, for variables. These variables represent dynamic content to be 

substituted during rendering. Tags in Django templates are enclosed in curly braces 



41 
 

with percent signs, such as {% tag %}. Tags execute specific logic or control flow 

within the template. Filters, another construct, modify the appearance or behavior 

of variables in the template. They are applied using the pipe symbol, e.g., {{ 

variable|filter }} [18]. 

Django templates support loops and conditional constructs, facilitating 

dynamic content generation based on the provided context (see Figure ). 

 

 

 

Figure 26: Template example from Brain Quick Cloud View 

 

4.2.2    Views 

 

A view function, commonly referred to as a view, is a Python function designed to 

handle a web request and produce a corresponding web response. This response 

may encompass various formats, such as the HTML content of a webpage, a 

redirect, a 404 error, an XML document, an image, a template, or virtually any other 

type of content. The view function encapsulates the specific logic necessary to 



42 
 

generate and return the desired response. The flexibility is such that this code can 

reside anywhere in project folder, without any intricate requirements. 

Conventionally, for organizational purposes, views are often placed in a file named 

views.py within the project or application directory, but this is more of a 

convention than a strict rule [18]. 

 

 

Figure 27: View example from Brain Quick Cloud View. This view queries all available 

exams, after verifying user login and group membership 

4.2.3    URLs 

To establish URLs for an application, it’s necessary to create a Python module 

referred to as a URLconf (URL configuration). This module, comprised solely of 

Python code, functions as a mapping tool, associating URL path expressions with 

specific Python functions, usually representing views. Mapping can be even 

extensive, with the flexibility to reference other mappings [18]. URLs, 

conventionally, are all grouped in “urls.py” file. 

 

 

Figure 28: URL pattern example from Brain Quick Cloud View. The dynamic URL loads 

PatientInformation view based on the parameter PatientSlug passed from URL. 



43 
 

4.2.4    Models 

A model serves as the primary and comprehensive repository of information for 

data in Django. It includes the fundamental fields and functionalities related to the 

data intended to be stored, aligning with a specific database table. Each model is 

implemented as a Python class, inheriting from “django.db.models.Model”. Every 

attribute within the model corresponds to a distinct database field, defining the 

structure of database table. 

 

Through this model definition, Django provides an API for seamless interaction 

with the database, allowing to perform queries effortlessly [18]. Each field in a 

model is an instance of the appropriate Field class. the strength of relational 

databases lies in establishing connections between tables. Django provides 

effective means to articulate the three predominant types of database 

relationships: many-to-one, many-to-many, and one-to-one [18]. Conventionally, 

models are saved in “models.py” document. 

 

 

Figure 29: Example of Exam model in Brain Quick Cloud View project 

Figure 29 shows how the database table has been created for the object of type 

“Exam”, inherited from built-in “models” class. Each field is a specific feature of the 

object Exam. Some are defined as Char fields, while other are Date/Time or File 

fields. The foreign key “ExamPatient” is a link to “Patient” model, establishing a 

relationship one-to-many from “Patient” to “Exam”. 



44 
 

 

4.2.5    Forms 

In HTML, a form is a set of elements enclosed within <form>...</form> that enables 

users to input text, select options, and interact with controls, subsequently sending 

this information back to the server. The form utilizes various elements, some 

inherent in HTML, while others, like date pickers or sliders, require JavaScript and 

CSS in addition. Key attributes for a form include specifying the URL (where the 

data should be returned) and the HTTP method for the return (GET or POST) [18].  

 Django simplifies the process of managing forms within web applications. 

The built-in Form class maps form fields to HTML form elements, offering a 

streamlined solution for rendering and processing forms. Fields, represented as 

classes, manage data and perform validation upon submission. HTML "widgets" 

visualize form fields in the browser. Rendering a form in Django involves obtaining 

it in the view, passing it to the template context, and expanding it into HTML 

markup using template variables. Forms can be instantiated empty or prepopulated 

with data, such as information from saved model instances or previous form 

submissions. Django's form functionality automates these tasks securely [18]. 

 

 

Figure 30: Example of a form from Brain Quick Cloud View written in file forms.py. 

In the Brain Quick Cloud View project, the creation of a form is illustrated in Figure 

30. The "forms.py" file conventionally houses all forms intended for submission in 

HTML pages. Specifically, the "AnalysisSettingsForm" has been developed by 

extending Django's built-in Form class, utilizing the "ModelForm" attribute. This 

attribute facilitates the creation of a form that encompasses all fields of the 

specified model, exemplified by "AnalysisType" in this case. The following code 

snippet is designed to showcase the stored values when the form is loaded.  



45 
 

 

 

   Figure 31: How the form is rendered from a specific view in Brain Quick Cloud View project 

Figure 31 instead shows how the form logic and how it is rendered from 

“AnalysisSettingsInput” view. In particular, the form containing analysis parameters 

is rendered with the actual parameters saved and, if the request method is POST, 

new values submitted by the user are saved and user is redirected to another web 

page. 

 Eventually, Figure 31 shows how the form is managed from HTML code in 

“AnalysisSettingsForm” template. 

 



46 
 

 

Figure 32: Definition of the form in HTML page 

Form and its method are defined using <form method = “post”> and button for 

submission. 

 

4.2.6    REST Framework 

Django REST Framework (DRF) is a versatile toolkit within the Django ecosystem, 

designed specifically for constructing Web APIs. It enhances the capabilities of the 

Django web framework, providing a set of tools to create, version, and use APIs 

effectively. DRF encompasses essential features such as serialization, 

authentication, permissions, viewsets, and routers, allowing developers to 

establish robust and scalable RESTful APIs seamlessly. Its aim is to simplify 

common tasks associated with API development, while also encouraging adherence 

to best practices, fostering code reuse, and promoting long-term maintainability 

[20]. Conventionally, API folder is created inside application folder, and it includes 

“urls.py”, “views.py” (specific for APIs management) and “serializers.py”.  

 File containing URLs specifies which are the links that serve for HTTP 

requests, while file containing Views indicates how views, associated singularly to 

URLs manage different types of requests (GET, POST, PUT, DELETE). Eventually, 

“serializers.py” serves as a tool for request serialization, useful to manage 

different type of requests. 

 



47 
 

 

Figure 33: Example of serializer to manage creation and update request for Exam object 

from Brain Quick Cloud View 

Figure 33 shows how “ExamSerializer” is defined, to manage creation and update 

requests to the exam endpoint.  

  

4.3    Brain quick cloud  architecture 

 

After discussing basic some basic Django concepts used for this project, it’s now 

time to dive deeply into platform architecture and details. Django project is named 

BQCloudView, with PatientCloudView being the only associated application, 

containing all features that will be discussed in the next chapters.  

 The application is composed of a set of views and related URLs to dive into 

patients and exams data received from Micromed File Manager. The objective of the 

project is to be installed in a cloud platform to easily visualize patients and exams 

data, download reports generated from hospital technicians and allow EEG data 

analysis for clinical purposes.  

 



48 
 

 

Figure 34: Basic platform description 

 

Figure 34 shows the basic architecture of the platform, in particular: 

 

1- File Manager machine installed in CloudVeneto platform contains all 

clinical data that clinicians need to export to Django server. Data exported 

from File Manager are sent to Django server endpoints, that manage: 

a. New Patient insertion with all data available from File Manager 

(POST request) 

b. Patient data update with all data available from File Manager 

(PUT request) 

c. New Exam insertion with all data available from File Manager, 

together with exam Report and exam Data in Matlab format (POST 

request) 

d. Exam data update with all data available from File Manager, 

together with exam Report and exam Data in Matlab format (PUT 

request) 

 

2- Django server machine installed in CloudVeneto platform is equipped 

with the entire project code essential for initiating the server, ensuring its 

continuous operation, and maintaining a stable workflow. 



