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ABSTRACT 

This study evaluates the use of satellite data to monitor soybean water status under 

different irrigation regimes - Full irrigation (FI) and Regulated Deficit Irrigation (RDI) – 

across varying climate conditions of 2022 and 2023. Three key objectives guided this 

research: (1) assessing the potential of vegetation indices (NDVI, GNDVI, ENDVI, NDRE, 

and LAI) in providing real-time insights into crop health and irrigation needs; (2) comparing 

high-resolution PlanetScope (3 m, daily revisit time) imagery with Sentinel (10 m, 5 days) 

data for agricultural monitoring; and (3) examining the trade-offs between water savings and 

crop performance under FI and RDI strategies. Planet vegetation indices (VIs) respond 

promptly to changes in water availability, capturing the immediate effects of irrigation and 

rainfall on plant physiological processes and effectively tracking stress conditions, reflecting 

the in-situ physiological data (stomatal conductance 𝑔𝑠𝑤, transpiration 𝑇𝑎, leaf temperature 

𝑇𝑙𝑒𝑎𝑓 ) measured with porometer/fluorometer LI-600. Comparative analysis between 

PlanetScope and Sentinel imagery found PlanetScope’s high resolution advantageous, but 

Sentinel provided highly correlated results although underestimations in most indices, 

suggesting it can be a cost-effective alternative for large-scale agricultural monitoring, but 

less trustworthy for precision agriculture purposes. The comparison between FI and RDI 

revealed that RDI, particularly in soils with higher water-holding capacity, can maintain crop 

yields with reduced water input, offering a sustainable alternative to FI without significantly 

compromising crop performance. This research concludes that RDI presents a viable strategy 

for water-scarce regions, providing significant water savings without drastically affecting 

crop productivity. Furthermore, remote sensing technologies offer practical, accessible tools 

for global irrigation management, supporting the sustainable intensification of agriculture in 

the face of climate change and resource limitations.
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1. INTRODUCTION 

1.1. Overview 

The world’s sustainable management of water resources has become a critical matter 

due to recent environmental and agricultural challenges. In particular, the water and 

agricultural sectors are the most threatened by climate change [1], that modify water fluxes 

through a continuous rise in global and local temperature and variation in precipitation 

patterns and intensity [2]. Higher temperatures in turn lead to an increase in 

evapotranspiration (ET) rates, where ET is a major component of the water cycle, resulting 

from the combination of two important processes: the loss of water from the soil and water 

surfaces through evaporation, and transpiration from vegetation stomata [3]. As a 

consequence of increasing ET and rainfall distribution alterations, river streamflows also 

vary: this intricate interconnection between the different contributions to the hydrological 

cycle can compromise water availability due to more frequent drought events [4].  

Globally, agricultural irrigation is one of the primary leading actors of water 

consumption, as it employs about 70% of the global freshwater withdrawal from surface and 

subsurface systems, reaching an annual water use of about 2500 km3 globally. This 

production system provides 40% of the world’s food from only 20% of cultivated area and 

sustains the food supply of both highly populated and arid countries [5, 6]. Nevertheless, 

recent studies showed that much more water is abstracted for irrigation than crop water 

requirements, being hence environmentally unsustainable, because it leads to soil salinity, 

bad management of groundwater, and so on [7, 8, 9].  The ever-increasing demographic 

growth requires the satisfaction of the need for food security, which strategies will be 

complex: higher temperatures will imply greater water demand, and in locations where 

precipitation decreases, irrigation will be severely required but also subjected to 

unpredictability due to water scarcity [10]. Therefore, intense pressure will be placed on 

maintaining an optimal crop yield with less water, increasing the overall water use efficiency 

and avoiding unnecessary losses. An integrated comprehension of the plant water status 
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(PWS) as a response to decreased irrigation water is then vital to ensure healthy and still 

productive cultivations, and to ideally schedule the timing and amount of irrigation based 

primarily on their effective needs. In the agricultural sector, ET is a key parameter for 

identifying plants’ water requirements and potential stress, as its variation is the same as the 

water absorption rates of vegetation [11]. The traditional irrigation strategy, hereafter 

referred to as Full Irrigation (FI), is based on distributing enough water to allow crops to 

transpire to their full potential, satisfying the ET requirements of their growing period, but it 

obviously implies great water volumes and losses. Alternatively, Regulated Deficit Irrigation 

(RDI) can be a solution for limiting irrigation water consumption and demand, because it is 

based on the provision of water below the ET needs for optimal plant growth, thus allowing 

to virtually achieve 20-50% of water savings [12, 13]. In addition, RDI is proven to increase 

the level of drought resistance of cultivation [14]; nonetheless, its management is difficult 

and requires more frequent and precise monitoring than FI, as it is necessary to ensure 

optimal and not excessive water deficit to avoid a decline in crop yield and quality [15]. 

Traditionally, decision-making for irrigation refers to ground-based measured 

information such as historical regimes, monitored environmental parameters and weather 

data, and visual assessments of soil and crops. These techniques, although dependable, are 

expensive to acquire a reasonable amount of data. Small leaf samples are then considered 

representative of whole crops, often leading to over- or under-watering [16]. New approaches 

have been explored to overcome these limitations: in particular, satellite remote sensing gives 

the opportunity to capture images and information about PWS over large areas at frequent 

intervals [17]. The baseline of these methodologies is the exploitation of the electromagnetic 

wave reflectance from the canopy, which changes according to different biophysical 

properties, such as plant type and water content within the tissues [18]. Chlorophyll controls 

much of the spectral response of the plant, absorbing 70 – 90% of blue and red incident light 

for photosynthesis, while reflecting most of the green radiation. Other structural 

characteristics of the leaf scatter the infrared light (700–1400 nm) away from its surface, 

showing the peak of reflectance in this region of the spectrum (Figure 1.1). The behavior of 

leaf spectral response changes according to the health conditions and the stage of growth: 

plant stress or senescence can be noticed by the decrease in green and, in particular, near-
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infrared reflectance, and an increase in the red reflection. As crops attempt maturity, the so-

called “red edge shift” occurs, as the point of transition from the red to the infrared reflectance 

shifts toward longer wavelengths [19, 20]. Therefore, the values of leaf reflectance, 

particularly in the near-infrared, green, and red portions of the spectrum, as well as the 

position of the red edge, can be exploited to identify the plant status in terms of health, 

maturity, and stress conditions.  

In this context, several mathematical combinations of leaf reflectance in the different 

portions of the spectrum result in the calculation of the Vegetation Indices (VI), which can 

provide information about plant physiological parameters [4]. In particular, the large 

difference between the infrared (highly reflected) and red (mostly absorbed) reflectance value 

in an actively growing plant makes the ratio between the two very high; if vegetation is 

stressed or senescing, the ratio will decrease, being hence correlated to the photosynthetic 

activity and biomass cover [19]. This ratio is the baseline of the calculation of the most widely 

used VI in vegetation monitoring, the Normalized Difference Vegetation Index (NDVI): the 

higher the NDVI, the more active, healthier, and less stressed the vegetation. Nonetheless, 

red radiations are primarily absorbed by the upper layer of vegetation, hence lower layers do 

not contribute much to the NDVI measure, compromising its correlation to other important 

physiological parameters [21].  

  

Figure 1.1. [a] Absorption spectrum of leaves, that absorb blue and red light, while reflecting green and 

near-infrared radiations. [b] Typical spectral reflectance from leaves: green and near-infrared radiations are 

reflected, with the peak of reflectance in the near-infrared region [19]. 
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Although its capability to qualitatively describe the photosynthetic activity, Gitelson 

et al. (1996) [20] found that chlorophyll concentration is better described by the green 

reflectance than the red channel, as its variation depends almost entirely on the amount of 

chlorophyll itself.  For this purpose, they developed the Green NDVI (GNDVI) that uses 

green in place of the red light, being characterized by a higher sensitivity to chlorophyll 

concentration and a lower dependence on ground cover variations with respect to NDVI [22]. 

Another important index, the Enhanced Normalized Difference Vegetation Index (ENDVI), 

uses the blue portion of the spectrum, together with the infrared and green, to better detect 

vegetation vigor due to the higher absorptivity of blue compared to the red channel, though 

it was originally realized for low altitude monitoring systems such as aircraft and drones [23, 

24]. Finally, the Normalized Difference RedEdge index (NDRE) is calculated through the 

same ratio of NDVI but using the red edge wavelength instead of the red, because the former 

penetrates the leaf deeper than both red and blue wavebands. It works better than NDVI when 

the crop enters the middle growing stage, when plants start becoming mature to the point 

where they are chlorophyll-saturated and red light is no longer properly absorbed [25]. 

Moreover, the RedEdge band is better at measuring the lower layers of the vegetation cover, 

since it is not absorbed by the top layers as the red radiation [21]. In addition to those listed 

above, many other VIs have been developed, all of which are useful for interpreting crop 

vigor and as a potential tool for guiding management decisions [26]. Using these techniques, 

satellites can be a potential solution for spatial monitoring of agricultural water use, as they 

can be used by smallholder farmers with insufficient or absent in-situ water use monitoring 

infrastructure. Nevertheless, significant limitations are carried by these remote sensing 

techniques due to their spatial and temporal resolution, often ineffective for small-scale 

detection, in particular those free for the user end [27].  

 

1.2. Satellites for irrigation monitoring 

Since the 1970s, scientific researchers have started using remotely sensed images 

from Landsat-1 to map irrigated areas and estimate water use, even if the majority of the 
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scientific papers about remote sensing monitoring of irrigation have been published from 

2015 onward, due to the greater availability of satellite data [27]. Water use monitoring is 

typically performed following three main methodologies.  

The first is based on the use of Thermal Infrared (TIR) imagery (such as the Moderate 

Resolution Imagining Spectroradiometer MODIS and Landsat) for the estimation of 

evapotranspiration rates based on the surface energy balance, from which water consumption 

can be estimated by subtracting the effective rainfall. As reference, [28] inferred surface 

temperature and different components of the energy balance equation over a semi-arid 

agricultural area in Eastern Sicily, Italy, through Landsat Thematic Mapper TM5. This 

information was used to calculate the daily latent heat of vaporization and the net radiation, 

finally obtaining evapotranspiration fluxes of the area. Typically, the satellite-based energy 

balance method is complex to apply, due to both the generally coarse spatial resolution of the 

TIR instruments (1 km for MODIS, 120 m for Landsat TM5), for which specific thermal 

information for the individual field may be lost [29], and the difficulty in determining 

precisely the turbulent fluxes components of the energy balance, that impose the assumption 

of many simplifications.  

The second approach employs either passive or active microwave sensors (such as 

the Advanced Microwave Scanning Radiometer-EOS (AMS-E) on Aqua satellite and 

Sentinel-1, respectively) to gain soil moisture indirect estimation, which is an important 

parameter affecting plant growth, due to its influence on PWS, soil temperature, aeration, 

and so on [30]. These techniques are based on the significant difference between the 

emissivity of wet (saturated) soils and dry soils, related to the water content of the soil’s first 

layer of water. This is detected effectively by the longer microwave wavelengths due to the 

low atmospheric noise and greater vegetation penetration [31, 32]. For example, [33] 

demonstrated the effectiveness of different soil moisture products in detecting irrigation 

intensity by comparing satellite-based soil moisture and in-situ measurements in China, 

showing a very high consistency; [34] exploited satellite soil moisture information from 

coarse resolution satellites to quantify the amount of water applied for irrigation in pilot sites 

worldwide, through an algorithm that allows deriving the total amount of water entering the 

soil, given by the sum of precipitation and irrigation. They found a very good agreement with 
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true irrigation levels for both semi-humid and semi-arid climatic conditions, although the 

issues related to the spatial resolution of the employed satellite products (around 40 km) and 

the lack of dependable in-situ irrigation observations. 

Finally, the last method infers irrigation water use through reflectance-based 

calculation of VI, from which the crop coefficient can be calculated. This methodology is 

focused on providing an estimate of crop irrigation requirements, rather than the actual 

quantification of water use [27]. The present project follows this third approach, for which 

many researchers have already performed several studies worldwide. For example, Sheffield 

and Morse-McNabb (2015) [35] utilized satellite information to identify how anthropogenic 

and environmental factors, such as rainfall and land cover history, affect soil conditions and 

productivity. Landsat historical acquisitions, with a spatial resolution of 30-60 m, provided 

the annual cumulated value of NDVI and Spring vegetation cover to show their variability in 

response to rainfall class and presence or absence of irrigation, as well as to land 

privatization, to demonstrate that land use history is important in determining soil conditions. 

The results show that the indices were capable of capturing the strong link between 

vegetation growth and annual rainfall, having higher annual cumulative values for higher 

rainfall, and between soil conditions and long-term management of the land, underlying the 

satellite's capability to identify factors that affect agricultural production and therefore to 

highlight crop areas where production is not at its full potential. Another satellite 

constellation, the Pléiades, with a very high optical resolution (0.5 meters), although its 

limited application in this sector due to its relatively high cost, has been the source of NDVI 

measurements for monitoring the chlorophyll content in the municipality of Weidenbach, 

Germany, to estimate local crop yield, proving the valuable contribution of the VI [36]. 

Earlier studies used another commercial constellation, PlanetScope, that offers daily images 

at 3 m resolution, for crop water management and monitoring, as well as irrigation 

requirements [37, 38]. In a paper by Maselli et al. (2020) [39], Sentinel-2 MultiSpectral 

Instrument (MSI) images, with both high spatial (10 m) and temporal (3-4 days revisiting 

time) were used to capture irrigation water and NDVI evolutions to discriminate between 

irrigated and rainfed fields in Central Italy, proving the high quality of this technology in 

detecting the response of NDVI to water stress conditions in regions with a very accentuate 
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dry season. Sentinel-2 has proven to also be able to capture variability, at the plot scale, in 

rice cultivation in Portugal by comparing different VIs, observing that NDRE is particularly 

useful in recognizing non-uniformity in irrigation and crop growth [40].  

Satellite remote sensing can also be used to infer some basic biophysical vegetation 

cover’s properties, such as the Leaf Area Index (LAI), representing the ratio between the 

total area of the upper leaf surface to the ground [41]. In particular, LAI determines the 

canopy water interception, microclimate, and reflected radiation, thus being related to key 

plant processes like photosynthesis, evapotranspiration, and carbon flux [42, 43]. Commonly, 

LAI is estimated through in-situ measurements, but Boegh et al. (2001) [44], in an attempt 

to derive this parameter from airborne multispectral data, defined a relationship between LAI 

and a VI called Enhanced Vegetation Index EVI, that is calculated through a mathematical 

combination of infrared, red, and blue leaf reflectance. The function shows a satisfactory 

correlation coefficient between the two indices, stipulating a new remote sensing-based 

method to calculate this key parameter for crop monitoring. 

Despite the observed benefits that satellites can provide in monitoring irrigation, 

several issues are linked to their use at the field scale, mostly related to their spatial and 

temporal resolutions, meteorological conditions, and accessibility of data. Skakum et al. 

(2021) [45] compared satellite imagery with different resolutions in the study of within-field 

corn and soybean yield variability, noting that the coarser the resolution, the lower their 

ability to accurately infer the variability at the field scale. Specifically, they defined the 

spatial resolution of 3 m as the threshold for capturing 100% of the yield variability, which 

reduces to 86%, 72%, and 59% for 10 m, 20 m, and 30 m resolutions, respectively. This 

matter is linked to the accessibility of data: most of the open access satellite imagery, such 

as the Copernicus Open Access Hub, which provides free downloads of all Sentinel data, and 

Landsat archives, are characterized by coarse resolutions, while private companies like 

Planet offers more precise and frequent on-demand acquisitions, but they are generally 

expensive [46]. Moreover, commercial satellites have typically a daily temporal resolution 

(Planet, Pléiades), while the revisit times of Sentinel-2 and Landsat 8 are 5 and 8 days, which 

is not ideal for farmers who need to make decisions about irrigation management [47]. 

Finally, another issue is linked to the strong dependence of satellite acquisitions on 
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meteorological conditions, as Visible (VIS) and Near Infrared (NIR) sensors needed to 

calculate the VIs are not able to penetrate clouds. Consequently, the availability of data can 

be compromised by bad weather.  

1.3. Objectives 

In a context where the contention between water scarcity and demographic growth is 

increasingly challenging, exploring new methodologies and technologies to determine the 

qualitative response of vegetation and agricultural cultivations to water stress is of paramount 

importance. These new methods should be feasible and accessible at the global level, as 

countermeasures to face the issue related to water availability and food production can only 

be effective if applied worldwide.  

The present work aims to investigate the potential use of satellite platforms in 

monitoring crops and irrigation in particular, seeking information about plants’ water status. 

