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Meine Herren,

I do not see that the sex of the candidate [Emmy Noether] is an argument against
her admission as a Privatdozent. After all, the Senate is not a bathhouse.

- David Hilbert

Quoted in C. Reid, Hilbert, 1996.



Abstract

In this project, we analyse subcategories C of the category of finite sets and functions. A
C-module over a ring k is a functor from C to the category of left k-modules. We
investigate whether the category of C-modules is Noetherian whenever the ring k is
left-Noetherian.

We present the Gröbner method introduced by Sam and Snowden [SS16], which
stipulates combinatorial criteria on C that guarantee this implication. Following the
treatment of Proudfoot and Ramos [PR19a], we apply this method to the opposite of the
category of finite graphs of fixed genus and contractions, Gop

g . Moreover, we consider the
specific Gop

g -module assigning the homology group of its unordered configuration space
to a graph. By means of the Gröbner method, we derive stability results on these
homology groups.

We finish with a couple of results of our own. We prove that the Gröbner Method is
applicable to several subcategories of the category of finitely generated modules over a
fixed finite ring. On the other hand, we prove a partial converse to this method, which
yields examples of categories for which the category of C-modules over any ring k is not
Noetherian.

2



Acknowledgment

First of all I would like to thank my supervisor Dr. Márton Hablicsek for his assistance
and time all along the way. Thank you for proposing this interesting subject and pushing
me forward weekly with your stimulating questions and feedback.

Moreover, I thank my fellow student Giacomo Negrisolo, who wrote a closely related
master thesis with the same supervisor. Thank you for the critical brainstorming and the
checkup talks about our mental health in these strange pandemic times.

I would also like to thank the Algant consortium, the Erasmus+ program and the
universities of Leiden and Padova for making the great experience of studying abroad
possible.

In particular, I thank the educational coordinators Laura van Kempen-Helmsing
(Leiden) and Elisa Zambon (Padova), for responding to my many questions about the
practical matters around the program.

Last but not least, a big thank you to my parents, Judit and Benoı̂t, and my girlfriend,
Nicole, for their constant support. Thank you for coping with my mood swings and
listening to my incomprehensible musing about mathematics.

3



Contents

Introduction 5
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Introduction

The inspiration for this master thesis are two papers published last year by Nicholas
Proudfoot and Eric Ramos [PR19b] and [PR19a]. The first one considers modules over
(or representations of) the opposite of the category of trees (acyclic connected graphs)
and edge contractions, T . The second one, generalises the methods to the category of
connected graphs of any fixed genus g (number of cycles), Gg.

For an essentially small category C, a C-module over a ring k is a functor from C to the
category of left k-modules. Most ring theoretic notions on k-modules have a natural
analogue for C-modules. In particular, the category of C-modules over k, Repk(C), is said
to be Noetherian if each submodule of a finitely generated module is itself finitely
generated.

The framework of modules over categories is a recent discovery that yields a strong tool
to prove representation theoretic result in different algebraic contexts. The articles of
Thomas Church, Jordan S. Ellenberg, Benson Farb, [CEF15] and Rohit Nagpal [CEFN14]
may be considered as the origin. They study modules over the category of finite sets and
injective maps, FI, and prove in particular that the category Repk(FI) is Noetherian for
any left-Noetherian ring k. The main application, which they deduce, are so called
“stability results” when evaluating a finitely generated FI-module in sets of increasing
size.

The first chapter of this project is devoted to the generalisation of these results given by
Steven V. Sam and Andrew Snowden [SS16]. A combinatorial category is a subcategory
of the category of finite sets and functions, FSet. The fundamental question reads, “How
do combinatorial properties of C affect algebraic properties of representations of C?”
Based on the concept of Gröbner bases in ring theory, we1 formulate some criteria for C
that guarantee that Repk(C) is Noetherian for any left-Noetherian ring k. We show that
this holds for the category FSet and, following Andrew Putman and Steven V. Sam
[PS14], the category of free modules of finite rank over a finite ring. Moreover, we show
that when k is a field and the category has some extra structure, the dimension of a
finitely generated C-module evaluated in a set eventually grows polynomially with
respect to the size of the set.

In the second chapter, we follow the treatment of Proudfoot and Ramos [PR19b] and
[PR19a]. We show that the category Gg satisfies the Gröbner criteria. Afterwards, by

1“we” refers to the author under guidance of the supervisor.
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means of similar techniques as in the first chapter, we show that the dimension of a
finitely generated Gop

g -module evaluated in a graph is eventually bounded polynomially
in the number of edges of the graph. Finally, we deduce that this bound turns into an
equality when adding edges in such a way that the structure of the original graph is
preserved.

In the third chapter, we continue to follow [PR19a] and study one particular kind of
Gop
g -modules. We introduce the n-stranded (un)ordered configuration space of a graph,

which is a topological space that characterises the possible positioning and movements
of n (indistinguishable) particles on the graph. The homology of these spaces contains
topological information about the original graph.

Byung Hee An, Gabriel C. Drummond-Cole and Ben Knudsen [ADCK17] investigate on
the computation of the homology of configuration spaces of a finite cell complex. In
particular, they introduce a cellular chain model originally due to Jacek Świątkowski,
which gives an algorithmic tool to compute these homology groups. By means of this
complex, we prove that the assignment of the i-th homology group of the n-stranded
unordered configuration space to a graph is a finitely generated Gop

g -module. Applying
the theory of the previous chapters, we obtain polynomial bounds on the growth and
torsion of these homology groups when increasing the number of edges of a graph.

Finally, in the fourth chapter we present some results that, to our knowledge, are not
stated anywhere else yet. Conversely to the above, we search for examples of categories
inducing non-Noetherian module categories. After some remarks on the role of the size
of the category, we consider several examples like the category of finite groups and the
category of finite partially ordered sets. We further generalise our argument to some
categories consisting of F∞-modules (structures which we introduce along the way).
Meanwhile, we realise that our argument is in fact a partial converse to the main theorem
of Sam and Snowden. On the other hand, we generalise the positive result of Putman
and Sam [SS16] mentioned above to the category of finite projective modules over a
finite ring and the category of all finite modules over a finite principal ideal ring.

We finish by discussing some of the questions that we were not able to solve.

Conventions
• The symbol N denotes the set of positive integers. When we include 0 we write N0.

• For a category C we abuse the element notation. When we write x ∈ C, we mean
that x is an object of C and when we write f : x→ y ∈ C we that f ∈ HomC(x, y).

• Any ring is assumed to have a multiplicative identity element, denoted by 1.

• For a map f and a subset of the domain X , the symbol f �X denotes the restriction
of f to X .
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Chapter 1

Gröbner Categories

In this chapter, we analyse modules over a category over a ring k, following the
treatment given by Sam and Snowden in [SS16]. In section 1.1, we introduce these
objects and remark that many properties of usual k-modules have a direct analogue in
this new setting. In particular, we introduce the notions of finitely generated and
Noetherian modules. We arrive to the fundamental question, for which categories every
finitely generated module is Noetherian. We restrict our attention to the so-called
combinatorial categories that are contained in the category of finite sets.

The partial answer to the question above presented in section 1.2 forms the core of this
chapter. This method gives some criteria on combinatorial categories that guarantee a
positive answer. It is inspired by a classical proof of Hilbert’s basis Theorem using
Gröbner bases. We work out the details by emphasising the analogy between both
settings.

In section 1.3, we prove that the categoryOI, of totally ordered finite sets and order
embeddings, satisfies the criteria mentioned above. Moreover, we deduce that the
method works for several other categories consisting of all finite sets and categories of
free modules of finite rank over a finite ring.

In section 1.4, we present an application of this result. We show that the dimension of a
finitely generatedOI-module over a field evaluated in a set, eventually grows
polynomially with respect to the size of the set.
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1.1 Modules over a category
In this project we consider essentially small categories.

Definition 1.1. A category C is locally small if for each pair of objects x, y in C the
morphism class HomC(x, y) is a set. A category is small if it is locally small and its class of
objects is a set. A category is essentially small if it is equivalent to a small category.

Example 1.2. Let k be a ring, then the category of left k-modules and k-linear maps,
Modk, is locally small. However, it is not essentially small, since any set S induces a free
k-module k[S]. The full subcategory of finitely generated modules, FgModk, is
essentially small category.

From now on, let C be an arbitrary essentially small category. A usual practice in algebra,
is to analyse such abstract object by its ‘action’ in a context with more structure.

Definition 1.3. Let k be a ring. A C-module (or representation of C) over k is a covariant
functor M : C →Modk. The category Repk(C) consists of C-modules over k and natural
transformations between them.

Remark 1.4. Notice that to be complete we should call this notion a left C-module and
define right C-modules accordingly as covariant functors to the category of right
k-modules. However, we only consider left C-modules and hence drop the notation.
When restricting our attention to commutative rings both notions become equivalent.

Remark 1.5. By definition, a morphism φ ∈ HomRepk(C)(M,N) consists of k-linear map,
φx ∈ HomModk(M(x), N(x)) for each x ∈ C, such that for each f ∈ HomC(x, y) the diagram

M(x) N(x)

M(y) N(y)

φx

M(f) N(f)

φy

commutes. In particular, by Example 1.2, this implies that Repk(C) is locally small.

Before we continue let us give a first example motivating the name “representation”.

Example 1.6. Let G be a group. The corresponding categoryG consists of a unique
object ? and morphisms given by the group elements of G, where the composition law is
the group operation. By definition, the categoryG is small. A representation M ofG
over a field k consists of a k-vector space M(?) and a group representation
M : G→ Homk(M(?),M(?)).

The category Repk(C) has several similarities to the categoryModk.

Proposition 1.7. A natural transformation φ : M → N ∈ Repk(C) is an epimorphism
(monomorphism) if and only if the corresponding k-linear map φx : M(x)→ N(x) is surjective
(injective) for each x ∈ C.
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Proof. We recall that an epimorphism inModk is precisely a k-linear surjections. First,
assume that φx is surjective for all x ∈ C. Suppose that there are natural transformations
ψ1, ψ2 : N → L ∈ Repk(C) such that ψ1 ◦ φ = ψ2 ◦ φ. Then, for each x ∈ C this implies that
ψ1x ◦ φx = ψ2x ◦ φx : M(x)→ L(x). Since φx is epimorphic, this implies that ψ1x = ψ2x for
all x ∈ C and hence that ψ1 = ψ2.

Conversely, assume that φ is epimorphic. Let M̃ be the composition of the C-module
M : C →Modk and the forgetful functorModk → Set and define Ñ similarly. Yoneda’s
Lemma yields an isomorphism

Θ: HomFun(C,Set)(HomC(x, ), M̃) ∼−→ M̃(x),

which is functorial in M̃ . As the left functor is a hom-functor, it preserves epimorphisms.
In particular, it follows that the map

φx = Θ ◦ HomFun(C,Set)(HomC(x, ), φ) ◦Θ−1

is an epimorphism in the category Set. This means exactly that φx is surjective. The
argument for monomorphisms is formally dual to the above.

Consequently, we can define most relations between C-modules over k, analogously to
the notions for (left) k-modules.

Definition 1.8. Let N and M be C-modules over a ring k.

• We say that N is a submodule of M if N(x) is a k-submodule of M(x) for each x ∈ C
and N(f) is the restriction M(f) �N(x) for each morphism f in C with source x. We
denote this by N ⊆M .

• The product module of N and M is given by mapping an object x to the direct
product of the k-modules N(x) and M(x) and mapping a morphism f to the
component wise k-linear map (N(f),M(f)). We denote it by N ⊕M .

• The quotient module of M by L is given by mapping an object x to the quotient of
the k-modules M(x) by L(x) and mapping a morphism f ∈ HomC(x, y) to the
quotient map α 7→M(f)(α) (mod L)(y). We denote it by M/L.

• We say that N is a quotient of M if there exists a C-module L such that M = N/L.
We say that N is a subquotient of M if it is a submodule of a quotient of M (or
equivalently a quotient of a submodule of M).

Remark 1.9. It is an easy exercise to see that the product defined above is indeed the
categorical product in Repk(C). The module N being a quotient of M is equivalent to the
existence of an epimorphism φ : M → N ∈ Repk(C).

A category intrinsically provides some modules over itself. They are of great importance
in the rest of this project.
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Definition 1.10. For an object x in a category C the corresponding principal projective
C-module Px is given by

y 7→ k[HomC(x, y)] =
⊕

f : x→y
k · ef ,

(g : y → z) 7→
(

Px(g) : k[HomC(x, y)]→ k[HomC(x, z)] : ef 7→ egf

)
.

Remark 1.11. Using the universal property of a free k-module and Yoneda’s Lemma,
yields bijections

HomRepk(C)(Px,M) ∼= HomFun(C,Set)(HomC(x, ),M) ∼= M(x).

By Proposition 1.7, the functor HomRepk(C)(Px, ) : Repk(C)→ Set preserves
epimorphisms. Recall that, since the category Repk(C) is essentially small, this does
indeed mean that Px is a projective object.

As in the context of k-modules, there is a notion of finite generation.

Definition 1.12. Let M be a C-module over k. A subset S of ∐x∈CM(x) generates M if S
is not contained in ∐x∈C N(x) for any strict C-submodule N (M . In particular, we say
that M is finitely generated, if there exists a finite subset S generating it.

Remark 1.13. The notation here is suboptimal. However, ∐ is supposed to recall that we
consider a disjoint union. Each s ∈ S has a unique corresponding object x ∈ C such that
s ∈M(x).

We deduce a more descriptive reformulation for being finitely generated.

Proposition 1.14. Let M be a C-module. The following statements are equivalent.

1. The module M is finitely generated by {α1, . . . , α`} for some αi ∈M(xi), where xi ∈ C.

2. For each x ∈ C the k-module M(x) consists of all elements of the form

∑̀
i=1

∑
f∈Hi

λf ·M(f)(αi),

where, Hi is a finite subset of HomC(xi, x) and each λf is a constant in k.

3. The module M is a quotient of ⊕`
i=1 Pxi in Repk(C).

Remark 1.15. Note that the objects x1, . . . , xn are not assumed to be distinct. In particular,
the third statement demonstrates that if M and N are finitely generated C-modules, their
product M ⊕N is also finitely generated.

Proof. Assume the first statement and pick an object x ∈ C. By definition, the elements of
the form written down in the second statement belong to M(x). On the other hand, these
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objects define a (finitely generated) k-module N(x) for each x ∈ X . Moreover, for any
g : x→ y ∈ C it follows that

M(g)
(∑̀
i=1

∑
f∈Hi

λf ·M(f)(αi)
)

=
∑̀
i=1

∑
f∈Hi

λf ·M(gf)(αi) =
∑̀
i=1

∑
f∈gHi

λf ·M(f)(αi),

where gHi is the finite subset of HomC(xi, y) given by {gf | f ∈ Hi}. In other words, the
image of N(x) under M(g) is contained in N(y). Hence, this defines a C-submodule
N ⊆M . As αi = M(idxi)(αi) is an object of N(xi) for each i ∈ {1, . . . , `}we conclude that
N = M .

Assume the second statement and define the natural transformation φ :
⊕`

i=1 Pxi →M at
level x ∈ C by k-linearity and

φx :
⊕̀
i=1

k[HomC(xi, x)]→M(x) : ef 7→M(f)(αi),

for each morphism f : xi → x. Functoriality follows by noticing that for any
g : x→ y ∈ C, it holds that

φy
(
Pxi(g)(ef )

)
= φy(egf ) = M(gf)(si) = M(g)

(
M(f)(si)

)
= M(g)

(
φx(ef )

)
.

By Proposition 1.7, it is enough to prove that φx is surjective for each x ∈ C to conclude
that φ is an epimorphism. Hence, pick arbitrary x ∈ C and∑`
i=1

∑
f : xi→x λf ·M(f)(αi) ∈M(x). By the definition of φx, this is mapped onto by

∑̀
i=1

∑
f : xi→x

λf · ef =
∑̀
i=1

∑
f : xi→x

λf · Pxi(f)(eidxi ) ∈
n⊕
i=1

k[HomC(xi, x)].

We conclude that M is a quotient module of ⊕`
i=1 Pxi .

Finally, let us assume the third statement and let φ :
⊕`

i=1 Pxi →M ∈ Repk(C) be the
corresponding epimorphism. Set S = {φxi(eidxi ) | i ∈ {1, . . . , n}} and suppose that
N ⊆M satisfies S ⊆ ∐`

i=1 N(xi). Take arbitrary x ∈ C and α ∈M(x). By surjectivity of φx,
there is a β ∈⊕`

i=1 k[HomC(xi, x)] such that φx(β) = α. It is of the from

β =
n∑
i=1

∑
f : xi→x

λf · ef =
n∑
i=1

∑
f : xi→x

Pxi(f)(λf · eidxi ),

where each λf is an element of k. Since φx is k-linear, it follows that

α =
∑̀
i=1

∑
f : xi→x

(
φx ◦ Pxi(f)

)
(λf · eidxi ) =

∑̀
i=1

∑
f : xi→x

M(f)
(
λf · φxi(eidxi )

)
.

In the expression on the right each M(f) is evaluated in an element inside ∐`
i=1N(xi). As

N(f) = M(f) �N(xi) it follows that α ∈ N(x). We conclude that N = M and hence that M
is finitely generated by S.
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We take a step back and consider modules over different categories. Notice that any
functor Φ: C → C ′ induces a functor between the corresponding categories of modules

Φ∗ : Repk(C ′)→ Repk(C) : M 7→M ◦ Φ,

which maps a natural transformation (ψ : M → N) to the natural transformation Φ∗(ψ)
defined at every x ∈ C by Φ∗(ψ)x = ψΦ(x) : M(Φ(x))→ N(Φ(x)).

In particular, notice that by definition Φ∗ preserves all relation defined in 1.8. Moreover,
it also preserves mono- and epimorphisms, by Proposition 1.7. We can characterise the
functors that preserve finite generation of modules as follows.

Definition 1.16. A functor between essentially small categories, Φ: C → C ′, is said to
satisfy property (F) if for each x′ ∈ C ′ there exist finitely many objects y1, . . . , yn ∈ C and
morphisms fi : x′ → Φ(yi) ∈ C ′ satisfying the following condition: for any morphism
f : x′ → Φ(z) ∈ C ′, where z ∈ C, there exists a morphism g : yi → z ∈ C such that
f = Φ(g) ◦ fi.

Proposition 1.17. A functor Φ: C → C ′ satisfies property (F) if and only if the functor
Φ∗ : Repk(C ′)→ Repk(C) maps finitely generated C ′-modules to finitely generated C-modules.

Proof. Assume that Φ satisfies (F) and consider any principal projective module
Px′ ∈ Repk(C ′). Let y1, . . . , yn ∈ C and fi : x′ → Φ(yi) ∈ C ′ be as in Definition 1.16 and set
S = {ef1 , . . . , efn} ⊆

∐n
i=1 Φ∗(Px′)(yi). Take arbitrary y ∈ C and α ∈ Φ∗(Px′)(y), then α is of

the form α =
∑
f : x′→Φ(y) λf · ef . By property (F), each of the above f factors as Φ(g) ◦ fi.

This means that α =
∑
f : x′→Φ(y) λf · eΦ(g)fi =

∑
f : x′→Φ(y) PxiΦ(g)(λf · efi) is inside the

submodule generated by S. Since α was arbitrary, this implies that Φ∗(Px′) is finitely
generated.

More generally, let M be any finitely generated C ′-module. By Proposition 1.14, we know
there exists objects x′1, . . . , x′n ∈ C and an epimorphism ψ :

⊕n
i=1 Px′i

→M ∈ Repk(C ′). As
mentioned above, the map Φ∗(ψ) :

⊕n
i=1 Φ∗(Px′i

)→ Φ∗(M) ∈ Repk(C) is again
epimorphic. By the first part of the proof, each Φ∗(Px′i

) is finitely generated and therefore
so is their direct sum by Remark 1.15. Hence, there exist x1, . . . , xm ∈ C and an
epimorphism φ :

⊕m
j=1 Pxj →

⊕n
i=1 Px′i

. Composition of Φ∗(ψ) with φ witnesses that
Φ∗(M) is a finitely generated C-module.

Conversely, assume Φ∗ preserves finite generation and take any x′ ∈ C ′. By assumption,
Φ∗(Px′) is finitely generated by some set {α1, . . . , α`}, where αi ∈ Px′(Φ(yi)) for some
yi ∈ C. For each i let

Hi = {fi ∈ HomC(x′,Φ(yi)) | the coefficient of fi in αi is not zero}.

This implies that αi =
∑
fi∈Hi λfiefi for some λi ∈ k \ {0}. We duplicate each ỹi, |Hi| times

to get finitely many object yi ∈ C with unique corresponding map fi : x′ → Φ(yi), where
fi ∈

⋃n
i=1 Hi. Now take any object z ∈ C and any morphism f : x′ → Φ(z) ∈ C ′. By

Proposition 1.7, there exist finitely many maps gi : ỹi → z for each i and corresponding
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constants λgi ∈ k such that

ef =
∑̀
i=1

∑
gi

λgi(Φ
∗(Px′)(gi))(αi) =

n∑
i=1

∑
gi

∑
fi∈Hi

(λgiλfi)eΦ(gi)fi .