49 
 

 

3- Every time a user initiates an EEG analysis through the Django server, a 

Virtual Machine is dynamically created in the cloud platform. This virtual 

machine processes the incoming request along with the associated data, 

performs the analysis, and subsequently transmits the results back to the 

Django server. This setup ensures that the data analysis is seamlessly 

handled by a separate machine, enhancing efficiency in the process. 

 

4- End User can easily access data from Django server thanks to CloudVeneto 

port forwarding feature. 

 

4.3.1    Models definition 

For this project purpose it’s has been decided to use patients and exams 

information managed from File Manager, to make the integration easier to 

implement, replicating the same fundamental fields. In addition, other models have 

been defined to work with data analysis and to manage user permissions. 

 

Patient model 

 

class Patient(models.Model): # all features belonging to 

patient 

    ID1 = models.CharField(max_length=50, null=True, 

blank=True) 

    ID2 = models.CharField(max_length=50, null=True, 

blank=True) 

    LastName = models.CharField(max_length=50, null=True, 

blank=True) 

    FirstName = models.CharField(max_length=50, null=True, 

blank=True) 

    Birthdate = models.CharField(max_length=50, null=True, 

blank=True) 

    Gender = models.CharField(max_length=50, null=True, 

blank=True) 



50 
 

    Height = models.CharField(max_length=50, null=True, 

blank=True) 

    Weight = models.CharField(max_length=50, null=True, 

blank=True)  

    Address = models.CharField(max_length=50, null=True, 

blank=True) 

    City = models.CharField(max_length=50, null=True, 

blank=True) 

    Country = models.CharField(max_length=50, null=True, 

blank=True) 

    HospitalDepartment = models.CharField(max_length=50, 

null=True, blank=True) 

    Marker = models.CharField(max_length=50, null=True, 

blank=True) 

    Doctor = models.CharField(max_length=50, null=True, 

blank=True) 

    PatientSlug = models.SlugField(unique=True, 

db_index=True, default = '') 

    Comment = models.TextField(null=True, blank=True) 

 

Patient model contains the following fields: 

 

• ID1, equivalent to patient univocal code 

• ID2, equivalent to tax code 

• LastName 

• FirstName 

• Birthdate 

• Gender 

• Height 

• Weight 

• Address 

• City 

• Country 

• HospitalDepartment 



51 
 

• Doctor 

• PatientSlug, built as FirstName-LastName-Birthdate, it is the patient 

identifier in Django Server 

• Comment 

 

Exam model 

 

class Exam(models.Model): # all features belonging to exam 

    ExamCode = models.CharField(max_length=50, null=True, 

blank=True) 

    ExamMarker = models.CharField(max_length=50, null=True, 

blank=True) 

    ExamComment = models.TextField(null=True, blank=True) 

    ExportDate = models.DateField(auto_now=True) 

    ExportTime = models.TimeField(auto_now=True) 

    Report = models.FileField(null=True, blank=True, 

upload_to='reports/') 

    Matlab = models.FileField(null=True, blank=True, 

upload_to='matlab/') 

    ExamSlug = models.SlugField(unique=True, db_index=True, 

default = '') 

    ExamPatient = models.ForeignKey( 

        Patient, null=True, on_delete=models.CASCADE, 

related_name="exams") 

 

Exam model contains the following fields: 

 

• ExamCode, equivalent to exam univocal code 

• ExamComment 

• ExportDate, it’s the date related to data sending to Django server 

• ExportTime, it’s the time related to data sending to Django server 

• Report, it’s a file type field, used to store report exported from File 

Manager 



52 
 

• Matlab, it’s a file type field, used to store Matlab EEG data exported from 

File Manager 

• ExamSlug, built from Exam ID in File Manager database, it is the exam 

univocal identifier in Django Server  

• ExamPatient, it’s a foreign key field which serves as a link with Patient 

model, the relationship is one-to-many 

 

Analysis Type model 

 

AnalysisType model contains the following field, and serves to keep trace of all 

available analysis from Django Server: 

 

• Analysis_Name  

• Analysis_Parameters, it’s a JSON type field, used to store all information 

needed for analysis 

 

Analysis model 

 

class Analysis(models.Model): # all features belonging to 

exam 

    Analysis_Report = models.FileField(null=True, 

blank=True, upload_to='report_analysis/') 

    Analysis_Matlab = models.FileField(null=True, 

blank=True, upload_to='matlab_analysis/') 

    AnalysisExportDate = models.DateField(auto_now=True) 

    AnalysisExportTime = models.TimeField(auto_now=True) 

    AnalysisSlug = models.SlugField(db_index=True, default = 

'') 

    AnalysisExam = models.ForeignKey( 

        Exam, null=True, on_delete=models.CASCADE, 

related_name="analysis") 

    Analysis_Type = models.ForeignKey( 

        AnalysisType, on_delete=models.CASCADE, 

related_name="analysis_type") 



53 
 

 

Analysis model contains the following fields: 

 

• Analysis_Report, it is the report generated from the execution of the 

analysis 

• Analysis_Matlab, it’s the Matlab file generated from the execution of the 

analysis (cleaned data) 

• AnalysisExportDate, it’s the date related to data sending back to Django 

server 

• AnalysisExportTime, it’s the time related to data sending back to Django 

server 

• AnalysisSlug, it’s the identifier of the analysis executed 

• AnalysisExam, it’s a foreign key field which serves as a link with Exam 

model, the relationship is one-to-many 

• Analysis_Type, it’s a foreign key field which serves as a link with 

AnalysisType model, the relationship is one-to-many 

 

Analysis Pipeline model 

 

AnalysisPipeline model contains the following fields, and serves to manage a 

sequence of maximum three analysis in a row: 

 

• First_Analysis 

• Second_Analysis 

• Third_Analysis 

 

Custom User model 

 

CustomUser model contains the following fields, and it is used to manage user 

permissions: 

 

• User, it’s a one-to-one field that extends the default User model 

• Slug_id, it’s the ID used from Django Server to match logged in user with 

existing patients 

 



54 
 

4.3.2    Users management 

Django Server is capable of managing Users permissions based on the membership 

group. In particular, users belonging to Doctor group have the full control over 

functionalities in Brain Quick Cloud View, including: 

 

• View of all available patients and exams 

• Patient deletion from server 

• Exam deletion from server 

• View of all available analysis 

• Analysis creation request  

• Analysis deletion from server 

• Matlab data and Report data download 

 

Users belonging to Patient group instead can only access to their own patient and 

exams data. They cannot create analysis requests and cannot delete records from 

database. 

 Once a new user is created in Django Server database, it is necessary to 

choose the belonging group and to fill in Slug ID field, which is used to match the 

patient with data exported from File Manager. See how to create and modify users 

in Useful Documents section. 

 

4.3.3    Analysis management 

The major functionality of this project revolves around the capability to initiate an 

EEG analysis based on an available exam on Django server. When a user selects an 

exam, he can navigate to the "Go to Analysis" section, where analysis parameters 

can be configured, and an analysis algorithm can be applied to EEG data. Users can 

easily execute an analysis by choosing it from the interface. The project integrates 

three basic predefined analysis types: 

 

• Mean 

• Notch filtering 

• Bandpass filtering 

 



55 
 

A notable aspect is the extensibility of the project, allowing the addition of new 

analysis algorithms with their specific parameters to the Django database. This 

flexibility makes the project more versatile and useful. 

