
University of Padova

Department of Information Engineering

Master Thesis in ICT for Internet andMultimedia

Restoration Of The Damaged Sound

Recordings Using Generative Adversarial

Networks (GANs)

Supervisor Master Candidate
Prof. Sergio Canazza Targon Adnan Kerem AKSOY
University of Padova

Co-supervisor Student ID
Matteo Spanio
Alessandro Russo 2081392

Academic Year
2023-2024

ii

Firstandforemost, Iwouldliketoexpressmydeepestgratitudetomyfamily—
my mother Nurçin AKSOY, my father Erkan AKSOY, and my brother Sertaç
AKSOY—whose love, encouragement, and unwavering support have been my
greatest source of strength throughout this journey.
Iwouldalsoliketoextendmysincerethankstomyprofessor, SergioCanazza

Targon, and my supervisors, Matteo Spanio and Alessandro Russo, for their
invaluableguidance, insights, andpatience. Theirexpertiseandsupporthave
played a significant role in the completion of this work, and for that, I am
truly grateful.

“Victory is for those who can say ”Victory is mine”. Success is for those
who can begin saying ”I will succeed” and say ”I have succeeded” in the end.”
—Mustafa Kemal Ataturk

iv

Abstract

The recent advancements in Generative Adversarial Networks (GANs) have accomplished in-
credible success in various fields, including image synthesis, video generation, and natural lan-
guage processing.

This thesis explores the application of GANs in audio processing, particularly focusing on
the reconstruction and enhancement of corrupted audio signals. The main objective of this
research is to use GANs to learn the intricate patterns of clean and corrupted audio data, there-
fore generating reliable harmonic audio reconstructions from corrupted inputs. To achieve
this, an old film’s audio was used as a dataset that had corrupted parts in it to train and test
the result. But to train the GAN in a better way a dataset was used that contains both real and
corrupted versions of the same sound samples.

The training process was conducted with this dataset, and the old film’s sound file was used
to test the GANs results. Preprocess of the audio samples is made both by extracting Mel-
Frequency Cepstral Coefficients (MFCCs) and by extracting Short-time Fourier transform
(STFT) for different applications to see which works. Both of these representations serve as
the input for different GAN applications to find the most suitable one. The test of the recon-
structed audio signalswe have achievedwith differentGANarchitectures is done by comparing
the spectrograms of both original and reconstructed audio signals, and the secondway is listen-
ing and comparing both original and reconstructed audio signals. With this thesis we aim to
make our GAN-based model effectively learn and reconstruct high-quality audio signals from
corrupted inputs without losing the originality of it, making it a promising tool for various ap-
plications in audio enhancement and restoration.

This research contributes to the growing field of audio processingwithGANs, providing in-
sights and methodologies for future explorations in enhancing audio quality using deep learn-
ing techniques.

v

vi

Contents

Abstract v

List of figures x

List of tables xiii

Listing of acronyms xv

1 Introduction 1
1.1 Context and Problem Statement . 1
1.2 Generative Adversarial Networks (GANs) 2
1.3 GAN Loss Functions and Objectives . 3

1.3.1 The Discriminator’s Task . 4
1.3.2 The Generator’s Task . 4
1.3.3 The Push and Pull of GANTraining 5
1.3.4 A Practical Adjustment for Better Training 6

1.4 GANApplication in the Audio Domain 6
1.4.1 Audio Enhancement and Denoising 6
1.4.2 Speech andMusic Synthesis . 7
1.4.3 Audio Super-Resolution . 8
1.4.4 Audio Domain Adaptation . 9
1.4.5 Sound Source Separation . 9
1.4.6 Music Restoration . 10
1.4.7 Challenges in GAN-Based Audio Processing 10

1.5 The Goal of this Work . 11

2 State of the Art 13
2.1 Overview of Generative Models in Audio Processing 13
2.2 GANArchitectures for Audio Processing 14

2.2.1 DCGAN (Deep Convolutional GAN) 14
2.2.2 SpecGAN . 15
2.2.3 WaveGAN . 17
2.2.4 MelGAN . 18

2.3 Additional GANArchitectures in Audio Processing 20
2.3.1 Wasserstein GAN (WGAN) . 20

vii

2.3.2 Conditional GAN (cGAN) . 21
2.3.3 Pix2Pix GAN . 22

2.4 Summary of State of the Art . 24

3 Dataset 25
3.1 Old Film’s Damaged Files . 25
3.2 CustomDataset . 25
3.3 Pre-Process and After-Process of the CustomDataset 26
3.4 Stft Approach . 27

3.4.1 Normal Scaled STFT . 27
3.4.2 Logarithmically Scaled STFT . 30

3.5 MFCC . 31
3.5.1 Normal ScaledMFCC . 31
3.5.2 Logarithmically ScaledMFCC . 31

4 Experiments 33
4.1 Methodology . 33

4.1.1 Explanation of the Training Code for DCGAN 35
4.2 Experiments . 38

4.2.1 Experiment 1 . 39
4.2.2 Experiment 2 . 43
4.2.3 Experiment 3 . 46
4.2.4 Experiment 4 . 53
4.2.5 Experiment 5 . 58
4.2.6 Experiment 6: . 64
4.2.7 Experiment 7 . 69
4.2.8 Experiment 8 . 74
4.2.9 Experiment 9 . 77
4.2.10 Experiment 10 . 80
4.2.11 Experiment 11 . 82

5 Results 87
5.1 Spectrogram-Based Audio Representation 87
5.2 Generator and Discriminator Architectures 88
5.3 Training Strategies . 89
5.4 Incorporating Mean Squared Error (MSE) Loss 89
5.5 Experiments with Leaky ReLU Slope . 90
5.6 Normalization Strategies . 90
5.7 Logarithmic Scaling of MFCCs . 91
5.8 Final Remarks . 91
5.9 Result comparison: . 91

viii

6 Conclusion 97
6.1 Future Improvements . 98

References 101

ix

x

Listing of figures

1.1 GAN pipeline . 5

2.1 Generator’s pipeline[1]. 14
2.2 SpecGAN Pipeline. 16
2.3 Generator’s pipeline [2]. 17
2.4 BN: Batch Normalization, ZP: Zero Padding, PS: Phase Shuffle.[2]. 18
2.5 MelGANArchitecture [3]. 19

