
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Data Science

Linear Interacting Peptides (LIPs)

Detection in Protein Sequences Based on

Embedding Models

Supervisor Master Candidate
Prof. Damiano Piovesan Riccardo Carangelo
University of Padova

Academic Year
2023-2024

ii

ToMary

iv

Abstract

The crucial functional and structural roles of proteins in almost all essential vital functions of living organisms
represent a clear proof of their significance across a vast range of research areas, with a particular attention on
the biomedical fields. The interaction profile of proteins, given by the sum of the interactions of their basic
constituents, i.e., the amino acids, are at the heart of proteins functionality. Protein interactions are the key to
understanding biological processes, with profound implications in clinical and biotechnological researches. An
exhaustive study of such a problem, however, remains a challenge of enormous complexity, which requests a
considerable effort, with decades of study from thousands of researcher groups, employing computing power, ad-
vanced laboratories, and a huge integrative and coordinated work, only possible thanks to advances in laboratory
science and to infrastructures provided by modern bioinformatics. A problem that is still open and in an active
research phase is concerned with the analysis and understanding of so-called intrinsically disordered regions of
proteins and, in particular, with the interactions that these regions are able to establish. This paper focuses on spe-
cial interaction regions, i.e., linear interacting peptides, which are binding protein regions usually found within
disordered proteins and that exhibit very specific structural features. These particular interacting regions are pre-
sented and discussed in detail, providing a proper exploratory analysis, with the aim of knowing them better and,
finally, developing a predictive model for the classification of such peptides. The approach used in this work is
cross-disciplinary, looking at the problem, from both a biological and a data-driven points of view, merging con-
cepts derived from structural biochemistry and molecular biology with concepts and tools from the data science
and data analysis fields. The ultimate goal is to provide a better understanding of these peculiar regions of protein
interaction. During this paper, the variability and complexity of these regions will be shown through data analysis
pipelines and specific machine and deep learning tools, highlighting their predictive power, but also addressing
their limitations in approaching a problem of great biological complexity.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Proteins . 2

1.1.1 Composition and structure of proteins . 2
1.1.2 FromDNA to Proteins: The Central Dogma of Molecular Biology 4
1.1.3 Intrinsically Disordered Proteins . 6
1.1.4 Protein Interactions . 7
1.1.5 Linear Interacting Peptides . 10

1.2 Protein Data . 12
1.2.1 UniProtKB Database . 12
1.2.2 Protein Data Bank . 12
1.2.3 SIFTS service . 13
1.2.4 MobiDB database . 13

1.3 Protein Structure and Features Prediction . 15
1.3.1 Residue Interaction Network Generator . 15
1.3.2 Fast Linear Interacting Peptides Predictor . 17
1.3.3 AlphaFold and AlphaFold-Disorder . 17
1.3.4 ProtTrans . 17
1.3.5 Critical Assessment of protein Intrinsic Disorder prediction 18

1.4 Approach and Techniques for Embedding-Based LIPs Detection 25

2 Materials andMethods 27
2.1 Datasets . 28

2.1.1 Data preprocessing and analysis . 28
Dataset Preprocessing . 28
Exploratory Data Analysis . 31

2.1.2 Exploratory Data Analysis Insights . 42
2.1.3 The Test Datasets . 42

TE440 datatest . 43
CAID Binding dataset . 44

2.2 Models . 45
2.2.1 The Convolutional Neural Network . 46

Convolution Operator . 46
2.2.2 Data Preparation . 48

vii

2.2.3 Proposed CNNModel for LIPs Detection . 49
Model Architecture . 50
CNNModel Workflow . 55

3 Results andDiscussion 61
3.1 Results . 62

3.1.1 Training and Validation Datasets Performance 62
Averaged metrics . 62
Fold-specific metrics . 66

3.1.2 Test Datasets Performance . 71
TE440 Dataset Results . 71
CAID Binding Dataset Results . 77

3.2 Discussion . 84
3.2.1 The Context of the problem . 84
3.2.2 Datasets and Tools Limitations . 85

References 87

Acknowledgments 95

viii

Listing of figures

1.1 Skeletal diagrams of two amino acids, Isoleucine (on the left), a hydrophobic amino acid, and
Lysine (on the right), a positive charged amino acid. The structures highlights the terminal
groups of the molecules, like oxygen-based groups (in red), nitrogen-based groups (in blue),
and carbon-based groups (in gray). It is easy to see the variable side chains, which differ for
every amino acid, and the non-variable portion (above in themolecules), inwhich carboxyl and
amino groups are emphasized. Example structures have been taken from Lehninger principles
of biochemistry, by Nelson et al. [1]. 3

1.2 Various three dimensional representations of the folded truncated tetramerization domain of
the p53 anti-tumor protein, obtained fromDanio rerio by using biocrystallography and X-ray
diffraction techniques. The PDB data file was taken from the Protein Data Bank (PDB, pro-
tein ID 4CZ6). All the structures have been thematically colored to highlight the four different
peptide chains that interact with each other. On the left, it is possible to observe the space-
filling surface representation, which emphasizes the globular structure of the protein and it is
also useful to visualize the protein surface. In the middle, it is possible to see the ribbon repre-
sentation, commonly used to easily visualize the most frequent secondary structures, like, for
instance, α-helices (shown as spring-like structures) and β-sheets (depicted as arrows). It is also
possible to see random coils (i.e., regions that lacks a specific secondary structural organization,
represented using thin strings [2]). This representation is also useful to visualize the tertiary
structure folding of each chain and the aggregation of the different folded chain to give the final
quaternary structure. On the right, it can be seen the less intuitive wire-frame stick represen-
tation of the protein domain, which shows the chemical structure of the protein’s underlying
molecules, highlighting also proximal atoms and molecules that surround the protein surface
(like ligands and other solution molecules). This representation provides a way to directly see
the backbone and the side chains of the single amino acids of the protein. 5

1.3 Contact maps and three dimensional representation of the folded truncated tetramerization
domain of FGFR4D2 - Fab complex (biological assembly 1), obtained fromHomo sapiens sapi-
ens by using biocrystallography and X-ray diffraction techniques. The plots refer to a specific
state of the protein conformational ensemble. The PDB data file was taken from the Protein
Data Bank (PDB, protein ID 6J6Y). The contacts were calculated using the Residue Interac-
tion Network Generator 2.0 (RING 2.0). The plots above present the contact maps showing
two very specific kinds of interactions of the protein’s amino acids, gradient-colored based on
the distance in ångström and showing the amino acid sequences, named ”AA sequence”, in
both x- and y-axis (with a colored dot if two coordinate positions interact). In the top-left
corner, it is possible to see the van der Waals forces contact map (VDW contact map), which
shows the interactions that take an active part in the formation of the tertiary structure. In the
top-right corner, it is possible to see the hydrogen bonds contact map (HBOND contact map),
which shows the interaction that are responsible for the generation of the secondary structures.
Below, it is shown the ribbon representationwith rainbow coloring of the protein towhich the
contactmaps refer; it is interesting to compare themapswith the protein arrangement in space,
in order to appreciate the great amount of contacts that take part in the final protein confor-
mation, which shows a compact three dimensional folds and several β-sheets. 8

ix

1.4 Sub-graph composed by the hub nodes (with their immediate neighbors) selected for the pro-
tein interactome network of Homo sapiens sapiens, taking proteins as nodes and physical in-
teractions between pairs of proteins as edges, while showing the degree of each node protein
using a gradient coloration. Data about proteins and their interactions has been selected from
the SearchTool for theRetrieval of InteractingGenes/Proteins (STRING) database [3], select-
ing human proteins and their edges with the highest confidence data (STRING score greater
or equal than 0.900). This densely connected and high confidence network shows the most
connected proteins, i.e., hub node proteins; it is easy to notice the great level of connectivity
in these hub proteins, which is an evidence of their importance within cells (as, for example,
master regulators for important processes, such as modifications to the DNA molecule). It is
finally possible to appreciate at first glance an organizational topology that shows small cliques
with higher levels of local connections, whichmay be regions that represent regulatory hubs in
a scale-free topology context, or large protein complexes. 9

1.5 Threedimensional representationsof theP27 (KIP1)/cyclinA/CDK2complex, obtained from
Homo sapiens by using biocrystallography andX-ray diffraction techniques. The PDB data file
was taken from the Protein Data Bank (PDB, protein ID 1JSU). All the chains were themat-
ically colored: the LIP chain is colored in green and uses a ribbon representation, while the
other two chains were colored in pink (chain A) and in violet (chain B), both represented us-
ing a space-filling surface model, in order to make it possible to appreciate the interaction of
these chains with the LIP chain, which lies on the surface of the space-filling model. 11

1.6 MobiDB complete example page for the p53 protein. 14
1.7 RING complete example page for the p53 protein. 16
1.8 ROC and PR curves for the top 20 best models in predicting the disorder state in theDisorder

NOX dataset (sorted by AUC score). Best results are provided by the Dispredict3 model, with
an AUC score of 0.838 and a max F1 score of 0.548. 20

1.9 ROC and PR curves for the top 20 best models in predicting the disorder state in theDisorder
PDB dataset (sorted by AUC score). Best results are provided by the SPOT-Disorder2 model,
with am AUC score of 0.949 and a max F1 score of 0.860. TheDisorder PDB dataset, if com-
pared with theDisorderNOX one, provides better quality results and brings out the best from
the predictors used, with excellent results in terms of accuracy. 21

1.10 ROC and PR curves for the top 20 best models in predicting the presence of binding amino
acids within disordered regions in the Binding dataset (sorted by AUC score). Best results are
provided by the ENSHROUD-protein model, with an AUC score of 0.753 and a F1 score of
0.361. 22

1.11 ROC and PR curves for the top 20 best models in predicting the presence of linkers in the
Linker dataset (sorted byAUC score). Best results are provided by the SPOT-Disorder2model,
with an AUC score of 0.782 and a F1 score of 0.292. 23

1.12 Runtime plot for the CAID binding prediction task. The figure shows the area under the
ROC curve for some binding prediction algorithms, visualized against the averaged execution
time; best algorithms tend to be in the upper left corner of the plot, with a runtime as close to
zero as possible and with an area under the ROC curve as high as possible. 24

2.1 100 bins histogram showing the distribution of the first of the 1024 features; it can be seen that,
even with the presence of some outliers, the values are more or less centered on zero and that
the distribution, seems to be roughly symmetric, with a mean close to zero. The distribution
of the other features is analogous, which is why, by arbitrarily choosing the first feature, it is
possible to say that the distribution shown here is representative for the whole group of features. 30

x

2.2 Relative distribution of LIPs’ fraction in the protein sequences of the MobiDB derived LIPs
dataset; the 25 bins histogram highlights the fact that the vast majority of the LIPs actually
represents a very small portion of the proteins, with 25 % of the smallest LIPs consisting of
80.28 % (i.e., 6152 elements) of the total sequences and 75 % of the largest LIPs consisting of
19.72 % (i.e., 1.511 elements) of the total sequences. Thus, it is possible to see that 80.28 % of
the sequences are located in the first quartile,Q1, of the distribution shown in this plot. . . . 32

2.3 Absolute distributions of the grouped LIPs sequences; in soft blue, LIPs that fall within disor-
dered regions (with an average length of 18.92), represented with a 30 bins histogram; in pink,
LIPs that fall within ordered regions (with an average length of 9.20), represented with a 30
bins histogram (with α = 0.6); x-axis values are absolute length values. It is easy to observe the
difference in the amount of sequences and the average for the two groups of LIPs, even if the
two distributions seem to be comparable in terms of shape. 34

2.4 Bidimensional plot followedbyPCAand t-SNEdimensionality reductions steps. Ordered and
Disordered LIPs were labelled to highlight the grouping (with ordered LIP positions in light
blue and disordered LIP positions in pink). The silhouette score value for this plot is 0.0041.
The plot shown here is a good example for describing the complexity of the problem addressed
in this project. 39

2.5 15 bins histogram showing the distribution of the coverages within the LIP regions of the
dataset. By looking at this distribution, it is possible to see that there is no prevalent amount
of low coverage values. 41

2.6 25 bins histogram showing the distribution of the coverages within LIP regions of the TE440
dataset. By looking at this distribution, it is possible to see that there is a prevalent amount of
low coverage values. 44

2.7 25 bins histogram showing the distribution of the coverages within LIP regions of the CAID
Binding test dataset. Again, as was seen for the TE440 datasets, it is possible to see that there is
a prevalent amount of low coverage values. 45

2.8 Representative diagram of the architecture of the CNNmodel used in this project; on the left,
it is possible to observe the structure of each convolutional block, which include a convolu-
tional layer, a layer where the ReLU activation function is applied, and a final batch normaliza-
tion layer; on the right, it is possible to see the overall structure of the CNNmodel, where the
two parallel layers and the first pointwise convolution layer can be appreciated. 57

3.1 Loss and metrics trends for both training and validation sets over the course of the training
epochs. All these plots show the mean trend averaged over all five folds of the stratified cross-
validation. In the top-left corner, the loss plots, with a 4.31 % distance between the two losses
with respect to the absolute size of the validation loss. In the top-right corner, The F-1 score
plots, showing a value of 82.21 % for the training set and a value of 80.38 % for the validation
set at the end of the training. In the bottom-left corner, the precision score plots, showing a
value of 77.90 % for the training set and a value of 75.88 % for the validation set at the end of
the training. In the bottom-right corner, recall score plots, showing a value of 88.46 % for the
training set and a final value of 87.29 % for the validation set at the end of the training. 64

3.2 Precision, recall, and F1-scores trends for both training and validations sets, separated for pos-
itive and negative examples. In the top-left corner, training precision score. In the top-right
corner, validation precision score. In the middle-left, training recall score. In the middle-right,
validation recall score. In the bottom-left corner, training F1-score. In the bottom-right cor-
ner, validationF1-score. The separation in terms of performance betweenpositive andnegative
examples affects all metrics on each of the two datasets used for training the model. 65

xi

3.3 Loss trends for all the five folds of the cross-validation and their average behavior over the course
of the training epochs. In the top-left corner, the averaged loss for the training set. In the top-
right corner, the losses for each fold for the training set. In the bottom-left corner, the averaged
loss for the validation set. In the bottom-right corner, the losses for each fold for the validation
set. 67

3.4 Precision score trends for all five folds of the cross-validation and their average behavior over
the course of the training epochs. In the top-left corner, the averaged precision score for the
training set. In the top-right corner, the precision score for each fold for the training set. In
the bottom-left corner, the averaged precision score for the validation set. In the bottom-right
corner, the precision score for each fold for the validation set. 68

3.5 Recall score trends for all five folds of the cross-validation and their average behavior over the
course of the training epochs. In the top-left corner, the averaged recall score for the training
set. In the top-right corner, the recall score for each fold for the training set. In the bottom-left
corner, the averaged recall score for the validation set. In the bottom-right corner, the recall
score for each fold for the validation set. 69

3.6 F1-score trends for all five folds of the cross-validation and their averagebehavior over the course
of the training epochs. In the top-left corner, the averaged F1-loss for the training set. In the
top-right corner, the F1-loss for each fold for the training set. In the bottom-left corner, the
averaged F1-loss for the validation set. In the bottom-right corner, the F1-loss for each fold for
the validation set. 70

3.7 ROC curve for the TE440 test set, showing a ROC-AUC score of 73.92 %. 73
3.8 PR curve for the TE440 test set, showing a PR-AUC score of 15.40 %. 74
3.9 Histogramplot showing a distribution for theTE 440 test set for themaximized chosen thresh-

old of 0.94, with a split of each bar that shows the four categories of true negatives (light blue
bars), false negatives (pink bars), false positives (light green bars) and true positives (yellowbars).
The red line corresponds to the decision threshold and divide the predictions of the model. . 75

3.10 21 bins histogram showing the fraction of true positives (in blue), true negatives (in pink), false
positives (in green), and false negatives (in yellow) for several chosen thresholds on the whole
TE440 test set. 76

3.11 ROC curve for the CAID Binding test set, showing a ROC-AUC score of 62.95 %. 79
3.12 PR curve for the CAID Binding test set, showing a PR-AUC score of 22.59 %. 80
3.13 Histogramplot showing a 25bins distribution for theCAIDBinding test set for themaximized

chosen threshold of 0.96, with a split of each bar that shows the four categories of true negatives
(light blue bars), false negatives (pink bars), false positives (light green bars) and true positives
(yellow bars). The red line corresponds to the decision threshold and divide the predictions of
the model. 81

3.14 21 bins histogram showing the fraction of true positives (in blue), true negatives (in pink), false
positives (in green), and false negatives (in yellow) for several chosen thresholds on the whole
CAID Binding test set. 82

3.15 Comparison of PR andROC curves for the CNNmodel developed for this project (evaluated
on theCAIDBinding dataset) with PR andROCcurves forCAIDmodels developedwith the
specific task of predicting the CAID Binding dataset; the curves for these models underwent
a 75 % desaturation, while the curve for the CNN was thickened and colored bright red, for
a better look. In the top-left corner, PR curves comparison against all CAID models. In the
bottom-left corner, ROC curves comparison against all CAIDmodels. In the top-left corner,
PR curves comparison against the top 20 CAID models. In the bottom-right corner, ROC
curves comparison against the top 20 CAIDmodels. 83

xii

Listing of tables

3.1 Averaged metrics for the training dataset. 63
3.2 Averaged metrics for the validation dataset. 64
3.3 Evaluation metrics for the TE440 test set. 72
3.4 Evaluation metrics for the CAID Binding test set. 78

xiii

xiv

Listing of acronyms

Molecular Biology and Genetics

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

mRNA Messenger RNA

tRNA Transfer RNA

Proteins biochemistry

PPI Protein-Protein Interaction

PDI Protein-DNA Interaction

PLI Protein-Lipid Interaction

PCI Protein-Carbohydrate Interaction

RIN Residue Interaction Network

IDP Intrinsically Disordered Protein

IDR Intrinsically Disordered Region

LIP Linear Interacting Peptide

RSA Relative Solvent Accessibility

Bioinformatics and Biotechnologies

MSA Multiple Sequence Alignment

FASTA FAST-All

pLDDT predicted Local Distance Difference Test

NMR Nuclear Magnetic Resonance

HTS High Throughput Screening

CAID Critical Assessment of Intrinsic protein Disorder

SIFTS Structure Integration with Function, Taxonomy and Sequence

RCSB PDB Research Collaboratory for Structural Bioinformatics Protein Data Bank

STRING Search Tool for the Retrieval of Interacting Genes/Proteins

xv

RING Residue Interaction Network Generator

FLIPPER Fast Linear Interacting Peptides Predictor

Information Technologies

GPU Graphics Processing Unit

JSON JavaScript Object Notation

TSV Tab-Separated Values

FTP File Transfer Protocol

Data Science

KL divergence Kullback-Leibler divergence

NLP Natural Language Processing

BERT Bidirectional Encoder Representations from Transformers

PLM Protein Language Model

EDA Exploratory Data Analysis

CNN Convolutional Neural Network

ROC curve Receiver Operating Characteristic curve

PR curve Precision-Recall curve

AUC score Area Under the Curve score

t-SNE t-Distributed Stochastic Neighbor Embedding

PCA Principal Component Analysis

BCE Binary cross-entropy

TPR True Positive Rate

TNR False Negative Rate

FPR False Positive Rate

FNR False Negative Rate

xvi

1
Introduction

This introductory section is about molecular biology and bioinformatics behind this work and is dedicated to
provide a basic, but comprehensive, presentation about some important concepts and tools that are directly rel-
evant to the subject matter of this project, with the aim of establishing an essential framework which can offer
an appropriate understanding of what has been done. The chapter is divided into four main sections. The first
section explains some key structural biochemistry and molecular biology principles, beginning with a concise in-
troduction to proteins and the process to build them through gene expression, which follows the principle of the
central dogma ofmolecular biology. Then, a section is dedicated to protein structures, functions and interactions,
with a focus on intrinsically disorder regions and linear interacting peptides. A second section is dedicated to the
bioinformatics databases and tools used in the project, with a short explanation of their functioning; in particu-
lar, this section introduces the following resources: UniProtKB, PDB, MobiDB, RING, FLIPPER, ProtTrans,
and CAID. The third section briefly presents the field of protein features predictions with a particular attention
to protein language models and their importance in computational biology. A final fourth section is aimed to
present the approach and the techniques used for carrying out this project.