It's important to highlight that signal processing is not carried out on the 

Django server itself but is delegated to other workers within the same Server 

network. These workers are configured with a Python environment and a script 

that continuously listens on a configurable port, facilitating communication 

between the server and workers. When a user requests an analysis, a POST request 

is dispatched to the worker machine, including details such as the analysis type, 

parameters, and EEG data in Matlab format. The script on the worker machine 

interprets the data, converts it into a Python-readable format, and initiates the 

analysis, generating a new Matlab file with the analyzed data and a Report file 

containing key analysis points (e.g., name and parameters). Upon completion of the 

analysis, the worker sends a POST request back to Django server APIs, which handle 

the insertion of the new analysis data. In the context of this project, where the web 

application operates on the CloudVeneto platform, worker machines are 

dynamically created whenever a new analysis request is initiated. This approach 

contributes to efficient utilization of computational resources. The overall analysis 

workflow is illustrated in the following image: 

 

 

Figure 35: Basic workflow of a new anaysis request from Django server 

 



56 
 

Employing the identical workflow, a user has the capability to execute multiple 

analyses consecutively, organized within a structure referred to as a "Pipeline." 

Specifically, users can select from existing analysis types to construct and store 

their personalized pipeline or initiate a new one, with up to three analyses in a row 

to be executed on data. The analysis process remains consistent, involving the 

instantiation of a worker machine as soon as another script is in progress. 

Communication is managed through a web socket, maintaining the same 

characteristics as described previously. Analysis workflow will be overviewed 

better in the next chapters. 

 

4.3.4    Celery Queue Manager  

Celery is a simple, flexible, and reliable distributed system to process vast amounts 

of messages, while providing operations with the tools required to maintain such a 

system. It’s a task queue with focus on real-time processing, while also supporting 

task scheduling [21]. 

Task queues serve as a mechanism for distributing tasks across threads or 

machines, with each task representing a unit of work. Dedicated worker processes 

continually monitor these queues for new tasks. Celery, a task queue system, relies 

on messages and employs a broker to mediate between clients and workers. When 

a client initiates a task, a message is added to the queue, and the broker delivers it 

to an available worker [21]. In Brain Quick Cloud View conditions, Django Server 

serves as a broker client, while the instantiated Virtual Machine serves as a worker 

that receive the message and starts processing. 

Celery operates through messages, offering flexibility in language choice. 

While primarily written in Python, it supports other languages like Node.js and PHP 

through node-celery and a PHP client, respectively. This flexibility allows for 

language interoperability, enabling the exposure of an HTTP endpoint and utilizing 

tasks that request it, known as webhooks. This approach ensures compatibility and 

communication across different language environments. Celery relies on a message 

transport system for message exchange: in this project RabbitMQ was used as a 

broker to collect and spread messages through workers. 

For this purpose, RabbitMQ needs to be installed in Django Server machine and 

needs to be started with the following command starting from Application folder: 

 

celery -A BQCloudView worker 



57 
 

 

To integrate Celery queues management, it was necessary to create the file 

“celery.py” inside project folder, with the following code architecture: 

 

from __future__ import absolute_import, unicode_literals 

import os 

from celery import Celery 

 

# Set the Django default settings module for the 'celery' 

program 

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 

'BQCloudView.settings') 

 

# create an instance of celery to manage project queues 

app = Celery('BQCloudView') 

 

# load task modules from all registered Django app 

configurations 

app.config_from_object('django.conf:settings', 

namespace='CELERY') 

 

# discover automatically tasks to be executed 

app.autodiscover_tasks() 

 

It was then necessary to create a list of tasks that will be recalled from Django views 

to execute analysis and pipelines. All tasks have been defined in module “tasks.py” 

in Application folder (see example below). 

 

from __future__ import absolute_import, unicode_literals 

from celery import shared_task 

from .utils import execute_analysis, execute_pipeline, 

execute_workflow 

import logging 

 



58 
 

logger = logging.getLogger(__name__) 

 

@shared_task 

def analysis_execution_task(PatientSlug, ExamSlug, 

Analysis_Name, Matlab_Path, Matlab_Name, 

Analysis_Parameters): 

    try: 

        print("Execution of analysis_execution_task...") 

        execute_analysis(PatientSlug, ExamSlug, 

Analysis_Name, Matlab_Path, Matlab_Name, 

Analysis_Parameters) 

 

        print("analysis_execution_task completed") 

    except Exception as e: 

        logger.error(f"Error executing 

analysis_execution_task: {str(e)}") 

        raise e 

 

In this code snippet, “analysis_execution_task” is defined to process the analysis 

with the parameters as arguments. The task is invoked directly from 

“AnalysisExecution” view located in module “views.py”. Once the user, working 

from Django Server, selects an exam and sends an analysis request, message is 

added to the queue with RabbitMQ broker and then processed, instantiating a 

Virtual Machine that will serve as worker to execute the analysis and send back the 

results (see Figure 35). If the RabbitMQ worker is correctly running, workflow is 

the following: 

 



59 
 

 

Figure 36: Analysis and Pipeline execution workflow with Celery integration and RabbitMQ 

message broker 

 

4.3.5    Integration with File Manager 

The integration with File Manager relies on the utilization of endpoints offered by 

File Manager Core, a system component responsible for communication and tools 

management. These endpoints provide details regarding resources, patients, 

exams, and associated files. Specifically designed for transitioning File Manager 

into a web application in future, these endpoints have undergone thorough 

exploration and testing within the scope of this project. The key endpoints made 

available by File Manager are the following: 

  

 

In this way, Django database that stores all data is synchronized with File Manager 

database. Using Celery Beat plugin, a tool that allows to execute tasks periodically, 

a new task has been created to manage periodic communication with File Manager 

(by default 30 minutes) and keep the database synchronized. “celery.py” has been 

enriched with the following code snippet to manage Celery Beat integration: 

 



60 
 

app.conf.beat_schedule = { 

    'exams_discovery_task': { 

        'task': 

'PatientCloudView.tasks.exams_discovery_task', 

        'schedule': 1800,  # 1800 seconds (30 minutes) 

    }, 

} 

 

Beat can be started with the following command line, and subsequently all tasks 

defined in Beat configuration will be executed periodically by the worker: 

 

celery -A BQCloudView beat 

 

The architecture ideated for “exams_discovery_task” is the following: 

 

1 A GET request is sent to File Manager Core resource endpoint to retrieve 

all available resources in the configuration: 

 

response_resources = requests.get("http://" + host + 

":50050/api/Patient/resources") 

 

2 For every resource, even though there is usually just one common 

resource, a GET request is sent at the patients' endpoint to gather details 

about all the patients currently available. Subsequently, a dictionary is 

instantiated based on the File Manager's response to organize data 

transmission to Django endpoints. In the initial step, a PUT request is 

dispatched to Django endpoints to verify the existence of the patient and 

update the information if necessary. If the request encounters an issue 

(404 response), a POST request is triggered to save the patient’s 

information in the Django database. 

 

for resource in resources_list: 

guid = resource['guid'] #look for all available patients 



61 
 

response_patients = requests.get("http://" + host + 

":50050/api/Patient?resourceId=" + guid + 

"&paginationObject=%7B%22skip%22%3A0%2C%22take%22%3A50%7D") 

 

3 The exams endpoints are the next focus, involving the dispatch of a GET 

request to File Manager Core to retrieve details about all existing exams for 

each patient. Even in this case, a dictionary is created to organize data 

sending to Django endpoints. The process proceeds exclusively when the 

exam type is identified as "EEG trace." Subsequently, the task advances by 

querying the files endpoint to obtain both the EEG trace file and the Report 

file, saving them locally. The EEG trace file is further transformed into a 

Matlab file using the Mat2Trc Plugin. 