4.1 Structure of Genererator . 40
4.2 Structure of Genererator . 41
4.3 Original and Cut sound’s Waveforms and dB levels 42
4.4 50 epoch model Spectrograms . 43
4.5 Original and Cut sound’s Waveforms and dB levels 44
4.6 500 epoch result:Spectrograms . 45
4.7 New Structure of Genererator . 47
4.8 New Structure of Discriminator . 48
4.9 Loss Values of Generator and Discriminator 48
4.10 Original and 70 epoch result’s Waveforms and dB levels 49
4.11 120 and 220 epoch results: reconstructed sound’s Waveforms and dB levels . . 50
4.12 70 epoch Spectrograms . 51
4.13 120 epoch Spectrograms . 51
4.14 220 epoch Spectrograms . 51
4.15 Exp4 Balanced Training . 55
4.16 Original and Cut sound’s Waveforms and dB levels 56
4.17 320 epoch Spectrograms . 57
4.18 700 epoch Spectrograms . 57
4.19 1100 epoch Spectrograms . 57
4.20 New Structure of the Generator . 60
4.21 New structure of the discriminator . 60
4.22 1000 epoch with 0.0002 learning rate Spectrograms 61
4.23 1000 epoch with 0.02 learning rate Spectrograms 61
4.24 4400 epoch with 0.0002 learning rate: Spectrograms 62
4.25 4400 epoch with 0.00004 learning rate:Spectrograms 62
4.26 4400 epoch with 0.00004 learning rate Spectrograms 63
4.27 epoch 17500 Spectrograms . 65

xi

4.28 epoch 19000 with learning rate 0.00004:Spectrograms 65
4.29 epoch 19000 with learning rate 0.0002:Spectrograms 66
4.30 epoch 28000 with learning rate 0.000008 Spectrograms 66
4.31 epoch 28000 with learning rate 0.00002 Spectrograms 66
4.32 epoch 32000 with learning rate 0.000008 Spectrograms 67
4.33 epoch 32000 with learning rate 0.00002:Spectrograms 67
4.34 6000 epoch with 0,0000008 learning rate Spectrograms 72
4.35 6000 epoch with 0,000008 learning rate Spectrograms 72
4.36 6000 epoch with 0,00008 learning rate Spectrograms 72
4.37 9000 epoch with 0,00008 learning rate Spectrograms 73
4.38 6000 epoch with standard negative slope Spectrograms 75
4.39 6000 epoch with negative slope value 0.3:Spectrograms 76
4.40 9000 epoch with negative slope value 0.3:Spectrograms 76
4.41 4000 epoch with Learning Rate 0.000008 Spectrograms 78
4.42 4000 epoch with Learning Rate 0.00008:Spectrograms 78
4.43 4000 epoch with Learning Rate 0.0008:Spectrograms 79
4.44 1500 epoch: Spectrograms . 80
4.45 3000 epoch: Spectrograms . 81
4.46 3500 epochSpectrograms . 81
4.47 5000 epoch Best Result: Spectrograms . 84
4.48 6000 epoch first model:Spectrograms . 84
4.49 6000 epoch Second model Spectrograms 84
4.50 8000 epoch Second model Spectrograms 85
4.51 10000 epoch Second model Spectrograms 85
4.52 21000 epoch model Spectrograms . 85

xii

Listing of tables

5.1 Comparison Results for Each Experiment 93

xiii

xiv

Listing of acronyms

STFT Short-time Fourier transform

GAN Generative Adversarial Networks

DCGAN Deep Convolutional Generative Adversarial Networks

iSTFT Inverse short-time Fourier transform

MFCC The mel frequency cepstral coefficients

xv

xvi

1
Introduction

1.1 Context and Problem Statement

In the realm of audio restoration, maintaining the originality and authenticity of sound record-
ings is critical. A significant challenge arises when dealing with damaged audio files, especially
those from past decades, which often suffer from missing frequency components, distortions,
and unwanted noise. The main objective is to restore these damaged sound recordings while
preserving their original essence. Traditional denoising techniques focus primarily on remov-
ing noise, but this can lead to the loss of important background elements, failing to accurately
recreate the original sound.

This issue is compounded in projects involving non-uniform data, like those found in older
recordings or films. The dataset in this thesis consists of sound files with a wide variety of
characteristics—empty segments, ambient sounds, music with and without lyrics, speech, and
background noise typical of older films. This non-uniformity presents a unique challenge be-
cause typical machine learning algorithms are designed for uniform datasets where the data
samples are similar to each other. However, in this case, the goal is to restore sound recordings
with varying content while ensuring that background noise and ambient sounds, which are
integral to the authenticity of the recordings, remain intact.

The goal of this thesis is to develop a model capable of restoring damaged sound files while
preserving their original qualities and characteristics. By using Generative Adversarial Net-

1

works (GANs), which have proven effective at learning and generating from non-uniform,
high-dimensional data distributions, we aim to reconstruct the damaged sounds of an old film.
Unlike conventional audio restoration methods, GANs offer the advantage of generating syn-
thetic data that closelymimics the original data, evenwhen the dataset includes a wide range of
audio features. This makes GANs an ideal choice for handling the complexity of non-uniform
audio data in this restoration task.
The following sections will introduce the core concepts of GANs and their application to

audio reconstruction.

1.2 Generative Adversarial Networks (GANs)

Since their initial introduction by Ian Goodfellow et al [4]. in their 2014 study, Generative
Adversarial Networks (GANs) have emerged as a revolutionary method in the field of unsu-
pervised learning. The two neural networks that make up a GAN are a Discriminator (D) and
a Generator (G). They operate together in a dynamic adversarial process to produce artificial
data that closely mimics real-world data.

• The Generator (G): The main job of the generator (G) is to create synthetic data out of
random noise in order to trick the discriminator into thinking the generated data is real. The
generator improves its capacity to produce realistic, high-quality outputs by recurrent training.