Take any one of these gi. In particular, the equality above implies that Φ(gi)fi = f .

Finally, in ring theory a fundamental property of modules is that of Noetherianity. The
analogue for modules over categories is the main topic of this thesis.

Definition 1.18. A C-module over k is Noetherian if all its C-submodules are finitely
generated. The whole category Repk(C) is Noetherian if every finitely generated
C-module over k is Noetherian.

Remark 1.19. Finite generation is preserved by products, by Remark 1.15. Moreover, a set
of generators of a C-module descends to a set of generators on any of its quotients.
Hence, by Proposition 1.14, it is enough to see that every principal projective module Px

is Noetherian, to conclude that Repk(C) is Noetherian.

There is again an interaction with property (F) from Definition 1.16.

Proposition 1.20. Let Φ: C → C ′ be an essentially surjective functor satisfying property (F). If
Repk(C) is Noetherian, then Repk(C ′) is Noetherian.

Proof. Take an object x′ ∈ C ′ and consider the corresponding principal projective
C ′-module, Px′ . By Proposition 1.17, Φ∗(Px′) is finitely generated. Take an arbitrary
submodule N ⊆ Px′ . By assumption, Repk(C) is Noetherian. Hence, Φ∗(Px′) is
Noetherian, which implies that its submodule Φ∗(N) is finitely generated. Therefore,
take a finite set of generators S ⊆ ∐y∈C Φ∗(N)(y). We can also see S as a subset of∐
y∈C N(Φ(y)) and consider the C-submodule L ⊆ N generated by S. It follows that

Φ∗(L) = Φ∗(N), but since Φ is essentially surjective, it follows that L = N . Therefore, N is
finitely generated and as it was arbitrary, this implies that Px′ is Noetherian. As x′ was
also arbitrary, we conclude that each principal projective C ′-module is Noetherian. By
Remark 1.19, it follows that Repk(C ′) is Noetherian.

The fundamental question we are interested in is the following.

Question 1.21. Given a left-Noetherian ring k and a category C does it hold that Repk(C)
is Noetherian?

In fact, the analysis is usually restricted to categories having finitely many morphisms
between any two objects inside it. We motivate this further in section 4.1. Therefore, from
now on we focus on the next class of categories.

Definition 1.22. We call a category, C, combinatorial if there exist a faithful functor from
C to the category of finite sets and set theoretical functions, FSet.

The following sections of this chapter are dedicated to the introduction of some criteria
on combinatorial categories that imply a positive answer to Question 1.21. Some
examples of a negative answer are deduced in section 4.2.
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1.2 Gröbner methods
In search for criteria on a combinatorial category C that ensure that Repk(C) is
Noetherian, it is natural to continue the analogy with ring theory. In particular, the proof
of the following theorem is the inspiration for what follows.

Theorem 1.23 (Hilbert’s basis Theorem). If k is a left-Noetherian ring, then for each n ∈ N
the polynomial ring k[x1, . . . , xn] is also left-Noetherian.

We start by defining the notions needed in the proof.

Definition 1.24. Consider the polynomial ring R = k[x1, . . . , xn].

• A monomial in R is a polynomial of the form λxm11 · · ·xmnn where λ ∈ k and mi ∈ N0

for each i. Every polynomial is a finite sum of monomials.

• We denote by M the set of all monomials in R with coefficient λ = 1.

• An admissible order 4 on M is a well-order that is compatible with multiplication,
which means that LP 4 QP whenever L 4 Q for all P,Q, L ∈M.

• Given an admissible order4 on M, the initial term, init(f), of a nonzero polynomial
f ∈ R is the monomial summand λ ∈ P in f for which P ∈M is 4-maximal.

• A monomial ideal I ⊆ R is a left ideal generated by monomials. We denote by
M(R) the set of all monomial ideals in R.

• For any left ideal I ⊆ R the corresponding initial ideal, init(I), is the monomial
ideal generated by {init(f) | f ∈ I}.

• A Gröbner basis of a left ideal I is a subset G ⊆ I such that the ideal init(I) is
generated by {init(f) | f ∈ G}.

Example 1.25. Consider the polynomial ring Z[x1, x2]. The lexicographic order is an
admissible order on M given by

xm11 xm22 4 x
m′1
1 x

m′2
2 if m1 < m′1, or if m1 = m′1 and m2 ¬ m′2.

For any admissible order, it holds that if I is a monomial ideal, then I = init(I) and a set
of generators is a Gröbner basis.

We will see that Hilbert’s basis Theorem can be reduced to a statement about
Noetherianity of partially ordered sets (posets). Therefore, recall the following standard
material.

Definition 1.26. Let (X,¬) be a poset.

• An ideal I is a subset of X such that, if x ∈ I and x ¬ y, then y ∈ I . We denote by
IX , the set of ideals in X .

• the principal ideal corresponding to x ∈ X is given by Ix = {y ∈ X | y  x}. An
ideal is finitely generated if it is the union of finitely many principal ideals.
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• A poset (X,¬) is Noetherian if one (and hence each) of the following conditions
holds.

– Given an infinite sequence x1, x2, . . . of elements of X , there exist i < j ∈ N
such that xi ¬ xj .

– The set IX satisfies the ascending chain condition (ACC), that is for any
ascending chain I1 ⊆ I2 ⊆ · · · of ideals in X there is an N ∈ N such that
Ij = IN for all j  N .

– Every ideal in X is finitely generated.

The following result about posets is of particular importance to us, so we recall its proof.
Let X and I be two posets. We denote by F(X, I) the set of order preserving maps from
X to I. It is itself partially ordered by the relation φ ¬ ψ if φ(x) ¬I ψ(x) for all x ∈ X .

Proposition 1.27. If X is Noetherian and I satisfies the ascending chain condition, then
F(X, I) satisfies the ascending chain condition as well.

Proof. Suppose that there is an infinite strictly increasing sequence
I1 � I2 � . . . ∈ F(X, I). This means that for each n ∈ Nwe can find xn ∈ X such that
In(xn) ( In+1(xn). Since we assumed that X is Noetherian, there is an infinite
non-decreasing subsequence of (xj)j∈J . By construction, Ij(xj) ( Ij+1(xj) ⊆ Ij+1(xj+1)
for each j ∈ J . Hence, there is an infinite sequence (Ij(xj))j∈J of ideals of k that is strictly
increasing. This contradicts the assumption that I satisfies the ascending chain
condition. We conclude that F(|Cx|, Ik) must satisfy the ascending chain condition.

The proof of Hilbert’s basis Theorem now follows completely from analysing the
pointwise partial order ¬ on Nn, which is given by (m1, . . . ,mn) ¬ (m′1, . . . ,m

′
n) if

mi ¬ m′i ∈ N for each i ∈ {1, . . . , n}.

Lemma 1.28 (Dickson’s Lemma). The poset (Nn,¬) is Noetherian.

Proof. We show that for every infinite sequence m1,m2, . . . ∈ Nn there exists some
i < j ∈ N such that mi ¬ mj . We work by induction on n.

For the base case n = 1, we immediately notice the “stronger” result that any infinite
sequence of natural numbers has an infinite non-decreasing subsequence (since only
finitely many elements can be smaller than m1 or infinitely many of them are equal and
so on...). For n  1 let m1,m2, . . . be an infinite sequence in Nn+1. Split each vector as a
tuple mi = (m̃i,mi

n+1) in Nn × N by separating the last coordinate. By the base case, there
exists a infinite non-decreasing subsequence (ml

n+1)l∈L ∈ N. By the induction hypotheses
on the corresponding subsequence, (m̃l)l∈L ∈ Nn, there is some i < j such that m̃i ¬ m̃j .
By choice of our subsequence, it follows that mi ¬ mj in Nn+1.

To translate this result back to our setting, notice that the set of monomials with trivial
coefficient M comes equipped with a canonical partial order of division, that is
P ¬ Q ∈M if there exists L ∈M such that Q = LP . Clearly this induces an isomorphism
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of posets Nn ∼−→M : (m1, . . . ,mn) 7→ xm11 · · ·xmnn , where Nn is ordered under the
point-wise partial order.

Lemma 1.29. Let k be a left-Noetherian ring, then any monomial ideal in k[x1, . . . , xn] is finitely
generated.

Proof. Let R = k[x1, . . . , xn] and consider the set of monomial idealsM(R) ordered
partially by inclusion. We give another description ofM(R). Let Ik be the set of left
ideals in k partially ordered by inclusion and consider the canonical order on M. We
claim that the following map is an isomorphism.

Θ: M(R)→ F(M, Ik) : I 7→
(
Θ(I) : P 7→ {λ ∈ k | λP ∈ I}

)
There are several things to check here. Firstly, since I is a left ideal of R, it follows that
Θ(M)(I) is a left ideal of k. To see that any Θ(I) is order preserving, let Q = LP for
P,Q, L ∈M. The fact that λP is an element of I implies that λQ = L · λP is an element of
I as well. Therefore, P ¬ Q gives Θ(I)(P ) ⊆ Θ(I)(Q).

Next, we want to see that Θ itself is order preserving and injective. Let I ( J ∈M(R),
this implies that Θ(I)(P ) ⊆ Θ(J)(P ) for all P ∈M and that the inclusion is strict for at
least one P . This means exactly that Θ(I) � Θ(J). Finally, for surjectivity, choose
F ∈ F(M, Ik) arbitrary. We define IF to be the left ideal of R generated by
{λQ | Q ∈M and λ ∈ F (Q)}. By definition, it is monomial and satisfies Θ(IF ) = F .

By Dickson’s Lemma 1.28, M is Noetherian and by assumption Ik satisfies the ascending
chain condition. By Proposition 1.27, it follows thatM(R) satisfies the ascending chain
condition. Suppose that I ⊆ k[x1, . . . , xn] is a non-finitely generated monomial ideal. Pick
any monomial P1 ∈ I . As I is not finitely generated, we can pick some monomial P2 ∈ I
that is not an element of the left ideal generated by P1 (denoted 〈P1〉). Inductively we can
continue picking a monomial Pi ∈ I \ 〈P1, . . . , Pi−1〉 for each i  2. This gives an infinite
ascending sequence of monomial ideals

〈P1〉 ( 〈P1, P2〉 ( 〈P1, P2, P3〉 ( . . . ( I.

This yields a contradiction, implying that I had to be finitely generated.

Proof Hilbert’s basis Theorem. Consider any left ideal I ∈ k[x1, . . . , xn]. Fix any admissible
order on k[x1, . . . , xn] (for example the lexicographic one), which allows us to define
init(I). By Lemma 1.29, there exists a finite Gröbner basis G of I . Now let J be the
subideal of I generated by G . Suppose that there exists f ∈ I \ J , then take such f with
init(f) 4-minimal. Since init(f) is an element of init(I), there exists a g ∈ J such that
init(f) = init(g). This leads to a contradiction since f − g ∈ I \ J and init(f − g) 4 init(f).
This means that I is finitely generated by G. As I was arbitrary we conclude that
k[x1, . . . , xn] is Noetherian.

The powerful idea of Sam and Snowden [SS16] is to transfer this whole proof to the
setting of C-modules. The categories C for which this can be done are the so called
Gröbner categories.
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The first assumption we make is that C has no nontrivial endomorphisms, that is
HomC(x, x) = {idx} for each x ∈ C. This may seem like a rather big requirement and it is
indeed not strictly needed to develop the general theory as Sam and Snowden do.
However, it makes the argument much more transparent and we will see later why it is
the only case in which this argument is used in practice.

Let us begin by generalising the definitions made in 1.24. Whereas before the goal was to
see that all submodules (= ideals) of k[x1, . . . , xn] are finitely generated, now we want
this for all submodules of an arbitrary principal projective C-module Px (see Remark
1.19).

Definition 1.30. Consider a principal projective C-module Px.

• A monomial in Px(y), for an object y ∈ C, is an element of the form λ · ef , where
λ ∈ k and f : x→ y ∈ C. Every element in Px(y) is a finite sum of monomials.

• Set Cx =
⋃
y∈C HomC(x, y) and let |Cx| be the quotient set where isomorphic

morphisms are identified.

• An admissible order 4 on |Cx| is a well-order that is compatible with
post-composition, which means that hf 4 hg whenever f 4 g for all
f, g ∈ HomC(x, y) and h ∈ HomC(y, z).

• Given an admissible order 4 on |Cx| the initial term, init(α), of a nonzero object
α ∈ Px(y) is the monomial summand λ · ef of α for which [f ] ∈ |Cx| is 4-maximal.

• A monomial submodule M ⊂ Px is a submodule such that for each y ∈ C the
k-module M(y) is spanned by the monomials it contains.

• For any submodule M ⊆ Px the corresponding initial module, init(M), is the
monomial submodule defined by init(M)(y) = spank{init(α) | α ∈M(y) \ {0}}. We
denote byM(Px) the set of all monomial submodules of Px.

• A Gröbner basis of a submodule M ⊆ Px is a subset G ⊆ ⋃y∈CM(y), such that the
initial module, init(M), is generated by {init(α) | α ∈ G}.

Remark 1.31. The analogy should be clear. The only difference is that in this case
everything happens in a collection of k-modules. For example, instead of being defined
on the set of trivial coefficient monomials M, the admissible order is now defined on the
set of morphisms |Cx| indexing all monomials in ⋃y∈C Px(y).

In the proof of Hilbert’s basis Theorem, we did not only use an admissible order on M,
but also the canonical partial order of division. For |Cx|, we can define the analogue
canonical order by f ¬ g if there exists an h ∈ |Cx| such that g = h ◦ f . The ingredients
used in the proof of Hilbert’s basis Theorem naturally reveal the following criteria.

Definition 1.32. An essentially small category C is called Gröbner if it has no nontrivial
endomorphisms and satisfies the following conditions for each x ∈ C.

(G1) There exist an admissible order 4 on |Cx|.

(G2) The poset (|Cx|,¬) under the canonical order is Noetherian.
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It is useful to notice the following direct consequence of this definition.

Lemma 1.33. If the categories C1 and C2 are Gröbner, so is the product category C = C1 × C2.

Proof. Clearly, C has no nontrivial endomorphisms. Furthermore, fixing x1 ∈ C1 and
x2 ∈ C2, there is a canonical identification |C(x,y)| ∼= |C1x| × |C2y|. Therefore, if 41 and 42

are admissible orders on the components, then the lexicographic order, given by
(f1, f2) 4 (g1, g2) if f1 ≺1 g1 or if f1 = g1 and f2 42 g2, is admissible on |C(x,y)|. On the
other hand, the canonical order on |C(x,y)| is simply the product order of he canonical
orders on both components. As the product of two Noetherian posets is again
Noetherian, (G2) holds as well.

This definition enables us to state and prove our first main theorem, which gives a partial
answer to Question 1.21.

Theorem 1.34. If C is a Gröbner category and k is a left-Noetherian ring, then the category
Repk(C) is Noetherian.

The definitions were made in such a way that the proof is completely analogue to that of
Hilbert’s basis Theorem. To notice the adaptations and to be complete, we repeat the
steps.

Lemma 1.35. If (G2) holds for x ∈ C and k is a left-Noetherian ring, then every monomial
submodule M ⊆ Px is finitely generated.

Proof. Consider the set of monomial submodulesM(Px) partially ordered by the
submodule relation. Let Ik be the set of left ideals of k ordered by inclusion and consider
the canonical order ¬ on |Cx|. We claim that the following map is an isomorphism.

Θ: M(Px)→ F(|Cx|, Ik) : M 7→
(
Θ(M) : (f : x→ y) 7→ {λ ∈ k | λ · ef ∈M(y)}

)
There are several things to check here. Firstly, since M(y) is a k-module it follows that
Θ(M)(f) is a left ideal of k. To see that any Θ(M) is order preserving, suppose that
g = h ◦ f , where g ∈ HomC(x, z) and h ∈ HomC(y, z). The fact that λ · ef is an element of
M(y) implies that λ · eg = λ · ehf = Px(f)(λ · ef ) = M(f)(λ · ef ) is an element of M(Z).
Therefore, f ¬ g gives Θ(M)(f) ⊆ Θ(M)(g).

To see that Θ itself is order preserving and injective, notice that N (M implies that
N(y) ⊆M(y) for all y ∈ C and that the inclusion is strict for at least one y. This means
exactly that Θ(N) � Θ(M). For surjectivity, take F ∈ F(|Cx|, Ik) arbitrary. By definition,
the assignment MF (y) =

⊕
f∈HomC(x,y) F (f) · ef is functorial. Hence, it defines a

submodule MF ⊆ Px that satisfies Θ(MF ) = F .

By assumption, |Cx| is Noetherian and Ik satisfies the ascending chain condition. By
Proposition 1.27, it follows thatM(Px) also satisfies the ascending chain condition.
Suppose that a monomial submodule M ⊆ Px is non-finitely generated. This means that
there exists an infinite sequence of monomials, αi ∈M(xi) for some xi ∈ C, such that αi is
not inside the submodule generated by {α1, . . . , αi−1}. This yields a strictly ascending
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chain of monomial submodules of Px. This is a contradiction, hence M was finitely
generated.

Proof Theorem 1.34. Fix any object x ∈ C and any C-submodule M of Px. By (G1), there
exists an admissible order 4 on |Cx|, which allows us to define init(M). By (G2) and
Lemma 1.35, there exists a Gröbner basis G of M . Let N be the submodule of M
generated by G . Suppose that there exists an α ∈M \N , then take such α with init(α)
4-minimal. Since init(α) ∈ init(M), there exists a β ∈ N such that init(α) = init(β). This
leads to a contradiction, since α− β ∈M \N and init(α− β) 4 init(α). This means that
M is finitely generated by G. As M was arbitrary, we conclude that Px is Noetherian and
as x was also arbitrary, so is Repk(C).

Now that we translated the whole Gröbner method to our setting, we want to apply the
theorem above. In practice however, because of the assumption that there are no
nontrivial endomorphisms, very few categories are Gröbner. The way around this is to
recall Proposition 1.20.

Definition 1.36. A category C ′ is quasi-Gröbner if there exist a Gröbner category C and
an essentially surjective functor Φ: C → C ′ satisfying property (F).

Remark 1.37. It is a simple exercise to show that the composition of two functors
satisfying property (F), satisfies property (F) again. As the same holds for essential
surjectivity, it is (by recursion) enough to know that C is quasi-Gröbner to deduce that C ′
is quasi-Gröbner.

Similarly, if Φ: C → C ′ and Ψ: D → D′ are essentially surjective functors satisfying
property (F), then so is Φ×Ψ: C × D → C ′ ×D′. By Lemma 1.33, it follows that the
product category of two quasi-Gröbner categories is again quasi-Gröbner.

Corollary 1.38. If C is a quasi-Gröbner category and k is a left-Noetherian ring, then Repk(C) is
Noetherian.

Proof. Combine Theorem 1.34 and Proposition 1.20.

1.3 Finite sets and free modules
After the development of the general Gröbner method ensuring Noetherianity of
Repk(C), let us see some concrete examples. First of all we consider categories consisting
of all finite sets.

Definition 1.39. The categories FI and FS consist of all finite sets and have respectively
injections and surjections as morphisms. The categoriesOI andOS consist of ordered
finite sets and have respectively order-preserving injections and surjections as
morphisms.

Remark 1.40. In particular, the study of FI-modules has a rich history. See [Far14] for a
survey and many references.
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By definition, these categories are combinatorial. The aim of putting a total order on the
sets should be clear by now. It is namely to rule out nontrivial endomorphisms.

Theorem 1.41. The categoryOI is Gröbner.

As in the case of Hilbert’s basis Theorem, the proof boils down to a classical result on
Noetherian posets.

Definition 1.42. Let (X,¬) be a poset. A finite word in X is an object of the form
x1 · · ·xn, where n ∈ N and xi ∈ X , or the empty set. We denote by X∗ the set of finite
words in X , partially ordered by x1 · · ·xn ¬ y1 · · · ym if there exists
1 ¬ i1 ¬ · · · ¬ in ¬ m ∈ N such that xj ¬ xij for each j ∈ {1, . . . n}. The length function,
` : X∗ → N0, is given by `(x1 · · ·xn) = n and `(∅) = 0.

Remark 1.43. In particular, X∗ has the structure of a monoid, where the operation is given
by concatenation, that is (x1 · · ·xn, y1 · · · ym) 7→ x1 · · ·xny1 · · · ym.

Lemma 1.44 (Higman’s Lemma). If (X,¬) is a Noetherian poset, then (X∗,¬) is a
Noetherian poset.