 

#look for all available exams 

response_exams = requests.get("http://" + host + 

":50050/api/Patient/exams?resourceId=" + guid + 

"&patientId=" + str(patient['id'])) 

 

 #look for all available files 

response_files = requests.get("http://" + host + 

":50050/api/Patient/examFiles?resourceId=" + guid + 

"&patientId=" + str(patient['id']) + "&examId=" + 

str(exam['id'])) 

 

 

4 Once the details of the exam and its associated Matlab and Report files are 

successfully obtained, the corresponding Django Server endpoints are 

accessed, and the exam with its related files is added into the Django 

database. Even in this case, a PUT request is sent to check if the exam is 

already existing. If the response is 404, the POST request is sent to create 

the exam. 

 

Figure 36 shows a scheme to understand better how communication is organized 

to keep synchronized File Manager databases and Django server database. 



62 
 

 

Figure 37: Integration with File Manager scheme 

 

 

4.4    Front-end functionality 

 

Following the exploration of the core of this project's architecture, let's look at the 

User Interface of the application. To enhance comprehension of certain technical 

aspects regarding the architecture, examples will be explained within the context 

of a single machine (localhost). However, it's important to note that these concepts 

can extend to scenarios where tasks are executed across diverse machines, as will 

be explained in the installation process on the CloudVeneto platform. The 

comprehensive explanation of the project's functionalities will be organized as 

follows:  

 



63 
 

 

     Figure 38: Ports organization working in a localhost environment 

Preliminary operations to be executed are: 

 

1- Run on Django Server, executing the following command from prompt in 

project folder: 

 

python manage.py runserver localhost:8000 

 

2- File Manager Core is constantly running as a Windows Service, hence its 

ports are always available. 

 

3- Run Analysis and Pipeline sockets scripts to make the machine listen to 

the specific ports 8080 and 8090 (by default) 

 

4- Run Celery worker and Celery beat to allow tasks queue management 

and scheduled processes execution, using the following commands from 

prompt in project folder: 

 

celery -A BQCloudView worker 

 

celery -A BQCloudView beat 

 

After executing preliminary operations, navigate to localhost:8000 from web  

browser and the following interface will be displayed, prompting for user login. 

 



64 
 

 

Figure 39: BQ Cloud View Login page 

 

After logging with a valid user, the home page will appear, displaying the three latest 

exams exported. The exams are kept in synchronization with File Manager Core, 

which passes all needed information for patients, exams and files. 

 

 

Figure 40: BQ Cloud View home page 

The user can then navigate to a single exam or can visualize all available patients 

and exams using “View all exams” and “View all patients” buttons. From patients 

and exams’ view, the user can order the objects by export date or patient name. 

 



65 
 

 

Figure 41: BQ Cloud View available exams’ view 

 

Clicking on a specific exam, its information is loaded, together with the possibility 

of downloading Report, Matlab file, see and start an analysis for the that exam. 

 

 

Figure 42: BQ Cloud View exam details 

Clicking on “Delete” icon, the user can delete from database the selected exam, 

while clicking on “Information” button related patient’s page is loaded. 

 



66 
 

 

Figure 43: BQ Cloud View Patient's page 

Within the patient's page, user can access detailed patient information by selecting 

the "Patient" icon. Additionally, he has the option to remove both the patient and 

associated exams from the database using the "Delete" icon. Furthermore, user can 

explore all accessible exams related to the selected patient. This includes the ability 

to download associated report and Matlab files, as well as the option to delete the 

specific exam. 

 

 

Figure 44: BQ Cloud View patient's details 



67 
 

Going back and selecting an exam, user can access analysis module and modify 

analysis parameters or request a new analysis or pipeline execution by clicking on 

“Go to Analysis” button. 

 

 

   Figure 45: BQ Cloud View analysis page 

Clicking on settings icon, user can modify analysis parameters, such as cutoff 

frequencies for Bandpass filtering. 

 

 

 

         Figure 46: BQ Cloud View Analysis settings 

 

Returning to the analysis page, user can initiate an analysis by clicking on the 

desired one. Initiating an analysis involves the request being handled through the 

Celery queue and subsequently redirected to localhost:8080, responsible for 

analysis execution. The analysis is then processed via the analysis socket, and the 

request returns to localhost:8000, adding the analysis to the respective exam. This 

information becomes visible from the exam details page. 

 



68 
 

 

 

 

Figure 47: BQ Cloud View analysis details page 

From analysis details page, user can download report generated from analysis, 

download the Matlab file that has been processed or delete an existing and already 

executed analysis. 

Going back to analysis page once again, user is able of executing or saving a pipeline, 

a set of up to three analyses to be processed in a row, by clicking on “Go to Pipeline”. 

 

 

Figure 48: BQ Cloud View analysis pipeline page 

 



69 
 

After selecting the analysis to be processed, user can save the pipeline from “Save” 

icon. That specific pipeline will be available on “My Pipeline” to be executed easily 

in future. Alternatively, user can directly start a pipeline execution from “Play” icon. 

Initiating a pipeline involves the request being handled through the Celery queue 

and subsequently redirected to localhost:8090, responsible for pipeline execution. 

The pipeline is then processed via the pipeline socket, and the request returns to 

localhost:8000, adding the pipeline (treated exactly as an analysis) to the respective 

exam. This information becomes visible from the exam details page, as discussed 

previously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

5.  Results: platform 

deployment in CloudVeneto 

This chapter will provide a comprehensive examination of the installation process 

(Brain Quick Software, SQL EXPRESS and Django Server) on the CloudVeneto 

platform, along with additional details about the environment. The aim is to 

establish a functional working environment to be tested with dummy data. 

 

5.1    Client setup  

 

5.1.1    SQL Express installation 

On the computer where the data is physically stored (client machine), it's important 

to set up an SQL engine. This ensures proper storage of data using Micromed 

standard databases. The recommended engine is SQL Express 2019 or a newer 

version, which can be obtained by downloading and installing it from the Microsoft 

website. 

On client machine, simply run SQLEXPR_x64_ENU.exe installer and follow the 

procedure for installation. After the setup is completed, a local instance of SQL 

Server will be correctly working, allowing to create local Micromed databases 

where to store data in. 

 

5.1.2    Brain Quick Software Installation 

Brain Quick Software can be installed running the following install shields as 

administrator on client machine: 

• File Manager 

• File Manager Core 

• Micromed Suite 

• Brain Quick EEG 

• Brain Quick Acquisition 



71 
 

Installation procedure can be run with default paths and options. After every 

installation task has been completed and the software license is correctly loaded, 

client machine is capable of navigating into File Manager archive, import files, open 

EEG and Video EEG traces ad acquire new EEG files.  

Since the installation has been successful, File Manager Core service is now 

listening on default address IPAddress:50050 for upcoming API requests about 

resources and database. 

 

Database and Resource creation 

To set up a new repository for importing, copying, or acquiring data, it's 

fundamental to create a new database and a corresponding folder within the File 

System for data storage purposes. This process involves utilizing the Micromed tool 

SQLSys98Manager, which necessitates installation on the local machine. 

Subsequently, launching the application and selecting “New SystemPLUS Database” 

initiates the setup process. 

After compiling the existing fields with Server Name (chosen during SQL EXPRESS 

installation), Database Name, Authentication User and Root directory, clicking on 

OK creates a new database in the existing SQL EXPRESS instance. 

The last step is to create a new File System folder where to store data linked to 

newly created database. Folder can be simply created in “C:\”  path. 

