
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Hadronic Contributions

to Muon-Electron Scattering at NNLO

Relatore Laureando

Dr. Massimo Passera Marco Vitti

Anno Accademico 2017/2018





Contents

1 The Anomalous Magnetic Moment of the Muon 3

1.1 Historical Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Present Theoretical Prediction of aµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 QED Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Electroweak Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Hadronic Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The MUonE proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Muon-Electron Scattering Cross Section up to NLO 11

2.1 Preliminary Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Cross Section at LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 QED Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Z Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Higgs contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Cross Section at LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 QED Corrections at NLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Renormalized Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Vacuum Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Vertex Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.4 Box Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Soft Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Cancellation of IR Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Dispersive Approach to Feynman Amplitudes 29

3.1 Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Dispersive Approach for Vacuum Polarization . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Hadronic Contributions to aµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Hadronic Contributions to Muon-Electron Scattering 37

4.1 NLO Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 NNLO Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Cancellation of IR Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions 45

A Conventions and Useful Formulas 47

A.1 Relevant Feynman Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.2 Dirac Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3 Standard Results for Loop Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Scalar Integrals 51

iii



CONTENTS

C Detailed Results for the NLO Cross Section 53

D Detailed Results for Class IV at NNLO 57

Bibliography 61

iv



Introduction

Goal of this thesis is the evaluation of the hadronic contribution to the cross section of muon-electron
scattering at next-to-next-to-leading order (NNLO). This contribution is essential for the interpretation
of data coming from the recently proposed MUonE experiment at CERN [1,2], which aims to provide
a novel determination of the hadronic leading-order (HLO) contribution to the anomalous magnetic
moment of the muon.

The anomalous magnetic moment of the muon is one of the most precisely measured quantities in
particle physics. Yet, the theoretical Standard Model prediction for the value of the muon g-2 deviates
from the experimental measurement by 3-4σ. This long-standing discrepancy has led to speculations
about possible effects of new physics, motivating a new generation of experiments at Fermilab and
J-PARC. The new E989 Muon g-2 experiment at Fermilab is now taking data and its first result is
expected next year.

In order to match the progress on the experimental side, an improvement in precision is required
also for the theoretical prediction, whose main source of uncertainty comes from non-perturbative
hadronic contributions, especially from hadronic vacuum polarization. The calculation of the leading
hadronic contribution to the muon g-2, aHLO

µ , traditionally relies on a dispersive integral which relates
it to a complicated integration of the measured cross section for e+e− annihilation into hadrons.

An alternative determination of aHLO
µ recently proposed in [1] involves the hadronic contribution to

the running of the electromagnetic coupling, ∆αhad(t), where t is a space-like variable. The MUonE
experiment [2] could extract ∆αhad(t) by determining the complete running of the fine-structure
constant, ∆α(t), from the measurement of the differential cross section dσ/dt of elastic muon-electron
scattering. On the theoretical side, the evaluation of dσ/dt would then be needed up to NNLO. The
present work is devoted to the calculation of the hadronic contributions to this cross section.

In Ch. 1 we introduce the anomalous magnetic moment of the muon and the current status of
its theoretical prediction, and we discuss the MUonE proposal. In Ch. 2 we move to the study of
the differential cross section for elastic muon-electron scattering. Specifically, we analyze the QED
corrections up to NLO, which will serve as a benchmark for the hadronic NNLO calculation. Ch. 3
is dedicated to the theory of dispersion relations and its application, in conjunction with the optical
theorem, to the evaluation of aHLO

µ . In Ch. 4 we finally study the hadronic contributions to muon-
electron scattering at NLO and NNLO, making use of the dispersive approach previously introduced.
Conclusions are drawn in Ch. 5.
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Chapter 1

The Anomalous Magnetic Moment of
the Muon

Magnetic dipole moments arise as classical properties of physical systems: one important example is
that of an orbiting charged particle with charge q, producing a circulating current. If m is the mass
of the particle and ~L = m~r × ~v is its orbital angular momentum, then the associated magnetic dipole
moment is

~µL =
q

2mc
~L . (1.1)

When spin is introduced as the intrinsic angular momentum of a particle in the consideration of
quantum systems, it is possible to define the particle’s magnetic dipole moment as

~µ = g µB
~σ

2
(1.2)

where σi (i = 1, 2, 3) are the Pauli spin matrices, µB = e~
2mc is the Bohr magneton and the proportion-

ality factor g is the gyromagnetic ratio or g-factor.

The anomalous magnetic moment of a lepton, al, is defined as the deviation from the value of its
gyromagnetic ratio predicted by the Dirac theory

al =
gl − 2

2
(1.3)

as a consequence of radiative corrections arising in quantum field theory (QFT).

1.1 Historical Introduction

The study of the anomalous magnetic moment of leptons has accompanied the evolution of the Stan-
dard Model (SM) of particle physics since its early developments. When Uhlenbeck and Goudsmit [3,4]
postulated the spin of the electron to be ~/2, the experimental results coming from atomic spectroscopy
could be explained setting ge = 2. This was puzzling, since if the spin ~S = (~/2)~σ is assumed to be an
analogous of the orbital angular momentum ~L, then the value ge = 1 would be expected. The solution
to this conundrum arrived with Dirac’s relativistic extension of the quantum-mechanical theory of the
electron [5], which naturally predicted the value ge = 2.

The First Anomaly In 1948, twenty years after Dirac’s prediction, Kusch and Foley [6] presented
their results for the precision measurement of the magnetic moment of the electron, from the study of
the hyperfine structure of atomic spectra, proposing the value ge = 2.00238(10). The discrepancy with
Dirac’s result was accounted for theoretically later the same year, within the framework of Quantum
Electrodynamics (QED) and the renormalization program. The famous calculation by Schwinger [7]

ae =
α

2π
' 0.00116 (1.4)

3



CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

was one of the first great achievements obtained by QED, together with the interpretation of the
Lamb-shift [8]. The success in determining the leading contribution to ae sparked an interest in the
calculation of higher-order terms that is still vivid: the anomalous magnetic moment of the electron
is now measured with an astounding precision of 0.22 parts per billion [9], and the experimental
determination matches the theoretical prediction up to five loops in the perturbative expansion [10],
a remarkable result that has provided the strictest test for QED.

The Muon Anomaly In 1956 Berestetskii et al. [11–13] showed that in a broad class of Beyond
Standard Model (BSM) theories the sensitivity of al to short-distance effects is expressed by the
relation

δal
al

∼
m2

l

Λ2
(1.5)

where δal is the deviation from the theoretical prediction, ml is the mass of the lepton and Λ represents
the scale of new physics1. Therefore, provided the same experimental accuracy, the muon anomaly is
possibly much better suited to the study of unknown effects2 compared to ae, by a factor (m2

µ/m
2
e) ∼

4 × 104. This observation drew attention on a possible measurement of aµ, but at that time there
was no idea on how to perform such a measurement, since the technique employed until then for the
electron required the ability to produce polarized leptons.

In 1957, however, the discovery of parity violation [15] led to a method of determining aµ, in
which longitudinally polarized muons are produced through pion decay and are trapped in a magnetic
field, causing spin precession; the latter is then analyzed in order to extract aµ by looking at the
decay electrons/positrons of the muons. This opened the way to a series of increasingly precise
measurements [16–20] in about fifty years, culminating in the E821 experiment at Brookhaven [21],
which has measured aµ with a relative precision of 0.54 parts per million (ppm). Moreover, the new
E989 experiment is now in progress at Fermilab [22, 23], and it works with ultra-relativistic muons
like the previous muon storage rings, while the conceptually new E34 experiment [24] at J-PARC may
use ultra-cold muons, therefore providing a test for potential sources of systematic errors in the first
method.

1.2 Present Theoretical Prediction of aµ

The SM prediction for the muon anomaly is [25]

aSMµ = 116591776(44)× 10−11 (1.6)

and the comparison with the latest experimental measurement of aµ performed at BNL [26]

aexpµ = 116592091(63)× 10−11 (1.7)

points out a discrepancy of about 4 standard deviations.

From the theoretical point of view, the SM prediction for the anomalous magnetic moment of the
muon is typically splitted in three parts: the QED, the electroweak and the hadronic contributions

aSMµ = aQED
µ + aEWµ + ahadµ (1.8)

which are discussed in the following. Updated results are taken from Jegerlehner’s recent review [27].

1.2.1 QED Contribution

The QED contribution arise from diagrams involving the three charged leptons (e, µ, τ) interacting
with the photon. It is the dominant contribution, accounting for more than 99.99% of the value of

1BSM theories in which this scaling is violated are discussed in [14].
2Unfortunately, although aτ would provide even greater sensitivity to new physics, the short lifetime of the tau lepton

forbids at present an experimental measurement at the required accuracy.
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1.2. PRESENT THEORETICAL PREDICTION OF aµ

the entire prediction. Since three mass scales are associated to the different lepton masses (me, mµ,
mτ ), the QED contribution can be expressed as [28]

aQED
µ = A1 +A2

(
mµ

me

)
+A2

(
mµ

mτ

)
+A3

(
mµ

me
,
mµ

mτ

)
(1.9)

where A1 is related to diagrams involving photons and muon loops only. More generally, A1 represents
diagrams in which the leptons flowing in closed loops are the same as the external lepton. Indeed, A1

is a universal contribution, valid for the electron and tau g-2 as well. The contributions to A2 begin
to appear at two loops while the first contribution to A3 is related to a three-loop diagram with both
an electronic and tauonic vacuum polarization insertions.

The Ai (i = 1, 2, 3) terms are expressed as a perturbative expansion in powers of α/π

Ai = A
(2)
i

(α
π

)
+A

(4)
i

(α
π

)2
+A

(6)
i

(α
π

)3
+A

(8)
i

(α
π

)4
+A

(10)
i

(α
π

)5
+ . . . (1.10)

where each A
(j)
i is computed order by order in renormalized perturbation theory. Once the results for

a given order L are collected in the coefficient of the (α/π)L term

CL = A
(2L)
1 +A

(2L)
2

(
mµ

me

)
+A

(2L)
2

(
mµ

mτ

)
+A

(2L)
3

(
mµ

me
,
mµ

mτ

)
(1.11)

the result for aQED
µ is written as

aQED
µ =

∑
L

CL (α/π)L . (1.12)

In the following we present the main results for the QED contributions, which have been calculated
up to five loops, i.e. O((α/π)5) in the perturbative expansion.

One-Loop Contribution

The only one-loop diagram contributing to aQED
µ is depicted below

and its contribution was first evaluated by Schwinger [7], with the result

C1 = A
(2)
1 =

1

2
(1.13)

and A
(2)
2 = A

(2)
3 = 0.

Two-Loop Contribution

Nine diagrams are related to aQED
µ at two-loop level. Seven of them involve only muons and photons,

thus contributing to A
(4)
1 , while the vacuum polarization diagrams with an electron and a tau loop

contribute to A
(4)
2

(
mµ

me

)
and A

(4)
2

(
mµ

mτ

)
respectively. The A

(4)
1 term was first calculated by Petermann

5



CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

and Sommerfield [29, 30], while the mass-dependent ones were computed analytically in [31] (for a
simplified expression see [32]): results are

A
(4)
1 = 0.32847896557919378 . . .

A
(4)
2

(
mµ

me

)
= 1.0942583092(72)

A
(4)
2

(
mµ

mτ

)
= 0.000078079(14)

(1.14)

and A
(4)
3 = 0. Errors in the last two lines of Eq.(1.14) are due to the uncertainty in the measurement

of the lepton masses. The coefficient C2 then reads

C2 = A
(4)
1 +A

(4)
2

(
mµ

me

)
+A

(4)
2

(
mµ

mτ

)
= 0.765857423(16) (1.15)

where the errors on A
(4)
2 (mµ/me) and A

(4)
2 (mµ/mτ ) have been added in quadrature, since the uncer-

tainties in the lepton masses can be treated as independent. The total contribution to aµ is

a(4) QED
µ = C2

(α
π

)2
' 413217.627(9)× 10−11 . (1.16)

Three-Loop Contribution

The three-loop contribution to aµ arise from more than a hundred diagrams: for all of them an
analytical evaluation has been completed in the late 1990s. Besides, numerical methods were developed
in parallel by Kinoshita and his collaborators [33].

The A
(6)
1 term receives contribution from 72 diagrams, whose computation is due to Remiddi and

his collaborators [34–43], while the evaluation of the A
(6)
2 terms was completed by Laporta and Remiddi

in 1993 [44,45] (see also [46]). Moreover, at three loops the two-mass-scale term A
(6)
3 (mµ/me,mµ/mτ )

shows up for the first time: this has been evaluated in 1999 [47]. Results are

A
(6)
1 = 1.181241456587 . . .

A
(6)
2

(
mµ

me

)
= 22.86838000(17)

A
(6)
2

(
mµ

mτ

)
= 0.00036063(12)

A
(6)
3

(
mµ

me
,
mµ

mτ

)
= 0.00052776(10)

(1.17)

with the value of the C3 coefficient
C3 = 24.05050982(28) (1.18)

where the errors from the A2 terms are added in quadrature and the one from A3 linearly, taking
account of correlations. The sixth-order QED contribution to aµ is then

a(6) QED
µ = C3

(α
π

)3
' 30141.9022(4)× 10−11 . (1.19)

Four-Loop Contribution

More than a thousand diagrams are involved in the computation of the four-loop contribution. A
complete analytical result is still missing, but a numerical evaluation has been possible thanks to the

efforts of Kinoshita and collaborators. The calculation of the A
(8)
1 term, coming from 891 diagrams,

has been recently accomplished [48], yielding

A
(8)
1 = −1.91298(84) (1.20)

6



1.2. PRESENT THEORETICAL PREDICTION OF aµ

with the theoretical error coming from the Monte-Carlo integration. Moreover, a quasi-exact result
for this universal term has been obtained by Laporta [49]

A
(8)
1 = −1.912245764926445574152647167439830054060873390658725345 . . . (1.21)

with an accuracy of 1100 digits. For what concerns the mass-dependent terms, results obtained in [50]
read

A
(8)
2

(
mµ

me

)
= 132.6852(60)

A
(8)
2

(
mµ

mτ

)
= 0.04234(12)

A
(8)
3

(
mµ

me
,
mµ

mτ

)
= 0.06272(4)

(1.22)

and the sum of the A
(8)
i terms then yields

C4 = 130.8734(60) (1.23)

for a total contribution

a(8) QED
µ = C4

(α
π

)4
' 380.990(17)× 10−11 . (1.24)

We emphasize that this four-loop contribution is about 6 times the error from the measurement of
Eq.(1.7), therefore an accurate computation is essential to interpret consistently the experimental
results.