Specifically, the goal is to understand whether trends of various vegetation indices can 

provide an indicative picture of the health, growth, and needs of vegetation, and in which 

measure this information can be of effective help for irrigation management. Moreover, it is 

interesting to study which of the analyzed indicators respond best and is more sensitive to 

any kind of change, from variations in water status to senescence. 

Although the majority of research on the subject already demonstrates the usefulness 

of satellites in medium- to large-scale agricultural applications, several problems arise when 

it comes to precision agriculture, or at any rate the everyday, effective use that an ordinary 

farmer might make of them. Temporal and spatial resolutions of free access satellites, usually 

free for the user end, may not be sufficient to promptly take effectual actions in cases of 

either water stress or surplus, but higher-resolution satellites with a more frequent revisit time 

are generally expensive, making them unaffordable for smallholders. To address this 

question, a comparison between spectral information gathered from Sentinel-2 and 

commercial PlanetScope satellites has been conducted, to investigate to what extent the 

higher spatial and temporal resolution of PlanetScope is more useful than that of Sentinel, or 
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whether Sentinel can provide the same information with minimal difference in terms of 

qualitative analysis and thus can be used without compromising crop yield. 

The information collected from the two satellites has been exploited to investigate the 

response to different water inputs of a soybean crop. In fact, in view of a search for an 

increased irrigation water use efficiency, the performance of Full Irrigation and Regulated 

Deficit Irrigation strategies has been explored to contribute to the already underway research 

on the possibility of decreasing water inputs while maintaining or having minimal reduction 

of crop yield. By looking at the performance of the same cultivation to differentiate irrigation 

strategies, one can have a perspective on whether the advantages of water savings are not at 

the expense of crop production or whether RDI poses too many risks to crop performance. 
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2. DATA AND METHODS 

2.1. Study area 

2.1.1. Field characteristics 

The study area consists of a soybean field located in Castelfranco Veneto, in the 

Veneto region of northern Italy. Soy was planted in two different portions of the field in 2022 

and 2023 (Figure 2.1) to ensure the soil has the same initial conditions: in 2022, it was planted 

on May 20th and harvested on October 4th; in 2023, instead, it was planted on May 31st and 

harvested on October 9th. Each field has a dimension of 160x40 meters, further divided into 

four subplots of 40x40 meters each. Two subplots for each field (subplots 1,2 and 5,6) fall 

into the Full Irrigation zone (FI), while the remaining two (subplots 3,4 and 7,8) are irrigated 

through the Regulated Deficit Irrigation (RDI) strategy.  

A granulometric analysis was performed on the two fields by georeferencing several 

points where soil samples were collected. The coarse and fine grain fractions were 

determined, as these affects soil’s water retention capacity, which increases with a finer pore 

size distribution. Consequently, soils with high percentages of silt, clay, and other fine 

particles exhibit greater resistance to droughts compared to coarse-grained terrains, 

consisting of particles with a diameter higher than 2 mm (gravel, sand, etc.) [48]. Thus, soil 

granulometry provides insight into the soil’s ability to endure drought and water scarcity. 

The Inverse-Distance Weighting (IDW) spatial interpolation technique was applied to these 

estimates to infer values across the entire plot, with the procedure detailed in Appendix B.  

In 2022, 12 sampling points (three per subplot) were used to measure the percentage 

of coarse-grained soil fraction, from which the fine fraction was derived. The average values 

for these points are presented in Table 2.1, along with the results of the granulometric 

analysis, which detailed the specific percentages of clay, silt, and sand. Overall, the coarse 

fraction is significantly lower than the fine fraction across the entire field, with subplot 1 

having the highest sand content (45%). 
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Figure 2.1. Soybean field in Castelfranco Veneto, Italy. The portions considered in 2022 (green) and 2023 

(red) were subdivided into four subplots of 40x40 m each: plots 1,2 and 5, 6 were subjected to Full Irrigation 

(FI); plots 3,4 and 7, 8 were subjected to Regulated Deficit Irrigation (RDI) in 2022 and 2023, respectively. 
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Table 2.1. Coarse- and fine-grained fractions (% on the total weight) of the 2022 subplots, with the specific 

percentages of clay, silt, and sand. 

 
 SUBPLOT COARSE FRACTION FINE FRACTION CLAY SILT SAND 

IR
R

IG
A

T
IO

N
 

FI 
1 29.45% 70.55% 22% 33% 45% 

2 35.64% 64.36% 23% 33% 44% 

RDI 
3 26.39% 73.61% 20% 36% 44% 

4 19.15% 80.85% 27% 35% 38% 

 

Table 2.2. Coarse- and fine-grained fractions (% on the total weight) of the 2023 subplots, with the specific 

percentages of clay, silt, and sand. 

 

In 2023, 64 points were georeferenced, collecting soil samples from 32 points for 

each subplot of the field. The resulting averages of coarse-grained and fine-grained fractions 

of the two subplots are listed in Table 2.2, which evidences how the subplot irrigated with 

RDI has a higher fine-grained fraction compared to the coarse-grained one. Instead, the FI 

portion of the field shows a higher percentage of coarse soil particles than fine ones.  

Two important characteristics of the soil were then derived for each subplot both in 

2022 and 2023: the field capacity (FC) and the permanent wilting point (PWP). FC is defined 

as the amount of soil moisture or water content held in the soil after excess water has been 

drained out and the downward movement rate has ceased, that typically takes place after 2-3 

days after water supply [49]. In the absence of irrigation or precipitation, the water content 

in the root zone is uptaken by the crop, until the remaining water is held to the soil particles 

with greater force, making it more difficult for the plant to extract it.  

 
 SUBPLOT COARSE FRACTION FINE FRACTION CLAY SILT SAND 

IR
R

IG
A

T
IO

N
 

FI 
5 51.82% 48.18% 18% 48% 34% 

6 48.54% 51.46% 19% 51% 31% 

RDI 
7 32.66% 67.34% 21% 49% 30% 

8 24.68% 75.32% 24% 47% 29% 
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Table 2.3. Field Capacity (FC), Permanent Wilting Point (PWP), and Plant Available Water Capacity 

(PAWC) values of the 2022 subplots. 

 

Table 2.4. Field Capacity (FC), Permanent Wilting Point (PWP), and Plant Available Water Capacity 

(PAWC) values of the 2023 subplots. 

 

Eventually, the PWP is reached, where the crop can no longer extract the remaining 

water [50]. To avoid wasting water and ensuring optimal plant growth, the objective of 

irrigation is to keep the soil moisture at the FC value, avoiding that plants reach the PWP. 

These two values allow for the computation of the Plant Available Water Capacity (PAWC), 

which indicates the maximum amount of water the soil can retain for plant growth [51]. 

In 2022, FC and PWP values (Table 2.3) reflect the composition of the soil in the different 

subplots. In fact, RDI subplots have a higher percentage of fine-grained particles, allowing 

for slightly higher values of FC, PWP, and PAWC, but their values remain comparable. In 

contrast, in 2023 (Table 2.4), the RDI subplots can hold 43% more water than those under FI 

owing to the higher percentage of fine-grained soil particles. These findings suggest that the 

soil in the RDI portion of the field in both years can save more water compared to the subplots 

subjected to FI, especially in 2023.  

  SUBPLOT FC (%) PWP (%) PAWC (mm) 

IR
R

IG
A

T
IO

N
 

FI 

1 0.228 0.124 20.76 

2 0.212 0.117 19.06 

RDI 

3 0.234 0.122 22.22 

4 0.285 0.161 24.78 

  SUBPLOT FC (%) PWP (%) PAWC (mm) 

IR
R

IG
A

T
IO

N
 

FI 

5 0.163 0.077 34.26 

6 0.177 0.084 37.44 

RDI 

7 0.239 0.117 48.56 

8 0.277 0.142 54.03 
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2.1.2. BBCH-scale for soybean 

The BBCH-scale is a standardized system for coding growth stages that are 

phenologically similar across various plant species. The complete growth cycle is divided 

into ten distinct, easily identifiable development phases known as principal growth stages, 

which are numbered from 0 to 9. Secondary stages are used for more precise identification 

of specific moments or steps in plant development and are coded using the numbers 0 to 9. 

By combining the numbers for the principal and secondary stages, a two-digit code is created, 

ranging from 00 to 99 [52]. In particular, seed planting date is represented as 00, while the 

harvesting date is coded as 99. These more detailed stages are specific for each crop. The 

specific BBCH-scale for soybean is represented in Figure 2.2, with the principal growth 

stages synthetically described in Table 2.5. 

 

 

 

Figure 2.2. Soybean growth stages according to BBCH scale [54]. 
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Table 2.5. Specific BBCH-scale for soybean, with indication of the principal growth stages and a synthetic 

description [53]. 

CODE PRINCIPAL GROWTH STAGE DESCRIPTION 

0 Germination 
Development of the plant under the soil surface, from the 

seed plantation (00) to emergence (09) 

1 Leaf Development 
Development of young seedling, from the cotyledons 

unfolding (10) to fully unfolding of the first leaves (19). 

2 Formation of Side Shoot Development of side shoots (20-29). 

3 Stem Elongation 
Stem elongation proceed parallel to leaf development, 

therefore a coding in this growth stage is omitted. 

4 
Development of Harvestable 

Vegetative Plant Parts 

Harvestable vegetative plant parts have reached final size 

(40-49). 

5 Inflorescence Emergence 

Inflorescence development, from the visibility of the first 

flower buds (50) to the visibility of the first petals, but still 

closed flower (59). 

6 Flowering 
From the opening of the first flower (60) to the ending of 

flowering (69), with the first pods visible. 

7 Development of Fruits and Seeds 

Stage that starts when the first pod reaches its full length 

(70) and continues until all or most of the pods have 

reached final size, with seeds filling the cavity of the 

majority. 

8 Ripening of Fruits and Seeds 
From the first (80) to the majority (89) of the pods ripe, 

beans final color, dry and hard. 

9 Senescence 
Senescence of the plants, from 10% of leaves discolored or 

fallen (91) to harvested product (seeds) (99). 

 

2.1.3. Irrigation strategies 

According to Krote et al. [55], drought stress can exacerbate pod and flower abortion 

if introduced in early reproductive stages of growth, thus decreasing the number of seed and, 

therefore, yield. In the literature, significant yield reduction was observed when stress was 

applied during the initial reproductive stages of soybean, starting from inflorescence 

emergence (BBCH 50) to the onset of pod formation (BBCH 60) [56]. For this reason, RDI 
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strategy was implemented across all the phenological growth stages except for the principal 

growth stage 5. 

In 2022, the first and last irrigations were applied on June 14th and September 3rd, 

respectively, counting a total of 15 days of irrigation (Figure 2.3); in 2023, instead, it started 

on June 6th, and was regularly applied until August 22nd, for a total of applications equal to 

only 6 days, due to the higher rainfall amounts of the year compared to 2022 (Figure 2.4). 

The total depths of irrigation water applied throughout the soy growth cycle are listed in 

Table 2.6: in both years, the total amount of water supplied with the RDI was 23% lower 

than the water depth applied in the FI part of the field. In Table 2.7, an explicit 

characterization of the days and amounts of application of the two irrigation strategies are 

listed. In 2022, the BBCH 50-59 spanned from July 5th to July 20th, while in 2023 it occurred 

from July 10th to July 25th (see red rectangles in Table 2.7). During this period. 100% of the 

crop’s water requirements were met in both the RDI and FI subplots. 

 

 

Figure 2.3. Precipitation and irrigation depths [mm] in the period of soybean cultivation in 2022. 
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Table 2.6. Total irrigation depths applied in 2022 and 2023, according to the corresponding irrigation 

strategy used. FI refers to Full irrigation, while RDI refers to Regulated Deficit Irrigation. 

 IRRIGATION STRATEGY IRRIGATION DEPTH [mm] 

2022 
FI 244.07 

RDI 188.78 

2023 
FI 160.90 

RDI 122.90 

 

 

Figure 2.4. Precipitation and irrigation depths [mm] in the period of soybean cultivation cycle in 2023. 
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Table 2.7. Dates and depths of irrigation water supply [mm] with Full Irrigation (FI) and Regulated Deficit 

Irrigation (RDI) strategy for 2022 and 2023.The two red rectangles delimitate the periods when RDI was not 

applied. 

Irrigation water supplied [mm] 

Date RDI FI 

14/06/2022 5.31 6.25 

16/06/2022 2.66 2.34 

20/06/2022 6.41 7.97 

24/06/2022 9.38 14.06 

04/07/2022 8.75 14.06 

09/07/2022 10.63 10.00 

13/07/2022 12.81 12.81 

18/07/2022 15.63 15.63 

20/07/2022 16.25 16.25 

23/07/2022 14.38 17.81 

27/07/2022 14.06 21.88 

01/08/2022 15.63 22.50 

06/08/2022 19.38 28.13 

12/08/2022 18.75 27.19 

03/09/2022 18.75 27.19 

30/06/2023 8.00 11.30 

03/07/2023 26.60 36.00 

11/07/2023 27.60 27.50 

19/07/2023 23.10 24.10 

16/08/2023 16.30 40.50 

22/08/2023 21.30 21.50 
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2.1.4. Historical (1993-2021) climatic series of the site 

Castelfranco Veneto is located in the Po Valley of the Veneto region, in Italy, which 

is characterized by a humid subtropical climate (“Csa” climate) according to the Köppen 

climate classification [57]. It is typically characterized by high air humidity and hot summers, 

as well as mild and foggy winters [58]. Monthly and seasonal precipitation is uniformly 

distributed during the year, reaching total annual rainfall depths of 700 – 1000 mm. Winter 

is the driest season, while Atlantic and Mediterranean perturbations dominate in spring and 

autumn, during which occasional occurrences of extreme precipitation events cluster. In 

summer, instead, rainstorms are quite frequent and irregularly distributed, often associated 

with hail and, more rarely, whirlwinds. This is due to the high humidity and solar radiation 

levels, so that lower layers of air masses become unstable, giving rise to storm cells. 

Regarding temperature, a breakpoint around the late 1980s separates an initial period of 

roughly stable temperatures and a second period of gradual growth. In particular, the growing 

trend is estimated to be more than 0.5°C per decade, which is higher than the global +0.33°C 

trend estimated by the National Oceanic and Atmospheric Administration (NOAA) [59].  

The regional agency Agenzia Regionale per la Prevenzione e Protezione Ambientale 

del Veneto (ARPAV) is constituted of 85 meteorological monitoring stations distributed 

across the region. Station number 102, whose characteristics are listed in Table 2.8, is located 

exactly in the city of Castelfranco Veneto, from which a historical meteorological dataset for 

the study area was downloaded [60]. The period considered ranges from 19th May 1992 to 

31st December 2021, counting 30 years of daily information about many important 

meteorological factors: precipitation, solar radiation, wind, temperature, and relative 

humidity at 2 meters height. The annual statistical analysis was performed not considering 

1992 since data are incomplete; nonetheless, a focus on the important months for soybean 

growth (May, June, July, August, and September) was investigated examining also that year. 

The average annual precipitation [mm] for the considered period resulted in 1117 

mm, with the average values for the cited months in Table 2.9. To check the potential 

occurrences of extreme precipitation events in 2022 and 2023, the annual maxima 

precipitation depths [mm] (Figure 2.5) were extracted. The Gumbel distribution was hence 
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Table 2.8. Meteorological station 102 (Castelfranco Veneto) coordinates and altitude in the Gauss-Boaga 

projection system (a.s.l. refers to the altitude above sea level). 

METEOROLOGICAL STATION 102 (CASTELFRANCO VENETO) 

ALTITUDE 50 m a.s.l 

LATITUDE 45.694843 

LONGITUDE 11.9486259 

 

Table 2.9. Mean precipitation [mm] for May, June, July, August, and September for the considered period 

(1993-2021 for May, 1992-2021 for the other months). 

 MAY JUNE JULY AUGUST SEPTEMBER 

Mean P [mm] 120.47 101.93 88.01 94.58 109.77 

 

applied, being a two-parameter model commonly used to simulate a broad variety of 

extreme data from environmental and engineering sciences [61]. The detailed approach, the 

relative graphs, and the tables can be viewed in Appendix A. The extreme precipitation 

depths resulted in 95.31, 113.61, and 170.91 mm for 5-, 10-, and 100-year return periods, 

respectively. The results for the months interested in soy growth are listed in Table 2.10, 

from which it can be noticed that precipitation depths are lower for July and August compared 

to June and September, as precipitation amounts in summer are lower than in mid-season. 

This is further confirmed by Figure 2.6 and Figure 2.7, in which the average values and a 

box plot of the total amount of precipitation occurring in the four months are displayed.  

