UNIVERSITA DEGLI STUDI DI PADOVA

SCUOLA DI INGEGNERIA

Corso div Laurea in

Ingegneria delle Telecomunicazioni

A DEEP LEARNING APPROACH TO THE ANALYSIS
OF RETINAL IMAGES

Laureando Relatore
Enrico Vincenzi Prof. Enrico Grisan
Co-relatore

Prof. Emanuele Trucco

ANNO ACCADEMICO 2016/2017

i

Quote
Author

iv

Contents

1 Introduction 1
2 Deep Learning theory 3
2.1 Introduction to machine learning 4
2.2 Supervised Learningo oL 5
2.3 Artificial Neural Networks 6
2.3.1 Whatisan ANN? 6

2.3.2 Perceptron Lo 7

2.3.3 Deep Neural Networks 9

2.3.4 Activation function00 10

2.4 Backpropagation algorithm 11
2.4.1 Trainingset 12

2.4.2 Loss function 13

2.4.3 Gradient Descent Rule 13

244 Local Exrror, 13

2.4.5 Backpropagation steps 16

2.5 Convolutional Neural Networks 17
2.5.1 Convolutional layer 18

2.5.2 Poolinglayer 0. 19

2.6 Classifier performances 19
2.7 Common problems, 19

3 Literature review: Deep Learning for retinal images analysis 21

4 Methodology 23
4.1 Hardwaresetup 24
4.2 Softwaresetup. 24

421 Python. 24
422 Lua 41
4.3 Datasets e 41

4.3.1 Preprocessing 44

vi CONTENTS
4.3.2 Artificial markers 45

4.4 Network architecure, 49
4.5 Visualization techniques 51
4.5.1 Filters visualisation 52

4.5.2 Grad-CAM 52

5 Experiments 57
5.1 Natural images 58
5.1.1 Filters Visualisation 58

5.1.2 Grad-CAM Visualisation 61

5.2 Binary: car ,grassblob.o 62
5.2.1 Filters visualization 62

5.2.2 Grad-CAM visualization 65

5.3 Multiclass: natural artificial markers 66
5.3.1 Filters visualization 66

5.3.2 Grad-CAM visualization 68

5.4 Binary: grass blob, original fundus images 69
5.4.1 Filters visualisation 69

5.4.2 Grad-CAM visualisation 71

5.5 Texture blobs markers dataset 73
5.5.1 Filters visualisation 73

5.5.2 Grad-CAM visualisation 75

5.6 Diabetic Retinopathy 0oL, 76
5.6.1 Filters visualisation 76

5.6.2 Grad-CAM visualisation 78

6 Conclusion and Recommendation for future works 79
6.1 Natural and Medical datasets differences 79
6.2 Filters pattern complexity is important 80
6.3 Unexpected patterns can be find 80
6.4 Filters pattern can limit the performances 82
6.5 Diabetic Retinopathy visualisation 83
Appendices 84
Appendix 1 85
Appendix 2 86
Appendix 3 88

Bibliography 93

Abstract

Motivation

This work is focused on the possible applications of Deep Learning in reti-
nal fundus images analysis. Deep Learning is an advanced machine learning
technique that is revolutionizing all data-based disciplines with unheard-of
performances in signal analysis. In particular Artificial Intelligence, Com-
puter Vision and Image Analysis are benefiting from huge improvement in
image and sound classification, segmentation and pattern recognition. This
progress in these fields is extendible to all medical fields where images or gen-
eral signals are used. It is possible to exploit deep learning to improve disease
diagnosis? Is possible to take advantage of Al features of Deep Learning to
improve and speed up malady investigation?

Aim and Methods

In this project we will try to give an answer using Deep Learning early to
classify diabetic retinopathy and then trying to visualise the salient regions
inside fundus images used for the classification. In this way is possible to
see how a deep neural network discriminates between different classes and
if this information can be useful for early diagnosis or biomarkers discovery.
First, Deep Learning and neural networks theory is ; a literature review on
the state of the art is eventually presented and software environment and
set-up is discussed. Secondly different retinal datasets with artificial markers
are shown and used to test and study Grad-CAM visualisation technique.
Finally results and conclusions are treated.

Results

Each dataset with different kind of artificial markers give a different result
more or less successful. This seems very dependent on the kind of filters
learned by the network during the training step.

Conclusion

Deep Learning capabilities have been confirmed in this work, but a lot is
necessary to do to understand better how to exploit the information of the
trained networks especially for particular images as the medical ones are.
The current state of the art is not enough and much more can be achieved
improving the way how network filters are obtained and used.

viil

Chapter 1

Introduction

Deep learning is a machine learning technique that, using deep neural net-
works, is being used in more and more fields. The performances reached with
signals classification, segmentation, elaboration are changing Image analysis,
computer vision and machine learning itself. In particular medical image
analysis is a field where Deep Learning can improve the quality and speed
of research (|?]). In particular fundus retinal image analysis is a field where
an improvement of diagnosis precision and biomarker discovery can mean
a good improvement on medicine quality. In fact roughly speaking, fundus
images are just photos of patient retina and, therefore, can be obtained with
non invasive methods. Indeed, a lot of work and research is involving Deep
Learning and retinal images ([1], [2], [3], [4], [5], 6], [7], [8])- The aim of
this work is understand better how is possible to exploit the information
gathered by Deep Learning to use it not only for classifying different disease,
but to find something potential new that can help the diagnosis. The idea
is then to visualise the important regions used by Deep Learning to classify
and understand more precisely what a network use to get good performances.
Therefore, the analysis of visualisation techniques become the main subject
in this work. The technique used are:

e Filter visualisation.
e Grad-CAM: Gradient-weighted Class Activation Mapping (|30], [31]).

The first approach is the simplest and consist in visualising the filters learned
by the neural network during training. These filters are involved in the second
technique; visualise the filters can be important both to understand which are
the most important features of the images and to understand better the out-
put of Grad-CAM. Grad-CAM, instead, is the state-of-the-art in important
region visualisation. Indeed allows to visualise the region of the image used

2 CHAPTER 1. INTRODUCTION

by the network to classify it correctly. Is then the core of this thesis, because
its performances can tell how much is possible to understand from a trained
network. The first step is to choose a network architecture that works well
with Grad-CAM and has been used for natural images classification in order
to have a benchmark. The best Deep Learning network architecture at March
2017 is Kaiming He ResNet (|29]), but, unfortunately, its non sequential ar-
chitecture is not the best choice for GradCAM technique. Then a VGG16
has been chosen as fixed architecture for all the experiments. Its sequential
architecture and wide use in literature are perfect for the aim of this work
(that is not the best classification performance possible). The second step
is to prepare particular datasets that can help to understand the behave of
training of the network and of Grad-CAM. These dataset are simply fundus
retinal images to which some artificial markers are printed on. The markers
can be texure (grass, granit, fabric) blobs or non-medical objects as cars,
animals, etc. The different result obtained with different artificial markers
could help to understand better Grad-CAM performances. For each dataset
the VGG16 hare trained in order to obtain a 100% classification accuracy
for each of the artificial markers datasets (100% accuracy seems too much
but is possible because Deep Learning achieve the best performances in this
conditions). The idea is then to reduce as much as possible the number of
variables that can influence Grad-CAM and see its strength and weak points.

To achieve these performances and study all that can be taken in account
for Grad-CAM is necessary go through Deep Learning Theory and Grad-
CAM algorithm.

Chapter 2

Deep Learning theory

In this chapter will be explored what Deep Learning is and what fundamental
features will be exploited for visualisation.

4 CHAPTER 2. DEEP LEARNING THEORY

2.1 Introduction to machine learning

Machine learning is a core sub-field of Artificial Intelligence. The aim of
Machine learning is study flexible computer algorithms that are able to learn.
This learning that is being done is always based on some kind of experience
based on known input data or instructions.

Definition: A computer program is said to learn from experi-
ence FE with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P,
improves with experience F.

Tom M. Mitchell [9]

Therefore, in general learning is about improving future performance using
past experience, reducing as more as possible human intervention or assis-
tance. In general Machine learning paradigm can be viewed as "programming
by demonstration", where the approach emphasises working on concrete ex-
amples rather than describing an abstract procedure. [10]

Machine learning tasks are usually classified in three different wide cate-
gories, depending on the nature of the problem faced|11]:

e Supervised learning: the algorithm learning is guided through inputs
and their desired outputs given by a "teacher". The goal is to build a
rule that maps inputs into their outputs.

e Unsupervised learning: the input given is not labeled and the goal
of the alghorithm is to infer a function to describe hidden structure or
pattern in the input.

e Reinforcement Learning: the inputs are a set of feedbacks coming
from a dynamic environment that the algorithm is facing. The aim is
to perform a predetermined goal (playing a video-game or driving a
vehicle).

Deep Learning can be implemented both as supervised or unsupervised
technique. The problem faced in this thesis required a supervised approach,
therefore only this branch of machine learning will be discussed.

2.2. SUPERVISED LEARNING ot

2.2 Supervised Learning

TRAINING
SET

VALIDATION

SET VALIDATE

MODEL BUILDING

UNKNOWN
DATA PREDICT OUTPUT

Figure 2.1: Supervised Learning flowchart

As disclosed previously Supervised Learning is an approach to learning that
require a known dataset. This set is provided of both inputs and correct out-
puts for the algorithm used. Starting from this set of examples the program
is guided to describe a model able to predict the correct output. At this
point the prediction model must be validated with another known dataset
independent from the training set. Only when the validation phase is sat-
isfactory the algorithm can be considered reliable for use on unknown data.
Therefore, given a supervised problem and the data type, learning steps are:

Algorithm selection The first step is to choose the supervised algorithm
to use. Every method has different strength and weak point. The choice
depends on the particular problem and on the kind and amount of available
data. Some of these algorithms are: Support Vector Machine (SVM), De-
cision Tree, Artificial Neural Network and Deep Learning. In this work the
focus will be on Deep Learning, extension of ANN, for reasons that will be
explained in the next sections.

Training The training phase is probably the most important one, as the
final performances depend on the predictive model built.

e A known dataset is selected; must be as more representative of the
problem as possible. Using dataset not general enough can lead to
overfitting and to bad performances. This set, the training set, must
provide an output (label) for each listed input.

6 CHAPTER 2. DEEP LEARNING THEORY

e The algorithm is trained with the selected dataset. The aim of this
phase is trying to build a model able to fit the data provided, that is
predict the correct output for each input provided as best as possible.

Validation The validation phase is important to test the performances
achieved by the prediction model built in the previous phase.

e Another known dataset, called test set, is prepared. The dataset must
provide, as the training set, reliable input and output for each example.
An important property of this set is that it should be as independent
as possible from the training one.

e The previously trained algorithm is here used to predict the input data
of the test set. Only the input are used and the output are predicted by
the algorithm and stored. The fundamental difference from the train
step is that, in this one, the output label are not used to improve the
prediction capabilities of the model, but only to evaluate its perfor-
mances.

e The predicted outputs are validated using the known outputs. The per-
formance are hence evaluated and analysed. If they are satisfactory it is
possible to go to the final step, otherwise the algorithm or the training
phase must be reviewed with different precautions or parameters.

Model Deployment Once the algorithm is trained and validated, it is
possible to use it as an automatic system to solve the original problem on
new data.

2.3 Artificial Neural Networks

Deep Learning is basically an extension of Artificial Neural Networks. There-
fore, is important understand this technique before move on.

2.3.1 What is an ANN?

ANN is an information processing paradigm mainly inspired by biological
nervous systems. It is composed by a high number of processing units, called
neurons, working in unison to solve a specific task. Learning process in
ANN involves, like in a biological system, the adjustments of the connections
between the processing units.

2.3. ARTIFICIAL NEURAL NETWORKS 7

2.3.2 Perceptron

One of the simplest Artificial Neural Networks algorithms is the Perceptron,
introduced in its simplest version by Rosenblatt in 1958, as supervised ma-
chine learning algorithm for binary classification. It is partially inspired by
the biological neuron, and in some way emulates its behave. This is the
reason why this systems are called artificial neural networks.

Dendrites

Terminal Bulb

Cell Body \\/I/

Axon

Figure 2.2: Biological neuron [12]

The original perceptron can be considered an ANN composed by one arti-
ficial neuron. It is, then, very similar to the concept of artificial neuron.

Definition: The artificial neuron is a mathematical function
conceived as a model of biological neurons.

Let’s see now a Perceptron scheme:

inputs weights threshold

) v

transfer activation
function function

activation

Figure 2.3: Single layer Perceptron scheme [9]

8 CHAPTER 2. DEEP LEARNING THEORY

A perceptron takes a vector of real-valued inputs, calculates a linear com-
bination of these inputs, then outputs a 1 if the result is greater than some
threshold and 0 otherwise. More precisely, given inputs z; through z,,, the
output a(xy, ..., z,) computed by the perceptron is:

(2.1)

{1 if 90+91$1+91$2+'-'+9nxn >0
a(xy, .., x,) =

0 otherwise

where each 6; is a real-valued constant, or weight, that determines the
contribution of input z; to the perceptron output. Notice the quantity (—6,)
is a threshold that the weighted combination of inputs 6,21+ 625+ - -+6,2,
must surpass in order for the perceptron to output a.To simplify notation, we
imagine an additional constant input zo = 1, allowing us to write the above
inequality as) ,6;z; > 0, or in vector form as 0" - x > 0. The original
activation function ¢ maps the output to 1 or 0. This function is the step
function:

p(x) = step(0" - x)

sgn(z) = {1 if 2>0 22)

where

0 otherwise

v
+1.0
+0.9
+0.8
+0.7
+0.6
+0.5
+0.4
+0.3
+0.2
+0.1

-0.8 -05 —O.al | +0.2 +05 +0.38 +1.lx

-0.2 ¢

Figure 2.4: Step function.