Five-Loop Contribution

At five-loop level one has to consider more than 10.000 diagrams (12672 contribute to A
(10)
1 only). A

complete numerical evaluation has been obtained by Aoyama et al. [51] with the result

C5 ' 751.917(932) (1.25)

and therefore

a(10) QED
µ = C5

(α
π

)5
' 5.0845(63)× 10−11 . (1.26)

Final Result for the QED Contribution

Summing up all the previous results, the total QED contribution is

aQED
µ = 116584718.859(.026)(.009)(.017)(.006)× 10−11 (1.27)

where the uncertainties are due, respectively, to the errors in the measurement of the fine-structure
constant and of the mass ratios, and to the numerical errors associated to the four- and five-loop
terms. It is worth noting that the value of α used in the computation is the most precisely measured,
and is determined from the measurement of the anomalous magnetic moment of the electron [9].

1.2.2 Electroweak Contribution

Electroweak contributions are known to be suppressed by a factor (m2
µ/m

2
W ) compared to the pure

QED terms. Indeed, sensitivity to the measurement of aEWµ was reached only with the recent BNL
experiment. Nonetheless, results for the one-loop term were first presented in 1972 [52–56], after the
renormalizability of the SM was established. Today, the one-loop term amounts to three times the
experimental uncertainty, and is therefore sizeable.

7



CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

One-Loop Contribution

The analytical result for the one-loop contribution can be written as

a(2) EW
µ =

5GFm
2
µ

24π2
√
2

[
1 +

1

5

(
1− 4 sin2 θW

)2
+O

(
m2

µ

m2
Z,W,H

)]
(1.28)

where GF is the Fermi constant, θW is the Weinberg angle and m2
Z,W,H are the masses of the Z, W

and Higgs boson, respectively. The O(m2
µ/m

2
Z,W,H) term gives a negligible contribution. Formula

(1.28) yields the value

a(2) EW
µ = (194.81± 0.01)× 10−11 (1.29)

where the error is due to the uncertainty in sin2 θW .

Two-Loop Contribution

Two-loop EW contributions arise from QED corrections or fermionic loop insertions in the one-loop
EW diagrams. Surprisingly, they are the same order of magnitude of the one-loop result: this is due to
the presence of log(mZ,W /mf ) terms [57] associated to fermion triangular-loops, where mf is the mass
scale of the fermion in the loop, very small compared to mZ,W . As a result, the one-loop contribution
is sensibly diminished by the two-loop term [58–60]. We report the result in [27]

a(4) EW
µ ' (−41.23± 0.22[mH ,mt]± 0.72[had]) (1.30)

where the first error is due to the uncertainties in the Higgs and top masses, while the second is due
to hadronic uncertainties.

1.2.3 Hadronic Contribution

The hadronic contribution is related to pure QED diagrams with the addition of quark loops. Since
quarks interact strongly at low energies, a behavior that forbids a perturbative calculation, non-
perturbative techniques must be employed in the prediction of ahadµ .

Leading-Order Contribution

The leading hadronic contribution aHLO
µ arise from the O(α2) diagram in Fig. 1.1, where the hadronic

vacuum polarization (HVP) insertion is depicted as a red “blob”. It was shown [61–64] that this con-
tribution can be calculated from hadronic e+e− annihilation data. Indeed, using dispersion relations
together with the optical theorem, one obtains3 the dispersive representation

aHLO
µ =

α

3π

∫ ∞

m2
π

ds

s
K(2)

µ (s)Rhad(s) (1.31)

where K
(2)
µ (s) is a smooth kernel function, mπ is the pion mass and

Rhad(s) =
σ(0)(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
(1.32)

is the ratio of the inclusive cross section for e+e− annihilation into hadrons, with electromagnetic
radiative corrections subtracted off, and the cross section for muon-pair production in the high en-
ergy limit. It must be noted that also hadronic final states involving photons (although related to
higher order terms) are conventionally included in the leading contribution. The latest result for the
theoretical prediction, obtained via the dispersion integral Eq.(1.31), is [27, 65]

aHLO
µ = (688.07± 4.14)× 10−10 (1.33)

3A more detailed account of the dispersive approach is given in Ch. 3

8



1.3. THE MUonE PROPOSAL

µ− µ−had

Figure 1.1: hadronic leading-order contribution to aµ.

showing that the leading contribution is about a hundred times the present experimental uncertainty.
The error on aHLO

µ is mainly due to the experimental errors from the measurement of the cross section.

As a result, the error on aHLO
µ dominates the total theoretical uncertainty, and constitutes the main

problem in the interpretation of the experimental results: in order to match the improved precision
of the future experiments, progress in the evaluation of aHLO

µ is essential.

Higher-Order Contributions

The hadronic contributions at higher order are usually split into two terms

aHHO
µ = aHHO

µ (vp) + aHHO
µ (lbl) (1.34)

where the first term includes QED corrections to the HVP diagram of Fig. 1.1, while the second term
arise from hadronic light-by-light diagrams. While aHHO

µ (vp) can be evaluated using the dispersive

approach discussed above and is under control concerning the required accuracy, aHHO
µ (lbl) cannot

be extracted from experimental data, and specific models have to be employed in its determination.
Indeed, the error on aHHO

µ (lbl) is the second largest contribution to the theoretical uncertainty. For
the vacuum polarization we have [66]

aHHO
µ (vp) = (−8.70± 0.06)× 10−10 (1.35)

while the light-by light contribution is [67]

aHHO
µ (lbl) = (10.34± 2.88)× 10−10 . (1.36)

1.3 The MUonE proposal

As discussed in the previous section, a major problem in the calculation of aµ comes from the HLO
contribution. Apart from the dispersive method, a possibility consists in lattice QCD calculations
[68–73]. While very important, this approach has not yet reached the desired accuracy. A new way
to address the problem has been recently investigated [1], leading to the proposal of the MUonE
experiment at CERN [2]. It has been shown [74] that an alternative representation for aHLO

µ is given
by

aHLO
µ =

∫ 1

0
dx (1− x)∆αhad[t(x)] (1.37)

where t(x) = m2
µ x

2/(x− 1) is the space-like squared momentum transfer (t(x) < 0 in the x-range of
integration) and ∆αhad(t) is the hadronic contribution to the running of the fine-structure constant4

α(t) =
α(0)

1−∆α(t)
. (1.38)

4The total running receives contribution from the three leptons, the top and the lighter quarks

∆α(t) = ∆αlep(t) + ∆αhad(t) + ∆αtop(t) .

Note, however, that the neat distinction in the above expression is consistent only up to two loops, since at three loops
diagrams involving both hadronic and leptonic vacuum polarizations begin to appear.

9



CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

The MUonE experiment will determine ∆α(t) by measuring the differential cross section dσ/dt for
elastic muon-electron scattering; the hadronic contribution will then be extracted by subtracting the
leptonic part, which is well-known in perturbation theory. If a competitive measurement of aHLO

µ has
to be obtained with this new approach, the experimental uncertainties in the measurement of the cross
section need to be of the order of 10 ppm. On the theory side, the implementation of Monte Carlo
simulations requires the knowledge of the differential cross section for muon-electron scattering up to
NNLO.

The process of muon-electron scattering has not been deeply investigated so far experimentally nor
theoretically. Measurements have been performed in the 60s using both accelerators [75–78] and cosmic
rays [79–82], and later a method to polarize muons through the scattering on electrons was studied
[83, 84]. Moreover, theoreticians have mainly analyzed the QED [85–91] and the electroweak [92–94]
corrections at NLO. The QED corrections at NNLO have been tackled only very recently [95–97], with
the evaluation of the master integrals for both planar and non-planar graphs.

For a correct interpretation of the MUonE results, also the hadronic contributions at NNLO,
related to the hadronic blob in Fig. 1.1 must be considered. This thesis is devoted to the analysis
of these kind of contributions. While we will employ the dispersive approach in the calculation, an
evaluation of the same contributions using the hyperspherical method has been recently presented [98].

10



Chapter 2

The Muon-Electron Scattering Cross
Section up to NLO

2.1 Preliminary Kinematics

We start to consider the elastic process of µ−e− scattering with the following definitions of momenta

µ−(p1) + e−(p2) → µ−(q1) + e−(q2).

The MUonE experiment will be studied in the lab frame, with the electron at rest, but we will often
take advantage of the simplifications of moving to the center of mass (CM) frame.

Mandelstam variables are defined as

s = (p1 + p2)
2 = (q1 + q2)

2

t = (q1 − p1)
2 = (q2 − p2)

2

u = (q1 − p2)
2 = (q2 − p1)

2

(2.1)

and satisfy the relation
s+ t+ u = 2m2

e + 2m2
µ. (2.2)

The experiment will use a muon beam of energy around Elab
µ = 150 GeV, from which we can extract

directly the value of s looking at the lab frame

s = m2
µ + 2meE

lab
µ ' 0.164 GeV2. (2.3)

In our calculations we will refer to the differential cross section dσ/dt, which is given by the general
formula

dσ

dt
=

1

16π

1

λ(s,m2
µ,m

2
e)
X , (2.4)

where λ(x, y, z) is the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and the quantity
X is defined as the squared matrix element summed over the final spins and averaged over the initial
ones

X =
1

4

∑
spin

|M|2. (2.5)

The expression of Eq.(2.4) can be derived from the well-known formula for the differential cross section
for a 2 → 2 elastic scattering in the CM frame(

dσ

dΩ

)
CM

=
1

64π2s
X (2.6)

by noting that

cos θCM(t) =
1

λ(s,m2
µ,m

2
e)

[
2st+ λ(s,m2

µ,m
2
e)
]
, (2.7)

11



CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

from which (
dΩ

dt

)
CM

= 2π
d (cos θCM)

dt
=

4πs

λ(s,m2
µ,m

2
e)
. (2.8)

Note that the differential cross section (2.4) is Lorentz-invariant. The Mandelstam variable t is con-
strained to the range

[
−λ(s,m2

µ,m
2
e)/s, 0

]
, where the minimum value for t is tmin ' −0.143 GeV2.

2.2 Cross Section at LO

In this section we briefly discuss the LO cross section for the process, calculating only the contribu-
tions relevant for the experiment. Indeed, in the SM we can consider three diagrams contributing to
the amplitude at LO, namely the photon, Z boson and Higgs boson diagrams of Fig.2.1 (whenever
not specified, the top fermion line in a diagram is understood to be the muon one). Thus we would
have to consider six total contributions in order to write the LO cross section, namely the squared
diagrams plus the interference contributions. However, an estimate of the magnitude of each dia-
gram’s amplitude is sufficient to let us focus only on the QED diagrams in the evaluation of the NLO
contributions.

2.2.1 QED Contribution

The amplitude for the scattering mediated by a photon is given by the Feynman rules of Appendix
A.1

iM0 = ie2
ū(q1)γ

µu(p1) ū(q2)γµu(p2)

t
(2.9)

from which we obtain the pure QED contribution

X0 =
64π2α2

t2
[
(m2

µ +m2
e)

2 − su+ t2/2
]
. (2.10)

We will express our results for all the remaining contributions using X0 as a normalization factor,
since it is the dominant contribution to the cross section, as we will show in the following. A generic
contribution Xi can then be written as

Xi = X0 × δi (2.11)

with the dimensionless quantity

δi =
Xi

X0
. (2.12)

Summing over all contributions, the differential cross section then will read

dσ

dt
=

1

16π

1

λ(s,m2
µ,m

2
e)
X0

[
1 +

∑
i

δi

]
. (2.13)

We now point out that the expected sensitivity of the MUonE experiment for the measurement of the
differential cross section is 10 ppm, thus any δi expected to be smaller than 1×10−5 can be neglected.
Indeed, this is the case for the Higgs contribution, as we show below.

2.2.2 Z Contribution

Using the Feynman rules of App. A.1, the amplitude for the Z boson diagram is

iMZ = −i
(

g

2 cos θW

)2

ū(q1)γ
α(gV − gAγ

5)u(p1) ū(q2)γ
β(gV − gAγ

5)u(p2)

×

(
−gαβ +

(q1−p1)α(q1−p1)β
m2

Z

)
t−m2

Z

(2.14)

12



2.3. QED CORRECTIONS AT NLO

where g is the SU(2) coupling, θW is the Weinberg angle, mZ is the mass of the Z boson and gV and
gA are the purely vector and axial couplings, respectively, defined as

gV = sin2 θW − 1

4
gA = −1

4

and assumed to be equal for electron and muon. Then the interference contribution can be written as

XZγ =
1

4

∑
spin

2Re(M∗
0MZ)

= X0 × δZγ

(2.15)

where

δZγ =
1

π
√
2

(
tGF

α

)
m2

Z

t−m2
Z

[
g2V −

g2A
2

t(s− u)

(m2
µ +m2

e)
2 − su+ t2/2

]
(2.16)

and GF is the Fermi constant. δZγ represents the relative contribution to the cross section with respect
to the dominant QED contribution obtained above. The resonance at t ' m2

Z is very far from the
t-range considered for the experiment, over which δZγ is at most 1.5× 10−5 (in correspondence to the
value t = tmin), therefore the Z − γ interference is barely detectable. Moreover, we can safely omit
the pure Z contribution, connected to |MZ |2, since its relative contribution is expected to be O(G2

F ).