The mean temperature for the thirty-year dataset is 13 °C, with extremes of -3 °C and 37 °C 

on average. In particular, mean temperature has been subjected to an increasing trend, as 

shown in Figure 2.8, mainly due to a progressive increase of the minima, as the maximum 

temperatures do not show any trend (Figure 2.9). The same Gumbel distribution procedure 

was applied to the dataset of the annual maxima of temperatures, to check if any anomaly 

happened in 2022 and 2023. The results show that a 38.1 °C temperature is associated with 

a return period of 5 years, with differences across the months considered for soy growth 

(Table 2.11). 



42 

 

 

Table 2.10. Precipitation depths [mm] associated with return periods of 5, 10, and 100 years for the months 

interested in soy cultivation in the considered period (1992-2021). 

MONTH 
PRECIPITATION DEPTH [mm] 

𝑻𝒓 = 𝟓 𝒚𝒆𝒂𝒓𝒔 𝑻𝒓 = 𝟏𝟎 𝒚𝒆𝒂𝒓𝒔 𝑻𝒓 = 𝟏𝟎𝟎 𝒚𝒆𝒂𝒓𝒔 

JUNE 54.57 72.70 129.48 

JULY 49.13 63.22 107.34 

AUGUST 45.16 55.34 87.19 

SEPTEMBER 55.92 71.02 118.30 

 

  

Figure 2.5. Annual maxima precipitation depths [mm] distribution for the 29-year dataset (from 1993 to 

2021). The dashed line represents the moving average of five years. 
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Figure 2.6. Average monthly precipitation depths [mm] for June, July, August, and September over the 

considered period (1992-2021). 

 

Figure 2.7. Box-plot of the monthly precipitation depths [mm] for June, July, August, and September over the 

considered period (1992-2021). 
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Figure 2.8. Mean temperature [°C] over the period 1993-2021. The dashed line represents the trendline, the 

slope of which indicates the trend whereby the average temperature increases by 0.056° C each successive 

year. 

 

Figure 2.9. Minima (left) and maxima (right) temperatures [°C] over the period 1993-2021. The dashed lines 

represent the trendlines as simple linear regressions: it can be observed that minimum temperatures are 

increasing, while the maximum temperatures are not following any trend. 
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Table 2.11. Temperature [°C] associated with a return period of 5 years for the months interested in soy 

growth (May considers the years 1993-2021; June, July, August, and September consider the whole period 

1992-2021). 

MONTH TEMPERATURE [°C] 

MAY 34.7 

JUNE 37.2 

JULY 38.1 

AUGUST 39.0 

SEPTEMBER 33.9 

 

Relative humidity (expressed in %) is generally pretty high, reaching values of 85%, 

90%, 95%, and 100% for 97%, 93%, 83% and 63% of the days in the total dataset. The 

minima of the dataset are comprised between 4% and 19%, resulting in a mean within 70% 

- 78% for each year (Figure 2.10). In particular, the trend of relative humidity in June, July, 

August, and September is practically the same, with a mean maximum humidity of 99% and 

an average of the minima around 40-45% (Figure 2.11).  

Solar radiation for the years 1993-2021 is characterized by average values of 1.1-2.2 

kWh/m2 in winter, 3.5-5.5 kWh/m2 in spring, 5.5-6.1 kWh/m2 during summer, and 1.4-4 

MJ/m2 during autumn (Figure 2.12). Considering that values between 3-4 kWh/m2 represent 

high amounts of irradiance, and values higher than 4 kWh/m2 are very high radiation [62], 

the study site is subjected to very high amounts of irradiance from April to September. In 

particular, the solar radiation of June, July, August, and September are shown in Figure 2.13. 



46 

 

 

Figure 2.10. Mean, minimum, and maximum values of yearly relative humidity (%) over the period 1993-

2021. 

 

Figure 2.11. Relative humidity (%) in terms of maximum, minimum, mean maximum, and mean minimum 

values for the months interested in soy growth (June, July, August, September) over the considered period 

(1992-2021). 
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Figure 2.12. Behavior of average, maximum, and minimum solar radiation (kWh/ms) over the considered 

period (1993-2021). 

 

Figure 2.13. Maximum, minimum, and average solar radiation [MJ/m2] for the months interested in soy 

growth in the considered period (1992-2021). 
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Significant anomalies were registered in May (+2°C), June (+2.5°C), July (+2.5°C), and 

October (+3.2°C). At the same time, rainfall has been incredibly low throughout the territory: 

the total cumulative precipitation depth of 2022 was the lowest of the past 30 years, 

registering a regional mean of 771 mm vs. a baseline average of about 1100 mm, resulting in 

severe drought conditions that lasted almost all months. The highest deficits were registered 

in March (-81%), May (-43%), June (-44%), July (-40%), and October (-83%) [64].  

Following the trend of 2022, 2023 was the second hottest year in Italy since 1961 

[65]. In the Veneto region, the annual average, average maxima, and average minima were 

higher than the reference averages of the period 1993-2021, with anomalies of about +1.1°C, 

positioning 2023 as the second hottest year of the thirty-year dataset, after 2022. In particular, 

although the temperatures were generally close to the mean in spring, the hot temperatures 

of the summer season resulted in 2023 becoming the fifth and seventh hottest year in the 

ranking of summer maximum and minimum temperatures, respectively. Autumn, particularly 

September and October, registered the second-highest average maximum temperature of the 

historical series, during which almost all months were characterized by higher average 

temperatures compared to the reference mean. Moreover, precipitation were mostly lower 

than seasonal averages: the wettest months in percentage terms were August (+10%), May 

(+50%), July (+60%), and October (+65%), while the months that registered the lowest 

amount of precipitation with respect to the mean were September (-55%) and February (-

94%) [66]. 

2.2. In–situ data 

2.2.1. Meteorological station 

Meteorological station 102 located in Castelfranco Veneto (Table 2.8) provided data 

about precipitation, temperature, relative humidity, and solar radiation over the study area 

for the years 2022 and 2023, during which the study was conducted. The research for extreme 

events was achieved by applying the results of the Gumbel distribution for the historical 

dataset to the 2022 and 2023 climatic information, thus being able to define the outliers 

through the associated return period.  
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2.2.1.1. 2022 

Precipitation in the study area followed the national trend reported in [63], showing 

in general pretty low cumulative rainfall for the entire year. In particular, the number of rainy 

days was 10, 6, 14, and 17 in June, July, August, and September, respectively, contributing 

to a total amount of precipitation of 323.6 mm from May to October. The total amount of 

precipitation was pretty low in July, with only 19 mm of rain, being the driest month, while 

August was characterized by the highest value of 112.6 mm, mostly due to the one extreme 

event of the considered period, which occurred roughly from August 15th to 18th. Except for 

that episode, which was characterized by a total precipitation depth of 60.6 mm, with a peak 

of 33.2 mm on August 15th, most of the days were dry, particularly in July (25 days) and June 

(20 days). The precipitation amounts are plotted in Figure 2.14, where May and October are 

also included.  

Temperatures were significantly high during the whole period of record, with 

maximum temperatures in the range of 30-39°C from May to September (Figure 2.15); only 

October registered a maximum temperature lower than this threshold (27°C).  

 

Figure 2.14. Maximum, minimum, mean, and total precipitation depths [mm] for the months interested in soy 

cultivation in 2022. 
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Table 2.12. Average solar radiation [kWh/m2] values for the months interested in soy cultivation in 2022. 

MONTH May June July August September October 

SOLAR RADIATION 

[kWh/m2] 
5.90 6.44 7.09 5.86 4.30 3.03 

 

In particular, maximum temperatures in the range of 27-31 °C started already from 

May 11th. Then, June and July showed several heat waves: from June 19th to 21st and from 

June 25th to 27th, with maximum temperatures in the range 34.1-34.9 °C, and from July 19th 

to 25th, going from 35.9 to 38.5 °C. These values perdured until the beginning of August, in 

particular from August 1st to August 6th. After this period, temperatures returned to the mean 

values for the rest of August and almost all of September, until a hail event happened in the 

area on September 17th. After this episode, temperatures dropped from 30°C on September 

15th to 17.8°C on that day, keeping low values in the range 18.3-23.3°C for the rest of the 

month. Regarding the behavior of relative humidity in the study area, the months from May 

to October showed mean percentage values in the range of 62-76%, which is slickly lower 

than the average in the area, contributing to the dry and drought conditions of the year. 

Concerning solar radiation, each month showed an average value that falls into the very high 

amounts of irradiance, with the only exception of October, with an anyway high value of 

3.03 kWh/m2 (Table 2.12). 

 

Figure 2.15. Maximum, minimum, and mean temperature [°C] for the months interested in soy cultivation in 

2022. 
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2.2.1.2. 2023 

The total precipitation depth in the period from May to October resulted in 430 mm, 

more than 100 mm more than in 2022, even though the total number of rainy days is lower 

(14, 16, 9, and 9 days of rain for June, July, August, and September, respectively). The 

specific amounts of rain depth for each month are illustrated in Figure 2.16. This is because 

intense precipitation events occurred with higher frequency in 2023 than in 2022. In 

particular, from July 3rd to July 6th a total of 81.2 mm of rain fell in the area, with a peak of 

37.6 mm on July 6th. In the same month, rainfall lasted one week, with a peak of 28.8 mm on 

July 21st and a cumulated rainfall of 58 mm. August was almost entirely dry, counting 19 

consecutive days without rainfall, until another intense event happened on the 28th and the 

29th, with precipitation amounts equal to 33.8 and 34 mm, respectively. 

Temperatures, on the other hand, were less extreme than in 2022 (Figure 2.17). 

Temperature values were in the average range for almost all months, with small exceptions 

in July, but the maximum temperature never went above 35.5°C, compared to the 39°C 

registered in 2022. Nonetheless, August and September showed in particular two episodes of 

high temperatures with respect to the average: from August 21st to 26th the maximum 

temperature stayed constantly in the range of 35.6-37.3°C, and September 8th to 11th 

registered values from 30.9°C to 31.8°C. Temperatures have maintained high until the second 

week of October, keeping the range of 25 – 31°C. 

Relative humidity showed higher values compared to 2022, with mean values ranging 

from 70% to 80% in the considered period, resulting in more alignment with the usual mean 

values for the study area. Finally, average solar radiation resulted lower than the precedent 

year, although with values falling into the “very high” category as well, with the only 

exception of October, which showed a moderate amount (Table 2.13) 
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Table 2.13. Average solar radiation [kWh/m2] values for the months interested in soy cultivation in 2023. 

MONTH May June July August September October 

SOLAR RADIATION 

[kWh/m2] 
5.12 6.56 6.42 5.68 4.60 2.68 

 

 

Figure 2.16. Maximum, minimum, mean, and total precipitation depths [mm] for the months interested in soy 

cultivation in 2023. 

 

Figure 2.17. Maximum, minimum, and mean temperature [°C] for the months of soy cultivation in 2023. 
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2.2.1.3. Cumulative frequency of precipitation and temperature of 2022 and 

2023 

The cumulative frequencies associated with annual maxima precipitation and 

temperature of 2022 and 2023 compared to the historical series were analyzed.  

1. As can be noticed from Figure 2.18, June registered a very low amount of 

annual maxima precipitation with respect to the historical maximum, both in 

2022 and 2023: in particular, 2022 was the second driest year of the series. 

Maximum temperatures are quite high for 2022 (with a cumulative frequency 

of 0.61) and on average (0.42) for 2023 (Figure 2.19). 

2. Small annual maxima precipitation depths perdured in July (Figure 2.20, 

Figure 2.21) for 2022 (with a cumulative frequency of 0.15) with, at the same 

time, the second highest value of cumulative frequency associated with 

maximum temperature (0.94). In 2023, the monthly maximum rainfall 

increased up to a cumulative frequency of 0.73, with maximum temperatures 

that are slightly over the average (0.58).  

3. The trend of low annual maxima precipitation for 2022 showed a temporary 

inversion in August (Figure 2.22, Figure 2.23), returning to values close to the 

historical average, with a cumulative frequency of 0.52, followed by a similar 

value for 2023 (0.55). Regarding maximum temperatures, both years showed 

pretty high cumulative frequencies, with 2022 and 2023 the fourth (0.88) and 

eighth (0.76) highest values of the series, respectively. 

4. Finally, September (Figure 2.24, Figure 2.25) registered low annual maxima 

precipitation amounts (0.24 for 2022, 0.09 for 2023) and quite high maximum 

temperatures (0.61 for 2022, 0.64 for 2023). 
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Figure 2.18. Cumulative frequencies of the monthly maximum precipitation depths of June of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 

 

Figure 2.19. Cumulative frequencies of the monthly maximum temperature values of June of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 

 

2022

2023

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140

C
u
m

u
la

ti
v
e 

F
re

q
u
en

cy

Monthly maximum precipitation [mm]

June

2023

2022

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

28 30 32 34 36 38 40

C
u
m

u
la

ti
v
e 

F
re

q
u
en

cy

Monthly maximum temperature [°C]

June



55 

 

Figure 2.20. Cumulative frequencies of the monthly maximum precipitation depths of July of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 

 

Figure 2.21. Cumulative frequencies of the monthly maximum temperature values of July of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 
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Figure 2.22. Cumulative frequencies of the monthly maximum precipitation depths of August of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 

 

Figure 2.23. Cumulative frequencies of the monthly maximum temperature values of August of the historical 

series (1992-2023). In red, 2022 and 2023 are highlighted. 
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Figure 2.24. Cumulative frequencies of the monthly maximum precipitation depths of September of the 

historical series (1992-2023). In red, 2022 and 2023 are highlighted. 

 

Figure 2.25. Cumulative frequencies of the monthly maximum temperature values of September of the 

historical series (1992-2023). In red, 2022 and 2023 are highlighted. 
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2.2.2. LI-600 

Field measurements were performed utilizing the Porometer/Fluorometer LI-600, a 

product of the LI-COR Biosciences company, a leading innovator in developing instruments 

for environmental and biotechnological research, established in 1971 [67]. Among the 

various leaves and environment measurements that the instrument is capable of providing, 

the three parameters that were used in this study are: 

1. Stomatal conductance (𝑔𝑠𝑤), which is a measure of how easily gases pass through 

the stomata. It can be employed as an indicator of water status of plants since it is 

connected to the degree of stomatal opening [68]. Synthetically, if stomata are 

more open, conductance is greater, and thus photosynthesis and transpiration rates 

are potentially higher. 

2. Apparent transpiration 𝑇𝑎, calculated based on a mass balance of water vapor in 

an open system at a steady state. In general, high values of transpiration are 

characteristic of healthy and growing plants, while low amounts of transpiration 

are indicative of senescing or unhealthy plants. 

3. Leaf temperature 𝑇𝑙𝑒𝑎𝑓 , that is measured through a non-contact infrared 

thermometer (IRT) [69]. It is a good indicator of plant water stress, as stomata 

close, reducing transpiration and therefore the evaporative cooling, resulting in 

warmer leaves [70]. 

The values of these important leaf parameters were used to validate the satellite 

indices’ values, to check whether they can provide an effective description of the health 

conditions of the soybean plants. 

With regards to Figure 2.26, the main components of the instrument used in this study 

are: 

a. Aperture (number 1) of 0.75 cm in diameter, which surrounds the leaf and takes 

the measurement. 

b. Aperture clamp (number 2), that closes onto the leaf. 

c. Fluorometer (number 3), which measures the amount of chlorophyll fluorescence. 
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d. Quantum sensor (number 4), which measures the light level of the environment. 

e. Display (number 6), where measurements and instrument settings can be viewed. 

f. Porometer (number 13), which is a steady-state gas exchange system that 

determines the stomatal conductance. 

When the instrument turns on, a configuration must be selected among Auto and 

Manual Mode: the former automatically logs a measurement when certain stability criteria 

are met, whereas the latter does not. In Auto Mode, the display shows the prompt “Clamp on 

leaf”: at that point, the user opens the aperture with the aperture clamp and close it onto the 

leaf (see Figure 2.27). The instrument will automatically search for stability and log the 

measurement; when the stability criteria are met, a beep sound informs the user to unclamp 

the leaf [71]. 

The LI-600 measurements were taken throughout soybean cultivation, from planting 

to harvest, at the time of maximum stress for plants due to the maximum solar radiation value, 

so between noon and 1 p.m., with many exceptions, especially in 2022, where some 

measurements were taken from 9 a.m. to 11 a.m. 120 leaf measurements were taken each day 

(30 for each subplot), ensuring optimum light conditions by operating only with a clear sky, 

without clouds. The dates of the acquisitions are listed in Table 2.14. 

 

Figure 2.26. LI-600 components [69]. 
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Table 2.14. Dates of the LI-600 acquisitions for 2022 and 2023.The highlighted dates refer to acquisitions 

taken between 9 and 11 a.m., hence not at the time of maximum stress for plants.  