Learning a perceptron involves choosing values for the weights 6y, --- ,0,,.
Therefore, the space H of candidate hypotheses considered in perceptron
learning is the set of all possible real-valued weight vectors.

H={0|6cRi"}

2.3. ARTIFICIAL NEURAL NETWORKS 9

2.3.3 Deep Neural Networks

The concepts behind the preceptron are the ones of modern neural network
and then of Deep Learning. An evolution of the perceptron is a multilayer
network with hidden layers between the input and the output.

input hidden output
layer layer layer

Figure 2.5: 3-layer fully connected neural network.

In figure 2.5 a 3-layer fully connected network is shown. The first layer is

composed by the inputs values. For each activation az@) in the second layer
(1)

a independent vector of weight 6, is used. Therefore, is possible to write:

a§2) = 051) ST

where 051) is the row i of the matrix 8% that maps layer 1 to layer 2. The
activation function is used for each output giving

a; = 90(01((1))5507 OS)ZL‘l, OE;)LB27 01(?1;)%37 9%)%4)

or, in a compact way:

a® = (6" .)

is then mapped to a§3) through a second weight matrix
0? . Furthermore is possible map the input @ directly to the output ag?’)

using the notation a\¥ = he(z) where © = {81 9},

()

i

Each activation a

10 CHAPTER 2. DEEP LEARNING THEORY

2.3.4 Activation function

The activation function is very important for deep networks. The step or
sign functions provide a very strong decision that is not very good with deep
networks. Before explore better what a deep network is, let’s see a soft
activation function:

Logistic unit

This function allows to propagate more of the initial information and this is
useful in the case of deep networks.

9(2) 1
sig(z) = —————
1+ exp(—=z)
dsiglz) e

dz (e 4+ 1)2
+1.7 +1.7
+11 +11
+1.0 . +1.0
+0.9 +0.9
+0.8 — +0.8
+0.7 +0.7
+061 / +0.6
+0.5 / +0.5
+9.’4/- +0.4
£0.3 +0.3
+0.2 ¢ _ 0.2
+0.1 +0.1

-40 -25 190, +1.0 +2.5 a0 X -40 -25 1044 +1.0 425 a0 X

~0.2 ~0.2

Figure 2.6: Logistic function. Figure 2.7: First derivative.

2.4. BACKPROPAGATION ALGORITHM 11

Rectified linear unit

The Rectified Linear Unit is an activation function useful for deep linear
network as will be possible to see in the next sections.

ReLU : f(x) = max(0, x) (2.3)
df (2)
= step(z)
dz
Y1 Yt
+1.0 ¢ +1.0
+0.9 | +0.9
+0.8 | +0.8
+0.7 | +0.7
+0.6 | +0.6
+0.5 | +0.5
+0.4 +0.4
+0.3 | +0.3
v02!1 / +0.2
+011 / +0.1
08 -05 -0z | +02 +05 +08 +11% -08 -05 -0z = +02 +05 +08 +11%
~0.2 0.2
Figure 2.8: ReLu function Figure 2.9: ReLU First derivative.

2.4 Backpropagation algorithm

Until now, only the structure of the network has been discussed. The net-
work is, from a computational point of view, a chain of parallel and serial
calculations which map an input to an output. But how is possible to teach
something to this architecture? How is possible that this system can learn
something? To answer this question is necessary to introduce the backpropa-
gation algorithm. This method allows the network to modify the way how the
steps are computed making possible to adjust the output. Recalling the gen-
eral structure of supervised learning, this is done through the training data
in the training step: knowing the output related to each input is possible to
evaluate the error with the respect to the output of the network. The back-
propagation step is the algorithm that allows to change the network trying
to reduce the computed error. Let’s see now the backpropagation algorithm
in detail.

12 CHAPTER 2. DEEP LEARNING THEORY

2.4.1 'Training set

The training set is composed of m inputs & with the respective outputs,

or labels, y, where i = 1,--- ,m is the index of each sample.
[¢ B [y]
e y?
X=fM| —20 —— Y = y®) (2.4)
n co?ljmns k co?lgmns

In the representation (2.4) X is the matrix where each is row is a vector
representing an input. The single input is not always a linear vector but
the generality is not lost because nothing keep from reshape each row to a
multi dimensional vector as an image or a 3D data. Y is the respective labels
matrix: for each row a label vector is enumerated. With reference to the
previous neural network architecture is possible to write:

L1 D) Ty, Yy Yo Yn
1 1 1 1 1 1
T D AT
2 2 2 2 2 2

T O I N I I
R u oy g
TRl B PRy

In the (2.5) first row of the first matrix represents the vector of all the
input for each position of the first layer. In this case the network must have
n inputs. The symbol xg.l) withi=1,--- ,mand j =1,--- ,n represents the
element that feed the j' input of the network for the i sample. The same
is valid for the outputs yl(l) with [= 1,--- , k. Must be noticed that, with
reference to the architecture of figure 2.5, k = 1, and y® becomes a single
element 3.

2.4. BACKPROPAGATION ALGORITHM 13

2.4.2 Loss function

In order to see how to reduce the output error of a neural network is necessary
to define what this error is. Therefore, a loss function is now defined.

L£(©) = % i E® (2.6)

where m is the number of training samples in the training set and E® is the
error between the output of the network and the expected error for sample
i

i (1 i i 1 i
B = B9 (ho(@)) = Slly" — ho(@?) I = 5 > (4" —) .
— T k 2.7

—=a(L)

x,y fixed

where a”) is the activation vector on the last layer of the network and y®
the label of the i'" sample. E varies with ©, and this is the what to optimise
to reduce E.

2.4.3 Gradient Descent Rule

The main idea is to reduce © with the following rule:
0—0—-—n— 2.8
56 (2.8)

where 7 is called learning rate and % is the rate of variation of error £ with
the respect to ©. Recalling that theta is the cascade of matrices that map
the input to the output the values to find are related to @g), the weight
in position ij of the matrix ©" that map the layer [to the layer [+ 1,
l=1,---,L.

2.4.4 Local Error

Now will be explored how the local weights are updated. Let’s be zi(l) =
0§é>x0,0§})x1,0%)x2, e ,GEi)xn the weighted input of layer [of neuron .

%

The update step performs:
P Ly, (2.9)
and the error changes with
oE

E— FE+ 51@ : Azfl) with (51-@ = —7
52

7

(2.10)

14 CHAPTER 2. DEEP LEARNING THEORY

Therefore, the value (51-(i), error at i'" neuron of layer [, is fundamental for the
update:

oF
if W >0 = improvement is possible
2
! (2.11)
. oF . . .
if W ~ (0 = improvement is near 0, optimal node
2
Output error
The output error, at layer [= L is:
w _ OE da (D)
o = W) 5,0 = (a;" —y;) o' (%7) (2.12)
recalling that:
! !
0’ = (z")
N 5@5” B 590(22@)) " (L))
@~ s D) “i
02; (%)
and that:
1 L
E = 5 Z(yk — a](C))2
k
oE 1 L
sa D) 25'2(%()_yi)
Qa:

The 2.12 is a general formula that does not depend on the ¢ activation
function. In case @ is the sigmoid the 2.12 becomes:

57 = (0" —yy) - (1= o) (2.13)

7 (2

Considering all the inputs for each sample is possible to write the 2.12 in
vectorial form:

s =V,E0 ¢ (")

: . o (2.14)
with © componentwise multiplication

2.4. BACKPROPAGATION ALGORITHM 15

Error at layer 1

The error at layer [depends on the next layer [+ 1:

o _ o Z SE '52](z+1)

L 520 L s 5.0 ()
v J J v 2.15
50+ _ oE

(o 5Z(l+1)

7

with 7 = 1,--- ,v element in the layer [+ 1. Knowing that:
LD (i
+ Z@ 4 ak = Z@]k o zk) (2.16)

5Z§l+1)
520

_ 0
= = 054 (") (2.17)

where the 2.17 is computed with the Jacobian of a composite function, re-
called in Appendix A. The equation 2.15 becomes:

(I+1)

Z-
and considering the entire layers, the vectorial form is:

5O — [(@a))T . 5<Z+1>} ® ¢ (21) (2.19)

)

Layer error update

It is finally possible to write the variation of the error with the respect to
O matrix of weight that maps layer [to layer [+ 1 as a function of the
input a® and of §@Y.

l
0E OFE ‘ 5zi() G0 (2.20)
sl 50 g0 |
ij ' i

(2

where 5§l+1) is computed through the backward step and ay) is previously

computed through the forward step. Considering all the elements ¢ and j in
a vector the 2.20 becomes:

oE
NYe10)
Recalling the 2.8, the weights are then updated with:

ol — OV —yn.sHY . (g)" (2.22)

— 5D (a®)" (2.21)

16 CHAPTER 2. DEEP LEARNING THEORY

2.4.5 Backpropagation steps

With the achievements of the last sections, the backpropagation algorithm
can be summarised in few steps. Given a multilayer neural network with
activation ¢ the bacpropagation algorithm requires:

e The Training set;
e the learning rate 7;
e the optimization function that defines the error E;

e a termination condition, which can be a maximum number of steps or
a minimum error reduction rate.

Once the initial requirements are satisfied the algorithm can be implemented:

Algorithm 1 Backpropagation
1: Initialize all network weights to small random numbers (e.g., between
—.05 and .05).
2: while Termination condition is False do

3: for each (x,y) in training set do
> Propagate the input forward through the network
4: Input the instance 9 to the network and compute the output

a¥) of each node of the network. .
> Propagate the errors backward through the network

Compute the error 8% = V,E ® ¢/(2(")) of the network output
for [in range {L---1} do

Compute the error for each of the [hidden layers:

51@ _ [(@(Z))T . 5(z+1)} © @(20).

8: end for
for [in range {L---1} do
10: Compute the variation of the error with the respect

to the weights for each of the [hidden layers:
OB _ s(+1) (aa))T_

!
11: fﬁgéate the layers following the Stochastic Gradient Descent:
om0 _y.s0Hn. (am)T ,
12: end for
13: end for

14: end while

2.5. CONVOLUTIONAL NEURAL NETWORKS 17

2.5 Convolutional Neural Networks

The networks seen until now are composed of neurons completely connected
to each other. This means a huge number of weights to be memorised with the
increase of the layers and neurons per layer. The problem becomes important
from a memory requirement and training time point of view. Indeed in
modern neural networks the number of parameters can be of several millions,
and the convergence becomes very slow. In the field of images the data has
can be exploited in a better way and a fully connected architecture is not
necessary neither efficient. In fact images have usually very high correlation
between near pixels and low correlation between far points. This can be used
designing a more sparse neural architecture highly connected only locally.

-1 t £+1

Figure 2.10: Fully connected network Figure 2.11: Sparse network

In figure 4.9 each neuro is connected to 3 adjacent neurons of the previous
layer. In the case in figure the receptive field of each layer to the previous
is RF = 3, equal to the number of neurons of the layer [— 1 connected to a
neuron of layer [. The RF of the output with the respect to the input is 5;
all the input layers are still seen by the output neuron.

18 CHAPTER 2. DEEP LEARNING THEORY

2.5.1 Convolutional layer

The convolutional layer is design mainly for image data. Therefore, is rea-
sonable to choose an image as input for the network. The structure of a
coloured image « is:

x € Rimxmexnsl with py =3

Figure 2.12: RGB image data structure.

The matrices ©; = k;, i = 1, --- ,m matrix of weights that maps the input
to the output of the layer, is of dimension :

ki c R{MXNJXPIXPQ}’ with ny = 3’ p1 < Ng, p2 < N3

X LY,

p2 p2 x

p1 p1 p1

Figure 2.13: Weights matrix structure.

P2

2.6. CLASSIFIER PERFORMANCES 19

The outputs y; are computed with a convolution between the input image
x and the the k;. The k; can, then, be considered as filter kernels.

yy=xxk;+b i=1,---.m (2.23)

where b; is the bias term. k; and b; are the terms learned during the training
phase.