2.2.3 Higgs contribution

The amplitude for diagram (c) of Fig.2.1 is easily written as

iMH = −imµme

v2
ū(q1)u(p1)

1

t−m2
H

ū(q2)u(p2) (2.17)

where v is the v.e.v. of the Higgs field and is proportional to mZ . If we neglect the (q1−p1)α(q1−p1)β
term in the massive vector boson propagator1 of Eq.(2.14), we can see that the ratio between MH

and MZ goes like
MH

MZ
∝ mµme

m2
Z

t−m2
Z

t−m2
H

, (2.18)

therefore, being t very far fromm2
H , both the interference and the pure Higgs contribution are negligible

for the MUonE experiment.

2.2.4 Cross Section at LO

Considering the relevance of all possible LO contributions, we have found the pure QED term to
be the dominant one, while the Z − γ interference is at the edge of detectability and the remaining
contributions are surely negligible. We will therefore focus only on QED diagrams in the remainder
of the thesis, and the LO cross section that we will assume is

dσ0
dt

=
4πα2

t2
(m2

µ +m2
e)

2 − su+ t2/2

λ(s,m2
µ,m

2
e)

(2.19)

which is related to Eq.(2.10) by virtue of Eq.(2.4).

2.3 QED Corrections at NLO

Having restricted our attention to the QED contributions, in this section we analyze carefully the
radiative corrections to µ−e− scattering at NLO. Although these were already derived in previous
papers [85–91], we reproduce them independently, as they will be useful in the evaluation of the
hadronic contributions at NNLO.

1Using the Dirac equation, it can be shown that this term is proportional to
mµme

m2
Z

.

13



CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

γ

µ− µ−

e− e−

(a)

Z

µ− µ−

e− e−

(b)

H

µ− µ−

e− e−

(c)

Figure 2.1: diagrams contributing to the tree-level Feynman amplitude for µ−e− scattering: (a)
photon contribution; (b) Z boson contribution; (c) Higgs boson contribution.

If the complete Feynman amplitude for the process is

M = M0 +M1 +O(α3)

where M0 and M1 are the LO (O(α)) and NLO (O(α2)) contributions, respectively, then the contri-
bution to the cross section at NLO is

dσ1
dt

=
1

16π

1

λ(s,m2
µ,m

2
e)
X1 (2.20)

where X1 is obtained from the interference of the NLO amplitude with the LO one

X1 =
1

4

∑
spin

2 Re(M∗
0M1), (2.21)

that is a O(α3) quantity.
The QED diagrams contributing to M1 are depicted in Fig. 2.2: we have to deal with vacuum

polarization (VP), in which virtual lepton pairs are created and annihilated, vertex correction (VC)
and box diagrams. Also hadronic VP diagrams, consisting of strongly interacting quark pairs, appear
at NLO, but they will be considered in Ch. 4, which is specifically devoted to the hadronic contributions
to µ−e− scattering.

The diagrams of Fig. 2.2 are related by Feynman rules to loop integrals that are divergent when the
loop momentum goes to infinity (UV divergence) and/or to zero (IR divergence). These divergences
can be regularized, in the sense that they can be put in a tractable form; after that, UV divergences are
dealt with renormalization, while the cancellation of IR divergences is ensured by the Bloch-Nordsieck
theorem [99].2

In this thesis we use dimensional regularization for UV divergences, setting the dimension of
space-time to D = 4− ε, with ε > 0, and then taking the limit ε → 0 at the end of calculations: the
divergences appear in the form of 1/ε poles. The renormalization of UV divergences is then performed
in the framework of renormalized perturbation theory (RPT), which is described and applied to
the case of QED corrections to µ−e− scattering in Sect.2.3.1. Concerning IR divergences, these are
regularized by giving the photon a small mass λ and taking the limit λ→ 0 at the end of calculations:
the divergences appear in log(λ) terms. We will check the validity of the Bloch-Nordsieck theorem at
NLO in Sect.2.4.

Calculations for VP and VC diagrams were first performed in explicit analytic form. The standard
procedure for calculating loop integrals consists in the following steps:

1. Feynman parametrization (see App. A.3) is used in order to have an integrand with a single
denominator;

2A more general result concerning the cancellation of IR divergences is the Kinoshita-Lee-Nauenberg (KLN) theorem
[100,101], but in this thesis we will consider only QED contributions, to which the Bloch-Nordsieck theorem applies.
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2.3. QED CORRECTIONS AT NLO

2. the integration over the loop momentum is carried out by going in Euclidean space (some useful
results are collected in App. A.3);

3. finally, the integration over Feynman parameters is performed.

The results obtained with the above approach were checked with the ones from the Mathematica

package FeynCalc3 [102,103], which makes use of the technique of Passarino-Veltman (PV) decompo-
sition, described in App. B. Box diagrams were evaluated using FeynCalc only, given the complexity
of the related integrals. We performed the calculations with FeynCalc through the following steps:

1. The amplitude for a given diagram is defined in D-dimensions.

2. Using the FeynCalc command TID, the one-loop integral is decomposed in a linear combination
of tensor integrals. The option UsePaVeBasis expresses the results in terms of the PV coefficient
functions, while ToPaVe converts scalar integrals in PV notation.

3. The command PaVeReduce further simplifies the result, expressing it in terms of the scalar PV
functions (B0, C0, D0) only.

4. When a scalar PV function contains a UV-divergent part, this is made explicit, together with
terms depending on the scale µ introduced in dimensional regularization. For exampleB0(0,m

2,m2)
is rewritten as

B0(0,m
2,m2) = ∆ε + log(µ2) + B̄0(0,m

2,m2)

where B̄0(0,m
2,m2) is defined as the UV-finite part of the function.

5. When a UV-divergent scalar PV function is multiplied by a rational function of D, f(D), we
expand the latter as

f(D) = f(4)− εf ′(4) +O(ε2)

and then take the limit ε→ 0 where possible: this ensures to include finite terms possibly arising
from the simplification

lim
ε→0

ε∆ε = lim
ε→0

ε

[
2

ε
− γE + log(4π)

]
= 2 .

We make use of the results obtained with FeynCalc in the numerical evaluation of the contributions to
the cross section, and a complete list of them will be given in App. C. Numerical results are obtained
using LoopTools [104,105].

2.3.1 Renormalized Perturbation Theory

Before embarking in the discussion of the various contributions to the cross section, we present here a
brief practical account of the renormalization of QED in the framework of renormalized perturbation
theory. Let the bare lagrangian for a given lepton be defined as4

L = −1

4
F 0µνF 0

µν + ψ̄0(i/∂ −m0)ψ0 − e0ψ̄0 /A
0
ψ0 (2.22)

where F 0
µν = (∂µA

0
ν−∂νA0

µ), A
0
µ is the electromagnetic field and ψ0 is the Dirac spinor associated with

the lepton. This lagrangian is capable of giving finite predictions at tree level if m0 ad e0 are chosen
to be the lepton’s experimentally measured mass and charge, but the same lagrangian is known to
produce divergent results in the computation of the observable Green’s functions at quantum level (i.e.
one-loop and higher). However, these divergences can be eliminated by a proper rescaling of the free
parameters of the lagrangian, namely the fields, the coupling constant and the mass. If we assume

3Vers.9.2.0
4Being QED an abelian gauge theory, a priori different coupling constants should be considered for different lepton

species. However, in the SM lepton flavor universality is assumed, therefore in this thesis we will take e as the universal
electromagnetic coupling.
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µ− µ−

e− e−

(a)

µ− µ−

e− e−

(b)

µ− µ−

e− e−

(c)

µ− µ−

e− e−

(d)

µ− µ−

e− e−

(e)

Figure 2.2: One-loop QED diagrams contributing to the NLO amplitude for µ−e− scattering. (a):
vacuum polarization through lepton pairs. (b) and (c): muonic and electronic vertex
correction. (d) and (e): direct and crossed box.
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2.3. QED CORRECTIONS AT NLO

that the bare parameters are unphysical and define the renormalized parameters via the following
relations

A0
µ = Z

1
2
3 Aµ

ψ0 = Z
1
2
2 ψ

e0 = Z1Z
−1
2 Z

− 1
2

3 e[µ
ε
2 ]

m0 = ZmZ
−1
2 m

(2.23)

we wind up with the renormalized lagrangian

Lren = −1

4
Z3F

µνFµν + Z2iψ̄ /∂ψ −mZmψ̄ψ − e[µ
ε
2 ]Z1ψ̄ /Aψ (2.24)

where µ is an arbitrary scale of mass dimension 1, introduced in dimensional regularization in order to
leave e dimensionless. The formally infinite renormalization constants Zi are defined as a perturbative
expansion in terms of the renormalized coupling constant e, around a classical tree-level value

Zi = 1 + δi

with the counterterms δi starting at O(e2). The lagrangian of Eq.(2.24) can then be made explicit

Lren = −1

4
FµνFµν + iψ̄ /∂ψ −mψ̄ψ − e[µ

ε
2 ]ψ̄ /Aψ

− 1

4
δ3F

µνFµν + δ2iψ̄ /∂ψ −mδmψ̄ψ − e[µ
ε
2 ]δ1ψ̄ /Aψ

(2.25)

where the first line is formally equivalent to the bare lagrangian and the counterterms appear as new
interactions in the second line: they are suitably chosen in order to cancel the divergent contributions
coming from the lagrangian in the first line.

While the divergent part of the counterterms is fixed (once a regularization procedure has been
chosen), their finite part is still arbitrary, and must be set through a renormalization scheme. In this
thesis the on-shell scheme will be followed. In this scheme, the renormalized mass m and coupling e
in Eq.(2.25) are defined as the observed classical parameters for a given lepton, therefore allowing a
straightforward physical interpretation of our results.

2.3.2 Vacuum Polarization

In order to deal with diagram (a) of Fig. 2.2 it is convenient to remind the usual presentation of the
vacuum polarization as a modification of the tree-level photon propagator. This will allow to relate
diagram (a) to the tree-level QED diagram of Fig. 2.1 in a simple way.

Correction to the Photon Propagator

The full exact photon propagator5 can be expanded in a diagrammatic series of subsequent 1-particle
irreducible (1PI) insertions

Full

= +

1PI

+

1PI 1PI

+ . . .

where each 1PI insertion is in turn given by the sum of all possible 1PI diagrams, namely diagrams
which cannot be separated into two subdiagrams by cutting a single internal line

= + + . . .

5Also called dressed propagator. It receives contributions from diagrams at all orders in perturbation theory.

17



CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

Defining a single 1PI insertion as −iΠµν(q), where q is the momentum carried by the photon, the full
photon propagator can then be written as

iDαβ
F (q) =

−igαβ

q2
+

−igαµ

q2
[−iΠµν(q)]

−igνβ

q2

+
−igαµ

q2
[−iΠµν(q)]

−igνρ

q2
[−iΠρσ(q)]

−igσβ

q2
+ . . .

(2.26)

The above expression can be simplified to a more illuminating one. First, using Lorentz decomposition
and Ward Identity, we can infer the transversality of Πµν(q)

Πµν(q) = (q2gµν − qµqν)Π(q2) (2.27)

where Π(q2) is a scalar function with no poles at q2 = 0. We may then rewrite Eq.(2.26) as

iDαβ
F (q) =

−igαβ

q2
+

−igαµ

q2
∆ β

µ

[
−Π(q2) + Π2(q2) + . . .

]
=

−igαβ

q2
[
1−Π(q2) + Π2(q2) + . . .

]
+
iqαqβ

q4
[
−Π(q2) + Π2(q2) + . . .

] (2.28)

where we have used the idempotence of the quantity

∆ β
µ = i(q2gµλ − qµqλ)

−igλβ

q2
= δ β

µ − qµq
β

q2
.

Now we observe that the qαqβ term in Eq.(2.28) will couple necessarily to a conserved electromagnetic
current and so the relative contribution will be zero. Therefore the full photon propagator takes the
form

iDαβ
F (q) =

−igαβ

q2
[
1−Π(q2) + Π2(q2) + . . .

]
(2.29)

where we recognize the tree-level photon propagator in Feynman gauge multiplied by the terms in
square brackets. We can now regard Eq.(2.29) as a geometric progression of ratio −Π(q2) and write
the full propagator in a compact expression

iDαβ
F (q) =

−igαβ

q2 [1 + Π(q2)]
. (2.30)

Function Π(q2), as diagrammatically shown above, receives contributions from diagrams at all
orders. However, renormalization can be performed consistently only once an order is fixed in pertur-
bation theory. Since we are interested in diagram (a) of Fig. 2.2 we focus on the O(e2) contribution
to Π(q2), denoted Π2(q

2) (see also Eq.(2.38)). If we include the counterterm δ3 from the renormalized
lagrangian of Eq.(2.25) we obtain the renormalized 1PI insertion at O(e2)

O(e2)
= +

=
−igαβ

q2
[
−Π2(q

2)− δ3
] (2.31)

from which we can approximate the full renormalized photon propagator as

iD̄αβ
F (q) =

−igαβ

q2
[
1− Π̄2(q

2) + Π̄2
2(q

2) + . . .
]
=

−igαβ

q2
[
1 + Π̄2(q2)

] (2.32)

where we have defined the renormalized VP function as

Π̄2(q
2) = Π2(q

2) + δ3 . (2.33)
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2.3. QED CORRECTIONS AT NLO

Moreover, by multiplying Eq.(2.32) by e2 we can define the running charge e2(q2)

ie2D̄αβ
F (q) =

−igαβ

q2
e2[

1 + Π̄2(q2)
]

=
−igαβ

q2
e2(q2) .