JUNE 
 

20/06/2022 19/06/2023 

24/06/2022 27/06/2023 

JULY 
 

04/07/2022 05/07/2023 

09/07/2022 07/07/2023 

12/07/2022 12/07/2023 

18/07/2022 20/07/2023 

27/07/2022 28/07/2023 

AUGUST 
 

01/08/2022 02/08/2023 

06/08/2022 09/08/2023 

12/08/2022 17/08/2023 

24/08/2022 23/08/2023 

SEPTEMBER 
 

03/09/2022 01/09/2023 

13/09/2022 06/09/2023 

22/09/2022 12/09/2023 

 

 

Figure 2.27. Clamp and measurement of the leaf with LI-600 [71]. 
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2.3. Remote sensing data 

2.3.1. Satellite characteristics 

The two datasets for the soybean crop have been provided by two satellites with 

different spatial and temporal resolutions, namely Planet and Sentinel-2.  

The PlanetScope satellite constellation is funded by the Planet private company, and 

it consists of about 130 individual Dove satellites, acquiring daily images with three meters 

per pixel resolution. Each Dove is a CubeSat 3U small satellite, with dimensions 10 cm by 

10 cm by 30 cm, following a sun-synchronous orbit. In this work, the information gathered 

by the newest SuperDove instruments was employed: launched in early 2020, they carry the 

PSB.SD multispectral telescope, that captures scenes of the landscape of the approximate 

size of 32.5 km by 19.6 km in eight spectral bands as in Table 2.15. Each acquisition is 

referred to as PlanetScope Ortho Scene Product Level 3B, which represents radiometrically-

, geometrically-, and sensor-corrected data, and is projected to a UTM/WGS84 cartographic 

map projection [72, 73, 74]. The satellite covered the soybean field between 9 and 10 A.M. 

every day, defining a dataset of 68 and 53 acquisitions in 2022 and 2023, respectively.  

The Copernicus Sentinel-2 mission by the European Space Agency (ESA) is formed 

by a constellation of two satellites only, Sentinel-2A and Sentinel-2B, launched on June 23rd, 

2015, and March 7th, 2017, respectively [75]. The two technologies follow the same sun-

synchronous orbit, but with a phase difference of 180°, so that the revisit time of the overall 

mission scales down to 5 days at the Equator [76]. Both Sentinel2A/B have the MultiSpectral 

Instrument (MSI) onboard, which breaks the light into thirteen bands, with different spectral 

resolutions (Table 2.16). In particular, where available, the bands have been downloaded as 

Level-2A (L2A) Collection1 product, which provides orthorectified, radiometrically and 

geometrically corrected surface reflectance of the Bottom-Of-Atmosphere (BOA) [77]. 

When this level of correction was not available (only one image in the entire series), the 

Level-1C (L1C) Top-Of-Atmosphere (TOA) product was downloaded. The dataset defined 

by Sentinel2 consists of 17 and 18 acquisitions for 2022 and 2023, respectively. The 

correspondence between Sentinel-2 and PlanetScope bands is shown in Table 2.17. 
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Table 2.15. Spectral bands of PlanetScope PSB.SD instrument [72]. 

BAND NAME WAVELENGTH RESOLUTION 

1 Coastal Blue 431 – 452 nm 3 m 

2 Blue 465 – 515 nm 3 m 

3 Green I 513 – 549 nm 3 m 

4 Green 547 – 583 nm 3 m 

5 Yellow 600 – 620 nm 3 m 

6 Red 650 – 680 nm 3 m 

7 RedEdge 697 – 713 nm 3 m 

8 NIR 845 – 885 nm 3 m 

Table 2.16. Spectral bands of the Sentinel-2B MultiSpectral Instrument (MSI) [78]. In this case, the central 

wavelength is indicated. SWIR is the acronym for ShortWave InfraRed. 

BAND NAME WAVELENGTH RESOLUTION 

1 Coastal/Aerosol Blue 443 nm 60 m 

2 Blue 490 nm 10 m 

3 Green 560 nm 10 m 

4 Red 665 nm 10 m 

5 RedEdge 705 nm 20 m 

6 RedEdge 740 nm 20 m 

7 RedEdge 783 nm 20 m 

8 NIR 842 nm 10 m 

8A Vegetation RedEdge 865 nm 20 m 

9 Water Vapor 945 nm 60 m 

10 SWIR Cirrus 1375 nm 60 m 

11 SWIR 1610 nm 20 m 

12 SWIR 2190 nm 20 m 
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Table 2.17. Correspondence between Planet and Sentinel-2 spectral bands [79]. 

PLANET NAME CORRESPONDENCE TO SENTINEL 

1 Coastal Blue Band 1 – Coastal Blue 

Band 2 – Blue 

No 

Band 3 – Green 

No 

Band 4 – Red 

Band 5 – RedEdge 

Band 8A – Vegetation RedEdge 

2 Blue 

3 Green I 

4 Green 

5 Yellow 

6 Red 

7 RedEdge 

8 NIR 

 

2.3.2. Vegetation Indices and crop parameters 

Four different VIs were calculated with both spectral bands of Planet and Sentinel2: 

1) Normalized Difference Vegetation Index (NDVI) 

NDVI uses the visible and NIR bands to detect the presence of green 

vegetation. It is calculated as: 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (2.1) 

 

It ranges from -1 to 1, and in particular, it has negative values for water bodies, 

close to zero for rocks, sands, or concrete surfaces, and positive for vegetation [80]. 

Specifically, the higher the NDVI, the healthier and denser the vegetation: values 

between 0.1 and 0.5 indicate sparse vegetation, while NDVI major than 0.6 relates to 

dense green vegetation [81]. In Table 2.18, a more specific review of the index values 

and their respective correct interpretation is explained. 
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Table 2.18. NDVI values and their interpretation [82]. 

VALUES INTERPRETATION 

< 0.1 Bare soil or clouds 

0.1 – 0.2 Almost completely absent vegetation cover 

0.2 – 0.3 Extremely low vegetation cover 

0.3 – 0.4 
Low vegetation cover and vigor, or extremely low vegetation cover and high 

vigor 

0.4 – 0.5 
Medium to low vegetation cover with low vigor, or extremely low vegetation 

cover with high vigor 

0.5 – 0.6 Medium vegetation cover, or medium to low vegetation cover with high vigor 

0.6 – 0.7 
Medium to high vegetation cover with low vigor, or medium vegetation cover 

with high vigor 

0.7 – 0.8 High vegetation cover and vigor 

0.8 – 0.9 Extremely high vegetation cover and vigor 

0.9 - 1 Total vegetation cover with extremely high vigor 

 

2) Green Normalized Difference Vegetation Index (GNDVI) 

It is characterized by a higher sensitivity to chlorophyll absorption compared 

to NDVI, and hence it is used as a measure of the photosynthetic activity of vegetation 

cover [83]. Moreover, it is capable of detecting water and humidity. GNDVI works 

as NDVI, but with green in place of the red band: 

 
𝐺𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 (2.2) 

 

The stretch of values of GNDVI is the same as NDVI (refer to Table 2.18). 
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3) Enhanced Normalized Difference Vegetation Index (ENDVI) 

Based on the green band as GNDVI, ENDVI is more recommended to detect 

vegetation vigor [84]. It works as such: 

 
𝐸𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 − 2 ∗ 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛 + 2 ∗ 𝐵𝑙𝑢𝑒
 (2.3) 

 

Being a modification of NDVI, the different values reflect the same vegetation 

characteristics as the original index (see Table 2.18). 

4) Normalized Difference RedEdge index (NDRE) 

It measures the chlorophyll content in plants, derived from a combination of 

NIR and RedEdge band: 

 
𝑁𝐷𝑅𝐸 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝐸𝑑𝑔𝑒
 (2.4) 

 

In general, the best performance of NDRE occurs in the mid-to-late growing 

season, with the other indices that are less effective to be used. Values comprised 

between -1 and 0.2 indicate bare soil or developing crop; 0.2 to 0.6 NDRE amounts 

can be translated as either unhealthful plant or a not mature crop; and finally, values 

between 0.6 to 1 indicate healthy and mature crops [85]. 

5) Leaf Area Index (LAI) 

The Leaf Area Index has been calculated following the correlation with 

another index, named EVI, proposed by Boegh et al. (2002) [44]. According to the 

researchers, EVI can be calculated as: 

 
𝐸𝑉𝐼 =

2.5(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 − 𝐶1 ∙ 𝑅𝑒𝑑 − 𝐶2 ∙ 𝐵𝑙𝑢𝑒 + 𝐿)
 (2.5) 

 



66 

With coefficients 𝐶1 = 6, 𝐶2 = 7.5, 𝐿 = 1 . LAI can be effectively derived 

from EVI (with a correlation coefficient 𝑅2 = 0.77) as: 

 𝐿𝐴𝐼 = 3.618 ∙ 𝐸𝑉𝐼 − 0.118 (2.6) 

 

A typical LAI pattern begins with a slow increase early in the season, followed 

by a rapid rise until a maximum value is reached; then, LAI declines as leaves senesce 

and plants reach physiological maturity [86].  

 

The bands 5 and 8A have a twenty meters spatial resolution in Sentinel (see Table 

2.16). For the calculation of the indices with a spatial resolution of ten meters, a reprojection 

of the two bands was performed with the “Warp (Reproject)” command in QGIS. The 

resampling method chosen for this purpose is the bilinear interpolation, which computes the 

weighted average of the four nearest neighboring cells based on their distance from the output 

cell [87]. Once each index was computed, the maximum, minimum, average, and standard 

deviation values were obtained through the “Zonal Statistic” command, applied to the mask 

layer representing the two zones (RDI and FI) in each year.  

The Sentinel results were then compared to the Planet indices by plotting the 

correlation curve, with Planet outcomes on the x-axis and Sentinel values on the y-axis, 

considering only the dates on which both values are available. The correlation coefficient is 

used to assess whether Sentinel’s spatial and temporal resolutions can adequately capture the 

trends of various indices throughout the soybean growth cycle, in comparison to the higher-

resolution Planet data. Ideally, the values of the same index measured on the same date from 

two different satellites should be equal; therefore, the theoretical correlation line would be 

the bisector line, with slope equal to 1 and intercept equal to 0. In reality, most of the 

regression lines are not close to the ideal correlation, as slope and intercept values are 

estimations subjected to systemic errors. The difference between the slope and intercept of 

the regression lines and the corresponding coefficients of the bisector is evaluated for 

statistical significance using the Student’s t-test. This test determines whether to accept or 

reject the “null hypothesis” 𝐻0, which states that the values are statistically equal. If 𝐻0 is 
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rejected, the “alternative hypothesis” 𝐻1, which claims the values are not statistically equal, 

is accepted [88]. In this context, 𝐻0 affirms that the slope/intercept of the regression line of 

each index is statistically equal to the slope/intercept of the bisector, whereas 𝐻1 states that 

the two quantities are significantly different. The t value for the slope, for example, is 

calculated as follows: 

 𝑡 =
𝑚𝑟𝑒𝑔𝑟 − 𝑚𝑐𝑜𝑟𝑟

𝑆𝐸𝑚𝑟𝑒𝑔𝑟

 
(2.7) 

 

With 𝑆𝐸𝑚𝑟𝑒𝑔𝑟
 the standard error associated with the slope of the regression line 

𝑚𝑟𝑒𝑔𝑟, calculated with the Data Analysis tool in Excel. The calculated t-value is compared 

to the critical t-value corresponding to a chosen significance level 𝛼 (taken equal to 0.05) and 

degrees of freedom, which are equal to the number of observations minus 2. If the absolute 

value of 𝑡 is higher than the critical 𝑡0.05;𝑁−2, the null hypothesis must be rejected, indicating 

that the difference between the two slopes/intercepts is statistically significant. However, if 

|𝑡| < 𝑡0.05;𝑁−2 , the null hypothesis is accepted, meaning that the slope/intercept of the 

regression line can be considered statistically equal to those of the bisector. 
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3. RESULTS 

3.1. Planet indices  

3.1.1. 2022 

The calculations of NDVI (Figure 3.1), GNDVI (Figure 3.2), ENDVI (Figure 3.3), 

NDRE (Figure 3.4), and LAI (Figure 3.5) using Planet bands resulted in four curves that 

follow a similar trend for 2022. Although the overall upward trend of the curves is consistent 

across all indices, their values differ significantly. 

3.1.1.1. Early growth stages (BBCH 00-19) 

During the early growth stages, from germination to leaf development, relatively low 

rainfall and warm temperatures occurred, especially during late May and early June. 

Precipitation was sparse, contributing to low soil moisture, which could explain the 

variability and lower values in the indices, perduring until June 12th (BBCH 19). 

Specifically, while NDVI values increase from 0.30 to 0.40 for both FI and RDI 

subplots, GNDVI and ENDVI show higher amounts, ranging from 0.37 to 0.51 and 0.36 to 

0.63, respectively. The generally low rainfall in June (10 rainy days, mostly dry) combined 

with high temperatures likely led to limited early vegetative growth, which might explain 

why indices like NDVI showed a slower increase compared to GNDVI and ENDVI, as they 

capture different aspects of vegetation health, indicating the beginning of the photosynthetic 

activity. ENDVI, in particular, reveals a significant variability in the values, that are more 

scattered and follow less precisely the upward trend defined by the other indices. On the other 

hand, NDRE displays lower amounts, in the range 0.22-0.30, with minimal differences 

between FI and RDI subplots. LAI is also highly variable in this initial stage, with values 

oscillating from 1.40 to 3.19 in FI and from 1.33 to 3.00 in RDI subplots, which could reflect 

the uneven early development of leaf area. Its values stabilize in proximity of the onset of 

the next BBCH stage. 
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3.1.1.2. Vegetative Growth stage (BBCH 20-59) 

From June 12th to mid-July, the vegetation indices show a clear upward trend, 

continuing until the flowering stage (BBCH 60) around July 20th. This significant increase in 

plant cover and vigor coincides with the start of irrigation on June 14th. Despite the 

challenging climatic conditions, including a heatwave from mid- to late June, the absence of 

rainfall until the last days of the month, and prolonged drought conditions throughout most 

of July, the VIs continued to rise steadily. This consistent growth, however, was almost only 

sustained by the irrigation water supply, as natural precipitation was almost non-existent 

during this critical period. 

During this time, NDVI rises faster compared to the other indices. Specifically, NDVI 

increased from 0.31 and 0.30 on June 12th to 0.77 and 0.75 by July 17th for FI and RDI 

subplots, respectively. This steep increase can be attributed to the fact that NDVI is sensitive 

to the presence of green biomass, and irrigation quickly boosted the leaf area and canopy 

cover. In contrast, GNDVI is equal to 0.45/0.44 and 0.73/0.72, ENDVI to 0.50/0.50 and 

0.72/0.70, and NDRE to 0.22/0.21 and 0.60/0.58 for FI and RDI, respectively. These slower 

rises were influenced by the harsh climatic conditions, which affected plant responses related 

to chlorophyll content, photosynthetic activity, canopy structure, and overall stress. The 

heatwaves, with temperatures peaking at   °C, slowed the plants’ recovery in terms of 

chlorophyll, as captured by GNDVI and NDRE. Similarly, LAI follows the same upward 

trend, going from values of 1.67 (FI) and 1.57 (RDI) to 7.43 (FI) and 6.96 (RDI) by the start 

of the flowering stage. The slower rise in LAI and ENDVI, which track canopy development 

and structure respectively, suggests that while irrigation supported growth, the extreme heat 

and lack of rainfall slowed the full development of the canopy. 

3.1.1.3. Flowering and Development of fruit and seeds stages (BBCH 60-79) 

In late July and August, the VIs show slower growth rates as the flowering stage 

begins, coinciding with the peak of the growing season and a slight moderation of extreme 

heat events. Rainfall increased in August (112.6 mm), with a significant rain event from 

August 15th to 18th (60.6 mm), which likely provided a boost to plant growth, especially since 

irrigation was still ongoing.  
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At the end of the flowering stage (BBCH 69), all indices increased by 0.04-0.05. LAI 

in this period shows high variability as in the initial period, with values oscillating between 

7.21 and 8.27 for FI subplots and between 7.07 and 8.01 for RDI areas. 

During the Development of fruit and seeds stage (BBCH 70-79), the indices fluctuate 

within the following ranges: 

• NDVI varies between 0.80 and 0.89 in FI, and from 0.77 to 0.89 in RDI 

subplots. 

• GNDVI ranges from 0.75 to 0.84 in FI, and from 0.72 to 0.83 in RDI subplots. 

• ENDVI values show higher variability, fluctuating between 0.70 and 0.87 in 

FI, and 0.60 and 0.86 in RDI subplots. 

• NDRE remains lower, moving between 0.64 and 0.74 in FI, and 0.59 and 

0.72 in RDI. 

Each index reaches its peak value on August 23rd, indicating strong vegetative health. 