• The Discriminator (D): In contrast, the discriminator acts as a classifier to separate the
authentic data from the artificial data generated by the generator. Accurately determining if a
sample is real or intentionally manufactured is its goal.

•Adversarial Training: A competitive atmosphere is created by the interaction between the
discriminator and generator. The discriminator gets better at telling the difference between cre-
ated and genuine data as the generator keeps improving its outputs to trick it. Both networks
are driven toward improved performance by this adversarial process.

GANs have proven to be highly versatile and impactful, with widespread applications in
domains such as image synthesis, style transfer, and text-to-image synthesis. By mastering the
ability to generate realistic images, GANs have transformed generative modeling and opened
the door to novel applications in industries ranging from entertainment to healthcare. In these
applications, the discriminator acts as a model designed to differentiate between real and gen-

2

erated samples, ensuring the generator continuously improves its output.
There are three main parts of a generative adversarial network:

•Generative: This describes amodel that attempts to learn the data’s underlying probability
distribution. By generating new instances that closelymirror the original data set, the generator
network aims to capture the process of data generation.

•Adversarial: The rivalry between the discriminator and the generator iswhatmakesGANs
adversarial. Thediscriminator compares the artificial samples producedby the generator against
actual data. Over time, both networks get better because to this competitive structure.

•Networks: Deep neural networks serve as the foundation for both the discriminator and
generator in GANs. Using artificial intelligence algorithms, these networks are taught in tan-
dem to improve on their individual jobs, producing fresh data and correctly detecting phony
samples.

The key to GANs’ strength lies in the interaction between the discriminator and generator.
Learning from the errors found by the discriminator, the generator gradually improves its ca-
pacity to generate realistic data. The adversarial connection between the twonetworks creates a
feedback loop that continuously drives both networks toward higher performance. As a result,
synthetic data is produced that is progressively similar to the actual data set.

1.3 GAN Loss Functions andObjectives

TheGenerator (G) andDiscriminator (D) in a Generative Adversarial Network (GAN) partic-
ipate in a kind of tug-of-war as one network tries to outsmart the other. Their individual loss
functions, which manage this opposing rivalry and assist in the GAN’s progressive improve-
ment, are the center of the training process.

3

1.3.1 The Discriminator’s Task

The Discriminator (D) functions like a judge whose job is to tell actual data different from
the fake data provided by the Generator. The discriminator attempts to reliably identify each
actual data sample x as real. However, the discriminator attempts to avoid being trickedwhen it
examines dataG(z), which is producedby theGenerator from randomnoise z. Its loss function
can be expressed as:

LD = −Ex∼pdata(x)[logD(x)]− Ez∼pz(z)[log(1−D(G(z)))]

In simpler terms:

The discriminator’s belief in the validity of x (a real data sample) is expressed asD(x).
The degree to which it considersG(z) (a generated sample) to be real isD(G(z)).

Aiming to optimize this loss function,D seeks to improve the ability to distinguish between
true and fake data. Its score increases with how well it distinguishes between actual and fake
data.

1.3.2 The Generator’s Task

The goal ofTheGenerator (G), however, is entirely different. Its job is to produce data that is so
convincing theDiscriminator is unable to distinguish it from real data. The generator attempts
to trick the Discriminator into believing the created data is real for each batch of noise z it gets.
This is how its loss function appears:

LG = −Ez∼pz(z)[logD(G(z))]

In plain terms: - G(z) is the generated data sample, - D(G(z)) is the discriminator’s belief
that this generated data is real.

The generator wants to minimize this loss function, which means that it wants the Discrim-
inator to make wrong assumptions about the validity of the data more frequently.

4

1.3.3 The Push and Pull of GANTraining

Training a GAN can be viewed as a game between two networks, where the Generator tries
to fool the Discriminator with compelling fake data, and the Discriminator works to correctly
classify real and fake data. Themathematical description of this back-and-forth competition is
as follows:

The basic concept of their relationship can be expressed in the following equation:

min
G

max
D

V(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

The Discriminator aims to maximize its ability to distinguish between real and fake data.

TheDiscriminator’s accuracy rate is what the Generator aims to reduce as much as possible.

Figure 1.1: GAN pipeline

In a sense, the Discriminator and Generator push each other to improve with time. The
Discriminator pushes the Generator to generate data that is more and more accurate as it gets
better. Similarly, when the Generator gets better, it pushes the Discriminator to get sharper.

5

1.3.4 A Practical Adjustment for Better Training

In reality, though, a small adjustment is frequently done to benefit the generator. It is fre-
quently more efficient to train G to maximize log(D(G(z))) rather than to minimize log(1 −
D(G(z))), which can result in slow progress early on:

L′
G = Ez∼pz(z)[log(D(G(z)))]

This alternative formulation helps the generator learnmore quickly and efficiently by ensur-
ing that its gradients don’t disappear too soon in the early phases of training.

1.4 GANApplication in the Audio Domain

Generative Adversarial Networks, or GANs, are finding a lot of applications in the audio space
in addition to their original use in image processing. While GANs were first introduced for
visual data byGoodfellow et al.[4] (2014), there is increasing awareness of their potential appli-
cations in audio processing, particularly in jobs involving the creation, alteration, or restoration
of sound.

Most of the reason forGANs’widespreaduse in the audio industry is their ability to replicate
intricate, high-dimensional data distributions such as soundwaveforms and spectrograms. The
capacity of GANs to generate audio samples that nearly perfectly mimic the characteristics of
real sounds opens up an infinite number of applications across several areas.

1.4.1 Audio Enhancement andDenoising

Speech enhancement and noise reduction are two of themost popular uses of GANs in the au-
dio domain. Conventional techniques for improving audio, including spectral subtraction [5]
or Wiener filtering[6], frequently fail to strike the right balance between eliminating undesir-
able noise and keeping the audio’s naturalness and clarity. These techniques have the potential
to reduce noise, but they frequently introduce artifacts that unbalance the clean signal. Higher
fidelity outcomes are possible with GANs since they can learn the underlying patterns in both
clean and loud audio, making themmore successful in addressing these problems.