Eventually, launching File Manager allows to create a new resource. After startup, a 

warning will appear reporting that no resources are available: opting to create a 

new one opens set up window which needs to be filled with database and folder 

information just defined: 

 

 



72 
 

 

Once the resource has been defined, File Manager interface opens allowing full set 

of functions: 

 

 

 

To test synchronization with Django server automatic task, click on New Patient 

button on Home Tab to create a new patient, then go on Brain Quick tab and choose 

Select Protocol. Run the acquisition with default protocol (that is the simulator), 

save some minutes of EEG simulated signal and stop the recording. After that, create 

a new report using New Report button from Brain Quick tab on the newly created 

exam and save it. Once exam with related report has been created, interface will 

look like the following image: 

 

The expectation is that, once Django server and related tasks have been started, 

local database will be synchronized with server database, adding patient, exam, and 

report information to be navigated from web browser. 

 



73 
 

5.2    Server setup  

Setting up the Brain Quick Cloud server involves transferring files to a server 

machine that already has the Python and Django environment installed, running on 

a Linux operating system. All the files and folder structures are replicated into a 

designated folder on the server machine. 

To ensure the proper and seamless functioning of Brain Quick Cloud, certain 

components must be installed on the server machine: 

 

• Python (version 3.11 or higher) 

• Django package 

• Django Rest Framework package 

• RabbitMQ server 

• Celery package 

• Celery Beat package 

 

5.2.1    Configuration of communication with worker machine 

Navigating into project folder and opening utils.py file allows to set up parameters 

for worker parameters’ configuration, IP Address and Port specifically. In this setup, 

worker machine’s parameters need to be set to communicate with the virtual 

worker machine. The default ports for Analysis and Pipeline execution are set to 

8080 and 8090 respectively, and they're hardcoded into the project's code and on 

the sockets created in worker machine.  

 

url_remoto = "http://localhost:8080/" #worker IP and PORT 

configuration for analysis 

url_remoto = "http://localhost:8090/" #worker IP and PORT 

configuration for workflow 

 

 

5.2.2    Automatic Task settings for data detection 

Navigating into project folder and opening tasks.py file allows to set up parameters 

for automatic task for data detection on Client machine database. 

 



74 
 

@shared_task 

def exams_discovery_task(): 

 

    try: 

        request_host = "localhost" 

        host = "localhost" 

        port = "8000" 

        response_resources = requests.get("http://" + 

request_host + ":50050/api/Patient/resources") #look for all 

available resources  

 

host and port must be the ones used for Django server running and allow for data 

storage into server, while request_host must be the one of client machine, where 

File Manager Core (and hence Brain Quick Software) is installed, as you can see 

from the subsequent GET method to retrieve resources from Web API. 

 

5.2.3    Server Run and Port Forwarding 

Once you've successfully installed all the packages and files, the next step is to run 

the server. Specify its unique IP address and port and run the command from 

command prompt locating in the settings.py file folder to get the server up and 

running, as discussed, some paragraphs above (host and port must be the same set 

above). 

 

python manage.py runserver IPADDRESS:PORT 

 

Thanks to port forwarding tool provided by CloudVeneto, a machine connected via 

SSH to cloud’s gateway can easily access the server by typing in web browser  

IPADDRESS:PORT and hence can gain full access to Brain Quick Cloud interface. 

After server is online, it is necessary to manually start Celery task queue and Celery 

beat automatic task executer with the commands specified in paragraph 4.4. 

 

5.2.4    Database initialization 

Once the server runs up, the database db.sqlite3 is created and initialized with 

default tables contained in models.py settings file. The next step is to create: 



75 
 

 

• a superuser that will have complete access to Django project’s admin area 

• user groups (doctor and patient) 

• a set of test users to authenticate on server 

• default analysis types and parameters, which execution can be 

requested from server 

 

Ensure the proper configuration of the newly initialized database by referring to 

the steps outlined in the Useful Documents section of this document, specifically 

in Chapter 6. 

 

 

5.3    Worker setup  

Setting up the Worker machine means copying all python files useful for web socket 

creation for request exchange with Django server, as well as modules for analysis 

and pipeline executions. Python package (3.11 or later) needs to be installed to run 

the code scripts allowing for web communication. 

Files to be copied are: 

 

• socket_analysis.py 

• socket_pipeline.py 

• analysis_module.py 

• pipeline_module.py 

 

The first two files allow for socket creation respectively in ports 8080 and 8090 and 

need to be run at Virtual machine startup, while the second set of files contain all 

the logic necessary to convert data from Matlab to python, to process the requested 

analysis, reconvert data to Matlab standards and generate a summarized report on 

the analysis executed. Moreover, from socket_analysis.py and socket_pipeline.py 

it is important to set up the absolute paths where data are locally saved once the 

request with EEG data has arrived from Django server and once the analysis has 

been executed. Moreover, it is necessary to change HOST_server and PORT_server 

parameters, using IP Address and port of Django server that is running up. 

 



76 
 

For socket_analysis.py: 

 

new_folder_filtering = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Analys

is\\Mean' 

new_folder_mean = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Analys

is\\Notch' 

new_folder_spectrum = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Analys

is\\Band Pass' 

new_folder_executed = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Analys

is\\Executed' 

 

HOST_server = "localhost" 

PORT_server = "8000" 

 

For socket_pipeline.py: 

 

new_folder_pipeline = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Pipeli

ne\\' 

new_folder_pipeline_executed = 

'C:\\Users\\Public\\Documents\\Micromed\\BQCloudView\\Pipeli

ne\\Executed' 

 

HOST_server = "localhost" 

PORT_server = "8000" 

 

5.4    Validation and testing 

Once all machines and configuration files have been properly set with addresses, 

ports and paths, before testing the entire environment it is mandatory to follow the 



77 
 

steps contained in Useful Documents section, to make sure the database is 

correctly set up and ready to be tested.  

A new patient has been registered on the client machine, and several EEG 

examinations have been conducted. These examinations are now prepared for 

synchronization with a Django server. The task responsible for discovering these 

examinations runs periodically on the server machine, allowing the latest patient 

and exam information is reflected in the server's database. 

 

 

 

 

 

 

 

It will be possible to download report and Matlab file, or to request an 

analysis/pipeline on the selected exam. 

 



78 
 

 

 

 

 

 

Once the analysis has been completed, data are sent back to server machine, 

allowing to download the cleaned data and the report containing analysis 

parameters. 

 

 

 



79 
 

6.  Documentation 

This chapter will provide basics operations to be performed after a new database 

has been created, to make sure it is properly initialized and ready to be used. The 

next subchapters include superuser creation, user groups and users’ database 

creation, as well as analysis types creation. 

Once the server has been run for the very first time, in project folder an empty 

db.sqlite3 database is created. It will be crucial to run the migrations already 

implemented in project’s code to allow proper database structure creation. The 

operation can be performed by stopping the running server and by typing the 

following command: 

 

python manage.py migrate 

 

Database is now populated with the correct tables. 

 

6.1    Superuser  

After database has been initialized, it is fundamental to define a superuser, that will 

gain access to embedded Django admin panel in administrator mode. The operation 

can be executed by running the following command, always on command prompt 

after changing directory to project’s folder: 

 

python manage.py createsuperuser 

 

Following the subsequent steps on prompt, a new superuser will be created. It is 

now possible to start the server and to login into Django administration panel, 

useful to configure groups, users and analysis types. To access Django admin panel 

it is sufficient to type the following URL in web browser: 

 

IPADDRESS:PORT\admin 

 

Where IPADDRESS and PORT are the ones defined in server run command. The user 

for authentication is the one just registered from command prompt. 