1

1.1 Proteins
Proteins are macromolecules that are commonly observed in living organisms and which play a crucial role in a

wide range of processes carried out by cells, thus being essential to life by serving as structural and functional el-

ements [2]. Examples of these roles are catalysis of metabolic reactions, support and signaling, transportation of

other molecules, ability to build specific organic structures, and ability to exercise control and protection from

pathogens [2, 4]. This pervasive functional role of proteins in all the functions and structures of life justifies the

enormous importance of these macromolecules in many research fields, like healthcare, environmental sustain-

ability, and industry [5, 6, 7, 8].

1.1.1 Composition and structure of proteins

Protein units are continuous single polypeptides composed of a sequence of amino acids, each originating from a

specific combination of 20 distinct amino acid types [2, 4]. Each amino acid consists of a central carbon atom (the

α-carbon or Cα) that establishes four covalent single bonds with an amino group, a carboxyl group, a hydrogen

atom and a specific side chain, which is also called ”R group” and is the only variable part that determines the

identity of an amino acid among the 20 types mentioned above (Figure 1.1)) [4, 1]. The structural basis of these

amino acid polymers is the peptide bond, which is a covalent bond established between the carboxyl group of

one amino acid and the amino group of the next amino acid in the peptide chain, formed in a condensation

reaction that releases awatermolecule (with a thermodynamically unfavorable forward reaction, butwith a reverse

activation energy that is too high too get back to the reagents) [1]:

RICOOH+H2NRII −⇀↽−− RICOHNRII +H2O

where, the non-variable portion is directly implied in the formation of the peptide chain and, in general, the

series of amino acids connected by the peptide bonds creates the protein’s backbone, which consists in themakeup

of N-Cα-C repeating units (where N represents the nitrogen atom of the amino group, Cα represents the carbon

atom of the α-carbon, and the last C represents the carbon atom of the carboxyl group).

One of the most important aspects of the proteins is their arrangement in space, (i.e., their conformation),

which must be in most cases very specific to allow a correct performance of the protein function [2]. The pro-

tein conformation is driven by the amino acid composition and sequence order and, in general, the structural

organization of proteins can be divided into different levels following a complexity growth (Figure 1.2) [2]:

• the primary structure is the linear sequence of amino acids, linked together by their peptide bonds. Con-

sidering all possibilities, a polypeptide chain of n amino acids could, theoretically, assemble into 20n dis-

2

Figure 1.1: Skeletal diagrams of two amino acids, Isoleucine (on the left), a hydrophobic amino acid, and Lysine (on the
right), a positive charged amino acid. The structures highlights the terminal groups of the molecules, like oxygen‐based
groups (in red), nitrogen‐based groups (in blue), and carbon‐based groups (in gray). It is easy to see the variable side chains,
which differ for every amino acid, and the non‐variable portion (above in the molecules), in which carboxyl and amino
groups are emphasized. Example structures have been taken from Lehninger principles of biochemistry, by Nelson et al. [1].

tinct formations, if left to chance. Yet, the primary structure of a protein derives by specific inherited

genetic information, ensuring that each protein is the result of a precise biological aim. The primary struc-

ture forms the backbone of the protein and the order of the amino acids in this very first simple structure

is fundamental for driving the spatial organization towards the final protein conformation, inducing the

secondary and tertiary structures;

• the secondary structure provides a more complex organization, with basic three dimensional regular pat-

terns formed by the hydrogen bonds of elements of the backbone interacting with each other (thanks to

a partial negative charge of the oxygen atoms and the partial positive charge of the hydrogen atoms at-

tached to the nitrogen atoms). The main secondary structure motifs that can be observed in proteins are

(Figure 1.3):

– α-helices, made by hydrogen bonds between every fourth amino acid;

– β-sheets, made by two or more segments of the polypeptide chain that are positioned side by side

(called ”β-strands”) and connected by hydrogen bonds among amino acids of the parallel segments;

• the tertiary structure is induced by the side chains of the amino acids, engaging in a variety of chemical

interactions with determined roles, like hydrogen bonds, hydrophobic interactions, disulfide bridges, and

Van der Waals forces ((Figure 1.3));

• the quaternary Structure is given by the assembly of multiple polypeptide chains into a functional pro-

3

tein complex, forming an arrangement that is essential for carrying out the final function.

Asmentioned above, amino acid side chains are unique for each of the 20 amino acids that constitute proteins.

However, it is possible to associate these chainswith each other, depending on their intrinsic characteristics, giving

rise to a taxonomy that allows a grouping of amino acids into classes; in particular, it is possible to distinguish four

different classes of amino acids, basing on the charge profile of their side chains [4, 1]:

• non-polar amino acids, which tend to avoid water molecules, establishing hydrophobic interactions

with each other and compacting into a globular conformation that tends to move away from the watery

medium, in the innermost portions of the protein;

• polar amino acids, which can be found in active sites or on the surface of the proteins, forming bonds

that make secondary and tertiary structures and also participating in catalytic reactions;

• positively and negatively charged amino acids, which are able to form ionic bonds, contributing to

protein structural stability and catalytic activity.

This class division of amino acids is a fundamental concept for understanding some conformational aggre-

gation behaviors of proteins, where the pattern of amino acids that makes up a protein region determines its

charging characteristics and, therefore, its conformational aggregation characteristics [1]. An important example

of this concept is given by the presence of hydrophobic globular regions that are rigidly aggregated, due to a rich

presence of non-polar amino acids; other examples are the regions which are specifically present on the protein

interface with themedium, interacting with water molecules or other molecules, or even regions with greater con-

formational and interaction freedom, that are less subject to the structural rigidity typical of other regions, thanks

to the presence of charged or polar amino acids [2, 1].

1.1.2 FromDNAtoProteins: TheCentralDogmaofMolecular

Biology

The making of proteins is a complex process, involving other macromolecules of enormous importance, such

as DNA and RNA, which allow the genetic information to be safely stored and then converted into function,

as stated by the central dogma [2]. The central dogma of molecular biology is a concept that refers to the flow

of the genetic information inside living organisms; the main idea behind this concept can be captured by the

statement “DNAmakes RNA andRNAmakes proteins”, sentence that highlights themain characteristics of the

concept, i.e., its unidirectionality [2]. In facts, biological information travels in only one direction, from genes to

proteins, and cannot be transferred back (this kind of concept admits, of course, exceptions) [2]. Firstly stated by

Francis Crick in 1957, the dogma was indeed more a hypothesis than an actual dogma, leaving room for further

4

Figure 1.2: Various three dimensional representations of the folded truncated tetramerization domain of the p53 anti‐
tumor protein, obtained from Danio rerio by using biocrystallography and X‐ray diffraction techniques. The PDB data file
was taken from the Protein Data Bank (PDB, protein ID 4CZ6). All the structures have been thematically colored to high‐
light the four different peptide chains that interact with each other. On the left, it is possible to observe the space‐filling
surface representation, which emphasizes the globular structure of the protein and it is also useful to visualize the protein
surface. In the middle, it is possible to see the ribbon representation, commonly used to easily visualize the most frequent
secondary structures, like, for instance, α‐helices (shown as spring‐like structures) and β‐sheets (depicted as arrows). It is
also possible to see random coils (i.e., regions that lacks a specific secondary structural organization, represented using thin
strings [2]). This representation is also useful to visualize the tertiary structure folding of each chain and the aggregation of
the different folded chain to give the final quaternary structure. On the right, it can be seen the less intuitive wire‐frame
stick representation of the protein domain, which shows the chemical structure of the protein’s underlying molecules, high‐
lighting also proximal atoms and molecules that surround the protein surface (like ligands and other solution molecules).
This representation provides a way to directly see the backbone and the side chains of the single amino acids of the pro‐
tein.

discoveries of slightly deviating situations and exceptional cases [2]. Anyway, even if exceptions are widely known

today (important examples are epigenetics, reverse transcription, prions and RNA editing), the central dogma of

molecular biology remains an important foundation for representing the genetic information flow in every living

organism, since it is in most cases a reliable system for describing the flow of the genetic information [2, 4].

As will be shown below, the processes by which DNA produces RNA and RNA produces proteins are tran-

scription and translation, respectively. In creating new proteins, transcription and translation implement a mech-

anism of conversion of the genetic information into function that is called ”gene expression” [2, 4]. In addition

to transcription and translation, there is the replication, which is essential for the transmission of DNA and is

considered as the most important inheritance mechanism in living organisms, since it provides every cell a dis-

tinct copy of the DNAmolecule, which has a critical role in the storage and preservation of genetic information;

through replication two identical versions of DNA are generated from a single parent DNA molecule [2, 4]. In

5

the transcription process, specific portions of the DNA molecules (the genes) can be used to make a messenger

RNA (mRNA), which plays a transmission role, since it is a fundamental intermediate that carries genetic infor-

mation [2, 4]. The RNA ribonucleotide composition is directly determined by the nucleotide composition of

the DNA constituting the transcribed gene [2]. In addition, a newly generated mRNAmay go through further

maturation steps (like splicing, capping, polyadenylation, and so on) [2]. Although transcription can also be a

tool for producing special types of RNA (mostly employed in regulatory processes), the main function of this

biological process is the creation of messenger RNAs for new proteins generation [2]. Translation is the final step

that directly makes the primary sequence of new proteins; here, the genetic information contained in the mature

mRNA transcript is used by ribosomes, where transfer RNAs (tRNAs, a special type of RNAs involved in trans-

lation) is used as a template for making a new protein [2]. Even in this case, codons determine the specific amino

acid composition and order of the protein, i.e., by triples of ribonucleotides contained in the mRNA; in particu-

lar, for every three ribonucleotides, a specific amino acid is added to the sequence of the new protein, in a specific

process that involves the presence of some intrinsic redundancy, since several triplet combinations can be associ-

ated with the positioning of the same amino acid) [2, 4]. After the assembly of the protein, its three-dimensional

structure is naturally achieved through a precise folding, guided by the amino acid sequence composition [2, 1].

The common arrangement in space of themature protein, called native conformation, is indeed fundamental and

strictly related to the ability of the protein to perform its natural function [2, 1]. This concept makes the accu-

racy of the transcription and translation processes a critical step, in which a protein canonical function can be

invalidated even with a small error in translating the RNA sequence [2, 1]. While replication, transcription, and

translation are essential processes to produce proteins, they are themselves performed by a plethora of extremely

complex protein-based mechanisms. Therefore, in a complex synergistic framework, all these three processes are

interested by a mutualistic mechanism, which is still a subject of study, debate and refinements [2].

1.1.3 Intrinsically Disordered Proteins

One of the key messages of the previous section concerns the importance of reaching a highly specific conforma-

tion during the protein folding process and the extreme fragility that such a process have in impairing the proper

performance of the function for which a given protein is intended. Once this concept is understood, an apparent

major contradiction lies in the fact thatmany proteins actually possess regions (which can also be quite significant

in terms of size) of intrinsic disorder, which do not negatively affect protein function, but are sometimes even fun-

damental to the performance of the latter [9, 10]. There are even cases in which proteins totally or partially lack

a fixed structure, which can assume a specific conformation only in the presence of specific interaction partners

[10, 11]. These particular kind of proteins forms a distinct category and provide a view on protein structural orga-

nization and function that challenges the traditional way of associating to each protein a determined and unique

conformation that makes the function possible [9]. This particular property of IDPs allows them to be versatile

6

proteins, often adopting fixed three-dimensional conformation upon binding to other molecules, but facilitating

at the same time distinct binding requirements [10, 9]. IDPs play several crucial roles, participating in different

important functions, mostly related to chromatin regulation, transcription, and cell signaling, while being widely

studied in various aspects [12, 13]. As it happens with all functions and structural features of proteins, even the

intrinsic disorder feature is encoded in the protein’s amino acid chain; it is, indeed, possible to say that, generally,

for being an IDR, a protein regionmust have a low content of bulky hydrophobic amino acid residues, while pre-

senting a high proportion of polar and charged amino acids, which give rise to a low hydrophobicity region with

a low probability of collapsing into a globular conformation [10]. In this way the peptidic region is more prone

to disorder, by enhancing repulsion (due to the presence of net charges) and interaction with water molecules

composing the medium that surrounds the protein [10].

1.1.4 Protein Interactions

Proteins are able to establish several kind of interactions with many different molecules and, in general, proteins

can interact with all the other types ofmainmacromolecules that can be found in an organism (i.e., other proteins,

lipids, carbohydrates, andDNA) sometimes forming intricate networks of interactions that are essential to regula-

tion and performance of vital functions (Figure 1.3); it is, indeed, possible to observe in proteins a great variability

of regions used for interacting with othermolecules, with cases of considerable structural and organizational com-

plexity [1]. The main types of protein interactions are performed by electrostatic forces, hydrogen bonding, and

hydrophobic effect, making the interaction network of each protein rich of different types of specific interactions,

suitable for performing distinct functions [1].

This paragraphpresents themain types of protein interactions, withparticular descriptive emphasis onprotein-

protein interactions. Protein-protein interactions (PPIs) are common interactions when forming protein func-

tional complexes and for transmit several kinds of signals in the cell; protein-carbohydrates interactions (PCIs) are

usually a central component of the cellular recognition ability, but are also part of some of the most important

metabolic pathways; protein-lipid interactions (PLIs) can be crucial for keeping the integrity of the membrane

and for signaling tasks; finally, protein-DNA interactions (PDIs) are fundamental in regulating gene expression

[2, 1]. Among all these interaction types, PPIs are the most common protein interactions and are considered

central for every cellular process, since they are the baseline for assembling protein complexes and for the regula-

tion of all cellular process (Figure 1.4) [1]. Therefore, these interactions are of particular interest in research, even

if understanding and characterizing all of them is a very challenging task, due to the natural complexity of the

problem [14]. Protein interaction studies in biomedical and biotechnology fields are of paramount importance,

as a complete understanding could lead to strong practical applications in several areas of biomedical research and

biotechnology, like, for instance, drug design, genetic engineering, and pharmaceutical clinical research [5, 6, 7, 8].

7

Figure 1.3: Contact maps and three dimensional representation of the folded truncated tetramerization domain of FGFR4
D2 ‐ Fab complex (biological assembly 1), obtained from Homo sapiens sapiens by using biocrystallography and X‐ray
diffraction techniques. The plots refer to a specific state of the protein conformational ensemble. The PDB data file was
taken from the Protein Data Bank (PDB, protein ID 6J6Y). The contacts were calculated using the Residue Interaction Net‐
work Generator 2.0 (RING 2.0). The plots above present the contact maps showing two very specific kinds of interactions
of the protein’s amino acids, gradient‐colored based on the distance in ångström and showing the amino acid sequences,
named ”AA sequence”, in both x‐ and y‐axis (with a colored dot if two coordinate positions interact). In the top‐left cor‐
ner, it is possible to see the van der Waals forces contact map (VDW contact map), which shows the interactions that take
an active part in the formation of the tertiary structure. In the top‐right corner, it is possible to see the hydrogen bonds
contact map (HBOND contact map), which shows the interaction that are responsible for the generation of the secondary
structures. Below, it is shown the ribbon representation with rainbow coloring of the protein to which the contact maps
refer; it is interesting to compare the maps with the protein arrangement in space, in order to appreciate the great amount
of contacts that take part in the final protein conformation, which shows a compact three dimensional folds and several
β‐sheets.

8

Figure 1.4: Sub‐graph composed by the hub nodes (with their immediate neighbors) selected for the protein interactome
network of Homo sapiens sapiens, taking proteins as nodes and physical interactions between pairs of proteins as edges,
while showing the degree of each node protein using a gradient coloration. Data about proteins and their interactions
has been selected from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database [3], selecting
human proteins and their edges with the highest confidence data (STRING score greater or equal than 0.900). This densely
connected and high confidence network shows the most connected proteins, i.e., hub node proteins; it is easy to notice
the great level of connectivity in these hub proteins, which is an evidence of their importance within cells (as, for example,
master regulators for important processes, such as modifications to the DNA molecule). It is finally possible to appreciate
at first glance an organizational topology that shows small cliques with higher levels of local connections, which may be
regions that represent regulatory hubs in a scale‐free topology context, or large protein complexes.

9

1.1.5 Linear Interacting Peptides

When considering the complex field of protein interactions in cells, a comprehensive understanding of the subject

cannot exclude the crucial role of the short protein motifs that take part in the cellular interaction network [15].

In this context, LIPs are short amino acid sequences usually (but not always) found in IDRs andwhich shows the

ability of acting as binding interfaces, thus playing an essential role in many physiological activities of organisms

[16]. LIPs present the following structural characteristics in comparison to non-LIPs residues [16]:

• highly linear structure (linearity refers to the spatial distance between the Cα of the first and last residue

of a specific region, divided by the length of such sequence);

• higher inter-chain over intra-chain contacts;

• both higher RSA and ΔRSA;

• equal distribution of secondary structures;

• higher presence of random coil conformations.

From this list of features it is possible to deduce a strongly flexible nature of LIPs that makes them dynamic

elements in the context of cellularmechanisms, allowing the protein to interactwith several othermacromolecules

(i.e. peptide regions in the same protein or regions from other proteins or nucleic acids), enabling in many cases

the disorder-to-order transition of the IDRs in which they’re included [17]. LIPs will be themain object of study

of this paper and the project described by it, with a focus on the analysis of their biochemical characteristics,

in order to highlight their complexity and the consequent difficulty for any potential task aimed to an effective

identification of these regions through the use of predictors.

Figure 1.5 shows an example of a chain containing a LIP region, which interacts with two other chains of a

single protein complex. In the figure, it is possible to appreciate a ribbon representation of the LIP chain lying on

the surface of the other two chains, wrapping both of them by establishing PPIs.

10

Figure 1.5: Three dimensional representations of the P27 (KIP1)/cyclin A/CDK2 complex, obtained from Homo sapiens by
using biocrystallography and X‐ray diffraction techniques. The PDB data file was taken from the Protein Data Bank (PDB,
protein ID 1JSU). All the chains were thematically colored: the LIP chain is colored in green and uses a ribbon representa‐
tion, while the other two chains were colored in pink (chain A) and in violet (chain B), both represented using a space‐filling
surface model, in order to make it possible to appreciate the interaction of these chains with the LIP chain, which lies on
the surface of the space‐filling model.

11

1.2 Protein Data

In the past decade, bioinformatics has become a fundamental field of modern biological research, providing a

powerful analytical tool for an era that is dealing with an enormous amount of biological data that offer the po-

tential for great discoveries [18, 19]. Nowadays, bioinformatics offers the methodologies needed to untangle the

complexity of cellular mechanisms, also thanks to its strong collaborative and contributory nature, aspects that

are essential for tackling and integrating the large-scale problems addressed bymodern science [20, 21]. Of partic-

ular interest is the high-throughput approach, i.e., a systematic and fast approach for exploring a large amount of

biological data at a large scale, using many computing resources [22]. This approach has become fundamental in

several bioinformatics fields that require such kind of analysis, among which high-throughput sequencing (HTS)

stands out [22, 23]. Once asserted the great importance of taking into account a bioinformatic approachwhile fac-

ing amodernmolecular biology problem, it is possible to introduce some important tools, services, and databases.

Some of them have been used for this project, in order to retrieve data and information, while others are simply

important to better understand the origin of the data and the problem itself. This chapter will be dedicated to

briefly describe such useful bioinformatics tools and databases, which are mostly focused on storage and retrieval

of a vast amount of biological data about protein sequences and structures.

1.2.1 UniProtKBDatabase

The UniProtKB database is the primary component of UniProt, which is composed of two components:

UniProtKB/Swiss-Prot andUniProtKB/TrEMBL; while the former is manually annotated and provides detailed

and accurate protein annotations, the latter offers automated annotations, presenting material that does not have

manual curation and that awaits for annotation [24, 25]. The manual annotation in UniProtKB/Swiss-Prot is

performed by expert curators who are devoted to the analysis of the existing literature and of the computational

data, in order to ensure data accuracy and toprovide high-quality databases for protein research [26]. Within these

two big sub-sections, the UniProtKB database stores and manages a huge amount of data, including extensive

cross-references and annotations relative tomanyprotein features, in terms of structure, function, and interaction,

allowing, in this way, in-depth analyses and efficient querying across multiple databases [25]. This integrative

approach is a hallmark ofUniProtKB and provides a powerful tool that cross-references tomore than 120 external

databases, promoting the integration of information from a wide spectrum of biological fields [27].

1.2.2 Protein Data Bank

The Protein Data Bank is a big and continuously updated platform that provides information about the three-

dimensional structural characteristics of proteins and nucleic acids, obtained through NMR, X-ray crystallogra-

12

phy, and cryo-EM [28, 29]. PDB was created as the first open-access digital resource for biological sciences and

it is now a unique global repository of structural data for biological molecules, with a huge archive of detailed in-

formation about experiment-based structures [29, 30]. As of today, PDB, with more than 200000 experimental

structures and more than 1 million computed structure models [31], supports a wide range of scientific research

fields and parallel databases, from basic molecular biology to clinical research and drug design [32, 33].