Proof. Suppose that the statement is false, this means that there exists an infinite
sequence w1, w2, . . . ∈ X∗, such that wi 6¬ wj for all i < j. We say that such a sequence is
“bad”. Take the bad sequence that is minimal in the following sense. Among all bad
sequences beginning with w1, . . . , wi−1, in this sequence `(wi) is minimal. Let xi be the
first element of wi for each i ∈ N. Since X is Noetherian, we can find an infinite increasing
subsequence (xi)i∈I . We consider a new sequence w1, . . . , wi1−1, vi1 , vi2 , . . . ∈ X∗. As
vik ¬ wik for any ik ∈ I , it follows that wj 6¬ vik for all j ∈ {1, . . . , i1 − 1}. Moreover,
wik 6¬ wil implies that vik 6¬ vil for all k ¬ l ∈ N. We conclude that the new sequence is
bad. However, the fact that `(vi1) = `(wi1)− 1 contradicts the presumed minimality of the
original sequence. We conclude that no bad sequence exists.

Proof Theorem 1.41. For n ∈ N, let [n] denote the poset {1, . . . , n}with the usual order and
set [0] = ∅. We notice directly that any element ofOI is isomorphic to a unique [n], where
n ∈ N0. Moreover, any order-preserving injection from an ordered finite set to itself is the
identity. It remains to show that |OI[n]| satisfies (G1) and (G2) for any n ∈ N0. One easily
checks that the following order is admissible

HomOI(x, y) 3 f 4 g ∈ HomOI(x, z)



if f(1) < g(1),
or f(1) = g(1) and f(2) < g(2),
...
or f �[n−1]= g �[n−1] and f(n) < g(n),
or f = g and y ⊆ z.

Next, we must consider the canonical order on |OI[n]|. Set X = [2], then the next map is
an embedding of partial orders

ψ : |OI[n]| → X∗ : (f : [n] 7→ [m]) 7→ w1 · · ·wm where wi =

1 if i ∈ f([n]),
2 else.
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Since X is finite and hence Noetherian, it follows by Higman’s Lemma 1.44, that
condition (G2) holds.

However,OI is a very simple category and not of real interest in itself.

Theorem 1.45. The category FI is quasi-Gröbner.

Proof. By Theorem 1.41,OI is Gröbner. We consider the forgetful functor Φ: OI→ FI,
which is of course essentially surjective. To check property (F), take an arbitrary x′ ∈ FI
and let n be its cardinality. Let the posets y1, . . . , yn! all be equal to [n] ∈ OI and let the
morphisms fi : x 7→ yi ∈ FI be all permutations in Sym(x′) = Sym(n). It follows that any
injection, f : x′ → [m] for some [m] ∈ OI, factors as one of the permutations fi followed
by an order preserving map g : yi = [n]→ [m].

Theorem 1.46. The category FSet is quasi-Gröbner.

Proof. By Theorem 1.45, FI is quasi-Gröbner. We consider the inclusion functor,
Φ: FI→ FSet, which is of course essentially surjective. Pick x′ ∈ FA and let fi : x′ → yi
be representatives of all classes of surjections with domain x. Notice that these are
finitely many morphisms. It follows that any map f : x→ z ∈ FSet, factors as a
surjection fi (by restricting the codomain) followed by an inclusion g : yi → y. Hence, Φ
satisfies property (F) and by Remark 1.37, the statement follows.

This provides a first couple of examples of a positive answer to Question 1.21.

Corollary 1.47. For any left-Noetherian ring k, the categories Repk(OI), Repk(FI) and
Repk(FSet) are Noetherian.

Proof. Combine Theorems 1.41, 1.45 and 1.46 and Corollary 1.38.

The proof illustrates how to use the methods for a general category C. The first difficulty
is to create another category C ′ with no nontrivial endomorphisms and a essentially
surjective functor, C ′ → C, satisfying property (F). Afterwards, whereas there may be
many orders satisfying (G1), the real challenge is to check property (G2). An argument
analogue to the above, essentially coming down to Higman’s Lemma again, yields the
following.

Theorem 1.48. The categoryOSop is Gröbner and the category FSop is quasi-Gröbner.

Proof. Theorems 8.1.1 and 8.1.2 in [SS16].

Let us see a more exotic example of the method at work.

Definition 1.49. Let R be a commutative ring. The category FModR consists of all
finitely generated R-modules and R-linear maps. The full subcategory of free R-modules
of finite rank is denotedVR.
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A linear map between free R-modules is called splittable if its image is a direct summand
of the codomain. The subcategoriesVSR andVSIR consist of the same objects asVR but
contain respectively only the splittable maps or splittable injections.

Remark 1.50. Notice that for a finite ring R, an R-module is finitely generated if and only
if it is finite. For a field K, any finitely generated module is a free vector space and any
linear map is splittable. Hence, the categories FModK ,VK , andVSK are all equal and
we denote them by FVecK .

The next theorem is a combination of Theorem 8.3.1. in [SS16] and Theorem C in a
follow-up paper by Sam and Putman [PS14].

Theorem 1.51. Let R be a finite commutative ring. The categoriesVSIR,VSR andVR are
quasi-Gröbner.

Remark 1.52. We demand the ring R to be finite to work with a combinatorial category.
See section 4.1 for the problems that occur when R is infinite.

Proof. By Theorem 1.48, FSop is Gröbner. For an R-module M , we denote the dual
module HomR(M,R) by M∗. We consider the functor Φ: FSop → VSIR : S 7→ R[S]∗,
given on the level of morphisms by mapping the surjection f : T → S to the map

Φ(f) : R[S]∗ → R[T ]∗ : g 7→ (g ◦R[f ]), where R[f ] : R[T ]→ R[S] : et 7→ ef(t).

Since any free R-module of finite rank is congruent to Rn ∼= Φ({1, . . . , n}) for some n ∈ N,
Φ is essentially surjective. We are left to check property (F) for each Rn ∈ VSIR. Since R
is finite, there exist only finitely many subsets T1, . . . , Tn ⊆ (Rn)∗ that span (Rn)∗ as an
R-module. For each Ti, let fi : Rn → R[Ti]∗ be the dual of the natural maps R[Ti]→ (Rn)∗.
If we pick any finite set S and a splittable injection f : Rn → R[S]∗, this map induces a
dual surjection f ∗ : R[S]→ (Rn)∗. The image of {es | s ∈ S} under f ∗ generates (Rn)∗ and
is thus equal to some Ti. Hence, f ∗ factorizes as

R[S]
Φ(g)∗−−−→ R[Ti]

f∗i−→ (Rn)∗,

where the first map comes from a surjection g : S → T . The dual of this composition
shows that property (F) holds and we conclude thatVSIR is quasi-Gröbner.

Next, consider the inclusion functorVSIR → VSR, which is clearly essentially surjective.
As in the proof of Theorem 1.46, it satisfies property (F) because any splittable map can
be factored as a splittable surjection to its image (of which there are finitely many)
followed by a splittable injection. By Remark 1.37, it follows thatVSR is quasi-Gröbner.

Finally, consider the inclusion functor ι : VSIR → VR, which is clearly essentially
surjective. To check property (F), fix Rn ∈ VR and let N be the cardinality of the set |R|n
(recall R is finite). Notice that there are only finitely many R-linear maps,
fi : Rn → R(nfi ), satisfying nfi ¬ N . Now consider any m greater than N and any map
f : Rn → Rm ∈ V (R). By fixing (standard) bases for Rn and Rm, we may regard f as an
m× n matrix with coefficients in R. Since R1×n contains exactly N elements, at least
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m−N rows of this matrix are equal. Changing the bases (or equivalently the matrix by
elementary row operations), f is thus represented by a matrix with m−N rows equal to
zero. Hence, we can factor f as Rn fi−→ R(nfi )

ι(g)−−→ Rm, where fi is the R-linear map given
by the submatrix of nonzero rows (hence nfi ¬ N) and g is a splittable injection. We
conclude thatVR is quasi-Gröbner.

Example 1.53. In particular, if we let R and k both be equal to a finite field Fq, the
theorem above gives that the category RepFq(FVecFq), consisting of functors
FVecFq → VecFq , is Noetherian. This statement is in fact equivalent (dual) to the
celebrated Artinian conjecture, formulated by Lionel Schwartz, Jean Lannes and Nicholas
Kuhn in the late 1980’s (B.12 in [Kuh94]).

A natural question to ask is whether the full category FModR also gives a positive
answer to Question 1.21 for any finite ring R. We investigate this further in section 4.3.

1.4 Growth
In this last section we review a further consequence of the Gröbner methods as
introduced by Sam an Snowden in [SS16].

Suppose that C is a combinatorial category and M a finitely generated C-module. We
consider a question of another kind than thus far, namely how does M behave when it is
evaluated in objects of increasing cardinality. More precisely let k be a field this time and
M a C-module over k. Consider the function

dimM
k : C → N0 : x 7→ dimkM(x).

As C consists (after some identification) of finite sets, one could wonder how dimM
k

grows when increasing the cardinality of x. A priory, it is not clear why there should be
any regular behaviour at all. Even if x and x′ have the same cardinality, they might lead
to completely different k-vector spaces M(x) and M(x′). However, Sam and Snowden
demonstrate that certain categories have a special structure that guarantees some control
over dimM

k .

We do not want to get into details about this so called O-lingual structure as it requires
many more concepts (formal language). Anyhow, they show that all the finite set
categories from Definition 1.39 have this structure and that the structure is closed under
the categorical product. LetOIr be the r-fold product of the categoryOI. In particular,
they arrive at the following result.

Proposition 1.54. Let k be a field and M a finitely generatedOIr-module. There exists a
multivariate polynomial P (t) ∈ Z[t1, . . . , tr], such that dimM

k (m) = P (m) when m is sufficiently
large in each coordinate.

Proof. Follows from Theorem 6.3.2, Proposition 6.3.3, and Theorem 7.1.2 in [SS16].
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To give at least some clue on the reason this result is true, we present the proof of the
following related result in the special case that r = 1. Our treatment follows that of
Theorem B in [CEFN14] about the category FI.

Definition 1.55. Let M be anOI-module. We say that M is finitely generated in degree
¬ d, if there exists an epimorphism ⊕n

i=1 P[mi] →M ∈ Repk(OI), where n ∈ N and
mi ∈ {1, . . . , d} (repetition is allowed).

Proposition 1.56. Let k be a field and M aOI-module that is finitely generated in degree ¬ d.
There exists a polynomial P (t) ∈ Q[t] of degree at most d, such that dimM

k (m) = P (m) when
m ∈ N is sufficiently large.

Remark 1.57. We adopt the (usual) convention that the zero polynomial has degree −1.

We need the next algebraic fact.

Lemma 1.58. Let f : Z→ Z be a function. Suppose that there exists a polynomial Q(t) ∈ Q[t] of
degree d− 1, such that the difference function ∆(f)(m) = f(m+ 1)− f(m) is equal to Q(m) for
sufficiently large m. Then, there exists a polynomial P (t) ∈ Q[t] of degree d such that
f(m) = P (m) for sufficiently large m.

Proof. Proposition 1.7.3 in the book of Robin Hartshorne [Har77].

To proceed to the proof of Proposition 1.56 we want to reduce the statement to so-called
torsion freeOI-modules. For non-negative integers m ¬ m′, consider the canonical
inclusion ιm′m : [m]→ [m′] : x 7→ x ∈ OI.

Definition 1.59. Let M be aOI-module. We say that an element α ∈M([m]) is torsion if
there exists an integer m′  m such that M(ιm

′
m )(α) = 0. We say that M is torsion free if 0

is the only torsion element in M([m]) for each m ∈ N0.

Lemma 1.60. Let M be a finitely generatedOI-module.

• The torsion elements TorM([m]) = {α ∈M([m]) | α is torsion} form anOI-submodule
TorM ⊆M .

• For [m] large enough TorM([m]) = 0.

• The quotient module M ′ = M/TorM is torsion free.

Proof. As the maps M(ιm
′

m ) are k-linear, TorM([m]) is a k-submodule of M([m]).

• Further, we need to show torsion is functorial. Let α ∈ TorM([m]) and consider any
g : [m]→ [m̃] ∈ OI. Set

g′ : [m′]→ [m̃−m+m′] : x 7→

g(x) if x ¬ m,

(m̃−m) + x esle.
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Notice that this leads to a commutative diagram

[m] [m′]

[m̃] [m̃−m+m′].

ιm
′

m

g g′

ιm̃−m+m
′

m̃

In particular, this shows that M(ιm̃−m+m′
m̃ )(M(g)(α)) = M(g′)(0) = 0. In other

words, M(g(α)) is torsion.

• Since M is finitely generated andOI is Noetherian, it follows that TorM is finitely
generated by some set {α1, . . . , α`}, where αi ∈ TorM([mi]) for some mi ∈ N0. For
each i ∈ {1, . . . , `} let m′i be an integer such that the inclusion ιm

′
i

mi witnesses that αi
is torsion. Let m be any integer greater or equal to max{m′i | i ∈ {1, . . . `}}. Notice
that any morphism fi : mi → m factors as mi

ιmi−−→ m′i → m. By definition, it follows
that TorM(fi)(αi) = 0 for any of these fi. By definition of the αi it follows that
TorM([m]) = {0}.

• Suppose that there is some (α mod TorM([m]) ∈M ′([m]) and m′  m such that
M ′(ιm

′
m )(α mod TorM([m])) = 0. By definition, this means that

M(ιm
′

m )(α) ∈ TorM([m′]), implying that there is an m′′  m′ satisfying
M(ιm

′′
m′ )(M(ιm

′
m )(α)) = 0. But this is nothing else than M(ιm

′′
m )(α), which means that

α is torsion. We conclude that α ≡ 0 mod TorM([m]).

Proof of Proposition 1.56. We work by induction on d. The base case d = 0 implies that
M =

⊕n
i=1 P[0], which is theOI-module given by [m] 7→ {0} for all m ∈ N0 and mapping

all morphism to id{0}. In particular, it follows that dimM
k is equal to the 0 polynomial,

whose degree is less than 0 by convention. Next, assume d is at least 1 and let
ψ : N →M ∈ Repk(OI) be an epimorphism, where N =

⊕n
i=1 P[mi] for some

1 ¬ m1, . . . ,mn ¬ d.

Consider the quotient module M ′ = M/TorM . By composing ψ with the natural quotient
map M →M ′, it follows that M ′ is also finitely generated in degree ¬ d. Furthermore, by
the second part of Lemma 1.60, it holds that dimk(M([m])) = dimk(M ′([m])) for
sufficiently large m. Therefore, we may assume without loss of generality that M is
torsion free. For g : [m]→ [m′] ∈ OI let

g+1 : [m+ 1]→ [m′ + 1] : x 7→

g(x) if x ¬ m,

m′ + 1 if x = m+ 1.

We consider theOI-module M+1, given by M+1([m]) = M([m+ 1]) and
M+1(g) = M(g+1). Notice that there is a natural transformation, φM : M →M+1, given at
level [m] by M(ιm+1

m ). By the assumption that M is torsion free, φM is injective at each
level and so by Proposition 1.7 φ is a monomorphism. Let ∆M ∈ Repk(OI) be the
quotient module M+1/φM(M).
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In particular, consider the principal projective module P[j] for some j ¬ d. Set

Hj = {f ∈ HomOI([j], [m+ 1]) | m+ 1 is not contained in the image of f}.

Notice the bijections

HomOI([j], [m]) ∼−→ Hj : f 7→ ιm+1
m ◦ f,

HomOI([j], [m+ 1]) \Hj
∼−→ HomOI([j − 1], [m]) : f 7→ f � [j − 1].

In particular, this shows that for each m ∈ N0

∆P[j]([m]) ∼= k[HomOI([j], [m+ 1])]/
(
ιm+1
m (k[HomOI([j], [m])]

)
∼= k[HomOI([j], [m+ 1]) \Hj]
∼= k[HomOI([j − 1], [m− 1])] ∼= P[j−1]([m]).

Clearly, the construction ∆ preserves direct products. Combined with the identifications
made above, it follows that

∆N ∼= ∆
n⊕
i=1

P[mi]
∼=

n⊕
i=1

∆P[mi]
∼=

n⊕
i=1

P[mi−1].

Now ψ induces a shifted natural transformation ψ+1 : N+1 →M+1 ∈ Repk(OI) given at
the level [m] by the map ψ[m+1]. By Proposition 1.7, this is an epimorphism. Similarly, we
get a well-defined epimorphism, ∆ψ : ∆N → ∆M , given at level [m] by

∆N([m])→ ∆M([m]) : α mod φN(N) 7→ ψ+1(α) mod φM(M).

This witnesses that ∆M is finitely generated in degree ¬ (d− 1). By the induction
hypotheses, it follows that

dimk(∆M([m])) = dimk(M([m+ 1]))− dimk(M([m])) = (∆ dimM
k )([m])

is equal to a polynomial of degree at most d− 1 for sufficiently large m. By Lemma 1.58,
we conclude that dimM

k is eventually equal to a polynomial of degree at most d.
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Chapter 2

Graphs and contractions

In the first chapter, we have displayed the background needed to analyse the
Noetherianity of modules over combinatorial categories. In this chapter, following the
treatment of Proudfoot and Ramos [PR19a] and [PR19a], we turn to a specific class of
categories consisting of graphs and contractions. In section 2.1, we introduce these
notions and show that contractions preserve the genus (number of holes) of a graph.
Afterwards, we introduce planar rooted trees and S-labellings of (the vertices of) a
graph. Adding these structures to our objects we get auxiliary categories without
nontrivial endomorphisms (as in the case ofOI).

Section 2.2, is dedicated to the proof that the Gröbner method of the first chapter is
applicable to these graph categories. The main step in the proof is (a variant of)
Kruskall’s tree Theorem, which asserts that for a finite set S the poset of S-labelled trees
and label preserving embeddings is Noetherian.

In section 2.3, we consider the k-dimensional growth of a finitely generated module
when evaluating it in graphs with an increasing number of edges, similarly as in section
1.4. We introduce the concepts of d-small(ish) modules and demonstrate that their
growth is bounded by a polynomial of degree at most d. Moreover, we introduce
sprouting and subdivision, two ways to increase the number of edges while preserving
the structure of the original graph. Finally, we illustrate that over these constructions, the
polynomial bound given above can be turned into an equality.
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2.1 Contraction categories
Let us begin by introducing the objects of central interest to us in this chapter.

Definition 2.1. A graph G is a finite CW-complex of dimension at most 1. The set of
0-cells is denoted V (G), since the are called the vertices of G. The set of 1-cells is denoted
E(G), since they are called the edges of G.

Moreover, in this project we always assume that a graph is non-empty and connected.

A loop is an edge connecting a vertex to itself. The degree of a vertex v is the number of
edges that are incident to v, where a loop counts double.

Remark 2.2. Notice that this definition allows a graph to contain loops and parallel edges
between the same two vertices. In the literature, this is sometimes called a multigraph or
pseudograph.

In particular, a graph is a topological space and thus morphisms should be continuous
maps.

Definition 2.3. Let G and G′ be graphs.

• A very cellular map is a continuous map, f : G→ G′, such that each vertex of G is
mapped to a vertex of G′ and each edge of G to a vertex or an edge of G′. If an edge
maps to a vertex, we say that it is contracted by f .

• Two very cellular maps are called equivalent if they are homotopic through very
cellular maps. A graph morphism, f : G→ G′, is an equivalence class of very
cellular maps.

• A contraction is a surjective graph morphism, whose fibers are connected and
acyclic.

• A proper contraction is a contraction where at least one edge of G is contracted. A
simple contraction is a contraction where exactly one edge of G is contracted.

These definitions may sound more abstract than they are.

Example 2.4. The equivalence of very cellular maps states that it does not matter
precisely how an edge is mapped to an edge. For example, consider the graph I of two
points and one edge between them. Consider the following very cellular maps f : I → I ,
acting like the identity on the vertices and shrinking the red part of the edge

They are all homotopic and hence define the same morphisms of graphs, namely the
identity idI . To picture contractions, we make the contracted edges dashed.
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In the illustration below, the left map is a contraction. The right one is not because it
contains a cyclic fibre.

In particular, the examples illustrate that contractions preserve the number of cycles in a
graph. Let us make this precise.

Definition 2.5. The genus g of a graph is defined as the dimension of the first (singular)
homology group H1(G;Q). Equivalently, g = |E(G)| − |V (G)|+ 1.

Lemma 2.6. Let f : G→ G′ be a contraction, then the genus of G and G′ is equal.

Proof. First, suppose that f : G→ G′ is a simple contraction. This means that
|E(G)| = |E(G′)|+ 1. Let e = (v0, v1) be the unique contracted edge in G. Suppose that v
and v′ are distinct vertices in G satisfying f(v) = f(v′). Since fibers are connected, this
would imply that v and v′ are connected by a path in G, whose edges are all contracted to
f(v). We conclude that the only case in which this happens is {v, v′} = {v0, v1}. Hence, it
also follows that |V (G)| = |V (G′)|+ 1, implying that the genus of both graphs is equal. To
conclude, we notice that any contraction can be written as a finite composition of simple
contractions.

In this chapter and the next one, we analyse the following combinatorial categories.

Definition 2.7. For g ∈ N, the category Gg consist of graphs of genus g and contractions.

Remark 2.8. In particular, notice that a graph of genus 0 cannot have any cycles, parallel
edges or loops. Since we already assumed graphs to be connected, we thus recover the
usual definition of a tree. Therefore, we write T instead of G0.

