
Università degli Studi di Padova

Scuola di Ingegneria

Corso di Laurea in

Ingegneria delle Telecomunicazioni

A deep learning approach to the analysis
of retinal images

Laureando Relatore

Enrico Vincenzi Prof. Enrico Grisan

Co-relatore

Prof. Emanuele Trucco

Anno Accademico 2016/2017



ii



A ...

Quote

Author



iv



Contents

1 Introduction 1

2 Deep Learning theory 3

2.1 Introduction to machine learning . . . . . . . . . . . . . . . . 4
2.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Arti�cial Neural Networks . . . . . . . . . . . . . . . . . . . . 6

2.3.1 What is an ANN? . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Deep Neural Networks . . . . . . . . . . . . . . . . . . 9
2.3.4 Activation function . . . . . . . . . . . . . . . . . . . . 10

2.4 Backpropagation algorithm . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Training set . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Gradient Descent Rule . . . . . . . . . . . . . . . . . . 13
2.4.4 Local Error . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.5 Backpropagation steps . . . . . . . . . . . . . . . . . . 16

2.5 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 17
2.5.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Classi�er performances . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Common problems . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Literature review: Deep Learning for retinal images analysis 21

4 Methodology 23

4.1 Hardware setup . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Software setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2 Lua . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 44



vi CONTENTS

4.3.2 Arti�cial markers . . . . . . . . . . . . . . . . . . . . . 45
4.4 Network architecure . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Visualization techniques . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Filters visualisation . . . . . . . . . . . . . . . . . . . . 52
4.5.2 Grad-CAM . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Experiments 57

5.1 Natural images . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.1 Filters Visualisation . . . . . . . . . . . . . . . . . . . 58
5.1.2 Grad-CAM Visualisation . . . . . . . . . . . . . . . . . 61

5.2 Binary: car , grass blob . . . . . . . . . . . . . . . . . . . . . . 62
5.2.1 Filters visualization . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Grad-CAM visualization . . . . . . . . . . . . . . . . . 65

5.3 Multiclass: natural arti�cial markers . . . . . . . . . . . . . . 66
5.3.1 Filters visualization . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Grad-CAM visualization . . . . . . . . . . . . . . . . . 68

5.4 Binary: grass blob, original fundus images . . . . . . . . . . . 69
5.4.1 Filters visualisation . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Grad-CAM visualisation . . . . . . . . . . . . . . . . . 71

5.5 Texture blobs markers dataset . . . . . . . . . . . . . . . . . . 73
5.5.1 Filters visualisation . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Grad-CAM visualisation . . . . . . . . . . . . . . . . . 75

5.6 Diabetic Retinopathy . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.1 Filters visualisation . . . . . . . . . . . . . . . . . . . . 76
5.6.2 Grad-CAM visualisation . . . . . . . . . . . . . . . . . 78

6 Conclusion and Recommendation for future works 79

6.1 Natural and Medical datasets di�erences . . . . . . . . . . . . 79
6.2 Filters pattern complexity is important . . . . . . . . . . . . . 80
6.3 Unexpected patterns can be �nd . . . . . . . . . . . . . . . . . 80
6.4 Filters pattern can limit the performances . . . . . . . . . . . 82
6.5 Diabetic Retinopathy visualisation . . . . . . . . . . . . . . . 83

Appendices 84

Appendix 1 85

Appendix 2 86

Appendix 3 88

Bibliography 93



Abstract

Motivation

This work is focused on the possible applications of Deep Learning in reti-
nal fundus images analysis. Deep Learning is an advanced machine learning
technique that is revolutionizing all data-based disciplines with unheard-of
performances in signal analysis. In particular Arti�cial Intelligence, Com-
puter Vision and Image Analysis are bene�ting from huge improvement in
image and sound classi�cation, segmentation and pattern recognition. This
progress in these �elds is extendible to all medical �elds where images or gen-
eral signals are used. It is possible to exploit deep learning to improve disease
diagnosis? Is possible to take advantage of AI features of Deep Learning to
improve and speed up malady investigation?

Aim and Methods

In this project we will try to give an answer using Deep Learning early to
classify diabetic retinopathy and then trying to visualise the salient regions
inside fundus images used for the classi�cation. In this way is possible to
see how a deep neural network discriminates between di�erent classes and
if this information can be useful for early diagnosis or biomarkers discovery.
First, Deep Learning and neural networks theory is ; a literature review on
the state of the art is eventually presented and software environment and
set-up is discussed. Secondly di�erent retinal datasets with arti�cial markers
are shown and used to test and study Grad-CAM visualisation technique.
Finally results and conclusions are treated.

Results

Each dataset with di�erent kind of arti�cial markers give a di�erent result
more or less successful. This seems very dependent on the kind of �lters
learned by the network during the training step.

Conclusion

Deep Learning capabilities have been con�rmed in this work, but a lot is
necessary to do to understand better how to exploit the information of the
trained networks especially for particular images as the medical ones are.
The current state of the art is not enough and much more can be achieved
improving the way how network �lters are obtained and used.
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Chapter 1

Introduction

Deep learning is a machine learning technique that, using deep neural net-
works, is being used in more and more �elds. The performances reached with
signals classi�cation, segmentation, elaboration are changing Image analysis,
computer vision and machine learning itself. In particular medical image
analysis is a �eld where Deep Learning can improve the quality and speed
of research ([?]). In particular fundus retinal image analysis is a �eld where
an improvement of diagnosis precision and biomarker discovery can mean
a good improvement on medicine quality. In fact roughly speaking, fundus
images are just photos of patient retina and, therefore, can be obtained with
non invasive methods. Indeed, a lot of work and research is involving Deep
Learning and retinal images ([1], [2], [3], [4], [5], [6], [7], [8]). The aim of
this work is understand better how is possible to exploit the information
gathered by Deep Learning to use it not only for classifying di�erent disease,
but to �nd something potential new that can help the diagnosis. The idea
is then to visualise the important regions used by Deep Learning to classify
and understand more precisely what a network use to get good performances.
Therefore, the analysis of visualisation techniques become the main subject
in this work. The technique used are:

• Filter visualisation.

• Grad-CAM: Gradient-weighted Class Activation Mapping ([30], [31]).

The �rst approach is the simplest and consist in visualising the �lters learned
by the neural network during training. These �lters are involved in the second
technique; visualise the �lters can be important both to understand which are
the most important features of the images and to understand better the out-
put of Grad-CAM. Grad-CAM, instead, is the state-of-the-art in important
region visualisation. Indeed allows to visualise the region of the image used
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2 CHAPTER 1. INTRODUCTION

by the network to classify it correctly. Is then the core of this thesis, because
its performances can tell how much is possible to understand from a trained
network. The �rst step is to choose a network architecture that works well
with Grad-CAM and has been used for natural images classi�cation in order
to have a benchmark. The best Deep Learning network architecture at March
2017 is Kaiming He ResNet ([29]), but, unfortunately, its non sequential ar-
chitecture is not the best choice for GradCAM technique. Then a VGG16
has been chosen as �xed architecture for all the experiments. Its sequential
architecture and wide use in literature are perfect for the aim of this work
(that is not the best classi�cation performance possible). The second step
is to prepare particular datasets that can help to understand the behave of
training of the network and of Grad-CAM. These dataset are simply fundus
retinal images to which some arti�cial markers are printed on. The markers
can be texure (grass, granit, fabric) blobs or non-medical objects as cars,
animals, etc. The di�erent result obtained with di�erent arti�cial markers
could help to understand better Grad-CAM performances. For each dataset
the VGG16 hare trained in order to obtain a 100% classi�cation accuracy
for each of the arti�cial markers datasets ( 100% accuracy seems too much
but is possible because Deep Learning achieve the best performances in this
conditions). The idea is then to reduce as much as possible the number of
variables that can in�uence Grad-CAM and see its strength and weak points.

To achieve these performances and study all that can be taken in account
for Grad-CAM is necessary go through Deep Learning Theory and Grad-
CAM algorithm.



Chapter 2

Deep Learning theory

In this chapter will be explored what Deep Learning is and what fundamental
features will be exploited for visualisation.
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4 CHAPTER 2. DEEP LEARNING THEORY

2.1 Introduction to machine learning

Machine learning is a core sub-�eld of Arti�cial Intelligence. The aim of
Machine learning is study �exible computer algorithms that are able to learn.
This learning that is being done is always based on some kind of experience
based on known input data or instructions.