80 
 

 

 

Figure 49: Django administration panel authentication 

 

After logging in, the administrator accesses to the Dashboard and has the 

possibility to access and modify Authentication and Authorization section to add 

groups and users, and to modify PatientCloudView section, with all operations 

needed to initialize project’s database. 

 

 

Figure 50: Django administration panel dashboard 

 

 



81 
 

6.2    User groups  

From administrator dashboard, click on Add button in Groups section: 

 

 

 

It is then necessary to create Patient and Doctor groups, that are managed from 

BQ Cloud View project to differentiate read, write and visualization permissions. To 

create a group, simply type group name and save it, without assigning default 

permissions provided by Django, since they are directly managed from different 

project views. 

 

 

 

After adding both groups they shall be visible in Groups section: 

 



82 
 

 

 

6.3    Users  

Once the groups have been defined, clicking on Add button in Users section allows 

creation of users based on Username, Password and Slug ID; the latter will be 

useful to match users (patients specifically) with their related exams. While 

Username and Password may be defined without constraints, Slug ID needs to be 

defined in the format FirstName–LastName–Birthdate (DDMMYYYY) to match 

information coming from File Manager Core APIs. Slug ID needs to be defined even 

for the first created Superuser. 

 

 

 



83 
 

When clicking on Save, user is added to users table and it is possible to assign the 

belonging group, depending on user’s category (doctor or patient) for server 

authentication.  

 

6.4    Analysis  

Default analyses discussed in previous chapters are initialized together with the 

database. The main feature of this project is that users can add and manage 

additional types of analysis to be performed on EEG data. This subchapter aims to 

explain how to insert into project’s code a new analysis to be managed singularly 

or with a pipeline. 

 

6.4.1    Adding the analysis type to database 

The very first step consists of adding the analysis type to server’s database, from 

Django administration dashboard. After logging with the superuser account, simply 

click on Add button on Analysis Types section and fill the information about 

Analysis Name and Analysis Parameters.  

 

 

 

While the name is a text field, parameters are saved in JSON format. It is 

fundamental to fill parameters as shown below (“Parameter_Value” : 



84 
 

“Parameter_Name”). Once all parameters have been defined for the customized 

analysis, click on Save to add the analysis to database. 

 

 

6.4.2    Adding the analysis type to pipeline form 

Navigate into forms.py project file and search for PipelineForm form object. It will 

be sufficient to add the newly created analysis to multiple choice form for each of 

the three analyses. 

 

First_Analysis = forms.ChoiceField(choices=[('None', 

'None'), ('Mean', 'Mean'), ('Notch', 'Notch'), ('BandPass', 

'BandPass'), ('New_Analysis_Name', 'New_Analysis_Name')], 

label="First Analysis") 

 

     Second_Analysis = forms.ChoiceField(choices=[('None', 

'None'), ('Mean', 'Mean'), ('Notch', 'Notch'), ('BandPass', 

'BandPass'), ('New_Analysis_Name', 'New_Analysis_Name')], 

label="Second Analysis") 

 

     Third_Analysis = forms.ChoiceField(choices=[('None', 

'None'), ('Mean', 'Mean'), ('Notch', 'Notch'), ('BandPass', 



85 
 

'BandPass'), ('New_Analysis_Name', 'New_Analysis_Name')], 

label="Third Analysis") 

 

 

 

6.4.3    Adding the analysis type to analysis and pipeline modules on worker 

machine 

As we already discussed, modules on worker machine are responsible for data 

processing based on the analysis type chosen from the user. Hence, it will be crucial 

to add the analysis algorithm to both analysis and pipeline modules.  

Analyses are simply python functions that require variables such as Matlab file, 

analysis parameters, ecc. (see Bandpass function from analysis module below). 

 

def BandPass(matlab, PatientSlug, parameters, path_save): 

 

Each function exploits a mat2python procedure that allows conversion from 

Micromed Matlab structure format to list of dictionaries, allowing an easier data 

management. See the following code snipped to understand how to build the 

starting point for you own analysis, getting EEG data matrix and parameters from 

request to worker machine: 

 

def BandPass(matlab, PatientSlug, parameters, path_save): 

     

    cutoff1 = float(parameters [0]) 

    cutoff2 = float(parameters [1]) 



86 
 

    EEG_data = mat2python(matlab) 

    Fs = EEG_data['sampling_frequency'] 

    EEG_data['Analysis'] = "Bandpass with cutoff1 = " + 

str(cutoff1) + " Hz" + " and cutoff2 = " + str(cutoff2) 

    EEG_matrix = EEG_data['EEG_matrix'] 

    number_of_channels = EEG_data['number_of_channels'] 

 

EEG_matrix will be the starting point for data processing, containing the matrix 

with EEG samples over time samples (number of samples x number of 

channels). The customized analysis may be built taking the other analysis as code 

reference. 

After the signal has been elaborated with the customized algorithm, EEG_matrix 

will be replaced from the processed EEG data and the python data format converted 

back to a Matlab structure to be sent back to Django server. 

 

EEG_data['EEG_matrix'] = bandpass_matrix 

 

s.savemat(path_save + '\\Executed\\' + str(PatientSlug) + 

'.mat', {'EEG': EEG_data}) 

 

The new analysis function needs to be added both to analysis_module.py and 

pipeline_module.py. 

 

6.4.4    Adding the analysis type to analysis and pipeline sockets on worker 

machine 

The very last step is adding the logic necessary to call the desired analysis function 

on socket_analysis.py and socket_pipeline.py, which are the scripts responsible 

for collecting analyses and pipeline requests and for processing them. 

 

ef Analysis(matlab, ExamSlug, PatientSlug, Analysis_Name, 

parameters, counter): 

 

    global HOST_server 

    global PORT_server  



87 
 

 

    if Analysis_Name == "Mean": 

        analysis_module.Mean(matlab, PatientSlug, path_save, 

counter) 

 

    if Analysis_Name == "Notch": 

        analysis_module.Notch(matlab, PatientSlug, 

parameters, path_save, counter) 

 

    if Analysis_Name == "BandPass": 

        analysis_module.BandPass(matlab, PatientSlug, 

parameters, path_save, counter) 

    if Analysis_Name == "New_Analysis_Name": 

        analysis_module.New_Analysis_Name(matlab, 

PatientSlug, parameters, path_save, counter) 

 

In the code snippet displayed above, New Analysis is added to the list of available 

ones and thus can be processed in case of incoming request. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

7.  Conclusion and future 

directions 

This chapter briefly describes what has been done on CloudVeneto platform to 

switch from a development environment to a real one. 

 

7.1    Virtual machines configuration 

First of all, from CloudVeneto admin dashboard, we accessed to project 

environment, named D4C (Diagnostic For Change), instancing three virtual 

machines. The first two ones (Server and Worker) are Unix based, while the third 

one (Client) needs to be Windows based to install Micromed Softwares. 

Then, the three machines have been configured separately, as already discussed in 

the previous chapters (i.e., Django, File Manager and Python configuration). 

Everything has been done connecting via SSH to the machines or via remote 

desktop in case of Windows based one, to copy script files and modify them to 

adapting IP addresses and Ports. 

Starting Celery worker and beat scheduler on server and web sockets on worker 

then, allowed central Django database to be synchronized with File Manager 

database, and using port forwarding tool provided by CloudVeneto, we were able 

to access interface rendered by the server from our web browser, accessing data 

got from File Manager and requesting analysis algorithm execution on EEG data 

recorded in Brain Quick.  

 

 

7.3    Deployment example 

These final tests conclude the project scope and leave on CloudVeneto platform a 

working environment, ready to be used and improved, implementing additional 

features or modifications directly on source code, following the future 

improvements described in the next subchapters. 