We are interested in modules over the opposite categories Gop
g . We aim to apply the

Gröbner method from chapter 1. Therefore, the first step is to somehow eliminate any
nontrivial endomorphisms in these category. Let us first do so for trees.

Definition 2.9. A rooted tree, (T, v0), consists of a tree T and a fixed vertex v0 ∈ V (T ),
called the root. A contraction of rooted trees is a root preserving contractions of trees. We
letRT denote the corresponding category.

The root order ¬0 is a partial order on the vertices of T , given by v ¬0 v
′ if the unique

path from v to the root v0 passes through v′. In particular, the root is the maximal vertex
with respect to ¬0.

Remark 2.10. For a contraction, f : (T, v)→ (T ′, v′), it is trivial but useful to observe that

1. v ¬0 w ∈ T implies that f(v) ¬0 f(w) ∈ T ′ and

2. v′ ¬0 w
′ ∈ T ′ implies that max¬0 f

−1(v′) ¬0 max¬0 f
−1(w′).
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The categoryRT still contains nontrivial endomorphisms.

Definition 2.11. Let (T, v0) be a rooted tree. For a vertex v ∈ V (T ), let in(v) be the set of
all edges at v except the one in the unique path from v to the root v0.

A planar rooted tree, (T, v0, (¬v)), consists of a rooted tree and of a total-order ¬v on the
set in(v), for each vertex v. Generally, we suppress the orders (¬v) from the notation.

The corresponding depth-first order ¬T is the unique refinement of the reversed root
order 0 that respects the order ¬v for each v ∈ V (T ).

A contraction of planar rooted trees is a contraction of the corresponding rooted trees,
f : (T, v0)→ (T ′, v′0), such that min¬T f

−1(v′) <T min¬T f
−1(w′), whenever v′ <T ′ w

′. Let
PT denote the corresponding category.

Visualising these objects greatly clarifies the definitions.

Example 2.12. When drawing a rooted tree, we put the root at the bottom. When dealing
with a planar rooted tree, we draw the edges in in(v) from left to right with respect to the
order ¬v. In the picture below, the vertices are numbered with respect to the depth-first
order.

1

2

3 4

5

6

Since a contraction is a surjective map, it follows that any endomorphisms in PT is
bijective. As it must also preserve the depth-first order, the only possible map is the
identity. Hence, the opposite category PT op has no nontrivial endomorphisms either. We
move back to the general case of graphs of genus g. To achieve the same result, we
consider them as trees with g extra edges.

Definition 2.13. Let G be a graph of genus g. A spanning (planar rooted) tree in G, is a
CW-subcomplex of G that is a (planar rooted) tree containing all vertices of G.

A rigidified graph, (G, T, v, τ), is a graph G of genus g along with a choice of a spanning
planar rooted tree (T, v) in it and a total order and orientation τ of the g edges in
E(G) \ E(T ).

A contraction of rigidified graphs is a contraction of the corresponding graphs that
restricts to a contraction of the corresponding spanning planar rooted trees and
preserves the order and orientation of the g extra edges. Let PGg denote the
corresponding category.

Example 2.14. For a rigidified graph, we draw the spanning planar rooted tree following
the conventions in 2.12 and enumerate and orient the g extra edges according to τ . We do
not emphasize the depth-first order anymore, since it is intrinsic in the drawing. Below
we depict an example of an element in PG3.
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1

3

Remark 2.15. Consider a contraction of rigidified graphs. In particular, note that none of
the g extra edges can get contracted, since this would not lead to a contraction at the level
of spanning trees (see Example 2.4). As the contraction preserves the order and
orientation of the extra edges, it is completely defined by its restriction to the spanning
tree.

Like in the case of trees, an endomorphism in PGg is a bijective map. By our analysis on
PT , it must restrict to the identity on the spanning tree. By Remark 2.15, it is therefore
the identity on the whole graph. Hence, PGop

g has no nontrivial endomorphisms.

To conclude this section, we introduce one more type of structure on a graph. We will
need this in the next section to be able to reduce contractions of graphs of any genus to
contractions of trees.

Definition 2.16. Let (T, v) be a planar rooted tree and let S be a finite set. An S-labelling
of T is a map ` : V (T )→ S. An S-labeled planar rooted tree is a triple (T, v, `).

A contraction of S-labeled planar rooted trees, f : (T, v, `)→ (T ′, v′, `′), is a contraction of
planar rooted trees such that l′(w′) = l(max¬0 φ

−1(w′)). Let PT S denote the
corresponding category.

Remark 2.17. A vertex w ∈ V (T ) is called f -maximal if it satisfies u ¬0 w whenever
f(u) = f(w). It follows that f is a contraction of S-labelled planar rooted trees if and only
if l′(f(w)) = l(w) for each f -maximal vertex w of T .

Example 2.18. Let S = {a, b}. See below an example of a contraction of S-labelled.

a

b

a b

b

b

a

b

b

As we added more structure to planar rooted trees, the category PT op
S does not contain

any nontrivial endomorphisms. We are all set to apply the theory of chapter 1.

2.2 Applying the Gröbner method
This section is dedicated to the proof of the following theorem.
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Theorem 2.19. The category Gop
g is quasi-Gröbner

We follow the method explained in chapter 1 and start by considering PGop
g . In the

previous section, we already saw that this category does not have any nontrivial
endomorphisms. We check the two Gröbner criteria.

Proposition 2.20. The category PGop
g satisfies (G1).

Proof. Fix a rigidified graph (G, T, v, τ) of genus g. Recall that the task is to supply the set
|PGop

g (G,T,v,τ)
|, of equivalence classes of contractions with target (G, T, v, τ), with an

admissible order. By Remark 2.15, such a contraction is completely determined by its
restriction on the level of the spanning trees. Hence, it is enough to give an admissible
order on |PT op

(T,v)|.

So let f : Tf → T and g : Tg → T be contractions. First of all, we set f ≺ g if Tf has fewer
edges than Tg. Note there are only finitely many trees with fixed number of edges and
finitely many contractions between two fixed graphs. Hence, in an infinite decreasing
sequence of contractions the number of edges of the source must eventually decrease to
that of T itself. This guarantees that the order is well-founded with global minimum idT .

The next case is that Tf and Tg have the same number of edges but are not equal. Since
these graphs can not be part of the same composition of maps, the order we choose does
not really matter. To make some choice, take the first vertex v1 after the root, with respect
to the depth-first order ¬T . Consider the subtree above v1, that is the full subtree on the
vertices v satisfying v ¬0 v1. If these subtrees of Tf and Tg have the same number of
edges again, proceed with the next vertex v2 with respect to the depth-first order and so
on. This procedure must eventually lead to a choice.

The last case to consider is Tf = Tg. Here, the choice of the order does matter to make it
admissible. We consider the vertices v of T following the depth-first order ¬T in T . If the
¬Tf -minimal vertex in f−1(v) is smaller than the one in g−1(v), then we stipulate that
f ≺ g. If they happen to be equal, we consider the next vertex in the ¬T order and apply
the same convention. This eventually leads to a choice and it is a direct consequence of
the construction that 4 is compatible with precomposition of any contraction
h : T ′ → Tf .

To check condition (G2), we want to pass again from general graphs of genus g to trees.
Therefore, we use the trick mentioned at the end of the last section, namely to translate
the extra information into a labelling as defined in 2.16.

Definition 2.21. Let (G, T, v, τ) be a rigidified graph of genus g and set Sg = {0, 1}2g. For
each i ∈ {1, . . . , g}, let w2i−1 and w2i be the vertices at which the i’th extra oriented edge
respectively originates and terminates. The S-labelling on (T, v) corresponding to the
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order and orientation τ is defined by

`τ : V (T )→ S : w 7→
(
`jτ (w)

)
j∈{1,...,2g}

, where

`jτ : V (T )→ {0, 1} : w 7→

1 if w 0 wj,

0 else.

Lemma 2.22. The assignment

Φ: PGg → PT Sg : (G, T, v, τ) 7→ (T, v, `τ )

that sends a morphisms f : G→ G′ to f �T : T → T ′, is a fully faithful functor.

Proof. First, let us check that Φ is well-defined. Functoriality of the restriction operation is
clear. It remains to see that for any contraction of rigidified graphs, f : G→ G′ ∈ PGg, the
restriction f �T preserves the S-labeling. Notice that f preserves the order and
orientation τ if and only if f(wj) = w′j for all j ∈ {1, . . . , 2g}.

Let w be an f -maximal vertex. If w 0 wj , then f(w) 0 f(wj) = w′j , by Remark 2.10(1).
Conversely, if f(w) 0 f(wj), let w̃ be the unique f -maximal vertex in f−1(w′j) such that
w̃ 0 wj . By Remark 2.10(2), it follows that w 0 w̃ 0 wj , implying that `jτ (w) = 1.
Therefore, it also holds that `jτ ′(f(w)) = 1 and thus `τ (w) = `τ ′(f(w)).

Remark 2.15 immediately implies faithfulness of Φ and tells us there is only one way to
enlarge a morphism of planar rooted trees to one of the full graphs. Since wj 0 wj , it
follows that `jτ ′(f(wj)) = 1, which means that f(wj) 0 w

′
j . Again, let w̃ be an f -maximal

vertex in f−1(w′j). It follows that 1 = `jτ ′(f(w̃)) = `jτ (w̃), which implies that w̃ 0 wj and
hence w′j = f(w̃) 0 f(wj). We conclude that f(wj) = w′j for all j ∈ {1, . . . , 2g}, which
shows that f is indeed a contraction of rigidified graphs. This proves fullness of F .

We take further advantage of the notion of labellings to also encode the codomain of a
contraction.

Definition 2.23. Let S be a finite set and let f : (T ′, v′, `′)→ (T, v, `) be a contraction of
S-labelled planar rooted trees. Let U(S,T ) denote the set S × (V (T ) ∪ {0}). The
U(S,T )-labelling on T ′ corresponding to f is given by

`f : T ′ → U(S,T ) : w′ 7→

(`′(w′), f(w′)) if w′ is f -maximal,
(`′(w′), 0) else.

For a finite set U , we define the preorder ¬U on PT op
U by (T, v, `) U (T ′, v′, `′) if

HomPT U ((T, v, `), (T ′, v′, `′)) 6= ∅.

We consider the canonical order of composition ¬ (see Definition 1.32) on
∣∣∣∣(PT op

S

)
(T,v,`)

∣∣∣∣
and compare it to the preorder ¬U(S,T ) on PT op

U(S,T )
.
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Lemma 2.24. Let S be a finite set and let (T, v, `) be an S-labelled planar rooted tree. The map

F :
∣∣∣∣(PT op

S

)
(T,v,`)

∣∣∣∣→ PT op
U(S,T )

:
(
f : (T ′, v′, `′)→ (T, v, `)

)
7→ (T ′, v′, `f )

is an order embedding with respect to the orders mentioned above.

Proof. First, let fi : (Ti, vi, `i)→ (T, v, `) for i ∈ {1, 2} be contractions of S-labelled planar
rooted trees such that f1 ¬ f2. This means that there is a contraction
g : (T2, v2, `2)→ (T1, v1, `1) ∈ PT S , satisfying f2 = f1 ◦ g. We want to show that g also
induces a contraction in PT U(S,T ) . Hence, let w be an g-maximal vertex in T2 and consider
its label lf2(w) = (l2(w), x). Since g is a contraction in PT S , we already know that
l2(w) = l1(g(w)). As for the second component of the labelling, what is left to show is that
(for w, which is g-maximal)

w is f2-maximal if and only if g(w) is f1-maximal. (?)

Suppose that w is f2-maximal and take a vertex v′ in T1 satisfying f1(v′) = f1 ◦ g(w). Any
of the vertices w′ ∈ g−1(v′) satisfies f2(w′) = f1(v′) = f2(w), implying that w′ ¬0 w. In
particular, this implies that v′ ¬0 g(w) and as v′ was arbitrary that g(w) is f1-maximal.
Conversely, assuming that g(w) is f1-maximal, it follows that v′ ¬0 g(w) for all
v′ ∈ f−1

1 (f2(w)). Since each w′ ∈ f−1
2 (f2(w)) gets mapped to such a v′ by g and w is

g-maximal, we conclude that w′ ¬0 w.

The other way around, suppose that there is a contraction
g : (T2, v2, `f2)→ (T1, v1, `f1) ∈ PT U(S,T ) . By considering the first component of the
labelling, g is also a contraction in PT S . Moreover, by the second component,
f2(w) = f1 ◦ g(w) for all w in T2 that are g and f2-maximal. But by (?), (T1 being a fixed
graph) g is automatically fixed on the rest of T2 and this yields f2 = f1 ◦ g
everywhere.

After these identifications, we are finally able to work towards (G2). The following
lemma plays the role of Higman’s Lemma 1.44 in the case of finite sets. The proof we
present is based on the ones of Lemma 10 in [Bar15] and Theorem 1.2 in [Dra14]. In fact,
the argument was originally introduced in [NW65].

Lemma 2.25 (Kruskall’s tree Theorem). Let U be a finite set. The poset (PT op
U ,¬U) is

Noetherian.

Proof. For convenience, we shorten the notation of an U -labelled planar rooted tree, from
(T, v, `) to T , in this proof. As in the proof of Higman’s Lemma 1.44, an infinite sequence
T1, T2, . . . is called “bad” if Ti 6¬ Tj for all i < j. We need to show there exist no bad
sequence.

If there exists a bad sequence, then, since S is finite, there exists an infinite subsequence
in which the labels of the roots `i(vi) ∈ U are all equal. Let T = T1, T2, . . . ∈ PT op

U be the
infinite bad sequence with equal labeling of the root that is minimal in the following
sense. Among all bad sequences starting with T1, . . . , Ti−1, the tree Ti in T has a minimal
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number of vertices. For each tree Ti, let v1
i be the first neighbour of the root vi with

respect to the depth-first order. Let (T 1
i , v

1
i , `i) be the first branch of T . That is the full

planar subtree above v1
i , meaning that v ∈ T 1

i if and only if v ¬0 v
1
i . Let (T 2

i , vi, `i) be the
remaining part of Ti after removing T 1

i and the edge between vi and v1
i .

The tree Ti on the left decomposes as the trees T 1
i and T 2

i on the right.

Next, let T 2 be the set {T 2
i | i ∈ N}. We claim that (T 2,¬U) is Noetherian. If not, it

contains a bad sequence and therefore also a bad (sub)sequence, T 2
i1
, T 2

i2
, . . ., with

increasing labels ij < il for j < l. Consider the sequence

T2 = T1, . . . , Ti1−1, T
2
i1
, T 2

i2
, . . . ∈ PT op

U .

By assumption, there cannot be any increment for i, j ∈ {i1, i2, . . .}. There cannot be any
increment for i, j ∈ {1, . . . , i1 − 1} either, because the sequence T is bad. The last case is
Tq ¬U T 2

il
for q ∈ {1, . . . , i1 − 1} and any l. This means that there is a contraction

f : T 2
il
→ Tq. However, there also is a natural contraction Til → T 2

il
given by contracting

the first branch to the root. The composition of these contractions shows that Tq ¬U Til .
As q ¬ i1 ¬ il, this contradicts the fact that T is bad. We conclude that T2 is bad.
However, as T 2

i1
has fewer vertices than Ti1 this contradicts the minimality of T.

Therefore, (T 2,¬U) is indeed Noetherian.

In particular, this means that there exists a sequence T 2
j1
,¬U T 2

j1
¬U · · · , where

j1 < j2 < · · · . Consider the corresponding sequence T 1
j1
, T 1

j2
, . . . of first branches. We play

the same game again. If it is bad, we could consider the sequence

T1 = T1, . . . , Tj1−1, T
1
j1
, T 1

j2
, . . . ∈ PT op

U .

As before, there cannot be any increment in the first or last part of the sequence by
assumption. Suppose there is a contraction f : T 1

il
→ Tq. In particular, notice that this

means that the label of v1
i is equal to label of vq and therefore to that of the roots of all

trees in T by assumption. Therefore, there is a natural contraction Til → T 1
il
, contracting

all of T 2
il

and the edge (vi, v1
i ). Composed with f this witnesses Tq ¬U Til . Therefore, T1 is

a bad sequence, contradicting again the minimality of T.

Finally, we conclude that there is jl < jm such that T 1
jl
¬U T 1

jm . As we also had T 2
jl
¬U T 2

jm ,
we can combine the two contractions to get a contraction of the full graphs witnessing
Tjl ¬U Tjm . This contradicts the fact that Twas bad. We conclude that there cannot be
any bad sequence at all.

We are ready to get back to the Gröbner method.

35



Theorem 2.26. The category PGop
g is Gröbner.

Proof. We already saw that PGop
g has no nontrivial endomorphisms and satisfies (G1)

(Proposition 2.20). Now for (G2), fix a rigidified graph (G, T, v, τ) of genus g. Suppose
that there exist contractions fi : (Gi, Ti, vi, τi)→ (G, T, v, τ) ∈ |PGop

g (G,T,v,τ)
|, forming a bad

sequence f1, f2 . . ., with respect to the canonical order. By Lemma 2.22, passing the
restrictions of each fi to the spanning tree yields a bad sequence in |PT op

Sg (T,v,`τ )
|. By

Lemma 2.24, this leads to a bad sequence (T1, v1, `f1), (T2, v2, `f2), . . . ∈
(
PT op

U(S,T )

)
, by

passing through the map F . However, such sequence does not exist by Lemma 2.25. We
conclude that PGop

g satisfies (G2) and therefore that it is Gröbner.

The last step is to reintroduce the nontrivial endomorphisms in Gop
g .

Proof Theorem 2.19. We consider the forgetful functor Φ: PGop
g → Gop

g , which is essentially
surjective. To check property (F), fix a graph G of genus g. Consider all possible
contractions, fi : Gi → G, from all planar rooted trees (Gi, Ti, vi, τi) satisfying
|E(Gi)| ¬ |E(G)|+ g. Notice that there are only finitely many such graphs, finitely many
ways to turn them into planar rooted trees and finitely many isomorphism classes of
contractions between two fixed graphs.

Consider any rigidified graph (G′, T ′, v′, τ ′) of genus g and any contraction
f : G′ → G ∈ Gg. To translate this to a contraction in PGg, one must be careful that f
might be contracting some of the extra edges (the ones in G′ \ T ′). Hence, let
g : (G′, T ′, v′, τ ′)→ (Gi, Ti, vi, τi) be the restriction of f to T ′ that acts like the identity on
the g extra edges of G′. In particular, this means that Gi has at most g more edges than G
(the extra edges that were not contracted). Therefore, f factors as G′ Φ(gi)−−−→ Gi

fi−→ G,
where fi is one of the maps that we fixed in advance. We conclude that Gop

g is
Gröbner.

2.3 Smallness and polynomial growth
We now know that the category Repk(Gop

g ) is Noetherian for any left-Noetherian ring k.
In this section, we want to translate the results of section 1.4 to the graph categories.

Definition 2.27. Let M be a Gop
g -module.

• A filtration of M is a sequence of submodules {0} = Mm ⊆Mm−1 ⊆ · · · ⊆M0 = M .

• The associated graded module to such filtration is gr(M) =
⊕m−1

j=0 Mj/Mj+1.

We characterise the “size” of a Gop
g -module on different levels.

Definition 2.28. Let M be a Gop
g -module.

• We say that M is finitely generated in degree ¬ d if there exists an epimorphism⊕n
i=1 PGi →M ∈ Repk(Gop

g ), where each Gi has at most d edges.
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• We say that M is d-small if it is a subquotient of a module that is finitely generated
in degree ¬ d.

• We say that M is d-smallish if there is a filtration {0} ⊆Mm−1 ⊆ · · · ⊆M such that
the associated graded module gr(M) is d-small.

Notice that the notion of d-smallishness is weaker than that of d-smallness (trivial
filtration {0} ⊆M), which is again weaker than that of being finitely generated in degree
¬ d. However, it is still strong enough for the following.

Proposition 2.29. A d-smallish module is finitely generated.

Proof. Firstly, consider a d-small module M . This means that M is a subquotient of a
finitely generated (in degree ¬ d) module N . Any of the quotient modules of N is
finitely generated. As M is a submodule of such quotient and Repk(Gop

g ) is Noetherian by
Theorem 2.19, it follows that M is finitely generated as well.

Next, consider any d-smallish module M . Let Mm ⊆ · · · ⊆M1 ⊆M be a filtration, such
that gr(M) is d-small. By the above, gr(M) is finitely generated. Since Repk(Gop

g ) is
Noetherian, the submodules Mm−1 and Mm−2/Mm−1 ⊆ gr(M) are finitely generated.
Hence, so is the module Mm−2

∼= Mm−1 ⊕Mm−2/Mm−1. Repeating this argument m− 2
times along the filtration, we conclude that M = M0 = M1 ⊕M1/M0 is finitely generated
as well.

The extra information we get from specifying d is that we can bound the “growth” of the
module.