De�nition: A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

Tom M. Mitchell [9]

Therefore, in general learning is about improving future performance using
past experience, reducing as more as possible human intervention or assis-
tance. In general Machine learning paradigm can be viewed as "programming
by demonstration", where the approach emphasises working on concrete ex-
amples rather than describing an abstract procedure. [10]

Machine learning tasks are usually classi�ed in three di�erent wide cate-
gories, depending on the nature of the problem faced[11]:

• Supervised learning: the algorithm learning is guided through inputs
and their desired outputs given by a "teacher". The goal is to build a
rule that maps inputs into their outputs.

• Unsupervised learning: the input given is not labeled and the goal
of the alghorithm is to infer a function to describe hidden structure or
pattern in the input.

• Reinforcement Learning: the inputs are a set of feedbacks coming
from a dynamic environment that the algorithm is facing. The aim is
to perform a predetermined goal (playing a video-game or driving a
vehicle).

Deep Learning can be implemented both as supervised or unsupervised
technique. The problem faced in this thesis required a supervised approach,
therefore only this branch of machine learning will be discussed.
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2.2 Supervised Learning

Figure 2.1: Supervised Learning �owchart

As disclosed previously Supervised Learning is an approach to learning that
require a known dataset. This set is provided of both inputs and correct out-
puts for the algorithm used. Starting from this set of examples the program
is guided to describe a model able to predict the correct output. At this
point the prediction model must be validated with another known dataset
independent from the training set. Only when the validation phase is sat-
isfactory the algorithm can be considered reliable for use on unknown data.
Therefore, given a supervised problem and the data type, learning steps are:

Algorithm selection The �rst step is to choose the supervised algorithm
to use. Every method has di�erent strength and weak point. The choice
depends on the particular problem and on the kind and amount of available
data. Some of these algorithms are: Support Vector Machine (SVM), De-
cision Tree, Arti�cial Neural Network and Deep Learning. In this work the
focus will be on Deep Learning, extension of ANN, for reasons that will be
explained in the next sections.

Training The training phase is probably the most important one, as the
�nal performances depend on the predictive model built.

• A known dataset is selected; must be as more representative of the
problem as possible. Using dataset not general enough can lead to
over�tting and to bad performances. This set, the training set, must
provide an output (label) for each listed input.
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• The algorithm is trained with the selected dataset. The aim of this
phase is trying to build a model able to �t the data provided, that is
predict the correct output for each input provided as best as possible.

Validation The validation phase is important to test the performances
achieved by the prediction model built in the previous phase.

• Another known dataset, called test set, is prepared. The dataset must
provide, as the training set, reliable input and output for each example.
An important property of this set is that it should be as independent
as possible from the training one.

• The previously trained algorithm is here used to predict the input data
of the test set. Only the input are used and the output are predicted by
the algorithm and stored. The fundamental di�erence from the train
step is that, in this one, the output label are not used to improve the
prediction capabilities of the model, but only to evaluate its perfor-
mances.

• The predicted outputs are validated using the known outputs. The per-
formance are hence evaluated and analysed. If they are satisfactory it is
possible to go to the �nal step, otherwise the algorithm or the training
phase must be reviewed with di�erent precautions or parameters.

Model Deployment Once the algorithm is trained and validated, it is
possible to use it as an automatic system to solve the original problem on
new data.

2.3 Arti�cial Neural Networks

Deep Learning is basically an extension of Arti�cial Neural Networks. There-
fore, is important understand this technique before move on.

2.3.1 What is an ANN?

ANN is an information processing paradigm mainly inspired by biological
nervous systems. It is composed by a high number of processing units, called
neurons, working in unison to solve a speci�c task. Learning process in
ANN involves, like in a biological system, the adjustments of the connections
between the processing units.
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2.3.2 Perceptron

One of the simplest Arti�cial Neural Networks algorithms is the Perceptron,
introduced in its simplest version by Rosenblatt in 1958, as supervised ma-
chine learning algorithm for binary classi�cation. It is partially inspired by
the biological neuron, and in some way emulates its behave. This is the
reason why this systems are called arti�cial neural networks.

Figure 2.2: Biological neuron [12]

The original perceptron can be considered an ANN composed by one arti-
�cial neuron. It is, then, very similar to the concept of arti�cial neuron.

De�nition: The arti�cial neuron is a mathematical function
conceived as a model of biological neurons.

Let's see now a Perceptron scheme:

Figure 2.3: Single layer Perceptron scheme [9]
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A perceptron takes a vector of real-valued inputs, calculates a linear com-
bination of these inputs, then outputs a 1 if the result is greater than some
threshold and 0 otherwise. More precisely, given inputs x1 through xn, the
output a(x1, ..., xn) computed by the perceptron is:

a(x1, ..., xn) =

{
1 if θ0 + θ1x1 + θ1x2 + ...+ θnxn > 0

0 otherwise
(2.1)

where each θi is a real-valued constant, or weight, that determines the
contribution of input xi to the perceptron output. Notice the quantity (−θ0)
is a threshold that the weighted combination of inputs θ1x1 +θ1x2 +· · ·+θnxn
must surpass in order for the perceptron to output a.To simplify notation, we
imagine an additional constant input x0 = 1, allowing us to write the above
inequality as

∑n
i=0 θixi > 0, or in vector form as θT · x > 0. The original

activation function ϕ maps the output to 1 or 0. This function is the step
function:

ϕ(x) = step(θT · x)

where

sgn(z) =

{
1 if z > 0

0 otherwise
(2.2)

Figure 2.4: Step function.

Learning a perceptron involves choosing values for the weights θ0, · · · , θn.
Therefore, the space H of candidate hypotheses considered in perceptron
learning is the set of all possible real-valued weight vectors.

H = {θ | θ ∈ R{n+1}}
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2.3.3 Deep Neural Networks

The concepts behind the preceptron are the ones of modern neural network
and then of Deep Learning. An evolution of the perceptron is a multilayer
network with hidden layers between the input and the output.

Figure 2.5: 3-layer fully connected neural network.

In �gure 2.5 a 3-layer fully connected network is shown. The �rst layer is
composed by the inputs values. For each activation a

(2)
i in the second layer

a independent vector of weight θ
(1)
i is used. Therefore, is possible to write:

a
(2)
i = θ

(1)
i · x

where θ
(1)
i is the row i of the matrix θ(1) that maps layer 1 to layer 2. The

activation function is used for each output giving

a
(2)
i = ϕ(θ

(1)
i0 x0,θ

(1)
i1 x1,θ

(1)
i2 x2,θ

(1)
i3 x3,θ

(1)
i4 x4)

or, in a compact way:

a(2) = ϕ(θ(1) · x)

Each activation a
(2)
i is then mapped to a

(3)
1 through a second weight matrix

θ(2). Furthermore is possible map the input x directly to the output a
(3)
1

using the notation a
(3)
1 = hΘ(x) where Θ = {θ(1),θ(2)}.
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2.3.4 Activation function

The activation function is very important for deep networks. The step or
sign functions provide a very strong decision that is not very good with deep
networks. Before explore better what a deep network is, let's see a soft
activation function:

Logistic unit

This function allows to propagate more of the initial information and this is
useful in the case of deep networks.

sig(z) =
1

1 + exp(−z)

d(sig(z))

dz
=

ez

(ez + 1)2

Figure 2.6: Logistic function. Figure 2.7: First derivative.
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Recti�ed linear unit

The Recti�ed Linear Unit is an activation function useful for deep linear
network as will be possible to see in the next sections.

ReLU : f(x) = max(0, x) (2.3)

df(z)

dz
= step(z)

Figure 2.8: ReLu function Figure 2.9: ReLU First derivative.

2.4 Backpropagation algorithm

Until now, only the structure of the network has been discussed. The net-
work is, from a computational point of view, a chain of parallel and serial
calculations which map an input to an output. But how is possible to teach
something to this architecture? How is possible that this system can learn
something? To answer this question is necessary to introduce the backpropa-
gation algorithm. This method allows the network to modify the way how the
steps are computed making possible to adjust the output. Recalling the gen-
eral structure of supervised learning, this is done through the training data
in the training step: knowing the output related to each input is possible to
evaluate the error with the respect to the output of the network. The back-
propagation step is the algorithm that allows to change the network trying
to reduce the computed error. Let's see now the backpropagation algorithm
in detail.
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2.4.1 Training set

The training set is composed of m inputs x(i) with the respective outputs,
or labels, y(i), where i = 1, · · · ,m is the index of each sample.