2.5.2 Pooling layer

The pooling layer is fundamental to exploit high level path from the input
and to reduce the number of parameters. The function implemented by this

layer is: 1
o), = (;wp) 220
|||, = max(z) p— +o0
% . 2 | 4
S / | 8 6 | 8
3 | 2 IS ' 3|4
1 | 2 L

y

Figure 2.14: Maxpooling layer|13] of size 2 x 2

2.6 Classifier performances

2.7 Common problems

Overfitting
imbalaced classes

20

CHAPTER 2. DEEP LEARNING THEORY

Chapter 3

Literature review: Deep Learning
for retinal images analysis

Literature review: Deep Learning for retinal images analysis

*(34om 10300p Isa14

2y3) pJepuess pjos ay 03 pasedwod
uayM uonEeUAW SIS J03I0P PU0IAS Y}
03 9|qesedwod 3Je }Nsal dulydew ay)

1593 INO-INIY uo a8ew Jad swyOT
2s1pando = 40 1523 90-SNOIYQ uo a8ew Jad swsg
‘ao

1593 3YV.1S uo a8ew Jad swyOT

3593 IAIYQ vo a8ew) Jad swsg

isjassap

Ndo (I19mxen)
X NVLIL U0 pa3ndaxa Sujujes3 pue 3saL

20 VIQIAN uo
3wy Sujutesy Jo sINoy 0SE ueyy aJow

%0€ :A)AISAS

%6, :Adeandoy

Ayzedounai onaqgelq = ¥ya %66 :A3d1yads
RIISEIN

|eANAN [EUOIIN|OAUOD = NND Ha annesa|0Id-
HQ 319895~

uQ 21eI3poN-

¥a PIIA-

¥aon-
:uoneaysse|d [3qe| §

J3141S5e|) XeWOS = JINS
J19podudoINY

asieds paxoels = 3vss
wisAINaueo.IW = VI
Ayyedounai onaqelq = ¥a
JIomdN

|eAN3N [BUORN|OAUOD = NND

%96 ONVY
%8E 16 :Adeandoy
%9°T6 *Audy1ads
%LS'T6 :UOISIIAId

:uopepj|en ssod
PI04-0T € UO Pa3en|ens saduewioyad

Lv6°0 :Adiyads
$56°0 :AuARIsUaS
9£6°0 :A2eINIDE MEY
wexa Jad

€86°0 :Audiy1ads
528°0 :AunnIsuas
816°0 :Adeandoe mey
28ew a4

Aunjewauq

40 Ayzedounay = 4oy
J1o0MmBN

|eANAN [EUOIIN|OAUOD = NND

uonejuaWdas 1oy pajage| a.e sadel

IV

(3593 104 09

13 104 66) INO-INIY W0y sa8ew) 65T
(3523 404 0§ ‘Bururesy

10} 09) 80-SNOI¥Q W0y sa8ew OTT

:uonejuawias asig ondo
2YVLS woyy sadew) 0z
IAIYQ wioyy safew o

uoneIUBWSaS [9SSIA

uonnjosal nduy ZISXZTS
:39sejeq a|38e)| wouy safew 00008

(sayo3ed pajejouue yN e woly

Aeme xdsz ueyy aiow Ajwopues pasooyd
seale xd 5zx5z) sayaed Ayyjeay 0gz9 <-
saydjed YAl Z8TT <-

:90134VIQ W0} sofew| 68

1591 Aluo
u1 90T
395€38P UOPUOT]

359 pue ufes)

(xd 08t X 0%9) siuaned ¢ wouy saew| 65T
39sejep epeue)

‘uosiedwod saouewlopiad aujyoew-uewny
© Ul piepuess p|o8 ay3 0} paJedwod aJe UOHRIUWIFSS BUIYIRW BY) PU 10}I0P PUOIBS BYL
“pJepuels pjod se pasn S| uo1eIUAWSS 10300P 3541 YL
*aulydew ayy Aq pue s10320p om) Aq Ajjenuew pajuawdas ase sadew ||y

Bunsal (v
S ‘U0I3R}0J) UORIUBWISNE BIBP DISSE|D
*pasn ale [auueyd goy (I
B4} Se paseaJdap Ajlenpess g-0T = ajes Sujuiea
“WNJUBWOW YIM JUBISIP DISRYI0}S
*SUoKeIaN 00002

Sujuresy (g

‘uoneuaWFas QO J0j PUOIAS By} PUE ‘(3UO JASUIP BY3) S|aSSAA 10§ PASN S| ALUN|OA dew
24njedy 3841y YL a0 404 PooST s Ing ‘s|assan oy |nyasn Asan Jou aJe dew (1adaap) Jasieod ay L
uoneuaWSas gO PUe [3SSIA 10 Y30q Pasn S| }10Mm3au ay)

s|9ss9A pue a0 (2

*195180D
210W By} PUE SAUO BSUIP DIOW { 3Y} USIMIDC PAPIAIP BJE UOIEUIGWIOD Sdew dnjeay
JaAe| |euonnN|oAu0d 3se| e Ag pauiquiod i dew aJnjeay yoe3
‘pajdelixa ale sdew ainjeay siahe| Sujjood ayy usamiag
“safeuw [esauad Jo Jaquinu y3iy yum pautetaid ase siahe| s1adaag
*padaay s 4n3aa31ydJe NND Ajuo :pua ay3 3e s1aAe| pajdauu0d Ajjny ay} aroway
“HOMI3U DOA WOy 1els

usisap yiomiaN (T

(8unyipiano proae) ‘pasn si (sdij ‘s:

(8unpsano proae) ‘spaadoud 8u

uonepi|eA 1oy panes sadew| 000§
13 (v
$4N0Y 0SE <- £000°0 USY3 PUO Y203 § 35113 10§ TOOO'0 4O d3e4 Sujuses]
“PAsN S| WINJUSWIOW AOAISAN Y3IM JUBISIP JUBIPEIS D13SeYI0NS
“(a8ewy yoea 4oy sy1ys sdijy suonelod) pasn sj uopeuawsne ezep yooda yoea 1y
“Bujuiesy Jo ydjeq JuaLind ayy uj sadew payisse|d
Q@ Jo Jaquinu 3y uo pajydiam aJe sazepdn syydiam uoneSedoid-yoeq Suniaano 3dnpal o)
*sy20da 0z 4aY3ny e 1oy sadew 00OSL 13PpuIeWal 3y} uo Sujures]
*sydoda 0ZT Yam sadew 06Z0T uo Bujuten-aid
Suures (g
Xew3yos yym Jake| pazdauuod Ajny T
siahe| pajoauuod Ajny z
“19Ae] 5193 ZT§ 03 Z€ WOy NND S1aAe| OT
(oueayy uo sesady) yiomiaN (z
*Ayxa|dwiod 2anpai 03 Jap.o Ul 3zis xd ZTSXZTS O3 pPazisal aJe safew|
(snoauadouaiay Asan s aseqejep 3|38e)y) AJuadQ yam uonezijewsou inojo)
Bussasoadaid (T

*g = uonesay Sujuresy yum Sujuny-auy,
‘0§ = JINIS 403 uopesa) Sujuresy
‘00T = 3VSS 404 uonesay Sujuresy
*a8e3s puodas se JS Aq pue adeys
35414 se (3sed sjyy uj siaAe| 19podudoINy dsieds Z) IYSS e Aq apew ain3adiydle YIomiaN
uopoenx? ainjead (Z
*91eas [T ‘0] e uo pajeasas Aysuaju|
*pasn jauuey uaaln
Bussasoadaid (T

sdew ainjeay NND Aq suoiSal paseasap jo uonezinesip
uonezjjensia (€

NND uesakeg

(e3ep 39N29ew) uo) 319N3718009 pautessaid e o doy uo paxdels Jayisse|d Xewyyos Aem-z

(wexa Jad 10 a8ew 1ad) sayisse|d(z

*dosagns pue uonejos ‘sdijy yum ‘wsny ezeq

|auuey> goy uo oy ssed ysiH

xd 0pZ X 0vz 03 Suiddous pue Supaua)y

i ejeq pue 3uy (T

| Med ‘sBuipaadold

‘910 ‘TZ-LT 49400 933319 ‘Sudyiy
‘30U124U0D [BUOHEUIRI| YIET

910 IVIOIN

— UORUBAIRIU| Pa3sIssY-12Induio)
pue 8unndwo? aew [eaipai

safew| snpuny

%N ‘y8nooqysnot

‘9102 AINT 8-9°9T0Z VNI ‘9102
sishjeuy pue Suipueisiapun SuiSew
|BIP3IA UQ 9IUDIBJUO [BUOHEUIAIU|

sagew) snpuny

(3SVHD) sa1Bojouta

Supisauigu3 pue swajshs ‘suoedljddy
14i|eaH pa12auuon) uo adualauo)
Jeuonewsa3u| 3113 3331 9T0Z

sagew) snpuny

s8u1paado.d ‘9T0T ‘1Z 429010
‘229219 ‘SUBLIY ‘9TOT IVIIIN

Yaim uondUN{uo) Ul PlaH ‘9T0Z VINIA
‘doys}Io [eUOREUIAIU| PUOIAS puE
‘910 S138V1 ‘doysyIoM [euoneusiul
15414 :suonedy|ddy eaipay

1oy Burjaqe eyeq pue Sujuiea deag

safew| snpuny

1009
UA 2N pUE ‘Z3B|3QY Ofqed 19sNL
UBIA 1SIDIOX-SIAD)

e8uayz uljes
“e8UIp.eH d UOWIS ‘DJUAGPROIG A
yeloqaq ‘quauao) suelq ‘eneld Aley

nun
ueys uenf

UOS|IM'INl 348]D ‘|BLIOM T |

Buipueisiapun a8ew (el

Ayredounay anageiq
10§ SHIOM3I3N [EAN3N [RUOIIN|OAUOD

sagew
SNpuUNy Ul UOIIIIBP WISAINAULOIDIW
10} pouyraw Bujuiea) dasp v

Jiomiau
|BAN3U [BUOIIN|OAUOD YIIM UORIB)IP 3seD
Aynjewsaud jo Ayjedounyas pajewoiny

14

swhuony

S11Ns3y

viva

idAlvivad NI @3Hsnand

SYOHLNY

JLIL

*sip ando = a0

Aydosye Aseidedesed = ydd
ysip ondo = g0

20231
VIS3L VIGIAN u} Sujuien jo sinoy ot

Lo=
Lo=

o=

%L'6 =9

“yinay punous
ay3 pue 3|nsai ayy usamiaq Al Jousd
Suiddejsano ueaw ayj se uanig 3 nsay

saydjed asimjaxid §9X59
a|qepne yingy
Puno.s yum garyqa wouy sagew Inojod 05

(uoi8a1 @O uou wouy

Jley ‘uoi8as O woJy jjey) 3asdujuiesy se
Ppasn sadew ay3 ||e wouy sayied 00000Z<-
(pasn xd QOEXOOE 03 pazisas

ea.e 008X008 Paddoud) ZLOE X 8YOT <-
(paroqe;

Ajlenuew @O pue vdd yum jje) Apms

9A3 Aejey aiodesuls wouy sadew) 0£Z

*yoeosdde pjoysaiy e Suisn paje|ndjed s N4 Pue dd ‘dL J0 Jaquinu ay3 padew yoes Joj
Bunsay (v
paxsew s| eale O YL
Bupisen 4o (€
“PIOYsaJy3 uasooyd e uanid adew
apisul jaxid Aysuaiul yiy yam 323[qo ysadie| ayy se pajdaiap st 0 2y a8ew) yoea woly (vdsl) sisAjeuy
‘seaJe pajaqe| Ayijeay wouy sjaxid wopues yym pajgnop si sayded sofew sn 3 3 N 3
| snpuny pue 8uissadoud |eudis pue afew|
30 Jaquinu 3y} 33s Sujules paduejeq e aAeY 03 3P40 uj ‘Bululel) J0j Pasn e eale 3Jepnxa o winisoduwhs [ewoneuIRl Uit ST0Z
ue 03 Bujuojaq [axid ay3 ||y "pauley S| JaAe| padauu0d Ajjny jeuly yum NND siake| v v : ’
uoRd3ap 4O Pue uoRedMIsSe| (Z
“39s 3593 pue Sujuiesy ul Apulofsip pan|ds s| aseqeiep ayL
*|ax1d Y2ea W0y pajoeIIXa G9XS9 JO SaYIed
*Pa329|as S| [duueyd usAID
uond|as [auueyd pue Buissadsoidald (T

‘0 Se PayIsse|d £°0 < AN|eA UOISIAP UM [aXId
uonejuawa|dwi NNQ 103 Pash X0q0o L uiea1daaq

“Bujuiesy asimydied yiim uoiedlyIsse|d asim|axid
uondexa aImeay (z (1s1)
*Buissadoud 193sey 104 DOEXOOE 03 3ZISAY safew| snpuny SuiBew [eaipawolg uo wnisodwAs
*paddoud sjaxid 008X008 JO 3sa423ul Jo uoiday Jeuoneusaiul YIZT 3331 STOT

*S3UO JaY3I0 3y}
uj s|auueYd an|q pue UaI8 O UOHEUIGIOD "PIIEINIESIINO J0U SIBEW] U] [SUURYD Pal JO s
Buissasoudasd (T

,DLIBDUOT UBAS * dise3udld djAed

BuayD unf ‘eAeseAus Jiyany

syIomiaN
|eanap [euonnjoAuo) 8uisn sydeigoioyd
SNpUNJ Ul $91BPNXJ JO UO12232Q

NOILVIN3ID3IS OSIa
J1LdO NI AHJOYLY AYV11IdVdY¥VYd OL
SSINLSNGOY ¥YO4 ONINYV3I1 4330 ONISN

Chapter 4

Methodology

The work done in this project has been implemented in Keras([14][15]), a
neural network API for Tensorflow([16][17][18]) and in Torch([19][20]). Ten-
sorflow is a library written in python [21] and ¢+-+; Torch is an interpreter for
LuaJIT (]22], |23]). All the libraries manage properly Nvidia CUDA (]|24])
for GPU acceleration. The dataset used is the one provided for the Diabetic
Retinopathy Detection challenge on Kaggle ([25]) by EyePACS (|26]).