However, this does not hold for LAI, which values range between 7.9 and 9.1. The peaks 

occur on different dates for FI and RDI subplots: the FI highest value equals 9.11 on August 

30th, while RDI subplots peaks at same value on August 12th (BBCH 73).  

3.1.1.4. Ripening of fruit and seeds and Senescence stages (BBCH 80-99) 

During the ripening (BBCH 80-89) and senescence stages (BBCH 90-99), all indices 

begin to decline, reflecting the natural process of plant aging and reduced vegetative activity. 

This coincided with a general decrease in temperatures, with a significant drop after the hail 

event happened on September 17th. Contemporarily, precipitation amounts increased 

consistently, counting 16 days of rain, therefore drastically reducing the climatic stress 

condition that perdured throughout all the other growing stages. The final measurements, 

taken on October 3rd (the day before harvest, BBCH 98), show indices ranging between 0.62-

0.69 in FI subplots and 0.59-0.66 in RDI subplots, except for NDRE, which ends at much 

smaller values (0.38 and 0.37, respectively). Similar to the early growth phase, the NDVI’s 

downward slope is particularly steeper than that of GNDVI and ENDVI, resulting in smaller 

final values. LAI is halved during this period, dropping from 8.37 on September 10th in both 

FI and RDI subplots to values of 4.46 (FI) and 4.12 (RDI) on October 3rd. 
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Figure 3.1. NDVI values obtained from Planet bands for 2022. 

 

Figure 3.2. GNDVI values obtained from Planet bands for 2022. 
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Figure 3.3. ENDVI values obtained from Planet bands for 2022. 

 

Figure 3.4. NDRE values obtained from Planet bands for 2022. 
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All indices measured higher values in the FI subplots compared to those recorded in 

the areas subjected to RDI, with few exceptions. However, the mean differences between the 

two are generally small for each index, as illustrated in Figure 3.6. Specifically, NDRE 

exhibits the largest mean difference between FI and RDI values, measuring 0.150, along with 

the highest standard deviation (𝜎) of 0.0144. The NDVI followed closely, with a mean 

difference of 0.0142 and a similar 𝜎 (0.0142). GNDVI and ENDVI recorded smaller mean 

differences, with minimal variability as indicated by standard deviations of 0.010. LAI 

exhibits similar results, showing minimal differences and variability between the values 

measured in the FI and RDI subplots, with a mean difference of 0.177 and 𝜎  of 0.22. 

Nonetheless, these mean differences turned out to be statistically significant. It is interesting 

to note that the divergence between FI and RDI varies over specific soybean growing stages 

and on the basis of RDI application (Error! Reference source not found.). The least d

ifferences are recorded over the early growing stages (BBCH 00-49), from the germination 

to the end of the development of harvestable material stages. These differences decrease 

starting from the irrigation onset (BBCH 20). During the inflorescence emergence stage 

(BBCH 50-59), when RDI was halted, the differences between the indices slightly increased.  

 

Figure 3.5. LAI values obtained from Planet bands for 2022. 
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This may be linked to earlier variations, as the water volume applied during this stage 

is the same for both subplots. In contrast, the flowering stage (BBCH 60-69), when RDI 

resumed, displays the highest difference, along with the final senescence stage (BBCH 90-

99), during which the behavior of plants under FI and RDI seems to differ more significantly. 

The difference decreases during the stages of development (BBCH 70-79) and ripening of 

fruit and seeds (BBCH 80-89) for all indices except for NDRE, which trend in this latter 

stage deviates from the other indicators, almost doubling. This could be related to the higher 

sensitivity of NDRE to the late stages of crops, due to the use of the RedEdge wavelength, 

making it preferable in measuring crop parameters when plants start becoming mature to the 

point where they are chlorophyll-saturated and red light is no longer properly absorbed. 

 

Figure 3.6. Mean difference (indicated by the label) in the Planet indices between FI and RDI subplots in 

2022 with its standard deviation. 

 

Figure 3.7. Mean difference in the Planet indices values in FI and RDI subplots at different BBCH soybean 

growing stages in 2022. 
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3.1.2. 2023 

The trend of the indices in 2023 (displayed in Figure 3.8, Figure 3.9, Figure 3.10, 

Figure 3.11, and Figure 3.12) closely mirrors that of 2022, both in terms of values and the 

periods of upward and downward movements. However, the indices in the RDI subplots are 

consistently higher than those in the FI subplots for most of the soybean growing season. 

3.1.2.1. Early growth stages (BBCH 00-19) 

From May 31st (day of plantation) to June 19th (BBCH 19), temperatures were 

moderate compared to 2022, always staying between 23.5°C and 30°C. The milder 

temperatures allowed for a more favorable environment for early-stage growth, avoiding the 

early season heat stress observed in 2022. Moreover, precipitation was frequent and abundant 

but not excessive, with total depth of 70.2 mm distributed over 12 days.  

During this period, all indices experience a slight increase, with differences between 

their values that are close to those measured in the same period in 2022. In particular, NDVI 

and NDRE values oscillates within the same intervals (0.27-0.40 for NDVI, 0.22-0.30 for 

NDRE across all subplot), but GNDVI, ENDVI, and LAI already start with higher amounts 

but end lower compared to 2022. GNDVI rises from 0.43 to 0.47 and 0.49 for FI and RDI 

subplots, respectively, while ENDVI registers ranges of 0.44-0.50 for FI, 0.44-0.51 for RDI. 

LAI begins at 1.47 and 1.55 for FI and RDI on the first acquisition and increases to 2.49 and 

2.69, respectively, by BBCH 19. These indices capture the response of plants to better water 

availability, which supported early vegetative growth, chlorophyll production, and the 

formation of a denser canopy.  

3.1.2.2. Vegetative Growth stage (BBCH 20-59) 

Between June 20th and July 24th, all VIs exhibit a much steeper upward trend 

compared to 2022. This steep rise can be linked directly to the intense rainfall event from 

July 3rd to July 6th, which delivered over 81 mm of precipitation in just a few days, 

significantly boosting soil moisture levels. Additionally, temperatures during this period 

were moderate, with highs exceeding 35°C only on two occasions in mid-July, contributing 

to more favorable climatic conditions compared to 2022. 
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NDVI, in particular, increased dramatically, rising from 0.46 in FI and 0.48 in RDI 

to 0.87 and 0.88, respectively, by BBCH 59. NDRE followed a similar steep increase, 

jumping from around 0.30-0.31 on June 25th to 0.70-0.71 by July 20th. These indices reflect 

a robust increase in canopy cover and chlorophyll content, largely sustained by the timely 

availability of water. Although GNDVI and ENDVI also showed an upward trajectory, their 

increases were less pronounced compared to NDVI and NDRE, starting at around 0.49 on 

BBCH 20 and reaching 0.82 by BBCH 59. LAI also shows higher values compared to 2022, 

peaking at 9.31 and 9.20 for FI and RDI, respectively. By BBCH 59, LAI values in FI 

subplots surpass those in RDI plots and remain higher until BBCH 79 (late fruit and seed 

development). 

3.1.2.1. Flowering and Development of fruit and seeds stages (BBCH 60-79) 

As the plants entered the flowering stage (BBCH 60-69), growth slowed noticeably, 

with values increasing by only 0.04-0.05, similar to what was observed in 2022. Frequent 

rainfall made irrigation unnecessary, as the rainwater sustained plant growth, allowing the 

indices to rise, albeit at a slower rate. LAI, however, shows a sharp decline around July 26th 

(BBCH 60), dropping from 9.0-9.1 to 8.2 and 8.0 for FI and RDI, respectively. This reduction 

in canopy density is likely due to the plant’s natural shift in energy allocation toward 

reproductive processes during flowering. The LAI later recovered, peaking again at BBCH 

69, reaching 9.56 and 9.43 for FI and RDI. Temperatures during the flowering stage were 

relatively mild compared to the extreme conditions of 2022, with maximum temperatures 

ranging between 28-30°C. This, coupled with sufficient moisture from the earlier rainfall, 

likely helped the canopy recover quickly. In contrast, the NDRE peaked on the same day, 

reaching 0.89 and 0.88 for FI and RDI, respectively. This can be attributed to NDRE’s 

sensitivity to chlorophyll content, especially in the deeper canopy layers, as the RedEdge 

band penetrates deeper than the NIR. Despite the LAI decline, the remaining leaves likely 

retained high chlorophyll concentrations, as the plant continued photosynthesizing to meet 

the energy demands of flower and fruit development. 

Unlike in 2022, where the vegetation indices continued to increase steadily until the 

end of the fruit and seed development stage, in 2023 the indices peaked earlier and began to 

decline around BBCH 70. This earlier decline may be attributed to the prolonged dry spell in 
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August, where no rainfall was recorded for 19 consecutive days from August 5th to August 

24th. Despite the irrigation, the lack of rainfall combined with high temperatures (reaching 

up to 37.3°C from August 21st to 26th) likely induced early stress on the plants. Additionally, 

the peaks of the indices are no longer aligned as they were in 2022. Specifically: 

• NDVI peaks at 0.91 in both FI and RDI subplots but on different dates: August 

12 for FI and August 15 for RDI. 

• GNDVI and ENDVI both peak on August 15 across all fields, measuring 0.85 

and 0.87 in FI and 0.86 and 0.87 in RDI subplots, respectively. 

• LAI, meanwhile, continued to increase until August 20th, when it reached a 

peak of  0.  for both subplots. This reflects the canopy’s final expansion 

phase before the onset of senescence.  

The intense rainfall event on August 28-29th (totaling 67.8 mm) might have helped 

sustain the canopy cover and slow down the senescence process, though it was insufficient 

to prevent the gradual decline observed in the indices after BBCH 70.  

3.1.2.2. Ripening of fruit and seeds and Senescence stages (BBCH 80-99) 

Following these peaks, all vegetation indices began to decline steadily between 

BBCH 71 and BBCH 73. This earlier decline, compared to 2022, was likely driven by the 

extended dry period in August and the high temperatures that stressed the plants during the 

critical stages of fruit and seed development.  

By harvest day (October 9th, BBCH 99), the final values for the indices range from 

0.41-0.49 in FI and 0.45-0.51 in RDI. This does not stand for NDRE, which records much 

lower values (0.29 in FI and 0.31 in RDI), reflecting reduced chlorophyll content and plant 

vitality as the crop approach full senescence. Similar to the early growth stage, NDVI’s 

decline is steeper than that of GNDVI and ENDVI, leading to lower final values. LAI is 

halved during this period, falling from 6.21 (FI) and 6.87 (RDI) on September 11th to 3.00 

(FI) and 3.39 (RDI) by October 9th. The continued decline in all indices until the end of the 

growing season indicates that, despite the improved conditions earlier in the season, the lack 

of rain and sustained high temperatures during August and September ultimately accelerated 

the plants' progression into senescence. 



79 

 

 

Figure 3.8. NDVI values obtained from Planet bands for 2023. 

 

Figure 3.9. GNDVI values obtained from Planet bands for 2023. 
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Figure 3.10. ENDVI values obtained from Planet bands for 2023. 

 

Figure 3.11. NDRE values obtained from Planet bands for 2023. 
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As aforementioned, the RDI subplots registered higher values of the indices than FI 

subplots, despite the lower volume of water supplied. The mean differences between the FI 

and RDI values (represented in Figure 3.13), in fact, exhibit negative values for all indices, 

indicating that RDI are on average higher than FI. In particular, the mean difference for NDVI 

between FI and RDI is approximately -0.0176, suggesting that vegetation health or vigor is 

marginally better under RDI compared to FI, but its values are subjected to great variability. 

GNDVI shows a mean difference of -0.0133, but with the lowest variability in terms of 

standard deviation compared to other indices, suggesting more consistent results. NDRE 

recorded similar results in terms of mean difference, but the standard deviation is slightly 

higher. Finally, ENDVI demonstrates the smallest mean difference, -0.0092, suggesting only 

a minor advantage for RDI over FI. Although LAI is the only index where FI values were 

higher than RDI for a certain period, its overall mean difference is still negative, indicating 

that RDI values were, on average, slightly higher than FI. However, this mean difference is 

quite small (-0.21) with a low standard deviation (0.36), suggesting that LAI did not capture  

 

 

Figure 3.12. LAI values obtained from Planet for 2023. 
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significant differences between the two irrigation strategies in terms of vegetation growth 

and vigor. The most notable differences occur during the fruit and seeds development (BBCH 

80-89) and senescence (BBCH 90-99) stages, where RDI appears to outperform FI in 

maintaining higher index values (Figure 3.14). However, throughout most stages, the 

differences remain small, suggesting that both irrigation strategies yield comparable 

outcomes for vegetation health,  

 

Figure 3.13. Mean difference (indicated by the label) in the Planet indices between FI and RDI subplots in 

2023 with its standard deviation. 

 

Figure 3.14. Mean difference in the Planet indices values in FI and RDI subplots at different BBCH soybean 

growing stages in 2023. 
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3.2. Comparison between Planet and Sentinel indices 

The indices calculated with Sentinel bands appropriately align with the trend of each 

respective Planet’s index in the years under consideration, but they are underestimated by the 

quantities explicated in Table 3.1. A statistical analysis revealed that the differences between 

Planet and Sentinel data are statistically significant for each index in both years. ENDVI is 

the index with the highest average difference between Planet and Sentinel values, whereas 

NDRE shows the closest match.  

In particular, NDVI (Figure 3.15, Figure 3.16) is underestimated with respect to 

Planet by 0.213 – 0.227, but the correlation between the two outcomes (Figure 3.17) is very 

high in both 2023 (with a correlation coefficient of 0.984) and in 2022 (R2 equal to 0.977), 

indicating that Sentinel NDVI values follow almost perfectly the trend of the index obtained 

with Planet in the same days of acquisition. GNDVI (Figure 3.18, Figure 3.19) also shows 

high correlation in both years (Figure 3.20), with R2 equal to 0.938 and 0.981 in 2022 and 

2023, respectively, underestimating the Planet outcomes a little bit less than NDVI. The 

ENDVI index indicates the worst alignment between the two satellite’s results, with a 

difference of 0.30 – 0. 2. Although the 202  trend is quite similar to the Planet’s ENDVI 

(Figure 3.22), in 2022 the curves are way less alike (Figure 3.21). As a result, the correlation 

coefficient for 2022 is 0.6882, much lower than R2 for 2023, equal to 0.944 (Figure 3.23). 

Finally, NDRE values obtained with Sentinel are underestimating Planet outcomes by 0.147 

– 0.154, and in fact the curves in Figure 3.24 and Figure 3.25 are closer one to another. The 

trend is also well described, with very high correlation coefficient in both years (Figure 3.26).  

The computation of LAI based on EVI also gives good results, but Sentinel 

overestimates its values in this case, with a mean difference of 1.211±0.945 for FI and 

0.953±1.150 for RDI in 2022, and of 1.080 for FI and 1.165 for RDI in 2023 (with 𝜎 of 0.922 

and 1.029, respectively). This can be observed in Figure 3.27 and Figure 3.28 for 2022 and 

2023, respectively: in particular, the red and pink dots are lower than Planet’s in the 

beginning and in the end of the soy growth cycle, whereas they appear higher in the central 

period of soy growth. The Sentinel curves follow well the ones representing Planet, showing 

high correlation coefficients of 0.890 in 2022 and 0.967 in 2023 (Figure 3.29). 
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Table 3.1. Mean and standard deviation of the differences between the values of the indices calculated with 

Planet and Sentinel bands for 2022. 

INDEX 

DIFFERENCE BETWEEN PLANET AND SENTINEL OUTCOMES 

2022 2023 

FI RDI FI RDI 

NDVI 
Mean 0.213 0.221 0.227 0.219 

𝜎 0.033 0.034 0.028 0.022 

GNDVI 
Mean 0.211 0.217 0.201 0.202 

𝜎 0.0267 0.028 0.023 0.017 

ENDVI 
Mean 0.321 0.324 0.298 0.296 

𝜎 0.0568 0.056 0.040 0.033 

NDRE 
Mean 0.147 0.149 0.152 0.154 

𝜎 0.029 0.031 0.030 0.026 

 

As can be noticed from the regression plots, all the indices calculated with Sentinel 

underestimate the same values obtained with Planet, with the only exception of LAI. Each 

regression's slope and intercept are evaluated against the bisector line (which represents a 

perfect correlation where the two satellite indices are equal for the same date), using a Student 

t-test (Table 3.2). Across both years, the regression slopes and intercepts generally show 

significant deviations from the bisector line, indicating that the vegetation indices calculated 

from Planet and Sentinel satellites are not perfectly correlated. This deviation suggests either 

a systematic bias or variability between the two datasets. 