X = ffl︸︷︷︸



x(1)

x(2)

x(3)

...

x(m)


︸ ︷︷ ︸

n columns

Y =



y(1)

y(2)

y(3)

...

y(m)


︸ ︷︷ ︸

k columns

(2.4)

In the representation (2.4) X is the matrix where each is row is a vector
representing an input. The single input is not always a linear vector but
the generality is not lost because nothing keep from reshape each row to a
multi dimensional vector as an image or a 3D data. Y is the respective labels
matrix: for each row a label vector is enumerated. With reference to the
previous neural network architecture is possible to write:

X =



x1 x2 · · · xn

x
(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

x
(3)
1 x

(3)
2 · · · x

(3)
n

...

x
(m)
1 x

(m)
2 · · · x

(m)
n


Y =



y1 y2 · · · yn

y
(1)
1 y

(1)
2 · · · y

(1)
n

y
(2)
1 y

(2)
2 · · · y

(2)
n

y
(3)
1 y

(3)
2 · · · y

(3)
n

...

y
(m)
1 y

(m)
2 · · · y

(m)
n


(2.5)

In the (2.5) �rst row of the �rst matrix represents the vector of all the
input for each position of the �rst layer. In this case the network must have
n inputs. The symbol x

(i)
j with i = 1, · · · ,m and j = 1, · · · , n represents the

element that feed the jth input of the network for the ith sample. The same
is valid for the outputs y

(i)
l with l = 1, · · · , k. Must be noticed that, with

reference to the architecture of �gure 2.5, k = 1, and y(i) becomes a single
element y(i).
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2.4.2 Loss function

In order to see how to reduce the output error of a neural network is necessary
to de�ne what this error is. Therefore, a loss function is now de�ned.

L(Θ) =
1

m

m∑
i=1

E(i) (2.6)

where m is the number of training samples in the training set and E(i) is the
error between the output of the network and the expected error for sample
i.

E(i) = E(i)(hΘ(x)) =
1

2
||y(i) − hΘ(x(i))︸ ︷︷ ︸

=a(L)

||2 =
1

2

∑
k

(y
(i)
k − a

(L)
k )2

x,y �xed

(2.7)

where a(L) is the activation vector on the last layer of the network and y(i)

the label of the ith sample. E varies with Θ, and this is the what to optimise
to reduce E.

2.4.3 Gradient Descent Rule

The main idea is to reduce Θ with the following rule:

Θ→ Θ− ηδE
δΘ

(2.8)

where η is called learning rate and δE
δΘ

is the rate of variation of error E with
the respect to Θ. Recalling that theta is the cascade of matrices that map
the input to the output the values to �nd are related to Θ

(l)
ij , the weight

in position ij of the matrix Θ(l) that map the layer l to the layer l + 1,
l = 1, · · · , L.

2.4.4 Local Error

Now will be explored how the local weights are updated. Let's be z
(l)
i =

θ
(1)
i0 x0,θ

(1)
i1 x1,θ

(1)
i2 x2, · · · ,θ(1)

in xn the weighted input of layer l of neuron i.
The update step performs:

z
(l)
i → z

(l)
i + ∆z

(l)
i (2.9)

and the error changes with

E → E + δ
(i)
i ·∆z

(l)
i with δ

(i)
i =

δE

δz
(l)
i

(2.10)
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Therefore, the value δ
(i)
i , error at ith neuron of layer l, is fundamental for the

update:

if

∣∣∣∣∣ δEδz(l)
i

∣∣∣∣∣� 0 ⇒ improvement is possible

if

∣∣∣∣∣ δEδz(l)
i

∣∣∣∣∣ ' 0 ⇒ improvement is near 0, optimal node

(2.11)

Output error

The output error, at layer l = L is:

δ
(L)
i =

δE

δa
(l)
i

· δa
(l)
i

δz
(l)
i

= (a
(L)
i − yi) · ϕ′(z

(L)
i ) (2.12)

recalling that:

a
(l)
i = ϕ(z

(l)
i )

⇒ δa
(L)
i

δz
(L)
i

=
δϕ(z

(L)
i )

δ(z
(L)
i )

= ϕ′(z
(L)
i )

and that:

E =
1

2

∑
k

(yk − a
(L)
k )2

⇒ δE

δa
(L)
i

=
1

2
· 2(a

(L)
i − yi)

The 2.12 is a general formula that does not depend on the ϕ activation
function. In case ϕ is the sigmoid the 2.12 becomes:

δ
(L)
i = (a

(L)
i − yi) · a

(L)
i (1− a(L)

i ) (2.13)

Considering all the inputs for each sample is possible to write the 2.12 in
vectorial form:

δ(L) = ∇aE � ϕ′(z(L))

with � componentwise multiplication
(2.14)
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Error at layer l

The error at layer l depends on the next layer l + 1:

δ
(l)
i =

δE

δz
(l)
i

=
∑
j

δE

δz
(l+1)
j

·
δz

(l+1)
j

δz
(l)
i

δ
(l+1)
i =

δE

δz
(l+1)
i

(2.15)

with j = 1, · · · , v element in the layer l + 1. Knowing that:

z
(l+1)
j =

∑
k

Θ
(l)
jk · a

(l)
k =

∑
k

Θ
(l)
jk · ϕ(z

(l)
k ) (2.16)

⇒
δz

(l+1)
j

δz
(l)
i

= Θ
(l)
ji ϕ

′(z
(l)
i ) (2.17)

where the 2.17 is computed with the Jacobian of a composite function, re-
called in Appendix A. The equation 2.15 becomes:

δ
(l)
i =

∑
j

δ
(l+1)
j ·

δz
(l+1)
j

δz
(l)
i

=
∑
j

Θ
(l)
ji δ

(l+1)
j ϕ′(z

(l)
i ) (2.18)

and considering the entire layers, the vectorial form is:

δ
(l)
i =

[
(Θ(l))T · δ(l+1)

]
� ϕ′(z(l)) (2.19)

Layer error update

It is �nally possible to write the variation of the error with the respect to
Θ(l), matrix of weight that maps layer l to layer l + 1 as a function of the
input a(l) and of δ(l+1).

δE

δΘ
(l)
ij

=
δE

δz
(l+1)
i

· δz
(l+1)
i

δΘ
(l)
ij

= δ
(l+1)
i · a(l)

j (2.20)

where δ
(l+1)
i is computed through the backward step and a

(l)
j is previously

computed through the forward step. Considering all the elements i and j in
a vector the 2.20 becomes:

δE

δΘ(l)
= δ(l+1) ·

(
a(l)
)T

(2.21)

Recalling the 2.8, the weights are then updated with:

Θ(l) → Θ(l) − η · δ(l+1) ·
(
a(l)
)T

(2.22)
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2.4.5 Backpropagation steps

With the achievements of the last sections, the backpropagation algorithm
can be summarised in few steps. Given a multilayer neural network with
activation ϕ the bacpropagation algorithm requires:

• The Training set ;

• the learning rate η;

• the optimization function that de�nes the error E;

• a termination condition, which can be a maximum number of steps or
a minimum error reduction rate.

Once the initial requirements are satis�ed the algorithm can be implemented:

Algorithm 1 Backpropagation

1: Initialize all network weights to small random numbers (e.g., between

−.05 and .05).

2: while Termination condition is False do

3: for each 〈x,y〉 in training set do

. Propagate the input forward through the network

4: Input the instance x(i) to the network and compute the output

a(l) of each node of the network. .
. Propagate the errors backward through the network

5: Compute the error δ(L) = ∇aE � ϕ′(z(L)) of the network output

6: for l in range {L · · · 1} do
7: Compute the error for each of the l hidden layers:

δ
(l)
i =

[
(Θ(l))T · δ(l+1)

]
� ϕ′(z(l)).

8: end for

9: for l in range {L · · · 1} do
10: Compute the variation of the error with the respect

to the weights for each of the l hidden layers:
δE
δΘ(l) = δ(l+1) ·

(
a(l)
)T
.

11: Update the layers following the Stochastic Gradient Descent:

Θ(l) → Θ(l) − η · δ(l+1) ·
(
a(l)
)T

.
12: end for

13: end for

14: end while
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2.5 Convolutional Neural Networks

The networks seen until now are composed of neurons completely connected
to each other. This means a huge number of weights to be memorised with the
increase of the layers and neurons per layer. The problem becomes important
from a memory requirement and training time point of view. Indeed in
modern neural networks the number of parameters can be of several millions,
and the convergence becomes very slow. In the �eld of images the data has
can be exploited in a better way and a fully connected architecture is not
necessary neither e�cient. In fact images have usually very high correlation
between near pixels and low correlation between far points. This can be used
designing a more sparse neural architecture highly connected only locally.