24

4.1. HARDWARE SETUP 25

4.1 Hardware setup

Deep Learning training tasks are very heavy from a computational point
of view. Luckily, as already seen, forward and backward steps are largely
parallelizable. This is done using GPU, instead of CPU, and exploiting their
highly multi-core architecture. In particular the core of Tensorflow and Torch
can handle CUDA that allows to use the GPU to run ¢++ code. The ma-
chine comprises 1x 250GB OS ‘disk’ (NVMe 32Gbps) hosting Ubuntu 16.04
LTS, 64GB RAM memory, 1x i7-6700 CPU, 1x 4TB data disk and 1x 4TB
backup disk (both spinning) across SATA3 @ 6Gbps.It two GPUs. Both are
reference Nvidia-supplied Titan X (Pascal architecture), 12GB VRAM and
3584 CUDA cores each, residing in PCle 3.0 x16 slots on an Asus Z170 Pro
motherboard with standard CPU/GPU clock rates. Each GPU is used for a
single task per time and each task run on only one GPU.

4.2 Software setup

As anticipated before Tensorflow, Keras and Torch are installed on the ma-
chine. The machine is used as a server in order to simplify access to the GPUs
for multiple users. Therefore the code runs in remote and a special environ-
ment setup is necessary to have full control on the code during running and
debug sessions.

4.2.1 Python

P

Tensor

Python is the lenguage used by Keras and Tensorflow. The IDE used to
have the best control possible on code development is JetBrains PyCharm

4.2. SOFTWARE SETUP 26

Professional (|27]). The setup for a remote interpreter has been used to
produce a guide with all the details of the setup and the environment used.

Titan1 guide for DeeplLearning
applications

>

Author: Enrico Vincenzi
Last update: 25/11/2016

This guide is thought for an easy access to Titanl server for deep learning. PyCharm is here used as
standard python IDE because is simple, light and free for University members. The guide is divided in
two main parts:

e PyCharm setup and configuration for Titanl server

e SSH session section for time consuming runs

SSH sessions are launched inside PyCharm in order to have a better integration of the development
environment, but everything shown under SSH section is valid also outside PyCharm.

PyCharm

Requirements

e PyCharm professional (version > 2016.3)
https://www.jetbrains.com/pycharm/download;

Download professional version;

PyCharm professional version is NOT a free software but is free for students and teachers. To
activate 1-year free student licence you need to register here (Apply now section) with a
University email account.

e Titanl server account
Server IP: 134.36.37.238

Ask Derek for credentials.

Install PyCharm

Install PyCharm professional on your computer. Access with your full or University account.

Link PyCharm project to a remote Interpreter
After the initial setup you should see a window like the next one:

= Welcome to PyCharm = B

PC

PyCharm

Version 2016.3

3¢ Create New Project
Open
¥ Check out from Version Control +

Configure ~ Get Help =

Click on Create New Project

= New Project - O

¢® Pure Python . - ;
- Location: | ChUsershusername!PycharmProjects\Deeplearning |D

Ed Django
Q... Flack Interpreter: ll"’ Ch\Python2Mpython.exe
. Add Remote
Google App Engine
ot JETPRERS Create VirtualEnv
Pyramid
B web2pry
4] Angular CLI
-] Angularls

Foundation

B HTMLS Boilerplate
4 React App

& React Mative

u Twitter Bootstrap
€ Web Starter Kit

¢

Press on the gear near the interpreter row and select add remote.

New Project = =

! Pure Python

& o — Location: ‘ ChUsershusernametPycharmProjects\Deeplearning |D

jango

t.. Flack Interpreter: llﬂ ChPython2 Mpython.exe n@
o] Google tmmFemims

Pyramic Configure Remote Python Interpreter

B webzpy

B Angular () Vagrant () Deployment configuration @) SSH Credentials () Docker

D Angulal Host: | 134.3637.238 | port: |22 |

F 1

@ Founda User name: ‘ usernarme |

B HTMLS

& React A Auth type: lPassword n

4% React N Password: [-.------.-------|] Save password

ﬂ Twatter

| Python interpreter path: | fusr/bin/python
O websts preter pa Pyt

.

Select SSH Credentials

e Host: 134.36.37.238

® Fill with your credentials.

IMPORTANT: set your ‘remote project location’ (is possible to create a new folder with right
click in the window opened clicking on ... button); The default setting generates a project space outside

your account.

If everything worked set the remote project location (where to upload the code):

- o N

New Project
e Pure Python . - -
o - Location: | Ch\Users\usernamel\PycharmProjects\Deeplearning ||]
Django
t'. Flask Interpreter: | ﬁ_u 2712 (sshy/f username @134.36.37.238:22/usr/bin/python) n@
[Google App Engine Remote project location: [/fhome/username/DeepProjects/Deeplearning]

a Pyramid
B web2pry
Y Angular CLI

Your machine is now linked to Titanl server! Now a deployment configuration is needed.

Deployment configuration for data and code

This section is needed to send your local code to the Titan1 server. Is possible to use this system also

for data.

Click on create and go to File/Settings -> Under Build, Execution, Deployment select Deployment.
You should see a server configuration (called ssh://134.36.37.23...). Rename the server if you want.

Type must be SFTP. Click on Autodetect.

The result should be similar to this image:

Name: | Titan1 - Rename to a custom Serevername (Titanl default name) |

| l Test SFTP connection...]

I[-] | Autodetect |

|] Login as anonymous t

n Click on Autodetect

Settings
LQ) Build, Execution, Deployment > Deployment = For current project
¥ Appearance & Behavior + - ﬁj ¥
o
Appearance i Titan1
Yo T T s J Connection | Mappings | Excluded Paths ‘
I System Settings Visible only for this project
File Colors s | 5 SETP n
Scopes K X X
Project files are deployed to a remote host via SFTP
Notifications
X X Upload/download project files
Quick Lists
Frmer SFTP host: | 134.36.37.238
Plugins
» Version Control Root path: [fhoma.’usemame‘
¥ Project: Deeplearning
¥ Build, Execirtion, Deployment User name: | username
» Debugger Auth type: | Password
Python Debugger Password: sesssasesnsrnen

| Save password

Deployment

Buildout Support Advanced options...
» Console
Coverage
Browse files on server
Docker

Docker Registry Web server root URL: | httpe//

| | Open I

¥ Languages & Frameworks

¥ Tools

/1. Root URL is not specified

| Cancel | [Apply | [Help |

Pressing Test SFTP connection... you should see this popup:

= Test SFTP Connection

OK

® Successfully connected to 134.36.37.238.

Under Mappings layer fill Deployment path on server Titan1 with the path of your project. The path
set automatically is not correct because of /home/username/ part. Click on ... button and select your

folder (with a right click is possible to create a new one).

= Settings
Q Build, Execution, ment > ment & For current project
proj
7 Appearance & Behavior - Ijj # Name: ‘ Titan1
Appearance e Titan1
Menus and Toolbars ‘ Connection| Mappmgs| Excluded Paths
- ST EiE Use this server as default
File Colors
Scopes Local path:
Notifications | C:/Users/username/PycharmProjects/Deeplearning
Quick Lists Deployment path on server ‘Titan1"
Keymap | [home/username/DeepProjects/Deeplearning
- EIT Web path on server 'Titan1"
Plugins |
¥ Version Control

Project URL: http://

Add another mapping

v

Project: Deeplearning
Build, Execution, Deployment

4

» Debugger

Python Debugger

Buildout Support

¥ Console
Coverage
Docker

Docker Registry
F Languages & Frameworks

v

Tools

/1. Web path is not specified.

Press OK. The result must be similar to:

Local path:

Choose Deployment P...

| /DeepProjects/Deeplearning |

v [Titan1 (134.36.37.238/home/|
> .cache
.config :lD
.ipython
keras
local
nano
v

.pycharm_helpers
.theano

4 vy ¥yYYVYVYVYVYY

DeepProjects

» Deeplearning

4 home

= I (o

I Ca“ce'] | Apply] [Help]

‘ C:/Users/username/PycharmProjects/Deeplearning

(-]

Deployment path on server ‘Titan1":

[/DeepProjects/Deeplea rningl

J[-]

No /home/username/ should be on the path. Press OK.

Remote browser
Click on Tools -> Deployment -> Browse Remote Host

File Edit View Navigate Code Refactor Run BIGLIEN VCS Window Help

= Dﬂ’l"—m) Tasks & Contexts »
ﬁ n-'i - H 8 Mew Scratch File... Ctrl+ Alt+Shift+Insert
[0 Deeplearning C:\Users\enricovincenzit\Pychar Analyze Stacktrace...

» Il External Libraries gl Capture WMemary Snapshot

Test RESTful Web Service
Start S5H session...

Vagrant

This docked window should appear:

&, Upload to Titan1
.3. Upload to...

& Download from Titan1

&% Syncwith Deployed to Titan1...
Sync with Deployed to ...

i Compare Local File with Deployed Version

Ctrl+Alt+Shift+X

Configuration...
Options...
+/ Automatic Upload (always)

lemote Host

Remote Host

[E‘rmm

v w Titan1 (134.26.27.238/home/ username)

[.cache

«config
Apython
Jkeras
Jocal
nano
v

pycharm_helpers

theano
[0 DeepProjects
b [0 home
i'> .bash_history
E? bash_logout
ﬂ_r bashrc
E? Jprofile
ﬂ_r theanorc
E? exarnples.desktop

|
[
|
[
|
[
|
[
|

Here is possible to browse and check all files on the remote server.

Create a new Python file

I Deeplearning) [Test2.py)

[Project
I~ [Deepl,
v il Externz i
b & <F x Cut Crl+X [\ Directory
[l Copy Ctie 9 Python Package
E Copy Path Ctrl+Shift+C
E Copy as Plain Text Jupyter Notebook
g,' Copy Relative Path Ctrl+ Alt+Shift+C s HTML File
ﬂi Paste Ctrl+V = Stylesheet
Find Usages Altop7 s JavaScript File

2= TypeScript File

Find in Path... Ctrl+Shift+F
Replace in Path... CirlsShift-R | |4 CoffeeScript File
Inspect Code... [Gherkin feature file
Refactor » Edit File Templates...
Clean Python Compiled Files = Data Source

Add to Favorites .

Show Image Thumbnails Chrl+Shift+T

P> Run 'Nosetests in Deeplearning’' Ctrl+Shift+F10

[RO N R DU S |

In order to create a new python file:

Right click on the project name;
New;

Python file;

Choose an name and press OK.

PwhPE

- New Python file El

Mame: | Test Tl

Kind: | [* Python file =

o JEE

Save to the server

= Options

Exclude items by name: | svnovsidea, D5 Store.git.hg ‘

use ; as delimiter, * and ? as wildcards
Operations logging: v
(] Stop operation on the first error
Overwrite up-to-date files
Preserve files timestamps
E] Delete target items when source ones do not exist (when transferring from Project view or Remote Host view)
(] Create empty directories

Prompt when overwriting or deleting local items

Upload changed files automnatically to the default server | Mever b
(] Upload external changes Alwag,rs . —
On explicit save action (Ctrl+5)
E] Owerride default permissions on files: Mewver
E] Override default permissions on folders: | (none) |D
Warn when uploading over newer file: lNo n

[Notify about remote changes

F SFTP Advanced Options [IDE level setting)

[(conca | [tk |

1. From the main bar click on Tools/Deployment -> Options... ;
2. Under ‘Upload changed files automatically to the default server’ you can select two options:
a. On explicit save action if you want to send the server only on explicit CTRL + S
command;
b. Always if you want a real time upload on each change on local;
3. Press OK.

Run configuration (CUDA path)

=
+

¥ 9 Defaults

v

& App Engine server
B Behave
s Chromium Remote
! Com pound
B Django server
ﬂ Django tests
@ Docker Deployment
. Firefox Remote
% Grunt,js
?’ Gulp,js
[JavaScript Debug
@ Lettuce
@ Nwjs
@ Protractor
B Pyramid server
Python
[@ Python Remote Debug
B Python docs
) Python tests
React Native
& Tox
I npm

Run/Debug Configurations

Include parent environment variables

Configuration | Logs | .
PO [D
Environment Variables
L]
Narne | Valug +
| PYTHONUNBUFFERED | _
CUDA_HOME Just/localfcuda-8.0 @ srflocal/cuda-8.0/1 D _
LD_LIBRARY_PATH Just/local/cuda-8.0/libb4: /usr/local/cuda-8.0/CUPTI/libb4 D‘i -
I

I B

Show

o Jel

[cancel | [apply | [Hep |

In this section will be explained how to avoid CUDA libraries errors with remote interpreter.

PwnNe

From the main bar click on Run -> Edit Configurations... ;

On the left frame under Defaults click on Python;
In the Configuration tab edit Environment variables;
Add two new variables through + button:
a. CUDA_HOME = /usr/local/cuda-8.0
b. LD_LIBRARY_PATH = /usr/local/cuda-8.0/lib64:/usr/local/cuda-
8.0/extras/CUPTI/lib64

Click OK;
Click OK.

Now is possible to run python
script on the server with local
output and debug.