• In 2022, the NDVI and NDRE values from Planet and Sentinel are not 

perfectly correlated as their calculated t-values for slopes and intercepts 

exceed the critical value, indicating a significant difference between their 

regression lines and the ideal correlation. In contrast, GNDVI and ENDVI 

show a difference in the slopes of their correlation line compared to the 

bisector, but the differences in the intercepts are not statistically significant. 

This suggests that GNDVI and ENDVI values from Planet and Sentinel are 

biased in slope but not in intercept. The opposite is true for LAI, for which 
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the intercept is significantly different from 0, but the slope shows minimal 

bias 

• In 2023, the t-test results for NDVI show that the slope of the regression line 

is significantly different from the slope of the ideal correlation, but this is not 

true for the intercept, which t-value is lower than the critical one. For all the 

other indices, the regression lines are significantly different from the ideal 

correlation both in terms of slope and intercept, meaning that the values from 

Planet and Sentinel are not perfectly correlated due to biases. 

 

 

Figure 3.15. NDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2022. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
0
/5

2
6
/5

1
/6

7
/6

1
3
/6

1
9
/6

2
5
/6

1
/7

7
/7

1
3
/7

1
9
/7

2
5
/7

3
1
/7

6
/8

1
2
/8

1
8
/8

2
4
/8

3
0
/8

5
/9

1
1
/9

1
7
/9

2
3
/9

2
9
/9

5
/1

0

NDVI 2022

Sentinel (FI) Planet (FI) Sentinel (RDI) Planet (RDI)



86 

 

 

Figure 3.16. NDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2023. 

 

 

Figure 3.17. Correlation between NDVI values calculated with Planet (x-axis) and Sentinel (y-axis) for 2022 

(on the left) and 2023 (on the right). The green line is the bisector and represents the perfect correlation.  
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Figure 3.18. GNDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2022. 

 

 

Figure 3.19. GNDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2023. 
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Figure 3.20. Correlation between GNDVI values calculated with Planet (x-axis) and Sentinel (y-axis) for 

2022 (on the left) and 2023 (on the right). The green line is the bisector and represents the perfect 

correlation. 

 

 

Figure 3.21. ENDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2022. 
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Figure 3.22. ENDVI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2023. 

 

 

Figure 3.23. Correlation between ENDVI values calculated with Planet (x-axis) and Sentinel (y-axis) for 

2022 (on the left) and 2023 (on the right). The green line is the bisector and represents the perfect 

correlation. 
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Figure 3.24. NDRE values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2022. 

 

 

Figure 3.25. NDRE values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2023. 
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Figure 3.26. Correlation between NDRE values calculated with Planet (x-axis) and Sentinel (y-axis) for 2022 

(on the left) and 2023 (on the right). The green line is the bisector and represents the perfect correlation. 

 

 

Figure 3.27. LAI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2022. 
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Figure 3.28. LAI values calculated with Sentinel (red and pink) and Planet (blue and light blue) for 2023. 

 

Figure 3.29. Correlation between LAI values calculated with Planet (x-axis) and Sentinel (y-axis) for 2022 

(on the left) and 2023 (on the right). The green line is the bisector and represents the perfect correlation. 
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Table 3.2. Student's t test outcomes. The critical t-value is different in the two years depending on the degrees 

of freedom, that are a function of the number of days when both acquisitions from Planet and Sentinel were 

available. “Yes” in the “Significance” column means the difference between the regression coefficients 

(where 𝑚 is the slope, 𝑞 the intercept) and the corresponding coefficient of the bisector is statistically 

significant; “No” means that the two values can be considered statistically equal. 

INDICES 

2022 2023 

𝒕𝟎.𝟎𝟓;𝟐𝟐 = 𝟐. 𝟎𝟕𝟑𝟗 𝒕𝟎.𝟎𝟓;𝟏𝟔 = 𝟐. 𝟏𝟎𝟎𝟗 

Value SE |t| Significance Value SE |t| Significance 

NDVI 
𝑞 -0.117 0.022 5.208 Yes -0.182 0.023 7.982 Yes 

𝑚 0.864 0.030 4.590 Yes 0.946 0.029 1.832 No 

GNDVI 
𝑞 -0.167 0.037 5.208 Yes -0.148 0.023 6.323 Yes 

𝑚 0.934 0.051 1.294 No 0.925 0.032 2.337 Yes 

ENDVI 
𝑞 -0.204 0.088 2.319 Yes -0.131 0.035 3.792 Yes 

𝑚 0.837 0.120 1.357 No 0.770 0.047 4.873 Yes 

NDRE 
𝑞 -0.066 0.018 3.685 Yes -0.096 0.019 4.966 Yes 

𝑚 0.855 0.031 4.692 Yes 0.902 0.033 3.002 Yes 

LAI 
𝑞 -0.516 0.706 0.732 No -1.032 0.460 2.242 Yes 

𝑚 1.228 0.097 2.362 Yes 1.297 0.060 4.933 Yes 

 

3.3. LI-600 measurements 

3.3.1. 2022 

In-situ measurements offer valuable insights into plant health. The trend in mean 

stomatal conductance throughout the soybean growth cycle in 2022 (Figure 3.30) clearly 

indicates stress conditions of the crop, beginning on June 24th (BBCH 37), as it starts to 

decline in both the RDI and FI subplots. This downward trend continues until August 12th 

(corresponding to the midst development of fruit and seeds stage BBCH 73). During these 

stages, rainfall was exceptionally scarce, with only 54 mm of precipitation spread over 12 

days. Additionally, temperatures were unusually high, with peaks of 34.3-34.9°C in June and 

an heatwave reaching 38.1-38.5°C in July and August. This extremely dry period resulted in 
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very low stomatal conductance, as plants reduce stomatal opening to minimize water loss 

through transpiration. This diminishes the soybean’s ability to produce energy for 

photosynthesis and, consequently, growth. The very low 𝑔𝑠𝑤 values of August 12th may be 

attributed to the timing of the in-situ measurements, which were taken at 8 a.m., when the 

plants were not yet experiencing the peak daily stress conditions. The downward trend is 

inverted only when temperatures start decreasing in the second week of August, reaching 

maximums of 29.2-33°C. Then, 𝑔𝑠𝑤 rapidly increases up to the maximum mean values of 

0.76 and 0.48 on September 3rd for FI and RDI subplots, respectively.  

Although both FI and RDI irrigation strategies fail to significantly increase stomatal 

conductance during the drought period, the FI curve consistently remains higher than that of 

the RDI throughout the entire growth cycle. This suggests that, despite the overall stress 

conditions, plants under FI irrigation exhibit a stronger response and better resilience to 

drought compared to those under RDI, indicating that FI provides relatively more favorable 

conditions for maintaining plant health. 

 

 

Figure 3.30. Mean stomatal conductance gsw for RDI and FI irrigation strategies measured with LI-600 in 

2022. The grey dashed areas represent the periods of application of RDI.  
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A similar trend is observed in the mean apparent transpiration (𝑇𝑎) (Figure 3.31), 

which shows notable peaks of 9.5 mol/m²s for FI and 7.4 mol/m²s for RDI on June 24th. From 

this day, 𝑇𝑎 drops reaching values of 3.0 and 2.2 mol/m²s for FI and RDI, respectively, on 

July 8th. A slight increasing trend can then be observed in both subplots, indicating that the 

two irrigation strategies are contributing to improving the health condition of plants, although 

it does not reach optimal values. A significant decrease follows, leading 𝑇𝑎 to 1.5 mol/m²s 

and 0.3 mol/m²s for FI and RDI, respectively, by August 12th. The extremely low values can 

be explained by the timing of acquisition of the measurement, but the general decrease could 

be linked to water scarcity, as the last water supply occurred on August 6th. Like 𝑔𝑠𝑤 curves, 

an exponential increase leads transpiration to two peaks in mid-August and in mid-

September, when two irrigations of 18.75 and 27.19 for RDI and FI were applied, 

respectively. Notably, the transpiration under FI nearly doubles that of RDI during these 

peaks, with FI reaching 10.3 mol/m²s compared to 5.3 mol/m²s under RDI. Then, a significant 

decline leads transpiration to similar values for the two irrigation strategies on September 

23rd, really close to the harvest date. Throughout the soybean growth cycle, both transpiration 

curves fluctuate in line with changes in water supply, but FI generally follows a more 

elevated trend than RDI, suggesting that plants under this strategy have greater access to 

water and, therefore, higher transpiration rate.  

Although the difference between the two irrigation strategies is remarkable in the 

𝑔𝑠𝑤 and 𝑇𝑎 measurements, this is not captured in the mean leaf temperature values (Figure 

3.32). The temperature trend remains stable at 31-33°C during the initial period up to the end 

of July, with the exception of July 9th, when measurements were taken at 9:30 a.m. After 

August 12th, when precipitation increases and ambient temperature cools, leaf temperatures 

of both subplots decrease in magnitude, fluctuating between 25°C during the lower periods 

and 30°C during the higher periods. Throughout the initial period, FI plants exhibit higher 

leaf temperatures compared to RDI plants. However, after July 9th, leaf temperatures in FI 

plants drop below those in RDI plants and remain lower until harvest. This shift aligns with 

the transpiration patterns shown in Figure 3.31, as increased transpiration cools the foliage, 

resulting in lower leaf temperatures. Consequently, higher leaf temperatures indicate more 

severe stress, which can negatively impact the plant's ability to perform photosynthesis 



96 

efficiently. The leaf temperature patterns observed in June are somewhat unexpected, as RDI 

plants, being subjected to reduced water supply, would be anticipated to experience greater 

stress than FI plants. Nevertheless, the temperature difference between the two treatments 

during the whole period is minimal, ranging between 0.3°C and 1.4°C.  

 

Figure 3.31. Mean apparent transpiration 𝑇𝑎 for RDI and FI irrigation strategies measured with LI-600 in 

2022. The grey areas represent the periods of application of RDI. 

 

Figure 3.32. Mean leaf temperature Tleaf for RDI and FI irrigation strategies measured with LI-600 in 2022. 

The grey areas represent the periods of application of RDI. 
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3.3.2. 2023 

Mean stomatal conductance (Figure 3.33) exhibits a steady increase until July 20th, 

coinciding with a period of abundant precipitation, including a significant event on July 5th 

and 6th that brought 58.8 mm of rain. Moreover, temperatures were moderate, never 

exceeding the maximum temperature of 34°C until July 17th, when 𝑇𝑚𝑎𝑥 briefly spike to 

35.5-35.7 over four days. The data suggests that stomatal conductance is sensitive to rising 

temperatures, beginning to decline on these hotter days. Once temperature cooled again, 𝑔𝑠𝑤 

increases till August 9th. Following this date, temperatures rose from 27.3°C on that day to a 

heatwave between August 21st to August 26th, reaching peaks of 36-37°C. In response, 𝑔𝑠𝑤 

fell to 0.63 mol/m²s and 0.57 mol/m²s for FI and RDI conditions, respectively. September 

also featured temperature anomalies around 31°C, leading to further declines in stomatal 

conductance, ultimately dropping to 0.07 mol/m²s for FI and 0.10 mol/m²s for RDI. 

Regarding the comparison between FI and RDI conditions, mean 𝑔𝑠𝑤 is generally higher in 

the RDI subplot for most months. However, during most of August, plants under RDI exhibit 

lower 𝑔𝑠𝑤 than those under FI. Nonetheless, the difference between the two conditions is 

minimal, ranging from 0.01 to 0.1 mol/m²s. 

Mean transpiration (Figure 3.34) displays a highly oscillating trend, indicating greater 

variability than stomatal conductance. Specifically, 𝑇𝑎 remains relatively constant until early 

July, after which it begins to fluctuate continuously, likely due to variations in temperature 

and water supply. Notably, 𝑇𝑎 appears to closely follow water supply: following the extreme 

precipitation event on July 6th, 𝐸 increases from 9.6 mol/m²s to 11.9 mol/m²s for the FI sublot 

and from 10.3 mol/m²s to 12.1 mol/m²s for the RDI one. It then declines until the next rainfall 

event on July 12th, after which it peaks at 14.7 mol/m²s and 13.2 mol/m²s for FI and RDI, 

respectively, on July 20th. Following this peak, 𝑇𝑎 decreases until July 28th: this may be due 

to frequent precipitation events occurring almost daily from July 19th to July 26th. Excessive 

water supply can lead to reduced oxygen availability in the root zone due to soil saturation, 

which in turn may hinder root function and water uptake. This is supported by the subsequent 

increase in transpiration over the next few days, when precipitation total amount and 

frequency decreased while temperatures remained moderate. After this period, 𝑇𝑎 
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consistently decrease, though less abruptly, up to harvesting, except for the measurement 

taken on August 9th around 11 a.m., which may underrepresent the mean value during peak 

stress conditions. Unlike stomatal conductance, transpiration in the FI subplot is consistently 

higher than in plants under RDI.  

 

Figure 3.33. Mean stomatal conductance gsw for RDI and FI irrigation strategies measured with LI-600 in 

2023. The grey areas represent the periods of application of RDI. 

 

Figure 3.34. Mean apparent transpiration 𝑇𝑎 for RDI and FI irrigation strategies measured with LI-600 in 

2023. The grey areas represent the periods of application of RDI. 
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This outcome aligns with expectations for the two irrigation strategies, as 

transpiration tends to be greater in areas where the plants' water needs are fully met, 

compared to those experiencing a deficit in water supply. However, this result contrasts with 

the trends observed in stomatal conductance and satellite indices, where the RDI curve is 

generally higher than that of the FI subplot. 

Finally, mean leaf temperature shows two curves that follow a very similar pattern 

(Figure 3.35). 𝑇𝑙𝑒𝑎𝑓  oscillations align with the fluctuations experienced by transpiration 

curves, staying within the range of 30-33°C for both RDI and FI subplots until July 20th. 

After this date, the oscillations become more pronounced in the FI subplot, with temperature 

continuously changing between 27°C and 32°C, resulting in a difference of about 5°C 

between each measurement. In contrast, plants under RDI experience more stable changes, 

with oscillations around 3°C. By late August, the RDI curve rises from 26°C on August 9th 

to 35°C by August 17th, while the FI subplot shows a slower increase, from 27°C to 33°C. 

Eventually, it peaks at 35-36°C for FI and 30-32°C for RDI, leading to higher 𝑇𝑙𝑒𝑎𝑓 in the FI 

subplot again. This outcome is consistent with the general observation that RDI plants exhibit 

better overall health compared to FI plants. 

 

Figure 3.35. Mean leaf temperature Tleaf for RDI and FI irrigation strategies measured with LI-600 in 2023. 

The grey areas represent the periods of application of RDI. 
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3.3.3. Comparison between 2022 and 2023 

The comparison of in-situ parameters measured in 2022 and 2023 clearly highlights 

the severe dry conditions of 2022. This is evident from the significantly lower values of 

stomatal conductance and transpiration, as well as the notably high leaf temperatures 

throughout most of the summer months. In fact, both mean 𝑔𝑠𝑤 and 𝑇𝑎 (Figure 3.36, Figure 

3.37) display much lower values in 2022 compared to 2023 until late August and early 

September, coinciding with the cooling of the temperatures in 2022. The greatest difference 

between the two years occurs after mid-July, when 2023 experienced moderate temperatures 

and frequent precipitation events, in stark contrast to 2022, which saw exceptionally high 

temperatures and minimal rain, after a prolonged dry period of about 20 days with no rain. 

By September, the trend reverses, with 2022 𝑔𝑠𝑤 and 𝑇𝑎 surpassing those of 2023. This shift 

is attributed to the last irrigation in 2022 occurring on September 3rd, followed by more 

frequent precipitation, while 2023 experienced a period of zero rainfall with temperatures 

higher than the average of the thirty-year time series. Moreover, irrigation stopped earlier in 

2023, with the last irrigation water supplied on August 22nd. 

 

 

Figure 3.36. Comparison between mean stomatal conductance [mol m-2 s-1] measured in the RDI (on the 

left) and FI (right) subplots in the two years under consideration. 
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The same trend can be observed from the mean leaf temperature comparison (Figure 

3.38). Leaving aside the measurement taken on July 9, which is underestimated because of 

the time of acquisition, far from the time of maximum stress for the plant, leaf temperature 

remains higher in 2022 until early August, indicating more severe stress conditions. The peak 

difference in this period occurs in late July, consistent with the 𝑔𝑠𝑤 and 𝐸 outcomes. Then, 

as a response to the increasing temperatures of August, 𝑇𝑙𝑒𝑎𝑓 of 2023 becomes higher than 

those of 2022, that in contrast experienced more frequent precipitation events. The maximum 

difference occurs in mid-August, with 2023 𝑇𝑙𝑒𝑎𝑓 resulting higher by 10 and 13°C than 2022 

values. 