Below, some screenshots taken from client, server and worker machine after 

deployment on CloudVeneto platform: 



89 
 

 

 

 

Figure 51: Worker machine, socket for analysis listening on port 8080 

 

 

Figure 52: Worker machine, socket for pipeline listening on port 8090 

 

 

Figure 53: Server machine, Celery beat started 

 



90 
 

 

Figure 54: Server machine, Celery worker started with related logs 

 

 

Figure 55: Server machine, Django web server in run with related logs 

 



91 
 

 

Figure 56: Web browser, latest exams exported 

 

 

Figure 57: Web browser, exported patient details 

 



92 
 

 

Figure 58: Web browser, exported exam details 

 

 

Figure 59: Web browser, analysis executed on the exported exam 

 

7.4    Future improvements 

This subchapter aims to outline some essential considerations for future 

implementations and testing of the system with actual patient data under more 

complex conditions. 

 

7.4.1    Automate database initialization 

After launching the server for the first time, users are responsible for initiating the 

database setup, which involves creating groups, users, and defining new analysis 



93 
 

types. To facilitate this process, developing an application could be beneficial. Such 

an application would automate the population of the database with essential tables 

and connections. Additionally, it could offer a user-friendly interface where users 

can input their preferences to create groups, users, and analysis types efficiently. 

 

7.4.2    Crypting data transmission 

Data transmission and information exchange among Server, Client and Worker 

machines are totally managed by WebAPIs. This applies to both incoming data from 

the File Manager Core stored in the server's database and to the traffic going in both 

directions between the server and the worker machine. 

Communication via Web APIs without encryption poses a serious threat to 

data security. Without adequate protection measures, data transmitted via the API 

could be intercepted by malicious individuals, putting sensitive information at risk 

and compromising user privacy. Moreover, data exchanged from a medical device 

software could be either corrupted or changed, resulting in a wrong diagnosis and 

a high risk for the patient himself. 

To ensure an adequate level of security in Web API communication, it is 

essential to adopt encryption. This technique employs secure protocols such as 

HTTPS (HTTP over SSL/TLS), which encrypt data during transfer, preventing 

attackers from accessing it. Furthermore, it is necessary to implement an 

authentication system to verify that only authorized users can access the data and 

resources of the API. In addition to encryption and authentication, it is important 

to follow security practices such as proper credential management, strict validation 

of input data and implementation of appropriate authorization controls. It is also 

essential to keep the libraries and dependencies used in the API implementation up 

to date to mitigate any known vulnerabilities and ensure ongoing protection. 

 



94 
 

 

Figure 60: HTTP and HTTPS protocols [22] 

 

The lack of  security causes the project to be still private and not accessible from 

everyone. Working towards this direction to guarantee safe data exchange, may 

allow this web application to spread and be used in real cloud environments in 

public way. 

 

7.4.3    Mobile Home Video Telemetry – Test with real patient data 

Tests performed so far account for dummy data recorded directly from client 

machine in CloudVeneto platform to check the correct functioning of the entire 

system. But in a real and more complex environment, EEG traces come from a 

patient under recording with Micromed devices and are not saved in cloud platform 

but in some way sent from the acquisition machine to the local resource persisting 

in CloudVeneto. How can this situation be managed? 

 

7.4.3.1    Mobile Home Video Telemetry (MHVT) system 

MHVT is a product developed by Micromed, consisting of a case with all necessary 

equipment for recording a real Video EEG recording directly at patient’s home, 



95 
 

allowing him to be more comfortable and so more subject to epileptic attacks or 

other crisis.  

The case essentially contains: 

• Acquisition machine with Brain Quick Software (tablet) 

 

Figure 61: Micromed Mobile Home Video Telemetry System [23] 

• Micromed acquisition device (MORPHEUS) 

 

Figure 62: MORPHEUS acquisition device for polysomnography [23] 

• Video camera to record patient’s movements 

 



96 
 

 

Figure 63: AXIS M1065-L camera for video recording [23] 

 

• Router to make sure the device is always online 

• Power supply cable 

 

The patient undergoes preparation for recording while in the hospital environment 

and is subsequently discharged home with the necessary equipment. Upon 

returning home, the patient simply needs to connect the power supply, open the 

case, and properly position the camera for recording. 

 

7.4.3.2    Data exchange implementation with CloudVeneto 

MHVT acquires data in a local resource linked to a SQL database, so how to send 

data to cloud platform directly from patient’s home?  

This first requires the implementation of a VPN to make sure that the 

resource defined in Client machine of CloudVeneto is reachable from the local 

network of MHVT. Once the tunnel has been defined and configured, it is possible 

to set up a Microservice embedded in File Manager Core from the acquisition  

machine, named Background Transfer. 

The service simply periodically scans a resource looking for new data and, every 

time a new EEG, report or whatever else has been identified in the source resource, 

a copy procedure starts to copy all available data to a target resource. Setting up the 

Microservice with the MHVT local resource as source and CloudVeneto local 

resource as destination, will ensure that data are automatically copied in 

background to the target resource. The result of this process is that patient with 

new exams is available in CloudVeneto resource, and in the end all exams are 



97 
 

scanned by Django server and persisted in local database, allowing patient’s data 

management. 

 

 

7.4.4    Online data visualization (EEG and Reports) 

Another useful feature would be the capability to view EEG data and reports online, 

directly from the examination page. With this feature, users wouldn't need to 

download EEG and report data to view them in an external editor. Instead, they 

could conveniently visualize both the raw EEG data, cleaned data and word 

documents directly within their web browser. This would facilitate the process and 

enhance user experience by eliminating the need for additional software or steps. 

 

 

7.4.5    Scalability to different worker machines 

 

To minimize computational power in case of multiple analysis requested at the 

same time, it may be necessary to delegate the analysis algorithm execution to a 

pool of worker machines rather than one, to make sure that memory and power of 

virtual machines is correctly managed to get data back into server in the lowest 

time possible, increasing performance of the system. In this project, a single 

machine is responsible for data analysis and its parameters are hardcoded but in 

future, it may be interesting to exploit different machines for analysis purposes. 

 

 

 

 

 

 

 

 

 

 

 



98 
 

Bibliography 

[1] Millet D. THE ORIGINS OF EEG. 7th Annual Meeting of the International Society 

for the History of the Neurosciences (ISHN) 

[2] https://www.emotiv.com/eeg-guide/ 

[3] The Wave - The characteristics of an EEG — Firstclass (firstclassmed.com) 

[4] Jacobs J, Staba R, Asano E, Otsubo H - High-frequency oscillations (HFOs) in 

clinical epilepsy. Prog Neurobiol. 2012 

[5] Oriano Mecarelli - Theoretical-Practical Manual of Electroencephalography 

[6] Nagel, Sebastian. (2019). Towards a home-use BCI: fast asynchronous control 

and robust non-control state detection 

[7] Trambaiolli, L.R., Lorena, A.C., Fraga, F.J., Kanda, P.A., Nitrini, R., & Anghinah, R. 

(2011). Does EEG Montage Influence Alzheimer's Disease Electroclinic 

Diagnosis? International Journal of Alzheimer's Disease, 2011. 