Because they can be trained to map noisy audio inputs directly to clean outputs, preserving
the basic qualities of the original audio while removing noise, GAN-based models are espe-
cially potent. For example, SpecGAN[2] learns the time-frequency structure of spectrograms

6

to recreate audio that has been degraded by noise. SpecGAN can recover clear spectrograms
from noisy inputs and identify intricate correlations in the audio data by utilizing the spec-
trogram representation. This was successfully illustrated in voice improvement tasks, where
GANs have proven to perform noticeably better in noisy situations than standard approaches.
[2].
For denoising tasks, other GAN variations such as DCGAN and MelGAN have also been

used. By learning complex representations fromspectrograms,DCGAN—whichfirst achieved
success in the visual domain—was extended to audioprocessing [1]. Conversely,mel-spectrogram
representations are the focus ofMelGAN, which has been applied to speech andmusic denois-
ing. In fields like real-time speech communication applications, telecommunication systems,
and hearing aid technology—where voice clarity is essential—these models have demonstrated
a great deal of potential. [3].

For instance, it’s crucial to preserve voice quality in noisy environments (like busy areas or
public transit) when using telecommunication services. Intelligible and natural speech can be
preserved while background noise is efficiently reduced by GANs trained on paired datasets of
clean and noisy speech. This development creates opportunities for real-time noise reduction
in smart assistants and mobile devices, where it’s crucial to preserve high-quality audio in a
variety of settings.

1.4.2 Speech andMusic Synthesis

The field of speech and music synthesis has benefited greatly from the development of Gen-
erative Adversarial Networks, which enable the production of high-fidelity audio that closely
resembles real sounds. Conventional techniques in the field of speech synthesis, including para-
metric models or concatenative synthesis, frequently produce artificial and robotic-sounding
voices. By producing speech that is more fluid and realistic and that captures the subtleties and
differences in human voices, GANs have assisted in overcoming this constraint.

MelGAN, a model created to produce realistic speech by learning from mel-spectrograms
taken from real speech data, is one well-known example. To generate high-fidelity audio out-
puts,MelGANuses a fully convolutional architecture thatworksdirectly on themel-spectrograms.
Natural-sounding and expressive speech is crucial in text-to-speech applications, virtual assis-
tants, and voice cloning technologies, where it has been widely employed [3]. For example,
GAN-based models provide smoother, more human-like speech in virtual assistants such as
Siri and Alexa, improving the user experience.

7

GANs such as WaveGAN have also held great promise for music synthesis. WaveGAN cre-
ates music and sound effects straight from scratch by operating directly on raw audio wave-
forms [2]. According to conventional methods of music synthesis, which frequently call for
hand-crafted features and domain-specific knowledge, WaveGAN uses its time-domain opera-
tions to learnhow toproduce continuous, flowing sounds. Thismakes it especially appropriate
for the production of music, where coherence and smooth audio transitions are crucial.

GANsare alsobeingused in creativedomains, including style-transfer-basedmusic generation[7].
For instance, a GAN can be trained to produce new jazz-style compositions after learning the
stylistic elements of classical music. This makes it possible to create completely original music
while preserving the unique qualities of the intended genre. These applications show show-
case GANs’ creative potential in the music business and provide new tools for creativity to
composers and musicians.

The secret to GANs’ effectiveness in speech and music synthesis is their capacity to learn
complicated, high-dimensional data distributions. This is necessary in order to produce realis-
tic audio that faithfully reflects the nuances of both musical composition and human speech.
These models offer excellent, adaptable, and effective solutions for a variety of applications,
marking a substantial advancement in the field of audio synthesis.

1.4.3 Audio Super-Resolution

Upsampling low-resolution audio to high-resolution allows audio super-resolution to restore
features lost throughdownsamplingor compression. When compared to conventional interpo-
lation techniques, GANs performbetter at this task because they are efficient at understanding
the intricate mappings between low- and high-resolution data.

In order to preserve the original temporal and spectral features, models such as WaveGAN
have been utilized to create high-quality audio from lower-resolution samples [2]. This is espe-
cially helpful for restoring music, as compressed audio files tend to lose their richness in tone
and timbre. These small details can be efficiently recovered by GANs, bringing the output’s
quality closer to that of the original.

GANs are used in real-world applications like streaming services and telecoms to improve
the quality of transmitted or compressed audio. These algorithms make sure that hearing is
more natural and detailed by upsampling voice or audio data.

Amajor obstacle in audio super-resolution [8] is keepingupsampling artifacts at check. Inor-
der toovercome this,GANscreate outputs that areperceptually similar to actual high-resolution

8

audio by learning from genuine high-resolution data. This technique offers a viable way to en-
hance sound quality in a number of applications, such as real-time communications and digital
preservation.

1.4.4 Audio Domain Adaptation

The term ”audio domain adaptation” describes the process of translating audio from one lan-
guage, style, or domain to anotherwhile preserving its original core[9]. In this area, GANshave
demonstrated tremendous promise by learning mappings between several audio domains.

GANs can be used, for example, in voice conversion, which is the process of converting
speech from one language or accent to another while maintaining the speaker’s individuality.
For movies and virtual assistants, this method is very helpful for automatic dubbing or multi-
lingual voice synthesis [2]. Similar to this, musical style transformation—such as translating
classical music into jazz—can be used to accomplish music domain adaptation. This creates
new avenues for musical creation and composition.

GAN-based models use paired or unpaired data to learn from in order to produce high-
quality transformations. They make the changes sound natural by preserving the essential ele-
ments of the audio while capturing the original sound’s timbre and style and modifying it for
the target domain.

The difficulty is in performing transformation without sacrificing accuracy, but as GAN
designs progress, models can now perform well on a wide range of audio domain tasks.

1.4.5 Sound Source Separation

Isolatingdistinct sound sources fromamixed audio signal is knownas sound source separation[10].
High-quality separation has been achieved through the successful application of GANs to this
issue, particularly in complicated audio settings.