(2.34)

In the on-shell scheme, the renormalization condition is related to the requirement that e(q2) reduces
to the classical charge e in the Thomson limit q → 0, thus implying

Π̄2(0) = 0 . (2.35)

We have now a method to compute the contribution from diagram (a) to the cross section at NLO:
we need to calculate Πµν

2 (q) and extract the function Π2(q
2); after renormalization, the Feynman

amplitude for diagram (a) can be written replacing the tree-level propagator in M0 (Eq.(2.9)) with
the NLO one (i.e. the second term in square brackets in Eq.(2.32))

−igαβ

q2
NLO−−−→ −igαβ

q2
[
−Π̄2(q

2)
]

(2.36)

yielding

MVP
1 = M0

[
−Π̄2(q

2)
]
. (2.37)

Finally, MVP
1 can be substituted in Eq.(2.21). Let us emphasize the importance of the factorization

of the VP function showed above, as it will be very useful in evaluating the hadronic contributions at
NNLO in Ch. 4.

Computation of Πµν
2 (q)

Let us define the one-loop vacuum polarization insertion for a photon with momentum q as

− iΠµν
2 (q) =

q

k + q

k

q

µ ν . (2.38)

Using the Feynman rules of App. A.1, Eq.(2.38) is equivalent to

− iΠµν
2 (q) = (−ieµ

ε
2 )2(−1)

∫
dDk

(2π)D
Tr

[
γµ
i(/k +m)

k2 −m2
γν

i(/k + /q +m)

(k + q)2 −m2

]
(2.39)

where m is the mass of a generic lepton running in the loop.

In the specific case of Eq.(2.39) we find again the transversality highlighted in Eq.(2.27) and obtain

Πµν
2 (q) = (q2gµν − qµqν)Π2(q

2) (2.40)

where the (unrenormalized) VP function is

Π2(q
2) =

2α

π

∫ 1

0
dx x(1− x)

[
∆ε − log

(
m2 − q2x(1− x)

µ2

)]
. (2.41)

We recall that ∆ε = 2/ε − γE + log(4π), so Π2(q
2) is UV-divergent. This could also be seen by

momentum power-counting in the integral of Eq.(2.39). Having defined the renormalized VP function
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by including the counterterm δ3 as in Eq.(2.33), we fix the latter via the on-shell renormalization
condition of Eq.(2.35)

Π̄2(0) = 0 =⇒ δ3 = −Π2(0) (2.42)

which gives

δ3 = − α

3π

[
∆ε − log

(
m2

µ2

)]
. (2.43)

Note that the counterterm depends on the mass of the lepton flowing in the loop.

We can now write the explicit and FeynCalc results for Π̄2(q
2). Here we have considered the case

q2 < 0, since the photon in the propagator of diagram (a) carries a momentum qµ = (p1− q1)
µ and so

q2 = t < 0 by Eq.(2.1). We then express our results using the t variable. It should be noted that, in the
specific case considered, Π̄2(t) does not have an imaginary part, being the argument of the logarithm
in Eq.(2.41) always positive. We also recall that we are considering only leptonic contributions to the
vacuum polarization.

The equivalence of the two expressions can be checked by looking at the explicit form of the scalar
PV functions in App. B.

Explicit Result for Π̄2(t)

Π̄2(t) =
α

3π

5
3
+

4m2

t
−
(
1 +

2m2

t

)√
1− 4m2

t
log


√
1− 4m2

t + 1√
1− 4m2

t − 1

 (2.44)

FeynCalc Result for Π̄2(t)

Π̄2(t) =
α

3π

[
−1

3
+

(
1 +

2m2

t

)(
B̄0(t,m

2,m2)− B̄0(0,m
2,m2)

)]
(2.45)

Contribution to the Cross Section

Let’s now consider the entire diagram (a) of Fig. 2.2: if we include the contributions coming from all
the three leptons, from Eq.(2.37) we can write the one-loop VP amplitude as

MVP
1 = M0

[
−
∑
l

Π̄
(l)
2 (t)

]
(2.46)

where Π̄
(l)
2 (t) represents the contribution of a given lepton (i.e. we substitute m →ml in Eq.(2.44) and

(2.45)), and l runs over {e,µ,τ}. Recalling Eq.(2.21), we can finally write the contribution to the cross
section as

XVP
1 = X0

[
−2
∑
l

Π̄
(l)
2 (t)

]
. (2.47)

2.3.3 Vertex Correction

We now move to diagrams (b) and (c) of Fig. 2.2, in which the tree-level muonic and electronic vertices
are replaced by their one-loop correction. We first analyze separately the general structure of the QED
vertex at one-loop, and then use the results to compute the amplitude for diagrams (b) and (c), which
can be related formally to the tree-level QED diagram, simplifying the calculations.
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2.3. QED CORRECTIONS AT NLO

General Structure of the QED Vertex

Let’s consider the following definition for the one-loop on-shell vertex for a lepton of mass m6

− ie ū(p2)Γ
µ(p1, p2)u(p1) = µ

p1

p1 + k p2 + k

p2

q

k

(2.48)

which is equivalent to

− ie ū(p2)Γ
µ(p1, p2)u(p1) =

= (−ieµ
ε
2 )3
∫

dDk

(2π)D
−igαβ
k2 − λ2

ū(p2)

[
γα
i[(/k + /p2) +m]

(k + p2)2 −m2
γµ
i[(/k + /p1) +m]

(k + p1)2 −m2
γβ

]
u(p1) (2.49)

where p1 and p2 are the lepton incoming and outgoing momenta, respectively, and q = (p2− p1) is the
incoming photon momentum. We have already introduced the regularizing fictitious mass λ in the
photon propagator, since the integral is IR-divergent.

Having considered the sandwich between the Dirac spinors in the on-shell definition, we are able
to simplify the Dirac term in the numerator using the relations of App. A.2. After the usual steps,
the calculation of the integral of Eq.(2.49) yields

ū(p2)Γ
µ(p1, p2)u(p1) = ū(p2)

[
G(q2)γµ +H(q2)(p1 + p2)

µ
]
u(p1) (2.50)

where we have defined the functions

G(q2) =
α

4π

[
∆ε − 2− 2

∫ 1

0
dx

∫ 1−x

0
dy log

(
∆

µ2

)
+ 2

∫ 1

0
dx

∫ 1−x

0
dy

q2(1 + xy)−m2(x+ y)2 − 2m2 − (x+ y)(q2 − 4m2)

∆

]
(2.51)

H(q2) =
α

4π

∫ 1

0
dx

∫ 1−x

0
dy

2m(x+ y)(x+ y − 1)

∆
(2.52)

and
∆ = m2(x+ y)2 − q2xy + λ2(1− x− y). (2.53)

We note that G(q2) is UV-divergent because of the ∆ε term. We then want to impose the renormal-
ization condition for the vertex: in the on-shell scheme, this is expressed by the requirement that in
the limit q → 0 the full renormalized vertex is equal to the tree-level one, that is −ieγµ. Since Γµ is
defined as the one-loop correction, this means that the renormalized one-loop vertex Γ̄µ satisfies the
relation

Γ̄µ(p1, p2) = 0 for q = (p2 − p1) → 0. (2.54)

The renormalization condition just stated is related to the limit q → 0, thus we rewrite Eq.(2.50) in
a more convenient way using the Gordon identity

ū(p2)(p2 + p1)
µu(p1) = ū(p2)

[
2mγµ − iσµνqν

]
u(p1) (2.55)

and obtain
ū(p2)Γ

µ(q)u(p1) = ū(p2)
[
(G(q2) + 2mH(q2))γµ − iH(q2)σµνqν

]
u(p1) (2.56)

6The approach followed is that of Romao [106].
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CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

where we have stressed that Γµ(p1, p2) actually depends on the difference q = p2 − p1 only. As can
be seen from Eq.(2.25), the counterterm δ1 introduced in RPT is proportional to γµ, and so the
renormalized one-loop vertex takes the form

Γ̄µ(q) = Γµ(q) + δ1γ
µ. (2.57)

We can now introduce the conventional expression for the renormalized one-loop vertex, in terms
of the Dirac and Pauli7 form factors F1(q

2) and F2(q
2)

ū(p2)Γ̄
µ(q)u(p1) = ū(p2)

[
F1(q

2)γµ +
i

2m
F2(q

2)σµνqν

]
u(p1) (2.58)

where

F1(q
2) = G(q2) + 2mH(q2) + δ1 (2.59)

F2(q
2) = −2mH(q2). (2.60)

The renormalization condition of Eq.(2.54) translates into F1(0) = 0, from which we fix the countert-
erm

δ1 = −G(0)− 2mH(0). (2.61)

Thus, by calculating functions G(q2) and H(q2) from Eqs.(2.51 - 2.53), we are able to obtain the
vertex form factors for a generic lepton of mass m. As we did for the VP diagram, in our calculation
we have analyzed only the case q2 = t with t negative, therefore ∆ in Eq.(2.53) is always positive, and
the form factors do not develop an imaginary part.

The expressions for F1(t), F2(t) and δ1 are showed below8, in terms of the natural variable xt, as
in [107,108]

xt = −
1−

√
1− 4m2

t

1 +
√

1− 4m2

t

(2.62)

where 0 < xt < 1 for −∞ < t < 0. We remark that F1(t) is still IR-divergent, since log(λ) terms are
present for t 6= 0. In particular, the scalar PV function C0(0,m

2,m2,m2,m2, λ2) is divergent in the
limit λ→ 0. Note that F1(t) in Eq.(2.63) contains a dilogarithm (see App. A.3)

Li2(z) =

∫ 0

z
dt

log(1− t)

t
.

Explicit Results for the Form Factors

F1(t) =
α

π

{
− log

(
λ

m

)
− 1− 3x2t + 2xt + 3

4(1− x2t )
log(xt)

+
1 + x2t
1− x2t

[
− log

(
λ

m

)
log(xt)−

1

4
log2(xt) +

π2

12
+ Li2(−xt) + log(xt) log(1 + xt)

]}
(2.63)

F2(t) =
α

π

[
− xt
1− x2t

log(xt)

]
(2.64)

δ1 =
α

4π

[
−∆ε + log

(
m2

µ2

)
− 4− 4 log

(
λ

m

)]
(2.65)

7Also known as electric and magnetic form factors, respectively. In the following we will consider only the one-loop
form factors, namely the n = 1 terms in the perturbative expansion

F1(t) =

∞∑
n=1

(α
π

)n

F
(2n)
1 (t) F2(t) =

∞∑
n=1

(α
π

)n

F
(2n)
2 (t)

see e.g. Barbieri [107].
8In this thesis we always assume the Feynman gauge.
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FeynCalc Results for the Form Factors

F1(t) =
1

16m2 − 4t

[
(3t− 8m2)

(
B̄0(t,m

2,m2)− B̄0(0,m
2,m2)

)
+ 2(8m4 − 6m2t+ t2)C0(t,m

2,m2,m2,m2, λ2)

+ 2(2m2t− 8m4)C0(0,m
2,m2,m2,m2, λ2)− 2t

]
(2.66)

F2(t) = − m2

4m2 − t

(
B̄0(t,m

2,m2)− B̄0(m
2,m2, 0)

)
(2.67)

δ1 =
α

4π

(
−B0(0,m

2,m2)− 4− 4m2C0(0,m
2,m2,m2,m2, λ2)

)
(2.68)

Contribution to the Cross Section

We are now able to tackle the VC diagrams of Fig. 2.2. Let’s focus on diagram (b), the muonic VC:
the contribution to the NLO amplitude is diagrammatically shown below

iMVCµ

1 =

µ− µ−

e− e−

p1 q1

q1 − p1

k

p2 q2

+

µ− µ−

e− e−

p1 q1

q1 − p1

p2 q2

(2.69)

where we have included the counterterm graph in order to obtain a renormalized amplitude. We can
write MVCµ

1 in a way that formally resembles the tree-level QED amplitude of Eq.(2.10)

MVCµ

1 = e2
ū(q1)Γ̄

µ(q1 − p1)u(p1) ū(q2)γµu(p2)

t
, (2.70)

where we have replaced the tree-level muonic vertex with the one-loop correction of Eq.(2.58). The
relative contribution to the cross section can then be calculated from Eq.(2.21) as

XVCµ

1 =
64π2α2

t2

[
2F

(µ)
1 (t)

[
(m2

µ +m2
e)

2 − su+ t2/2
]
+F

(µ)
2 (t) t(2m2

e + t)

]
(2.71)

where F
(µ)
1 (t) and F

(µ)
2 (t) are the form factors for the muonic vertex, in the sense that they depend

on mµ. Note that the first term in square brackets differs from the tree-level QED contribution of

Eq.(2.10) only by a factor of 2 (coming from the interference formula of Eq.(2.21)) and by F
(µ)
1 (t):

this is expected since the Lorentz-structure of the two contributions is the same.