Figure 2.10: Fully connected network Figure 2.11: Sparse network

In �gure 4.9 each neuro is connected to 3 adjacent neurons of the previous
layer. In the case in �gure the receptive �eld of each layer to the previous
is RF = 3, equal to the number of neurons of the layer l − 1 connected to a
neuron of layer l. The RF of the output with the respect to the input is 5;
all the input layers are still seen by the output neuron.
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2.5.1 Convolutional layer

The convolutional layer is design mainly for image data. Therefore, is rea-
sonable to choose an image as input for the network. The structure of a
coloured image x is:

x ∈ R{n1×n2×n3}, with n1 = 3

Figure 2.12: RGB image data structure.

The matrices Θi = ki, i = 1, · · · ,m matrix of weights that maps the input
to the output of the layer, is of dimension :

ki ∈ R{m×n1×p1×p2}, with n1 = 3, p1 < n2, p2 < n3

Figure 2.13: Weights matrix structure.
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The outputs yi are computed with a convolution between the input image
x and the the ki. The ki can, then, be considered as �lter kernels.

yi = x ∗ ki + bi i = 1, · · · ,m (2.23)

where bi is the bias term. ki and bi are the terms learned during the training
phase.

2.5.2 Pooling layer

The pooling layer is fundamental to exploit high level path from the input
and to reduce the number of parameters. The function implemented by this
layer is:

‖x‖p =

(∑
i

|xi|p
) 1

p

‖x‖p = max(x) p→ +∞

(2.24)

Figure 2.14: Maxpooling layer[13] of size 2× 2

2.6 Classi�er performances

2.7 Common problems

Over�tting
imbalaced classes
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Chapter 4

Methodology

The work done in this project has been implemented in Keras([14][15]), a
neural network API for Tensor�ow([16][17][18]) and in Torch([19][20]). Ten-
sor�ow is a library written in python [21] and c++; Torch is an interpreter for
LuaJIT ([22], [23]). All the libraries manage properly Nvidia CUDA ([24])
for GPU acceleration. The dataset used is the one provided for the Diabetic
Retinopathy Detection challenge on Kaggle ([25]) by EyePACS ([26]).

24



4.1. HARDWARE SETUP 25

4.1 Hardware setup

Deep Learning training tasks are very heavy from a computational point
of view. Luckily, as already seen, forward and backward steps are largely
parallelizable. This is done using GPU, instead of CPU, and exploiting their
highly multi-core architecture. In particular the core of Tensor�ow and Torch
can handle CUDA that allows to use the GPU to run c++ code. The ma-
chine comprises 1x 250GB OS `disk' (NVMe 32Gbps) hosting Ubuntu 16.04
LTS, 64GB RAM memory, 1x i7-6700 CPU, 1x 4TB data disk and 1x 4TB
backup disk (both spinning) across SATA3 @ 6Gbps.It two GPUs. Both are
reference Nvidia-supplied Titan X (Pascal architecture), 12GB VRAM and
3584 CUDA cores each, residing in PCIe 3.0 x16 slots on an Asus Z170 Pro
motherboard with standard CPU/GPU clock rates. Each GPU is used for a
single task per time and each task run on only one GPU.

4.2 Software setup

As anticipated before Tensor�ow, Keras and Torch are installed on the ma-
chine. The machine is used as a server in order to simplify access to the GPUs
for multiple users. Therefore the code runs in remote and a special environ-
ment setup is necessary to have full control on the code during running and
debug sessions.

4.2.1 Python

Python is the lenguage used by Keras and Tensor�ow. The IDE used to
have the best control possible on code development is JetBrains PyCharm
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Professional ([27]). The setup for a remote interpreter has been used to
produce a guide with all the details of the setup and the environment used.



Titan1 guide for DeepLearning 
applications 

 

 

 

 

 

 

 

 

 

 

Author: Enrico Vincenzi 
 Last update: 25/11/2016 

 

 

 

This guide is thought for an easy access to Titan1 server for deep learning. PyCharm is here used as 
standard python IDE because is simple, light and free for University members. The guide is divided in 
two main parts: 

• PyCharm setup and configuration for Titan1 server  
• SSH session section for time consuming runs 

SSH sessions are launched inside PyCharm in order to have a better integration of the development 
environment, but everything shown under SSH section is valid also outside PyCharm. 

 

  



PyCharm 
Requirements 
 

• PyCharm professional (version > 2016.3) 
https://www.jetbrains.com/pycharm/download; 

  Download professional version; 

PyCharm professional version is NOT a free software but is free for students and teachers. To 
activate 1-year free student licence you need to register here (Apply now section) with a 
University email account. 

• Titan1 server account 

Server IP: 134.36.37.238 

Ask Derek for credentials. 

 

Install PyCharm 
Install PyCharm professional on your computer. Access with your full or University account.  

 

Link PyCharm project to a remote Interpreter 
After the initial setup you should see a window like the next one:  

  

 

 

 

 

 

 

 

 

 

 

Click on Create New Project 



 

Press on the gear near the interpreter row and select add remote. 

 

Select SSH Credentials 

• Host: 134.36.37.238 

• Fill with your credentials. 



IMPORTANT: Set your ‘remote project location’ (is possible to create a new folder with right 
click in the window opened clicking on … button);  The default setting generates a project space outside 
your account. 

If everything worked set the remote project location (where to upload the code): 

 

 

Your machine is now linked to Titan1 server! Now a deployment configuration is needed. 

Deployment configuration for data and code 
This section is needed to send your local code to the Titan1 server. Is possible to use this system also 
for data. 

Click on create and go to File/Settings -> Under Build, Execution, Deployment select Deployment. 
You should see a server configuration (called ssh://134.36.37.23…). Rename the server if you want. 
Type must be SFTP. Click on Autodetect. 

The result should be similar to this image: 

 



Pressing Test SFTP connection… you should see this popup: 

 

Under Mappings layer fill Deployment path on server Titan1 with the path of your project. The path 
set automatically is not correct because of /home/username/ part. Click on … button and select your 
folder (with a right click is possible to create a new one). 

 

Press OK. The result must be similar to:

 

No /home/username/ should be on the path. Press OK. 

  



 

Remote browser 
Click on Tools -> Deployment -> Browse Remote Host 

 

 

 

This docked window should appear: 

 

Here is possible to browse and check all files on the remote server. 



Create a new Python file 
 

 

 

In order to create a new python file: 

1. Right click on the project name; 
2. New; 
3. Python file; 
4. Choose an name and press OK. 

 

  



Save to the server 

 

 
 

1. From the main bar click on Tools/Deployment -> Options… ; 
2. Under ‘Upload changed files automatically to the default server’ you can select two options: 

a. On explicit save action if you want to send the server only on explicit CTRL + S 
command; 

b. Always if you want a real time upload on each change on local; 
3. Press OK. 

 

 

 

  



Run configuration (CUDA path)  

 

 

In this section will be explained how to avoid CUDA libraries errors with remote interpreter. 

1. From the main bar click on Run -> Edit Configurations… ; 
2. On the left frame under Defaults click on Python; 
3. In the Configuration tab edit Environment variables; 
4. Add two new variables through + button: 

a. CUDA_HOME = /usr/local/cuda-8.0 
b. LD_LIBRARY_PATH = /usr/local/cuda-8.0/lib64:/usr/local/cuda-

8.0/extras/CUPTI/lib64 
5. Click OK; 
6. Click OK. 

 
 

 

 

 

 

 

 

 

 

Now is possible to run python 
script on the server with local 
output and debug. 



 



SSH session 
For long run session can be useful let the process run in background and disconnect the local machine. 
For this purpose a normal SSH session is useful. 

SSH inside PyCharm requires the first part of this guide. 

 

1. From the main bar Tools/Start SSH session... ; 
2. Select Titan1 server; 
3. In the left bottom of the page a SSH session will start; 

 

 

 



Screen session 

In order to detach an SSH process (and logout without killing the process) screen is used. (Click here 
for more info about screen) 

Type screen on SSH window 

Press Space bar and launch your script. 

 



Detach process 
Press CTRL + a and then type d (lowercase) to detach the process. 

 

Now is possible to logout and the process will run in background. 

Re-attach process 
1. Open a SSH session on Titan1 server; 
2. Type screen -ls; 
3. A list of screen process is enumerated; 
4. Type screen -r ‘process number’. 

 
5. Process is re-attached.  

 

 

  



Tee: save log on file 

 

Can be useful save run log on file. Tee is a command that allows to save all console log on a file without 
redirect STDOUT and STDERR. 

1. Start a SSH session to Titan1 server; 
2. Launch Screen; 
3. Launch your python script in this way: python Test.py |& tee log.txt ; 

 
4. Log of STDOUT and STDERR are saved on log.txt; 

Omit & symbol to drop STDERR log from the file. 