Proposition 2.30. Let k be a field and M a d-smallish Gop
g -module, then there exists a polynomial

fM(t) ∈ Z[t] of degree at most d, such that dimkM(G) ¬ fM(|E(G)|) for all G ∈ Gg.

Remark 2.31. Notice that the assumption that k is a field is needed to ensure that all
finitely generated modules are in fact free and it makes sense to consider dimkM(G).

Proof. First, we consider the case of a principal projective module PG′ corresponding to a
graph G′ with d edges. Up to automorphisms of G′, a contraction f : G→ G′ is fixed by
the choice of |E(G)| − d edges to contract. Of course not all choices are allowed (see
Example 2.4). It follows that

dimk PG′(G) = |HomGg(G,G
′)| ¬ |AutGg(G

′)|
(
|E(G)|
d

)
.

Observe that for fixed d, the binomial coefficient
(
t
d

)
is a polynomial of degree d. Hence,

in this case the statement holds for fPG′ (t) = |AutGg(G
′)|
(
t
d

)
.

If N is a quotient module of M , then dimkN(G) ¬ dimkM(G). Moreover,
dimk(M1 ⊕M2(G)) = dimkM1(G) + dimkM2(G). Therefore, the statement also holds for
all modules that are finitely generated in degree ¬ d. If N is a subquotient of M , then
dimkN(G) ¬ dimkM(G) yielding the result for all d-small modules. Finally, for
d-smallish modules, notice that dimk(gr(M)(G)) = dimk(M(G)).
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The theorem above only gives an inequality. We cite Proudfoot and Ramos [PR19b]: “We
cannot possibly expect equality, since the dimension of M(G) usually depends on the structure of
G, not just on the number of edges.” Therefore, we introduce two ways to create new graphs
out of a fixed one, while preserving much of the structure.

Definition 2.32. Let G be a graph.

• Let e1, . . . , er be distinct oriented non-loop edges of G and set e = (e1, . . . , er).
Further, let m = (m1, . . . ,mr) be a tuple of non-negative integers. The graph G(e,m)
is obtained by subdividing edge ei in mi new edges. In particular, mi = 0 means
contracting the edge ei. The new vertices on ei are labelled v0

i , . . . , v
mi
i in the order

of the orientation.

• Let v1, . . . , vr be distinct vertices of G and set v = (v1, . . . , vr). Further, let
m = (m1, . . . ,mr) be a tuple of non-negative integers. The graph G(v,m) is obtained
by attaching mi new edges (with a leaf) to vi. This is called sprouting mi leaves at
vi. These leaves are labelled v1

i , . . . , v
mi
i (in any order).

Example 2.33. A graph is a tree if and only if it can be obtained out of the graph •
(unique vertex, no edges) by repeatedly sprouting vertices and subdividing edges.

Recall the categoryOI from Definition 1.39. We already mentioned that any of its objects
is isomorphic to one of the posets [n] = {1, . . . , n}, where n ∈ N0. Similarly, for
m = (m1, . . . ,mr) ∈ Nr0, let [m] be the tuple of posets ([m1], . . . , [mn]). It follows that any
object in the r-product categoryOIr is isomorphic to some [m].

Definition 2.34. Fix a graph G of genus g.

• For a tuple e of (distinct, oriented, non-loop) edges in G, the corresponding
subdivision functor is defined on objects by ΦG,e : OIr → Gop

g : [m] 7→ G(e,m). It
maps the morphism f = (fi)i∈{1,...,r} : [m]→ [n] to

ΦG,e(f) : G(e, n)→ G(e,m) : v 7→

vsi if v = vti ,

v else,

where s = max{j | fi(j) ¬ t} under the convention that max ∅ = 0.

• For a tuple v of vertices in G, the corresponding sprouting functor is defined on
objects by ΦG,v : OIr → Gop

g : [m] 7→ G(v,m). It maps the morphism
f = (fi)i∈{1,...,r} : [m]→ [n] to

ΦG,v(f) : G(v, n)→ G(v,m) : v 7→


v if v is a vertex of G,
vsi if v = vti and fi(s) = t,

vi if v = vti and f−1
i (t) = ∅.

We believe that an example suffices to see that the above assignments are indeed
well-defined functors.
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Example 2.35. Let G be the genus 1 graph depicted below.

v1

v2 v3

e1

e3

e2

Set n = ([0], [2]), m = ([1], [3]). Moreover, let f = (f1, f2), where f1 is the empty map
[0] = ∅ → [1] and f2 is the ordered injection [2]→ [3] : 1 7→ 1, 2 7→ 3. Set e = (e1, e2), where
both edges are oriented upwards. The contraction ΦG,e(f) is depicted below.

v0
1

v1
1 v1

2

v2
2

v3
2

v0
1

v1
2

v2
2

Set v = (v2, v3). The contraction ΦG,e(f) is depicted below.

v1

v2 v3

v1
3

v3
3

v2
3v1

2

v1

v2 v3

v1
3

v2
3

These functors fit in our framework because they preserve finite generation.

Lemma 2.36. For any graph G and any choice of

• edges e, the subdivision functor ΦG,e satisfies property (F).

• vertices v, the sprouting functor ΦG,v satisfies property (F).

Proof. Fix G′ ∈ Gg. For subdivision, consider first the finitely many m ∈ Nr0 for which
|m| = ∑r

i=1mi is at most |E(G′)|+ r. Let fi : G(e,mi)→ G′ be the finitely many
representatives of all isomorphism classes of contractions of such m. Any contraction
f : G(e,m)→ G′ contracts |E(G(e,m))| − |E(G′)| = |E(G)|+ |m| − r − |E(G′)| edges.
Hence, at least |m| − r − |E(G′)| of these contracted edges are subdivided ones.
Contracting first only those subdivided edges and afterwards the others, yields a
decomposition G(e,m)

ΦG,e(g)−−−−→ G(e,mi)
fi−→ G′, for some g : mi → m ∈ OIr and some fi as

above.
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For sprouting, the argument is similar. In this case, we only need to take representatives
of maps from G(v,m), such that |m| ¬ |E(G′)|. Any map will factor through one of these,
because |E(G(v,m))| = |E(G)|+ |m|.

Subdivision and sprouting preserve enough of the structure of the original graph to turn
the upper bound of 2.30 into an equality.

Theorem 2.37. Let k be a field, let M be a d-smallish Gop
g -module and let G be a graph of genus g.

• For each tuple of (distinct, oriented, non-loop) edges e, there exists a polynomial
fM,G,e ∈ Z[t1, . . . , tr] of total degree at most d, such that
dimkM(G(e,m)) = fM,G,e(m1, . . . ,mr) when m is sufficiently large in each coordinate.

• For each tuple of vertices v, there exists a polynomial fM,G,v ∈ Z[t1, . . . , tr] of total degree at
most d, such that dimkM(G(v,m)) = fM,G,v(m1, . . . ,mr) when m is sufficiently large in
each coordinate.

Proof. We prove the statement for subdivision, the argument for sprouting is identical.
By Proposition 2.29, M is finitely generated and so by Lemma 2.36, Φ∗G,e(M) ∈ Repk(OI

r)
is also finitely generated (see Proposition 1.17). By Proposition 1.54, there exists a
polynomial fM,G,e ∈ Z[t1, . . . , tr] such that

dimkM(G(e,m)) = dimk Φ∗G,e(M)([m]) = fM,G,e(m1, . . . ,mr),

when m is sufficiently large in each coordinate. By Proposition 2.30, dimkM(G(e,m)) is
also bounded above by a polynomial of degree d in the variable
|E(G(e,m))| = |E(G)| − r + |m|. Since G and r are fixed, it follows that the total degree of
fM,G,e is at most d.

40



Chapter 3

Homology of the configuration space

The first chapter treated the general theory of modules over categories. The second
chapter focused on all modules over the specific category Gop

g . In this third chapter, we
specify even further to one type of modules over this category, following [PR19a] and
[PR19a]. In section 3.1, we define the topological spaces associated to a graph that
describe the movements of a fixed number of particles over it. Afterwards, we consider
the homology of these so-called configuration space. However, we realise that the
assignment of a configuration space to its graph does not seem functorial with respect to
contractions.

Świątkowski introduced a cubical complex that is a deformation retract of the
configuration space of a graph. In section 3.2, we introduce the corresponding reduced
Świątkowski chain complex, following the treatment of An, Drummond-Cole, and
Knudsen in [ADCK17]. As the complex turns out to be functorial with respect to
contractions, this enables us to conclude that the assignment of a homology group of a
configuration space to a graph is a Gop

g -module after all. Section 3.3 consists of some
concrete computations, which illustrate how the complex offers an algorithmic tool to
compute these homology groups. Moreover, we see how torsion can appear in the first
homology group.

In section 3.4, we show that the previously introduced modules are in fact d-small, where
d is the sum of the order of the homology group, the number of particles and the genus
of the graphs considered. By the results in section 1.4, this implies that under sprouting
the ranks of the homology groups grow polynomially. Moreover, it demonstrates the
existence of a bound on the exponent of the torsion appearing in the homology groups of
any graph of fixed genus.
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3.1 Configuration spaces
Recall that the graphs that we consider are connected topological spaces.

Definition 3.1. Let X be a topological space and n a positive integer.

• The n-stranded ordered configuration space, Confn(X), is the set
{(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j} endowed with the subspace topology of the
product space Xn.

• The n-stranded unordered configuration space, UConfn(X), is the orbit space
Confn(X)/Sn of the permutation action σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

• We adopt the convention that Conf0(X) = UConf0(X) = ∅.

Remark 3.2. Notice that an embedding of topological spaces, i : X → Y , induces an
embedding of the n-stranded unordered configuration spaces,

ĩ : UConfn(X)→ UConfn(Y ) : (x1, . . . , xn) mod Sn 7→ (i(x1), . . . , i(xn)) mod Sn.

Moreover, if i is an homeomorphism so is ĩ.

An interpretation of Confn(X) is that it models the ways to position n distinct “particles”
in X without overlap. Such a positioning is what we call a configuration. A path in
Confn(X) then describes a way to move the particles around without collision. In the
unordered version UConfn(X), we let the particles be indistinguishable. Hence,
swapping the position of any two of them yields the same configuration.

In this project, we restrict our attention to the unordered configuration spaces of graphs.
The master thesis of Daniel Lütgehetmann [LRV16] gives a (much more complete)
introduction for the case of ordered configuration spaces.

Example 3.3. Dimensions grow quickly but we can visualise a few examples.

• Let I be the unique tree consisting of two vertices. By definition, Conf2(I) is the set
I2 \ {(x, x) | x ∈ I} and in UConf2(I) we identify all pairs (x, y) ∼ (y, x). The natural
quotient map Conf2(I)→ UConf2(I) can be visualised as a fold along the diagonal.

Generally, Confn(I) is the n-dimensional hypercube In, where the
(
n
2

)
hypersurfaces

of dimension n− 1 defined by xi = xj for i 6= j are removed. In UConfn(I) we “fold”
along all these hypersurfaces and end up with an n-simplex with some open faces.

• Consider the 3-star, that is the tree having one vertex of valence 3 and three of
valence 1. According to its shape we denote it by Y . The 2-stranded configuration
spaces of Y have the following shape.
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This picture was copied from chapter II in [MS17]. We follow the explanation of
Example 1 in [AG02]. The left image depicts Conf2(Y ). The hole in the center is the
unallowed assignment of the two particles in the central vertex of Y . The six (solid)
spokes, going out of the hole, correspond to the movement of one of the particles
along one of the three edges in Y . The vertical open triangle attached to the spoke
corresponds to the second (previously fixed) particle moving along the same edge
as the first, but always staying strictly behind it. If we go clockwise from one of the
spokes to the next, both the moving particle and the chosen edge change. The
(floor) rhombus, between the two spokes, corresponds to both particles moving
freely in their respective edge. Its outer point is the configuration where both
particles are in the leaf of their edge.

The right image depicts UConf2(Y ). It is obtained out of the left image by
identifying each point with its reflection through a vertical line through the hole in
the middle. Notice in particular that UConf2(Y ) is homotopic to a circle

• The most simple example of a graph that is not a tree is the graph O, consisting of a
unique vertex with a loop. The configuration spaces of O can be obtained out of
those of I by making the identifications 0 ∼ 1 in any coordinate. This means gluing
opposite n− 1 dimensional hypersurfaces in the n dimensional hypercube and
identifying all its corners. However, we can also analyse them directly1.

We begin with Conf2(O). Fixing the position of one particle and an orientation (say
clockwise), the position of the other particle is parametrised by an open interval
(say (0, 1)). Hence, Conf2(O) is a cylinder with open top and bottom. In UConf2(O),
any point gets identified with its image after mirroring through the point in the
middle of the cylinder. This yields an open Möbius strip.

For general Confn(O) where n  2, there exist (n− 1)! possible circular orders of
the particles x1, . . . , xn. Since there is no way to move between configurations
having different orders, Confn(O) has (n− 1)! connected components. We continue
inside such a component, Xi. Fixing the position of the first particle, the position of
the other n− 1 particles is now parametrised by the choice of n− 1 positive real
numbers summing up to less than 1. Thus, it is given by the (n− 1)-simplex with
open sides, ∆n−1. Hence, Xi is homeomorphic to O ×∆n−1 and in particular it is
homotopic to a circle.

1We found this description on https://mathoverflow.net/questions/206546.
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An illustration of the space Conf3(O).

For the unordered configuration space, note that the transposition (i, j) identifies
(among other things) each point in the component Xi with a point in the
component Xj . In particular, it follows that UConfn(O) is connected. Inside a
component Xi, each point is identified with n− 1 others, corresponding to
subsequent rotations of the position of the particles in O. As the particle i is in
another position each time, UConfn(O) is still of the form O ×X for some
contractible topological space X . In particular, UConfn(O) is homotopic to O itself.

To get back to the setting of the previous chapters, we would like to translate the
information in these topological spaces to some kind of modules. Natural candidates are
the (singular) homology groups Hi(UConfn(G);Z) for i ∈ N.

Example 3.4. Consider the 3-star Y . In Example 3.3, we saw that UConf2(Y ) is homotopic
to a circle. Hence, we know that the only nontrivial homology group of Y are
H0(UConf2(Y );Z) ∼= H1(UConf2(Y );Z) ∼= Z.

By Remark 3.2, the n-stranded unordered configuration space is invariant under
subdivision (Definition 2.32). Therefore, vertices having exactly two incoming edges,
might as well be deleted. Moreover, looking closely at the example of Y we see that the
homology depends only on the movements of particles around the central vertex.
Essentially, this is because leaves are topologically indistinguishable from any point on
their corresponding edge.

Definition 3.5. A vertex in a graph is called essential, if it has degree at least 3.

This allows us to treat the zeroth homology group in a global way.

Proposition 3.6. For any (connected) graph G and any positive integer n, UConfn(G) is
path-connected. Hence, H0(UConfn(G);Z) ∼= Z.

Proof. Let us first assume that G has no essential vertex. Note that the only graphs
satisfying this are obtained by subdivision of the graphs I and O. In Example 3.3, we
observed that UConfn(I) is an n-simplex and that UConfn(O) is homotopic to O. In
particular, these spaces are path-connected.

On the other hand, if G does contain an essential vertex v, then it is possible to shuffle the
position of the n particles around in any way, by moving them one by one to v. 2 Hence,
there is a path between any two configurations in Confn(G). As UConfn(G) is a quotient
of this space, it is also path-connected.

2To visualize this shuffling, see animation “Media, Star 4” on the website of Lütgehetmann https://
userpage.fu-berlin.de/luetge/.
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To illustrate that higher homology groups do contain information about the original
graph, we mention the next result from Ki Hyoung Ko and Hyo Won Park [KP12].

Proposition 3.7. A graph G is planar if and only if H1(UConfn(G);Z) is torsion-free.

Proof. This is a consequence of Theorem 3.16 in [KP12].

Finally, we would like to conclude that Hi(UConfn( );Z) is a Gop
g -module. As stated in

Remark 3.2, the construction of the unordered configuration space (and hence of its
homology groups) is functorial with respect to graph-embeddings. However, UConfn( )
is not functorial with respect to contractions.

Example 3.8. Let f : G→ G′ ∈ G2 be the contraction depicted below.

There exists no topological embedding i : G′ → G. Hence, there seems to be no natural
way in which f induces a map f̃ : UConfn(G′)→ UConfn(G).

However, it turns out that at the level of homology, functoriality can still be achieved. To
understand this, we first need to introduce a more adapted way to compute these
homology groups.

3.2 The Świątkowski complex
In this section, we introduce a bigraded complex that computes the homology groups of
the unordered configuration space of a graph. We begin by recalling the relevant ring
theoretic notions.

Definition 3.9. Let G be a group.

• A ring R is called G-graded if there exist an R-submodule Rg ⊆ R for each g ∈ G,
such that, as R-modules, the relations R =

⊕
g∈GRg and Rg ·Rh ⊆ Rgh hold.

• Let R be a G-graded ring. An R-module M is G-graded if there exists subgroups
Mg ⊆M for all g ∈ G such that, as Abelian groups, the relations M =

⊕
g∈GMg and

Rg ·Mh ⊆Mgh hold.

• Graded means (Z,+)-graded. Likewise, bigraded stands for (Z2,+)-graded, where
+ is the component-wise addition.

For any ring R and any group G, there is a trivial G-grading defined by setting R0 = R
and Rg = 0 for all g 6= 0 ∈ G. Under this G-grading of R, any direct decomposition of a
module M =

⊕
Mg is a G-grading. In what follows we use this bigrading on the ring Z.

Definition 3.10. The homology groups of a graph G form the bigraded Abelian group

H•(UConf?(G)) =
⊕

(i,n)∈N2
Hi(UConfn(G)).
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Recall how homology is algebraically introduced by means of a chain complex with
differential maps (∂i∂i+1 = 0),

(A•, ∂) = 0 ∂0←− A0
∂1←− A1

∂2←− A2
∂3←− · · · ,

by setting Hi(A•) = ker(∂i)/ im(∂i+1) for all i ∈ N0. Moreover, recall that a morphism of
chain complexes, f : (A•, ∂)→ (A′•, ∂

′), is a sequence of maps fi : Ai → Bi for i ∈ N0 such
that fi+1∂i = ∂′i+1fi.

Definition 3.11. We call a bigraded R-module A =
⊕

(i,n) Ai,n a bigraded complex if
Ai,n = 0 whenever i or n is negative and if it is accompanied by differential maps
∂i,n : Ai,n → Ai−1,n ∈ModR for (i, n) ∈ N× N0 such that each row A∗,n forms a chain
complex.

...

0
∂0,2←−− A0,2

∂1,2←−− A1,2
∂2,2←−− A2,2

∂3,2←−− A3,2
∂4,2←−− · · ·

0
∂0,1←−− A0,1

∂1,1←−− A1,1
∂2,1←−− A2,1

∂3,1←−− A3,1
∂4,1←−− · · ·

0
∂0,0←−− A0,0

∂1,0←−− A1,0
∂2,0←−− A2,0

∂3,0←−− A3,0
∂4,0←−− · · ·

A map of bigraded complexes, f : A→ A′, consists of a morphism of chain complexes
fn : A∗,n → A′∗,n for each n ∈ N0. We denote the corresponding category BiC•(R).

The homology of a bigraded complex A is the bigraded Abelian group

H•(A) =
⊕
(i,n)

Hi(A∗,n).

We get to the construction of the bigraded complex of interest. It owes its name to Jacek
Świątkowski, who introduced it in the form of a cubical complex in [Ś01]. However, we
follow the approach given in [ADCK17].

Definition 3.12. Let G = (V,E) be a graph.

• A half-edge h consists of a vertex v(h) and an edge e(h) incident to it. For a loop, we
distinguish the corresponding clockwise and counterclockwise half-edge. The
symbol H(v) denotes the set of half-edges containing fixed vertex v.

• Let Z[E] be the integral polynomial ring, where the variables are the edges of G. We
introduce a bigrading on Z[E] by setting grade(e) = (0, 1) for all e ∈ E. That means
that

Z[E]i,n =


{
f ∈ Z[E] | f is homogeneous of degree n} if i = 0,

0 else.

• For each vertex v, let S(v) be the free Abelian group generated by the set
H(v) ∪ {∅, v}. It is bigraded by setting grade(∅) = (0, 0), grade(v) = (0, 1) and
grade(h) = (1, 1) for all h ∈ H(v).
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• The Świątkowski complex of G is the Z[E]-module

S(G) = Z[E]⊗
⊗
v∈V

S(v),

where the tensorproducts are taken over the ring Z. Its bigrading is given by

grade(f ⊗
⊗
v∈V

sv) = grade(f) +
∑
v∈V

grade(sv),

where f ∈ Z[E] and sv ∈ S(v). The differentials ∂i,n : S(G)i,n → S(G)i−1,n are
defined by Z[E]-linearity and the rules

v, ∅ 7→ 0,
h 7→ e(h)⊗ ∅ − 1⊗ v(h),

x1 ⊗ x2 7→ ∂i,n(x1)⊗ x2 + (−1)`∂i,n(x2)⊗ x1,

where xi ∈ S(vi) for v1 6= v2 and ` is the first component of grade(x2).