1.2.3 SIFTS service

SIFTS is a project involving PDB and UniProt, who collaborated together to make a tool for mapping at the

residue-level protein entries, with a system of information release on a weekly basis [34]. The service also provides

an annotation system from several other databases and includes cross-references to other biological resources, with

the possibility of exporting files via FTP [34].

1.2.4 MobiDB database

MobiDB is a centralized database for IDPs annotated information, which covers all the UniProt sequences and

offers annotations and predictions taken from several sources with an online visualization interactive tool [35, 36].

MobiDB features three levels of annotations [37, 38]:

1. manually curateddata, extracted from theDisProt database [39] and expandedusing disorder annotations

that include information from several databases;

2. indirect data, inferred from the structures of the PDB entries of many proteins, can be considered as an

indication of intrinsic disorder; indirect data were taken by usingmissing residues fromX-ray crystallogra-

phy and from structures and mobile NMR, while integrating also high temperature X-ray structures and

overall conformation diversity;

3. predicted data, derived from several predictors and expanded with various types of annotations on back-

bone rigidity, secondary structure preferences, and disordered regions.

Finally,MobiDBprovides tools forperforming comparative analyses, allowing the identificationof inter-organisms

characteristics, and instruments for cross-referencing to other protein databases [40]. An example of the content

page of MobiDB for a specific protein is shown in Figure 1.6.

13

Figure 1.6: MobiDB complete example page for the p53 protein.

14

1.3 Protein Structure and Features Prediction
The ability to predict protein structures and features has wide implications in modern biomedical research and

pharmaceutical development, while providing a powerful in silico system for protein functional characterization

[41]. Nowadays, the protein prediction field has proven to be a powerful research instrument, which can be used

to provide great help to protein function studies, by combining general concept and tools from molecular biol-

ogy and computer science, but also exploiting methods and models from machine and deep learning [42]. This

chapter is dedicated to some of the prediction tools implied in the field of protein structures and features research,

briefly introducing and describing those who have been an essential base for this project, without exploring their

technical aspects.

1.3.1 Residue InteractionNetwork Generator

As already discussed above in several sections, PPIs are an extremely important features in living organisms, just

as they are for scientific research. One of the many ways of visualizing and characterizing PPIs is through Residue

Interaction Networks (RINs), which are a conceptual framework that provides a way to represent protein struc-

tures using networks in which nodes represent amino acid residues and edges represent interactions, with the

purpose of obtaining additional information about proteins’ structure and function both at protein and residue

levels [43]. By taking into account the absolute importance of studying protein structures in terms of intrinsic in-

teraction patterns for understanding protein conformations and functions, it is easy to conclude the importance

of RINs in the process of exploring and understanding the structural properties and the conformation dynamics

of proteins [44].

In this context, a powerful instrument is RING, an advanced tool for creating high-quality RINs at the atomic

level, with the purpose of providing efficient and accurate information about intra- and inter-chain interactions;

RING is able to identify non-covalent bonds in multi-state protein structures (from both molecular dynamics

and conformational ensembles), allowing a visualization of RINs through Cytoscape or web-browser [45].

15

Figure 1.7: RING complete example page for the p53 protein.

16

1.3.2 Fast Linear Interacting Peptides Predictor

Fast Linear Interacting Peptides Predictor (FLIPPER) is an automatedmethod developed and presented byMon-

zon et al., (2021) [16], for detecting LIPs using a random forest classifier that takes as input several structural

protein features as input and returns a binary LIP classification as output, helping to distinguish LIP regions

from non-LIPs regions. The features considered by FLIPPER include some of the canonical LIPs’ characteristics,

like intra- and inter-chain contacts, secondary structure content, solvent accessibility in both bound andunbound

states, structural linearity, and chain length, all used by the model to predict the propensity of each amino acid

to be part of a LIP region with a high accuracy. After training with successful results, FLIPPER has been used to

process the entire PDB dataset, identifying in this way various LIPs based on different bindingmodes and partner

molecules. FLIPPER is now used to generate prediction data about LIPs for the MobiDB database [46].

1.3.3 AlphaFold and AlphaFold-Disorder

AlphaFold is a powerful AI tool developed by Google DeepMind for predicting the three dimensional structure

of proteins starting from their primary structures (i.e., the plain amino acid sequences); AlphaFold has proven

to be extremely effective, regularly reaching an accuracy level that is competitive with experimental data [41, 47].

Shortly after its release, AlphaFold has soon turned out to be an essential tool for improving the current knowl-

edge of protein structures, thanks to its use to a large-scale processing of all known protein sequences, enabling a

huge and sudden expansion of what is the structural coverage of protein sequences [47]. Furthermore, the deep

learning models used for making such a powerful protein prediction system were able to set a new standard, out-

performing previous methods with their very high performances [41]. Specifically, a tool that was important for

this project is AlphaFold-Disorder, which is an algorithm that exploits the predictive power of AlphaFold to ex-

trapolate structural and functional protein features, like the presence of secondary structures, the predicted Local

Distance Difference Test (pLDDT, i.e., an estimated probability of AlphaFold prediction score confidence) score

[48], and the RSA, subsequently combining them to predict the presence of interactions and disordered regions

at an amino acid level [49].

1.3.4 ProtTrans

A novel and promising field of study is Protein Language Models (PLMs) research, which derives from the inter-

section of computational biology and machine learning, with the aim of exploiting protein sequences in order to

understand their functional and structural characteristics [50]. This new field of study uses NLPmodels, usually

employed in the study of human language, to analyze amino acid sequences that constitute proteins, encoding

such sequences into vector representations to try to capture structural and functional sequence-enclosed prop-

erties [50]. This type of approach has resulted in new high-performance methods which utilize deep learning

17

techniques for providing a significant improvement in predicting protein structure, taking advantage of several

advanced techniques, like transformers with attention mechanisms (MSA Transformer, Rao et al., 2021 [51]) or

auto-encoders (proteinBERT, Brandes et al., 2022 [52]).

One of themost important works in this field is provided by the ProtTrans project, developed by Elnaggar et al.

(2021) [53]. In this project several languagemodels have been tested onproteins sequences in order to explore their

limits, while the effects of two auto-regressive models (i.e., Transformer-XL and XLNet) and four auto-encoder

models (i.e., BERT, Albert, Electra, and T5) have been tested on extensive datasets and compared to existing state-

of-the-art solutions based on evolutionary information andMSA. ProtTransmodels are able to outperform those

state-of-the-art methods, representing an important leap in the process of integrating deep learning techniques

in protein research. Protein embeddings can be a powerful tool for the analysis and prediction of structural and

functional characteristics of proteins, although the black box nature of the deep learning models involved in the

embedding generationmakes it complex to understand the full potential and themeaning of these vector represen-

tations. In fact, it is important to bring to attention the fact that strengths and limitations of protein embeddings

are still the subject of active study and experimentation (this fundamental concept will be addressed and explored

in more detail in theResults and Discussion chapter).

1.3.5 CriticalAssessmentof protein IntrinsicDisorder predic-

tion

It must be clear at this point the level of challenge constituting by studying the protein IDRs, as well as under-

standing their structural features and functional role in the intricate pattern of the molecular processes of life.

In a context in which the large part of the knowledge about IDRs is based on predictions, the CAID experi-

ment, established in 2018, takes its place as a community based instrument to asses the state of the art in predicting

IDRs and their binding portions in a blind-test setting; every tool evaluated must be able to assign a score to each

amino acid residue, basing on its propensity to be labelled in a certain way, depending on the specific predictive

task associated and starting only from the protein sequence[54, 55]. The CAID experiment presents several pre-

dictors (with accuracy results) evaluated on specific sets of proteins, using a round organizational system: the

predictors evaluated at each round are presented publicly on specific dates [54, 55]. Specifically, the challenge can

be divided into three tasks [55]:

• disorder prediction, which uses two test sets, Disorder NOX and Disorder PDB, containing 210 and

348 proteins, respectively (Figure 1.8 and Figure 1.9); Disorder NOX and Disorder PDB are both sets

of proteins made for the disorder prediction task; however, in the first case (i.e.,Disorder NOX) the posi-

tive examples consist of amino acids that possess a DisProt disorder annotation (excluding X-ray missing

18

residues), while the negative examples are anything that is not characterized by the disorder annotation in

DisProt; in the second case (Disorder PDB), the positive examples are the positions withDisProt disorder

annotation (including X-ray missing residues), while the negative examples consist only of the positions

that are observed in the PDB, i.e., the positions that are characterized by annotation derived from protein

structure study techniques, such as NMR, X-ray crystallography or cryo-EM;

• binding prediction, which uses a Binding test set of 78 proteins (Figure 1.10); the positive examples of

this dataset are sequences that establish interactions and are located within disordered regions;

• linker prediction, which uses a Linker test set of 40 proteins (Figure 1.11); linkers are defined in DisProt

as unstructured regions that provide separation and allow movements between two adjacent functional

regions.

Among these tasks, the one that ismost related to the specific task of this project is the second of the list, i.e., the

binding prediction one. However, it is important to highlight some important differences between these two tasks.

In fact, while this project focuses on the classification of LIP regions, the CAID binding task focuses on generic

interacting amino acid sequences foundwithin disordered regions. LIP regions possess specific structural features

(as already noted in detail in the biological part of this introduction), and, although they are predominantly found

in disordered regions, they can also be observed to a lesser extent in ordered regions (this aspect will be analyzed

in detail in the following chapter). Therefore, the task of this project differs slightly fromwhat can be observed in

CAID, although the specific binding CAID task can be useful for this project, as will be seen later in this paper.

By looking at Figures 1.8, 1.9, 1.10, and1.11, it is possible tonotice that thedisorderprediction taskhas reached

good results using theDisorder PDB test set, while binding and linker predictions tasks still need improvements.

Another important plot considered in the CAID results web page is the ”Runtime vs AUC” plot, which is a

way for the CAID challenge to measure the execution time in relation with the AUC score. In this case, the exe-

cution time is calculated as the average time for the prediction of a sequence of 1000 residues against the measure

of the area under the ROC curve Figure 1.12.

19

Figure 1.8: ROC and PR curves for the top 20 best models in predicting the disorder state in the Disorder NOX dataset
(sorted by AUC score). Best results are provided by the Dispredict3 model, with an AUC score of 0.838 and a max F1 score
of 0.548.

20

Figure 1.9: ROC and PR curves for the top 20 best models in predicting the disorder state in the Disorder PDB dataset
(sorted by AUC score). Best results are provided by the SPOT‐Disorder2 model, with am AUC score of 0.949 and a max
F1 score of 0.860. The Disorder PDB dataset, if compared with the Disorder NOX one, provides better quality results and
brings out the best from the predictors used, with excellent results in terms of accuracy.

21

Figure 1.10: ROC and PR curves for the top 20 best models in predicting the presence of binding amino acids within
disordered regions in the Binding dataset (sorted by AUC score). Best results are provided by the ENSHROUD‐protein
model, with an AUC score of 0.753 and a F1 score of 0.361.

22

Figure 1.11: ROC and PR curves for the top 20 best models in predicting the presence of linkers in the Linker dataset
(sorted by AUC score). Best results are provided by the SPOT‐Disorder2 model, with an AUC score of 0.782 and a F1 score
of 0.292.

23

Figure 1.12: Runtime plot for the CAID binding prediction task. The figure shows the area under the ROC curve for some
binding prediction algorithms, visualized against the averaged execution time; best algorithms tend to be in the upper left
corner of the plot, with a runtime as close to zero as possible and with an area under the ROC curve as high as possible.

24

1.4 Approach and Techniques for Embedding-Based

LIPs Detection

The project presented in this paper combines concepts derived frommolecular biology and from data science, in

order to formulate an effective analysis of linear interacting peptides, with the final goal of creating a deep learning

model for a better understanding of limits and potential in predicting LIP regions.

TheMaterials and Methods chapter is dedicated to the comprehensive, technically addressed, and in-depth

discussion of everything that was used to achieve the project results, presented in two distinct sections, Datasets

andModels. In theDatasets section the training, validation, and test datasets used for this project are discuss. A

first part of this section shows how such datasets were processed, adding important further information, such

as amino acid position-specific disorder labels and details about the interactions established by each amino acid.

These two features were obtained using AlphaFold-Disorder and RING, respectively. With this additional in-

formation, it was possible both to identify some problematic LIP regions in the dataset (in terms of effective

interactions) and to extract interesting features regarding the characteristics of LIPs, in terms of their presence in

protein regions classified as ordered or disordered. The identification of LIP regions that showed a small amount

of effective interactions made it possible to clean the training dataset, by removing regions that may constitute

false positives, which, although in reduced quantity in this dataset, would still be able to increase the level of over-

fitting, reducing also themodel’s ability to generalize. At the same time, the introduction of disorder information

made it possible to identify important differences between LIP portions within ordered regions and LIP portions

within disordered regions (the latter constitute, based on the definition given above, the majority of LIP regions).

A second part of theDatasets section is dedicated to the exploratory data analysis performed on the processed data,

in order to check the training and datasets through the use of descriptive statistics and distribution plots, but also

using dimensionality reduction techniques, such as PCA and t-SNE. This specific analysis was important to be

able to spot patterns, anomalies, and other useful information that can be used when building the final predictive

model.

TheModels section presents some theory about convolutional neural networks, introducing then the model

used in this project and the data preparation that was done for building the input set for training the final CNN

model. In particular, the training dataset introduced and analyzed above was finally split into a training set and a

validation set, using a 5-fold stratified cross validation, a technique which is useful for unbalanced datasets, allow-

ing to apply a k-fold cross validation, while keeping the proportions and distributions of positives and negatives

in each fold. Single protein sequences were used as inputs for the CNN model, after applying a 0-padding to

equalize all the sequence lengths, getting in this way inputs of 1024 feature embeddings (one for each amino acid

position) and sequence lengths of 1000 (i.e., the single amino acids, used as examples plus the 0 positions made by

25

the 0-padding step). Finally, batches were extracted to train themodel. Suchmodel is a CNNwith a combination

of pointwise convolutionals layer (with a kernel size of 1), for reducing the number of feature of each input, and

depthwise convolutional parallel layers, used for analyzing twodifferent classes of LIP regions, i.e., the orderedLIP

regions and the disordered LIP regions (with kernel sizes of 9 and 19, which are the average length of ordered LIP

sequences and disordered LIP sequences, respectively, as will be seen later). The weights for each convolutional

layer were initialized using a Xavier initialization, while outputs of each of convolution went through a ReLU

activation function, for introducing non-linearity, and through a batch normalization. The final outputs of these

three convolutional layers were then combined and a dropout was used. The model uses an AdamW optimizer

with a binary cross-entropy loss function, that integrates an output sigmoid activation function. For taking into

account the datasets imbalance, the weights of the model were themselves unbalanced, for giving a proportional

importance basing on the magnitude of dataset imbalance. For making a more stable model, it was necessary to

implement a L2-regularization, with a contribution from both the batch normalization and the dropout layer. A

the same time, a weight decay of 10−3 was used, while the learning rate was kept low to a value of 10−5. The final

model hyperparameters were chosen through a grid-search for tuning the number of channels as output for the

pointwise convolution and the size of the input batches, seeking a maximization of the F1-score on the validation

set. In this way, a value of 512 output channels for the pointwise convolution and a batch size of 16 were chosen.

The 5 fold stratified cross validation was trained for 50 epochs, using a variant of the early stopping trigger that

was able to provide a consensus for both the number of epochs of each fold and the values of the descending loss

function of the model.

One of the most important things to consider before starting to describe in detail materials and methods of

this project is the inherent difficulty of predicting interacting sequences within disordered regions. As can be

seen in Figure 1.10, this task still has much room for improvement, since even the best results currently available

still show rather poor metrics, with a max F1 score for the CAID challenge case that does not go above 0.361.

This specific issue will be covered in detail in the Results and Discussion chapter and can be justified by the

intrinsic great variability in the characteristics of interacting disordered regions, which poses a challenge of great

complexity. Considering this important fact and considering the binding CAID task problem as a reference to

take into account such difficulty, the main goal of this project is to try to raise the bar in this very specific field,

without the need to obtain a model with high predictive potential, but rather with the intent to contribute as

much as possible to the study and understanding of these important and elusive biochemical structures.

26

2
Materials andMethods

This chapter focuses on discussing datasets, tools, andmodels used during the course of this project, through two
sections, one for the datasets and the other for themodels. Specifically, the firstDatasets section is dedicated to the
training and test datasets used to analyze LIP regions and to perform predictions. Such datasets are introduced
and described, paying particular attention to their characteristics and their processing. It also shows the results
obtained from the exploratory data analysis. In this section, several tools used to carry out the dataset analysis
and processing are presented, providing descriptive statistics metrics and visualizations, while introducing also
processing algorithms, such as t-SNE and PCA. TheModels section is dedicated to deep learning, talking about
the model chosen for the prediction of LIP regions. In particular, this section provides several theoretical notions
about Convolutional Neural Networks and some other general deep learning concepts, while talking about the
CNNmodel developed for carrying out the task of this project. This CNNmodel is carefully described in detail,
justifying architectural and parameters choices, while also showing its potentialities and limitations, exposing the
processes that led to the development of a stable model and describing the hyperparameters tuning step.

27

2.1 Datasets

This section is dedicated to give a detailed exposition of the process of creating the datasets that were useful for a

correct analysis of the problem and for training the prediction algorithms. It often happens in the field of Data

Science that the process of creating, cleaning and maintaining datasets that must be used in learning models is

a preponderant phase, both in terms of effort and time demand, while developing or performing any artificial

intelligence pipeline. It can happen, in many cases, that the attention to the dataset is the most important, time

consuming, and difficult phase, which may, however, be rewarded with relevant results, as long as the data have

been handled in the right way, with meticulousness and a critical thinking approach. Specifically, in this project,

the importance and difficulty of generating an adequate training set were proof of what was just stated above.

The effort required at this stage was indeed significant, while the time requirement was remarkable. However,

this process made it possible to create a dataset which was relevant to the problem, generating a training dataset

that could be efficiently used for training and validate a convolutional neural network, as will be shown in detail

in the section dedicated to models.

2.1.1 Data preprocessing and analysis

This section presents the source dataset retrieved from MobiDB for building the training set and the two test

datasets for finally testing the models, i.e., the TE440 dataset, retrieved from the Biomine Kurgan Lab website

[17, 56], and the CAID Binding dataset, retrieved from the CAID website [57]. This section also provides a

complete explanation of the processes performed to build the final training and test datasets. In particular, it

is possible to divide the preprocessing into two distinct steps. Firstly, the protein sequences from the training

datasetwere enriched using supplementary useful information fromRINGandAlphaFold-Disorder, and filtered;

subsequently, sequence embeddings, generated using ProtTrans, were integrated to both the the training and test

datasets.

Dataset Preprocessing

The dataset used to build the training set was provided from the FLIPPER output dataset, available on the Mo-

biDBwebsite. Asmentioned in the previous chapter, FLIPPERwas used on the entire PDB.However, in order to

formulate a better idea of the output, PDBfile-level predictionsweremapped to their correspondingUniProt files

by the authors, using the SIFTS service [16]. The final file is freely available on the MobiDB homepage (by navi-

gating the section dedicated to dataset and downloading the ”Linear interacting peptide (LIP) - derived” dataset)

in both JSON and TSV formats. This file was downloaded through the MobiDB programmatic access system

and underwent a preliminary analysis, using Python 3 and several external Python libraries.

28

The MobiDB dataset introduced above was enriched with interaction data from RING, disorder data gen-

erated with AlphaFold-Disorder, and protein embeddings calculated using ProtTrans, using an amino acid level

resolution. Specifically, RING outputs were used for determining the actual amount of interactions inside LIP

regions. In this way, it was possible to extrapolate a coverage level for each LIP in the dataset, in terms of actual

quantity of interactions. The calculationwas simple, considering, for each distinct LIP region in each protein, the

ratio of the amount of interactions provided by RING to the length of the LIP sequence. For a LIP sequence in

which every amino acid has an interaction identified by RING, the coverage would be 1.0, while for a LIP region

containing amino acids that do not establish any kind of interaction, according to RING, the coverage would be

0.0. All cases in the spectrum between these two extreme examples possess intermediate coverage values. This

process was useful to avoid including sequences with low coverage values, by establishing an arbitrary threshold

for discarding LIP regions that have no or few interactions. Such LIP regions are more prone to increase the num-

ber of false positives during the training phase of the CNN model. Once identified, LIP amino acid positions

included in LIP regions with a coverage under the chosen threshold were transformed into negative positions.