Both STDOUT and STDERR are still visualized as output on the console as shown in the first image of 
this page. 

  



Example code for testing 
In order to test the configuration run classic Keras mnist example (copy the code from the link): 

'''Trains a simple convnet on the MNIST dataset. 
Gets to 99.25% test accuracy after 12 epochs 
(there is still a lot of margin for parameter tuning). 
16 seconds per epoch on a GRID K520 GPU. 
''' 
 
from __future__ import print_function 
import numpy as np 
np.random.seed(1337)  # for reproducibility 
 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Activation, Flatten 
from keras.layers import Convolution2D, MaxPooling2D 
from keras.utils import np_utils 
from keras import backend as K 
 
batch_size = 128 
nb_classes = 10 
nb_epoch = 12 
 
# input image dimensions 
img_rows, img_cols = 28, 28 
# number of convolutional filters to use 
nb_filters = 32 
# size of pooling area for max pooling 
pool_size = (2, 2) 
# convolution kernel size 
kernel_size = (3, 3) 
 
# the data, shuffled and split between train and test sets 
(X_train, y_train), (X_test, y_test) = mnist.load_data() 
 
if K.image_dim_ordering() == 'th': 
    X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) 
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) 
    input_shape = (1, img_rows, img_cols) 
else: 
    X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) 
    X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) 
    input_shape = (img_rows, img_cols, 1) 
 
X_train = X_train.astype('float32') 
X_test = X_test.astype('float32') 
X_train /= 255 
X_test /= 255 
print('X_train shape:', X_train.shape) 
print(X_train.shape[0], 'train samples') 
print(X_test.shape[0], 'test samples') 
 
# convert class vectors to binary class matrices 
Y_train = np_utils.to_categorical(y_train, nb_classes) 
Y_test = np_utils.to_categorical(y_test, nb_classes) 
 
model = Sequential() 
 
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], 
                        border_mode='valid', 
                        input_shape=input_shape)) 
model.add(Activation('relu')) 
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1])) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=pool_size)) 
model.add(Dropout(0.25)) 
 
model.add(Flatten()) 
model.add(Dense(128)) 
model.add(Activation('relu'))  
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4.2.2 Lua

Lua environment, used by Torch, is less known than Python one. The reason
why has been used in this work is that the original work for Grad-CAM
visualization technique is implemented in Torch. Moreover, Torch is very
useful and, within the author personal opinion, easier to read and learn than
Tensor�ow. The main drawback is just the lack of the same number of image
analysis libraries and IDEs. The IDE used is ZeroBraneStudio, the only one,
at March 2017, with a su�ciently stable debugger.

4.3 Datasets

As anticipated the dataset is the one provided by EyePACS for Diabetic
Retinopathy Detection Kaggle challenge. The dataset is a 5-class dataset
with 90000 high resolution, labeled, fundus retinal scans. The resolution
used in the experiments is 300×300 and all the images satisfy this constraint.
The images are divided in the di�erent classes with the respect of the diabetic
retinopathy diagnosed:

1. NO Diabetic Retinopathy;

2. Mild Diabetic Retinopathy;

3. Moderate Diabetic Retinopathy;

4. Severe Diabetic Retinopathy;

5. Proliferative Diabetic Retinopathy.
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Figure 4.1: NO Diabetic Retinopathy

Figure 4.2: Mild Diabetic Retinopathy
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Figure 4.3: Moderate Diabetic Retinopathy

Figure 4.4: Severe Diabetic Retinopathy
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Figure 4.5: Proliferative Diabetic Retinopathy

The images are taken with di�erent cameras and at di�erent resolution
and light condition. A normalization between the images can be a good idea
to reduce the noise given by this factors.

4.3.1 Preprocessing

The preprocessing used to normalise images is the following:

O = (I −Gaussian(I)) + 128 (4.1)

where O is the output image, I the input image and the 128 bias is used to
normalise the image around the middle value in a uint image representation
(code in Appendix 2).
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Figure 4.6: Preprocessing Input and Output example

4.3.2 Arti�cial markers

In order to validate the visualizations techniques will be necessary to have
datasets with visible markers. This markers can be natural images or di�erent
textures. Each of these arti�cial datasets are composed of 35000 fundus
images. On each of these images an arti�cial marker is added. The code
used print an arti�cial marker with random dimension rotation and position
inside the images (code in Appendix 3).

Multiclass: texture markers

The �rst arti�cial dataset is a 4-class dataset with:

1. natural fundus images;

2. grass texture blob randomly added to the image;

3. granit texture blob randomly added to the image;

4. fabric texture blob randomly added to the image;

Figure 4.7: Grass Figure 4.8: Granit Figure 4.9: Frabric
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The output are images with three di�erent texture blobs.

Figure 4.10: Arti�cial texture markers images samples. The images can have
no blob or granit, grass, fabric texture.

Multiclass: natural arti�cial markers

The �rst arti�cial dataset is a 4-class dataset with:

1. grass texture blob randomly added to the image;

2. car model randomly added to the image;

3. droid model randomly added to the image;

4. gira�e randomly added to the image;
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5. cartoon boy randomly added to the image;

Figure 4.11: Natural models used as markers

Dataset samples:
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Figure 4.12: Arti�cial texture markers images samples.

Binary: car , grass blob

The third dataset with arti�cial is composed by two classes. Both are fundus
images, the �rst with a car model randomly added, and the second with a
grass blob.
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Binary: grass blob, original fundus images

The last dataset is a binary dataset with non modi�ed fundus images and
fundus images with grass texture blob in.

4.4 Network architecure

Classi�cation and, therefore, visualization performances are highly depen-
dent on how the network is designed. Almost in�nite combination of layers
and parameters can be chosen and the performances are highly dependent
on this choice. In this work two architecture designed for natural images
classi�cation are taken in account.

VGG

The VGG ([28]), from the name of the development team, has been designed
for ILSVRC 2013 challenge and is optimized for multiclass natural images
classi�cation.
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Figure 4.13: VGG architecture. D version is the one implemented.

In the table the �rst row shows all the convolutional layers from left to
right; the last part is a fully connected network where N is the umber of
classes in the dataset.

ResNet

The ResNet ([29]) has been introduced for ILSVRC 2015 challenge. Is the
state of the art for natural image classi�cation. The main di�erence if com-
pared with the VGG is the non linearity in the architecture design; The
reason behind its main performances is a feed-forward stage that subtract
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the output of each block with its input. This reduce vanishing gradient prob-
lem and allows up to 1000 layers architecture. In this work has been used a
50 layers ResNet.

Figure 4.14: ResNet architecture

Where each block is designed as following:

Figure 4.15: ResNet blocks

The main problem of the ResNet is its non sequential design. This make
di�cult the use of a visualization technique given that the latter requires
particular backpropagation steps across the network.

4.5 Visualization techniques

The main aim of this work is visualise what the network can learn and if this
knowledge can be used for biomarkers searching and discovery. Two di�erent
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techniques have been analysed:

• Filter visualisation;

• Gradient Class Activation Mapping (Grad-CAM) ([30], [31]).

4.5.1 Filters visualisation

The �rst technique is the simplest and more immediate one. The idea is to
visualise the �lters learned during the training step for each layer. The shal-
lower layers have simplest �lters, while deep ones should have more complex
ones. Those �lters can be useful for visualise if exist some speci�c pattern
useful for biomarkers discovery inside the original image, especially in the
deeper layers. Moreover the �lters are always useful to understand better
training stage and possible Grad-CAM troubles.

4.5.2 Grad-CAM

Grad-CAM ([30], [31]) algorithm is designed to visualise the most important
region used by the network for the classi�cation. The input of the algorithm is
the trained network, the input image, a number i, with 0 < i < # of classes,
and the layer of the network from where compute the activation. The output
is a heat-map image where each pixel is coloured in a range between red and
blue. The higher activation areas are the red one, while the less important
are blue. This technique is not dependent on the network architecture type
but work better with sequential models like VGG. For this reason Grad-CAM
has been implemented and tested mainly with VGG model. ResNet achieves
better result than VGG in Imagenet classi�cation challenge, but the main
aim of this work is not have a good classi�cation result. To answer the initial
question is important to test this technique with medical datasets. ResNet
can introduce further issues that are not in the focus of this work.
The original code for this algorithm is deployed in Torch. Let see the

details of the code.
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Algorithm 2 Grad-CAM verbose algorithm
1: Load neural network model and chosen layer name.

2: Remove last activation layer (last tensor in the stack, usually a softmax ).