• For any vertex v, let S̃(v) be the submodule of S(v) generated by ∅ and the
differences h− h′ for all h, h′ ∈ H(v).

• The reduced Świątkowski complex of G is the Z[E]-submodule of S(G) given by

S̃(G) = Z[E]⊗Z
⊗
v∈V

S̃(v),

with the same bigrading and differential as before. In particular, this means that
∂(h− h′) = (e(h)− e(h′))⊗ ∅.

Remark 3.13. As an Abelian group S̃(G)i,n is generated by elements of the form

e1 · · · en−i
i⊗

j=1

(hj0 − hj1)
⊗

v/∈{v1,...,vi}
∅,

where v(hj0) = v(hj1) = vj ∈ V for j ∈ {1, . . . , i} and these vertices are distinct (whereas
the edges e1, . . . , en−i are not necessarily). In particular, S̃(G)i,n = 0 if i exceeds n.

We can visualise some parts of the reduced Świątkowski complex directly.

Proposition 3.14. Let G = (E, V ) be any graph.

1. If i exceeds the number of non-leaves in G, then S̃(G)i,n = 0 for all n.

2. The zeroth row S̃(G)?,0 equals 0← Z← 0← 0← · · ·

3. As an Abelian group, any component S̃(G)i,n is free. Moreover, the ranks satisfy

rank(S̃(G)0,n) =
(
n+ |E| − 1
|E| − 1

)
,

rank(S̃(G)i,n) = rank(S̃(G)i,i) · rank(S̃(G)0,n−i) for n > i.
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4. For n  1, the start of row S̃(G)?,n is

0← Z(n+|E|−1|E|−1 ) ∂1,n←−− Z(2|E|−|V |)·(n+|E|−2|E|−1 ),

where the image of ∂1,n is Ln = {(xk) ∈ Z(n+|E|−1|E|−1 ) | ∑k xk = 0}.

Proof. Everything essentially follows from Remark 3.13.

1. For a leaf v, the set H(v) consists of a unique element. Hence, S̃(V ) is isomorphic to
Z〈∅〉. In other words, it plays no role (after tensoring) in S̃(G). Therefore, if i
exceeds the number of available non-leaves, there can be no generator of the form
in Remark 3.13.

2. The component S̃(G)0,0 consists of the constant functions in Z[E] tensored with the
empty set in each vertex. The rest of the terms is zero since i exceeds n = 0.

3. The monomials of degree n in Z[E] generate S̃(G)0,n. To count them one may
consider the partitions of n into |E| subsets that may also be empty. Hence, there
are

(
n+|E|−1
|E|−1

)
many.

Furthermore, suppose that there is a basis for S̃(G)i,i (consisting of tensorproducts
of i differences of half-edges). The tensor products between all elements in this
basis and the monomials of degree n− i produces a basis for S̃(G)i,n.

4. Note that S̃(G)1,1 is generated by all the possible differences between two
half-edges h− h′ with equal vertex v. The differences in H(v) can all be obtained as
sums of differences h0 − h′ for one fixed h0 ∈ H(v), hence we obtain H(v)− 1
independent generators for each vertex v. (Note this even holds for leaves, where
we need 0 generators.) It follows that S̃(G)1,1 has rank∑v∈V (H(v)− 1) = 2|E| − |V |.
Hence, the stated ranks are correct by the third statement.

The map ∂1,1 acts on the above basis by h− h′ 7→ e(h)− e(h′). Hence, its image is
definitely contained in the subgroup L1, defined in the statement. Furthermore, the
image is generated by sums of any difference of two adjacent edges (edges incident
to the same vertex). Since we work under the assumption that graphs are
connected, any difference of edges e− e′ ∈ E can be obtained as a sum of
differences of adjacent edges. Hence, they are in the image as well. As these
differences generate the full L1, we are done in the case n = 1.

In general, ∂1,n is given on the basis by f ⊗ (h− h′) 7→ f · e(h)− f · e(h′) for any
monomial f ∈ Z[E] of degree n. Hence, its image is contained in Ln. By the same
argument as before, the image must contain any difference fe− fe′ for two edges.
By repeated procedure of this, any difference between two monomials f − f ′ ∈ Z[E]
is also inside the image of ∂1,n. These differences generate the subgroup Ln.
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The relevance of these bigraded complexes is the following.

Theorem 3.15. There are isomorphisms of bigraded Abelian groups

H•(UConf?(G)) ∼= H•(S(G)) ∼= H•(S̃(G)).

In particular, the i’th homology group of the n-stranded unordered configuration space is
isomorphic to Hi(S̃(G)?,n)

Proof. The proof of this result requires Morse theory, which goes beyond the scope of
this thesis. It can be found in [ADCK17] as Theorem 4.5 or, after translating back to the
setting of cubical complexes, in [Ś01].

Let us illustrate that the theorem holds.

Example 3.16. Take any graph G of genus g. Proposition 3.14(2) implies that the only
nontrivial homology of the zeroth row is H0(S̃(G)?,0;Z) = Z. This is in accordance with
the convention that UConf0(G) = ∅. For the first row, remember that S̃(G)i,1 = 0
whenever i  2. Proposition 3.14(4) implies that H0(S̃(G)?,1;Z) ∼= Z and that
H1(S̃(G)?,1;Z) is the free Abelian group of rank

(2|E| − |V |) ·
(
|E| − 1
|E| − 1

)
−
(
|E|
|E| − 1

)
+ 1 = 2|E| − |V | − |E|+ 1 = g.

This is in accordance with the fact that UConf1(G) ∼= G and the very definition of the
genus. For any row n, 3.14(4) implies that H0(S̃(G)?,n;Z) = Z. This is in accordance with
Proposition 3.6.

The reduced Świątkowski complex yields an algorithmic tool to compute the homology
of the unordered configuration spaces of any graph. We present concrete examples in
section 3.3

To investigate functoriality of the homology of the unordered configuration space, we
may thus look at the level of the reduced Świątkowski complex.

Proposition 3.17. The assignment S̃ : Gop
g → BiC•(Z[E]) of the reduced Świątkowski complex

to a graph is functorial with respect to contractions.

Proof. We must define how the functor maps contractions. We illustrate the form of
S̃(f) : S̃(G′)→ S̃(G) by considering a simple example. Let f : G→ G′ ∈ T be the
contraction below.

v1 v2 v3 v4
e1 e2 e3

v′1 v′2 v′3
e′1 e′2

Let hij be the half-edge (vi, ej) and define h′ij similarly. We define f̃ ∗ : S̃(G′)→ S̃(G) by
specifying the image of all generators, namely vertices, edges and half-edges. Away from
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the edge contraction (vertex v′2 in the image), we straightforwardly set

f̃ ∗ : v′1 7→ v1, v′3 7→ v4, e′1 7→ e1, e′2 7→ e2, h′11 7→ h11, h′32 7→ h43.

To encode the contracted information, we set

f̃ ∗ : v′2 7→ e2, h′21 7→ h21 − h22, h′22 7→ h33 − h32.

It is clear that the bigrading is preserved by this definition. As for the differential, it is
trivially preserved for any half-edge not containing v′2 and we compute that

∂ ◦ f̃ ∗(h′21) = ∂(h21 − h22) = e1 − v2 − (e2 − v2) = e1 − e2 = f̃ ∗(e′1 − v′2) = f̃ ∗ ◦ ∂(h′21).

This construction is easily generalised to any simple contraction. Moreover, for two
simple contraction, f and g, it is clear that S̃(f) ◦ S̃(g) = S̃(g) ◦ S̃(f). As any contraction
can be written (uniquely up to order) as a composition of simple ones, there is a unique
functorial continuation of S̃ to the full category Gop

g .

Passing trough the homology groups of the complex and using the identification of
Theorem 3.15, we obtain the maps

Hi(f̃ ∗i,n) : Hi(UConfn(G′))→ Hi(UConfn(G)).

Hence, we derived the requested functoriality and conclude that the assignment of
homology groups Hi(UConfn( );Z) is a Gop

g -module over Z.

3.3 Examples of computations
Before continuing the analysis of the Gop

g -module Hi(UConfn( );Z), we believe it is useful
and interesting to present some examples of computations of these groups. The reduced
Świątkowski complex is our main tool.

Although our exposition involves quite some notation, this section is intended to make
the reader appreciate how some algorithmic computations produce information about a
big range of complicated topological spaces.

We shorten the notation by suppressing tensor products with ∅. Moreover, we denote the
tensor product with a polynomial by a blank space. In particular, this means that for any
f ∈ Z[E] and h− h′ ∈ H(v0),

f(h− h′) = f ⊗ (h− h′)
⊗
v 6=v0
∅.

The combination of 3.14(1) and (4) directly reveals the homology of graphs with only
one essential vertex.
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Example 3.18. Let Slk be the graph with one central vertex v0 having l loops and k leaves
attached to it. For example, S3

2 looks like this.

As these graphs have only one non-leaf, 3.14(1) implies that S̃(G)i,n = 0 for all i > 1.
Hence, the second and higher homology groups of UConfn(Slk) vanish whereas the first
one is the free Abelian group of rank

(2|E| − |V |) ·
(
n+ |E| − 2
|E| − 1

)
−
(
n+ |E| − 1
|E| − 1

)
+ 1 =

(2l + k − 1) ·
(
n+ l + k − 2
l + k − 1

)
−
(
n+ l + k − 1
l + k − 1

)
+ 1.

Notice that the graphs of Example 3.3 are all part of this class I = S0
1 , Y = S0

3 and O = S1
0 .

This formula coincides with the description of their configuration spaces given there. We
highlight that for Y the element

α123 = e1(h2 − h3) + e2(h3 − h1) + e3(h1 − h2)
=− e1(h1 − h2) + e1(h1 − h3)− e2(h1 − h3) + e3(h1 − h2)

is (up to sign) the unique generator of H1(S̃(Y )?,2;Z). For general n  3, a possible
choice of the generator of H1(S̃(Y )?,n;Z) is en−2

1 α123.

Things get much more complicated when having two or more essential vertices.

Example 3.19. We consider the graph of genus 2 consisting of two vertices and tree edges
connecting them. According to its shape, we denote it by Θ. In particular, it contains six
half-edges, which we denote hij = (vi, ej). The second row of S̃(G) looks like

0← Z6 ∂1,2←−− Z12 ∂2,2←−− Z4 ← 0← · · · ,

where we fix the following bases

S̃(G)0,1 : α ={e2
1, e1e2, e1e3, e

2
2, e2e3, e

2
3},

S̃(G)1,1 : β ={e1(h11 − h12), e1(h11 − h13), e1(h21 − h22), e1(h21 − h23),
e2(h11 − h12), e2(h11 − h13), e2(h21 − h22), e2(h21 − h23),
e3(h11 − h12), e3(h11 − h13), e3(h21 − h22), e3(h21 − h23)},

S̃(G)2,1 : γ ={(h11 − h12)⊗ (h21 − h22), (h11 − h12)⊗ (h21 − h23),
(h11 − h13)⊗ (h21 − h22), (h11 − h13)⊗ (h21 − h23)}.
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It follows from Proposition 3.14(4) that the kernel of ∂1,2 has rank 12− (6− 1) = 7. It
clearly contains the linearly independent differences

b1 = β1 − β3, b2 = β2 − β4, b3 = β5 − β7, b4 = β6 − β8, b5 = β9 − β11, b6 = β10 − β12.

Inspired by the case of the graph Y , we notice that the element

B =− e1(h11 − h12) + e1(h11 − h13)− e2(h11 − h13) + e3(h11 − h12)
=− β1 + β2 − β6 + β9.

enlarges the above set to a basis of the kernel of ∂1,2. For ∂2,2 direct computation shows
that

γ1 7→ −b1 + b3,

γ2 7→ b2 − b4 +B,

γ3 7→ b1 − b5 −B,
γ4 7→ −b2 + b6.

In particular, (considering the second bi in each row) it follows that ∂2,2 is injective and
so we conclude that

Hi(UConf2(Θ);Z) ∼=


Z if i = 0,
Z7/Z4 = Z3 if i = 1,
0 esle.

In fact, we should notice that fixing the choice of a vertex (say v1) of Θ, there is a natural
embedding of topological space ι1 : Y → Θ depicted below.

v1 v2

By Remark 3.2, this leads to an embedding ι̃1 : UConf2(Y )→ UConf2(Θ) and, because
homology is functorial with respect to continuous maps, to a group homomorphism
H1(ι̃1) : H1(UConf2(Y ))→ H1(UConf2(Θ)). This map is precisely given by

α123 7→ B mod ∂2,2(S̃(Θ)2,2).

Suppose that we now take the other vertex v2 of Θ and consider the embedding
ι2 : Y → Θ that is the mirror of the previous image. Then the induced map H1(̃i2) is again
given by

α123 7→ e1(h21 − h22) + e1(h21 − h23)− e2(h21 − h23) + e3(h21 − h22) =

B + b1 − b2 + b4 − b5 = B + ∂2,2(γ3 − γ2) = B mod ∂2,2(S̃(Θ)2,2).

52



We now consider the case of a general number n  3 of particles. By Proposition 3.14(4),
the row S̃(Θ)?,n looks like

0← Z(n+22 ) ∂1,n←−− Z4·(n+12 ) ∂2,2←−− Z4·(n2) ← 0← · · · ,

where this time the bases are given by

S̃(G)0,n : α ={en1 , en−1
1 e2, e

n−1
1 e3, e

n−2
1 e2

2, e
n−2
1 e2e3, e

n−2
1 e2

3 . . . , e
n
3},

S̃(G)1,1 : β ={en−1
1 (h11 − h12), en−1

1 (h11 − h13), en−1
1 (h21 − h22), en−1

1 (h21 − h23),
en−2

1 e2(h11 − h12), . . .
...
en−1

3 (h11 − h12), en−1
3 (h11 − h13), en−1

3 (h21 − h22), en−1
3 (h21 − h23)},

S̃(G)2,1 : γ ={en−2
1 (h11 − h12)⊗ (h21 − h22), en−2

1 (h11 − h12)⊗ (h21 − h23),
en−2

1 (h11 − h13)⊗ (h21 − h22), en−2
1 (h11 − h13)⊗ (h21 − h23),

en−3
1 e2(h11 − h12)⊗ (h21 − h22), . . .

...
en−2

3 (h11 − h12)⊗ (h21 − h22), en−2
3 (h11 − h12)⊗ (h21 − h23),

en−2
3 (h11 − h13)⊗ (h21 − h22), en−2

3 (h11 − h13)⊗ (h21 − h23)}.

It follows from Proposition 3.14(4) that the kernel of ∂1,n has rank

4 ·
(
n+ 1

2

)
− (

(
n+ 2

2

)
− 1) =

3
2
n2 +

1
2
n = 2 ·

(
n+ 1

2

)
+
(
n

2

)
.

The last characterisation is useful to recognise the basis

b1 = β1 − β3, b2 = β2 − β4, . . . , b2·(n+12 ) = β4·(n+12 )−2 − β4·(n+12 ),

b′1 = en−2
1 ·B, b′2 = en−3

1 e2 ·B, . . . , b′(n2)
= en−2

3 ·B.

Essentially, the map ∂2,n maps elements of γ in the same way as ∂2,2,while respecting the
front multiplications by monomials (of degree n− 2) in Z[E]. Therefore, naively one
might think it is always injective. However, notice that for n  6 it holds that

rank(S̃(G)2,n) = 4
(
n

2

)
= 2n2 − 2n >

3
2
n2 +

1
2
n = rank(ker(∂1,n)).

This means that ∂2,n cannot be injective and therefore that H2(UConfn(Θ)) 6= 0 for n  6.

Finally, we want to present an example of torsion in the homology of the unordered
configuration space of a graph. Proposition 3.7 ensures the existence of torsion in the first
homology group of the n-stranded unordered configuration space of a non-planar
graphs, whenever n  2.
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Example 3.20. We consider the complete graph on five vertices K5 and the complete
bipartite graph with three vertices on each side, K3,3. Both graphs are non-planar. The
following exposition comes from [ADCK17].

To see the origin of the torsion, consider the following embedding f1 : Θ→ K5,5.

v1

v2

v3v4

v5

e7

e5

e2

e10

e4

e3

e9

e1

e6e8

Recall, from the previous example, the embeddings ι1, ι2 : Y → Θ, which satisfy

H1(ι̃1)(α123) = H1(ι̃2)(α123) = −H1(ι̃2)(α213).

This amounts to the relation

e4(h13 − h11) + e3(h11 − h14) + e1(h14 − h13) = f11(α123)
= −f12(α213) = −e9(h57 − h54)− e7(h54 − h59)− e4(h59 − h57),

where f1j denotes the composition f1 ◦ ιj for j = 1, 2. Now, notice that by rotating the
image above to the left, we get an analogue embedding f2 : Θ ↪→ K5 that reaches the
vertices v5 and v4. Moreover, note that by construction −f12(α213) is equal to the image of
α123 under f2 ◦ ι1 (which we denote f21). By repeating the same argument four more
times, we conclude that

f11(α123) =f21(α123) = −f22(α213)
=f31(α123) = −f32(α213)
=f41(α123) = −f42(α213)
=f51(α123) = −f52(α213) = −f11(α123).

Hence, we see that f11(α123) is a 2-torsion element inside H1(UConf2(K5)).

We treat the case of K3,3 similarly by considering the embeddings f1 and f2 of Θ below.

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

Let ι1 and ι2 be the same embeddings of Y in Θ as before and set fij = fi ◦ ιj . We
conclude that f11(α123) = f12(α123) = f22(α123) = f21(α132) = −f11(α123).
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In fact, the general proof of Proposition 3.7 can also be deduced from the above example,
using a theorem of K. Wagner [Wag37] that roughly says that any non-planar graph
contains a copy of K5 or K3,3 inside it. For the complete exposition see Appendix C in
[ADCK17].

3.4 Smallness
In this section, we analyse the growth of the Gop

g -modules Hi(UConfn( );Z) in the fashion
of section 2.3. The main result is the following.

Theorem 3.21. Fix g, i, n ∈ N0. The Gop
g -module Hi(UConfn( ),Z) is (g + i+ n)-small.

Proof. Again we use the reduced Świątkowski complex. By Theorem 3.15, we know that
Hi(UConfn( );Z) = Hi(S̃?,n( )). Since it is a subquotient of the Gop

g -module S̃( )i,n, it is
enough to show that this module is finitely generated in degree ¬ (g + i+ n).

We claim that for any graph G with more than (g + i+ n) edges, the Abelian group
S̃(G)i,n is generated by the images of all maps S̃(f) that correspond to simple
contractions f : G→ G′. By composition of simple contractions, this actually implies that
S̃(G)i,n is generated by the images of all maps S̃(f) that correspond to contractions
f : G→ G′, where G′ has at most (g + i+ n) edges. There exist only finitely many of these
graphs G1, . . . , Gk. Moreover, the Abelian group S̃(Gj)i,n is finitely generated for each
j ∈ {1, . . . , k}. Let lj be the minimal number of generators of S̃(Gj)i,n (differences of
half-edges and ∅). Hence, we can define an epimorphism φ :

⊕k
j=1 P⊕ljGj

→ S̃( )i,n, by
Proposition 1.14. It follows that S̃( )i,n is indeed finitely generated in degree ¬ (g+ i+ n).

To prove the claim, let G be a graph with more than (g + i+ n) edges and, using Remark
3.13, let

σ = e1 · · · en−i
i⊗

j=1

(hj0 − hj1)
⊗

v/∈{v1,...,vi}
∅

be a generator of the Abelian group S̃(G)i,n. We call v1, . . . , vi the distinguished vertices
of σ. After reordering them, we can assume there exist some r ∈ {1, . . . , i} such that

(vj, vl) ∈ E(G) for some l ∈ {1, . . . , i} if and only if j ¬ r.

Furthermore, we may assume that (vj, vl) = e(hj1), using that the other generators can be
obtained by the differences hj0 − hj1 = [hj0 − (vj, (vj, vl))]− [hj1 − (vj, (vj, vl))].

Under these assumptions, we say that the distinguished edges of type 1 of σ are the
edges connecting two distinguished vertices of σ and the loops in G. The distinguished
edges of type 2 are all of the edges

e1, . . . , en−i, e(h10), e(h11), . . . , e(hi0), e(hi1).

We want to count the number of distinguished edges of any type. Let t be the number of
loops at non-distinguished vertices and let H be the induced subgraph of G on
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{v1, . . . , vr}. The graph H does not contain the t loops defined above and thus has genus
at most g − t. Hence, it has at most g − t+ r edges. Since H contains all edges connecting
two distinguished vertices (including loops), the number of distinguished edges of type
1 in G is at most t+ g − t+ r = g − r. On the other hand, the distinguished edges of type
2 are at most (n− i) + i+ i = n+ i. However, by our first assumption we did count e(hji)
for j ¬ r both as a type 1 and type 2 distinguished edge. Hence, the total number of
distinguished edges actually is at most g − r + n+ i− r = g + i+ n. Hence, G contains an
edge e that is not distinguished. Let us consider the simple contraction f : G→ G′

contracting e. It follows that S̃(G′)i,n contains the object

σ′ = f(e1) · · · f(en−i)
i⊗

j=1

(f(hj0)− f(hj1))
⊗

v/∈{f(v1),...,f(vi)}
∅ ∈ S̃(G)i,n.