AlphaFold-disorder was used to identify disordered regions in all protein sequences of the training set. In

this way, it was possible to distinguish LIP amino acids that fall out disordered regions from LIP amino acids

that fall within ordered regions. The idea is to ascertain whether there are significant differences between these

two subsets, as this could inform the training of the CNN model and potentially yield better results, as will be

extensively discussed later in this paper. Specifically, by using the information brought by AlphaFold-disorder on

RSA and pLDDT, it was possible, for each amino acid position, to identify disordered regions as follows [49]:

• to each position for which was true (RSA ≥ 0.581) ∨ (pLDDT < 0.688), a disorder label was added;

• to each position that did not fall within the case above, an ”order” label was added, identifying ordered

regions in a complementary manner.

At this point, all the labels for disordered and LIP regions were processed using a simple filter, implemented

to homogenize the regions. Specifically, the filter takes as input the binary labels and removes short LIP regions

that don’t meet a specified length criterion (by flipping each ”1” label to ”0”), while merging together close LIP

regions (by flipping each 0 label to 1), using the same length threshold. In this particular case, the length thresh-

old was chosen to be strictly less than 5. In this way, the filter removed regions that were shorter than 5 amino

acids positions and joined together LIP regions that were strictly closer than 5 amino acid positions, thus creating

uninterrupted LIP regions longer than 5 amino acids.

Finally, ProtTrans was used to generate embeddings for each protein in the LIPs dataset. Embeddings are

amino acid-based and give, for each position, 1024 numeric features made up of real numbers that are mostly

close to 0. In this way, a protein sequence with length n can generate an embedding matrix of shape n × 1024

29

(represented with a NumPy array). The Figure 2.1 shows, as an example, the distribution of the first of these

features (the values of the distribution are those taken by the feature along the entire dataset).

It is important, at this point, to point out the limitation problem related to the generation of the outputs of

AlphaFold, which consequently affects AlphaFold-Disorder. Such limitation regards the fact that AlphaFold has

a limit of 2700 amino acids per sequence [47]. Therefore, in order to be able to useAlphaFold-Disorder to discern

ordered and disordered regions within the training set, it was necessary to discard some excessively long sequences.

In particular, 128 sequences were excluded from the training set, corresponding to 1.23 % of the total dataset.

The alternative idea of cutting sequences to not exclude any proteins would have led to potential problems in

the reliability of the outputs, since AlphaFold relies on complete sequences to generate its outputs. Complete

sequences, as already seen in the introduction chapter, are essential to determine the final structure and thus its

properties and this is why it was inevitable to exclude some too long sequences.

Figure 2.1: 100 bins histogram showing the distribution of the first of the 1024 features; it can be seen that, even with
the presence of some outliers, the values are more or less centered on zero and that the distribution, seems to be roughly
symmetric, with a mean close to zero. The distribution of the other features is analogous, which is why, by arbitrarily
choosing the first feature, it is possible to say that the distribution shown here is representative for the whole group of
features.

30

Exploratory Data Analysis

This subsection is dedicated to EDA, an important step, with the aim of starting to learn about the data, iden-

tifying problems, properties and patterns, in order to correctly select the models and their characteristics. This

fundamental stage ensures a robust foundation for the formal modeling part of the pipeline, allowing a decision-

making process that is consistent with both the scientist’s purposes and the inherent properties of the data. In

particular, this subsection shows some descriptive statistical analyses and some data visualizations, talking about

features and problems of the data from a biochemical point of view.

Starting from the source dataset, that is the MobiDB derived LIPs, it is possible to identify a total number of

228328 rows (of which 6 contain missing values) and 6 columns, explained below:

• acc, containing the UniProt IDs for 8278 proteins;

• feature showing the evidence-feature-source triplet, i.e., a system that indicates the quality of the annota-

tion, the type of annotation, and the origin of the annotation (more information about this labeling on

the MobiDB help section [40]);

• start..end containing the coordinate of the LIP regions on the protein sequence;

• content_fraction and content_count, i.e., the relative and absolute numbers (respectively) of residues

annotated with a specific feature over the length of the protein sequence (i.e., the number LIP residues on

the total number of amino acids);

• length, that is the total length of each sequence;

As also stated by the MobiDB website, the coverage of this dataset is 7.1 %; the very first information that

is possible to notice from this percentage is that the dataset is very imbalanced. Thus, according to FLIPPER

predictions, LIP regions are relatively uncommon within proteins. To further analyze this aspect, the fraction

of amino acids with LIP character within all proteins in the dataset was calculated, in order to determine the

distribution of the percentage of protein sequences responding to the property of LIP, shown in Figure 2.2. In

the plot it is shown how 80.28 % of the LIP sequences are located in the first quartile of the distribution, proving

that, in about 4 out of 5 cases, LIP regions constitute a portion which is less than or equal to 25 % of the total

sequence of the protein in the dataset.

31

Figure 2.2: Relative distribution of LIPs’ fraction in the protein sequences of the MobiDB derived LIPs dataset; the 25 bins
histogram highlights the fact that the vast majority of the LIPs actually represents a very small portion of the proteins,
with 25 % of the smallest LIPs consisting of 80.28 % (i.e., 6152 elements) of the total sequences and 75 % of the largest
LIPs consisting of 19.72 % (i.e., 1.511 elements) of the total sequences. Thus, it is possible to see that 80.28 % of the
sequences are located in the first quartile,Q1, of the distribution shown in this plot.

LIPs Separation Analysis

As can be seen in Figure 2.3, LIP regions that fall within ordered portions of the proteins are in the minority,

with a number of 3872 (i.e., 28.31 % of the total regions) and an average length of 9.20 amino acids; on the other

hand, LIP regions that fall within disordered portions of the protein, in clear majority, are 9803 (i.e., 71.69 %

of the total), with an average length of 18.92 amino acids. There are two immediate observations from these

results. Firstly, the fact that disordered LIP regions are in the majority is in line with the definition of LIP as

a linear peptide mostly located within disordered regions and capable of establishing interactions; however, the

amount of LIP regions within ordered portions of the proteins is symptomatic of the fact that such structures

may also regularly lie within structured portions with more defined folding (assuming, of course, the reliability

of both FLIPPER and AlphaFold-Disorder data). Secondly, It is easy to notice the significant difference in length

between the two sets of LIP sequences. This could be justified by two different scenarios:

1. distinct LIPs exist within ordered regions; in this case it is possible that such regions might show peculiar

32

structureswith peculiar amino acid compositions in order to exist in such ordered protein portions or that

the ordered regions containing LIPs are actually regions with low levels of order that allows the presence

of short LIPs;

2. the ordered LIP regions identified are not distinct LIPs, but they are rather regions belonging to LIPs that

possess most of their sequence in disordered regions, but which overrun into ordered boundary regions.

In both cases, it is important to consider and study this separation more in detail, since the final prediction of

the CNNmodel will be amino acid-based and, therefore, it is important to help the model discriminate between

amino acids belonging to disordered regions and amino acids belonging to ordered regions. This is why it is worth

exploring further the separation between disordered and ordered LIP regions, in order to better visualize and deal

with it. For this purpose, two distinct dimensionality reduction techniques were used, i.e., Principal Component

Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE), with a silhouette score evaluation

for the separation of ordered and disordered LIPs’ embeddings. The first one was used to reduce dimensionality,

while the second one to check for data separation, both in terms of disordered and ordered LIPs, and in terms of

the tendency of individual embeddings to form distinct clusters. The separability is quantified using a silhouette

score.

33

Figure 2.3: Absolute distributions of the grouped LIPs sequences; in soft blue, LIPs that fall within disordered regions (with
an average length of 18.92), represented with a 30 bins histogram; in pink, LIPs that fall within ordered regions (with an
average length of 9.20), represented with a 30 bins histogram (with α = 0.6); x‐axis values are absolute length values. It
is easy to observe the difference in the amount of sequences and the average for the two groups of LIPs, even if the two
distributions seem to be comparable in terms of shape.

Principal Component Analysis

PCA is a statistical method for reducing the size of a dataset by taking the number of features to an lower

number, generating the so-called principal components, i.e., a few linear combinations of the original variables

that maximally explain the variance of all the variables [58]. PCA operates in real or complex vector spaces that

posses an inner product, performing an orthogonal linear transformation of the coordinate system in order to

maximize the variance on the first coordinate (i.e., the first principal component) by some scalar projection of the

data [59]. Therefore, the first principal component is required to have themaximum variance possible and, under

the constraint, the second component is calculated to be orthogonal to the first component [60].

Formally, given the matrixX ∈ MI×J(F) (i.e.,X is a matrix with I ∈ N rows and J ∈ N columns with entries

in the field F), representing the dataset table, by denoting the individual variables ofX as xj∀j ∈ {1, ..., J}, such
that, all the xj are in a I-dimensional vector space on the field F, then the PCA transformation t is defined as a

34

linear combination of such vectors [61]:

t =
J∑

j=1

wjxj (2.1)

for some vectorsw1, ...,wj ∈ F1×I. Since the vector t is a linear combination of the xj, it belongs to the same vector

space and, thus, it is possible to use the matrix notation to write t = Xw, such that w = (w1, ...,wj) [61]. The

variance contained in thematrixX is relevant to the problem and, therefore, it is important to transfer as much of

this variance as possible to t, thus providing (in the case where the variability of t is appreciable) a good summary

of the xj variables; in this context, the maximization problem is expressed as follows [61]:

argmax
||w||=1

Var[t] = argmax
||w||=1

t⊤t = argmax
||w||=1

w⊤X⊤Xw (2.2)

where it is assumed that thematrixX ismean-centered and, accordingly, all linear combinations aremean-centered

as well. The formulation briefly presented here can adapted for the extrapolation of both the first components

and the other components of the PCA transformation [60, 61].

t-Distributed Stochastic Neighbor Embedding

t-SNE is an unsupervised non-linear algorithm, used for data exploration through dimensionality reduction,

firstly introduced as ”stochastic neighbor embedding” by Geoffrey in 2003 [62] and further developed to be the

currently utilized t-SNE by Van der Maaten et al. in 2008 [63]. These authors were able to develop a technique

which is very popular today for visualizing high-dimensional datasets in a lower dimensional space. The mathe-

matical idea behind t-SNE is based on the steps presented below.

Step 1: Similarity Probabilities Calculation in High Dimension

t-SNEstarts by calculatingprobabilities that represent similarities betweenpoints in theoriginal high-dimensional

dataset [62, 63]. Formally, for eachpair of points xi and xj, in the set of highdimensional pointsX = {x1, ..., xn|n ∈ N},
t-SNE computes a conditional probability pj|i that represents the probability of xi choosing xj as its neighbor (it

can be interpreted as a measure of dissimilarity), if other neighbors were picked based on a Gaussian probability

distribution centered on xi; the conditional probability pj|i is defined as [62, 63]:

pj|i =
exp (− ||xi−xj||2

2σ2i
)∑n

k=1
k̸=i

exp (− ||xi−xk||2
2σ2i

)
(2.3)

where ||xi − xj||2 is the squared Euclidean distance between xi and xj, and σi is the standard deviation of the

Gaussian centered on xi. The aim of t-SNE is to optimize σi for each point xi.

35

Step 2: Similarity Probabilities Calculation in LowDimension

For each pair of points in the low-dimensional map yi and yj, t-SNE calculates similar probabilities, but using

this time a t-Student distribution with one degree of freedom, instead of the Gaussian, for extrapolating condi-

tional probability qij (this provides a distribution with heavier tails) [62, 63]:

qij =
exp (−||yi − yj||2)∑n
k=1
k̸=i

exp (−||yi − yk||2)
(2.4)

Step 3: Minimizing the Kullback-Leibler Divergence

The aim of t-SNE is to minimize the Kullback-Leibler (KL) divergence between the two probability distribu-

tions P (in high dimensionality) and Q (in low dimensionality), in order to preserve local structures while also

revealing global structures [62, 63]:

KL(Pi||Qi) =

n∑
i=1

n∑
j=1

pij log
pij
qij

(2.5)

The minimization is usually performed using gradient descent and the result is a low-dimensional map that re-

flects the similarities between points in the most reliable way possible compared to the original high-dimensional

dataset [62, 63]. Therefore, t-SNE transforms Euclidean distances into similarity probabilities, while keeping

local closeness through a cost function based on KL divergence and using a t-Student distribution to compute

low-dimensional probabilities.

Separation Analysis

As mentioned before, for datasets with a large number of features, it is necessary, before proceeding with a

t-SNE, to apply a dimensionality reduction technique, whichmay vary depending on the sparsity of the data [64].

Since the training dataset embeddings’ sparsity (measured as the ratio of zero positions to total positions within

embeddings) is less than 10−3 % and considering also the large number of features brought by the embedding

generation process (i.e., 1024 embedding features), the use of a PCA before t-SNE was necessary to reduce such

a high number of features, in order to suppress noise as much as possible and speed up the process of calculating

distances between examples operated by t-SNE [64]. The best parameters’ set were chosen through a grid-search,

in an attempt tomaximize the silhouette score, which gives a numeric value for evaluating in a quantitativemanner

the magnitude of separation between ordered and disordered LIP regions. Silhouette score is a coefficient used

for quantifying the magnitude of separation between two groups of points, which is calculated for each example

36

in the points dataset as follows [65]:

S =
(b− a)

maxR(a, b)
(2.6)

where a is the mean intra-cluster distance for each sample, while b is the mean nearest-cluster distance for each

sample (i.e., the distance between a specific given sample and the nearest cluster that the sample is not a part of).

The S value is in [−1, 1]R, where 1 indicates the best separation, 0 indicates adjacent clusters with boundaries that

match, and−1 indicates perfectly overlapping clusters [65].

The implementations of silhouette score, PCA and t-SNEused in this project were all provided by Scikit-learn,

while the grid-search was manually implemented for optimizing the following parameters: number of compo-

nents for PCA and perplexity, learning rate, early exaggeration, and number of components for t-SNE. Finally,

other parameters were left with their default values. Following the Scikit-learn user guide [66, 66], it is possible to

explain the parameters chosen for the grid-search:

• the PCA number of components is the number of principal components, i.e., how many new variables

there are in the output; for high dimensional data with low sparsity a reasonable value of principal com-

ponents suggested by the Scikit-learn guide is of 50;

• t-SNE number of components corresponds to the dimension of the embedded space, that is, even in this

case, the number of new variables in the output;

• t-SNE perplexity is related to the number of nearest neighbors used in other learning algorithms and it is

usually larger for larger datasets, still remaining smaller in value than the number of examples of the input;

the Scikit-learn guide suggests here to keep the value of the perplexity between 5 and 50;

• t-SNE early exaggeration determines the compactness of natural clusters from the original space within

the embedded space, as well as the amount of space that will separate them. With higher values, the dis-

tance between natural clusters in the embedded space will be greater; the choice of this parameter is not

considered critical;

• t-SNE learning rate influences the learning speed; the user guide suggests to keep it between 10 and 1000;

a too low learning rate value, causes the majority of points to appear compressed within a dense cloud,

with a few outliers.

Following these instructions, the number of principal components of PCA was determined by exploring the

positive values under 50, while the dimension of the t-SNE embedded space was kept on 2; the perplexity value,

considering the between 5 and 50, suggested by the user guide, and considering also the big size of the dataset, was

searched slightly below 50; the early exaggeration value was searched between 24 and 36. This specific choice was

37

arbitrary, since the user guide lacks of suggestions, but also considering the low importance in the right choice of

this parameter; finally, the learning rate was kept low, in order to ensure a good learning process, but not too low,

so as to avoid an excessive compression of the data points, thus the explored values were above 10, but below 500.

After the grid-search process the final selected values were 15 principal components, 50 for the perplexity, 36 for

the early exaggeration, and 250 for the learning rate, getting a final silhouette score of 0.0041, which indicates that

the two groups are very close, with almost overlapping boundaries; it is not easy, indeed, to discern the two LIP

groups. The plot derived from the combination of PCA and t-SNEused in combinationwith the grid-search best

parameters’ set is shown in Figure 2.4. In this plot, two different clustering patterns are evident, with disordered

LIPs that tend to formmore compact clusters and ordered LIPs that present instead amore scattered distribution,

often forming a kind of ”satellite cloud” around the more compact clusters of ordered LIPs. Also, the plot shows

the formation of a number of quite distinct structures that this type of approachwas able to isolate andwhichmay

find their reason in other LIP characteristics, which are, however, beyond the main scope of this paper, but that

could find interesting applications in additional studies aimed at refining techniques for predicting LIP regions.

38

Figure 2.4: Bidimensional plot followed by PCA and t‐SNE dimensionality reductions steps. Ordered and Disordered LIPs
were labelled to highlight the grouping (with ordered LIP positions in light blue and disordered LIP positions in pink). The
silhouette score value for this plot is 0.0041. The plot shown here is a good example for describing the complexity of the
problem addressed in this project.

39

LIPs Coverage Analysis

Coverage analysis for each LIP sequence was able to identify regions with no actual interactions and regions

with extremely few interactions, allowing their elimination from the set of the positives. In order to help this

process, a coverage distribution plot has been made Figure 2.5. This plot seems to have a reduced, but not absent,

symmetry, with the most common coverage values being around the ”middle part” of the curve, which shows an

average of 50.27%and a standarddeviationof 23.44%. Considering this fact, a specificnumber of labels belonging

to low coverage LIP sequences was discarded, by flipping their labels to from ”1” to ”0”. This choice allowed to

reduce the amount of low coverage regions, with the aim of also reducing overfitting by directly affecting false

positive examples. For this project, inorder tokeep a conservative approach,while ensuring that all valueswith very

low levels of interactionwere eliminated, an arbitrary coverage threshold of 10%was chosen (such threshold allow

to consider all values below the percentile 3.5 on the data distribution considered in Figure 2.5), so as to discard

LIP regions in which fewer than 1 in 10 amino acids establish interactions. In this way, it was possible to find a

total of 341 sequenceswith a coverage low than 10%, ofwhich 224were regionswith a coverage of 0%, i.e., regions

without any interaction. Although it was important to remove these LIP regions to ensure better accuracy for the

classification models, it is also important to consider the fact that the removed sequences correspond to 3.36 % of

the total LIP sequences. For this reason, this step should improve performance and reduce overfitting, without,

however, being decisive for the quality of the accuracymetrics. Additional studies in this specific field could focus

on analyzing results from applying a higher coverage threshold for choosing which sequences to retain among the

positives, trying to maximize accuracy metrics during the model training process. However, this passage must be

performed carefully, because applying too high threshold values could lead to a rapid degradation in the quality

of the final results, ending up discarding true positive LIP regions in a dataset that is already highly unbalanced.

40

Figure 2.5: 15 bins histogram showing the distribution of the coverages within the LIP regions of the dataset. By looking at
this distribution, it is possible to see that there is no prevalent amount of low coverage values.

41

2.1.2 Exploratory Data Analysis Insights

Now, it is possible to draw some conclusions from the results of this EDA. The thing that can be immediately

noticed is the complexity of the data of the training dataset, which shows a high unbalance, with LIP regions

that show a number of hidden features that allows the organization in distinct subgroups (as seen in the PCA/t-

SNE plot). At the same time, it is important to take into account the presence within the dataset of LIP regions

identified as positive examples, even though they present very low (or zero) levels of interactions. Furthermore,

it appears that ordered and disordered LIP regions have some separation in their embeddings, a phenomenon

that reflects a separation in terms of structural and functional characteristics. Consequently, when building the

predictive model, the separation between LIP amino acids that fall into ordered regions and LIP amino acids

that fall into disordered regions will be taken into account. Furthermore, coverage analyses might suggest the

presence of unreliable positive examples, possibly recognised as false positives by FLIPPER. This aspect is of great

importance in the evaluation phase of themodel, since can affect the positive examples identification ability of the

model.

2.1.3 The Test Datasets

In this project two distinct datasets were used to test the CNNmodel predictive ability and the limits in the LIPS

classification task. The first one is the TE440 dataset, while the second one is the CAID Binding dataset, which

was already introduced in the previous chapter. Both datasets contain manually curated protein sequences in

which the LIP binary labels for each amino acid position are provided. These test datasets were used after the

completion of the training and validation steps for the model, in order to conduct a final test of its capabilities on

real, curated, and reliable data that the model had never seen before.