B 8 :gdn s 18

II Boqjuang ~U _ Jagsuel) 3 5

00011 &,

uny ¥ o

~ nedwod apo)) 3jgqeua o3 a3 nok pnogy
'suodwl IRy SUIPIUOI 303 33IN0S 0K _M
o
Kypqnedwio) suosiap uoyphy @) shuauwl jelaje| moys m
=
SMOpUIM U32M]3(] 12335 -
+
RS
7¥NUTT U0 [£000BTOZ 0°%°C 209]
(¥Z:ZT:ST ‘9702 T 10 “IIMEISP) ZT°L°Z UOUIA
S I TUEY TR o ([, ButuzeaTdaaq/e10aloagdsag/TzusoutacotIus/amoy/, *, butuzeaTdsag/s10aloagdsag/ T2usouTA0DTIUS,/3W0Y/ , |) pualxa -yied-cis
T07* L8 0e peT WOIT 9102 31 T oz A00 »% waozie1d-eAe ‘uotEzaatEAE) 3 6% U0 B uouydhd,)dutad :eis Jaodut
(1) egzLe9epeL + 0 0 Ad-atosucosaphd/asphd/ezadray waeyofd- /TguarrTanaT e e s e B SUTE/TEN,/ 22 1 REE " LE T 9E T FE T TZUSDUTADDTIUA/ / 1UEE
= SUOISS3S |BUIWLISY HSS PUB |20 T R 3|osuo) uoyifg S0 o
Ropiy ey [, saTdmes 159, ‘[g]adeys-as33 ¥)jurad o“
fdeisy Hn_m_ [, go1dmes ure1y, ‘[p]adeyeurery ¥)autad £
fdzisa) % (adeys-utezr ¥ ¢, :adeys utery ¥,)qurad =3
E_EHW_ 55z =/ 1893 ¥ i
dydeib uondaour mojposuR m‘ s6z =/ X]
aey Ideurmojiosus (,zg22011,) 3dAace 1831 ¥ = 1897 ¥ =1
Adgsuw ! (,ggae0T],) adhdee uTeal ¥ = UTRI1 ¥ ¥
fdys3 faoumpy @l £
pgbopfiowaw (T 'eToo Bat ‘emos Dwr) = adeys andur z
yabo) ‘ (1 ‘e102 Dwt ‘smox bur ‘[p]adeys-asaq ¥)adeysaa=1e3l ¥ = 1631 ¥ T
Sdsar - . (1 ‘eTo2 Dwt ‘smoa Dwt ‘[(]adeys-utexy y)adeysaa-ureEay ¥ = UTEI} § ol
1591 souppw ydeib E ; ; ; ;
r 19879 13
Ad'soupwydelb % _ — _
- F (eT00 Dot ‘emor Bur ‘1) = =deye ndut g 13smol O:En_ 220
Ad1o3en3je) n.m_ (eT00 Dwt ‘smox bur ‘T ‘[p]adeys-asay ¥)adeysaa-1eal ¥ = 1631 ¥ L n_ » . _ ._
bunweardsag | 4 (e1oo But ‘emox Gur ‘7 ![p)sdeusrureas y)adeysaatuteaq ¥ = uTEIT ¥ g
spafoigdaq My A 13, == ()bBuraspac wip sbewr ¥ T E
ousayy |y 4 _ _ _ _ _ el e 9r e @zuzduInodLua/f2yss) 714 7 Uoyiq 2joway > 2 1
Eua_u;.E_EuE.. 4 {)edep peoT-aeTum = (3533 & ‘9831 ¥) ‘(uresl & ‘ureal ¥) £ SauRIq] [eUIETS A
$785 7587 pUP UTEI] UIeAjsq JT7dS pue pa[ijnys ‘ejep auj # z fcisa) @
e« 3 2L ¥l
ouew iy 4 (e ‘c) = azTe Tauzay o _aa_mﬂu._.-h
u . IS TSUIS¥ DOTANTOATOD # Adym) @
w |20y 1 4 SITS [8UISYy UCTINTOATCD £ 3 M
£ J95SMmo.q 210wy — {z 'z) = azte Tood g gaydei6 uondzaurmojposuay 4 _Mr
a unifde iy 4 futrood xew 07 eaie Suifood jo szTs # L fdystuw -l.u 7
B oy 1 < 51d112g 210WaY pue [e307] It = sITIa : A froway @1 5
. @50 03 SAF3TIF [PUCLIIN[QAUCD JO ISqUU # 5 fdrsar —_— : m
Aper M < 2z ‘gz = ETEO DuTr ‘Emox Bur ¥ = mu_._qu.: ub @
(1IZUR2UIARIULR WIOY /FET E9E TEL) _.___E_._.m A SUCTSUSWTP SHemT JnduT # s Adsoupwydesb &
z Aduogeinajen -M
5 X _ G
EXd=F m_“ —.Iu-.__.m_ 2T = ysods qu 1Y 2a\salosguneyafgyzuaunouua\siasny: bunueatdaag I &
-3 1504 joway _ % Adysar soupwydeib & x Adsoupwydeibyyysss n,.:me._.v& % Adsoupwydeib & % Adysa) fuowmpy & x Adysa) -M _ S o % (=] - palold @
£ © 0l [«=1houay o ’ ﬂ AE.E_.%A?-.EE._&EH.
: URH MOpe S —S[ooL g TorEE g ST b o

H o - £'g1 07 Wieykd - Kd1sa)\ - [Buwieadaaq\soafoiduueypid\izuzsuinoauua\sizsny] - buuieadaag

SSH session

For long run session can be useful let the process run in background and disconnect the local machine.
For this purpose a normal SSH session is useful.

SSH inside PyCharm requires the first part of this guide.

G1ER VCS Window Help
Tasks & Contexts b
Save File as Template...

; Mew Scratch File... Ctrl+ Alt+Shift+nsert

IDE Scripting Console
Analyze Stacktrace...

ﬁt Capture Memory Snapshot

f} Python Console...

@ Create setup.py
Show Code Coverage Data Ctrl+Alt+F&

&t Deployment]
Test RESTful Web Service

Start 55H session...

Vagrant
FY. Open CProfile snapshot

1. From the main bar Tools/Start SSH session... ;

2. Select Titanl server;
3. Inthe left bottom of the page a SSH session will start;

Terminal

4+ Local 134.36.3?.233|

» Last login: Tue Now 22 19:23:31 2016 from 134.36.37.201

username Etitanl:~%

W 2 Favorites

&% 5 TODO ¥ Python Console

Screen session

Terminal

+ | Local |134.36.37.238

 |Screen version 4.03.01 (GNU) 2&8-Jun-15

Copyright (c) 2010 Juergen Weigert, Sadrul Habib Chowdhury

Copyright (c) 2008, 2009 Juergen Weigert, Michael Schroeder, Micah Cowan, Sadrul
Habib Chowdhury

Copyright (c) 1993-2002, 2003, 2005, 200&, 2007 Juergen Weigert, Michael Schroed
er

Copyright {c) 1987 0liver Laumann

This program is free software; you can redistribute it and/or modify it under th
e terms of the GNU General Public License as published by the Free Software Foun
dation; either wersion 3, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRRNTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
FARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with thi
s program (3see the file COPYING); if not, see http://www.gnu.org/licenses/, or c
ontact Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MR 02111-1301

TS,

Send bugreports, fixes, enhancements, t-shirts, money, beer & pizza to screen-de
wvellignu.org

Capabilities:
+copy +remote-detach +power-detach +multi-attach +multi-user +font +color-256 +u
tf& +rxvt +builtin-telnet

In order to detach an SSH process (and logout without killing the process) screen is used
for more info about screen)

Type screen on SSH window

Press Space bar and launch your script.

Terminal

+ | Local |1343637.238 |

x username Btitanl:~% cd DeepProjects/
username Etitanl:~/DeepProjectss cd Deeplearning/
username gtitanl:~/DeepProjects/Deeplearnings 1s
Test2.py Test2.txt Test3.txt Test.py Test.txt
username Etitanl:~/DeepProjects/Deeplearnings python Testld.py
Using TensorFlow backend.
I tensorilow/stream executor/dsc_loader.cc:108] successfully opened CUDA library
libecublas.so locally
I tensorflow/stream_executor/dso_loader.cc:l08] succeasfully opened CUDA library
libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] succeasfully opened CUDA library
likcufft.so locally
I tensorflow/stream executor/dso_loader.cc:108] succeasfully opened CUDA library
likecuda.so.l locally
I tensorflow/stream executor/dso_loader.cc:108] successfully opened CUDA library
libecurand.so locally
~CIraceback (most recent call last):
File "Test2.py", line 32, in <module>
(¥_train, ¥ train), (X test, v_test) = mnist.load data()
File "/fusr/local/lib/python?.7/dist-packages/keras/datasets/mnistc.py”, line 17
, in load_data
data = cPickle.load(f)
File "/usr/lib/python2.7/gzip.py", line 248, in read
def read(self, sgize=-1):

. (Click here

Detach process
Press CTRL + a and then type d (lowercase) to detach the process.

Terminal

=+ | Local | 134.36.37.238

| [detached from 2182.pts-15.titanl]

USErname ftitanl:~%

Now is possible to logout and the process will run in background.

Re-attach process
1. Open a SSH session on Titanl server;
2. Type screen -Is;
3. Alist of screen process is enumerated;
4. Type screen -r ‘process nhumber’.

Terminal

+ | Local | 134.36.37.238

o ftitanl:~% 3creen -ls
There is & screen on:
27814.pts-15.titanl (22711716 19:31:05) {Detached)
1 Socket in /var/run/screen/S5-
ititanl:~% screen -r 27814

5. Process is re-attached.

Terminal

+ | Local |134.36.37.238

X ce (/gpu:l) -> (device: 1, name: TITAN X (Pascal), pci bus id: 0000:02:00.0)
X_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, walidate on 10000 samples

Epoch 1712

60000,/60000 [] - 33 - loaa: 0.3826 - acc: 0.8817 -
val loss: 0.0862 - wal acc: 0.9736

Epoch 2712

&0000/60000 [] - 23 - losa: 0.1335 - acc: 0.9601 -

val_losa: 0.0607 - wval_acc: 0.9799
Epoch 3712

Tee: save log on file

-

fsTsl.py x | i;TSIZ.py *® | F <Titan1> logtet % | Remote Host E
The file is identical to remote one, fiin] & ?_""'TM1 -D =0 x ? g
1 Using TensorFlow backend. | [Titan' (134.36.37.238/home/enricovincenzi) £
2 I tenscorflow/stream executor/dsc_loader.cc:108] successfully opened CUDA library libcubla » .cache -
3 I tensorflow/stream executor/dso_loader.cc:108] successfully opened CUDA library llbcud.n:]:1 > .com‘ig
4 I tenscorflow/stream executor/dsc_loader.cc:108] successfully opened CUDA 11:.brary libecufft » ipython =
5 I tensorflow/stream executor/dso_loader.cc:108] successfully opened CUDA library libcuda. o
& I r.ensnrflmifstream_executorfdso_loader.cc:108] successfully opened CUDA library libcuran " keras g
7 I r.enam:flmifar.ream:executnrfcud;/cuda_gpu_exe:ur.nr:.:::925] successful NUMA node read fro s local 5
=] I tenscorflow/core/common runtime/gpu/gpu init.cc:102] Found device 0 with properties: > .nano
i} name: TITAN X (Pascal) [3 v
10 major: & minor: 1 memoryClockRate (GHz) 1.531 [\pycharm_helpers
11 pciBusID 0000:01:00.0
12 Total memory: 11.90GiB ¥ [theano
13 Free memory: 11.70GiB ¥ [DeepProjects
14 W tensorflow/stream executor/cuda/cuda driver.cc:572] creating context when one 1s curren v Deeplearning
alks) I tensorflow/stream executor/cuda/cuda gpu executor.cc:925] successful NUMA node read fro ‘ log.tet
16 I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 1 with properties: & Test.py
17 name: TITAN X (Pascal) 5 Testl.py
18 major: 6 minor: 1 memoryClockRate (GHz) 1.531 .
13 peiBusID 0000:02:00.0 7 ‘bash _history
20 Total memory: 11.90GiB ?.ba;h_logout
21 Free memory: 11.75GiB 7 Jbashrc
22 I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 1 7 .profile
23 I tensorflow/core/common runtime/gpu/gpu_init.cc:136] O: ¥y %, theanorc
Terminal #- L
-+ | Local |134.3637.238
2 | 60000/60000 [] - 33 - loss: 0.3826 - acc: 0.8811 - wal_loss: 0.0854 - wal_acc: 0.39740
Epoch 2/120
60000760000 [] - 25 - loss: 0.1329 - acc: 0.95%% - wval_loss: 0.0610 - val_acc: 0.9803
Epoch 37120
60000/60000 [:] - 28 - loss: 0.1036 - acc: 0.96%4 - wal_loas: 0.0529 - wal_acc: 0.9830
Epoch 4/120
60000760000 [] - 25 - loss: 0.0861 - acc: 0.9738 - val_loss: 0.0443 - val_acc: 0.9851
Epoch 57120
60000/60000 [:] - 23 - loss: 0.0775 - acc: 0.9766 - val_loas: 0.0407 - wal_acc: 0.9865
Epoch &/120
60000760000 [] - 23 - los3: 0.0699 - acc: 0.9794 - wval_loas: 0.0384 - wval_acc: 0.9873
Epoch 7/120
17792/60000 [=======F..virrrranansnnanannns] - ETA: 1s - loss: 0.0622 - acc: 0.982ﬂ
1 Eventlog | [@ Terminal

Can be useful save run log on file. Tee is a command that allows to save all console log on a file without
redirect STDOUT and STDERR.