. An image compatible with the network and representing objects that the

network can classify is loaded

3: Load image

4: Set the object class to visualise, or predict the class from the loaded

image.

5: doutput = n elements vector (where n is the number of classes) with all

values set to 0 but the one related to the chosen class.

. Grad-CAM steps

. Two new sequential models are created: model1 and model2

6: model1 = original model from input to chosen layer included.

7: model2 = original model from chosen layer non included to last layer.

. Weights computation

8: A backward step is computed from doutput to model1.output through

model2.

9: activation = the tensor with the weights of the chosen layer.

10: gradients = dIn
dOut

where In is the input of model2 and Out its output

(all non chosen class positions are set to 0)

11: weight = sum of all the gradients for each activation in the chosen layer.

. Map computation

12: map = elementwise multiplication between activation and relative

weight(previously computed).

13: map = map with all negative values set to 0.
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l o c a l model1 , model2 = nn . S e q u e n t i a l ( ) , nn . S e q u e n t i a l ( )
f o r i = 1 , #cnn . modules do
l a y e r_ i d = tonumber ( layer_name )
f o r i = 1 , #cnn . modules do

model1 : add ( cnn : ge t ( i ) )
i f i == l a y e r_ i d then

break
end

end
f o r i = l a y e r_ i d +1, #cnn . modules do

model2 : add ( cnn : ge t ( i ) )
end

Listing 4.1: model1, model2 setup

The �rst section of the code initialises model1 and model2 as described in
the algorithm.

−− Get a c t i v a t i o n s and g r a d i e n t s
model2 : ze roGradParamete r s ( )
model2 : backward ( model1 . output , doutput )

Listing 4.2: backward step in model2

The second section set to 0 all the gradients in model2 and perform back-
propagation algorithm from doutput vector layer and the output of model1,
used as input for model2.

−− Get the a c t i v a t i o n s from model1 and and g r a d i e n t s from model2
l o c a l a c t i v a t i o n s = model1 . output : squeeze ( )
l o c a l g r a d i e n t s = model2 . g r ad I npu t : squeeze ( )

Listing 4.3: activations and gradients computation.

The third section de�ne activations variable, the tensor with the wieghts
of the previously selected layer to visualise. Then gradients is de�ned as
the derivative of the output of model2 with its input (the layer selected for
visualization). The output of model2 is doutput vector. All the values of
doutput are set to 0, but the class selected to be visualised.
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Figure 4.16: Activations and gradients tensor shape. Activation shape =
{`× n× n}, Gradient shape = {g ×m×m}

−− G loba l ave rage poo l g r a d i e n t s
l o c a l we i gh t s = to r ch . sum( g r a d i e n t s : v iew ( a c t i v a t i o n s : s i z e (1 ) , −1)

↪→ , 2)

Listing 4.4: weights computation

In this section weights variable is computed.

weights = torch.sum(gradients : view(

shape = `︷ ︸︸ ︷
activations : size(1),−1)︸ ︷︷ ︸

shape = ` x m2

, 2)

︸ ︷︷ ︸
shape = ` x 1

The weights variable is a {`x1} vector. ` is the number of �lter in the
selected layer for the visualisation.

−− Summing and r e c t i f y i n g we ighted a c t i v a t i o n s a c r o s s depth
map = to r ch . sum( t o r ch . cmul ( a c t i v a t i o n s , we i gh t s : v iew ( a c t i v a t i o n s :

↪→ s i z e (1 ) , 1 , 1) : expandAs ( a c t i v a t i o n s ) ) , 1)
map = map : cmul ( t o r ch . gt (map , 0 ) : typeAs (map) )

Listing 4.5: map computation

Map is �nally computed multiplying the weights by the activations. Let's
see the code in the detail:

1. weights : view(activations : size(1), 1, 1) : expandAs(activations) :
reshape weights tensor to shape ` × n × n (all n × n planes have the
same value repeated);

2. torch.cmul(activations, · · · , 1) : activation tensor is elementwise mul-
tiplied by the previosly reshaped weights tensor. The result is a weighted
activation tensor of shape `× n× n.
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3. torch.sum(· · · , 1) : all weighted �lter from previous step are summed
together. Output shape is 1× n× n

4. The second operation on map tensor is set to 0 all negative map ele-
ments.

The �nal step of the algorithm outcome is a n × n matrix that used as a
colourmap shows the activation regions in the input image.



Chapter 5

Experiments

This chapter explores the results of classi�cation and visualization for all the
datasets used.
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5.1 Natural images

The visualization techniques are validated on ImageNet trained VGG16. This
is a benchmark to test if the visualization is working well before trying on
retinal datasets. The network is represented through deep learning libraries
as a cascade of tensors.

Figure 5.1: VGG16 tensor structure. The input dimension is, for historical
reasons, 224x224, with 3 color channels.

The network has been trained on Imagent dataset, with 1 million images
divided in 1000 classes.

5.1.1 Filters Visualisation

After training the weights of the convolutional layers are the �lter kernels
used to perform convolution.
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Figure 5.2: Filters of �rst convolutional layer in block 1.

Figure 5.3: Filters of �rst convolutional layer in block 2.
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Figure 5.4: Filters of �rst convolutional layer in block 3.

Figure 5.5: Filters of �rst convolutional layer in block 4.
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Figure 5.6: Filters of last convolutional layer.

5.1.2 Grad-CAM Visualisation

The Grad-CAM technique performs very well with natural images and Ima-
geNet trained VGG.

Figure 5.7: Image with a dog and a cat used as input for Grad-CAM test

The previous image is a good example to prove Grad-CAM technique.
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Manually setting the class to visualise in the Grad-CAM algorithm, is possi-
ble to focus on the cats or dogs class in the same image.

Figure 5.8: Grad-CAM output with
class 283 (= Tiger cat) �xed.

Figure 5.9: Grad-CAM output with
class 243 (= Boxer) �xed.

As is possible to see the algorithm outputs a heat-map that shows which
part of the image activates the selected class for the selected layer. In this
case Tiger cat and Boxer class has been �xed in two di�erent runs of the
program. The output is the activation, �rstly, for Tiger cat and then Boxer
classes. Superimposing the heat-map to the original image is possible to see
that the highly active regions match with the cat or the dog correctly. This
shows that the network is not only classifying correctly, but also using the
expected regions in the images.

In the next trials this technique will be applied to medical fundus images
on the same architecture trained each time on speci�c dataset.

5.2 Binary: car , grass blob

5.2.1 Filters visualization

After training the convolutional layers weights are the �lter kernels for each
stage of the network.
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Figure 5.10: Filters of �rst convolutional layer in block 1.

Figure 5.11: Filters of �rst convolutional layer in block 2.

Figure 5.12: Filters of �rst convolutional layer in block 3.
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Figure 5.13: Filters of �rst convolutional layer in block 4.

Figure 5.14: Filters of last convolutional layer.
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5.2.2 Grad-CAM visualization

Figure 5.15: Dataset samples. All images contain a car or a grass blob.

Figure 5.16: Grad-CAM run on the previous samples.
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5.3 Multiclass: natural arti�cial markers

5.3.1 Filters visualization

After training the convolutional layers weights are the �lter kernels for each
stage of the network.

Figure 5.17: Filters of �rst convolutional layer in block 1.

Figure 5.18: Filters of �rst convolutional layer in block 2.
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Figure 5.19: Filters of �rst convolutional layer in block 3.

Figure 5.20: Filters of �rst convolutional layer in block 4.

Figure 5.21: Filters of last convolutional layer.
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The last layer �lters are still very di�erent from Imagenet ones. Moreover
there is a signi�cant di�erence even with the previous that is noticeable in
even less complex �lters with an horizontal pattern rather repeated among
all the �lters.

5.3.2 Grad-CAM visualization

The samples used for this dataset show less reliable behave of the Grad-CAM.
The marker are still mainly detected by the technique, but in a weaker way
than before. Where the visualisation is correct there is more often activation
in wrong regions and more importantly in some images the visualisation fails
showing an all red heat-map.

Figure 5.22: Arti�cial texture markers images samples.
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Figure 5.23: Arti�cial texture markers images samples.

5.4 Binary: grass blob, original fundus images

This dataset is particularly challenging for the visualisation. The classi�ca-
tion accuracy is again 100%, but from an intuitive point of view the texture
is not important for the classi�cation. The minimum capability needed to
discriminate between to fundus images, one with a grass texture blob and
one without, is the ability to �nd circles.

5.4.1 Filters visualisation

The �lters for each VGG16 block are printed below.
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Figure 5.24: Filters of �rst convolutional layer in block 1.