It is important tomention that these two datasets differ and respond to different tasks. As shown below, while

the TE440 dataset contains labels of LIP regions in proteins, the CAID Binding dataset contains labels on amino

acids that perform general interactions and are exclusively located within disordered regions. Therefore, the latter

is a slightly different dataset than the TE440 dataset, which contains information on linear peptides that perform

interactions, i.e., a subcategory of binding regions, which are also predominantly located in disordered regions,

being, however, also present in ordered regions, as was seen above. On the other hand, the CAID binding dataset

shows no information about binding regions in ordered sequence portions, while assigning positive labels to all

binding amino acids in disordered regions, whether they are LIP regions or otherwise. In this way, the CAID

Binding dataset leaves out some useful information to the goal of this project (i.e., ordered LIP regions binding

labels), while at the same time introducing some not useful information (i.e., disordered non-LIP region binding

labels). However, although the task related to the CAID Binding dataset is different than the one proposed by

this project, it can still be of great utility to evaluate the performance of the model on this dataset as well, as will

42

be seen in the section discussing the results. This is because it was very important, considering the complexity of

this problem, to put into context the results obtained during the model evaluation steps, which are predictably

lower in terms of performance when compared with those obtained on the TE440 dataset.

TE440 datatest

The TE440 dataset was built using the manually curated LIPs that can be found on MobiDB [17]. The file

is provided in TXT format, with groups of three lines, in which the first line shows the UniProt identifier of

the protein, the second line the protein sequence, and the third line the binary labels for each amino acid in the

sequence. The latter was used as target variable for themodel in the test phase. TheTE440 dataset contains a total

of 259063 negative amino acid positions (96.04 % of the total positions) and 10687 positive amino acid positions

(3.96 % of the total positions). The distribution of the sequence coverages (in terms of LIP positions content) is

shown in Figure 2.6.

Using the same procedure seen above, sequence embeddings for these proteins were calculated with ProtTrans

and added to the test set for each amino acid position. Even in this case, it is important to discuss a limitation

problem, which affects, in this case, the GPU used to run ProtTrans when computing sequence embeddings.

Indeed, a limit of 4000 amino acids was imposed for the length of the sequences, so that the process could be

completed without error. This problem did not affect the training dataset, since proteins longer than 2700 amino

acids had alreadybeendiscarded to allowaproper executionofAlphaFold-Disorder. However, theproblemaffects

the test set, from which it was unfortunately necessary to delete 4 protein sequences (corresponding to 0.91 % of

the total test dataset):

• the dystonin protein (UniProt ID Q03001), with a sequence length of 7569 amino acids;

• the histone-lysine N-methyltransferase 2D (UniProt IDO14686), with a sequence length of 5536 amino

acids;

• the E3 ubiquitin-protein ligase HUWE1 (UniProt ID Q7Z6Z7), with a sequence length of 4373 amino

acids;

• the DNA-dependent protein kinase catalytic subunit (UniProt ID P78527), with a sequence length of

4127 amino acids.

Even in this case, as discussed above for AlphaFold-Disorder, it was not possible to avoid excluding such se-

quences, since complete sequences are essential to get reliable embeddings.

43

Figure 2.6: 25 bins histogram showing the distribution of the coverages within LIP regions of the TE440 dataset. By look‐
ing at this distribution, it is possible to see that there is a prevalent amount of low coverage values.

CAID Binding dataset

The CAID Binding dataset is composed of 78 protein sequences, providing, in the same format shown above for

the TE440 dataset, a FASTA file containing DisProt IDs, complete protein sequences and binary labels for each

protein; in this dataset positive examples are sequences that establish interactions and are locatedwithindisordered

regions [55]. The CAID Binding dataset contains a total of 54568 positive amino acid positions (86.94 % of the

total positions) and 8196 negative amino acid positions (13.06 % of the total positions). The distribution of the

sequence coverages (in terms of LIP positions content) is shown in Figure 2.7.

The same procedure described above was used here to add embeddings for each amino acid position in this

dataset. Also, even in this case, it was necessary to delete 1 protein sequence for the embedding calculation (corre-

sponding to 1.30 % of the test set), due to the 4000 length limitation. The deleted protein is the replicase polypro-

tein 1a (UniProt ID P0DTC1), with a length of 4405 amino acids.

44

Figure 2.7: 25 bins histogram showing the distribution of the coverages within LIP regions of the CAID Binding test
dataset. Again, as was seen for the TE440 datasets, it is possible to see that there is a prevalent amount of low coverage
values.

2.2 Models
This section is dedicated to discuss in detail the convolutional neural networkmodel used for this project to classify

LIP regions. The chapter provides several theoretical concepts, related to Convolutional Neural Networks and

to deep learning in general, showing the logic behind them and their main features. The section continues with a

section dedicated to explain the data preparation for the model and a section presenting and discussing the CNN

model proposed for LIPs classification.

The specific characteristics of the data thatwere used as input for the binary classification task of predictingLIP

amino acid positionswithin protein sequences justifies the decision to use aCNNmodel. CNNs, as it is explained

below, aremostly known for their ability toworkwith images and, by drawing a parallel with the domain of image

analysis, it is possible to see whole protein embedding sequences, which are bidimensional arrays of numbers, as

single channel (i.e., monochromatic) images. As with pixels in a regular image, embeddings are related to each

other, since every embedding is made in a way that takes into account the specific position of an amino acid

relative to its chemical surround in the folded protein. From this perspective, the choice of using a kernel-based

45

convolutionmechanism, typical ofCNNs, becomes clearer, bypursuing the idea of leveraging the ability ofCNNs

to capture and interpret local patterns in the inputs that can also occupy very small spaces within the input, as is

the case, for example, in tasks of recognizing small details within large and complex images.

2.2.1 The Convolutional Neural Network

Convolutional neural networks (CNNs) are a class of deep learning algorithms that are mostly used for grid-

structured data processing tasks, with an architecture that makes them particularly well-suited for tasks involving

time series (as one dimensional grids), images (as a two dimensional grids) and videos (as three dimensional grids)

[67, 68, 69]. CNNs have been enormously successful in recent years, with vast fields of application and are par-

ticularly well-known for their contributions in computer vision and general image processing [70, 71, 72, 73, 74].

This section is dedicated to introduce the main concept of these networks, presenting the general idea behind

CNNs and explaining the functioning of their architecture through some important basic notions, with a partic-

ular focus on kernel and convolution concepts.

ConvolutionOperator

In its general form, convolution is a mathematical operation, denoted with the sign ∗ and performed on two real-

valued functions, resulting in a third real-valued function; given x,w : R → R [75]:

s(t) = (x ∗ w)(t) =
+∞∑

a=−∞
x(a)w(t− a)∀t ∈ Z (2.7)

s(t) = (x ∗ w)(t) =
∫ +∞

−∞
x(a)w(t− a)da∀t ∈ R (2.8)

where, in CNNs terminology, x (or, more in general, the first argument) is called input, w (or, more in general,

the second argument) is called kernel, and the output is called featuremap. While equation 2.8 is for continuous

signals, equation 2.7 is for discrete signals [75].

This general convolutiondefinitionpresented abovemustbe adapted to theCNNparadigm,with somechanges

[75, 76]:

• firstly, only the equation 2.7 is actually used for computer science applications, where discretization hap-

pens;

• secondly, the CNN paradigm requires the convolution operator to be applied to tensor objects (which

have the form of multidimensional arrays), thus transforming the infinite sums to finite sums of tensor

46

entries, by assuming that the convolution is zero everywhere outside the finite set of points for which the

values are stored, getting in this way finite sums of finite arrays entries;

• finally, convolution operator can be used on more than one axis at a time (as happens, for instance, in the

case of two dimensional kernel used on image inputs).

With these premises, the CNN’s two-dimensional kernel convolution is defined as follows [75]:

S(i, j) = (I ∗ K)(i, j) =
m∑
i=1

n∑
j=1

I(i−m, j− n)K(m, n) (2.9)

where S is the CNN convolution,K is the kernel, I is the input and the two sums represent the kernel application

along two distinct dimensions. The output is a feature map of the input that is able to highlight specific local

aspects of it, like edges and corners in convolutional image processing [75].

It is important to point out the fact that, for performance efficiency reasons, in many neural network libraries

(includingPyTorch,which is the library used for this project) the convolution is implemented in a slightly different

form, i.e., the cross-correlation form for two dimensional kernels [77]. Therefore, the convolution operation

becomes a discrete matrix multiplication [75, 76]:

S(i, j) = (I ∗ K)(i, j) =
m∑
i=1

n∑
j=1

I(i+m, j+ n)K(m, n) (2.10)

This form is the equivalent to the convolution shown above, but without flipping the kernel, giving, in this way,

the ability toCNNs to be able to learn the proper kernel values in the proper place in an invariantwaywith respect

to the flipping; thus, a model with kernel flipping is able to learn a kernel that is flipped in comparison to a kernel

learned by a model without kernel flipping [75].

The architectural concept of CNN kernel is at the heart of CNNs and draws inspiration from images prop-

erties and from the organisation of the animal visual cortex neuroanatomy, where individual neurons respond

to stimuli in a limited region of the visual field, known as the receptive field [75]. The receptive field in a CNN

refers to the region in the input image that a particular CNN’s feature detector (i.e., the kernel) is able to apply,

in the sense of neural connections, enabling the network to focus on small, local features first, gradually building

up to more global and complex features, which provide CNNs their exceptional feature learning and recognition

capabilities; this specific kind of paradigm leads to three important properties of CNNs [75]:

• sparse interactions, that is the phenomenon of having a sparse connectivity due to the receptive field in-

duced by the application of a small kernel. Inputs (like, for instance images) are usually high-dimensional

collections of entries and hidden layers in traditional fully connected networks are usually larger than the

47

input size. Thus, even for a shallow network, the number of weights would be huge. This concept raises

an obvious practical problem, in terms of computational memory and time required for processing. In

this context, CNNs adopt a sparse interaction system, due to the smaller size of their kernels in compari-

son to the input. By using a kernel of a fixed small size, it is possible to process a very big input datawithout

loosing the ability to detect small meaningful features;

• parameter sharing, that is the fact of using the same parameters for more than one function in a model.

While traditional neural networks use each entry of the weight matrix exactly one time, by multiplying

it for the whole input, CNNs uses few entries of the kernel at every position of the input, reducing the

storage requirement and allowing to apply to one input a value of weight that is tied to a value of weight

applied somewhere else;

• equivariant representations to translation, i.e., a property caused by the form of parameter sharing that

allows the ability of keeping a stable interpretation of an image under translations (even if convolution is

naturally not equivariant to changes in scale or rotation).

These three concepts lead to a deep learningmodel that has a higher computational efficiency, both in terms of

memory and computational time, aswell as showingbetter statistical efficiency, being able to capture theproximity

correlation typical of the type of data for which these networks are designed (as happens, for instance, for nearby

pixels in images), while remaining also able to capture even small important features in very big inputs [75, 76].

2.2.2 Data Preparation

This section explains in detail how the data were prepared for the CNNmodel, showing techniques and strategies

used for generating input data.

The original total training dataset was split into training and validation sets, so as to provide a reliable basis

for grid-searching, with the aim to tune and optimize specific chosen hyperparameters. For the validation step,

the k-fold cross validation method was preferred over the hold-out method, since the higher reliability of the

former over the latter was demonstrated onmany tasks [78, 79]. To correctly build the dataset using a k-fold cross

validation, it was of absolute importance to take into account the fact that LIP sequences are uncommon within

proteins. Therefore, as widely shown above, the dataset contains farmore non-LIP amino acid positions than LIP

amino acid positions. For this reason, the preparation of the dataset for training and validating the CNNmodel

was carried out using a 5-fold stratified cross validation, which is a version of the k-fold cross validation that is

specialized for unbalanced datasets. This technique pays particular attention to preserve, in each fold, both an

equal proportion of positives and negatives and an equal distribution of the embedding values among the folds,

with reference to the source dataset. Also, by choosing k = 5 it was possible to ensure that the absolute number

of positive cases per each fold was not too small. To do so, the Scikit-learn Python external library was used, since,

48

as stated in the library user guide [80], its StratifiedKFold function is designed to generate folds that preserve

both the proportions between positives and negatives and to get also a distribution of the examples of the folds

that is as close as possible to the one of the source dataset.

At this point, the input units for the CNNmodel were whole sequence-embeddings arrays of shape n× 1024,

for each sequence of length n, while the CNNmodel should have generated outputs consisting in single arrays of

length n, containing binary values for labeling each amino acid position in the sequence. Considering the need

for the CNN inputs to be uniform in their sizes [76], it was necessary to deal with the variability of n, by applying

0-padding to the embedding sequences before obtaining the final input for the model. This technique allowed to

add zeros to enlarge the array to a specific maximum value, which was uniform for all the dataset. unfortunately,

because of hardware limitations, it was necessary to adopt a strategy to avoid incurring a memory error, since

the padding resulted in large data, as all sequences would be enlarged to reach the length of the longest sequence.

By setting a limit threshold of 1000 amino acids it was possible to ensure that padding did not produce inputs

with a too large size, obtaining unit input sequences no longer than 1000 amino acids and, excluding in this way,

longer than 1000 amino acids sequences. This steps removed a total of 423 protein sequences, corresponding to

the 4.85 % of the total training set. In this way, it was possible to keep a reasonable length limit without loosing

information, since all sequences larger than this threshold were discarded. When applying the 0-padding, it was

important to keep inmemory the original length of the sequence, since, when evaluating the quality of the output,

it is necessary to mask the portions of the input that do not contribute to the prediction. For this reason, masks

have been calculated for each protein sequence. Those masks are applied at the time of evaluating the output, in

order to allow the validation of only those positions that correspond to true amino acids. The last step consisted

in a batch splitting of the training and validation dataset, for avoiding memory errors feeding whole folds to the

model and to stabilize the training process by providing a more consistent estimate of the model gradient [81].

The final dataset got with this processing step consisted of 8299 proteins sequences for the training and valida-

tion set (where, for each fold, the algorithm selects 6639 proteins for the training step and 1660 proteins for the

validation step), 436 protein sequences for the TE440 test set, and 77 protein sequences for the CAID Binding

test set. The input units of these sets are padded array of embeddings with a shape of 1000× 1024.

2.2.3 Proposed CNNModel for LIPs Detection

This section finally presents the deep learning model designed for this LIP prediction binary classification task.

The model was fully implemented using PyTorch 2.1.2 (cu121) in a Jupyter Notebook environment (version

4.1.5), for a better control of the workflow during code prototyping. This section is dedicated to a meticulous ex-

planation of the structural features of themodel, proceeding then to explain in detail its functioning, the problems

related to its development, and the final chosen solutions to overcome such problems.

49

Model Architecture

The architecture of the CNNmodel is inspired by the work done by Bernhofer & Burkhard (2022) [82], which

made a CNNmodel for predicting transmembrane proteins using ProtTrans embeddings as inputs. In this case,

the authors exploited the properties of the convolution operator for a feature engineering process aimed to reduce

the dimensionality of the embedding features through the application of the pointwise convolution. Then, they

use parallel convolutions and output concatenation to discriminate distinct secondary structures in the proteins.

Following a similar line of thought, the main idea was to develop a network that was able to reduce the embed-

ding dimensionality and, then, perform distinct identification tasks for ordered and disordered LIP regions, so as

to take advantage of the separation of these two groups. All the convolutional blocks of themodel consist of a first

convolutional layer, followed by the application of a ReLU activation function (to introduce non-linearity) and a

final batch normalization layer. In particular, the CNNmodel workflow is the following (the complete diagram

of the model architecture is presented in Figure 2.8):

• the model starts with a first convolutional block that uses a pointwise convolution with kernel size 1 as

first layer;

• after the first pointwise convolutional block, there are two depthwise convolutional blocks that are placed

in parallel; both these blocks take as input the output of the previous pointwise convolutional block, using

a kernel size of 9 and 19, i.e., the average length of the ordered LIP regions and the disordered LIP regions,

respectively [82];

• at this point, the outputs of the three distinct convolutional blocks (the pointwise one and the depthwise

two) are concatenated together;

• a dropout with a probability is applied;

• finally, a last plain pointwise convolutional layer is applied to the concatenated results for generating the

output.

During the execution of the model, a masking of the 0-positions added with padding is used for taking into

account only the real amino acid positions during the calculation of the loss and the evaluation metrics. The

specific architecture and workflow features of the model presented above are discussed in detail below.

Weight Initialization

The weights for the three convolutional layers were initialized using a Xavier uniform initialization, which is a

state-of-the-art technique commonly used for initializing weights and presented byGlorot&Bengio in 2010 [83].

The main idea of this technique is of taking into account the number of input and output units of each layer

50

for establishing the size of the random initialization, allowing both activations and gradients to flow efficiently

throughout the forward- and back-propagation phases [83, 84, 85].

In this project, the Xavier initialization is provided by PyTorch [86], in which the input tensor is filled with

values sampled using a Xavier uniform distribution U(−a, a), where:

a = gain×
√

6
fan_in+ fan_out

(2.11)

with gain being an optional scaling factor, while fan_in being the number of input signals that feed into the layer

and fan_out being the number of output signals that come out of the layer, respectively. The way in which the

Xavier uniform initialization is defined allows to maintain the variance across layers during the training of the

model, allowing a good information flow through the network and preventing the gradient from becoming too

large or small, reducing, in this way, the risk of incurring in exploding or vanishing gradients [87].

Pointwise Convolution

Pointwise convolution is a special type of convolution, which uses a kernel of size equal to 1 [88]. This kind of

convolutional layer is used twice in this project. Thefirst pointwise convolution is usedwith the aimof engineering

the embedding features, by reducing them from 1024 to a lower number (decided by the results of a grid-search).

The second use of this convolution is at the end of the model, where it combines the outputs for each of the three

previous layers (Figure 2.8), generating in this way the binary scores for each of the two classes.

Depthwise Convolution

Depthwise convolution is a convolutional layer that applies a bidimensional kernel to each channel indepen-

dently, preserving, in this way, individual feature informationwithin each channel, while reducing computational

cost compared to standard convolution and generating slidingweighted sums for each dimension [89]. In the case

of this project, two parallel depthwise convolutional layers (as can be seen in Figure 2.8) with kernel sizes of 9 and

19were used, respectively corresponding to the average length of order LIPs and disordered LIPs. The input chan-

nels for these depthwise convolutional layers are the size-reduced feature embedding outputs of the first pointwise

convolution.

Optimizer and Regularization

The chosen optimizer for this model, i.e., the AdamW algorithm, is a stochastic optimization method that

modifies the classic weight decay implementation of the Adam optimization algorithm [90]. Before exploring

AdamW algorithm, it is important to provide an appropriate introduction to the Adam algorithm, on which

AdamW is based.

51

The Adam algorithm (whose name derives from ”adaptive moments”) [91] is an optimizer that follows the

main idea of combining the properties of momentum and RMSProp [92], adjusting the learning rate using dif-

ferent parameters from estimates of first and second moments of the gradients and correcting (using bias) first

and second-order moments, due to their initialization at the origin, ensuring accurate updates from the begin-

ning [91]. The weight update at time step t ∈ N from the parameter θt−1 to the parameter θt are performed as

follows [91]:

θt = θt−1 − η
m̂t√
v̂t + ε

(2.12)

With η being the learning rate, ε a number representing a small quantity to prevent zero division, and β1 and β2
forgetting parameters. In this context, m̂t and v̂t are the first and second order moments, respectively, obtained

as follows. Considering the loss function J, the update equations for biased first moment estimate mt and bias-

corrected first moment estimate m̂t is:
mt = β1mt−1 + (1− β1)∇θJ(θt)

m̂t =
θt

1− βt1

(2.13)

while, the update equations for biased second raw moment estimate vt and bias-corrected second raw moment

estimate v̂t:
vt = β2vt−1 + (1− β2)∇θJ(θt)2

v̂t =
vt

1− βt2

(2.14)

where∇θJ(θt)2 = ∇θJ(θt)⊙∇θJ(θt).

The AdamW algorithm is based on the idea that L2 regularization (i.e., the weight decay) is not effective in the

Adam algorithm, proposing thus a decoupled weight decay as a more efficient alternative that improves regular-

ization. This different implementation separate the weight decay from the optimization steps [90]. In particular,

AdamW adjusts the equation 2.12 its weight decay term to appear in the gradient update [90]:

θt+1,i = θt,i − η
(

m̂t√
v̂t + ε

+ λθt,i
)

(2.15)

where λ is the weight decay coefficient, applied directly to the parameters θt, alongside the adaptive learning rate

update. This modification allows for a more consistent and effective implementation of L2 regularization; by

correcting the integration of weight decay, AdamW often achieves better generalization performance compared

to the traditional Adam optimizer, especially in complex models and datasets [90].