For instance, in the process of producing music, GANs can distinguish between vocals and
instrumental recordings, or they can be used to isolate specific ambient sounds, like footfall,
traffic noise, or speech, from an audio recording. When dealing with such complicated mix-
tures, traditional techniques frequently falter, butGANs succeed because they can understand
the complex connections that exist between mixed signals and their sources. [2].
Researchers have outperformed traditionalmethods in source separation by teachingGANs

to distinguish between several sound sources within an audio sample[11]. The discriminator

9

makes sure that each divided source stays realistic and faithful to its original shape, while the
generator is educated to recreate individual sources.
Although scaling this method for highly overlapping or noisy environments still presents

challenges, continuous improvements in GAN models keep pushing the envelope of what is
feasible in terms of sound source separation.

1.4.6 Music Restoration

Particularly when applied tomusical contexts, GANs have demonstrated considerable promise
in the repair of degraded audio. Models like SpecGAN andMelGAN are perfect for fixing old
or corrupted audio files because they are particularly made to maintain the harmonic charac-
teristics of musical recordings [2],[3].
During the denoising process, traditional audio restoration techniques frequently lose the

authenticity of the original sound,which could change themusic’s distinctive qualities. GANs,
on the other hand, successfully restore lost or damaged audio while preserving the original nu-
ance and richness.[12]

For example, GANs may correctly infer the missing pieces based on the surrounding audio
context, filling in the gaps in recordings caused by damage or degradation. This capacity to
recover music without distorting its unique vibe is essential, particularly for older pieces where
maintaining the original sound quality is critical.

As research progresses, using GANs inmusic restoration not only improves the sound qual-
ity of archive recordings but also creates new opportunities for cultural heritage preservation.

1.4.7 Challenges in GAN-Based Audio Processing

AlthoughGANshave showngreat promise in the audio domain, there are stillmajor issues that
need to be resolved. First, because audio data may include many time scales and is sequential,
it is by nature more complex than visual data. A time-series data set is what audio signals are,
as opposed to images, which are usually organized in 2D grids. More difficult architectural
design is required for audio-based GANs since their proper generation necessitates that the
model captures both local and global dependencies over time.

A unique challenge in this project arises from the non-uniform nature of the dataset. The
sound data used in this work is very diverse, ranging from spoken dialogue tomusic with lyrics,
empty segments, background atmosphere, and music with and without lyrics. This is in con-
trast to traditional machine learning challenges that rely on homogenous datasets. These dis-

10

parate components combine to forma complicateddatasetwithdistinct frequency content and
sound structure for each segment. Further challenges arise from the requirement for GANs to
understand how to manage the unique properties of each segment without overfitting to any
specific sort of data, while maintaining coherence across such a wide range of inputs through-
out training.[13]

Additionally, audio data frequently has a large number of dimensions, especially when it
comes to its raw waveform form. Due to the need to manage massive volumes of data, dimen-
sionality raises the computational cost of producing and processing high-quality audio inmod-
els like WaveGAN that work with raw waveforms. Training sessions that require a lot of time
and resources may result from this [2].

Lastly, the well-known problem of training instability inGANs is frequentlymade worse by
the requirement of processing non-uniform audio data[13]. In this case, the outputs that are
generated have to retain their realism and semantic coherence throughout a broad spectrum of
sound kinds. To address these issues, researchers are always improving GAN architectures and
loss functions. Sophisticated methods such asWasserstein loss[14] and spectral normalization
have been developed [14] to enhance the output quality and training process stability.

1.5 The Goal of thisWork

Restoring damaged sound files from an ancient film while maintaining the original quality of
the audio is the aim of this project. In particular, the following objectives are searched :

Reconstruction of Damaged Audio Segments: Maintaining accuracy to the original audio
is the key goal in recovering audio segments that have worsened or been damaged over time.

Preserving Originality: Background noise is frequently included in the audio of old movies,
adding to the period’s authenticity and ambience. This background noise needs to be retained
in the reconstruction because eliminating it would weaken the sound’s originality.

Avoid Away of Noise Reduction approaches: This work stresses keeping noise as a neces-
sary component of the soundscape in order to preserve authenticity, in contrast to traditional
sound enhancement approaches that seek to eliminate noise.

Achieving High Fidelity with Minimal Alteration: The objective is to improve the sound

11

quality without making major adjustments that would damage from the audio’s original tone,
feel, or ambiance.

Managing Audio with Various Features: The audio in themovie includes a variety of sound
effects, such as music, voices, and background noise, all of which need to be handled carefully
to avoid disrupting the soundscape’s balance.

This effort aims to create a method that carefully restores broken audio recordings while
preserving their artistic and historical integrity by concentrating on these factors.

12

2
State of the Art

Significant advances have beenmade in a variety of domains, such as picture generation, speech
synthesis, and, more recently, audio reconstruction, thanks to the development of Generative
Adversarial Networks, or GANs. We will examine the state-of-the-art GAN architectures that
are useful to audio processing in this section, emphasizing their contributions, pipelines, and
suitability or unsuitability for the goal of reconstructing damaged audio recordings while pre-
serving originality.

2.1 OverviewofGenerativeModels inAudioProcess-
ing

While GANs were initially designed for image generation, they have since been adapted for
audio applications. However, audio data, especially in the form of waveforms, presents addi-
tional challenges due to its high dimensionality, temporal coherence, and harmonic complexity.
Audio generation tasks, therefore, often involve spectrograms ormel-spectrograms, which sim-
plify the structure by representing sound in a 2D time-frequency domain.

Subsections that follow examine the architectures of DCGAN, SpecGAN,WaveGAN, and
MelGAN. They are followed by an examination of other GANmodels that were not utilized
in this work, includingWasserstein GAN (WGAN), Conditional GAN (cGAN), and Pix2Pix.

13

2.2 GANArchitectures for Audio Processing

2.2.1 DCGAN (Deep Convolutional GAN)

Among theGANarchitectures, DeepConvolutionalGAN (DCGAN) ([1] 2015) is one of the
most well-known and reliable. Convolutional layers replaced the conventional fully connected
layers in the generator and discriminator thanks to DCGAN. This breakthrough proved cru-
cial in improving the stability of GANs during training and in their ability to process more
structured data—like spectrograms or images—more accurately.
Pipeline:

Figure 2.1: Generator’s pipeline[1].