1. Start a SSH session to Titanl server;

2.

3.

Terminal

Launch Screen;
Launch your python script in this way: python Test.py |& tee log.txt ;

+
X

4.

Local

134.36.37.238

Omit & symbol to drop STDERR log from the file.

Log of STDOUT and STDERR are saved on log.txt;

itanl:~/DeepProjects/Deeplearnings python TestZ.py |& tee log.txHt

Both STDOUT and STDERR are still visualized as output on the console as shown in the first image of

this page.

Example code for testing

In order to test the configuration run classic Keras mnist example (copy the code from the link):

'"'"'"Trains a simple convnet on the MNIST dataset.

Gets to 99.25% test accuracy after 12 epochs

(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.

rro

from future import print function
import numpy as np
np.random.seed(1337) # for reproducibility

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np utils

from keras import backend as K

batch size = 128
nb classes = 10
nb_epoch = 12

input image dimensions

img_rows, img_cols = 28, 28

number of convolutional filters to use
nb_filters = 32

size of pooling area for max pooling

pool size = (2, 2)
convolution kernel size
kernel size = (3, 3)

the data, shuffled and split between train and test sets
(X train, y train), (X test, y test) = mnist.load data()

if K.image dim ordering() == 'th':
X _train = X train.reshape (X train.shape[0], 1, img rows, img cols)
X test = X test.reshape(X test.shape[0], 1, img rows, img cols)
input shape = (1, img rows, img_cols)

else:
X train = X train.reshape (X train.shape[0], img rows, img cols, 1)
X test = X test.reshape(X test.shape[0], img rows, img cols, 1)
input shape = (img_rows, img cols, 1)

X train = X train.astype('float32')

X test = X test.astype('float32')

X train /= 255

X test /= 255

print ('X_train shape:', X train.shape)
print (X _train.shape[0], 'train samples')
print (X _test.shape([0], 'test samples')

convert class vectors to binary class matrices
Y train = np _utils.to _categorical(y train, nb_classes)
Y test = np utils.to categorical(y test, nb classes)

model = Sequential ()

model.add (Convolution2D(nb filters, kernel size[0], kernel size[l],
border mode='valid',
input shape=input_shape))

model.add (Activation('relu'))

model.add(Convolution2D(nb filters, kernel size[0], kernel size[l]))

model.add (Activation('relu'))

model.add (MaxPooling2D (pool size=pool size))

model.add (Dropout (0.25))

model.add (Flatten())
model.add (Dense (128))
model.add (Activation('relu'))

4.3. DATASETS 42

4.2.2 Lua

“. I'. EJI n E—; f.llt?g@

/Y Y
[1 _ N | [_\

P B VY S B VY B

Lua environment, used by Torch, is less known than Python one. The reason
why has been used in this work is that the original work for Grad-CAM
visualization technique is implemented in Torch. Moreover, Torch is very
useful and, within the author personal opinion, easier to read and learn than
Tensorflow. The main drawback is just the lack of the same number of image
analysis libraries and IDEs. The IDE used is ZeroBraneStudio, the only one,
at March 2017, with a sufficiently stable debugger.

4.3 Datasets
As anticipated the dataset is the one provided by EyePACS for Diabetic
Retinopathy Detection Kaggle challenge. The dataset is a 5-class dataset
with 90000 high resolution, labeled, fundus retinal scans. The resolution
used in the experiments is 300 x 300 and all the images satisfy this constraint.
The images are divided in the different classes with the respect of the diabetic
retinopathy diagnosed:

1. NO Diabetic Retinopathy;

2. Mild Diabetic Retinopathy;

3. Moderate Diabetic Retinopathy;

4. Severe Diabetic Retinopathy;

5. Proliferative Diabetic Retinopathy.

4.3. DATASETS

Figure 4.2: Mild Diabetic Retinopathy

4.3. DATASETS

Figure 4.4: Severe Diabetic Retinopathy

4.3. DATASETS 45

Figure 4.5: Proliferative Diabetic Retinopathy

The images are taken with different cameras and at different resolution
and light condition. A normalization between the images can be a good idea
to reduce the noise given by this factors.

4.3.1 Preprocessing

The preprocessing used to normalise images is the following:
O = (I — Gaussian(I)) + 128 (4.1)

where O is the output image, I the input image and the 128 bias is used to
normalise the image around the middle value in a uint image representation
(code in Appendix 2).

4.3. DATASETS 46

Figure 4.6: Preprocessing Input and Output example

4.3.2 Artificial markers

In order to validate the visualizations techniques will be necessary to have
datasets with visible markers. This markers can be natural images or different
textures. FEach of these artificial datasets are composed of 35000 fundus
images. On each of these images an artificial marker is added. The code
used print an artificial marker with random dimension rotation and position
inside the images (code in Appendix 3).

Multiclass: texture markers

The first artificial dataset is a 4-class dataset with:
1. natural fundus images;
2. grass texture blob randomly added to the image;
3. granit texture blob randomly added to the image;

4. fabric texture blob randomly added to the image;

Figure 4.7: Grass Figure 4.8: Granit Figure 4.9: Frabric

4.3. DATASETS 47

The output are images with three different texture blobs.

4

Figure 4.10: Artificial texture markers images samples. The images can have
no blob or granit, grass, fabric texture.

Multiclass: natural artificial markers

The first artificial dataset is a 4-class dataset with:
1. grass texture blob randomly added to the image;
2. car model randomly added to the image;
3. droid model randomly added to the image;

4. giraffe randomly added to the image;

4.3. DATASETS

5. cartoon boy randomly added to the image;

Figure 4.11: Natural models used as markers

Dataset samples:

48

4.3. DATASETS 49

Figure 4.12: Artificial texture markers images samples.

Binary: car , grass blob

The third dataset with artificial is composed by two classes. Both are fundus
images, the first with a car model randomly added, and the second with a
grass blob.

4.4. NETWORK ARCHITECURE 20

Binary: grass blob, original fundus images

The last dataset is a binary dataset with non modified fundus images and
fundus images with grass texture blob in.

4.4 Network architecure

Classification and, therefore, visualization performances are highly depen-
dent on how the network is designed. Almost infinite combination of layers
and parameters can be chosen and the performances are highly dependent
on this choice. In this work two architecture designed for natural images
classification are taken in account.

VGG

The VGG ([28]), from the name of the development team, has been designed
for ILSVRC 2013 challenge and is optimized for multiclass natural images
classification.

4.4. NETWORK ARCHITECURE 51
ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Figure 4.13: VGG architecture. D version is the one implemented.

In the table the first row shows all the convolutional layers from left to
right; the last part is a fully connected network where N is the umber of
classes in the dataset.

ResNet

The ResNet (|29]) has been introduced for ILSVRC 2015 challenge. Is the
state of the art for natural image classification. The main difference if com-
pared with the VGG is the non linearity in the architecture design; The
reason behind its main performances is a feed-forward stage that subtract

4.5. VISUALIZATION TECHNIQUES

92

the output of each block with its input. This reduce vanishing gradient prob-
lem and allows up to 1000 layers architecture. In this work has been used a

50 layers ResNet.

layer name | output size 18-layer 34-layer 50-layer 101-layer 152-layer
convl 112x112 7x7, 64, stride 2
3%3 max pool, stride 2
R R [1x1,64] [1x1,64 [1x1,64]
2 56x56 :) , : :
comvex * gxg z]xZ ;x; 2 x3 3x3,64 | x3 3%3,64 | %3 3x3,64 | %3
Lo Lo | 11,256 | | 1x1,256 | | 1x1,256 |
[11,128] [1x1, 128] [1x1,128]
b i s N
conv3x | 28x28 [;i;:;ﬁ]xz [;i; :iz]x4 3x3, 128 | x4 3x3, 128 | x4 3%3,128 | x8
e : | 1x1,512 | | 1x1,512 | | 1x1,512 |
11,256 1x1,256] 1x1,256 |
convdx | 14x14 [gzg ggz]xz [gig ggz]xﬁ 3%3,256 | %6 3Ix3,256 | %23 3%3,256 | %36
’ ’ 1x1, 1024 1x1,1024 | 1x1, 1024 |
1x1,512 1x1,512 1x1,512
conv5_x 7%7 [;i;;g]xz [;i;;g]x3 3%3,512 | %3 3%3,512 | x3 3%3,512 | x3
' : 1x1, 2048 1x1,2048 11,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10" [36x10” | 3.8x10° | 7.6x10" | 11.3x 10"

Figure 4.14: ResNet architecture

Where each block is designed as following:

64-d

1x1, 64

256-d

3x3, 64

3x3, 64

bn,relu
Y

Tia

r
5
bn,relu

L

i

3x3, 64

1x1. 256
L,

bn,relu

bn,relu

My

bn,relu

Figure 4.15: ResNet blocks

The main problem of the ResNet is its non sequential design. This make
difficult the use of a visualization technique given that the latter requires
particular backpropagation steps across the network.

4.5 Visualization techniques

The main aim of this work is visualise what the network can learn and if this
knowledge can be used for biomarkers searching and discovery. Two different

4.5. VISUALIZATION TECHNIQUES 33

techniques have been analysed:
e Filter visualisation;

e Gradient Class Activation Mapping (Grad-CAM) ([30], [31]).

4.5.1 Filters visualisation

The first technique is the simplest and more immediate one. The idea is to
visualise the filters learned during the training step for each layer. The shal-
lower layers have simplest filters, while deep ones should have more complex
ones. Those filters can be useful for visualise if exist some specific pattern
useful for biomarkers discovery inside the original image, especially in the
deeper layers. Moreover the filters are always useful to understand better
training stage and possible Grad-CAM troubles.

4.5.2 Grad-CAM

Grad-CAM ([30], [31]) algorithm is designed to visualise the most important
region used by the network for the classification. The input of the algorithm is
the trained network, the input image, a number ¢, with 0 < ¢ < # of classes,
and the layer of the network from where compute the activation. The output
is a heat-map image where each pixel is coloured in a range between red and
blue. The higher activation areas are the red one, while the less important
are blue. This technique is not dependent on the network architecture type
but work better with sequential models like VGG. For this reason Grad-CAM
has been implemented and tested mainly with VGG model. ResNet achieves
better result than VGG in Imagenet classification challenge, but the main
aim of this work is not have a good classification result. To answer the initial
question is important to test this technique with medical datasets. ResNet
can introduce further issues that are not in the focus of this work.

The original code for this algorithm is deployed in Torch. Let see the
details of the code.

4.5. VISUALIZATION TECHNIQUES o4

Algorithm 2 Grad-CAM verbose algorithm

1:
2:

Load neural network model and chosen layer name.

Remove last activation layer (last tensor in the stack, usually a softmaz).
> An image compatible with the network and representing objects that the
network can classify is loaded

3: Load image

4: Set the object class to visualise, or predict the class from the loaded

image.

. doutput = n elements vector (where n is the number of classes) with all

values set to 0 but the one related to the chosen class.
> Grad-CAM steps
> T'wo new sequential models are created: modell and model2

6: modell = original model from input to chosen layer included.

7: model2 = original model from chosen layer non included to last layer.

10:

11:

12:

13:

> Weights computation
A backward step is computed from doutput to modell.output through
model2.

activation = the tensor with the weights of the chosen layer.

din
dOut

(all non chosen class positions are set to 0)

gradients = where In is the input of model2 and Out its output
weight — sum of all the gradients for each activation in the chosen layer.
> Map computation

map = elementwise multiplication between activation and relative
weight(previously computed).

map = map with all negative values set to 0.

4.5. VISUALIZATION TECHNIQUES 35

local modell, model2 = nn.Sequential(), nn.Sequential ()
for i = 1, #cnn.modules do
layer id = tonumber(layer name)
for i = 1, #cnn.modules do
modell:add(cnn:get(i))
if i = layer_id then
break
end
end
for i = layer id+1, #cnn.modules do
model2:add(cnn:get(i))
end

Listing 4.1: modell, model2 setup

The first section of the code initialises modell and model2 as described in
the algorithm.

— Get activations and gradients
model2:zeroGradParameters ()

model2: backward (modell .output, doutput)

Listing 4.2: backward step in model2

The second section set to 0 all the gradients in model2 and perform back-
propagation algorithm from doutput vector layer and the output of modell,
used as input for model2.

— Get the activations from modell and and gradients from model2
local activations = modell.output:squeeze ()
local gradients = model2.gradlnput:squeeze()

Listing 4.3: activations and gradients computation.

The third section define activations variable, the tensor with the wieghts
of the previously selected layer to visualise. Then gradients is defined as
the derivative of the output of model2 with its input (the layer selected for
visualization). The output of model2 is doutput vector. All the values of
doutput are set to 0, but the class selected to be visualised.