52

For the purpose of this project,L2-regularization plays an important role, since the stability of theCNNmodel

was an essential part of the implementation (as will be discussed later in the paper). For this reason, it was decided

to test both Adam and AdamW, in order to choice the best one in terms of regularization performance.

Loss Function

Before starting to talk about the loss function, it is important to introduce the important concept of cross-

entropy. Cross-entropy is defined as a measure of the difference between two probability distributions P and Q

over the same set of events X, defined as follows [93]:

H(P,Q) = −
∑
x∈X

P(x) logQ(x) (2.16)

where P(x) is the probability of the event x. Cross-entropy function is widely used as a loss function in machine

and deep learning and corresponds to the multinomial logistic loss applied to the outputs of a neural network,

when the softmax is used, allowing in this way to address the difficult computational problem of directly mini-

mizing the zero-one classification loss [94].

In particular, for a classification problem with C classes, the cross-entropy can be used as a loss function as

follows[75]:

H(y, ŷ) = −
C∑
c=1

yc log ŷc (2.17)

where y is the actual distribution of the labels, that can be represented as a one-hot encoded vector yc with a 1 in

the correct class entry position, and zero in all the other positions, while ŷ is the predicted probability distribution

over classes, with ŷc being the probability of class c.

In the special case in which C = 2, the formula becomes [95]:

H(y, ŷ) = −y log (t̂)− (1− y) log (1− ŷ) (2.18)

The loss function used in this project is the Binary Cross-Entropy (BCE), using the BCEWithLogitsLoss Py-

Torch implementation. Asmentioned in the official documentation [96], this particlar implementation integrates

the BCE into a sigmoid function, in order to provide a version with a higher numerical stability.

Batch Normalization

Batch normalization is used to ensure stability and consistency to the model during the learning process, ac-

celerating it by addressing the problem of internal covariate shift [97]. This issue occurs when the distribution of

53

each layer’s input changes during the training phase, slowing down the convergence. With batch normalization

the batch statistics are used to adjust the activations of each layer [97]. In the case of this project, the PyTorch 2D

batch normalization for an input x to generate an output y used the expected valuesE and the variance Var of the

input, calculating the normalization as follows [98]:

y =
x− E[X]√
Var[x] + ε

· γ+ β (2.19)

where γ and β are learnable parameters with the same size of the input x, while ε is a constant, which is added to

the batch variance for numerical stability. In an effort to maximize the quality of the results, batch normalization

was put after ReLU (Figure 2.8) [99].

Activation Functions

The activation function used in this project is the Rectified Linear Unit (ReLU), a very important activation

function, widely used in many neural network architectures due to its simplicity and efficiency. Such function is

defined as [100]:

ReLU(x) = max
R

{0, x}∀x ∈ R (2.20)

Thanks to this definition, it is possible to activate a neuron only if its input is strictly positive, setting to zero all

negative values, introducing in this way non-linearity and allowing the network to quickly learn complex patterns

while mitigating the gradient problems that are typical of other activation functions [100].

Another activation function is the sigmoid, used at the end of themodel, before the output, but right after the

application of the binary cross-entropy loss function. The sigmoid function σ : R → [0, 1]R is defined as follows

[75]:

σ(x) =
1

1+ e−x ∀x ∈ R (2.21)

Considering the codomain of the function and its trend, the importance of this function in the context of neural

networks is evident, since it maps input values in the range between 0 and 1, thus allowing the output to be in-

terpreted as probabilities, making this function ideal for binary classification tasks, contributing also to introduce

non-linearity into the network, to enhance learning of complex relationships between inputs and outputs [75].

This function was for generating probability scores which, when rounded to unity, provided a list of binary labels

useful for classifying LIP nad non-LIO amino acids.

Dropout

54

The dropout layer was placed at the end of the model. The dropout technique transforms into zeros random

feature channels in order tomake themodel to better generalize, by imposing the deactivation of a random subset

of neurons in the network, including their incoming and outgoing connections, during the training phase, mul-

tiplying the output of each neuron by a binary mask [101]. The aim of this deactivation is to force the model

to learn a more robust set of features that are not based on a too small set of neurons, introducing in this way a

redundant representation of the data that lead to a more distributed learning process for enhancing generaliza-

tion [101]. With such an approach, it is possible to emulate a large ensemble of networks with shared weights

and slightly different architectural configurations, reducing in this way the sensitiveness of the overall network to

specific characteristics of the training data [101].

CNNModelWorkflow

The model described above generates per-residue predictions for each input sequence of length n, generating a

binary-valued array of the same length n, after masking the padded entries.

Before starting the execution of the model code, a specific numerical seed was set of 4 for each randomness

point within the code. A fixed random seed ensures the reproducibility of the code, avoiding instability in results

due to randomness, ensuring, in this way, the consistency needed to be able to repeat the execution of the code.

This is important, since it makes possible to verify the results, comparing the performance of different models,

and obtaining a baseline to be able to properly debug the code.

The CNNmodel underwent a stage of grid-search, for evaluating the best set of hyperparameters to use in the

final version. This tuning process focused on two specific parameters, the size of the batches, inwhich the training

and validation sets are split, and the number of channels for the output of the first pointwise convolution layer

used for features reduction. The grid-search was manually implemented with the aim to maximize the F1-score

and allowed to select the following parameters: a reduction from 1024 to 512 of the features by the pointwise

convolution and a batch size of 16.

The final model was trained for 50 epochs for each fold. The number of epochs was imposed so as to obtain

a set with an equal number of loss values and metrics for each fold. For this reason, a canonical early stopping

function was not usable, but rather the number of epochs was chosen such that it would guarantee that the loss

function of all folds would simultaneously give delta values that were less than a certain fixed threshold for the last

consecutive n epochs. This approach emulates a delta and a patience mechanism canonical implementation in a

more elaborate way, ensuring both an equal number of epochs for each fold and the convergence of the models

for each fold above a certain threshold. In general, it is important to keep the same number of training epochs

for each fold, in order to ensure comparability. In this case, the chosen patience and delta thresholds, were of 5

epochs and 10 ∗ −2, respectively. This decision was imposed by the limitations of the computational resources

55

available to train the model, which would have required too much time to train the model for a larger number

of epochs, considering also the need to complete many other computational resources-demanding steps, such as

grid-searches on PCA and t-SNE, but also the two distinct 5 fold stratified cross-validation grid-searches on the

final CNN model, one for finding the best hyperparameters set for model stability (in the regularization phase),

while the other for finding the best hyperparameters set for the best performance (in the canonical tuning phase).

The time required to complete all this tasks and also the training of such a demandingmodel would not have been

compatible with the deadline demands of this project. Despite this important limitations, the idea of imposing a

manual stopping threshold of 50 epochs was able to guarantee a satisfactory level of loss convergence, as it will be

seen in the next chapter.

56

Figure 2.8: Representative diagram of the architecture of the CNN model used in this project; on the left, it is possible to
observe the structure of each convolutional block, which include a convolutional layer, a layer where the ReLU activation
function is applied, and a final batch normalization layer; on the right, it is possible to see the overall structure of the CNN
model, where the two parallel layers and the first pointwise convolution layer can be appreciated.

57

The Stability Problem

The initial steps of the training were affected bymajor stability and convergence problems of themodel, which

concretized, in particular, in several glaring anomalies in the loss function trend behavior throughout the training

epochs, both for the training and validation datasets, which showed difficulties in convergence, big fluctuations

and oscillations, and overfitting phenomena. Toovercome these issues, various testswere conducted in an attempt

to act on the model’s generalization capabilities and gradient stability during the training phases [97, 75]. There-

fore, an important part of the project was devoted to a regularization analysis aimed at obtaining stable behaviors

during the training process. For this purpose, the main idea that solved the problem was the introduction of a

hybrid-regularized model, associated with a careful choice of the correct optimizer (between Adam and AdamW)

and an appropriate value of learning rate.

The regularization was, thus, a combination of several distinct techniques, which did not provide any note-

worthy improvements when used alone. The main idea behind this choice was taken from previous studies on

effectiveness of hybrid-regularized networks on stability and performance [102, 101]. Following this concept,

batch normalization layers were added at the end of each convolutional block [99] and Xavier initialization was

used for the weights of each convolutional layer [87], while several models were trained using different weight de-

cay, dropout, and learning rate values while alternating the usage of Adam and AdamW optimizers, monitoring

the behavior of the loss function during the epochs on both training and validation sets. With this method, the

stability was finally reached by using a specific combination of these techniques, i.e., a dropout with a probability

of 75 %, an AdamW optimizer with a weight decay value of 10−3, batch normalization, Xavier initialization, and

a learning rate of 10−5.

The Balancing Problem

The PyTorch BCE implementation used in this project is able to take into account the dataset unbalance, by

calculating the ratio of negative examples topositive examples andpassing it to the functionusing thepos_weight

argument. This feature of the BCEWithLogitsLoss function was particularly useful for the imbalance problem

addressed in this project, allowing the loss to act as if the dataset was balanced.

To further help the model to correctly focus on positive examples, an addition manual balancing was carried

out, removing proteins with an amount of LIP regions less than or equal to 10 %, which was the only way to

guarantee an effective undersampling, being input whole protein sequences. In this way, it was possible to apply a

strong undersampling process that brought to the unbalance magnitude of the dataset from 7.1 % to 34.11 % (in

terms of non-LIP amino acid positions out of LIP amino acid positions), while excluding 4693 protein sequences

from the total training dataset (i.e., 61.25 % of the sequences). The comparison between this pruned dataset

and the whole dataset brought to improvements in model performance, reducing overfitting and increasing the

positive examples prediction performance. Indeed, for both cases a the same grid-searchwith the same parameters

58

were performed, with a significant improvement in performance on both training and validation datasets for the

undersampled case.

Metrics and Evaluation

This section presents the metrics and plots used to evaluate the performance of the model during the course

of the training epochs (on both training and validation datasets) and on the test datasets in the final evaluation

phase, fundamental to catch strengths and weakness of the model. Suchmetrics take into account the the rates of

true positives (TPR), true negatives (TNR), false positives (FPR) and false negatives (FNR), providing a compre-

hensive measure of performance for the type of problem addressed in this project [95]:

• accuracy score, which is the simplest way to measure the performance of the model, representing the pro-

portion of correct predictions made by the model out of all predictions;

• precision score, that is the number of true positive predictions out of the total number of positive predic-

tions (i.e., true positives and false positives); thismetric is usually importantwhen the cost of false positives

is high;

• recall score, which is the proportion of the correctly identified actual positives out of all positives (i.e., true

positives and false negatives); this metric is usually important when the cost of false negatives is high;

• F1-score, that is the harmonic mean of precision and recall, that provides a single metric to evaluate the

balance between precision and recall; this metric represents a useful way to evaluate a model over an un-

balanced dataset, when the accuracy score can be misleading;

• ReceiverOperatingCharacteristic (ROC)curve,which is a curveplot that shows theTPRagainst theFPR

at various threshold settings, providing a valuable tool for find the right trade-off between true positives

and false positives;

• Precision-Recall (PR) curve, i.e., a curve plot which shows the precision against the recall for different

thresholds, providing an excellent way to evaluate the performance of amodel over an unbalanced dataset;

• Area Under the Curve (AUC) score, i.e., the measure of the areas under the ROC or PR curves, useful to

quantify the overall ability of the model to distinguish between classes, with higher values that determine

better performances.

During the learning phase, at the end of each epoch, losses values and several othermetrics (i.e., precision score,

recall score, and F1-score) were calculated for the CNN model for both training and validation datasets and for

each fold. Also, the trained CNNmodel was tested on both TE440 and CAID Binding datasets, in order to eval-

uate themodel’s predictive capabilities on real data outside the training dataset used for the learning phase. In this

case, the predictions were evaluated for a range of decision thresholds, so as to maximize the performance metrics.

59

Finally, ROC and PR curves (with respective calculation of AUC scores) and a histogram of score distribution

(highlighting TPR, FPR, TNR, FNR) were plotted for visualizing the model performance.

The CNN model was finally evaluated in terms of computational time required for predicting both the test

sets. This calculation was performed by executing the model on both the test sets, using the results for each single

input for extracting the most accurate estimate possible. This was possible by determining the time required for

every batch, dividing it by the sum of all the amino acid positions contained in such batch (i.e., by excluding the

padded positions). This estimation was averaged for all the batches of both the tests sets. To this calculation time

must be added the embedding calculation time (calculated in a similar way to how the CNN execution time was

calculated) and the time needed to load the model into memory, which together add 0.2 seconds to the model

execution time, for a total time required of 0.3 seconds.

During themodel evaluationphase onbothTE440dataset andCAIDBindingdataset, thebest decision thresh-

old for predicting positive and negative examples was chosen in order to maximize the F1-score over 1000 equidis-

tant threshold values in the range [0, 1]R.

60

3
Results and Discussion

This final section is fully dedicated to results obtained from the model on the training, validation, and test sets,
by showing all the performance results calculated using several metrics and by presenting various plots for easing
the results’ visualization. These results will be presented and explained in a first section and then discussed and
commented in a second section, in an attempt to highlight the strengths and limitations of the model through an
interpretation that exploits the point of view of the technique (both in terms of data processing andmanipulation
and in terms ofmodel creation and development) and the strictly biochemical point of view. The direction of this
chapter is to provide a proper interpretation of the results, suggesting ideas for future studies aimed at a better
interpretation of the problem. All these concepts are presented in the context of the problem, which is known to
be very complex and still lacking an efficient and consistent predictive state-of-the-art solution.

61

3.1 Results
This section is devoted to the presentation and description of the results obtained, which are shown and com-

mented in detail, through the use of tables and plots derived from the measurement of specific metrics, useful

for assessing the predictive abilities of the model. The section starts with presenting and describing the results

related to the learning phase of themodel on both training and validation datasets. The final part of this section is

dedicated to expose the results related to both the test datasets used for the final evaluation, i.e., the TE440 dataset

and the CAID Binding dataset.

3.1.1 Training and Validation Datasets Performance

Here the results of the model after and during the training are presented, showing a series of metrics and plots

useful for understanding the final performance andbehavior of theCNNduring the trainingphases. In particular,

such information is presented both in global terms in a first part (as an averaged measure of the behavior of each

fold) and local terms in a second part (showing the performance data for each fold, individually). All results are

described in detailed for a better understanding of what the model did during the training and what has been

achieved after it. In particular, the values of losses, precision scores, recall scores and F1-scores were calculated for

both the training and validation sets for each training epoch and for each fold.

Averaged metrics

This part shows the global behaviour of themodel over the training epochs, quantified through the calculation of

specificmetrics averaged over the five folds used in the cross-validation. Plots are presented and described in detail.

here, the global behavior of the model can be accurately estimated by averaging loss, precision score, recall score,

and F1-score of each fold calculated on both the training set and validation set for each epoch.

In Figure 3.1 it is possible to see loss and metrics trends for both training and validation sets, calculated for

each epoch and averaged over the five folds of the cross validation. The loss shows a regular and smoothed mono-

tonically decreasing trend, with a training loss that has an error which is lower than the error of validation loss;

this is a canonical behavior, since the model tends to better adapt to the training set, providing a certain amount

of overfitting, that must be taken low. In this specific case, overfitting was kept low by the hybrid regularization

system of themodel. The extent of this overfitting can be quantified using a directmeasure of the relative distance

between training and validation losses. The simple calculation consists in computing the ratio of the distance of

the two curves to the value of the validation loss, which returns a relative distance of 4.31 % at the end of the

training step, which suggests an acceptable level of overfitting.

The growth slope of the curves related to the metrics shown in Figure 3.1 can be seen as a first simple quantita-

62

Negatives Positives Global
Precision score 0.9901 0.5679 0.7790
Recall score 0.9709 0.7984 0.8846
F1-score 0.9804 0.6637 0.8221
Loss 0.8334

Table 3.1: Averaged metrics for the training dataset.

tive indication to determine howmuch themodel learned during the training phase. Looking at the plots in figure

it is possible to see that, although the matrix curves do not show major differences in height, it is useful to note

that the percentage performance of the related metrics shows relatively high values from the outset, maintaining

them throughout the training phase. In particular, precision shows a smaller relative growth difference during

training, but it continues to slightly increase throughout all training epochs in an upward trend; in contrast, recall

has a greater relative difference in its training growth, but quickly reaches a plateau, keeping it throughout the rest

of training. As a final result, the F1-score, which is the harmonic mean of precision and recall, continues to show

a slight upward trend throughout the training, which is an index that highlights the learning effectiveness of the

model.

This general analysis of the metrics shows a good overall performance, which, however, needs further study,

to fully understand the separate contribution of positives and negatives to the total values. To do this, precision

score, recall score and F1-score were plotted separately. This plots allowed to get two distinct trends, one for the

subset of positive examples and one for the subset of negative examples, for for both training and validation sets.

These separatedmetrics are shown in Figure 3.2, in which a very important detail is highlighted. In fact, although

themodel shows an overall good performance, as seen in Figure 3.1, it is possible to observe in this case, according

to the difficulty of the predictive problem of positives (already discussed on several occasions), the presence of

a significant distance between the learning curves of the subset of negative examples, whose performance is, in

general, very high, and the learning curves of negative examples, whose curves are not able to achieve sufficiently

high performances. This aspect is crucial for a correct evaluation of the predicting ability of the model and it is

addressed in detail in the nextDiscussion, which is dedicated to discussing the results presented here.

The final metrics measured after training of the model are shown in Table 3.1 and Table 3.2, which show the

separated values for negative and positive examples along with the global values derived from the average of these

two groups. Here, the gap between the performance achieved for the negative examples and the performance

achieved for the positive examples is numerically presented.

63

Negatives Positives Global
Precision score 0.9894 0.5281 0.7588
Recall score 0.9675 0.7783 0.8729
F1-score 0.9783 0.6293 0.8038
Loss 0.871

Table 3.2: Averaged metrics for the validation dataset.

Figure 3.1: Loss and metrics trends for both training and validation sets over the course of the training epochs. All these
plots show the mean trend averaged over all five folds of the stratified cross‐validation. In the top‐left corner, the loss
plots, with a 4.31 % distance between the two losses with respect to the absolute size of the validation loss. In the top‐
right corner, The F‐1 score plots, showing a value of 82.21 % for the training set and a value of 80.38 % for the validation
set at the end of the training. In the bottom‐left corner, the precision score plots, showing a value of 77.90 % for the
training set and a value of 75.88 % for the validation set at the end of the training. In the bottom‐right corner, recall score
plots, showing a value of 88.46 % for the training set and a final value of 87.29 % for the validation set at the end of the
training.

64

Figure 3.2: Precision, recall, and F1‐scores trends for both training and validations sets, separated for positive and negative
examples. In the top‐left corner, training precision score. In the top‐right corner, validation precision score. In the middle‐
left, training recall score. In the middle‐right, validation recall score. In the bottom‐left corner, training F1‐score. In the
bottom‐right corner, validation F1‐score. The separation in terms of performance between positive and negative examples
affects all metrics on each of the two datasets used for training the model.

65

Fold-specific metrics

This part shows again the results presented above, this time comparing the fold-specific plots with the averaged

plots, in order to show the 5 fold-split results from which the averaged plots come from.

In particular, fold-specific loss plots show a stable situation, with a consensus in the behavior of the model on

each of them, even if the training losses are slightly more stable than the validation losses Figure 3.3. In general,

all plots of the losses show a stable and relatively uniform learning trend from the model on each fold. Analyzing

the results in terms of metrics, by looking at the plots of precision score, recall score and F1-score, it is possible

to see an even greater magnitude of consensus in the behavior of the curves for each fold, both for training and

validation sets (Figures 3.4, 3.5, and 3.6). In this case the behaviour of theCNNmodel is very consistent on all the

folds, which is a suggestion of intrinsic stability, allowed by the implementation of the hybrid and grid-searched

regularization described in the previous chapter. The small variation observed among the fold-specific metrics

could be due to intrinsic specificities of the dataset or to slightly different data distributions within each fold. In

general, this small variations can be marked as minimal and not problematic, considering them in the context of

a training dataset and a problem that are particularly complex.

66

Figure 3.3: Loss trends for all the five folds of the cross‐validation and their average behavior over the course of the train‐
ing epochs. In the top‐left corner, the averaged loss for the training set. In the top‐right corner, the losses for each fold for
the training set. In the bottom‐left corner, the averaged loss for the validation set. In the bottom‐right corner, the losses
for each fold for the validation set.