[8] https://www.raosentcare.com/sleep-lab/ 

[9] Micromed Brain Quick Software Documentation 

[10] https://www.ibm.com/topics/cloud-computing 

[11] https://www.practicallogix.com/services/cloud-engineering/ 

[12] https://zeptosystems.com/new-technology-trends-for-2022/ 

[13] https://userguide.cloudveneto.it/en/latest/ 

[14] S. Bertuccio, G. Tardiolo, F. M. Giambo , G. Giufre , R. Muratore, C. Settimo, A. Rafa, 

S. Rigano, A. Bramanti, N. Muscara  and M. C. De Cola - ReportFlow: 

an application for EEG visualization and reporting using cloud platform, 2021 

[15] https://www.emotiv.com/emotiv-eeg-cloud/ 

[16] Qi Tian, Wen Wu, Qin Zhu, Tao Cai - A Cloud-based Data Platform for Efficient 

EEG Data Management, Collaboration, and Analysis, 2023 

https://www.emotiv.com/eeg-guide/
https://www.firstclassmed.com/articles/2017/eeg-waves


99 
 

[17] Jezek P., Vareka L. - Cloud Infrastructure for Storing and Processing EEG and 

ERP Experimental Data, 2019 

[18] https://docs.djangoproject.com/en/5.0/ 

[19] https://learndjango.com/tutorials/what-django-python 

[20] https://www.django-rest-framework.org/ 

[21] https://docs.celeryq.dev/en/stable/index.html 

[22] https://tiptopsecurity.com/how-does-https-work-rsa-encryption-explained/ 

[23] https://micromedgroup.com/products/brainquick/brainquick-ambulatory/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.celeryq.dev/en/stable/index.html
https://tiptopsecurity.com/how-does-https-work-rsa-encryption-explained/


100 
 

Acknowledgements 

 

Con questo progetto si chiude anche un capitolo della mia vita; la mia esperienza 
lavorativa in Micromed, infatti, volgera  al termine poco dopo la conclusione del mio 
percorso di studi. Desidero dedicare un pensiero speciale a tutti coloro che mi 
hanno sostenuto in ambiente lavorativo, universitario e privato, rendendomi la 
persona che sono oggi. 
 
Come prima cosa, vorrei esprimere la mia gratitudine a Micromed, un luogo che 
non solo mi ha fornito un ambiente professionale stimolante, ma ha anche 
contribuito alla mia crescita come persona. Riconosco il contributo di tante figure, 
tra cui Raffaele, Alberto, Nicola, Federico, Giulia e Alessandra, preziose per la loro 
costante guida e i consigli che mi hanno offerto durante lo sviluppo del mio progetto 
di tesi e, soprattutto, nel mio percorso lavorativo. Non potrei mai dimenticare anche 
tutti gli altri colleghi di Micromed (siete tantissimi perdonatemi), una famiglia che 
mi ha accolto con affetto e con cui ho condiviso momenti indimenticabili. Il legame 
che abbiamo formato in questi anni va al di la  del lavoro, e  un legame di amicizia 
che sono sicuro rimarra  tale nel corso del tempo. Mi mancheranno moltissimo le 
partite a ping-pong, gli aperitivi, le cene e i momenti passati assieme, tra 
disperazioni e soprattutto gioie. Auguro il meglio a tutti e spero di aver lasciato un 
piccolo pezzo di me a ognuno di voi.  
 
Un ringraziamento speciale e profondo alla mia famiglia, il pilastro fondamentale 
che mi ha sostenuto incondizionatamente durante gli anni di studio. A mia madre 
Lucia e mio padre Giulio va il mio piu  sincero apprezzamento e a loro dedico tutto, 
poiche  sono stati la mia costante fonte di incoraggiamento e sostegno in ogni fase 
della mia vita e crescita. Mi avete insegnato a guardare il mondo da due prospettive 
diverse, permettendomi di esplorare, sperimentare e crescere, così  da 
comprendere appieno i miei veri desideri. Mai una parola fuori posto e mai avete 
forzato la mano per imporvi sulle mie scelte di vita, e per questo ve ne saro  
eternamente grato. Vi ho sempre considerato dei modelli, sia nei momenti positivi 
che in quelli piu  difficili. Con il passare del tempo, mi rendo conto sempre piu  che 
le persone che, scherzando, mi dicevano “sei tutto tuo padre” avevano ragione. Ogni 
giorno, vedo sempre piu  di me stesso nei tuoi modi di fare e di relazionarti con gli 
altri, e ne vado fiero. Avrei voluto tanto che tu e nonno poteste essere qui accanto a 
me per celebrare questo momento, ma e  anche vero che la vita riserva imprevisti e 
non gioca sempre a carte scoperte. Io credo che ogni esperienza, positiva o negativa 
che sia, vada vissuta come una sfida, per crescere e dare il meglio di se  stessi, 
sempre. Vorrei ringraziare anche tutti i miei zii, cugini, nonni e parenti per la fiducia 
che hanno sempre riposto in me. Un ringraziamento particolare va a Francesco, 
tanto zio quanto padre, per tutti i fantastici momenti passati assieme, sempre 
disponibile ad aiutarmi e discutere di qualsiasi cosa, dandomi il suo prezioso punto 
di vista e il suo supporto. Ultimo ma non per importanza, un immenso grazie a 
Enrico, piu  che cugino un fratello, con cui sono cresciuto e ho condiviso i momenti 
piu  belli della mia vita. So che ormai siamo grandi e ben presto arrivera  il momento 
di separarci, ognuno per la sua strada, ma sappi che sono e saro  sempre orgoglioso 
di te, indipendentemente dalle scelte che farai, e spero che il nostro legame di ferro 
non svanisca con il passare del tempo.  
 
Desidero esprimere un profondo ringraziamento a tutti miei amici, compagni di 
squadra e di allenamento, che hanno giocato un ruolo chiave nel mio percorso di 



101 
 

vita. Le vostre parole di incoraggiamento, il sostegno costante e la vostra presenza 
hanno reso il viaggio fino a questo momento ancora piu  significativo. Grazie per le 
lunghe serate trascorse a discutere idee, per le risate condivise nei momenti di 
stress e per le avventure che abbiamo vissuto insieme. Il vostro sostegno mi ha 
ispirato e motivato a dare il meglio di me. Che il nostro legame di amicizia rimanga 
saldo nel tempo, pronto a celebrare futuri successi e a sostenerci reciprocamente 
nelle sfide che ci attendono. Ciascuno di voi mi ha donato un pezzo di se  e ha 
contribuito a rendermi la persona che sono oggi, e per questo vi ringrazio di cuore. 
Un grazie anche alle persone che hanno significato tanto nella mia vita e con cui ho 
condiviso anni di risate, affetto, esperienze e viaggi, che purtroppo oggi non sono 
piu  al mio fianco. 
 
Vorrei ringraziare anche tutti i miei colleghi dell’universita  con cui ho collaborato, 
dal primo all’ultimo, in questi cinque anni. Abbiamo saputo ridere, scherzare, 
disperare e sostenerci a vicenda, con innumerevoli giornate passate in aula studio 
a fare esercizi, concludere progetti, rivedere appunti. Grazie per avermi sempre 
motivato e spinto a dare il meglio di me, siete stata una vera fonte di ispirazione e 
spero che ognuno di voi trovi la sua strada e si senta realizzato.  
 
Infine, un sentito ringraziamento va a Marco Castellaro e Giovanni Sparacino, i 
professori che hanno dato il via a questo progetto e mi hanno aiutato a portarlo a 
compimento indirizzandomi e spronandomi a fare sempre meglio, e a tutte le 
persone che hanno contribuito fornendo informazioni preziose e condividendo la 
loro esperienza. 
 
Grazie di cuore a tutti, ognuno ha giocato un ruolo chiave nel mio percorso in questi 
anni, e difficilmente dimentichero  cio  che ognuno ha significato per me. 
 
Un saluto speciale, 
 
Antonio 
 
 
 
 
 

P.S.: tutto troppo sentimentale 

 

 