Figure 5.25: Filters of �rst convolutional layer in block 2.

Figure 5.26: Filters of �rst convolutional layer in block 3.



5.4. BINARY: GRASS BLOB, ORIGINAL FUNDUS IMAGES 72

Figure 5.27: Filters of �rst convolutional layer in block 4.

Figure 5.28: Filters of last convolutional layer.

5.4.2 Grad-CAM visualisation

The Grad-CAM result is quite challenging to explain. The visualisation is
indeed wrong. The important regions in the images with the grass blob are
the part outside the blob. This can be explained recalling the idea explored
at the beginning of this dataset section. The network doesn't need to �nd
the blob to classify correctly, but just a circle shape. Probably this is the
reason why the Grad-CAM outcome.
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Figure 5.29: Arti�cial texture markers images samples.
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5.5 Texture blobs markers dataset

5.5.1 Filters visualisation

Figure 5.30: Filters of �rst convolutional layer in block 1.

Figure 5.31: Filters of �rst convolutional layer in block 2.
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Figure 5.32: Filters of �rst convolutional layer in block 3.

Figure 5.33: Filters of �rst convolutional layer in block 4.

Figure 5.34: Filters of last convolutional layer.
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The �lters for this database (4 class, one with non modi�ed retina and the
other three with di�erent texture blobs) seem to be without a visible pattern.
The classi�cation result in validation is still near to 100%. Probably the
absence of well visible patterns even in the deeper layers �lters is due to the
very �at structure of the images; the object to recognise is just texture and
probably the fully connected layers at the end are enough to classify without
learn anything in the convolutional part of the network.

5.5.2 Grad-CAM visualisation

The previous section suggest that even the Grad-CAM will fail given the
shape of the deeper �lters.

Figure 5.35: Arti�cial texture markers images visualisation.
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The visualisation fails to detect important regions. The classi�cation is
100% in validation, that means that the class can be detected correctly. The
limit is in the Grad-CAM algorithm probably because of the �lters previously
extracted. In the class 0, the one without blobs, is possible to see one or two
horizontal bezels with very low activation. The reason is di�cult to identify
and likely due to absence of any arti�cial circle inside the image. There
is, then, a di�erence in visualisation between the class without blobs and
the others. The result is anyway unsatisfactory and shows a limit of the
Grad-CAM with this dataset.

5.6 Diabetic Retinopathy

The classi�cation performance is a�icted by severe over�tting that limits
Grad-CAM performances.

5.6.1 Filters visualisation

Figure 5.36: Filters of �rst convolutional layer in block 1.
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Figure 5.37: Filters of �rst convolutional layer in block 2.

Figure 5.38: Filters of �rst convolutional layer in block 3.

Figure 5.39: Filters of �rst convolutional layer in block 4.
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Figure 5.40: Filters of last convolutional layer.

5.6.2 Grad-CAM visualisation

Figure 5.41: Visualisation for diabetic retinopathy.



Chapter 6

Conclusion and Recommendation

for future works

The results of this work shows not only the performances and the limits of
current the state of the art for visualisation of salient region in Deep Learning,
but also shows some interesting point in how a network learns �lters.

All the experiments have been run with VGG16 architecture reaching 100%
accuracy for arti�cial markers datasets. Keeping this into account di�erent
aspect can be noticed.

6.1 Natural and Medical datasets di�erences

The �rst outcome regards the di�erence between natural images and medical
images in Deep Learning. Natural images are plenty of very di�erent objects
with very di�erent structures. This allows the network to learn very complex
and di�erent �lters especially in the deeper layers. Medical images, in par-
ticular fundus retinal images, have a lower degree of very di�erent patterns,
but very small di�erence in few details can do the di�erence in classi�cation.
This is testi�ed by the hugh di�erence in the deeper convolutional layers �l-
ters. The ones belonging to a network trained with retinal fundus images are
much simpler than the ones obtained from Imagenet dataset. This is also in-
�uenced by the few number of di�erent classes in retinal dataset if compared
to Imagenet. In the �rst case the number of classes can vary between 2 and
5, while in the latter is 1000.
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6.2 Filters pattern complexity is important

The second outcome regards the limitation of Grad-CAM algorithm perfor-
mances when the deeper layer �lters have simple patterns. The visualisation
is less precise and can even fail. Furthermore if the classes are discriminated
by natural objects, with standard complex pattern, the performances are
good; when the class is discriminated by simple texture blob, with patterns
much simple to the retinal background, the visualisation is less strong.

Figure 6.1: Natural image marker:
Grad-CAM is usually able to detect
with precision the important region.

Figure 6.2: Texture blob marker:
The discriminator structure is sim-
pler tha the car image in the other
class. Moreover the texture is some-
how similar to vessels in the retinal
background. The result is a less pre-
cise visualisation and mild activation
in the whole image.

The same comment can be done for the multiclass dataset with natural
markers. Here the performances of visualisation are a bit decreased probably
because of the �lters that despite the higher number of di�erent natural
markers are still much similar to the previous dataset than to Imagenet �lters.

6.3 Unexpected patterns can be �nd

The third outcome regards the importance of the kind of classes to be dis-
criminated. If the user want to classify between to classes, the �rst with a
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pattern, the latter without, the visualisation performances can be very dif-
ferent from what expected. In the binary dataset tested where the classes are
one with a grass blob and one without, the user can expect that Grad-CAM
can easily �nd the blob in the respective class. However, this is not what
happens in the dataset tested.

Figure 6.3: Grass blob visualisation outcome

The visualisation outcome are somehow weird and di�cult to explain.
Indeed, in Figure 6.3, the visualisation suggest that the discriminative region
for the blob class is the background and not the blob itself. A possible
interpretation to this is that in this case is not mandatory to �nd the blob
with its texture; a circle pattern is enough to discriminate between class with
or without this pattern. This can be con�rmed by the outcome of the class
without the blob.
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Figure 6.4: Visualisation outcome for no blob class

In Figure 6.4 shows how the activation region is approximately a square
in the center of the image. The classi�cation is possibly done �ltering circles
in the image. If the image does not contain circle all the central square is
active and the image is classi�ed as no blob class. If not all the central part
of the image activates the discriminative �lters then a circle is present and
the blob detected. In the last layer �lters seems not to be present a single
�lter able to �nd circle, but this can easily be a combination between the
512 last layer �lters.

This show that sometimes the network is able to discriminate di�erent
classes using not expected patterns. This is a very interesting point and shows
that a network is able to discover not expected patterns and visualisation can
be a preliminary proof.

6.4 Filters pattern can limit the performances

Texture multiclass dataset visualisation fails. This is probably due to the
�lters. The last layer �lters does not contain any strong visible pattern.
Grad-CAM algorithm is indeed very dependent on the �lters. Again the
class with no blob seems to be �nd activating the central square of the image.
Unfortunately few can be said about the other classes, given that there is no
sign at all of activation with 100% accuracy performance.
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6.5 Diabetic Retinopathy visualisation

Visualisation fails for Diabetic Retinopathy dataset. This is probably not due
to Grad-CAM but to limited classi�cation performances. The classi�cation
gives, indeed, strong over�tting limiting the validation accuracy.

• Trianing set accuracy: 99%;

• Validation set accuracy: 70%

The limit seems due to this. Improving the classi�cation performances
reducing the over�tting is fundamental to get the visualisation working. This
is a very tough task that is not part of the aim of this thesis and can be part
of a future work.
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Appendix 1

Jacobian of composite functions:

g : R→ Rn

g : Rn → R

de�ning:

h = f ◦ g : R→ R

is possible to write:

h′(µ) = (Jf )(x)0(Jg)(µ
0) =

=

[
δf

δx1

(x0), · · · , δf
δxn

(x0)

]
·


g′1(µ0)

...

g′n(µ0)

 =

=
〈
∇f(x0), g′(µ0)

〉
(1)
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Appendix 2

Preprocessing python code:

#Preprocess training images.

impor t cv2 , numpy , mu l t i p r o c e s s i n g
from os impor t l i s t d i r
from os . path impor t i s f i l e , j o i n

def s c a l eR ad i u s ( img , q , rd ) :
x=img [ img . shape [ 0 ] / 2 , : , : ] . sum (1)
r=(x>x . mean ( ) /10) . sum ( ) /2
i f img . shape [ 0 ] >= r ∗2∗q :

cimg = img [ img . shape [ 0 ] / 2 − i n t ( r ∗q ) : img . shape [ 0 ] / 2 +
↪→ i n t ( r ∗q ) , img . shape [ 1 ] / 2 − i n t ( r ∗q ) : img . shape
↪→ [ 1 ] / 2 + i n t ( r ∗q ) , : ]

e l s e :
cimg = img [ : , img . shape [ 1 ] / 2 − i n t ( r ∗q ) : img . shape [ 1 ] /