An analogous result for the electronic VC can be obtained by the substitutionsme → mµ,mµ → me

and F
(µ)
i (t) → F

(e)
i (t) in Eq.(2.71). We give detailed results for the contribution to the cross section

in App. C.
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CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

2.3.4 Box Diagrams

Moving to the analysis of box diagrams, we have to calculate the amplitude for the direct (or planar)
and the crossed box. The amplitude of the former diagram is given by

iMBD
1 =

µ− µ−

e− e−

p1 q1

p2 q2

k k + p2 − q2

= (eµ
ε
2 )4
∫

dDk

(2π)D
NBD

[(p1 − k)2 −m2
µ][(k + p2)2 −m2

e][k
2 − λ2][(k + p2 − q2)2 − λ2]

(2.72)

with

NBD = ū(q1)γ
α[( /p1 − /k) +mµ]γ

βu(p1) ū(q2)γα[(/k + /p2) +me]γβu(p2) (2.73)

while for the crossed box we have

iMBC
1 =

µ− µ−

e− e−

p1 q1

p2 q2

k

= (eµ
ε
2 )4
∫

dDk

(2π)D
NBC

[(p1 − k)2 −m2
µ][(q2 − k)2 −m2

e][k
2 − λ2][(k + p2 − q2)2 − λ2]

(2.74)

with

NBC = ū(q1)γ
α[( /p1 − /k) +mµ]γ

βu(p1) ū(q2)γβ[( /q2 − /k) +me]γαu(p2) . (2.75)

As anticipated, calculations for box diagrams were performed using FeynCalc, and we include
the results for the contribution to the cross section XBD

1 and XBC
1 in App. C. Here we make some

important remarks.

� It is legitimate to set D = 4 in Eqs.(2.72) and (2.74) already, since by momentum power-
counting it can be seen that the integrals are UV-finite. Anyway in our calculations we followed
the procedure described at the beginning of this section and started with D < 4, crudely setting
D = 4 after the computation of the amplitude and checking that ∆ε and log(µ) terms canceled
each other out without the need for a renormalization counterterm9.

9The motivation for this choice is that the command TID automatically converts amplitudes in D dimensions, whatever
the input.
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2.4. SOFT BREMSSTRAHLUNG

� Compared to the previous cases, results for the box diagrams include scalar PV functions with
the timelike variable s as an argument. Therefore they present an imaginary part. However, since
there are no products between PV functions in the box amplitudes (just a linear combination of
them), and since the tree-level amplitude of Eq.(2.21) is a real quantity, it suffices to take the
real part of each PV function in order to calculate the contributions to the cross section.

� The following crossing symmetry relation holds

MBD
1 = −MBC

1 [s↔ u]

and it has been verified as a consistency check.

� The integrals in Eqs.(2.72) and (2.74) are IR-divergent. In particular, the scalar PV functions
that are divergent in the limit λ→ 0 (as shown in [109]) are

C0(m
2
e,m

2
µ, s,m

2
e, λ

2,m2
µ) (Direct Box)

D0(m
2
µ,m

2
e,m

2
e,m

2
µ, s, t,m

2
µ, λ

2,m2
e, λ

2)

C0(m
2
e,m

2
µ, u,m

2
e, λ

2,m2
µ) (Crossed Box)

D0(m
2
µ,m

2
e,m

2
e,m

2
µ, u, t,m

2
µ, λ

2,m2
e, λ

2)

2.3.5 Results

We present the complete results for the QED virtual radiative corrections at NLO in App. C. These
are UV-finite, but still IR-divergent: this particular issue is analyzed in the next section, devoted to
bremsstrahlung. As stated before, these results will be of use in dealing with the hadronic contributions
at NNLO, thanks to the factorization property of the VP function showed in Eq.(2.37).

2.4 Soft Bremsstrahlung

In this section we describe an important check of consistency for our previous calculations: we verify
that the IR divergences arisen in the computation of the virtual corrections to the 2 → 2 process of
µ−e− elastic scattering cancel with the ones coming from the same process in which the emission of
an additional photon is considered, namely the 2 → 3 bremsstrahlung process

µ−(p1) + e−(p2) → µ−(q1) + e−(q2) + γ(k) .

This is the content of the Bloch-Nordsieck theorem [99]. In particular, we assume soft bremsstrahlung,
i.e. we consider a photon with very small energy, since IR divergences arise in the limit k → 0. The
choice of this limit has a physical explanation, related to the actual impossibility to resolve a pure
elastic process from soft bremsstrahlung in a real experiment, if the emitted photon has an energy so
small that it escapes experimental detection. To be consistent with the regularization of IR divergences
used previously, also in this section we give the photon a small mass λ.

The diagrams contributing to the soft bremsstrahlung amplitude at LO are given below

iMBrem
0 =

µ−

e−

+

µ−

e−

+

e−

µ−

+

e−

µ−

(2.76)
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CHAPTER 2. THE MUON-ELECTRON SCATTERING CROSS SECTION UP TO NLO

If we analyze the amplitude for the first diagram, in which the photon is emitted by the muon in
the initial state, the Feynman rules give

iMBrem(µ i)
0 =

µ−

e−

p1 q1

p2 q2

k

(2.77)

= ie3
ū(q1)γ

µ( /p1 − /k +mµ)γ
αu(p1) ū(q2)γµu(p2)

[(p1 − k)2 −m2
µ][(p1 − q1 − k)2 − λ2]

ε∗α(k) . (2.78)

Considering the limit k → 0, it is possible to simplify Eq.(2.78) through the following approximations

� We can neglect k terms appearing in the numerator.

� We can neglect λ2 terms in the denominator, since they are of higher order in k.

Moreover, the numerator of Eq.(2.78) can be further simplified, using some Dirac algebra and the
Dirac equation, noting that

ū(q1)γ
µ( /p1 +mµ)γ

αu(p1) = 2pα1 ū(q1)γ
µu(p1) (2.79)

and the amplitude then becomes

MBrem(µ i)
0 =

e3

t
ū(q1)γ

µu(p1)ū(q2)γµu(p2)

[
ε∗α(k)

(
− pα1
p1 · k

)]
= M0 e

[
ε∗α(k)

(
− pα1
p1 · k

)] (2.80)

where we have noted that the quantity multiplying the term in square brackets is e times the tree-level
QED amplitude of Eq.(2.9).

The remaining diagrams in Eq.(2.76) can be dealt with in an analogous way, and the complete
amplitude for soft bremsstrahlung is then

MBrem
0 = M0 e ε

∗
α(k)

(
q1
q1 · k

− p1
p1 · k

+
q2
q2 · k

− p2
p2 · k

)α

. (2.81)

After taking the squared modulus and summing over all polarizations we obtain

XBrem
0 = −X0 e

2

(
q1
q1 · k

− p1
p1 · k

+
q2
q2 · k

− p2
p2 · k

)2

(2.82)

where we used ∑
pol

ε∗α(k)εβ(k) = −gαβ (2.83)

We move now to the cross section for the 2 → 3 process: comparing to µ−e− elastic scattering, we
have to consider an additional phase-space integration over the photon momentum k. However, in the
soft bremsstrahlung limit the k in the delta function δ(4)(p1 + p2 − q1 − q2 − k), ensuring momentum
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conservation, can be neglected and as a result we are able to factorize the cross section for the 2 → 2
scattering (

dσ0
dt

)
2→3

=

(
dσ0
dt

)
2→2

I (p1, q1, p2, q2) (2.84)

where

I (p1, q1, p2, q2) = − e2

(2π)3

∫ ′ d3k

2k0

(
q1
q1 · k

− p1
p1 · k

+
q2
q2 · k

− p2
p2 · k

)2

(2.85)

and the integral
∫ ′

is intended over the region λ < k0 < ω, with ω � me representing the energy
resolution of a particular experiment Following ’t Hooft and Veltman [110] we define the integral

I(pi, pj) =
∫ ′ d3k

k0

1

(pi · k)(pj · k)
(2.86)

and Eq.(2.85) becomes

I (p1, q1, p2, q2) =
e2

(2π)3
1

2

[
−m2

µ

(
I(q1, q1) + I(p1, p1)

)
−m2

e

(
I(q2, q2) + I(p2, p2)

)
+ 2(q1 · p1)I(q1, p1)− 2(q1 · q2)I(q1, q2) + 2(q1 · p2)I(q1, p2)

+ 2(p1 · q2)I(p1, q2)− 2(p1 · p2)I(p1, p2) + 2(q2 · p2)I(q2, p2)
]
.

(2.87)

The expression above is valid in every reference frame, but can be simplified in the CM frame, where
the following equalities hold

I(q1, q1) = I(p1, p1) I(q2, q2) = I(p2, p2)
I(p1, q2) = I(q1, p2) I(p1, p2) = I(q1, q2)

so in the CM frame we have(
dσ0
dt

)
2→3

=

(
dσ0
dt

)
2→2

α

2π2

[
−m2

µI(p1, p1)−m2
eI(p2, p2)

+
(2m2

µ − t)

2
I(q1, p1) +

(2m2
e − t)

2
I(q2, p2)

− (s− (m2
µ +m2

e))I(p1, p2)− (u− (m2
µ +m2

e))I(q1, p2)
] (2.88)

where it must be noted that the soft photon energy ω in the expression for the bremsstrahlung integrals
is not a Lorentz-invariant quantity, therefore ωlab 6= ωCM.

2.4.1 Cancellation of IR Divergences

In order to check the validity of the Bloch-Nordsieck theorem (and therefore of our calculations) we
extracted the log(λ) terms from Eq.(2.88) (see App.B) and from the IR-divergent PV scalar functions
appearing in the results for the virtual radiative corrections and verified that they are equal and
opposite.10 In a concise form, we obtained the following relation(

dσ0
dt

)Soft Brem

IR

+

(
dσ1
dt

)VCµ

IR

+

(
dσ1
dt

)VCe

IR

+

(
dσ1
dt

)BD

IR

+

(
dσ1
dt

)BC

IR

= 0. (2.89)

We remark that there is a specific pattern in the cancellation, which can be better appreciated
looking at the diagrams.

10The IR-divergent part of the relevant PV scalar functions can be taken from the expressions in [111].
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VC Diagrams The cancellation of IR divergences between soft bremsstrahlung and VC diagrams
is shown below 11, in the case of the muonic vertex∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

IR

+ 2Re



*

×


IR

= 0 (2.90)

with an analogous result for the electronic vertex. Note that for the VC the cancellation comes from
diagrams with bremsstrahlung on the same lepton line.

Box Diagrams For the box, bremsstrahlung diagrams with mixed lepton lines are involved. Con-
sidering the direct box we have

2Re



*

× +

*

×


IR

+ 2Re



*

×


IR

= 0 (2.91)

while for the crossed box the cancellation is given by

2Re



*

× +

*

×


IR

+ 2Re



*

×


IR

= 0 . (2.92)

11Sum over polarizations is understood in the diagrammatic representation.

28



Chapter 3

Dispersive Approach to Feynman
Amplitudes

Before we proceed to analyze the cross section at NNLO, we need to consider some technical results
that go beyond perturbation theory. As stated in Sect. 1.2.3, hadronic contributions cannot be treated
perturbatively at low energies because of strong-interaction effects. Therefore the perturbative expan-
sion in α, used in the previous chapter for the evaluation of diagrams involving leptons only, breaks
down when strongly interacting quarks are considered in virtual corrections. However, there exist a
non-perturbative approach based on dispersion relations (Sect. 3.1) and the optical theorem (Sect.
3.2), which exploits the properties of causality and unitarity of Quantum Field Theory (QFT) to
circumvent this problem. This approach is introduced in the present chapter and applied to the case
of the hadronic vacuum polarization (HVP) function in Sect. 3.3, where we show its importance in the
evaluation of the hadronic leading order (HLO) contribution to the muon g − 2. Moreover, the same
non-perturbative method will be useful in dealing with the hadronic contributions to µ−e− scattering
at NNLO .

3.1 Dispersion Relations

Let us consider a function F (z) which is analytic in the complex plane, except for a branch cut starting
at point s0 on the positive real s-axis (we use s for later convenience). If we consider a closed path
CR excluding the branch cut as that of Fig.3.1, F (z) admits the Cauchy integral representation

F (z) =
1

2πi

∮
CR
dz′

F (z′)

z′ − z
(3.1)

for any z included in the region defined by CR. If we set R → ∞, we can write F (z) for the whole
complex plane, excluding the cut, as

F (z) =
1

2πi

∮
C∞

dz′
F (z′)

z′ − z
+

1

2πi

∫ ∞

s0

ds
F (s+ i0)− F (s− i0)

s− z
(3.2)

where the second term represents the contribution in the vicinity of the cut. Moreover, if F (z) is a
continuous real function for z ∈ R, by the Schwarz reflection principle it satisfies the relation

F ∗(z) = F (z∗)

in its domain of analyticity, and the contribution in the vicinity of the cut can be written as1

F (s+ i0)− F (s− i0) = 2i ImF (s+ i0) (s ∈ R, s > s0). (3.3)

Now if F (z) vanishes sufficiently rapidly for |z| → ∞, then the C∞ contour integral in Eq.(3.2) is zero
and we obtain the dispersion relation

F (z) =
1

π

∫ ∞

s0

ds
ImF (s)

s− z
(3.4)

1The positive orientation of the path is conventionally defined as the one that leaves on its left the enclosed region.
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Rez

Imz

CR

R

s0

Figure 3.1: analyticity region of F (z) and closed path CR. The branch cut starts at s0.

where ImF (s) actually stands for ImF (s+ i0).

We can also retrieve a result valid for a point on the cut s > s0 by considering the limit

F (s) = lim
ε→0

F (s+ iε)

= lim
ε→0

1

π

∫ ∞

s0

ds′
ImF (s′)

s′ − s− iε
.

(3.5)

Therefore, the knowledge of only the imaginary part of F (s) allows to reconstruct the entire function.
In particular, recalling the formal relation

1

s′ − s− iε
= P 1

s′ − s
+ iπδ(s′ − s)

the real part of F (s) can be extracted as

ReF (s) =
1

π
P
∫ ∞

s0

ds′
ImF (s′)

s′ − s
(3.6)

where P represents the principal value of the integral.