All that is left to see is that S̃(f)i,n(σ′) = σ. Recalling Proposition 3.17, the only objects we
should consider are the half-edge h = (vj, e), where vj is a distinguished. By definition
we see that

S̃(f)(f(hj0)− f(hj1)) = (hj0 − h)− (h− hj1) = hj0 − hj1.
It follows that S̃(f)i,n(σ′) = σ, which proves our claim.

We deduce some consequences of this result. Firstly, we want to apply Theorem 2.37.
However, to do so we should consider Gop

g -modules over a field k. Hence, we change the
coefficient group of the homology theory to Q and end up with the (g + i+ n)-small
module Hi(UConfn( );Q) ∈ RepQ(Gop

g ).

We already noticed that the n-stranded unordered configuration space is invariant under
subdivision. However, when sprouting a vertex it is a priori not clear at all how the
unordered configuration space of the graph changes.

Corollary 3.22. Fix non-negative integers g, i and n and let G be a graph of genus g. For each
tuple of vertices v, there exists a polynomial fG,v ∈ Z[t1, . . . , tr], of total degree at most
(g + i+ n), such that

dimQHi(UConfn((G(v,m))) = fG,v(m1, . . . ,mr),

when m is sufficiently large in each coordinate

Proof. Combine Theorems 3.21 and 2.37.

Example 3.23. Consider the tree G = •, having one vertex v and no edges. Sprouting m
leaves to it yields them-star Sm = S0

m = •(v,m). We use the computation in section 3.3 for
general Slk and change the homology coefficient toQ. It follows that row n of S̃(Sm)⊗Q is

0← Q(n+m−1m−1 ) ← Q(m−1)·(n+m−2m−1 ) ← 0← 0← · · ·

and that the first homology group H1(UConfn(Y );Q) ∼= ker(∂1,n) is of dimension

(m− 1) ·
(
n+m− 2
n− 1

)
−
(
n+m− 1

n

)
+ 1.
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For fixed n ∈ N this expression is a polynomial in Z[m] of degree n.

When changing the homology coefficients to Q, we are in fact eliminating all torsion in
the bigraded complex. However, Theorem 3.21 also allows us to deduce something about
this eventual torsion as well.

Corollary 3.24. Fix non-negative integers g, i, n. There exists a constant dg,i,n ∈ N such that for
any graph G of genus g, the torsion part of Hi(UConfn(G);Z) has exponent at most dg,i,n.

Proof. For each graph G of genus g, let Torg,i,n(G) be the torsion subgroup of
Hi(UConfn(G);Z). Recall that any morphism of Abelian groups preserves the torsion
subgroups. It follows that Torg,i,n( ) is a Gop

g -submodule of Hi(UConfn( );Z). As this
module is (g + i+ n)-small by Theorem 3.21, it is in particular finitely generated by
Proposition 2.29. The category RepZ(Gop

g ) is Noetherian, by Theorem 2.19 and 1.34.
Hence, Torg,i,n( ) is also finitely generated by some set {α1, . . . , α`}, where
αj ∈ Torg,i,n(Gj) for some graph Gj of genus g. Let oj ∈ N be the order of αj (in the
corresponding Abelian torsion group) and set dg,i,n = lcm(o1, . . . , ok). An arbitrary
α ∈ Torg,i,n(G) is of the form

α =
∑̀
j=1

∑
fj : G→Gj

λfj · Torg,i,n(f)(αj),

where each λfi is an integer. We conclude that the order of α is at most dg,i,n.

Example 3.25. For i = 1, the proof of Proposition 3.7 (or the method illustrated at the
end of section 3.3) actually demonstrates that for any graph G the only torsion appearing
in H1(UConfn(G);Z) is of exponent 2. Thus, dg,1,n can be taken equal to 2 for all n, g ∈ N0.
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Chapter 4

More (non-)Noetherian results

In contrast to the previous ones, this chapter is composed almost entirely of ideas we
came up with ourselves. Although it is fair to say that most results are direct
consequences or slight adaptation of other work.

Instead of continuing the study of graphs and contractions, we return to the fundamental
Question 1.21: which categories induce a Noetherian module category? In section 4.1, we
make some direct observations on the influence of the size of a category. This motivates
why we restrict our attention to combinatorial categories in the rest of this project.

Section 4.2 is devoted to the introduction of combinatorial categories that do not induce a
Noetherian category of modules over any ring. We consider the categories of finite
(Abelian) groups and finite posets. Afterwards, we introduce the notion of F∞-modules
in a hands-on way, following the exposition of the supervisor and Máté L. Juhász [HJ17].
We show how the argument for posets can be adapted to this setting. Finally, we realise
that these examples can be generalised to the statement that condition (G2) in Definition
1.32 is in fact necessary to induce Noetherian module categories.

To finish, section 4.3 comprises two generalisations on Theorem 1.51. The first one treats
the category of finite projective modules over any finite ring. The second one treats the
category of all finite modules over a finite principal ideal ring.
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4.1 Size of the category
We begin with a trivial but useful observation.

Proposition 4.1. Let C be an essentially small category, let x ∈ C and let k be a left-Noetherian
ring. If x is the source of only finitely many morphisms in C, then the principal projective module
Px ∈ Repk(C) is Noetherian.

Proof. Let x1, . . . , xn be the objects in C, for which HomC(x, xi) is nonempty. The principal
projective module Px, assigns a free k-module of finite rank to any of these xi. Since k is
Noetherian, it follows that any k-submodule of Px(xi) is finitely generated.

Take any C-submodule M ⊆ Px. For each i, the k-module M(xi) is generated by some
finite set of element Si ⊆ Px(xi). As Px(x′) = 0 for all x′ ∈ C \ {x1, . . . , xn}, it follows that
the C-module M is generated by the finite set ⋃ni=1 Si.

In particular, this yields a class of categories that trivially induce Noetherian module
categories.

Corollary 4.2. Let C be a category that contains only finitely many morphisms, then Repk(C) is
Noetherian for any left-Noetherian ring k.

Proof. For any x ∈ C, there exist only finitely many morphisms in C having source x. By
Proposition 4.1, the corresponding principal projective module Px is Noetherian. As x
was chosen arbitrarily we conclude, by Remark 1.19, that Repk(C) is Noetherian.

The remaining results in this section, are modelled on Theorem N in [PS14]. We consider
modules over the categoryG corresponding to a group G, introduced in Example 1.6.
Notice that if G is finite, Corollary 4.2 applies.

Proposition 4.3. The category Repk(G) is Noetherian if and only if the group ring k[G] is
left-Noetherian.

Proof. The category Repk(G) is Noetherian if and only if the principal module P?

corresponding to the unique object ? ∈ G is Noetherian. The definition of this module is
that P?(?) = k[HomG(?, ?)] ∼= k[G] and P?(g) : k[G]→ k[G] : ef 7→ eg+f for g, f ∈ G. Hence,
a submodule M ⊆ P? is determined by the choice of a k-submodule M(?) ⊆ k[G].
Moreover, to be functorial M(?) must be invariant under the actions of P?(g) for all g ∈ G,
that is to say under left multiplication by any element in k[G]. Hence, theG-submodules
of P? correspond exactly to the left ideals of k[G] and the statement follows.

As far as we know, no full characterisation of left-Noetherian group rings has been
proven so far. However, the following is known by Lemma 2.22 in [PS14].

Definition 4.4. A group is called Noetherian if all its subgroups are finitely generated.

Lemma 4.5. If the ring k[G] is left-Noetherian, then the ring k is left-Noetherian and the group
G is Noetherian.
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Proof. Suppose that I is a left ideal of k that is not finitely generated. Set
I[G] = {∑g∈G λgg ∈ k[G] | λg ∈ I for all g ∈ G}. This is a left ideal of k[G] that can not be
finitely generated either.

On the other hand, suppose that H is a subgroup of G that is not finitely generated. Pick
h1 ∈ H and let H1 be the subgroup generated by h1. Now pick h2 ∈ H \H1 and let H2 be
the subgroup generated by h1 and h2. By repeating this procedure, we create an
ascending sequence of subgroups H1 ( H2 ( H3 ( . . . all contained in H . For each such
subgroup, let Ii be the kernel of the map φi : k[G]→ k[G/Hi] : ef 7→ ef mod Hi . By
definition, Hi ( Hj implies Ii ( Ij . Therefore, this yields an infinite increasing sequence
of left ideals of k[G].

We can generalise this to the setting of any locally small category C.

Proposition 4.6. If C contains an object x such that the monoid ring k[HomC(x, x)] is not
left-Noetherian, then Repk(C) is not Noetherian.

Proof. Let I be a left ideal of k[HomC(x, x)] that is not finitely generated. Consider the
C-submodule M ⊆ Px generated by I ⊂ Px(x). Any β ∈M(x) can be obtained as a finite
sum

β =
∑

f : x→x
M(f)(βf ) =

∑
f : x→x

ef ∗ βf ,

where βf ∈ I and ∗ is the product in the monoid ring. It follows that β ∈ I and hence that
M(x) = I . Suppose that M is finitely generated by some set {α1, . . . , α`}, where
αi ∈M(xi) for some xi ∈ C. By Proposition 1.14, each αi can be written as a finite sum

αi =
∑

fi : x→xi
M(fi)(βfi),

for some βfi ∈ I . By definition of the αi, this implies that each β ∈M(x) can be written as
a finite sum

β =
∑

gi : xi→x
λgi ·M(gi)(αi)

=
∑

gi : xi→x

∑
fi : x→xi

(λgλfi)M(gifi)(βfi) =
∑

gi : xi→x

∑
fi : x→xi

(λgλfi)egifi ? βf ,

for some λg ∈ k. To summarise, this would mean that any β ∈ I can be generated inside
k[HomC(x, x)] by the finite set of elements ⋃ki=1{βfi | λfi 6= 0} ⊆ I . This is in contradiction
with the fact that the ideal I is a not finitely generated. Hence, M cannot be finitely
generated and therefore Px is not Noetherian.

In particular, this result implies that the category of C-modules over a ring k is
non-Noetherian whenever the ring k itself is not left-Noetherian. Another consequence is
that every natural category containing “too many” morphisms induces non-Noetherian
module categories.

60



Example 4.7. Consider the category CSet of countable sets and (set theoretical)
functions. The set of natural numbers N has a countable number of endomorphisms.
Consider the set

I = {
∑
f

λfef ∈ k[HomCSet(N,N)] | λf = 0, if the image of f is finite}.

If the image of a map f has cardinality n, then the image of any composition gf has
cardinality at most n. Hence, I is in fact a left ideal of the monoid k[HomCSet(N,N)].

Suppose that I is finitely generated by some set {α1, . . . , α`}, where αi =
∑
f λ

i
fef with all

but finitely many λif 6= 0. Let H be the set of endomorphisms f of N such that λif is
nonzero for at least one i ∈ {1, . . . , `}. Let m be the maximum cardinality of the image of
a map in H . Now, let f0 be any endomorphism of Nwith finite image of cardinality
strictly greater than m and consider the element 1 · ef0 ∈ I . By the remark about
cardinalities above, f0 cannot be obtained by post composition with a map in H , which
means in particular that ef0 cannot be generated by {α1, . . . , α`}. We conclude that I is
not finitely generated. By Proposition 4.6, it follows that Repk(CSet) is not Noetherian.

Notice that Proposition 4.6 does not rule out every category with infinite morphism
classes. For example, let k be the ring Z and G the group (Z,+). Theorem 0.2 in [Put18]
(based on a proof in [Hal54]) demonstrates that the group ring Z[(Z,+)] is Noetherian.
It follows by Proposition 4.3 that RepZ(Z) is Noetherian, where Z is the category
corresponding to the group (Z,+).

However, this illustrates why the analysis of Question 1.21 has a different (more set
theoretical) flavour, once we allow the existence of infinitely many morphisms between
two objects.

4.2 Non-Noetherianity
Thus far, we focused on combinatorial categories that yield a positive answers to
Question 1.21. We felt the necessity to also seek some non-Noetherian module categories.
The categories in this section, induce such examples over any ring k.

Example 4.8. The categoryHead consists of an initial object, x0 (the head), and
countably many other objects, xn n ∈ N (the hairs), with no morphisms between them. It
is clearly combinatorial, for example consider the functor that maps x0 to ∅ and the xi to
any family of distinct sets.

Unfolding the definition in Example 1.10, we see that the principal projective module at
the head Px0 maps each object to a copy of k and each morphism to idk. We consider the
Head-submodule M ⊆ Px0 generated by ⋃i∈N Px0(xi). Concretely, it is given by
M(x0) = {0}, M(xn) = Px0(xn) and M(f : x0 → xn) ≡ 0 for all n ∈ N.

Since there are no nonzero maps available, for each n ∈ N, at least one element in M(xn)
is needed to generated M . Hence, M is not finitely generated, meaning that Px0 is not
Noetherian.
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Remark 4.9. Notice that to see Repk(Head) is non-Noetherian, actually all we need is the
fact that HomHead(xi, xj) = ∅ for all i < j. This namely implies that we need a generator
in xj for arbitrarily large j ∈ N.

Although the example above may seem somewhat artificial, it provides a method to
prove that Repk(C) is non-Noetherian for a general combinatorial category C. Namely,
search for a substructure in C similar toHead and consider an infinitely generated
submodule of the principal projective module at the head. The following results
illustrate this approach. Let FGrp be the category of finite groups and group
homomorphisms and FAb the full subcategory of finite Abelian groups.

Proposition 4.10. The category Repk(FGrp) is non-Noetherian for any ring k. The same holds
for Repk(FAb).

Proof. We present the proof for FGrp. The argument for FAb is exactly the same by
restricting all functors to this subcategory. Let G0 be the cyclic group of order 2. Notice
that a group homomorphism f : G0 → G is fixed by the image of 1, which must lie in
Tor2(G) = {x ∈ G | 2x = 0} (where 2x means x+ x). Therefore, the corresponding
principal projective module is given by

PG0(G) = k[HomFGrp(G0, G)] ∼=
⊕

x∈Tor2(G)

k · ex for G ∈ FGrp,

PX(f) : PX(G)→ PX(H) : ex 7→ ef(x), for f : G→ H ∈ FGrp.

Enumerate the prime numbers p1 = 2, p2 = 3, . . . and for each i ∈ N let Gi be the cyclic
group of order 2pi. Consider the FGrp-submodule M ⊆ PG0 generated by ⋃i∈N PG0(Gi).

Concretely, if a map f : G0 → G factors as G0
h−→ Gi

g−→ G it means that h ≡ 0 ≡ f or
f(1) = g(p1) = pig(1). It follows that

M(G) =
⊕
x∈AG

k · ex,

where AG = {x ∈ G | x = py for y ∈ G and p prime}. In particular, notice that
M(Z/2Z) = k · e0. Suppose that M is finitely generated by some set {α1, . . . , α`}, where
αi ∈M(Hi) for some finite group Hi. Using Proposition 1.14, let
φ :

⊕k
i=1 PHi →M ∈ Repk(FGrp) be the corresponding epimorphism. Let

m′ = max{|Hi| | i ∈ {1, . . . , k}} and let pj be a prime that is strictly greater than m′.
Consider epj ∈M(Gj). Suppose that there exists some group H with |H| ¬ n and some
f : H → Gj that maps some ex ∈M(H) to epj . This means that pf(y) = f(py) = f(x) = pj
for some y ∈ H and some prime p satisfying p ¬ m′ < pj . This contradicts the fact that pj
is prime. In particular, this means that φGp :

⊕k
i=1 PHi(Gp)→M(Gp) is not surjective,

contradicting the fact that φ is an epimorphism. We conclude that M is not finitely
generated.

Essentially, the trick in the above proof was to restrict our attention to nonzero maps to
recognise the head structure of the Gi. The next category we consider is FPos, which
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consists of finite partially ordered sets and order-preserving maps. This time the trick, is
to restrict our attention to maps with what we call a “connected” image. The following
objects play a key role.

Definition 4.11. For n ∈ N, we define the n-sawtooth as a set of 2n+ 1 elements
Xn = {x1, . . . , x2n+1} partially ordered by the relations

x2i > x2i−1 and x2i > x2i+1 for i ∈ {1, . . . , n}.

We call the elements x1 and x2n+1, the extremities of the set Xn.

We depict a poset as a directed graph where x→ y means x < y. The 3-sawtooth X3

looks like this.

Notice that the sawtooth shape is preserved by any order-preserving map. In particular,
for i < n ∈ N there exists no order-preserving map f : Xi → Xn such that the image
contains both extremities of Xn.

Proposition 4.12. The category Repk(FPos) is non-Noetherian for any ring k.

Proof. Consider the set X0 = {a, b}with the trivial partial order, that is a and b are
unrelated. Notice that any set-theoretic map from X0 to a partially ordered set (X,¬) is
order-preserving. Hence, the corresponding projective module can be written as

PX0(X) = k[HomFPos(X0, X)] ∼=
⊕

(x1,x2)∈X2
k · ex1,x2 for X ∈ FPos,

PX0(f) : PX0(X)→ PX0(Y ) : ex1,x2 7→ ef(x1),f(x2), for f : X → Y ∈ FPos,

where we identified a morphism with the ordered tuple of its image. Let M be the
FPos-submodule of PX0 generated by ∐i∈N PX0(Xi), where Xi is the i-sawtooth defined
above. Concretely, for an order-preserving map f : Xi → X and any two objects x, x′ in
the image of f , there exist objects x2, x3, . . . , x2i in the image of f and a “path”

x ≡ x2 ≡ x3 ≡ . . . x2i ≡ x′,

where the symbol ≡ is shorthand for <,>, or =. Hence, M can be described as

M(X) =
⊕

(x,x′)∈X2 such that x∼x′
k · ex,x′ ,

where x ∼ x′ denotes the (equivalence) relation of being connected, that is the existence
of a path x ≡ x1 ≡ · · · ≡ xn ≡ x′ for some n ∈ N and x1, . . . , xn ∈ X .

Suppose that M is finitely generated by some set {α1, . . . , α`}, where αj ∈M(Yj) for
some finite poset Yj . Let n be the smallest integer such that the cardinality of each Yj is at
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most 2n+ 1. Now, let N be the FPos-submodule of M generated by ∐i∈{1,3,5,...,n} PX0(Xi).
Again, we can describe N concretely by

N(X) =
⊕

(x,x′)∈X2 such that x∼nx′
k · ex,x′ ,

where x ∼n x′ denotes the relation of being connected by a path
x ≡ x2 ≡ x3 ≡ · · · ≡ x2n ≡ x′ of length at most 2n+ 1.

In particular, notice that, since the cardinality of Yj is at most 2n+ 1, N(Yj) = M(Yj) for
each j ∈ {1, . . . , `}. By definition of the αi, it must hold that N = M . However, this is
clearly not true. For example, consider the n′-sawtooth for any n′ > n, then the base
object corresponding to its extremities satisfies ex1,x2n′+1 ∈M(Xn′) \N(Xn′). We conclude
that M is not finitely generated and therefore that PX0 is not Noetherian.

The next objects of interest are the so called F∞−modules. The structure F∞ was first
introduced in [Dur07] as the residue field corresponding to the (usual) Archimedean
valuation of the field of fractions Q. However, we follow the hands-on introduction to its
modules as done in [HJ17].

Definition 4.13. An F∞-module is a set X with

• a transitive and commutative operation +, satisfying x+ x = x,

• an inverse notion −x, satisfying −(−x) = x and −(x+ x′) = −x+ (−x′),

• a 0 object, satisfying x+ (−x) = 0,

for each for all x, x′ ∈ X . An F∞-module homomorphism is a map f : X → Y , satisfying
f(x+ x′) = f(x) + f(x′) and f(−x) = −f(x).

We letModF∞ denote the corresponding category and FModF∞ the full subcategory of
finite objects. The subcategories FModIF∞ and FModSF∞ also consist of all finite
F∞-modules, but respectively only contain injective or surjective homomorphisms.

Remark 4.14. This definition seems close to that of a group. In particular, x = −x implies
that x = x+ x = x+ (−x) = 0 and conversely −0 = −(0− 0) = −0 + 0 = 0. However, the
essential difference is that in an F∞-module the 0 object acts as a sink by

0 + x = 0 + 0 + x = 0 + x+ 0 = 0 + x+ x+ (−x) = 0 + x+ (−x) = 0.

These new objects carry a natural partial order.