• Generator A latent noise vector, typically taken from a normal distribution, is fed into
the DCGAN generator and is then processed through a sequence of convolutional transpose
layers. These layers carry out an upsampling procedure, gradually increasing the data’s dimen-
sionality until it achieves the required output size, which is usually a spectrogramor a 2D image.
To stabilize training and avoid mode collapse, batch normalization and leaky ReLU activation
are applied in each layer. The generator can learn spatially coherent patterns thanks to this
structure, which is essential for producing realistic spectrograms and pictures.

14

• DiscriminatorA convolutional neural network (CNN) serves as the discriminator in the
DCGAN. Its job is to classify a created or genuine spectrogram as either real or fake. The
design downsamples the input using stacked convolutions, extracting hierarchical features at
each layer. Leaky ReLU activation guarantees that the discriminator can tolerate negative in-
put values without creating vanishing gradients, and batch normalization is also used in this
instance.
Advantages
Convolutional layers enable DCGAN to efficiently extract both local and global features

from spectrograms, which makes it a good choice for audio applications involving structured
data. DCGAN is one of the most dependable GAN architectures because of the stability that
batch normalization andLeakyReLUprovide, particularlywhen training on 2Ddata like spec-
trograms.
Limitations:
Although DCGAN is good at producing spectrograms, there may be problems when con-

verting its output back into audio because of spectrogram inversion. Since DCGAN was not
intended to handle unprocessed audio waveforms, its direct use is limited to tasks like voice
synthesis and music production.
Relevance to This Work: DCGAN is a useful tool in the process of reconstructing dam-

aged audio since it can produce spectrograms and maintain the time-frequency structure of
the audio. Additionally, the design is stable, which is essential for learning from imperfect and
noisy acoustic data.[1]

2.2.2 SpecGAN

SpecGAN ([2], 2018) was created with spectrograms in mind, especially for audio generating
challenges. It is simpler for the generator to create coherent sound patterns when it acts in the
time-frequency domain, where sound is represented as a 2D picture (spectrogram), as opposed
to dealing with raw audio waveforms.

15

Pipeline:

Figure 2.2: SpecGAN Pipeline.

Generator: The generator in SpecGAN upsamples random noise into a spectrogram using
transpose convolutions, same like inDCGAN.As a result, the frequency and temporal patterns
necessary for audio reconstruction can be captured by the model. The generator is able to
generate high-quality spectrograms thatmaintainharmonic coherence over timebyusingbatch
normalization and Leaky ReLU activation after each layer.
Discriminator: The discriminator downsamples the input to a final binary output (real

or fake) by processing the produced and real spectrograms through convolutional layers. With
batch normalization done at each layer to guarantee training stability, the architecture is almost
exactly the same as that of the discriminator in DCGAN.
Advantages:
SpecGANleverages convolutional architectures,which arewell-suited toprocessing2Ddata,

by concentrating on spectrogram creation. By operating in the time-frequency domain, the
model streamlines the creation process and enables the capturing of specific localized sound
components.
Limitations:
Because SpecGAN relies on spectrogram inversion, which involves turning the created spec-

trogram back into audio, there is a chance that artifacts can arise, which could lower the out-
put’s quality.
Relevance toThisWork: Because SpecGANuses spectrograms to learn fromthe time-frequency
structure of the original audio, it is a good fit for the task of rebuilding broken sound record-
ings. But sustaining high-quality audio fidelity can be difficult during the inversion process,
especially when dealing with loud audio. [2]

16

2.2.3 WaveGAN

In contrast to spectrogram-based models such as DCGAN and SpecGAN, WaveGAN (Don-
ahue et al., 2018) generates rawwaveforms directly, rather than operating in the time-frequency
domain. This eliminates the requirement for post-processing (turning spectrograms back into
audio), but it also presents additional difficulties in handling high-dimensional data and main-
taining temporal consistency.
Pipeline:

Figure 2.3: Generator’s pipeline [2].

Generator: The WaveGAN generator upsamples a latent noise vector into a waveform by
applying a sequence of transpose convolution layers. The model keeps temporal coherence
while gradually increasing the waveform’s resolution through the use of strided convolutions.
WaveGAN’s generator operates directly in the time domain, unlike models that generate spec-
trograms, therefore it may produce continuous waveforms without converting from spectro-
grams.

You can see the difference between convolutions and the strided convolutions which Wave-
GAN uses in the figure 2.3, left side is the standard convolutional approach, and right side
WaveGAN’s strided convolutions.

Discriminator: Using strided convolutions, the discriminator processes the generated and
real waveforms. Phase shuffle, a regularization strategy that ensures that slight changes in the
waveform have no effect on the model’s classification abilities and keeps the model from learn-
ing trivial solutions, is a crucial component of WaveGAN’s discriminator.

17

Advantages:
BecauseWaveGAN generates waveforms directly, it does not require spectrogram inversion,

which lowers thepossibility of artifacts being introducedduringpost-processing. The approach
works well for problems involving voice or music generation because it preserves temporal con-
tinuity throughout long audio sequences.

Figure 2.4: BN: Batch Normalization, ZP: Zero Padding, PS: Phase Shuffle.[2].

You can see the example architacture of both Generator and Discriminator in Figure 2.4.
Limitations: WaveGAN’s high dimensionality of waveform data makes it more computation-
ally demanding and less robust during training. Compared to spectrogram-based models, pro-
ducing realistic waveforms over extended periods of time requires greater computer power and
training data.

•Relevance to ThisWork: WaveGAN is not the best tool for this purpose of reconstructing
damaged audio, even if it has the benefit of directly producing raw waveforms. Compared to
spectrogram-based models like DCGAN or SpecGAN, the model is less practical due to its
complexity and difficulties with noisy input data. [2]

2.2.4 MelGAN

Mel-spectrograms, which are condensed, perceptually-motivated representations of audio, are
the goal of MelGAN ([3], 2019). MelGAN is quite effective, especially when it comes to real-
time audio synthesis, since mel-spectrograms distill the essence of audio input with fewer fre-
quencybins than full spectrograms. Since the architecture is non-autoregressive, it canproduce
audio far more quickly than autoregressive models such as WaveNet[15].