If F (z) does not satisfy the fall-off condition mentioned above, but is such that

lim
z→∞

F (z)

z
= 0 (3.7)

then, to ensure the convergence of the previous integrals, it suffices to know the value of F (z) for
z = a, with a lying on the real axis outside the cut, and to consider the function

G(z) =
F (z)− F (a)

z − a
(3.8)

which has a better asymptotic behavior for |z| → ∞. This allows one to write a dispersion relation
like Eq.(3.4)

G(z) =
1

π

∫ ∞

s0

ds
ImG(s)

s− z
(3.9)

where the imaginary part of G(z) is

ImG(s) =
ImF (s)

s− a
(3.10)
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and again ImG(s) stands for ImG(s+ i0). Therefore, going back to F (z), we have

F (z)− F (a)

z − a
=

1

π

∫ ∞

s0

ds
ImF (s)

(s− a)(s− z)
(3.11)

which is known as a subtracted dispersion relation. Finally the contribution on the cut is obtained as

F (s)− F (a)

s− a
=

1

π
lim
ε→0

∫ ∞

s0

ds′
ImF (s′)

(s′ − a)(s′ − s− iε)
. (3.12)

Dispersion relations are particularly useful in the evaluation of Feynman amplitudes, since their
imaginary part can be extracted using the optical theorem. That’s the strategy that will be followed
in dealing with the hadronic vacuum polarization contributions.

3.2 The Optical Theorem

The second ingredient needed for our future calculations is the optical theorem, which exploits the
unitarity of the S-matrix to relate one-loop amplitudes to tree-level cross sections.2

If T is the non-trivial part of the S-matrix, the unitarity of the latter is expressed as

1 = S†S

= (1− iT †)(1+ iT )
(3.13)

from which
i(T † − T ) = T †T. (3.14)

We can sandwich Eq.(3.14) between some initial and final quantum states, and inserting a completeness
relation3 in the r.h.s. we obtain

i 〈f | (T † − T ) |i〉 =
∑
n

∫
dΠn 〈f |T † |n〉 〈n|T |i〉 . (3.15)

Finally, recalling the definition of the Feynman amplitude M(i→ f)

〈f |T |i〉 = (2π)4δ4(pi − pf )M(i→ f) (3.16)

we find the generalized relation

M(i→ f)−M∗(f → i) = i
∑
n

∫
dΠn(2π)

4δ4(pi − pf )M(i→ n)M∗(f → n). (3.17)

If now we consider the special case |i〉 = |f〉 = |A〉, which will be of interest for our purposes, then
Eq.(3.17) turns into

2ImM(A→ A) =
∑
n

∫
dΠn(2π)

4δ4(pA − pn) |M(A→ n)|2 . (3.18)

In particular, if M(A→ A) is proportional to g2, where g is the coupling constant of the theory, this
forces M(A→ n) to be ∝ g: in other words, the imaginary part of a given one-loop (O(g2)) amplitude
can be linked to an inclusive tree-level (O(g)) cross section, where all the physically allowed final states
are considered in the r.h.s. of Eq.(3.18).

2We follow Schwartz [112].
3The completeness relation is defined as

1 =
∑
n

∫
dΠn |n〉 〈n|

where the sum is carried over all the possible (single- and multi-particle) states allowed by the theory and

dΠn =
∏
j∈n

d3pj
(2π)3

1

2Ej
,

where j labels a particle in the state |n〉.
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Figure 3.2: the optical theorem for the VP function.

3.3 Dispersive Approach for Vacuum Polarization

We can now combine the results discussed in the previous two sections. Consider the Standard Model
1PI vacuum polarization (VP) function Π(q2) introduced in Sect. 2.3.2. Since its analyticity is ensured
by causality, it satisfies a subtracted dispersion relation like the one of Eq.(3.12)

Π(q2)−Π(0) =
q2

π

∫ ∞

4m2
e

ds
ImΠ(s)

s(s− q2 − iε)
(3.19)

where Π(q2)− Π(0) is exactly the renormalized VP function Π̄(q2) defined in the on-shell scheme (it
is the generalization to all orders of Eq.(2.33)), and the starting point of the branch cut is 4m2

e, since
me is the mass of the lightest particles that can be pair-produced.

Moreover, using the optical theorem the imaginary part of the VP function can be related to the
inclusive cross section

σ(e+e− → γ∗ → anything)

as diagrammatically shown in Fig.3.2. In particular, using the cross section σ(e+e− → γ∗ → µ+µ−)
in the limit s� 4m2

µ as a normalization factor, the following relation holds

ImΠ(s) =
α

3
R(s) (3.20)

where

R(s) =
σ(e+e− → γ∗ → anything)

σ(e+e− → γ∗ → µ+µ−)
=

(
3

4π

s

α2

)
σ(e+e− → γ∗ → anything) (3.21)

and α(s) is the running fine-structure constant.

Thus, the Π̄(q2) function is connected to the inclusive cross section σ(e+e− → γ∗ → anything)
by combining DRs and the optical theorem. This is an important result, since whenever the theory
fails to provide information about Π̄(q2), one can rely on the experimental data coming from the
measurement of the above cross section.

If we want to apply this result specifically to the hadronic part of the VP function, we have to
consider only hadronic final states in the inclusive cross section, therefore

Π̄had(q
2) =

αq2

3π

∫ ∞

m2
π

ds
Rhad(s)

s(s− q2 − iε)
(3.22)

where

Rhad(s) =

(
3

4π

s

α2

)
σ(e+e− → γ∗ → hadrons) (3.23)

is also known as the hadronic ratio (see Fig.3.3). Note that the cut starting point for the HVP function
in Eq.(3.22) is m2

π, since the channel γ∗ → π0γ is the one with the lowest hadronic threshold.
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0 2 4 6 8 10 12

0

1

2

3

4

5

6

s (GeV)

Rhad(s)

Figure 3.3: hadronic ratio Rhad(s) in the non-perturbative region
√
s ∈ [0, 13]GeV, as obtained

from the alphaQED16 package. Note the many resonances in correspondence of meson
production thresholds. The region

√
s & 13GeV is well reproduced by perturbative

QCD.

3.3.1 Hadronic Contributions to aµ

As an application of the dispersive approach just described, we present how this is employed to evaluate
the LO hadronic contribution to the anomalous magnetic moment of the muon, aHLO

µ , showing how
Eq.(1.31) is obtained. First, we look at the contribution of the whole 1PI VP insertion, labeled X in
the muonic vertex diagram (a) of Fig. 3.4.

If we recall the expression for the full propagator Eq.(2.29) and consider the renormalized VP
function at all orders Π̄(q2), we can write the amplitude for the diagram simply by substituting

−igαβ
k2

→
−igαβ
k2

[
−Π̄(k2)

]
in the definition for the vertex correction of Eq.(2.49), obtaining

−ie ū(p2)Γµ
(X)(p1, p2)u(p1) = (−ieµ

ε
2 )3
∫

dDk

(2π)D
−igαβ
k2

[
−Π̄(k2)

]
× ū(p2)

[
γα
i[(/k + /p2) +mµ]

(k + p2)2 −m2
µ

γµ
i[(/k + /p1) +mµ]

(k + p1)2 −m2
µ

γβ

]
u(p1)

(3.24)

Now we use the DR of Eq.(3.19) and find

− ie ū(p2)Γ
µ
(X)(p1, p2)u(p1) = (−ieµ

ε
2 )3

1

π

∫ ∞

4m2
e

ds

s
ImΠ(s)×

×
∫

dDk

(2π)D
−igαβ
k2 − s

ū(p2)

[
γα
i[(/k + /p2) +mµ]

(k + p2)2 −m2
µ

γµ
i[(/k + /p1) +mµ]

(k + p1)2 −m2
µ

γβ

]
u(p1) . (3.25)

Note that the last integral is formally equal to the one of Eq.(2.49), in the sense that the photon
seems to develop a non-zero mass

√
s. Calculations can then be carried out in the same way as for the

one-loop QED vertex, with the only important difference that here s is not an IR regulator, therefore
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µ− µ−

X

(a)

µ− µ−had

(b)

Figure 3.4: two-loop muonic vertex diagrams contributing to aµ: the complete 1PI VP is shown
in diagram (a), while only the hadronic part of the latter is depicted as a red blob in
diagram (b).

it cannot be neglected (no limit to zero must be taken). Obtaining an analogous of Eq(2.58), we find
for the renormalized vertex

ū(p2)Γ̄
µ
(X)(q)u(p1) =

1

π

∫ ∞

4m2
e

ds

s
ImΠ(s) ū(p2)

[
F1(q

2, s)γµ +
i

2mµ
F2(q

2, s)σµνqν

]
u(p1) (3.26)

where we have stressed that the form factors depend both on q2 and on the integration variable s. The
expressions for F1(q

2, s) and F2(q
2, s) can be obtained starting from functions G(q2, s) and H(q2, s),

i.e. Eqs.(2.51-2.53) with the substitution λ2 → s in the formula for ∆. Considering now the anomalous
magnetic moment of the muon, we have to look at F2(q

2 = 0) and the contribution of a single 1PI VP
insertion to aµ is found to be

a(X)
µ =

1

π

∫ ∞

4m2
e

ds

s
ImΠ(s)K(2)

µ (s) (3.27)

where the kernel

K(2)
µ (s) =

α

π

∫ 1

0
dx

x2(1− x)

x2 + (s/m2
µ)(1− x)

(3.28)

is nothing but F2(0, s), and it’s equal to the Schwinger term α/2π for s = 0, as expected.
The result just obtained in Eq.(3.27) is valid for the full VP contribution, and allows a non-

perturbative approach to the computation of radiative corrections. Indeed, DRs and the optical
theorem are a consequence of analyticity and unitarity, respectively, two very general properties of
QFT. Therefore Eq.(3.27) can be used both as a check of perturbative calculations (as in the case of
leptonic VP contributions to aµ) and as a way out whenever these are not reliable: as said before,
this is the case for hadronic contributions. If we restart from Eq.(3.24) and focus on the contribution
coming from Π̄had(k

2), recalling Eq.(3.22) we wind up with

ahadµ =
α

π

∫ ∞

m2
π

ds

s

∫ 1

0
dx

x2(1− x)

x2 + (s/m2
µ)(1− x)

α

3π
Rhad(s) (3.29)

where Rhad(s) can’t be computed perturbatively at low s, because of strong interaction effects (as can
be seen in Fig.3.3) and it is rather extracted by experiment.

Depending on which integration is performed first, there are two possible representations for ahadµ

� Integrating over x first yields the time-like representation

ahadµ =
α

3π

∫ ∞

m2
π

ds

s
K(2)

µ (s)Rhad(s) (3.30)

� Integrating over s and defining t(x) = − x2

1−xm
2
µ < 0 results in the space-like representation [74]

ahadµ =
α

π

∫ 1

0
dx (1− x)∆α

(5)
had[t(x)] (3.31)

which is the keystone of the MUonE experiment.
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We finally present a rough estimate of the LO hadronic contribution to aµ, namely the O(α2)
contribution given by diagram (b) of Fig. 3.4. Using the function ImΠhad(s) provided by the package
alphaQED16 [113], we performed the two-fold numerical integral (3.30) and obtained aHLO

µ = 687.53×
10−10, which is very close to Jegerlehner’s latest result aHLO

µ = 688.07±4.14×10−10 (Eq.(5.29) of [27]).
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Chapter 4

Hadronic Contributions to
Muon-Electron Scattering

Having discussed all the tools needed for our task, we are now able to evaluate the hadronic contribu-
tions to µ−e− scattering, which start to appear at NLO. The key diagram here is the same hadronic
vacuum polarization (HVP) insertion appearing in diagram (b) of Fig. 3.4. At NNLO, we will show
that with all the results obtained in the previous chapters, namely the QED contributions to the NLO
cross section and the dispersive approach, we succeeded in calculating these hadronic contributions.

4.1 NLO Contribution

The only hadronic contribution to the NLO amplitude is a LO QED diagram with one HVP insertion
in the virtual photon propagator. Remembering Eq.(2.21) it contributes to the NLO cross section as

X had
1 =

1

4

∑
pol

2Re



*

× blob


This contribution can be evaluated easily by recalling the factorization property for the VP function
found in Eq.(2.46), which holds both for leptonic and hadronic VP

MHVP
1 = M0

[
−Π̄had(t)

]
. (4.1)

As a result, the HVP contribution can be expressed in terms of the LO one

X had
1 = X0

[
−2Π̄had(t)

]
= X0 × δhad1

(4.2)

where Π̄had(t) is automatically real, since it depends on the space-like quantity t < 0.1

1Note that the Π̄had(q
2) used in our calculations comes from the package alphaQED16. This includes also higher order

terms, since radiative corrections are added in the experimental data [27, 32, 114]. Therefore the contribution to the
NNLO cross section coming from a diagram like the one below

blob

is already included in the hadronic NLO term computed here.
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4.2 NNLO Contributions

We now focus on the hadronic contributions to µ−e− scattering at NNLO: these are O(α4) contri-
butions to the cross section arising from (the product of) diagrams containing at least one HVP
insertion, i.e. one red blob. We identify four classes of contributions, depending on the different kinds
of diagrams considered, which we proceed to discuss in the following.