Lemma 4.15. There is a faithful functor

Θ: FModF∞ → FPos : (X, 0,−,+) 7→ (X,¬),

where the relation x ¬ x′ is defined by x+ x′ = x, that sends each morphism to itself.
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Proof. First, notice that reflexivity and antisymmetry of ¬ follow respectively from
idempotence and commutativity of the + operation. For transitivity, let x1 ¬ x2 ¬ x3.
This implies that x1 + x3 = (x1 + x2) + x3 = x1 + (x2 + x3) = x1 + x2 = x1, so that x1 ¬ x3.
Hence, (X,¬) is a partial order. Furthermore, x+ x′ = x implies that
f(x) + f(x′) = f(x+ x′) = f(x). Hence, Θ is well-defined and faithful by definition.

The first nontrivial example of an F∞-module is F∞ itself. It is defined as the set
{−1, 0, 1}, where x+ x′ = 0 except if x = x′ ∈ {1,−1}. Clearly, there is a bijection

Φ: HomModF∞ (F∞, X)→ X : f 7→ f(1).

Hence, F∞ is the analogue of the one point set {?} in the category of posets. In search for
the analogue of the poset X0 = {a, b}, we consider the next class of examples.

Definition 4.16. For each integer n  2, let Pn be the regular 2n-gon (geometric objects).
Denote its vertices by v1, . . . , v2n, the edge between vi and vi+1 by ei and the edge between
v1 and v2n by e2n. The corresponding F∞-module, Xn, is the set of all faces of Pn{

Pn
}
∪
{
vi, ei | i ∈ {1, . . . , 2n}

}
.

As for the operations, we set Pn = 0, −vi = vi±n and −ei = ei±n and

x+ x′ =


ei if {x, x′} = {vi, vi+1},
x if x = x′,

0 else.

Remark 4.17. An interpretation of the addition is that x+ x′ is the smallest face containing
both x and x′. Hence, the 0 element is Pn itself. Accordingly the partial order on Θ(Xn)
yields, x ¬ x′ when x contains x′. In particular, this means that a part of Θ(Xn) looks like

v1 > e1 < v2 > e2 < v3 > . . . < vn−1 > en−1 < vn.

We call v1 and vn, the extremities of Xn.

The directed graph of the poset corresponding to the module X2, arising from the square
(4-gone), looks like this.

0 e1−e1

e2

−e2

v1

v2−v1

−v2
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One should remember that e1 is nothing but v1 + v2 and likewise e2 = v2 − v1. Hence, in
this case there is a bijection

Φ: HomModF∞ (X2, X)→ X2 : f 7→ (f(v1), f(v2)).

The problem in reproducing the proof of Proposition 4.12 for FModF∞ , is that by Remark
4.14, the posets Θ(X) corresponding to F∞-modules always have a minimum element 0.
In particular, any two points x, x′ ∈ X are connected by the trivial path x  0 ¬ x′.
Therefore, we cannot adapt the ∼ relation in an easy way without losing functoriality.
However, essentially the problem is not the existence of these paths but of the morphism
that contract nontrivial path down to zero. These morphisms are not injective.

Proposition 4.18. The category Repk(FModIF∞) is non-Noetherian, for any ring k.

Proof. Let X0 = {0,±e1,±e2} be the F∞-submodule of the module X2 considered above,
where we forget about the existence of vertices. For any F∞-module, let VX denote the set
{(x1, x2) ∈ X2 | x1 + x2 = 0 and 0 6= x1 6= x2 6= 0}. Any injective F∞-homomorphism,
f : X0 → X , is fixed by a pair (f(e1), f(e2)) ∈ VX . Hence, the corresponding principal
projective module is

PX0(X) = k[HomFModIF∞ (X0, X)] ∼=
⊕

(x1,x2)∈VX

k · ex1,x2 for X ∈ FModF∞ ,

PX0(f) : PX0(X)→ PX0(Y ) : ex1,x2 7→ ef(x1),f(x2), for f : X → Y ∈ FModIF∞ ,

where we identified a morphism with the ordered tuple of its image.

Inside any F∞-module X , considering the poset Θ(X) = (X,¬), we introduce the
relation of being connected “by above”. That is x ∼ x′ if there exists a path
x < x1 > x2 < · · · < xn > x′ for some n ∈ N and x1, . . . , xn ∈ X . Notice that any injective
order-preserving map preserves this relation. This yields a submodule M ⊆ PX0 defined
by

M(X) =
⊕

(x1,x2)∈VX such that x1∼x2
k · ex1,x2 .

Suppose that M is finitely generated by some set {α1, . . . , α`}, where αj ∈M(Yj) for
some finite F∞-module Yj . Let n be the cardinality of the largest set Yj . Define a new
relation, x ∼n x′ if there exists a path x < x2 > x3 < · · · < xn−1 > x′ of length n in X . This
is still preserved by injective order-preserving maps. Therefore, we can define the
submodule M ′ ⊆M by

M ′(X) =
⊕

(x1,x2)∈VX such that x1∼nx2
k · ex1,x2 .

Since each Yj has at most n elements the relations ∼n and ∼ coincide in it. Hence,
αj ∈M ′(Yj) for all j ∈ {1, . . . , `}, which implies that M ′ = M . However, take any integer
n′ > n+1

2 and consider the 2n′-gone F∞-module Xn′ from Definition 4.16. By Remark 4.17,
its extremities satisfy v1 ∼ vn′ by a path of length 2n′ − 1 > n and the tuple (v1, vn′) is an
element of VX2n′ . This means that ev1,vn′ ∈M(X2n′) \M ′(X2n′), which contradicts the
assumption that M = M ′. We conclude that M is not finitely generated and hence that
PX0 is not Noetherian..
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Conversely, one could also consider the case of surjections instead of injections. The
category FModSF∞ trivially leads to Noetherian module categories by Proposition 4.1.
The more interesting category to consider is the opposite one.

Proposition 4.19. The category Repk(FModS
op
F∞) is non-Noetherian, for any ring k.

Proof. As in the proof of Theorem 4.18, we consider the F∞-module X0 = {0,±e1,±e2}.
In this case, a surjective F∞-homomorphism f : X → X0 is fixed by the disjoint sets
U1 = f−1(e1) and U2 = f−1(e2). The necessary and sufficient condition on those sets to
define a morphism is that

x, x′ ∈ Ui if and only if x+ x′ ∈ Ui for both sets i = 1, 2. (?)

Hence, the corresponding principal projective module looks like

PX0(X) = k[HomFModSF∞ (X,X0)] ∼=
⊕

(U1,U2)

k · eU1,U2 ,

PX0(f) : PX0(X)→ PX0(Y ) : eU1,U2 7→ ef−1(U1),f−1(U2),

where f : Y → X ∈ FModSF∞ and the direct sum is taken over all tuples of disjoint
subsets of X satisfying condition (?).

Inside any F∞-module X , considering the poset Θ(X) = (X,¬), we introduce the
relation of being connected “by below but above 0”. That is x ∼ x′ if there exists
x1, . . . , xn ∈ X such that

x 6≡ xi 6≡ x′ and xi 6≡ xj for all i 6= j ∈ {1, . . . , n} and
x+ x1 6= 0, x1 + x2 6= 0, . . . , xn−1 + xn 6= 0, xn + x′ 6= 0,

where the notation x ≡ x′ is shorthand for x < x′, x > x′ or x = x′. For any surjective
F∞-homomorphism f : Y → X , and any x, x′ ∈ X there exist y ∈ f−1(x) and y′ ∈ f−1(x′).
Moreover, x 6≡ x′ implies that y 6≡ y′ and x+ x′ 6= 0 implies that y + y′ 6= 0. Hence, the ∼
relation is preserved in FModSop

F∞ . We say that a pair of disjoint subsets (U1, U2) is
admissible if (?) is satisfied and there exist x1 ∈ U1 and x2 ∈ U2 such that x1 ∼ x2. This
yields a submodule M ⊆ PX0 given by

M(X) =
⊕

(U1,U2) admissible
k · eU1,U2 .

Suppose that M is finitely generated by some set {α1, . . . , α`}, where αj ∈M(Yj) for
some finite F∞-module Yj . Let n be the first odd integer such that each Yj has cardinality
at most n. Define the new relation x ∼n x′ if there exists x2, x3, . . . , xn−1

2
∈ X such that

x 6≡ xi 6≡ x′ and xi 6≡ xj for all i 6= j ∈
{

2, 3, . . . ,
n− 1

2

}
and

x+ x2 6= 0, x2 + x3 6= 0, . . . , xn−1
2

+ x′ 6= 0.

In other words, we again fix the length of the path to be n. This relation is also preserved
in FModSop

F∞ . Therefore, we can define the pair of disjoint subsets (U1, U2) to be
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n-admissible if (?) is satisfied and there exist x1 ∈ U1 and x2 ∈ U2 such that x1 ∼n x2.
This induces a submodule M ′ ⊆M given by

M ′(X) =
⊕

(U1,U2) n−admissible
k · eU1,U2 .

The sets Yj have at most n elements so that the relations ∼n and ∼ coincide in it. It
follows that αj ∈M ′(Yj) for all j ∈ {1, . . . , k}, which implies that M ′ = M . However, take
any integer n′ > n+1

2 and consider the 2n′-gone F∞-module Xn′ from Definition 4.16. By
Remark 4.17, the extremities satisfy v1 ∼ vn′ by a path of length 2n′ − 1 > n. Moreover,
the disjoint subsets U1 = {y1} and U2 = {ym} clearly satisfy (?), which means that
eU1,U2 ∈M(Xm) \M ′(Xm). Hence, we reach a contradiction and conclude that M is not
finitely generated and that PX0 is not Noetherian

Towards the end of the project, we realised that all results in this section are applications
of the following statement, which is a partial converse to the Gröbner method.

Proposition 4.20. Let k be a ring and let C be an essentially small category. Assume that C does
not satisfy property (G2) from Definition 1.32, then Repk(C) is not locally Noetherian.

Proof. By assumption, there is an object x0 such that |Cx0| is not Noetherian. Hence, there
exists fi : x0 → xi for each i ∈ N such that the sequence f1, f2, f3, . . . satisfies fi � fj
whenever i < j.

Consider the principal projective module Px0 ∈ Repk(C) and the submodule M
generated by {efi ∈ Px0(xi) | i ∈ Z>0}. Suppose that M is finitely generated by some set
{α1, . . . , α`}, where αj ∈M(yj) for some object yj ∈ C. By definition of M , each αj is
equal to a finite sum of the form

Nj∑
i=1

∑
gij : xi→yj

M(gij)(efi).

Hence, we conclude that M is also generated by {efi ∈ Px0(xi) | i ∈ {1, . . . , N}}, where
N = max{Nj | j ∈ {1, 2, . . . , `}}. However, by assumption efN+1 ∈ Px0(xN+1) can not be
generated by these elements. We conclude that M is not finitely generated and therefore
that Px0 is not Noetherian.

4.3 Finite modules over a finite ring
Let R be a finite commutative ring. At the end of section 1.3, we raised the question
whether or not the category FModR, of finite R-modules and R-linear maps, induces
Noetherian module categories.

In Theorem 1.51, we saw this holds for the full subcategory of free objectsVR. We are
able to enlarge the class of considered modules one first step.

Definition 4.21. Let FPModR be the category of finite (or equivalently finitely
generated) projective modules over the finite ring R.
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Proposition 4.22. Let R be a finite commutative ring and k a left-Noetherian ring, then
Repk(FPModR) is Noetherian.

Proof. First, we consider the principal projective module PRn ∈ Repk(FModR),
corresponding to the free R-module Rn for some n ∈ N. Let M ⊆ PRn be any submodule.
Notice that we can define the restrictions of these FPModR-modules to the full
subcategoryVR. Clearly, PRn �VR is nothing else but the principal projective module of
Rn inVR, PVRRn . By Theorem 1.51,VR is quasi-Gröbner and thus Repk(VR) is Noetherian.
Therefore, PVRRn is Noetherian and in particular M �VR is finitely generated by some set
{α1, . . . , α`}, where αi ∈M(Rni) for some ni ∈ N. This generates all elements in M(Rm)
for any m ∈ N.

Let P be any finite projective R-module and pick any β ∈M(P ). As P is finitely
generated, there exists a surjective R-linear map f : Rm → P for some m ∈ N. As P is
projective, this map must split, meaning that there exists an R-linear map g : P → Rm

such that f ◦ g = idP . As M(g)(β) is an element in M(Rm), it is generated by {α1, . . . , α`}.
We conclude that β = M(idP )(β) = M(f)(M(g)(β)) is also generated by {α1, . . . , α`}. As
P and β were chosen arbitrarily, this implies that the elements {α1, . . . , α`} actually
generate the full FPModR-module M . As M was also arbitrary, we conclude that PRn is
Noetherian.

Next, we consider the principal projective module PP ∈ Repk(FPModR) corresponding
to any finite projective R-module P . Let M ⊆ PP be any module. Once again, we use the
existence of a surjection f : Rm → P . It namely leads to the natural transformation,
Pf : PP → PRm , defined at level L ∈ FPModR by the map

PfL : k[HomR(P,L)]→ k[HomR(Rm, L)] : eh 7→ ehf .

To check functoriality, notice that for q : L→ L′ ∈ FPModR, it holds that

PfL′ ◦ PN(q)(eh) = PfL′(eqh) = eqhf = PRm(q)(ehf ) = PRm(q) ◦ PfL(eh).

Notice, by Proposition 1.7, that Pf is a monomorphism. Define M̃(L) = PfL(M(L)) and
notice that if β̃ = PfL(β) ∈ M̃(L), then for any q : L→ L′ it follows that

PRm(q)(β̃) = PRm(q) ◦ PfL(β) = PfL′ ◦ PN(q)(β) = PfL′(M(β)),

which is an element in M̃(L′). We conclude that M̃ is a submodule of PRm . By the first
part of the proof, it is finitely generated by some set {α̃1, . . . , α̃`}, where α̃i ∈ M̃(Li). As
before, because P is projective the map f splits. Hence, there is g : P → Rm such that
f ◦ g = idP . This leads to a natural transformation, Pg : PRm → PP , defined analogously
to Pf . It follows immediately that Pg ◦ Pf = idPP . Finally, set αi = PgLi

(α̃i) for each
i ∈ {1, . . . , `} and pick L ∈ FPModR and β ∈M(L) arbitrarily. It follows that

β = PgL ◦ PfL(β) = PgL

(∑̀
i=1

∑
h : Li→L

λhM̃(h)(α̃i)
)

=
∑̀
i=1

∑
h : Li→L

λhM(h)PgL′(αi) =
∑̀
i=1

∑
h : Li→L

λhM(h)(αi).
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Hence, β is generated by {α1, . . . , α`}. We conclude that M is finitely generated and
therefore that PP is Noetherian.

Recall that a commutative ring R is called a principal ideal ring (PIR) if each ideal is
generated by one element. We denote by (x) the ideal generated by x ∈ R. As in the well
known case of principal ideal domains, there exists a structure theorem for finitely
generated modules over a principal ideal ring.

Lemma 4.23. Let R be a principal ideal ring. Each finitely generated R-module is of the form

Rn0 ⊕ (R/(x1))n1 ⊕ (R/(x2))n2 · · · ⊕ (R/(x`))n` ,

where (x1), . . . , (xl) are distinct nontrivial principal ideals in R and ni is a non-negative integer
for each i ∈ {0, 1, . . . , `}.

Proof. This result is of purely commutative algebraic nature1. As each ideal is generated
by one element, a principal ideal ring is in particular a so-called Noetherian ring. T.W.
Hungerford proves in Theorem 1 [Hun68], that a principal ideal ring is a so-called
elementary divisor ring. It follows from I. Kaplansky’s Theorems 9.1 and 9.3 [Kap49],
that modules over a Noetherian elementary divisor ring are of the form mentioned
above.

Proposition 4.24. If R is a finite principal ideal ring, then FModR is quasi-Gröbner.

Proof. As R is finite, it has finitely many ideals (x1), . . . , (x`). In Theorem 1.51, we saw
that the full subcategory of free R-modules of finite rankVR is quasi-Gröbner. For each
ideal I , letVI

R be the full subcategory of R-modules of the form (R/I)n for n ∈ N. Since
HomR((R/I)n, (R/I)m) = HomR/I((R/I)n, (R/I)m), notice that this category is
isomorphic to the category of free R/I-modules of finite rank,VR/I . It follows, from
Remark 1.37, that the categoryVR ×V(x1)

R × · · · ×V(x`)
R is quasi-Gröbner as well. We

consider the functor

Φ: VR ×V(x1)
R × · · · ×V(x`)

R → FModR(
Rn0 , (R/(x1))n1 , . . . , (R/(x`))n`

)
7→ Rn0 ⊕ (R/(x1))n1 ⊕ · · · ⊕ (R/(x`))n` ,

mapping a tuple of morphisms to the corresponding component-wise morphism on the
direct sum. By Lemma 4.23, Φ is essentially surjective. Pick any morphism
f : N → L ∈ FModR. It is of the form

Rn0 ⊕ (R/(x1))n1 ⊕ · · · ⊕ (R/(x`))n` → Rm0 ⊕ (R/(x1))m1 ⊕ · · · ⊕ (R/(x`))m` .

For j ∈ {1, . . . ,m0}, let pj : L→ R be the projection on the j’th coordinate (the j’th copy
of R in Rm0). Notice that pj ◦ f must be one of the finitely many maps in HomR(N,R),
which is bijective to

(HomR(R,R))n0 × (HomR(R/(x1), R))n1 × · · · × (HomR(R/(x`), R))n` .

1This proof was found in the following discussion https://mathoverflow.net/questions/22722.
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Similarly, for any one of the projections pj : N → R/(xi), where
j ∈ {n0 + 1, n0 + 2, . . . ,

∑`
i=0 ni}, it holds that pj ◦ f corresponds to an element of

(HomR(R,R/(xi)))n0 × (HomR(R/(x1), R/(xi)))n1 × · · · × (HomR(R/(x`), R/(xi)))n` .

Therefore, let fi : N → Rn′ ⊕ (R/(x1))n
′
1 ⊕ · · · ⊕ (R/(x`))n

′
` be all morphisms satisfying

n′i ¬
∏̀
q=0

|HomR(R/(xq), R/(xi))|nq for each i ∈ {0, 1, . . . , `}, (∗)

where x0 is the zero element of R. Note that, since R is finite and all coefficients are
bounded, these are finitely many maps. If the morphism f : N → L is not equal to one of
these fi, it means that there is at least one mi not satisfying (∗). This implies that for the
mi projections, pj : R→ R/(xi), there exist j1 6= j2 ∈ {ni−1 + 1, ni−1 + 2, . . . , ni} such that
pj1 ◦ f = pj2 ◦ f . Therefore, we can factor f as

N
f ′−→
(
Rm0 ⊕ (R/(x1))m1 ⊕ · · · ⊕ (R/(x1))(mi−1) ⊕ · · · ⊕ (R/(x`))m`

) Φg′−−→ L,

where f ′ is defined as f forgetting about the coordinate j2 in the target and g is the
identity on all summands except for ej1 7→ ej1 + ej2 . We repeat this procedure until the
target of f ′ satisfies condition (∗). At this point, we have factored f as Φ(g) ◦ fi, for an
injective morphism g in the categoryVR ×V(x1

R )× · · · ×V(x`)
R and one of the fi above. As

N was arbitrary, we conclude that Φ satisfies property (F) and hence that FModR is
quasi-Gröbner.

One more direct generalisation of this result.

Corollary 4.25. If R is the product of finitely many finite principal ideal rings, then FModR is
quasi-Gröbner.

Proof. Remember that if R1 and R2 are commutative rings, FModR1×R2 is isomorphic to
the product category FModR1 × FModR2 . In particular, if R =

∏n
i=1 Ri it follows that

FModR ∼=
∏n
i=1FModRi . Assuming that all Ri are finite principal ideal rings, the result

follows from Proposition 4.24 and Remark 1.37.
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Discussion

During this project, we encountered various questions that we were not able to solve yet.
We list the ones that are most interesting in our opinion.

• Is any combinatorial category that satisfies property (G2) quasi-Gröbner? If this
were true, Corollary 1.38 would turn into an if and only if statement, by combining
Proposition 4.20 and Proposition 4.6. This would yield a complete characterisation
of our fundamental Question 1.21.

• What more can be said about the existence of torsion in higher homology groups of
the unordered configuration space of graphs? Ultimately, one could hope for a
characterisation, similar to Proposition 3.7 for general order i. In the (few)
computations we realised, the appearance of torsion in the reduced Świątkowski
chain complex seems to be bounded to rigid rules.

• How does the configuration space of a graph and its homology groups vary when
adding more and more particles (n >> 0)? The rows of the reduced Świątkowski
chain complex seem to be quite similar, once n exceeds the number of essential
vertices in G.

• Is the category FModR quasi-Gröbner for any finite commutative ring? Because a
finite ring is Artinian, we can reduce the question to the case of finite local rings, as
in Corollary 4.25. However, we lack a description of all finitely generated modules
over these rings to proceed as in Proposition 4.24.

• Does the category FModF∞ , containing all morphism, induce Noetherian module
categories or not? The statement of Jakob Scholbach [Sch14] that F∞ “is badly
behaved from a K-theoretic point of view.”, leads us to expect that the answer is no.
However, we did not find a violation of axiom (G2).
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