↪→ 2 + i n t ( r ∗q ) , : ]
return ( cimg , r )

def p r o c e s s i n g ( f ) :
t r y :

a = cv2 . imread ( 'C : / Use r s / e n r i c o v i n c e n z i /KAGGLE_DATASET/
↪→ TRAIN/ t r a i n 1 /'+ f )

q = 0.93
r = 1150
[ a , r1 ] =s c a l eR a d i u s ( a , q , r )
b=numpy . z e r o s ( a . shape )
cv2 . c i r c l e (b , ( a . shape [ 1 ] / 2 , a . shape [ 0 ] / 2 ) , i n t ( r1 ∗q )

↪→ , ( 1 , 1 , 1 ) ,−1 ,8 ,0) #int(scale*0.9)

aa = cv2 . addWeighted ( a , 4 , cv2 . Gau s s i anB lu r ( a , (0 , 0) ,
↪→ 33) , −4, 128) ∗ b + 128 ∗ (1 − b )

cv2 . imwr i t e ( 'C : / Use r s / e n r i c o v i n c e n z i /KAGGLE_DATASET/TRAIN
↪→ / t r a i n 2 / ' + f , a )

p r i n t ( f )
e x cep t :

p r i n t f

i f __name__ == '__main__ ' :
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mypath = 'C: / Use r s / e n r i c o v i n c e n z i /KAGGLE_DATASET/TRAIN/ t r a i n 1
↪→ '

images = [ f f o r f i n l i s t d i r (mypath ) i f i s f i l e ( j o i n (mypath , f
↪→ ) ) ]

poo l = mu l t i p r o c e s s i n g . Pool ( )
poo l .map( p r o c e s s i n g , images )
poo l . c l o s e ( )
poo l . j o i n ( )

Listing 1: Preprocessing and bezels cut.



Appendix 3

Arti�cial markers image generator code:

s i z e = 300 # final size of each image

c rop = 240 # reduce the radius of the image of

↪→ crop pixels (introduces cuts)

fake_biom = 1 # 1 for draw texture in the images, 0

↪→ to keep the image as it is

###### basic functions ######

def squa r e ( image ) :
mshape = max( image . shape [ : 2 ] )
squa r e = np . z e r o s ( [ mshape , mshape , 3 ] , d type=' u in t8 ' )
shape = image . shape [ : 2 ]
middle , pos = [ np . min ( shape ) /2 , np . argmin ( shape ) ]
f = 0 i f np . min ( shape ) % 2 == 0 e l s e 1
# !! 4 times slower

# square[mshape / 2 - middle:mshape / 2 + middle + f, :, :] =

↪→ image if pos == 0 else image.swapaxes(0,1)

i f pos == 0 :
squa r e [ mshape / 2 − midd le : mshape / 2 + midd le + f , : , : ]

↪→ = image
i f pos == 1 :

squa r e [ : , mshape / 2 − midd le : mshape / 2 + midd le + f , : ]
↪→ = image

return squa r e

def r e s i z e ( image ) :
d s i z e = r a n d i n t (40 ,100)
#print(dsize)

r e s i z e d = cv2 . r e s i z e ( image , ( d s i z e , d s i z e ) )
return r e s i z e d

def r o t a t e ( image ) :
(h , w) = image . shape [ : 2 ]
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c e n t e r = (w / 2 , h / 2)
M = cv2 . ge tRota t i onMat r i x2D ( cen t e r , r a n d i n t (0 , 360) , 1 . 0 )
r o t a t e d = cv2 . wa rpA f f i n e ( image , M, (w, h ) )
return r o t a t e d

###############################

mypath = ' path f o r the images '
f i l e s = [ f f o r f i n l i s t d i r (mypath ) i f i s f i l e ( j o i n (mypath , f ) ) ]
f i l e s = s o r t e d ( f i l e s , key=lambda x : ( i n t ( r e . sub ( '\D' , ' ' , x ) ) , x ) )
l e n = f i l e s .__len__( )

f = h5py . F i l e ( ' kaggle_ ' + s t r ( s i z e ) + ' _boyycarr . hdf5 ' , ' a ' )
data = f . c r e a t e_da t a s e t (" d a t a s e t " , ( l en , s i z e , s i z e , 3) , dtype='

↪→ u in t8 ' , chunks=True )
l a b e l = f . c r e a t e_da ta s e t (" l a b e l " , ( l en , 1) , dtype=' u in t8 ' , chunks

↪→ =True )
g = h5py . F i l e ( ' t e x t u r e . hdf5 ' , ' r ' )
t e x t u r e = g . ge t ( ' da ta s e t ' )
c a r = squa r e ( cv2 . imread ( 'PNG/ f e r r a r i 1 0 0 . png ' ) )
g i r = squa r e ( cv2 . imread ( 'PNG/ g i r a f f e 1 0 0 . png ' ) )
boy = squa r e ( cv2 . imread ( 'PNG/ vau l tboy100 . png ' ) )
d r o i d = squa r e ( cv2 . imread ( 'PNG/ dro i d100 . png ' ) )
# fake_biom creator

def f ake_b iomarke r s ( image ) :
t r a n = np . z e r o s ( [ s i z e , s i z e , 3 ] , d type=' u in t8 ' )
fb iom = [ car , boy ] #['blob', car, gir, boy, droid]

l b = random . r a n d i n t (0 , fb iom .__len__( )−1)
a = fbiom [ l b ]
i f i s i n s t a n c e ( a , s t r ) :

s r = np . z e r o s ( ( s i z e , s i z e , 3) , dtype=np . u i n t 8 )
r = r a n d i n t ( round ( s i z e / 12) , round ( s i z e / 8) ) # radius

↪→ of the biom

c1 = r a n d i n t (0 + r , s i z e − r ) # first center coordinate

h = f l o a t ( abs ( c1 − s i z e / 2) ) / f l o a t ( ( s i z e / 2 − r ) )
h1 = round (math . s i n (math . acos ( h ) ) ∗ ( s i z e / 2 − r ) )
c2 = r a n d i n t ( s i z e / 2 − h1 , s i z e / 2 + h1 )
c e n t e r = ( c1 , c2 )
mask = cv2 . c i r c l e ( s r , ( c1 , c2 ) , r , (255 , 255 , 255) , −1)
typ = 0 # typ = randint(0, 3)

s r c = t e x t u r e [ typ , : , : , : ]
image = cv2 . s e am l e s sC l one ( s r c , image , mask , c en t e r , cv2 .

↪→ NORMAL_CLONE)
return [ image , l b ]

d1 = r a n d i n t (0 , s i z e − a . shape [ 0 ] )
d2 = r a n d i n t (0 , s i z e − a . shape [ 1 ] )
a = r e s i z e ( a )
a = r o t a t e ( a )
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t r a n [ d1 : d1 + a . shape [ 0 ] , d2 : d2 + a . shape [ 1 ] , : ] = a
image = cv2 . addWeighted ( image , 1 , t ran , 1 , 0)
return [ image , l b ]

i = 0
f o r myF i l e i n f i l e s :

p r i n t myF i l e
image = cv2 . imread (mypath + myFi le , −1)
chk = image . shape [ 1 ]
due = image . shape [ 0 ]
i f chk < s i z e + crop or due < s i z e + crop :

c on t i nu e
i f s i z e < chk :

i f chk − due < 5 :
chk = chk / 2
image = image [ chk − chk + crop : chk + chk − crop , chk

↪→ − chk + crop : chk + chk − crop , : ]
image = cv2 . r e s i z e ( image , ( s i z e , s i z e ) )
i f fake_biom == 1 :

[ image , a ] = fake_b iomarke r s ( image )
data [ i , : , : , : ] = image
l a b e l [ i ] = a
i = i + 1

e l s e :
due = due / 2
chk = chk / 2
i f due − chk + crop > 0 :

image = image [ due − chk + crop : due + chk − crop ,
↪→ chk − chk + crop : chk + chk − crop , : ]

image = cv2 . r e s i z e ( image , ( s i z e , s i z e ) )
i f fake_biom == 1 :

[ image , a ] = fake_b iomarke r s ( image )
data [ i , : , : , : ] = image
l a b e l [ i ] = a
i = i + 1

data . r e s i z e ( ( i , s i z e , s i z e , 3) , None )
l a b e l . r e s i z e ( ( i , 1) , None )
f . c l o s e ( )

Listing 2: Add arti�cial markers to fundus images.
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