67

Figure 3.4: Precision score trends for all five folds of the cross‐validation and their average behavior over the course of
the training epochs. In the top‐left corner, the averaged precision score for the training set. In the top‐right corner, the
precision score for each fold for the training set. In the bottom‐left corner, the averaged precision score for the validation
set. In the bottom‐right corner, the precision score for each fold for the validation set.

68

Figure 3.5: Recall score trends for all five folds of the cross‐validation and their average behavior over the course of the
training epochs. In the top‐left corner, the averaged recall score for the training set. In the top‐right corner, the recall score
for each fold for the training set. In the bottom‐left corner, the averaged recall score for the validation set. In the bottom‐
right corner, the recall score for each fold for the validation set.

69

Figure 3.6: F1‐score trends for all five folds of the cross‐validation and their average behavior over the course of the
training epochs. In the top‐left corner, the averaged F1‐loss for the training set. In the top‐right corner, the F1‐loss for
each fold for the training set. In the bottom‐left corner, the averaged F1‐loss for the validation set. In the bottom‐right
corner, the F1‐loss for each fold for the validation set.

70

3.1.2 Test Datasets Performance

After the 5-fold stratified cross-validation, the CNNmodel was tested on TE440 and CAID Binding datasets. In

this section the test set results are presented, showing the final precision score, recall score and F1-score for both

positive and negative examples, while bringing also their final aggregated values, providing the best threshold for

optimizing thesemetrics on both test sets. Also, several plots for each of the two sets are shown, i.e., ROC and PR

curves, with the calculation of underlying areas of both the curves, and a histogram for showing the distribution

of the scores.

Themodel showed a general prediction speed (calculated on both datasets) with an average of about 0.1 second

for outputting the labels of a protein sequence of 1000 amino acids, which can be considered a good result, if

compared with the results shown by other predictive models in CAID Figure 1.12.

TE440 Dataset Results

The TE440 test dataset results are presented and described in this section, through proper tables and plots.

The metrics obtained after the evaluation of the model on this dataset are shown in Table 3.3. While perfor-

mances for negatives examples are very high, performances for positives examples show an important drop, both

in precision and recall. So, the problem regarding the reduced performance on the subset of positive examples,

which is well highlighted in the plots for training and validation datasets (as already seen in the previously), pre-

dictably also appeared in the test set evaluation phases, although in a more pronounced manner. This higher

pronunciation is a symptom of overfitting on the training and validation sets for this specific prediction sub-task,

due to a problem with the data, with the model, or both.

The ROC curve derived from the prediction scores of the TE440 set (Figure 3.7) shows an area under the

curve (AUC) of 73.92 %, which is moderately good. The black dashed line shown in the figure is a reference for

the ROC curve. It shows, indeed, how the model differs in performance from a random prediction context. In

particular, a ROC curve above this line indicates a model with the ability of predicting a set of samples that is

better in comparison with the prediction ability of a hypothetical random predictor, which does not bring any

value in terms of predictive learning. The ROC curve is not so close to 1 (which represents the ideal situation),

but it is also significantly better than a randommodel (which would have a AUC of 0.5), suggesting a model with

a fair ability of correctly identifying true positive examples. The curve is smooth and with a steady increasing plot

of the true positives rate as the false positives rate increases too, indicating a consistent improvement of the model

at different decision thresholds. However, the PR curve (Figure 3.8) shows an area of 15.40 %, which is quite low,

result that is in linewith the high amount of false positive examples compared to false negative examples. The high

recallmaintained suggests a good ability to identifymost of the true positive examples, however the precision drop

71

is very steep in relation to the increase in recall. This is a common situation in datasets with a significant imbalance,

where true positive examples are rare compared with the false positive examples.

The distribution histogram for the scores of each amino acid position evaluated on the TE440 test dataset

Figure 3.9 provides a better visualization of this situation, showing a maximized decision threshold of 94 %. In-

deed, this plot shows a very good ability to find negative examples, with a very low number of false negatives. In

particular, the model was able to identify 247557 true negative examples (i.e., 96.86 % of all negative predicted

examples), which are shown at the left of the red line, against 8024 false negative examples (i.e., 3.14 % of all nega-

tive predicted examples), which are shown at the right of the red line. On the other hand, as already shown above,

the problem of false positives is considerable, since, in trying to effectively identify positive examples, the model

was able to only predict 2663 true negative examples (i.e., 18.79 % of all positive predicted examples), while the

other 11506 examples were false positives (i.e., 81.21 % of all positive predicted examples). The scores distribution

histogram shows, also, a clear reduction in candle heights as it proceeds from score 0 to score 0.5, after which the

candle heights start to increase again, even if with a smaller absolute value of the slope. This behaviour is consis-

tent with a binary prediction task, although the reduced steepness of the slope indicates a presence of too many

scores around 0.5. This fact is a symptom of difficulties of the model in predicting certain examples.

In summary, the results obtained for this test dataset show a general good classification ability of the model,

but with an important problem in correctly identifying positive examples, both in term of precision and recall.

(Table 3.3).

Figure 3.10 shows the fraction of true positives, true negatives, false positives, and false negatives for several

chosen thresholds on the whole TE440 test set. Predictions are done by classifying as positives all the example

with a score which is greater or equal than the considered threshold. By increasing the threshold, the number of

false positives and true positives decrease, while the number of false negatives and true negatives increase, until no

positives are predicted for a decision threshold of 1.

Negatives Positives Global
Precision score 0.9686 0.1879 0.5783
Recall score 0.9556 0.2492 0.6024
F1-score 0.9621 0.2143 0.5882
Accuracy score 0.9276
ROC-AUC score 0.7392
PR-AUC score 0.1540

Table 3.3: Evaluation metrics for the TE440 test set.

72

Figure 3.7: ROC curve for the TE440 test set, showing a ROC‐AUC score of 73.92 %.

73

Figure 3.8: PR curve for the TE440 test set, showing a PR‐AUC score of 15.40 %.

74

Figure 3.9: Histogram plot showing a distribution for the TE 440 test set for the maximized chosen threshold of 0.94,
with a split of each bar that shows the four categories of true negatives (light blue bars), false negatives (pink bars), false
positives (light green bars) and true positives (yellow bars). The red line corresponds to the decision threshold and divide
the predictions of the model.

75

Figure 3.10: 21 bins histogram showing the fraction of true positives (in blue), true negatives (in pink), false positives (in
green), and false negatives (in yellow) for several chosen thresholds on the whole TE440 test set.

76

CAID Binding Dataset Results

The results for the CAID Binding test dataset showed that the model is less performing on this data than the data

obtained from the TE440 test dataset, since the task related to the former dataset is not perfectly in line with the

task proposed by this project, asmentioned in the previous chapter. However, the results are comparable, showing

similar strengths and problems, while the evaluation is important to give a great context to the problem addressed

in this project.

In this case, theROCcurve shows aROC-AUCscore of 62.95% (Figure 3.11), while the PRcurve shows a PR-

AUCscore of 22.59% (Figure 3.12). The former score is lower than the one foundon theTE440 test set , while the

latter is higher than it. Even in this case, the prediction of negative examples shows a better score in comparison

with the prediction of positive examples (Table 3.4), although , for this dataset, the prediction performance of

negative examples is slightly worse than the one seen for the TE440 dataset, while the prediction performance of

positive examples is slightly better.

Even the distribution histogram for the scores of each amino acid position, shown in Figure 3.13, confirms this

interesting aspect. With amaximized decision threshold of 86 %, it is possible to see a slightly bad performance on

CAIDBinding negative examples (on the left of the red line) in comparison with TE440 negative examples, while

providing a better performance on CAID Binding positive examples (at the right of the line) negative examples

compared with TE440 negative examples. In general, the ability to predict negative examples remains high, while

the problem of false positives, although to a lesser extent, persists. Therefore, the model evaluated on the CAID

Binding dataset was, indeed, able to identify 49157 true negative examples (i.e., 89.94 % of all negative predicted

examples) against 6110 false negative examples (i.e., 11.06 % of all the negative predicted examples), while pre-

dicting 2086 true negative examples (i.e., 27.82 % of all the negative predicted examples), against 5411 examples

that were incorrectly predicted (i.e., 72.18 % of all the negative predicted examples). As for the TE440 plot, the

scores distribution histogram shows here a reduction in candle heights as it proceeds from score 0 to score 0.5,

although, it is, in this case, a less pronounced slope, which, after the value of 0.5, struggles to rise again, but rather

reaches a sort of plateau. This fact indicates, as discussed above, a predictably greater difficulty of theCNNmodel

in predicting the CAID Binding dataset, which deviates from the typical test dataset for the specific task of this

project.

Finally, Figure 3.15 shows a comparison of the results between the developed CNNmodel and the other mod-

els hosted in the CAID results page. In particular, the comparison takes into account the PR ad ROC curves

derived from the evaluation of the CNNon the CAIDBinding dataset. As alreadymentionedmany times in this

paper, it is once again reminded that the prediction task of this project is different from the prediction task involv-

ing the CAID Binding dataset, despite the two tasks show some overlap and allow a proper contextualization of

what has been done here, highlighting the fact that the difficulties addressed here affect also all the models that try

77

Negatives Positives Global
Precision score 0.8894 0.2782 0.5838
Recall score 0.9008 0.2545 0.5777
F1-score 0.8951 0.2659 0.5805
Accuracy score 0.8164
ROC-AUC score 0.6295
PR-AUC score 0.2259

Table 3.4: Evaluation metrics for the CAID Binding test set.

to solve problems related with protein interactions and disorder regions. Figure 3.14 shows the fraction of true

positives, true negatives, false positives, and false negatives for several chosen thresholds on the whole CAIDBind-

ing test set. Even in this case, predictions are done by classifying as positives all the examples with a score which

is greater or equal than the considered threshold. Exactly the same as the TE440 test set, increasing the threshold

brought to a number of false positives and true positives which decreased, while a number of false negatives and

true negatives which increased, until no positives are predicted for a decision threshold of 1.

78

Figure 3.11: ROC curve for the CAID Binding test set, showing a ROC‐AUC score of 62.95 %.

79

Figure 3.12: PR curve for the CAID Binding test set, showing a PR‐AUC score of 22.59 %.

80

Figure 3.13: Histogram plot showing a 25 bins distribution for the CAID Binding test set for the maximized chosen thresh‐
old of 0.96, with a split of each bar that shows the four categories of true negatives (light blue bars), false negatives (pink
bars), false positives (light green bars) and true positives (yellow bars). The red line corresponds to the decision threshold
and divide the predictions of the model.

81

Figure 3.14: 21 bins histogram showing the fraction of true positives (in blue), true negatives (in pink), false positives (in
green), and false negatives (in yellow) for several chosen thresholds on the whole CAID Binding test set.

82

Figure 3.15: Comparison of PR and ROC curves for the CNN model developed for this project (evaluated on the CAID
Binding dataset) with PR and ROC curves for CAID models developed with the specific task of predicting the CAID Binding
dataset; the curves for these models underwent a 75 % desaturation, while the curve for the CNN was thickened and
colored bright red, for a better look. In the top‐left corner, PR curves comparison against all CAID models. In the bottom‐
left corner, ROC curves comparison against all CAID models. In the top‐left corner, PR curves comparison against the top
20 CAID models. In the bottom‐right corner, ROC curves comparison against the top 20 CAID models.

83

3.2 Discussion

This final section is dedicated to discussing results and choices presented thus far, offering interpretations and

insights aimed at filling the results with biological significance. In this way, the reader can be able to get a more

comprehensive understanding of this project. Furthermore, this sections hopes to provide some contributes to

research in this field, by proposing additional insights for future investigations, with the common goal of bringing

the state-of-the-art of research closer to the solution of the problem. For this reason, it is crucial for this discussion

to adopt a cross-disciplinary approach, which seeks tomerge together the domain-specific point of view, using the

tools of molecular biology and structural biochemistry, and the Data Science point of view.

In the previous sections, by analyzing the results on all training and test datasets, amajor identified issuewas the

inability of the model to correctly identifying positive examples, a problem highlighted in multiple occasions. In

situations like this, the first thought that comes tomindmight be to focus on themodel, thinking that the problem

stems from some implementation inadequacy. However, while the idea of reevaluating the model is a logical step

for addressing results’ issues, it is also crucial to contextualize the problem itself, by investigating the context in

which the task is placed, considering the complexity of the problem itself and the inherent issues provided by the

data used to train the model, while also taking into account the limitations of the tools employed to perform the

prediction task.

3.2.1 The Context of the problem

In evaluating the predictive abilities of the model, it is important to consider the scientific context of the problem.

For this purpose, the comparisonprovidedby theCAIDBindingdataset evaluation serves as a reference toput into

context the task of this project and themodel used to perform it. CAIDpredictions shows indeed howdisordered

regions binding is difficult to predict, even for all the models shown, which were specifically trained to solve this

problem. Considering the fact that the majority of LIPs is contained in disordered regions, the problems related

to the model can be put into perspective by looking at the comparison of the CNN with the models specifically

used to predict interactions in disordered regions (Figure 3.15). Thus, although the test sets’ results of the CNN

seem not so high in absolute terms, such comparison shows an actually good contextualized performance of the

model, which ranks among the top 20models, in terms of ROC-AUC score, although the slightly different tasks.

As already discussed in the Introduction chapter, the problem of predicting disordered binding starting from

the protein sequence is an extremely complex and still open problem, in a context in which any predictor shows

difficulties. Such contextually good results obtained with this first model on the CAID task can be taken as a

validation of it, making it possible to candidate it, after further refinements and additional studies, to aspire to an

improved predictive power and thus, to a potential more competitive comparison with other models.

84

3.2.2 Datasets and Tools Limitations

Another very important discussionmust be dedicated to limitations in tools anddata. Model performances shown

in Figure 3.15 must be indeed considered within a strongly limited context, both in terms of data availability and

reliability, due to the lack of an extensive and informative data background from which to start [12, 13, 103]. In

fact, when dealing with the problem of predicting binding within disordered regions, it is difficult to find large

amounts of reliable data, due to a fundamental major technical problem in building such datasets; this difficulty

stems from the inherent structural complexity of intrinsically disordered regions, which results into an evident

problem in finding large, manually curated datasets, since performing experiments in this area is prevented by

the inherent instability of such regions [104, 54]. Due to this situation, experimental tasks are negatively influ-

enced by the presence of high-dynamic structures, ultimately affecting the research attempt to experimentally

verify the presence of protein interactions, as well as the attempt to purify structures, by using, for instance, bio-

crystallography or cryo-EM [54]. As an immediate consequence of these challenges, there is amajor limit in gener-

ating high-dimensional, reliable datasets, introducing, in thisway, a considerable biaswhen attempting to perform

a predictive task. This is a crucial aspect, that must be considered when trying to develop a predictivemodel, since

it can contributes to the degradation of predictive performances, especially when dealing with predicting the mi-

nority class of positive examples. This phenomenon would be independent from the inherent capabilities of the

model, placing an upper limit on the prediction power that could only be crossed providing more complete and

reliable datasets.

Another aspect of great importance is to contextualize the dataset used, which is derived from FLIPPER’s pre-

dictions on the entire PDB, which, as already seen in the Introduction chapter, contains experimental protein

structures derived from very specific conformational situations (especially what concerns cryo-EM and biocrys-

tallography data). PDB files show very specific fixed structural situations, while, according to the definition of

disorder, a very dynamic protein conformational ensemble is to be expected, in which, a disordered situation can

occur in precise situations thatmay depend onbinding events, on the presence of the protein in a specific compart-

ment of the cell, or on the presence of an enzymatic activity; this facts highlights the fact that a PDB file cannot be

considered as an adequate holotype of what is the conformational behavior of a given protein [105, 106, 107]. It

is important to considering this fact when performing a prediction task involving interactions, especially in disor-

dered regions. In the case of this project, the FLIPPER prediction dataset used for training themodel could bring

data that are not sufficiently complete or accurate, imposing an upper limit on the maximum performance of the

model.

Another important consideration concerns the limitations due to the tools used. Of particular interest for this

project is, indeed, the use of protein embeddings, which represent a necessary step and apotential bottleneckwhen

it comes to deal with the loss of important biochemical information. A recent paper by Li et. al. (2024) [108]

85

addressed the problem related to the limitation of protein embeddings derived from PLMs. Here, the authors

highlight the fact that, although protein embeddings were able to bring great innovation in the field of protein

structure and feature prediction, such objects are still mostly unknown. Furthermore, as the authors warns, very

little is known about what kind of information provided by embeddings can useful to downstream prediction

tasks or how this information is used. The paper highlights also some potential issues related to the use of embed-

dings for specific tasks. So, considering this important aspect, although this aspect is not addressed in this project,

due to space and time constraints, it may be of great future interest to conduct analyses aimed at a greater under-

standing of the interaction existing between these innovative vector objects and proteins (upstream) and models

(downstream), in relation to the specific task of characterizing and predicting LIP regions.

Despite the inherent problems shown above, better performance results can be provided by other processing

strategies for the training set, further studies of the model architecture and further analysis to find the optimal

parameters for it. Performance improvements could also result from the use of different models or ensemble

learning techniques (for instance, an idea could be to try an ensemble approach, by merging some other CAID

Binding prediction model with the CNN trained for this project). Despite these proposals, it is of fundamental

importance to always take into account the premises discussed above, since an ideal performance would require a

change in the quality of the information brought as input to the model.

86

References

[1] D. L. Nelson, A. L. Lehninger, andM.M. Cox, Lehninger principles of biochemistry. Macmillan, 2008.

[2] J. B. Reece, N. Meyers, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, and R. Orr, Campbell

Biology. Pearson, 2021.

[3] D. Szklarczyk, A. Franceschini, S.Wyder, K. Forslund,D.Heller, J.Huerta-Cepas,M. Simonovic, A.Roth,

A. Santos, K. P. Tsafou et al., “String v10: protein–protein interaction networks, integrated over the tree

of life,”Nucleic acids research, vol. 43, no. D1, pp. D447–D452, 2015.

[4] B. Alberts,Molecular biology of the cell. Garland science, 2017.

[5] K. M. Poluri, K. Gulati, K. M. Poluri, and K. Gulati, “Biotechnological and biomedical applications of

protein engineering methods,” Protein Engineering Techniques: Gateways to Synthetic Protein Universe,

pp. 103–134, 2017.

[6] C. Li, R. Zhang, J. Wang, L. M. Wilson, and Y. Yan, “Protein engineering for improving and diversifying

natural product biosynthesis,” Trends in biotechnology, vol. 38, no. 7, pp. 729–744, 2020.

[7] U. T. Bornscheuer, B. Hauer, K. E. Jaeger, andU. Schwaneberg, “Directed evolution empowered redesign

of natural proteins for the sustainable production of chemicals and pharmaceuticals,”AngewandteChemie

International Edition, vol. 58, no. 1, pp. 36–40, 2019.

[8] B. Peng, X.-Y. Tian, Z.-Y. Liu, J. Peng,M.-Y. Zheng, X.-H. Song, Y.-Q.Huang, A. Xin-Xiang, Y.-M. Zhang,

F. Yang et al., “The application ofmodern biotechnology in protein interaction research-a review,” Journal

of Agriculture and Crops, vol. 7, no. 2, pp. 39–47, 2021.

[9] A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, C. J. Oldfield, A. M.

Campen, C.M.Ratliff, K.W.Hipps et al., “Intrinsically disordered protein,” Journal ofmolecular graphics

and modelling, vol. 19, no. 1, pp. 26–59, 2001.

[10] H. J. Dyson and P. E. Wright, “Intrinsically unstructured proteins and their functions,” Nature reviews

Molecular cell biology, vol. 6, no. 3, pp. 197–208, 2005.

[11] A. K. Dunker, I. Silman, V. N. Uversky, and J. L. Sussman, “Function and structure of inherently disor-

dered proteins,” Current opinion in structural biology, vol. 18, no. 6, pp. 756–764, 2008.

87

[12] V. N. Uversky, A. K. Dunker et al., Intrinsically Disordered Protein Analysis: Volume 1, Methods and

Experimental Tools. Springer, 2012.

[13] B. Kragelund and K. Skriver, Intrinsically Disordered Proteins. Springer, 2020.

[14] T. Berggård, S. Linse, and P. James, “Methods for the detection and analysis of protein–protein interac-

tions,” Proteomics, vol. 7, no. 16, pp. 2833–2842, 2007.

[15] F. Diella, N. Haslam, C. Chica, A. Budd, S. Michael, N. P. Brown, G. Travé, and T. J. Gibson, “Under-

standing eukaryotic linear motifs and their role in cell signaling and regulation,” Front Biosci, vol. 13, no.

6580, p. 603, 2008.