18

Pipeline:
Generator: Using a sequence of convolutional layers, the generator in MelGAN creates a

mel-spectrogram from an input random noise vector. Upsampling is done by each convolu-
tional layer to improve the resolution of the mel-spectrogram that is produced. MelGAN is
suited for real-time applications since it is non-autoregressive and can produce the full mel-
spectrogram in a single pass.
Discriminator: MelGAN employs a multi-scale discriminator, where many discriminators

operate on different scales of the resulting mel-spectrogram. Every discriminator assesses the
spectrogram’s realism at various levels of detail to guarantee that the high- and low-frequency
components are correctly depicted. The model performs better when numerous discrimina-
tors are used to evaluate the audio quality produced at various temporal resolutions.

Figure 2.5: MelGAN Architecture [3].

Advantages:
Real-time audio generation: Because of its non-autoregressive nature, MelGAN is an effec-

tive generator that can be used for applications such as speech synthesis. It is ensured that the
produced audio retains high fidelity acrossmany frequency ranges by usingmulti-scale discrim-
inators.
Limitations:
MelGAN can be less accurate for longer and more complicated audio sequences; it is best

suited for speech and short-duration audio applications.

19

A loss of detail may result from the compression of audio into mel-spectrograms, which
could be troublesome for jobs like audio reconstruction where maintaining minute details is
crucial.

Relevance to This Work: Although mel-spectrogram compression is intrinsic, MelGAN’s
real-time capabilitiesmay not be optimal for recovering the fine details of vintage cinema audio.
A full spectrogram-based technique (such as SpecGAN or DCGAN) would yield better out-
comes for this task, wheremaintaining the original background noise and sensitive frequencies
is essential.[3]

2.3 AdditionalGANArchitectures inAudioProcess-
ing

We examine alternative GAN designs in this section, including Pix2Pix, Conditional GAN
(cGAN), andWasserstein GAN (WGAN), which have been shown to work well in other con-
texts but were not immediately relevant to this project. These models were not chosen for
audio reconstruction for the following reasons, which also acknowledge their contributions to
the larger area of GAN research.

2.3.1 Wasserstein GAN (WGAN)

The introduction ofWasserstein GAN (WGAN) ([14]., 2017) solved two key issues with con-
ventional GAN training: training instability and mode collapse. The Wasserstein distance,
sometimes referred to as the Earth-Mover’s Distance, is used by WGAN in place of the con-
ventional GAN loss function to offer a more consistent and continuous measurement of the
separation between the generated and real data distributions.
Pipeline:
Generator: Like other GANs, WGAN’s generator creates data (such as waveforms or spec-

trograms) by transposing convolutions. The Wasserstein distance between the produced and
real data distributions is determined by WGAN’s loss function, which is where the main dis-
tinction between the two approaches is found. The generator seeks to decrease this distance,
providing data that is closer to the genuine distribution in a more stable manner.

20

Discriminator (Critic): With WGAN, the traditional GAN discriminator is swapped out
with a critic that does not distinguish between actual and fake data. Rather, the Wasserstein
distance between the generated and real data is assessed. Weight clipping is used to enforce the
requirement that the critic be 1-Lipschitz continuous in order to guarantee stability.
Advantages:
Stability: When compared to typical GANs, WGAN provides more steady training, espe-

cially when the generator produces low-quality data at first.
Improved performance: By using Wasserstein distance, problems such as mode collapse

can be avoided and a more accurate indicator of the generator’s learning performance can be
obtained.
Limitations:
The requirement for weight clipping in the critique results in extra computational complex-

ity and occasionally less-than-ideal outcomes. The advantages of WGAN in managing tempo-
ral data, such as audio waveforms or spectrograms, have not yet been fully investigated. It has
not been extensively used for audio reconstruction tasks.

Reasons for Not Being Selected: WGAN’s main advantage for this particular task of re-
constructing broken audio files is that it stabilizes GAN training, as opposed to enhancing the
temporal coherence or frequency fidelity needed for audio reconstruction. There might not
be many benefits in this situation due to the extra complication of maintaining Lipschitz con-
tinuity and weight clipping.[14]

2.3.2 Conditional GAN (cGAN)

In order to enable the model to produce data depending on particular input circumstances
(such as class labels), conditional GAN (cGAN) ([16], 2014) adds conditional inputs to both
the discriminator and generator. Because of this conditioning, cGANs are beneficial for tasks
requiring the development of particular qualities since they provide an extra layer of control
over the generation process.
Pipeline:
Generator: To produce the intended output in cGAN, the generator requires two inputs:

a conditioning input (such as a class label or other data) and a latent noise vector. As a result,
the model can produce data that is consistent with the specified input condition.

21

Discriminator: In a cGAN, the generator’s input also conditions the discriminator. It an-
alyzes whether the generated data satisfies the specified condition (e.g., whether the generated
audiomatches the given label or prompt) in addition to evaluating whether the generated data
is real or fake.
Advantages:
Control over generation: cGAN is helpful for applications like voice synthesis and image-to-

image translation because it enables targeted generation, in which the output can be affected
by the input condition.
Limitations: For audio reconstruction tasks, labeled data is necessary for cGAN, but ob-

taining it can be challenging, particularly when dealing with noisy or historical datasets.
Reasons for Not Being Selected: This study does not aim to synthesize audio conditioned

on labels or properties; rather, it reconstructs broken audio while preserving its original quali-
ties. As a result, conditioning’s additional complexity conflicts with the project’s goals.[16]

2.3.3 Pix2Pix GAN

A GAN architecture called Pix2Pix GAN ([17]., 2017) was created especially for image-to-
image translation, in which the objective is to translate an input image into an equivalent
output image. Numerous image-based tasks, such as semantic segmentation, super-resolution,
and picture colorization, have been effectively handled by Pix2Pix. Despite being originally de-
signed for visual data, Pix2Pix has been investigated for its possible application in audio-related
tasks, especially when mapping one spectrogram to another (e.g., for tasks connected to audio
augmentation or denoising).
Pipeline:
Generator: A U-Net architecture[18], which is appropriate for jobs requiring the preserva-

tion of both high-level and low-level properties, powers the generator in Pix2Pix. The input
picture (or spectrogram, in the case of audio) is downsampled through a sequence of convo-
lutional layers and then upsampled to its original resolution in a U-Net structure. During the
transformation phase, the model is able to capture both local and global information since the
downsampled and upsampled features are combined.