4.5. VISUALIZATION TECHNIQUES 96

n m
activations gradients

/A

Figure 4.16: Activations and gradients tensor shape. Activation shape =
{{ x n x n}, Gradient shape = {g x m x m}

— Global average pool gradients
local weights = torch.sum(gradients:view(activations:size(1), —1)
- , 2)

Listing 4.4: weights computation

In this section weights variable is computed.

shape = ¢

™~

weights = torch.sum(gradients : view(activations s size(1),—1),2)

J/

TV
shape = £ x m?2

N J/

NV
shape = £ x 1

The weights variable is a {fx1} vector. (¢ is the number of filter in the
selected layer for the visualisation.

— Summing and rectifying weighted activations across depth

map = torch.sum(torch.cmul(activations , weights:view(activations:
< size(1l), 1, 1):expandAs(activations)), 1)

map = map:cmul(torch.gt(map,0) :typeAs(map))

Listing 4.5: map computation

Map is finally computed multiplying the weights by the activations. Let’s
see the code in the detail:

1. weights : view(activations : size(1),1,1) : expandAs(activations) :
reshape weights tensor to shape ¢ x n x n (all n x n planes have the
same value repeated);

2. torch.cmul(activations,--- ,1) : activation tensor is elementwise mul-
tiplied by the previosly reshaped weights tensor. The result is a weighted
activation tensor of shape ¢ x n x n.

4.5. VISUALIZATION TECHNIQUES a7

3. torch.sum(--- ;1) : all weighted filter from previous step are summed
together. Output shape is 1 x n xn

4. The second operation on map tensor is set to 0 all negative map ele-
ments.

The final step of the algorithm outcome is a n X n matrix that used as a
colourmap shows the activation regions in the input image.

Chapter 5

Experiments

This chapter explores the results of classification and visualization for all the
datasets used.

o8

5.1. NATURAL IMAGES 29

5.1 Natural images

The visualization techniques are validated on ImageNet trained VGG16. This
is a benchmark to test if the visualization is working well before trying on
retinal datasets. The network is represented through deep learning libraries
as a cascade of tensors.

224 W 2343 2R 23 04

28 % 2R = 512 TTx512
14x 14 %512 .
it 4 1x1x4096 1%1x 1000

—

H convolution4+RelLT

(— max proailing

fully connected-+HRell

| softmax

Figure 5.1: VGGI16 tensor structure. The input dimension is, for historical
reasons, 224x224, with 3 color channels.

The network has been trained on Imagent dataset, with 1 million images
divided in 1000 classes.

5.1.1 Filters Visualisation

After training the weights of the convolutional layers are the filter kernels
used to perform convolution.

5.1. NATURAL IMAGES 60

Figure 5.2: Filters of first convolutional layer in block 1.

Figure 5.3: Filters of first convolutional layer in block 2.

5.1. NATURAL IMAGES 61

Figure 5.4: Filters of first convolutional layer in block 3.

Figure 5.5: Filters of first convolutional layer in block 4.

5.1. NATURAL IMAGES 62

Figure 5.6: Filters of last convolutional layer.

5.1.2 Grad-CAM Visualisation

The Grad-CAM technique performs very well with natural images and Ima-
geNet trained VGG.

Figure 5.7: Image with a dog and a cat used as input for Grad-CAM test

The previous image is a good example to prove Grad-CAM technique.

5.2. BINARY: CAR , GRASS BLOB 63

Manually setting the class to visualise in the Grad-CAM algorithm, is possi-
ble to focus on the cats or dogs class in the same image.

Figure 5.8: Grad-CAM output with Figure 5.9: Grad-CAM output with
class 283 (= Tiger cat) fixed. class 243 (= Boxer) fixed.

As is possible to see the algorithm outputs a heat-map that shows which
part of the image activates the selected class for the selected layer. In this
case Tiger cat and Bozer class has been fixed in two different runs of the
program. The output is the activation, firstly, for Tiger cat and then Bozxer
classes. Superimposing the heat-map to the original image is possible to see
that the highly active regions match with the cat or the dog correctly. This
shows that the network is not only classifying correctly, but also using the
expected regions in the images.

In the next trials this technique will be applied to medical fundus images
on the same architecture trained each time on specific dataset.

5.2 Binary: car , grass blob

5.2.1 Filters visualization

After training the convolutional layers weights are the filter kernels for each
stage of the network.

5.2. BINARY: CAR , GRASS BLOB 64

Figure 5.10: Filters of first convolutional layer in block 1.

Figure 5.11: Filters of first convolutional layer in block 2.

Figure 5.12: Filters of first convolutional layer in block 3.

5.2. BINARY: CAR , GRASS BLOB

Figure 5.13: Filters of first convolutional layer in block 4.

Figure 5.14: Filters of last convolutional layer.

65

5.2. BINARY: CAR , GRASS BLOB 66

5.2.2 Grad-CAM visualization

Figure 5.15: Dataset samples. All images contain a car or a grass blob.

Figure 5.16: Grad-CAM run on the previous samples.

5.3. MULTICLASS: NATURAL ARTIFICIAL MARKERS 67

5.3 Multiclass: natural artificial markers

5.3.1 Filters visualization

After training the convolutional layers weights are the filter kernels for each
stage of the network.

Figure 5.17: Filters of first convolutional layer in block 1.

Figure 5.18: Filters of first convolutional layer in block 2.

5.3. MULTICLASS: NATURAL ARTIFICIAL MARKERS 68

Figure 5.19: Filters of first convolutional layer in block 3.

Figure 5.20: Filters of first convolutional layer in block 4.

Figure 5.21: Filters of last convolutional layer.

5.3. MULTICLASS: NATURAL ARTIFICIAL MARKERS 69

The last layer filters are still very different from Imagenet ones. Moreover
there is a significant difference even with the previous that is noticeable in
even less complex filters with an horizontal pattern rather repeated among
all the filters.

5.3.2 Grad-CAM visualization

The samples used for this dataset show less reliable behave of the Grad-CAM.
The marker are still mainly detected by the technique, but in a weaker way
than before. Where the visualisation is correct there is more often activation
in wrong regions and more importantly in some images the visualisation fails
showing an all red heat-map.

Figure 5.22: Artificial texture markers images samples.

5.4. BINARY: GRASS BLOB, ORIGINAL FUNDUS IMAGES 70

Figure 5.23: Artificial texture markers images samples.

5.4 Binary: grass blob, original fundus images

This dataset is particularly challenging for the visualisation. The classifica-
tion accuracy is again 100%, but from an intuitive point of view the texture
is not important for the classification. The minimum capability needed to
discriminate between to fundus images, one with a grass texture blob and
one without, is the ability to find circles.

5.4.1 Filters visualisation

The filters for each VGG16 block are printed below.

5.4. BINARY: GRASS BLOB, ORIGINAL FUNDUS IMAGES 71

Figure 5.24: Filters of first convolutional layer in block 1.

Figure 5.25: Filters of first convolutional layer in block 2.

Figure 5.26: Filters of first convolutional layer in block 3.

5.4. BINARY: GRASS BLOB, ORIGINAL FUNDUS IMAGES 72

Figure 5.27: Filters of first convolutional layer in block 4.

Figure 5.28: Filters of last convolutional layer.

5.4.2 Grad-CAM visualisation

The Grad-CAM result is quite challenging to explain. The visualisation is
indeed wrong. The important regions in the images with the grass blob are
the part outside the blob. This can be explained recalling the idea explored
at the beginning of this dataset section. The network doesn’t need to find
the blob to classify correctly, but just a circle shape. Probably this is the
reason why the Grad-CAM outcome.

5.4. BINARY: GRASS BLOB, ORIGINAL FUNDUS IMAGES

73

Figure 5.29: Artificial texture markers images samples.

5.5. TEXTURE BLOBS MARKERS DATASET 74

5.0 Texture blobs markers dataset

5.5.1 Filters visualisation

Figure 5.30: Filters of first convolutional layer in block 1.

Figure 5.31: Filters of first convolutional layer in block 2.

5.5. TEXTURE BLOBS MARKERS DATASET 75

Figure 5.32: Filters of first convolutional layer in block 3.

Figure 5.33: Filters of first convolutional layer in block 4.

Figure 5.34: Filters of last convolutional layer.

5.5. TEXTURE BLOBS MARKERS DATASET 76

The filters for this database (4 class, one with non modified retina and the
other three with different texture blobs) seem to be without a visible pattern.
The classification result in validation is still near to 100%. Probably the
absence of well visible patterns even in the deeper layers filters is due to the
very flat structure of the images; the object to recognise is just texture and
probably the fully connected layers at the end are enough to classify without
learn anything in the convolutional part of the network.

5.5.2 Grad-CAM visualisation

The previous section suggest that even the Grad-CAM will fail given the
shape of the deeper filters.

Figure 5.35: Artificial texture markers images visualisation.

5.6. DIABETIC RETINOPATHY 77

The visualisation fails to detect important regions. The classification is
100% in validation, that means that the class can be detected correctly. The
limit is in the Grad-CAM algorithm probably because of the filters previously
extracted. In the class 0, the one without blobs, is possible to see one or two
horizontal bezels with very low activation. The reason is difficult to identify
and likely due to absence of any artificial circle inside the image. There
is, then, a difference in visualisation between the class without blobs and
the others. The result is anyway unsatisfactory and shows a limit of the
Grad-CAM with this dataset.

5.6 Diabetic Retinopathy

The classification performance is afflicted by severe overfitting that limits
Grad-CAM performances.

5.6.1 Filters visualisation

Figure 5.36: Filters of first convolutional layer in block 1.

5.6. DIABETIC RETINOPATHY 78

Figure 5.37: Filters of first convolutional layer in block 2.

Figure 5.38: Filters of first convolutional layer in block 3.

Figure 5.39: Filters of first convolutional layer in block 4.

5.6. DIABETIC RETINOPATHY 79

Figure 5.40: Filters of last convolutional layer.

5.6.2 Grad-CAM visualisation

Figure 5.41: Visualisation for diabetic retinopathy.

Chapter 6

Conclusion and Recommendation
for future works

The results of this work shows not only the performances and the limits of
current the state of the art for visualisation of salient region in Deep Learning,
but also shows some interesting point in how a network learns filters.

All the experiments have been run with VGG16 architecture reaching 100%
accuracy for artificial markers datasets. Keeping this into account different
aspect can be noticed.

6.1 Natural and Medical datasets differences

The first outcome regards the difference between natural images and medical
images in Deep Learning. Natural images are plenty of very different objects
with very different structures. This allows the network to learn very complex
and different filters especially in the deeper layers. Medical images, in par-
ticular fundus retinal images, have a lower degree of very different patterns,
but very small difference in few details can do the difference in classification.
This is testified by the hugh difference in the deeper convolutional layers fil-
ters. The ones belonging to a network trained with retinal fundus images are
much simpler than the ones obtained from Imagenet dataset. This is also in-
fluenced by the few number of different classes in retinal dataset if compared
to Imagenet. In the first case the number of classes can vary between 2 and
5, while in the latter is 1000.

80

6.2. FILTERS PATTERN COMPLEXITY IS IMPORTANT 81

6.2 Filters pattern complexity is important

The second outcome regards the limitation of Grad-CAM algorithm perfor-
mances when the deeper layer filters have simple patterns. The visualisation
is less precise and can even fail. Furthermore if the classes are discriminated
by natural objects, with standard complex pattern, the performances are
good; when the class is discriminated by simple texture blob, with patterns
much simple to the retinal background, the visualisation is less strong.

Figure 6.1: Natural image marker: Figure 6.2: Texture blob marker:

Grad-CAM is usually able to detect The discriminator structure is sim-

with precision the important region. pler tha the car image in the other
class. Moreover the texture is some-
how similar to vessels in the retinal
background. The result is a less pre-
cise visualisation and mild activation
in the whole image.

The same comment can be done for the multiclass dataset with natural
markers. Here the performances of visualisation are a bit decreased probably
because of the filters that despite the higher number of different natural
markers are still much similar to the previous dataset than to Imagenet filters.

6.3 Unexpected patterns can be find

The third outcome regards the importance of the kind of classes to be dis-
criminated. If the user want to classify between to classes, the first with a

6.3. UNEXPECTED PATTERNS CAN BE FIND 82

pattern, the latter without, the visualisation performances can be very dif-
ferent from what expected. In the binary dataset tested where the classes are
one with a grass blob and one without, the user can expect that Grad-CAM
can easily find the blob in the respective class. However, this is not what
happens in the dataset tested.

Figure 6.3: Grass blob visualisation outcome

The visualisation outcome are somehow weird and difficult to explain.
Indeed, in Figure 6.3, the visualisation suggest that the discriminative region
for the blob class is the background and not the blob itself. A possible
interpretation to this is that in this case is not mandatory to find the blob
with its texture; a circle pattern is enough to discriminate between class with
or without this pattern. This can be confirmed by the outcome of the class
without the blob.

6.4. FILTERS PATTERN CAN LIMIT THE PERFORMANCES 83

Figure 6.4: Visualisation outcome for no blob class

In Figure 6.4 shows how the activation region is approximately a square
in the center of the image. The classification is possibly done filtering circles
in the image. If the image does not contain circle all the central square is
active and the image is classified as no blob class. If not all the central part
of the image activates the discriminative filters then a circle is present and
the blob detected. In the last layer filters seems not to be present a single
filter able to find circle, but this can easily be a combination between the
512 last layer filters.

This show that sometimes the network is able to discriminate different
classes using not expected patterns. This is a very interesting point and shows
that a network is able to discover not expected patterns and visualisation can
be a preliminary proof.