[16] A. M. Monzon, P. Bonato, M. Necci, S. C. Tosatto, and D. Piovesan, “Flipper: predicting and character-

izing linear interacting peptides in the protein data bank,” Journal of Molecular Biology, vol. 433, no. 9, p.

166900, 2021.

[17] Z.Peng, Z.Li,Q.Meng, B.Zhao, andL.Kurgan, “Clip: accuratepredictionofdisordered linear interacting

peptides from protein sequences using co-evolutionary information,” Briefings in Bioinformatics, vol. 24,

no. 1, p. bbac502, 2023.

[18] M. Kanehisa and P. Bork, “Bioinformatics in the post-sequence era,” Nature genetics, vol. 33, no. 3, pp.

305–310, 2003.

[19] K. Karasavvas, R. Baldock, and A. Burger, “Bioinformatics integration and agent technology,” Journal of

biomedical informatics, vol. 37, no. 3, pp. 205–219, 2004.

[20] P.Hogeweg, “The roots of bioinformatics in theoretical biology,”PLoS computational biology, vol. 7, no. 3,

p. e1002021, 2011.

[21] P. Romano, R. Giugno, and A. Pulvirenti, “Tools and collaborative environments for bioinformatics re-

search,” Briefings in bioinformatics, vol. 12, no. 6, pp. 549–561, 2011.

[22] M.W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, “Integrating high-throughput

and computational data elucidates bacterial networks,”Nature, vol. 429, no. 6987, pp. 92–96, 2004.

[23] W. W. Soon, M. Hariharan, and M. P. Snyder, “High-throughput sequencing for biology and medicine,”

Molecular systems biology, vol. 9, no. 1, p. 640, 2013.

[24] T. U. Consortium, “Uniprot: the universal protein knowledgebase in 2023,” Nucleic Acids Research,

vol. 51, no. D1, pp. D523–D531, 2023.

[25] C. H. Wu, R. Apweiler, A. Bairoch, D. A. Natale, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger,

H. Huang, R. Lopez, M.Magrane,M.Martin, R.Mazudmer, C. O’Donovan, N. Redaschi, and B. Suzek,

“The universal protein resource (uniprot): an expanding universe of protein information,” Nucleic acids

research, vol. 34, no. suppl_1, pp. D187–D191, 2006.

88

[26] S. Poux, M. Magrane, C. N. Arighi, A. Bridge, C. O’Donovan, K. Laiho, and U. Consortium, “Expert

curation in uniprotkb: a case study on dealing with conflicting and erroneous data,”Database, vol. 2014,

p. bau016, 2014.

[27] M. Magrane and U. Consortium, “Uniprot knowledgebase: a hub of integrated protein data,”Database,

vol. 2011, p. bar009, 2011.

[28] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E.

Bourne, “The protein data bank,”Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000.

[29] ——, “The protein data bank,”Nucleic acids research, vol. 28, no. 1, pp. 235–242, 2000.

[30] S. K. Burley, H. M. Berman, G. J. Kleywegt, J. L. Markley, H. Nakamura, and S. Velankar, “Protein data

bank (pdb): the single global macromolecular structure archive,” Protein crystallography: methods and

protocols, pp. 627–641, 2017.

[31] “Rcsb pdb main page.” [Online]. Available: https://www.rcsb.org/

[32] J. Westbrook, Z. Feng, L. Chen, H. Yang, and H. M. Berman, “The protein data bank and structural ge-

nomics,”Nucleic acids research, vol. 31, no. 1, pp. 489–491, 2003.

[33] R. P. Joosten, T. A. Te Beek, E. Krieger, M. L. Hekkelman, R. W. Hooft, R. Schneider, C. Sander, and

G.Vriend, “A series of pdb related databases for everydayneeds,”Nucleic acids research, vol. 39, no. suppl_1,

pp. D411–D419, 2010.

[34] S. Velankar, J. M. Dana, J. Jacobsen, G. Van Ginkel, P. J. Gane, J. Luo, T. J. Oldfield, C. O’Donovan,

M.-J. Martin, and G. J. Kleywegt, “Sifts: structure integration with function, taxonomy and sequences

resource,”Nucleic acids research, vol. 41, no. D1, pp. D483–D489, 2012.

[35] T.DiDomenico, I.Walsh, A. J.Martin, and S.C.Tosatto, “Mobidb: a comprehensive database of intrinsic

protein disorder annotations,” Bioinformatics, vol. 28, no. 15, pp. 2080–2081, 2012.

[36] D. Piovesan, A. Del Conte, D. Clementel, A.M.Monzon,M. Bevilacqua,M. C. Aspromonte, J. A. Iserte,

F. E. Orti, C. Marino-Buslje, and S. C. Tosatto, “Mobidb: 10 years of intrinsically disordered proteins,”

Nucleic acids research, vol. 51, no. D1, pp. D438–D444, 2023.

[37] E. Potenza, T. D. Domenico, I. Walsh, and S. C. Tosatto, “Mobidb 2.0: an improved database of intrinsi-

cally disordered and mobile proteins,”Nucleic acids research, vol. 43, no. D1, pp. D315–D320, 2015.

[38] D.Piovesan, F.Tabaro, L. Paladin,M.Necci, I.Mičetić, C.Camilloni,N.Davey, Z.Dosztányi, B.Mészáros,

A. M. Monzon, G. Parisi, E. Schad, P. Sormanni, P. Tompa, M. Vendruscolo, W. F. Vranken, and S. C.

Tosatto, “Mobidb 3.0: more annotations for intrinsic disorder, conformational diversity and interactions

in proteins,”Nucleic acids research, vol. 46, no. D1, pp. D471–D476, 2018.

89

https://www.rcsb.org/

[39] M. C. Aspromonte, M. V. Nugnes, F. Quaglia, A. Bouharoua, S. C. Tosatto, andD. Piovesan, “Disprot in

2024: improving function annotation of intrinsically disordered proteins,”Nucleic Acids Research, vol. 52,

no. D1, pp. D434–D441, 2024.

[40] “Mobidb user guide.” [Online]. Available: https://mobidb.bio.unipd.it/help

[41] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates,

A. Žídek, A. Potapenko et al., “Highly accurate protein structure prediction with alphafold,”Nature, vol.

596, no. 7873, pp. 583–589, 2021.

[42] R. Bonetta and G. Valentino, “Machine learning techniques for protein function prediction,” Proteins:

Structure, Function, and Bioinformatics, vol. 88, no. 3, pp. 397–413, 2020.

[43] N.T.Doncheva, K.Klein, F. S.Domingues, andM.Albrecht, “Analyzing and visualizing residue networks

of protein structures,” Trends in biochemical sciences, vol. 36, no. 4, pp. 179–182, 2011.

[44] R. K. Grewal and S. Roy, “Modeling proteins as residue interaction networks,” Protein and peptide letters,

vol. 22, no. 10, pp. 923–933, 2015.

[45] D. Piovesan, G.Minervini, and S. C. Tosatto, “The ring 2.0 web server for high quality residue interaction

networks,”Nucleic acids research, vol. 44, no. W1, pp. W367–W374, 2016.

[46] D. Piovesan, M. Necci, N. Escobedo, A. M. Monzon, A. Hatos, I. Mičetić, F. Quaglia, L. Paladin, P. Ra-

masamy, Z. Dosztányi et al., “Mobidb: intrinsically disordered proteins in 2021,” Nucleic acids research,

vol. 49, no. D1, pp. D361–D367, 2021.

[47] M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood,

A. Laydon et al., “Alphafold protein structure database: massively expanding the structural coverage of

protein-sequence space with high-accuracy models,” Nucleic acids research, vol. 50, no. D1, pp. D439–

D444, 2022.

[48] V. Mariani, M. Biasini, A. Barbato, and T. Schwede, “lddt: a local superposition-free score for comparing

protein structures and models using distance difference tests,” Bioinformatics, vol. 29, no. 21, pp. 2722–

2728, 2013.

[49] D. Piovesan, A. M. Monzon, and S. C. Tosatto, “Intrinsic protein disorder and conditional folding in

alphafolddb,” Protein Science, vol. 31, no. 11, p. e4466, 2022.

[50] T. Bepler and B. Berger, “Learning the protein language: Evolution, structure, and function,”Cell systems,

vol. 12, no. 6, pp. 654–669, 2021.

[51] R.M. Rao, J. Liu, R. Verkuil, J. Meier, J. Canny, P. Abbeel, T. Sercu, and A. Rives, “Msa transformer,” in

International Conference onMachine Learning. PMLR, 2021, pp. 8844–8856.

90

https://mobidb.bio.unipd.it/help

[52] N. Brandes, D.Ofer, Y. Peleg,N.Rappoport, andM.Linial, “Proteinbert: a universal deep-learningmodel

of protein sequence and function,” Bioinformatics, vol. 38, no. 8, pp. 2102–2110, 2022.

[53] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher, C. Angerer,

M. Steinegger, D. Bhowmik, and B. Rost, “Prottrans: Toward understanding the language of life through

self-supervised learning,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 10,

pp. 7112–7127, 2021.

[54] M. Necci, D. Piovesan, and S. C. Tosatto, “Critical assessment of protein intrinsic disorder prediction,”

Nature methods, vol. 18, no. 5, pp. 472–481, 2021.

[55] A.D.Conte,M.Mehdiabadi, A. Bouhraoua, A.MiguelMonzon, S. C. Tosatto, andD. Piovesan, “Critical

assessment of protein intrinsic disorder prediction (caid)-results of round 2,” Proteins: Structure, Function,

and Bioinformatics, vol. 91, no. 12, pp. 1925–1934, 2023.

[56] “Biomine kurgan lab website.” [Online]. Available: http://biomine.cs.vcu.edu/

[57] “Caid datasets and results.” [Online]. Available: https://caid.idpcentral.org/challenge/results

[58] M. Greenacre, P. J. Groenen, T. Hastie, A. I. d’Enza, A. Markos, and E. Tuzhilina, “Principal component

analysis,”Nature ReviewsMethods Primers, vol. 2, no. 1, p. 100, 2022.

[59] I. T. Jolliffe, Principal component analysis for special types of data. Springer, 2002.

[60] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computa-

tional statistics, vol. 2, no. 4, pp. 433–459, 2010.

[61] R.Bro andA.K. Smilde, “Principal component analysis,”Analyticalmethods, vol. 6, no. 9, pp. 2812–2831,

2014.

[62] G. Hinton, “Stochastic neighbor embedding,” Advances in neural information processing systems, vol. 15,

pp. 857–864, 2003.

[63] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research,

vol. 9, no. 11, 2008.

[64] J. H. Krijthe and L. Van der Maaten, “Rtsne: T-distributed stochastic neighbor embedding using barnes-

hut implementation,”R package version 0.13, URL https://github. com/jkrijthe/Rtsne, 2015.

[65] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Jour-

nal of computational and applied mathematics, vol. 20, pp. 53–65, 1987.

[66] “Scikit-learn t-sne user guide.” [Online]. Available: https://scikit-learn.org/stable/modules/generated/

sklearn.manifold.TSNE.html

91

http://biomine.cs.vcu.edu/
https://caid.idpcentral.org/challenge/results
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

[67] L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on

convolutional neural networks,”Remote Sensing, vol. 13, no. 22, p. 4712, 2021.

[68] F. Yu, Q. Zhang, J. Xiao, Y. Ma, M. Wang, R. Luan, X. Liu, Y. Ping, Y. Nie, Z. Tao et al., “Progress in

the application of cnn-based image classification and recognition in whole crop growth cycles,” Remote

Sensing, vol. 15, no. 12, p. 2988, 2023.

[69] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A comprehensive

review,”Neural computation, vol. 29, no. 9, pp. 2352–2449, 2017.

[70] A. El-Sawy, H. El-Bakry, and M. Loey, “Cnn for handwritten arabic digits recognition based on lenet-5,”

in Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2016 2.

Springer, 2017, pp. 566–575.

[71] S.Arya andR. Singh, “A comparative study of cnn and alexnet for detection of disease in potato andmango

leaf,” in 2019 International conference on issues and challenges in intelligent computing techniques (ICICT),

vol. 1. IEEE, 2019, pp. 1–6.

[72] H.Qassim, A. Verma, andD. Feinzimer, “Compressed residual-vgg16 cnnmodel for big data places image

recognition,” in 2018 IEEE 8th annual computing and communication workshop and conference (CCWC).

IEEE, 2018, pp. 169–175.

[73] P. Tang, H. Wang, and S. Kwong, “G-ms2f: Googlenet based multi-stage feature fusion of deep cnn for

scene recognition,”Neurocomputing, vol. 225, pp. 188–197, 2017.

[74] S. Targ, D.Almeida, andK. Lyman, “Resnet in resnet: Generalizing residual architectures,” arXiv preprint

arXiv:1603.08029, 2016.

[75] I. Goodfellow, Y. Bengio, and A. Courville,Deep learning. MIT press, 2016.

[76] F. Chollet,Deep learning with Python. Simon and Schuster, 2021.

[77] M. Jorda, P. Valero-Lara, and A. J. Pena, “Performance evaluation of cudnn convolution algorithms on

nvidia volta gpus,” IEEE Access, vol. 7, pp. 70 461–70 473, 2019.

[78] S. Yadav and S. Shukla, “Analysis of k-fold cross-validation over hold-out validation on colossal datasets for

quality classification,” in 2016 IEEE 6th International conference on advanced computing (IACC). IEEE,

2016, pp. 78–83.

[79] A. Blum, A. Kalai, and J. Langford, “Beating the hold-out: Bounds for k-fold and progressive cross-

validation,” in Proceedings of the twelfth annual conference on Computational learning theory, 1999, pp.

203–208.

92

[80] “Scikit-learn k-fold stratified corss-validation user guide.” [Online]. Available: https://scikit-learn.org/

stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

[81] D. Masters and C. Luschi, “Revisiting small batch training for deep neural networks,” arXiv preprint

arXiv:1804.07612, 2018.

[82] M. Bernhofer and B. Rost, “Tmbed: transmembrane proteins predicted through language model embed-

dings,” BMC bioinformatics, vol. 23, no. 1, p. 326, 2022.

[83] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”

in Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings, 2010, pp. 249–256.

[84] G. Squillero, P. Burelli et al., Applications of evolutionary computation. Springer, 2016.

[85] S. K. Kumar, “On weight initialization in deep neural networks,” arXiv preprint arXiv:1704.08863, 2017.

[86] “Pytorch initializers user guide.” [Online]. Available: https://pytorch.org/docs/stable/nn.init.html

[87] J. Li, Y. Song, X. Song, and D. Wipf, “On the initialization of graph neural networks,” in International

Conference onMachine Learning. PMLR, 2023, pp. 19 911–19 931.

[88] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional neural networks,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp. 984–993.

[89] Z. Ye, C. Li, Q. Liu, L. Bai, and J. E. Fowler, “Computationally lightweight hyperspectral image classifi-

cation using a multiscale depthwise convolutional network with channel attention,” IEEE Geoscience and

Remote Sensing Letters, 2023.

[90] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101,

2017.

[91] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[92] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a overview of

mini-batch gradient descent,” Cited on, vol. 14, no. 8, p. 2, 2012.

[93] T. M. Cover, Elements of information theory. JohnWiley & Sons, 1999.

[94] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions: Theoretical analysis and applications,”

in International Conference onMachine Learning. PMLR, 2023, pp. 23 803–23 828.

[95] C. M. Bishop, “Pattern recognition and machine learning,” Springer google schola, vol. 2, 2006.

93

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://pytorch.org/docs/stable/nn.init.html

[96] “Pytorch binary cross-entropy function with integrated sigmoid user guide.” [Online]. Available:

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

[97] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” in International conference on machine learning. pmlr, 2015, pp. 448–456.

[98] “Pytorch bathc normalization user guide.” [Online]. Available: https://pytorch.org/docs/stable/

generated/torch.nn.BatchNorm2d.html

[99] M. Dmytro, “caffenet-benchmark,” GitHub repository, 2016. [Online]. Available: https://github.com/

ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md

[100] Y. Bai, “Relu-function and derived function review,” in SHSWeb of Conferences, vol. 144. EDP Sciences,

2022, p. 02006.

[101] S. Park and N. Kwak, “Analysis on the dropout effect in convolutional neural networks,” in Computer

Vision–ACCV 2016: 13th Asian Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016,

Revised Selected Papers, Part II 13. Springer, 2017, pp. 189–204.

[102] X. Xie, M. Xie, A. J. Moshayedi, M. H. Noori Skandari et al., “A hybrid improved neural networks algo-

rithm based on l2 and dropout regularization,”Mathematical Problems in Engineering, vol. 2022, 2022.

[103] P. Romero, Z. Obradovic, X. Li, E. C. Garner, C. J. Brown, and A. K. Dunker, “Sequence complexity of

disordered protein,” Proteins: Structure, Function, and Bioinformatics, vol. 42, no. 1, pp. 38–48, 2001.

[104] A. Szilagyi, V. Grimm, A. K. Arakaki, and J. Skolnick, “Prediction of physical protein–protein interac-

tions,” Physical biology, vol. 2, no. 2, p. S1, 2005.

[105] H. J. Dyson and P. E.Wright, “Coupling of folding and binding for unstructured proteins,”Current opin-

ion in structural biology, vol. 12, no. 1, pp. 54–60, 2002.

[106] U. Jakob, R. Kriwacki, and V. N. Uversky, “Conditionally and transiently disordered proteins: awakening

cryptic disorder to regulate protein function,” Chemical reviews, vol. 114, no. 13, pp. 6779–6805, 2014.

[107] I. Bahar, C.Chennubhotla, andD.Tobi, “Intrinsic dynamics of enzymes in the unbound state and relation

to allosteric regulation,” Current opinion in structural biology, vol. 17, no. 6, pp. 633–640, 2007.

[108] F.-Z. Li, A. P. Amini, Y. Yue, K. K. Yang, andA. X. Lu, “Feature reuse and scaling: Understanding transfer

learning with protein language models,” bioRxiv, pp. 2024–02, 2024.

94

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md

Acknowledgments

The code for the project was entirely made using Python 3.8.8 and its several built-in libraries. The external li-

braries used are NumPy 1.23.5 and Pandas 1.5.3 for manipulating and processing all the datasets; Matplotlib

3.7.1, Seaborn 0.12.2, and NetworkX 3.2.1. for every data visualization and results plot; Scikit-learn 1.3.2 for

dimensionality reduction algorithms, metrics calculation and tools for stratified k-fold cross-validation; PyTorch

2.1.2 (cu121) for developing the deep learning model and the padding system for the dataset. Molecular graphics

and analyses were performed with UCSF ChimeraX 1.7.1, developed by the Resource for Biocomputing, Visu-

alization, and Informatics at the University of California, San Francisco, with support from National Institutes

of Health R01-GM129325 and the Office of Cyber Infrastructure and Computational Biology, National Insti-

tute of Allergy and Infectious Diseases. Skeletal diagrams of the amino acids were realized with ChemDoodle

6.0. Nneural network diagrams drawn using DrawIo 24.0.5. A special thanks to BioComputing UP laboratory,

at University of Padua, for providing the training dataset through the MobiDB service, and, most of all, for the

indispensable and valuable help, in terms of knowledge, computational and storage resources, and consulting.

95

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Proteins
	Composition and structure of proteins
	From DNA to Proteins: The Central Dogma of Molecular Biology
	Intrinsically Disordered Proteins
	Protein Interactions
	Linear Interacting Peptides

	Protein Data
	UniProtKB Database
	Protein Data Bank
	SIFTS service
	MobiDB database

	Protein Structure and Features Prediction
	Residue Interaction Network Generator
	Fast Linear Interacting Peptides Predictor
	AlphaFold and AlphaFold-Disorder
	ProtTrans
	Critical Assessment of protein Intrinsic Disorder prediction

	Approach and Techniques for Embedding-Based LIPs Detection

	Materials and Methods
	Datasets
	Data preprocessing and analysis
	Dataset Preprocessing
	Exploratory Data Analysis

	Exploratory Data Analysis Insights
	The Test Datasets
	TE440 datatest
	CAID Binding dataset

	Models
	The Convolutional Neural Network
	Convolution Operator

	Data Preparation
	Proposed CNN Model for LIPs Detection
	Model Architecture
	CNN Model Workflow

	Results and Discussion
	Results
	Training and Validation Datasets Performance
	Averaged metrics
	Fold-specific metrics

	Test Datasets Performance
	TE440 Dataset Results
	CAID Binding Dataset Results

	Discussion
	The Context of the problem
	Datasets and Tools Limitations

	References
	Acknowledgments