Class I

Class I contributions to the cross section arise from products of diagrams involving two VP insertions
(only hadronic or hadronic and leptonic). These include the squared modulus of the O(α2) NLO HVP
diagram, the interference of the same diagram with the NLO leptonic VP and the interference of the
LO QED amplitude with the O(α3) two-loop diagrams containing two VPs. They are represented
below (the sum over polarizations is understood in the products of diagrams)

XI ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣
blob

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ 2Re


blob

*

×



+ 2Re



*

×


blob

blob
+

blob

+
blob





In order to evaluate these contributions, we exploit the factorization property Eq.(2.46). As a result,
the contribution to the cross section can be easily evaluated in terms of X0

XI = X0 3Π̄had(t)
[
Π̄had(t) + 2Π̄lep(t)

]
= X0 × δI

(4.3)

where both the hadronic and leptonic VP functions are real, as they depend on t.
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Class II

The contributions to the cross section from Class II diagrams are depicted below: these include
products of diagrams involving one HVP insertion and a QED loop as those of Sect. 2.3.3 and 2.3.4.

XII ∝ 2Re


blob

*

×


+ (Ve) + + (BC)





+ 2Re



*

×


+




As for Class I diagrams, factorizing the HVP function allows us to express the contribution to the
cross section in terms of the results for the NLO contributions obtained in Sect. 2.3. In particular, we
find

XII = −Π̄had(t)
[
2XVCµ

1 + 2XVCe
1 + XBD

1 + XBC
1

]
= −Π̄had(t) X0 ×

[
2δVCµ + 2δVCe + δBD + δBC

]
= X0 × δII .

(4.4)

Note that the NLO loops computed in Sect. 2.3.3 and 2.3.4 are IR-divergent, but here we have already
assumed the validity of the Bloch-Nordsieck theorem (we will prove the cancellation of IR divergences
for the hadronic NNLO contributions in the next section).

Class III

Class III contributions are related to the bremsstrahlung cross section at NLO: they arise from the

interference of the O
(
α

3
2

)
LO amplitude with the O

(
α

5
2

)
NLO diagrams containing one HVP in the

virtual photon propagator. For example, if the photon is emitted from the initial muon line we have
the contribution

2Re


×

blob


The complete analysis of these contributions requires the calculation of hard bremsstrahlung, which
will not be treated in this thesis. However, by restricting our discussion to the soft-photon limit,
in the next section we will be able to prove the cancellation of the IR divergences for the entire set
of hadronic NNLO contributions. Here we note that in the soft limit the factorization of the HVP
function for the NLO bremsstrahlung diagrams allows us to write(

dσ1
dt

)Soft Brem

IR

=

(
dσ0
dt

)Soft Brem

IR

[
−2Π̄had(t)

]
(4.5)
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a relation that will be useful in the following section.

Class IV

The contributions to the cross section from Class IV diagrams are

XIV ∝ 2Re



*

×



blob

+

blob

+ + (BDR) + + (BCR)




where both the direct and crossed box diagrams can present the HVP either in their left (BDL and
BCL) or in their right (BDR and BCR) photon propagator.

Note that in this case the factorization of the VP function cannot be exploited, since the HVP
is now inside a loop itself, and Π̄had(k

2) depends on the loop-momentum k. However, the dispersive
approach introduced in Sect. 3.3 can be employed in the evaluation of these contributions, in much

the same way as for the computation of a
(X)
µ .

VC Diagrams In Sect. 3.3.1 we found that the VP insertion modifies the vertex correction amplitude
as in Eq.(3.25), leading to Eq.(3.26). In the same way, focusing on the HVP yields

ū(p2)Γ
µ
had(q)u(p1) =

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z) ū(p2)

[
F1(q

2, z)γµ +
i

2m
F2(q

2, z)σµνqν

]
u(p1) (4.6)

where m is the mass of a generic lepton and we have used z instead of s to avoid confusion with the
Mandelstam variable introduced for the scattering process. We emphasize that the form factors in the
above equation are actually different from the ones of Sect. 2.3.3, since here z is not a small variable.
Indeed, no IR divergences arise in the evaluation of the VC diagrams of Class IV. Moreover, the
dispersive approach allows us to deal with one-loop integrals only, as for the NLO diagrams, despite
the fact that we are considering contributions of higher order in α.

The expressions for F1(t, z) and F2(t, z) were calculated using FeynCalc and are given below.2 In
particular, note that a new counterterm δ1(z) has to be introduced: this depends on the integration
variable z, and the on-shell renormalization condition is now expressed as

F1(0, z) = 0 ∀z, (4.7)

therefore the counterterm is fixed as

δ1(z) = −G(0, z)− 2mH(0, z). (4.8)

As a consistency check, we considered our results in the limit z → 0 and verified that the NNLO form
factors reproduce exactly the NLO ones from Sect. 2.3.3.

2Again, the squared momentum transfer q2 is equal to the t variable in our analysis.
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Modified Form Factors

F1(t, z) =
α

4π

1

(mt− 4m3)2

{
a0 + a1B̄0(0, z, z) + a2B̄0

(
t,m2,m2

)
+ a3B̄0

(
0,m2,m2

)
+ a4B̄0

(
m2,m2, z

)
+ a5C0

(
0,m2,m2,m2,m2, z

)
+ a6C0

(
m2,m2, t,m2, z,m2

)} (4.9)

with

a0 = t
(
4m2 − t

) (
2m2 − z

)
a1 = −tz

(
4m2 − t

)
a2 = −m2

(
32m4 − 4m2(5t− 4z) + t(3t+ 2z)

)
a3 =

(
4m2 − t

) (
8m4 −m2(t− 4z)− tz

)
a4 = 2t

(
−4m4 +m2(t+ 7z)− tz

)
a5 = −

(
t− 4m2

)2 (
2m2 − z

) (
2m2 + z

)
a6 = 2m2

(
32m6 − 32m4t+ 2m2

(
5t2 + 4tz − 4z2

)
− t(t+ z)2

)

F2(t, z) =
α

π

1

(t− 4m2)2

{
b0 + b1B̄0(0, z, z) + b2B̄0(t,m

2,m2) + b3B̄0(0,m
2,m2)

+ b4B̄0(m
2,m2, z) + b5C0

(
m2,m2, t,m2, z,m2

)} (4.10)

with

b0 = −
(
4m2 − t

) (
2m2 − z

)
b1 = z

(
4m2 − t

)
b2 = −m2

(
4m2 − t− 6z

)
b3 = −m2

(
4m2 − t

)
b4 = 8m4 − 2m2(t+ 5z) + tz b5 = −2m2z

(
8m2 − 2t− 3z

)

δ1(z) = − α

4πm2

{
− z − zB0 (0, z, z)−

(
z +m2

)
B0

(
0,m2,m2

)
+ 2

(
z +m2

)
B0

(
m2,m2, z

)
+
(
4m4 − z2

)
C0

(
0,m2,m2,m2,m2, z

)} (4.11)

Now we can proceed as in Sect. 2.3.3 for the evaluation of the contribution to the cross section,
by joining the hadronic VC just discussed together with the remaining tree-level part of the diagram.
For the muonic vertex the two-loop amplitude reads

MVCµ

2 = e2
ū(q1)Γ̄

µ
had(q1 − p1)u(p1) ū(q2)γµu(p2)

t
(4.12)

and finally taking the interference with the LO diagram we obtain

XVCµ

IV =
1

π

∫ ∞

m2
π

dz

z
ImΠhad(z) X

VCµ

1 (z) (4.13)

where XVCµ

1 (z) is obtained3 substituting F
(µ)
1 (t) → F

(µ)
1 (t, z) and F

(µ)
2 (t) → F

(µ)
2 (t, z) in Eq.(2.71).

An analogous result can be readily calculated for the electronic vertex. Detailed results for XVCµ

1 (z)
and XVCe

1 (z) are presented in App. D.
To compute the relative contribution δVC

IV from both the muonic and electronic vertex, we factorize
the quantity X0 and take it out of the integral in Eq.(4.13), since it does not depend on z, obtaining

XVC
IV = X0 × δVC

IV (4.14)

3The subscript 1 in XVCµ

1 (z) emphasizes that it is a NLO result.
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where

δVC
IV =

1

X0

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z) XVC

1 (z). (4.15)

The last integration has to be performed numerically. Note, however, that the integration over z
provides a result for a single, fixed value of t. In order to recover the cross section in the entire
t-range, we subdivided the latter in bins, and calculated the mean value for a given bin.

Box Diagrams If the HVP is inserted in one of the two photon propagators in the box diagrams, we
can still use the dispersive approach to calculate their contribution. However, being the other photon
propagator a tree-level one, these box diagrams are IR-divergent.

Consider the amplitude for the direct box with the HVP in the left photon line (BDL): using the
DR we express it as

iMBDL
2 =

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z)

× (eµ
ε
2 )4
∫

dDk

(2π)D
NBD

[(p1 − k)2 −m2
µ][(k + p2)2 −m2

e][k
2 − z][(k + p2 − q2)2 − λ2]

(4.16)

where NBD is the same numerator as the NLO direct box one of Eq.(2.73), z on the third denominator
comes from the DR and λ in the fourth denominator is the usual IR regulator. Note the different roles
that the two photon “masses” play simultaneously in the calculations for the box diagrams.

Moving to the crossed boxes, we have the analogous contribution for the BCL diagram

iMBCL
2 =

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z)

× (eµ
ε
2 )4
∫

dDk

(2π)D
NBC

[(p1 − k)2 −m2
µ][(q2 − k)2 −m2

e][k
2 − z][(k + p2 − q2)2 − λ2]

(4.17)

with the same NBC of Eq.(2.75). The amplitudes for BDR and BCR are straightforwardly obtained
by interchanging z with λ2 in Eqs.(4.16) and (4.17), respectively. The dispersive evaluation of the
amplitudes proceeds analogously to that of the VC diagrams previously analyzed. Taking the BDL
diagram as an example, after the re-evaluation of the one-loop integral in Eq.(4.16), neglecting λ terms
(when possible) but keeping all dependence on z, we consider the interference with LO and wind up
with

XBDL
IV =

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z) XBDL

1 (z) (4.18)

and so on for the other box diagrams. Detailed results for XBD
1 (z) = XBDL

1 (z) + XBDR
1 (z) and

XBC
1 (z) = XBCL

1 (z) + XBCR
1 (z) are collected in Appendix D.

4.3 Cancellation of IR Divergences

We now discuss the IR divergences of the hadronic contributions to the cross section at NNLO,
verifying that these cancel each other out as stated by the Bloch-Nordsieck theorem. The result found
at NLO was (

dσ0
dt

)Soft Brem

IR

+

(
dσ1
dt

)VCµ

IR

+

(
dσ1
dt

)VCe

IR

+

(
dσ1
dt

)BD

IR

+

(
dσ1
dt

)BC

IR

= 0 (4.19)

where the soft-photon limit was taken when considering the bremsstrahlung contribution.
Looking at the IR-divergent contributions at NNLO, we observe that

� Class I contributions are IR-finite.

� Class II contributions are all IR-divergent, and their IR divergences are inherited from the NLO
virtual contributions, as can be seen in Eq.(4.4).
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� Class III contributions are all IR-divergent, and their divergences are inherited from the LO
bremsstrahlung contributions, as can be seen in Eq.(4.5).

� Only the four box diagrams of Class IV yield IR-divergent contributions.

The total IR-divergent contribution to the cross section would be then(
dσ2
dt

)had

IR

=
[
−Π̄had(t)

]{
2

(
dσ0
dt

)Soft Brem

IR

+ 2

(
dσ1
dt

)VCµ

IR

+ 2

(
dσ1
dt

)VCe

IR

+

(
dσ1
dt

)BD

IR

+

(
dσ1
dt

)BC

IR

}

+

(
dσ2
dt

)BDL

IR

+

(
dσ2
dt

)BDR

IR

+

(
dσ2
dt

)BCL

IR

+

(
dσ2
dt

)BCR

IR

(4.20)

where the terms in curly brackets are the known LO (bremsstrahlung) and NLO (virtual corrections)
contributions.

In order to verify that Eq.(4.20) is actually zero, let us consider the sum of the amplitudes for the
left and right direct box diagrams. We can write

MBDL
2 +MBDR

2 =
1

π

∫ ∞

m2
π

dz

z
ImΠhad(z)

∫
d4k

(2π)4
(−ie4)NBD[

(p1 − k)2 −m2
µ

]
[(k + p2)2 −m2

e]

×
[

1

k2 − z

1

(k + p2 − q2)2
+

1

k2
1

[(k + p2 − q2)2 − z]

]
=

1

π

∫ ∞

m2
π

dz

z
ImΠhad(z)

∫
d4k

(2π)4
(−ie4)NBD[

(p1 − k)2 −m2
µ

]
[(k + p2)2 −m2

e] k
2(k + p2 − q2)2

×
[

k2

k2 − z
+

(k + p2 − q2)
2

(k + p2 − q2)2 − z

]
(4.21)

where we have set D = 4 (the integral is UV finite) and λ = 0. Now we note that excluding the term
in square brackets, the integral in d4k in the third line of Eq.(4.21) is nothing but the one-loop direct
box amplitude, MBD

1 . When the IR limit k → 0 is considered, the term in square brackets becomes

lim
k→0

[
k2

k2 − z
+

(k + p2 − q2)
2

(k + p2 − q2)2 − z

]
=

t

t− z
(4.22)

and the IR-divergent part of the sum of the two amplitudes is(
MBDL

2 +MBDR
2

)
IR

=
1

π

∫ ∞

m2
π

dz

z
ImΠhad(z)

t

t− z

(
MBD

1

)
IR

=
[
−Π̄had(t)

] (
MBD

1

)
IR

(4.23)

where in the second line we have used a DR similar to Eq.(3.19) and
(
MBD

1

)
IR

is already known from
the analysis of Sect. 2.3.4. Moving to the cross section, the result is(

dσ2
dt

)BDL

IR

+

(
dσ2
dt

)BDR

IR

=
[
−Π̄had(t)

](dσ1
dt

)BD

IR

. (4.24)

The same reasoning applied to the crossed box diagrams yields(
dσ2
dt

)BCL

IR

+

(
dσ2
dt

)BCR

IR

=
[
−Π̄had(t)

](dσ1
dt

)BC

IR

. (4.25)

Finally, using Eqs.(4.24) and (4.25) we can now express the total IR-divergent hadronic contribution
to the NNLO cross section as(

dσ2
dt

)had

IR

= 2
[
−Π̄had(t)

]{(dσ0
dt

)Soft Brem

IR

+

(
dσ1
dt

)VCµ

IR

+

(
dσ1
dt

)VCe

IR

+

(
dσ1
dt

)BD

IR

+

(
dσ1
dt

)BC

IR

}
(4.26)
and the term in curly brackets is zero by Eq.(4.19). Again, the NLO results turned out to be very
useful for the analysis of the higher-order contributions.
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Chapter 5

Conclusions

The leading hadronic contribution is a key element in the SM prediction for the anomalous magnetic
moment of the muon. However, the precision of the dispersive approach, usually employed in its
evaluation, will soon be challenged by the upcoming results of the E989 Muon g-2 experiment at
Fermilab.