Climatic conditions play a crucial role in determining plant health, as all three curves 

quickly react to changes in one or more climatic variables. While the influence of weather is 

clear, the responsiveness of the physiological parameters to the single irrigation events is less 

evident, with the curves mostly showing responses to temperatures fluctuations. Nonetheless, 

all three parameters exhibit higher differences between 2022 and 2023 for the RDI subplots 

than the FI portions of the field. This suggests that, although less apparent, irrigation 

significantly influences the trends of the plant physiological factors. In fact, RDI's 

performance is more variable and responsive to any external climate change than FI, which, 

on the other hand, though responsive, shows variations of smaller magnitude.  
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Figure 3.37. Comparison between mean apparent transpiration [mol m-2 s-1] measured in the RDI (on the 

left) and FI (right) subplots in the two years under consideration. 

 

Figure 3.38. Comparison between mean leaf temperature [°C] measured in the RDI (on the left) and FI 

(right) subplots in the two years under consideration. 
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3.4. Crop yield 

Over the two years, 2022 and 2023, key agronomic parameters such as seed yield, 

biomass production, water use efficiency (WUE), oil content, and protein content were 

measured (Table 3.3, Table 3.4), offering a comprehensive view of how soybeans respond to 

different irrigation regimes. 

In 2022, FI produced a higher yield compared to RDI. This suggests that full irrigation 

promotes better overall yield due to optimal water availability. However, when considering 

WUE for production, the depth of water required to produce that specific amount of dry 

matter, RDI outperformed FI with a WUE of 7.4 kg/ha/mm compared to 6.9 kg/ha/mm. This 

suggests that while full irrigation maximizes yield, the water is used more efficiently under 

RDI conditions. However, regarding biomass production, FI resulted in a higher biomass 

yield compared to RDI, though the WUE difference between treatments was small (6.3 

kg/mm vs. 6.0 kg/mm for FI and RDI, respectively). This highlights that although biomass 

production under full irrigation was more substantial, the incremental gain from increased 

water use was relatively modest in terms of efficiency. In terms of quality, RDI resulted in a 

higher oil content of 21.3% compared to 20.7% under FI. This suggests that some degree of 

water stress, as imposed by deficit irrigation, might stimulate greater oil accumulation in the 

seeds. However, the protein content showed the opposite pattern, being higher under FI 

(43.1%) compared to RDI (41.8%). This indicates that while water stress may enhance oil 

content, it might have a limiting effect on protein synthesis, possibly due to reduced protein 

metabolism under drought conditions.  

The results from 2023 present a different scenario, reflecting the different 

environmental conditions and crop response in that year. The RDI yield was higher than FI, 

with also higher WUE (5.1 kg/ha/mm compared to 4.5 kg/ha/mm under FI). This further 

supports the argument that under certain conditions, regulated deficit irrigation can optimize 

water use without significantly compromising yield. Biomass production was nearly identical 

under both treatments. However, the WUE for biomass was higher under RDI (8.2 kg/mm) 

compared to FI (7.7 kg/mm), indicating that the plants used water more efficiently to produce 

biomass under reduced irrigation levels in 2023. Regarding quality parameters in 2023, the  
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Table 3.3. Results in terms of yield and biomass in 2022 and 2023, both in terms of dry matter and in terms of 

Water Use Efficiency (WUE). 

YEAR IRRIGATION 
YIELD 

[kg/ha] 

YIELD WUE 

[kg/ha/mm] 

BIOMASS  

[kg/ha] 

BIOMASS 

WUE  

[kg/mm] 

2022 
RDI 3289.4 7.4 2637.8 6.0 

FI 3447.2 6.9 3154.4 6.3 

2023 
RDI 2691.1 5.1 4334.0 8.2 

FI 2528.8 4.5 4347.5 7.7 

 

Table 3.4. Results in terms of quality parameters (protein and oil content in percentage) for the crop under 

RDI and FI in 2022 and 2023. 

 2022 2023 

 RDI FI RDI FI 

Oil content (%) 21.3 20.7 20.4 20.3 

Protein content (%) 41.8 43.1 43.9 43.6 

 

oil content was marginally higher under RDI (20.4%) compared to FI (20.3%), though the 

difference was minimal. However, as in 2022, the protein content remained slightly higher 

under FI (43.6%) than under RDI (43.9%), reinforcing the earlier observation that full 

irrigation tends to promote higher protein levels in soybeans. 

Although these differences in yield, biomass, water use efficiency, oil content, and 

protein content were observed between the two irrigation treatments across both years, 

statistical analysis revealed that they are not statistically significant. This suggests that the 

variations between full irrigation and regulated deficit irrigation did not reach a level of 

significance to confirm a definitive advantage of one treatment over the other. 

 

 

.
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4. DISCUSSION 

4.1. Satellite imagery for monitoring plant water status 

By comparing how different VIs correspond to field-level measurements such as 

stomatal conductance, transpiration, and leaf temperature, we can assess the reliability and 

effectiveness of Planet satellite in offering actionable insights for irrigation management. 

Based on the results from both seasons, it is clear that Planet data provide valuable 

information on plant growth, biomass accumulation, and stress conditions. The indices were 

able to capture key growth trends across different irrigation treatments, reflecting differences 

in canopy cover, photosynthetic activity, and chlorophyll content throughout the different 

soybean growth stages and between FI and RDI. Additionally, VIs reflected adequately the 

response of plants to irrigation and precipitation inputs, as well as temperature variations and 

particularly dry conditions. 

In 2022, VIs showed lower values compared to 2023, highlighting the markedly 

different climatic conditions. The prolonged drought in 2022, with very low precipitation and 

particularly high temperatures, hindered the VIs growth, particularly in terms of chlorophyll 

content. photosynthetic activity, and canopy structure. Growth was largely sustained by 

irrigation, although less defined and sharp compared to the more moderate climate of 2023. 

When rainfall eventually occurred after the extended dry spell, VIs exhibited a rapid increase, 

demonstrating the ability of satellite imagery to capture significant shift in the PWS. In 

contrast, VIs in 2023 started at already higher values and eventually reached greater peaks, 

reflecting the milder temperatures and more frequent rainfall throughout the season.  

The sensitivity of Planet indices to water supply is evident when examining the period 

from July 26th to August 9th, 2022 (Figure 4.1, Figure 4.2). During this time, the indices 

clearly respond to irrigation events. While their absolute values differed due to their varying 

sensitivity to specific plant characteristics, the overall trend was consistent across all indices. 

Irrigation events significantly boosted their values, whereas precipitation had a smaller 
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impact due to the limited depth in this period. After 2-4 days without substantial water supply, 

the VIs gradually decline but rebounded quickly following the next irrigation or precipitation 

event. In contrast, physiological data (Figure 4.3) did not exhibit the same pattern, as LI-600 

measurements were not taken immediately before and after the irrigation events. 

Nonetheless, there is a noticeable increase in the difference between values of 𝑔𝑠𝑤 and 𝑇𝑎 

in the FI and RDI subplots on August 6th compared to earlier days. Although the absolute 

values were not captured at the peak stress time of the day, and therefore cannot be compared 

to the absolute values of the acquisitions taken the other days, this variation suggests that 

plants under RDI experienced more stress than those under FI. These daily fluctuations were 

not well captured by the indices, which were measured by Planet satellite around the same 

time as the LI-600 data (9-10 a.m.). This suggests that the finer physiological responses to 

water stress were not always fully captured by the satellite-derived indices alone.  

Despite the difficulty in capturing daily variability, the VIs provided continuous and 

broad-scale insights into plant health, capturing responses to environmental changes, such as 

water supply and temperature fluctuations, that might otherwise go unnoticed in field-level 

measurements. For instance, between June 19th (BBCH 30) to June 27th (BBCH 41), 2022, 

plants were in the middle of their vegetative growth stage, characterized by stem elongation 

and leaf development. The physiological parameters measured on June 20th and 24th (Figure 

4.4), showed an improvement of plant health, with a rapid increase in 𝑔𝑠𝑤 and 𝑇𝑎  and a 

corresponding drop in leaf temperature, thanks to the enhanced cooling effect due to the 

higher transpiration, despite the extreme temperatures registered in that period, with 

maximum temperatures of 34-35°C for most days. However, VIs (Figure 4.5, Figure 4.6) 

showed a brief but sharp decline on June 26th, likely because of the high temperature, that on 

that day reached the maximum of 35°C. This decline is particularly well captured by GNDVI, 

ENDVI, and NDRE, as they measure the photosynthetic activity, chlorophyll content, canopy 

structure, and general stress status of vegetation. NDVI, which mostly concentrates on 

biomass development, did not show the same sharp decrease, as well as LAI, indicating that, 

despite the stress conditions, plants were still physically growing. The lack of in-situ 

measurement missed these stress signals, underscoring the utility of satellite data as 

supplement to direct physiological measurements.  
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Figure 4.1. Trend of NDVI (up), GNDVI (middle), and ENDVI (down) in the period ranging from July 26th to 

August 9th, 2022. 
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Figure 4.2. Trend of ENDVI (up), NDRE (middle) and LAI (down) in the period ranging from July 26th to 

August 9th, 2022. 
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Figure 4.3. Trend of mean stomatal conductance (up), mean apparent transpiration (middle), and mean leaf 

temperature (down) in the period ranging from July 26th to August 9th, 2022. 
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Figure 4.4. Trend of mean stomatal conductance (up), mean apparent transpiration (middle), and mean leaf 

temperature (down) in the period ranging from June 19th to June 27th, 2022. 
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Figure 4.5. Trend of NDVI (up), GNDVI (middle), and ENDVI (down) in the period ranging from June 19th to 

27th, 2022. 
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Figure 4.6. Trend of NDRE (up) and LAI (down) in the period ranging from June 19th to 27th, 2022. 
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4.2. Comparison of Planet and Sentinel performance 

The comparison between Sentinel and Planet satellite data reveals notable differences 

in their performance across various vegetation indices, primarily driven by their distinct 

spatial and temporal resolutions, as well as differences in data processing methodologies. 

Sentinel, with its coarser spatial resolution (10 m) and lower temporal resolution (5-10 days), 

consistently underestimates values compared to Planet, which offers finer spatial resolution 

(3 m) and more frequent revisits (daily). 

Specifically, NDVI values from Sentinel are underestimated by 0.213 to 0.227 

compared to Planet, though the high correlation coefficients (0.984 in 2023 and 0.977 in 

2022) indicate that Sentinel accurately tracks the temporal trends observed in Planet data. 

GNDVI shows similar patterns, with a slightly poorer correlation than NDVI, underscoring 

Sentinel’s ability to capture general vegetative trends despite systematic underestimation. 

ENDVI, however, exhibits the poorest alignment between the two platforms, particularly in 

2022 (R² = 0.6882), highlighting a challenge for Sentinel in capturing finer spectral details 

that are more sensitive to minor vegetative changes such as canopy structure, possibly due to 

its lower spectral resolution. Conversely, NDRE shows the closest agreement between the 

two datasets, with small underestimations of 0.147 – 0.154, making it one of the most reliable 

indices in this comparison. Interestingly, Sentinel overestimate LAI values compared to 

Planet by an average of 1.211 (FI) and 0.953 (RDI) in 2022, and 1.080 (FI) and 1.165 (RDI) 

in 2023. This is likely due to the nature of the LAI equation, that is experimentally derived 

from EVI and therefore represents an approximation. Despite this, Sentinel's LAI trends still 

closely follow Planet’s.  

The regression analysis further suggests that while Sentinel and Planet track similar 

patterns, their differences in slope and intercept, particularly for NDVI, NDRE, and ENDVI, 

reveal biases that could be attributed to Sentinel’s coarser spatial and temporal resolution, 

which may fail to capture the detailed variability in crop canopy detected by Planet’s higher 

resolution sensors. These discrepancies, along with significant deviations from the ideal 

bisector line as indicated by the Student t-test, reflect the limitations of Sentinel for precision 
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agriculture, where finer temporal and spatial resolutions, such as those provided by Planet, 

offer a more granular understanding of crop health.  

However, Sentinel's freely available data makes it a valuable resource for large-scale 

monitoring, while Planet's higher cost structure may limit its use to more targeted 

applications requiring frequent and high-resolution observations. Although the Sentinel data 

consistently underestimated Planet outcomes, the high correlation coefficients between the 

two platforms indicate that both provide valuable insights into vegetation dynamics over 

time. This finding suggests that while differences in absolute values exist, the overall trends 

remain consistent across both platforms, making them suitable tools for monitoring 

agricultural health and aiding irrigation management. Therefore, Sentinel resulted still 

adequate to monitor the general PWS stress, although its absolute values need some 

calibration in order to be considered as a basis for irrigation decision making. Nonetheless, 

the reduced frequency of the acquisitions dictated by its temporal resolution could be an 

obstacle in more delicate crops that need a constant and precise evaluation of the PWS. 

4.3. FI and RDI performances 

The evaluation of Full Irrigation (FI) and Regulated Deficit Irrigation (RDI) strategies 

presents nuanced insights into the trade-offs between water savings and crop performance. 

The results show that FI generally promotes higher values in key VIs such as NDVI, 

GNDVI, ENDVI, NDRE, and LAI during 2022, with minimal but notable differences 

between the two strategies. This trend shifts in 2023, where RDI surpasses FI in most indices 

despite receiving less water, indicating the potential for higher irrigation efficiency under 

RDI. This performance can be explained by the crop aptitude to adapt to reduced water 

availability in RDI plots, mainly related to the higher percentage of fine particles compared 

to coarse soil. Soil composition plays a crucial role in water retention, and the RDI subplots, 

with a higher fraction of fine-textured particles such as silt and clay, were able to retain 

significantly more water than the coarser-textured soils in FI subplots. Fine particles have 

smaller pore spaces, which slow down water movement through the soil profile, allowing the 

soil to hold onto water for longer periods. This characteristic creates a natural reservoir effect, 
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where more water remains available to the plants even when the irrigation input is reduced. 

As a result, the RDI subplots were able to hold up to 43% more water than the FI areas: 

specifically, PAWC equals 37.44 and 34.26 mm in subplot 10 and 11, respectively, both 

under FI, while it counts 54.03 and 48.56 mm in subplot 5 and 6, RDI-irrigated. The total 

irrigation water depths applied are equal to 160.90 mm and 122.90 mm for FI and RDI, 

respectively, meaning 23% less water was used in RDI compared to FI. However, the higher 

PAWC in the RDI subplots largely offset the reduction in irrigation water. This increased 

water retention capacity in RDI-treated soils likely contributed to the enhanced performance 

seen in 2023, as plants were able to access moisture stored in the soil for extended periods, 

even under reduced irrigation regimes. This water-holding advantage mitigates the risk of 

water stress, enabling RDI plants to maintain higher physiological activity during critical 

growth stages. Therefore, soil composition, particularly the fine particle content in the RDI 

subplots, played a pivotal role in improving irrigation efficiency without severely 

compromising crop performance. 

In terms of physiological responses, during 2022's drought conditions, FI maintained 

higher gsw and transpiration levels, indicating greater resilience to water stress due to better 

water access, whereas RDI subplots faced more severe reductions. However, in 2023, despite 

RDI generally showing higher gsw for much of the season, it could not match FI's overall 

water use efficiency, as FI plants consistently exhibited higher transpiration. Nonetheless, 

the RDI plants managed to maintain cooler leaf temperatures for the majority of the season, 

indicating better adaptation to reduced water availability and overall stress. 

The findings of this study in terms of yield, biomass, WUE, and quality parameters, 

showed that although differences between the two irrigation strategies were observed across 

both years of the study, these differences were not statistically significant. This suggests that 

neither irrigation treatment offered a definitive advantage over the other in terms of overall 

crop performance. Hence, RDI emerged as a promising water-saving strategy, especially in 

soils with high water retention capacity, where it maintained competitive yields and 

improved WUE without significantly compromising crop productivity. Conversely, FI 

consistently supported higher protein content and slightly higher yields under more similar 

soil characteristics as in 2022.  
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5. CONCLUSION 

This study highlights the intricate relationship between irrigation management, soil 

composition, and plant physiological responses, while demonstrating the significant value of 

integrating satellite-based vegetation indices with field-level measurements for monitoring 

crop water status. The findings underscore the effectiveness of satellite-based vegetation 

indices in monitoring crop health and plant water status across different irrigation treatments. 

VIs such as NDVI, GNDVI, ENDVI, NDRE, and LAI proved invaluable for capturing key 

growth dynamics, canopy development, photosynthetic activity, and stress conditions. These 

indices were highly responsive to both irrigation events and climatic variations, providing 

actionable insights into plant water requirements. Moreover, the integration of satellite data 

and in-situ measurements proved essential, both for validating the VIs trends across the 

soybean growth cycle and for compensating the lack of more frequent field data. Their ability 

to fill gaps where in-situ measurements are absent, combined with their sensitivity to key 

plant physiological processes, makes satellite indices a powerful tool for improving 

agricultural decision-making and enhancing crop management practices. 