6.4 Filters pattern can limit the performances

Texture multiclass dataset visualisation fails. This is probably due to the
filters. The last layer filters does not contain any strong visible pattern.
Grad-CAM algorithm is indeed very dependent on the filters. Again the
class with no blob seems to be find activating the central square of the image.
Unfortunately few can be said about the other classes, given that there is no
sign at all of activation with 100% accuracy performance.

6.5. DIABETIC RETINOPATHY VISUALISATION 84

6.5 Diabetic Retinopathy visualisation

Visualisation fails for Diabetic Retinopathy dataset. This is probably not due
to Grad-CAM but to limited classification performances. The classification
gives, indeed, strong overfitting limiting the validation accuracy.

e Trianing set accuracy: 99%;
e Validation set accuracy: 70%

The limit seems due to this. Improving the classification performances
reducing the overfitting is fundamental to get the visualisation working. This
is a very tough task that is not part of the aim of this thesis and can be part
of a future work.

Appendices

89

Appendix 1

Jacobian of composite functions:

g:R—>R"
g:R" >R
defining:
h=fog:R—R

is possible to write:

86

Appendix 2

Preprocessing python code:

#Preprocess training images.
import cv2, numpy, multiprocessing
from os import listdir

from os.path import isfile , join

def scaleRadius(img,q,rd):

def

if

__name_ == ' main_

x=img[img.shape [0]/2,:,:].sum(1)
r=(x>x.mean () /10) .sum() /2
if img.shape[0] >= rx2xq:

cimg = img[img.shape[0] / 2 — (rxq):img.shape[0] / 2 +
— (r+q), img.shape[l] / 2 — (r+q):img.shape
< (1] /2 % int(rsa),]
else:
cimg = img[:, img.shape[l] / 2 — (r+q):img.shape[1] /

— 2 + (rxq) . :]
return (cimg, r)

processing (f):
try:
a = cv2.imread('C:/Users/enricovincenzi /KAGGLE DATASET/
— TRAIN/trainl/'+ f)
q = 0.93
r = 1150
[a, r1] =scaleRadius(a, q, r)
b=numpy.zeros(a.shape)
cv2.circle(b,(a.shape[1]/2,a.shape[0]/2), (rlxq)
— ,(1,1,1),-1,8,0) #int(scale*0.9)
aa = cv2.addWeighted(a, 4, cv2.GaussianBlur(a, (0, 0),
<5 33), —4, 128) % b + 128 % (1 — b)
cv2.imwrite ('C:/Users/enricovincenzi /KAGGLE DATASET/TRAIN
— /[train2/' + f, a)
print(f)
except:
print f

87

88

mypath = 'C:/Users/enricovincenzi/KAGGLE DATASET/TRAIN/trainl

(ﬁ

images = [f for f listdir (mypath) if isfile(join(mypath, f
=))]

pool = multiprocessing . Pool()

pool.map(processing , images)
pool.close ()
pool.join ()

Listing 1: Preprocessing and bezels cut.

Appendix 3

Artificial markers image generator code:

size = 300 # final size of each image

crop = 240 # reduce the radius of the image of
— crop pixels (introduces cuts)

fake biom =1 # 1 for draw texture in the images, 0

— to keep the image as it 1is
basic functions

def square(image):
mshape = max(image.shape[:2])
square = np.zeros ([mshape, mshape, 3], dtype='uint8 ")
shape = image.shape[:2]
middle, pos = [np.min(shape) /2, np.argmin(shape)]
f =0 if np.min(shape) % 2 = 0 else 1

!!' 4 times slower
square[mshape / 2 - middle:mshape / 2 + middle + f, :, :] =
<~ image if pos == 0 else image.swapaxes (0,1)
if pos = 0:
square [mshape / 2 — middle: mshape / 2 + middle + f, :, :]
— = image
if pos = 1:
square [:, mshape / 2 — middle:mshape / 2 + middle + f, :]
— = image

return square

def resize(image):
dsize = randint(40,100)
#print (dsize)
resized = cv2.resize(image, (dsize, dsize))
return resized

def rotate(image):
(h, w) = image.shape[:2]

89

90

center = (w / 2, h / 2)

M = cv2.getRotationMatrix2D (center, randint (0, 360), 1.0)
rotated = cv2.warpAffine(image, M, (w, h))

return rotated

HERRHHHAH AR BB R RHHHF SRR R BB R R RS

mypath = 'path for the images’

files = [f for f listdir (mypath) if isfile (join(mypath, f))]

files = sorted(files , key=lambda x: ((re.sub('\D"," " ,x)) ,x))

len = files. len_ ()

f = h5py. File ('kaggle ' + (size) + ' boyycarr.hdf5', "a’)

data = f.create dataset("dataset", (len, size, size, 3), dtype=’
< uint8 ', chunks=True)

label = f.create dataset("label", (len, 1), dtype="uint8 ', chunks
— =True)

g = h5py. File(texture.hdf5', 'r")

texture = g.get(' dataset’)

car = square(cv2.imread ('PNG/ferraril00 .png"))
gir = square(cv2.imread('PNG/giraffel00.png’))
boy = square(cv2.imread ('PNG/vaultboyl100.png'))
droid = square(cv2.imread ('PNG/droid100.png"))
fake_biom creator

def fake biomarkers(image):
tran = np.zeros([size, size, 3], dtype='uint8 ")
fbiom = [car, boy] #[’blob’, car, gir, boy, droidl
Ib = random.randint (0, fbiom._ _len_()-1)
a = fbiom[Ib]
if isinstance(a,)
sr = np.zeros ((size, size, 3), dtype=np.uint8)
r = randint(round(size / 12), round(size / 8)) # radius
<~ of the biom
cl = randint(0 + r, size — r) # first center coordinate
h = (abs(cl — size / 2)) / ((size / 2 —r))
hl = round(math.sin(math.acos(h)) * (size / 2 — r))
c2 = randint(size / 2 — hl, size / 2 + hl)
center = (cl, c2)
mask = cv2.circle(sr, (cl, ¢2), r, (255, 255, 255), —1)
typ = 0 # typ = randint (0, 3)
src = texture[typ, :, :, :]
image = cv2.seamlessClone(src, image, mask, center, cv2.
— NORMAL_ CLONE)
return [image, |b]
dl = randint (0, size — a.shape[0])
d2 = randint (0, size — a.shape[l])
a = resize(a
a = rotate(a

— N~ o~

91

tran[dl : dl + a.shape[0], d2 : d2 + a.shape[l], :] = a
image = cv2.addWeighted(image, 1, tran, 1, 0)
return [image, Ib]

i =0
for myFile files:
print myFile
image = cv2.imread (mypath + myFile, —1)
chk = image.shape[1]
due = image.shape[0]
if chk < size + crop or due < size + crop:
continue
if size < chk:
if chk — due < 5:
chk = chk / 2
image = image[chk — chk + crop:chk + chk — crop, chk
— — chk + crop:chk + chk — crop, :]

image = cv2.resize(image, (size, size))
if fake biom = 1:
[image, a] = fake biomarkers(image)
datali, :, :, :] = image
label[i] = a
i=1i4+1
else:

due = due / 2
chk = chk / 2
if due — chk + crop > 0:
image = image[due — chk + crop:due + chk — crop,
< chk — chk + crop:chk + chk — crop, :]

image = cv2.resize (image, (size, size))
if fake biom =

[image, a] = fake biomarkers(image)
data[i, :, :, :] = image
label[i] = a
i=1i4+1

data.resize ((i, size, size, 3), None)
label . resize ((i, 1), None)
f.close()

Listing 2: Add artificial markers to fundus images.

Bibliography

1]

2]

131

4]

5]

[6]

|7l

18]

G. V, P. L, C. M, and et al, “Development and validation of a deep
learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs,” JAMA, vol. 316, no. 22, pp. 2402-2410, 2016.

D. E. Worrall, C. M. Wilson, and G. J. Brostow, Automated Retinopa-
thy of Prematurity Case Detection with Convolutional Neural Networks,
pp. 68-76. Cham: Springer International Publishing, 2016.

J. Shan and L. Li, “A deep learning method for microaneurysm detec-
tion in fundus images,” in 2016 IEEE First International Conference on
Connected Health: Applications, Systems and Engineering Technologies
(CHASE), pp. 357-358, June 2016.

H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng,
“Convolutional neural networks for diabetic retinopathy,” Procedia Com-
puter Science, vol. 90, pp. 200 — 205, 2016.

T. Schlegl, S. M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, and
G. Langs, “Predicting semantic descriptions from medical images with
convolutional neural networks,” in IPMI, 2015.

K. Maninis, J. Pont-Tuset, P. A. Arbeldez, and L. J. V. Gool, “Deep
retinal image understanding,” CoRR, vol. abs/1609.01103, 2016.

R. Srivastava, J. Cheng, D. W. K. Wong, and J. Liu, “Using deep learn-
ing for robustness to parapapillary atrophy in optic disc segmentation,”
in 2015 IEEFE 12th International Symposium on Biomedical Imaging
(ISBI), pp. 768-771, April 2015.

P. Prentasi¢ and S. Loncari¢, “Detection of exudates in fundus pho-
tographs using convolutional neural networks,” in 2015 9th Interna-
tional Symposium on Image and Signal Processing and Analysis (ISPA),
pp. 188-192, Sept 2015.

BIBLIOGRAPHY 93

[9] T. Mitchell, Machine Learning. McGraw-Hill, 1997.

[10] http://web.media.mit.edu/~lieber/PBE/what-is-PBE.html. Accessed:
2017-03-22.

[11] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2009.

[12] https://online.science.psu.edu/bisc004_activewd001/node/1907. Ac-
cessed: 2017-03-22.

[13] http://cs231n.github.io/convolutional-networks. Accessed: 2017-03-
22.

|14] https://keras.io. Accessed: 2017-04-02.
[15] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015.
[16] https://www.tensorflow.org. Accessed: 2017-04-02.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), (GA), pp. 265-283, USENIX
Association, 2016.

[18] Y. Tang, “Tf.learn: Tensorflow’s high-level module for distributed ma-
chine learning,” CoRR, vol. abs/1612.04251, 2016.

|19] http://torch.ch. Accessed: 2017-04-02.

[20] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[21] G. van Rossum and F. D. (eds), “Python reference manual,” in http:
// www. python. org, 2001.

[22] https://www.lua.org/. Accessed: 2017-04-02.
[23] http://luajit.org/. Accessed: 2017-04-02.

|24| http://www.nvidia.com/object/cuda_home_new.html. Accessed: 2017-
04-02.

http://web.media.mit.edu/~lieber/PBE/what-is-PBE.html
https://online.science.psu.edu/bisc004_activewd001/node/1907
http://cs231n.github.io/convolutional-networks
https://keras.io
https://github.com/fchollet/keras
https://www.tensorflow.org
http://torch.ch
http://www.python.org
http://www.python.org
https://www.lua.org/
http://luajit.org/
http://www.nvidia.com/object/cuda_home_new.html

BIBLIOGRAPHY 94

[25] https://www.kaggle.com/c/diabetic-retinopathy-detection. Ac-
cessed: 2017-04-02.

[26] http://www.eyepacs.com. Accessed: 2017-04-02.
[27| https://www.jetbrains.com/pycharm/. Accessed: 2017-04-02.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[30] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh,
and D. Batra, “Grad-cam: Why did you say that? visual expla-
nations from deep networks via gradient-based localization,” CoRR,
vol. abs/1610.02391, 2016.

[31] B. Zhou, A. Khosla, L. A.; A. Oliva, and A. Torralba, “Learning Deep
Features for Discriminative Localization.,” CVPR, 2016.

https://www.kaggle.com/c/diabetic-retinopathy-detection
http://www.eyepacs.com
https://www.jetbrains.com/pycharm/

	Introduction
	Deep Learning theory
	Introduction to machine learning
	Supervised Learning
	Artificial Neural Networks
	What is an ANN?
	Perceptron
	Deep Neural Networks
	Activation function

	Backpropagation algorithm
	Training set
	Loss function
	Gradient Descent Rule
	Local Error
	Backpropagation steps

	Convolutional Neural Networks
	Convolutional layer
	Pooling layer

	Classifier performances
	Common problems

	Literature review: Deep Learning for retinal images analysis
	Methodology
	Hardware setup
	Software setup
	Python
	Lua

	Datasets
	Preprocessing
	Artificial markers

	Network architecure
	Visualization techniques
	Filters visualisation
	Grad-CAM

	Experiments
	Natural images
	Filters Visualisation
	Grad-CAM Visualisation

	Binary: car , grass blob
	Filters visualization
	Grad-CAM visualization

	Multiclass: natural artificial markers
	Filters visualization
	Grad-CAM visualization

	Binary: grass blob, original fundus images
	Filters visualisation
	Grad-CAM visualisation

	Texture blobs markers dataset
	Filters visualisation
	Grad-CAM visualisation

	Diabetic Retinopathy
	Filters visualisation
	Grad-CAM visualisation

	Conclusion and Recommendation for future works
	Natural and Medical datasets differences
	Filters pattern complexity is important
	Unexpected patterns can be find
	Filters pattern can limit the performances
	Diabetic Retinopathy visualisation

	Appendices
	Appendix 1
	Appendix 2
	Appendix 3
	Bibliography