In this thesis we discussed the recently proposed MUonE experiment at CERN [1,2] as a possible
solution to this problem: the leading hadronic contribution to aµ could be extracted from the experi-
mental measurement of the differential cross section dσ/dt for elastic muon-electron scattering in the
space-like region. The expected relative precision in the determination of dσ/dt is of the order of 10
ppm, and the knowledge of the radiative corrections to this cross section is therefore required up to
NNLO for a correct interpretation of the experiment’s results.

We focused on the calculation of the hadronic contributions to the cross section at NNLO, which
does not appear in the literature. These O(α4) terms are related to hadronic vacuum polarization
(HVP) insertions in diagrams contributing to the amplitude at NLO and NNLO. We identified four
classes of contributions. Those from Class I arise from products of diagrams involving two vacuum
polarization (VP) insertions (only hadronic or hadronic and leptonic), while Class II contributions
involve one-loop QED diagrams with one HVP insertion in the t-channel photon. The contributions
from these two classes were calculated using the factorization property of the VP function, and were
expressed in terms of the QED corrections to the cross section at NLO, which were obtained in
Ch. 2. The bremsstrahlung contributions of Class III were analyzed in the soft-photon limit and
were employed in the proof of the cancellation of IR divergences for the entire set of these hadronic
contributions. Finally, the most challenging terms were the irreducible two-loop diagrams of Class IV,
arising from one-loop QED vertex and box diagrams with a HVP insertion appearing inside the loop.
These contributions were evaluated using the dispersive approach presented in Ch. 3.

The results of this thesis will be implemented in a Monte Carlo code and will be essential for the
interpretation of the future results of the MUonE experiment.
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Appendix A

Conventions and Useful Formulas

A.1 Relevant Feynman Rules

External Lines

Incoming lepton : u(p)
p

Outgoing lepton : ū(p)
p

(A.1)

Incoming photon : εα(k)
k

α Outgoing photon : ε∗α(k)
k

α (A.2)

Propagators

Feynman gauge is assumed. The iε prescription is omitted.

Photon :
k

µ ν =
−igµν
k2

Fermion :
p

=
i(/p+m)

p2 −m2

Massive Vector Boson :
k

µ ν =
i(−gµν + kµkν

m2 )

k2 −m2

Scalar :
p

=
i

p2 −m2

(A.3)
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Vertices

γ

f

f̄

= −ieγµ

Z

f

f̄

=
−igγµ

2 cos θW
(gV − gAγ

5)

H

f

f̄

=
−imf

v2

(A.4)

Counterterms

k
= −iδ3k2gµν

γ

f

f̄

= −ieδ1γµ
(A.5)

A.2 Dirac Algebra

{γµ, γν} = 2gµν (A.6)

γ5 = iγ0γ1γ2γ3 (A.7)

with {
γµ, γ5

}
= 0,

(
γ5
)2

= 1, γ5† = γ5 (A.8)

and

σµν =
i

2
[γµ, γν ] (A.9)

Traces

Tr [γµγν ] = 4gµν

Tr [γµγνγργσ] = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

Tr
[
odd numer of γ′s

]
= 0

Tr
[
γ5
]
= 0

Tr
[
γµγ5

]
= 0

Tr
[
γµγνγ5

]
= 0

Tr
[
γµγνγργ5

]
= 0

Tr
[
γµγνγργσγ5

]
= −4iεµνρσ

(A.10)
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Contraction Identities in D-dimensions

gµνgµν = D

γµγµ = D

γµγνγµ = (2−D)γν

γµγνγργµ = 4gνρ + (D − 4)γνγρ

γµγνγργσγµ = −2γσγργν + (4−D)γνγργσ

(A.11)

Dirac Equation in Momentum Space

(/p−m)u(p) = 0 ū(p)(/p−m) = 0 (A.12)

(/p+m)v(p) = 0 v̄(p)(/p+m) = 0 (A.13)

A.3 Standard Results for Loop Integrals

Feynman Parametrization

1

a1a2 . . . an
= Γ(n)

∫ 1

0
dx1

∫ 1−x1

0
dx2 . . .

· · ·
∫ 1−x1−···−xn−1

0
dxn−1

1

[a1x1 + a2x2 + · · ·+ an(1− x1 − · · · − xn−1)]n
(A.14)

Relevant Integrals in D-dimensions∫
dDk

(2π)D
1

(k2 −∆)
=

(−1)ni

(4π)
D
2

Γ(n− D
2 )

Γ(n)

(
1

∆

)n−D
2

∫
dDk

(2π)D
k2

(k2 −∆)
=

(−1)n−1i

(4π)
D
2

D

2

Γ(n− D
2 − 1)

Γ(n)

(
1

∆

)n−D
2
−1

∫
dDk

(2π)D
kµkν

(k2 −∆)
=

(−1)n−1i

(4π)
D
2

gµν

2

Γ(n− D
2 − 1)

Γ(n)

(
1

∆

)n−D
2
−1

(A.15)

where, for ε→ 0,

Γ(ε) =
1

ε
− γE +O(ε) (A.16)

with γE the Euler-Mascheroni constant.

Dilogarithms

Dilogarithms or Spence functions are defined by the following equation

Li2(z) =

∫ 0

z
dt

log(1− t)

t
(A.17)

and if the logarithm is defined with a cut along the negative real axis, the dilogarithm presents a cut
for z > 1, with z real. Useful results are

Li2(1) =
π2

6

Li2(z) = Li2(1− z) +
π2

6
− log(z) log(1− z)

Li2(z) = −Li2

(
1

z

)
− π2

6
− 1

2
log2(−z)

(A.18)

see e.g. Lewin [115]
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Appendix B

Scalar Integrals

Passarino-Veltman Decomposition

We give here a brief introduction to the technique of PV decomposition [116] for one-loop integrals,
following the conventions used in [102,117]. For a broader presentation we also refer the reader to [106].

Assuming dimensional regularization D = 4− ε, a generic one-loop tensor integral is defined as

T
µ1···µp
n =

(2πµ)4−D

iπ2

∫
dDk

kµ1 · · · kµp

D0D1D2 · · ·Dn−1
(B.1)

where a denominator Di is given (omitting the iε prescription) by

Di = (k + ri)
2 −m2

i (B.2)

and if pi are the external momenta entering in the loop, then

rj =

j∑
i=1

pi (j = 1, . . . , n− 1)

r0 =

n∑
i=1

pi = 0 .

(B.3)

Exploiting the Lorentz covariance of the tensor integrals, these can be written as a linear combina-
tion of the external momenta and the metric tensor gµν using a set of coefficient functions. Moreover,
it is shown that all the tensor integrals can be decomposed in terms of only four independent scalar
integrals with one, two, three or four denominators, denoted as

A0(m
2
0) =

(2πµ)ε

iπ2

∫
dDk

1

k2 −m2
0

B0(r
2
10,m

2
0,m

2
1) =

(2πµ)ε

iπ2

∫
dDk

1∏
i=0

1

[(k + ri)2 −m2
i ]

C0(r
2
10, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2) =

(2πµ)ε

iπ2

∫
dDk

2∏
i=0

1

[(k + ri)2 −m2
i ]

D0(r
2
10, r

2
12, r

2
23, r

2
30, r

2
20, r

2
13,m

2
0,m

2
1,m

2
2,m

2
3) =

(2πµ)ε

iπ2

∫
dDk

3∏
i=0

1

[(k + ri)2 −m2
i ]

(B.4)

where
r2ij = (ri − rj)

2 ∀i, j = (0, n− 1) . (B.5)

The scalar integrals of Eq.(B.4) have been classified and computed by ’t Hooft and Veltman [110].
The expression for some of the simplest PV scalar functions appearing in our calculations are listed
below, where ∆ε = 2/ε− γE + log(4π).
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Explicit expressions for scalar PV functions

Function A0

A0(m
2) = m2

(
∆ε + 1− log

(
m2

µ2

))
Function B0

B0(q
2,m2,m2) = ∆ε − log

(
m2

µ2

)
+ 2−

√
1− 4m2

q2
log


√

1− 4m2

q2
+ 1√

1− 4m2

q2
− 1

 (q2 < 0)

B0(0,m
2
0,m

2
1) = ∆ε + 1− m2

0 log(m
2
0)−m2

1 log(m
2
1)

m2
0 −m2

1

B0(0,m
2,m2) = ∆ε − log

(
m2

µ2

)
B0(m

2, 0,m2) = B0(0,m
2,m2) + 2 .

(B.6)

The relation

B0(0, 0,m
2) = ∆ε + 1− log

(
m2

µ2

)
=
A0(m

2)

m2
(B.7)

allows us to avoid using A0 functions in our results.

Function C0

One important case is C0(0,m
2,m2,m2,m2, λ2), which is divergent in the IR limit λ→ 0

C0(0,m
2,m2,m2,m2, λ2) =

1

2m2
log

(
λ2

m2

)
(B.8)

Soft Bremsstrahlung Scalar Integrals

Another kind of integrals involved in the calculation of the muon-electron scattering cross section are
the bremsstrahlung integrals defined in [110] and in Eq.(2.86)

I(pi, pj) =
∫ ′ d3k

k0

1

(pi · k)(pj · k)
(B.9)

where pi, pj are the external momenta of the particles emitting the soft photon and k is the photon
momentum, with λ < k0 < ω. The external momenta can be redefined as p = ρpi and q = pj , where
ρ is chosen to satisfy (p − q)2 = 0 and such that p0 − q0 has the same sign of q0. Thanks to this
redefinition the calculation is simplified but is still rather lengthy, therefore we only quote the result

I(pi, pj) = −2πρ

vl

[
1

2
log

(
p2

q2

)
log

(
4ω2

λ2

)
+

{
1

4
log2

(
u0 − |u|
u0 + |u|

)
+ Li2

(
v + u0 + |u|

v

)
+ Li2

(
v + u0 − |u|

v

)}u=p

u=q

]
(B.10)

with

l = p0 − q0 v = (p2 − q2)/2l λ→ 0 .

Note that the integral is IR divergent. The case pi = pj = p is simpler to calculate and one finds

I(p, p) = 2π

m2

[
log

(
4ω2

λ2

)
+

1

β
log

(
1− β

1 + β

)]
(B.11)

where p2 = m2, β = |p|/p0 and the limit λ→ 0 has been taken.
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Appendix C

Detailed Results for the NLO Cross
Section

The virtual radiative corrections to the µ−e− elastic scattering at NLO can be expressed as

dσ1
dt

=
1

16π

1

λ(s,m2
µ,m

2
e)
X1 (C.1)

where X1 includes the corrections

X1 = XVP
1 + XVCµ

1 + XVCe
1 + XBD

1 + XBC
1 (C.2)

Vacuum Polarization

XVP
1 = X0

{
−2
∑
l

α

3π

[
−1

3
+

(
1 +

2m2
l

t

)(
B̄0(t,m

2
l ,m

2
l )− B̄0(0,m

2
l ,m

2
l )
) ]}

(C.3)

with l running over {e, µ, τ}.

Muon Vertex Correction

XVCµ

1 =
16πα3

t2

{
a0 + a1B̄0(0,m

2
µ,m

2
µ) + a2B̄0(t,m

2
µ,m

2
µ)

+ a3 log(mµ) + a4 log(λ) + a5C0(t,m
2
µ,m

2
µ,m

2
µ,m

2
µ, λ

2)

}
(C.4)

with

a0 = − 2t

4m2
µ − t

[
2m4

e + 2m4
µ + 2s2 − 4m2

e(m
2
µ + s) + 2st+ t2 − 4m2

µ(s+ t)

]
a1 =

4

4m2
µ − t

[
6m2

µ(m
2
e +m2

µ − s)2 − 2
(
m4

e +m4
µ +m2

e(m
2
µ − 2s)− 5m2

µs+ s2
)
t+ 2(2m2

µ − s)t2 − t3
]

a2 = − 1

4m2
µ − t

[
16m2

µ(m
2
e +m2

µ − s)2 − 2
(
3m4

e + 3m4
µ + 2m2

e(m
2
µ − 3s)− 14m2

µs+ 3s2
)
t

+ 6(2m2
µ − s)t2 − 3t3

]
a3 = 6

[
2(m2

e +m2
µ − s)2 + 2st+ t2

]
a4 = −4

[
2(m2

e +m2
µ − s)2 + 2st+ t2

]
a5 = 2(2m2

µ − t)
(
2(m2

e +m2
µ − s)2 + 2st+ t2

)
53



APPENDIX C. DETAILED RESULTS FOR THE NLO CROSS SECTION

Electron Vertex Correction

XVCe
1 =

16πα3

t2

{
b0 + b1B̄0(0,m

2
e,m

2
e) + b2B̄0(t,m
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