The comparison between Sentinel and Planet satellite data highlights important trade-

offs between spatial and temporal resolution, accuracy, and cost-effectiveness in agricultural 

monitoring. While Planet’s finer spatial resolution (  m) and daily revisits provide more 

detailed and frequent insights, Sentinel’s coarser resolution ( 0 m) and less frequent 

acquisitions result in systematic underestimations of key vegetation indices. However, 

despite these discrepancies, the high correlation coefficients between the two platforms 

indicate that Sentinel accurately captures overall vegetative trends, making it a valuable tool 

mainly for large-scale monitoring. While Planet’s higher cost may limit its use to more 

targeted, precision-driven applications, Sentinel’s freely available data remains an accessible 

option for monitoring general crop health and water stress. However, its reduced spatial and 

temporal resolutions may be a limitation for crops requiring more frequent and precise 

assessments. Overall, this study underscores the importance of selecting satellite platforms 



118 

based on specific management needs, balancing cost with the level of spatial and temporal 

detail required for effective irrigation and crop monitoring. 

The comparison between FI and RDI treatments revealed that while RDI is a 

promising strategy for reducing water consumption, the specific soil conditions and 

environmental context play a pivotal role in determining the success of this approach. RDI 

performed well in 2022, though resulting slightly less robust than FI against water and heat 

stress. In 2023, under more favorable climatic conditions and higher water retention capacity 

in RDI plots, the performance of RDI surpassed FI in several indices, suggesting that plants 

can adapt to reduced water inputs when supported by appropriate soil characteristics. This 

highlights the need for a flexible irrigation strategy that takes into account not only the 

irrigation regime, but also soil composition. In terms of yield, biomass, WUE, and quality 

parameters, the differences between FI and RDI across both years were not statistically 

significant, suggesting that RDI can be a viable alternative to FI without severely 

compromising crop performance. This has significant implications for sustainable 

agriculture, particularly in regions facing increasing water scarcity due to climate change. 

The ability of RDI to maintain yields with less water input, especially in soils with favorable 

water retention properties, supports its potential as a strategy to enhance irrigation efficiency 

and reduce water use in agriculture. 

Expanding the comparison across more diverse crops, climates, and soil types will 

further clarify the conditions under which different irrigation strategies are most effective. 

Moreover, investigating how satellite-derived indices can be calibrated for real-time 

irrigation decision-making is essential, especially in regions where water resources are 

limited. As climate change intensifies water scarcity worldwide, these themes are becoming 

increasingly important for ensuring food security, promoting sustainable farming practices, 

and enhancing global water use efficiency. Future work should also explore cost-effective 

solutions for small-scale farmers, enabling them to access advanced technologies for 

precision agriculture to mitigate water stress and adapt to evolving environmental challenges. 
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A. APPENDIX 1 – GUMBEL DISTRIBUTION  

According to Gumbel, the cumulative distribution function 𝐹(ℎ) of the analyzed data 

is given by (A.1): 

 𝐹(ℎ) = exp [− exp(−𝛼(ℎ − 𝑢))] (A.1) 

 

Where, in this case, ℎ is the annual maximum precipitation depth [mm] and 𝛼 and 𝑢 the scale 

and location parameters, respectively [68]. The parameters were through the Least Square 

Method, which minimizes the sum of the squares of the errors reached in each single 

measurement. The procedure is to sort the data in ascending and descending order with the 

associated position 𝑖 in the rank, and calculate the Weibull [69] cumulative frequency 𝐹𝑖: 

 
𝐹𝑖 =

𝑖

𝑛 + 1
 

(A.2) 

 

By taking the logarithm of both sides of the Gumbel distribution function twice and 

equating 𝐹(ℎ) to 𝐹𝑖, the following equation (A.3) can be written: 

 𝑦𝑘 = − ln[− ln(𝐹𝑖)] = 𝛼(ℎ𝑖 − 𝑢) (A.3) 

 

Where 𝑦𝑘 represents the value of the reduced variable, that allows one to determine 

the canonical form of the exponential law. The equation highlights a linear envelope between 

the precipitation depths and 𝑦𝑘,  around which the data cluster themselves if the fitting 

distribution is properly designed. The parameters of the Gumbel distribution α and u were 

computed by assessing the mean and standard deviation for both sorted data and the reduced 

Gumbel variable, using (A.4): 

 
𝛼 =

𝑆𝑦

𝑆ℎ
;  𝑢 = 𝑚ℎ −

𝑚𝑦

𝛼
 

(A.4) 
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 Table A.1. Description of the necessary variables to assess the parameters of the Gumbel distribution: 

standard deviations and means of both Gumbel variable and observation data. 

 

Finally, the extreme events associated with return periods of 10, 100, and 1000 years 

were estimated. The return period 𝑇𝑟 (or recurrence interval) is defined as the average time 

between two subsequent exceedances of a defined event or threshold [70]. and is expressed 

by the following formula (A.2): 

 𝑇𝑟(ℎ) = ∑ 𝑝(𝑡) ∙ 𝑡

∞

𝑡=1

 (A.2) 

Where ℎ  is the value of the random variable (here, precipitation depth), 𝑝(𝑡)  is the 

probability of not exceeding the design rainfall ℎ in an arbitrary year, and 𝑡 is the interarrival 

time between two subsequent exceedances of ℎ.  

As previously introduced, 𝐹(ℎ) is the probability of not observing exceedance in a 

given year. To define the same probability for (n-1) years in a row, the equation to solve is 

(A.3): 

 𝑝(𝑡) = 𝐹(ℎ) ∙ 𝐹(ℎ) ∙ … ∙ 𝐹(ℎ) (A.3) 

For a total of (n-1) terms.  

VARIABLE DEFINITION EQUATION 

𝑺𝒚 
Standard deviation of the 

reduced Gumbel variable 
𝑆𝑦 = √(

1

𝑛 − 1
∑(𝑦𝑖 − 𝑚𝑦)

2
𝑛

𝑖=1

) 

𝑺𝒉 
Standard deviation of the 

observation data 
𝑆ℎ = √(

1

𝑛 − 1
∑(ℎ𝑖 − 𝑚𝑦)

2
𝑛

𝑖=1

) 

𝒎𝒚 
Mean of the reduced Gumbel 

variable 
𝑚𝑦 =

1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1

 

𝒎𝒉 Mean of the observation data 𝑚ℎ =
1

𝑛
∑ ℎ𝑖

𝑛

𝑖=1
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Therefore, if the goal is to define the probability of not observing exceedances for (n-

1) years in a row and then observing the overcome of the threshold in the n-th year, the 

formula to be applied is (A.4): 

 𝑝(𝑡) = 𝐹(ℎ) ∙ 𝐹(ℎ) ∙ … ∙ 𝐹(ℎ) ∙ [1 − 𝐹(ℎ)] (A.4) 

 

Where [1 − 𝐹(ℎ)] represents the probability of observing the exceedance in that given year. 

By substituting (A.4) in (A.2), it can be observed that a relationship exists between 

𝐹(ℎ) and 𝑇𝑟 (A.5): 

 
𝐹(ℎ) =

𝑇𝑟 − 1

𝑇𝑟
 

(A.5) 

 

Eq. (A.5) means that if the functional form of 𝐹(ℎ)  is known, each value of ℎ  that 

corresponds to any prescribed value of the return period can be defined. By setting the (A.5) 

equal to (A.1) and by isolating the depth, it is possible to express the equation that relates 

precipitation depth with the return period (A.6): 

 
ℎ(𝑇𝑟) = 𝑢 −

1

𝛼
ln (− ln (1 −

1

𝑇𝑟
)) 

 

(A.6) 

 

By inverting Eq. (A.6), the return period is expressed as the inverse of the probability 

of occurrence (A.7) [71]: 

 
𝑃 =

1

𝑇𝑟
 

(A.7) 

 

Using Eq. (A.7) it can be easily stated that the higher the return period, the lower the 

probability of having the event associated with that specific 𝑇𝑟. 

The Gumbel distribution was applied to both annual maxima precipitation depths and 

annual maximum temperatures. With regards to rainfall data, the annual maxima distribution 

in the years 1993-2021 shows a pretty high correlation with the reduced Gumbel variable, 

with a correlation coefficient 𝑅2 = 0.9871 (Figure A.1). The same analysis was performed 
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for the months interested in the soy cultivation, resulting in high 𝑅2 for all months (Figure 

A.2, Figure A.3). 

 

Figure A.1. Gumbel distribution application on the annual maxima precipitation depths [mm] of the 

considered period (1993-2021). 

 

Figure A.2. Gumbel distribution on the monthly maxima precipitation depths [mm] (June on the left, July on 

the right) for the considered period (1992-2021). 
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The same procedure was applied to the temperature datasets of the study area. The 

annual maxima temperature [°C] shows a high correlation with the values of the reduced 

variable yk, with a correlation coefficient 𝑅2 = 0.9784 (Figure A.4). The monthly analysis 

was performed for May too, considering the years 1993-2021, as the year 1992 is incomplete. 

All five distributions show high correlation coefficients, with the data that cluster pretty well 

around the regression line. 

 

 

Figure A.3. Gumbel distribution on the monthly maxima precipitation depths [mm] (August on the left, 

September on the right) for the considered period (1992-2021). 
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Figure A.4. Gumbel distribution application on the annual maxima temperature [°C] of the considered period 

(1993-2021). 

 

Figure A.5. Gumbel distribution on the monthly maximum temperature [°C] (May on the left, June on the 

right) for the considered period (1993-2021 for May, 1992-2021 for June). 
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Figure A.6. Gumbel distribution on the monthly maximum temperature [°C] (July on the left, August on the 

right) for the considered period (1992-2021). 

 

Figure A.7. Gumbel distribution on the monthly maximum temperature [°C] for September over the 

considered period (1992-2021). 
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B. APPENDIX 2 – IDW INTERPOLATION 

ON SOIL TEXTURE CHARACTERISTICS 

The IDW interpolation technique is based on Tobler’s First Law of Geography, 

according to which “everything is related to everything else, but near things are more related 

to distant things” [49]. IDW assumes that any pair of points are related to each other in such 

a way that their similarity decreases with their distance following a power law [50]. In 

particular. The estimation of a certain value 𝑧  at a specific location 𝑋  is given by the 

weighted mean of the nearby known observations (Equation (B.1): 

 
�̂�(𝑋) =

∑ 𝑤𝑖𝑧𝑖
𝑛
𝑖

∑ 𝑤𝑖
𝑛
𝑖

 (B.1) 

where 𝑤𝑖 are the weights of the observations according to the distance to 𝑋, formulated in 

(B.2): 

 𝑤𝑖 = |𝑋 − 𝑋𝑖|
−𝛽 (B.2) 

 

The exponent −𝛽  refers to the Euclidean distance, being the length of the line 

segment between connecting two points. It determines the degree of influence of the nearest 

versus farthest points, chosen at the user’s discretion in ℝ+ [84].  

In this study, the exponent was taken equal to 2, representing an inverse squared 

relationship. The georeferenced soil samples collected in the field for both 2022 and 2023 

were used as observation points, associated with the corresponding values of coarse-grained 

and fine-grained soil fractions (in %). The resulting IDW interpolation maps are shown in 

Figure B.1 and Figure B.2 for 2023, from which it can be noticed that the field is cut in half. 

On the subplot irrigated with Full Irrigation, the fraction of coarse-grained soil is more 

prevalent than finer particles, with a maximum percentage of 60.25% against the 21.66% of 

the field on which the Regulated Deficit Irrigation has been applied. Consequently, the fine-

grained fractions are higher in the RDI subplot than in the fully irrigated one. This 
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comparison shows how the portion of the field subjected to reduced water supply is actually 

better responsive to drought conditions, as it can retain more water than the other subplot. 

This is further confirmed by PAWC (Figure B.3), clearly showing the much higher water 

retention capacity of the RDI-based subplot, that can retain up to 43% more water than the 

FI portion of the field. This condition could hinder one of the objectives of the present study, 

as it influences the performance of soybean production by lower amounts of water irrigation. 

In fact, the good yield outcomes obtained this year could be the result of the optimal water 

retention capacity of the soil, rather than an effective and prompt response of the soybean 

crop to possible water scarcity conditions. Despite the promising performance of the study 

in this context, the results of 2023 RDI cannot be taken as a guarantee of the success of this 

irrigation strategy on soybean cultivation, and therefore not even as a basis for wider 

application on different environments. 
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Figure B.1 IDW interpolation results on the fraction (%) of coarse-grained soil of the soybean field. 
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Figure B.2. IDW interpolation results on the fraction (%) of fine-grained soil of the soybean field. 
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Figure B.3. IDW interpolation results on Plant Available Water Capacity (PAWC) of the soybean field. 
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C. APPENDIX 3 – INDICES TREND IN 

RESPONSE TO CLIMATE AND IRRIGATION  

Planet indices are overall reliable in identifying shifts in climate, water supply, and 

general PWS, as proved by the trend that VIs follow throughout the soybean growth cycle in 

both years under examination. The following paragraph presents several examples 

illustrating how VIs respond to variations in water supply and temperature, comparing their 

trend to the physiological parameters measured at the site. 

From July 1st (BBCH 37) to 12th (BBCH 54), 2023, frequent and abundant 

precipitation occurred, with a total of 89 mm of rain over six days, up until July 6th. This 

precipitation helped keep temperatures moderate (with maxima of 27-29°C). After this 

period, the temperature rose, peaking at 34°C on July 11th. These favorable climatic 

conditions are reflected in the VIs (Figure C.1, Figure C.2), which increased sustained by the 

ample water supply from both rainfall and irrigation. The physiological parameters followed 

a similar trend (Table C.1). In particular, 𝑔𝑠𝑤 rose steadily throughout the period, indicating 

that stomata were more open, and transpiration was potentially favored. In fact, transpiration 

also reached very high values (12.07 for FI, 11.88 for RDI). Leaf temperature, on the other 

hand, increased up to 30°C, largely driven by the temperature spike on July 7th, when 

temperatures jumped from 27°C of the previous day to 31°C.  

Moderate climatic conditions persisted throughout soybean growth stages in 2023, 

except for a brief period in September. From September 6th (BBCH 79) to 12th (BBCH 81), 

neither irrigation nor precipitation occurred, and temperatures rose above the average, 

peaking at 32°C almost daily. These conditions accelerated the decline in all VIs, as can be 

observed from Figure C.3 and Figure C.4. NDVI, GNDVI, and NDRE decreased by 0.08-

0.12 in FI and by 0.04-0.06 in RDI subplots. ENDVI showed a smaller reduction, dropping 

only by 0.03 and 0.02 in FI and RDI subplots, respectively, making it the least sensitive to 

these climatic changes. Additionally, LAI dropped by 1.46 in FI and 0.80 in RDI, indicating 

a rapid decline in canopy density over just five days. This trend is corroborated by the  
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Table C.1. Physiological parameters (mean stomatal conductance, mean transpiration, and mean leaf 

temperatures) measured on July 5th and 7th, 2023. 

PARAMETERS 
05/07/23 07/07/23 

RDI FI RDI FI 

𝑔𝑠𝑤 [mol m-2 s-1] 0.833 0.777 0.947 0.846 

𝑇𝑎 [mol m-2 s-1] 9.565 10.300 11.877 12.071 

𝑇𝑙𝑒𝑎𝑓 [°C] 28.418 29.644 30.100 30.549 

 

physiological data in Table C.2., which shows a decline in 𝑔𝑠𝑤  and 𝑇𝑎 , almost halving 

between subsequent measurements. The increase in 𝑇𝑙𝑒𝑎𝑓  further confirms the stress 

experienced by plants. 

 

Figure C.1. Trend of NDVI (up) and GNDVI (down) during the period ranging from July 1st to 12th, 2023. 
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Figure C.2. Trend of ENDVI (up), NDRE (middle), and LAI (down) in the period ranging from July 1st to 12th, 

2023. 
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Figure C.3. Trend of NDVI (up), GNDVI (middle), and ENDVI (down) in the period ranging from September 

6th to September 12th, 2023. 
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Table C.2. Physiological parameters (mean stomatal conductance, mean transpiration, and mean leaf 

temperatures) measured on September 6th and September 12th, 2023. 

PARAMETER 

DAYS 

06/09/23 12/09/23 

RDI FI RDI FI 

𝑔𝑠𝑤 [mol m-2 s-1] 0.185 0.129 0.102 0.067 

𝑇𝑎 [mol m-2 s-1] 4.320 4.563 2.622 2.590 

𝑇𝑙𝑒𝑎𝑓 [°C] 32.059 35.357 32.103 36.050 

 

 

 

Figure C.4. Trend of NDRE (up) and LAI (down) in the period ranging from September 6th to September 12th, 

2023. 
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