22

Discriminator: Pix2Pix uses a PatchGAN discriminator to determine whether individual
input-output patches are real or fraudulent, as opposed to the full image. Thismethod guaran-
tees that themodel acquires the ability to provide superior local details, while the discriminator
verifies realism on a finer scale. The discriminator determines whether the generated output
and the original input make sense together by evaluating both of them.
Advantages:
Fine-grained control: The generator can do large-scale modifications while maintaining fine

details thanks to the U-Net design. Because of this, Pix2Pix is helpful for activities requiring
both minor and significant audio alterations, such as audio augmentation or denoising. Patch-
GAN discriminator preserves high-quality details in the output it generates by concentrating
on local features.
Limitations:
Data requirement: Pix2Pix primarily uses paired data, meaning that in order for the model

to train, each input needs to have a corresponding output. Creating such paired data may be
challenging in your situation, when the goal is to restore broken audio recordings, particularly
when working with historical audio. Pix2Pix’s potential for audio applications is still limited,
and its effectiveness in image translation tasks may not transfer to audio jobs where temporal
coherence is crucial.
Reasons for Not Being Selected: Although Pix2Pix’s image-to-image translation capabili-

tiesmight be applied to spectrogram-to-spectrogrammapping in theory (for example,mapping
noisy spectrograms to clean ones), its suitability for this project is diminished due to its need
for paired data and the difficulty of reconstructing temporal audio features. Rather, more spe-
cialist models with an emphasis on audio, such as SpecGAN andDCGAN, are more suited to
tackle the difficulties involved in audio reconstruction.[17]

23

2.4 Summary of State of the Art

Applying each of the abovementioned GAN architectures to audio creation and reconstruc-
tion has its own set of benefits and drawbacks. Because DCGAN and SpecGAN can handle
2D spectrogram data and have demonstrated stability during training, they are especially well-
suited for audio reconstruction. Though useful for real-time synthesis and direct waveform
generation, WaveGAN and MelGAN add extra complexity that makes them less suitable for
the task of recovering broken audio from vintage movies. Lastly, because of their unique de-
sign specifications and application contexts, Wasserstein GAN (WGAN), Conditional GAN
(cGAN), and Pix2Pix—all of which provide enhancements in training stability, output con-
trol, and image-to-image translation—remain limited in their applicability to audio reconstruc-
tion.
The objective of this task is to repair damaged audio files while maintaining their original

qualities, including background noises that are inconspicuous yet essential to the authentic-
ity of the movie. Consequently, the best strategy is provided by combining DCGAN with
SpecGAN.With the help of these models, realistic time-frequency structured audio that is ap-
propriate for this reconstruction task can be produced.

24

3
Dataset

3.1 Old Film’s Damaged Files

The principal aim of this thesis was to develop a Neural Network capable of reconstructing
the Damaged Files from the old film while maintaining its originality. The corrupted files had
a single channel with a sample rate of 48 KHz and a runtime of roughly three minutes each.
Three samples have been used. However, the approach demonstrated that these corrupted files
cannot be used to train GANs. A separate dataset made up of both good and bad samples has
been created in order to move on and assess the likelihood of achieving a positive outcome.

3.2 CustomDataset

The custom dataset is prepared under laboratory conditions with the same specifications as the
Original Dataset received from old film. The Custom dataset has one channel and a sample
rate of 48 KHz. The custom dataset has a duration of roughly two minutes as well. However,
the primary distinction between the original and custom datasets is what the custom datasets
include:

25

• A Clean Original Sound Sample

• A Sound Sample only contains 30 RMS(Root Mean Square) White Noise

• A Original Sound Sample with 30 RMS(Root Mean Square) white noise applied,

• 7 Damaged Original audio files with frequencies above 150, 250, 500, 1000, 1500, 2000,
and 3000 Hz cut, respectively

30RMS white noise applied to the original sound sample Used as the original file that the
discriminator learns from because if the background noise in the old film’s audio reconstruc-
tion is cleaned up by a neural network during the reconstruction process, itmay lose some of its
originality. Consequently, the original sound file used to train the discriminator was replaced
with white noise in order to reconstruct it without losing its authenticity. The generator was
fed seven damaged original audio files in order to teach it how to recreate the damaged file based
on the data it was fed.

3.3 Pre-ProcessandAfter-ProcessoftheCustomDataset

The sound files’ specifications have been located. The waveform and sampling rate values have
been obtained using the ”Torchaudio” package. Large-lengthGANS trainingmay be challeng-
ing because of the 48 kHz sample rate. There are 48000 samples with 1 channel every second.
The sample rate multiplied by the number of seconds in two minutes can be easily calculated.

The only sound sample that will be used is this data. This limitation aside, the dataset is
large. Furthermore, the amount of data needed to build GANs will be large for our hardware
and model if we take into account the other examples as well. It would be difficult to train
the GAN effectively with the hardware we have because the data is too large. A function was
developed to solve this issue, allowing us to divide these samples into segments and provide the
dataset that feeds our GANs.

26

3.4 Stft Approach

3.4.1 Normal Scaled STFT

Preprocess

The function ismade to load an audio file, trim it to a specified section, divide it into smaller seg-
ments, and convert each segment into a spectrogram for further analysis or processing. Initially,
the audio is loaded using ‘torch audio‘, which provides both the waveform and the sample rate.

The start time and duration supplied as inputs are then used to reduce the audio to a certain
part. This makes it possible to freely choose any part of the audio to be processed. In order to
reduce the size of the dataset, this section is used, for instance, to trim off the empty durations
that appear at the beginning and end of the sound files. After the audio has been cropped, it is
split up into smaller, assignable parts, each lasting a certain amount of time (two seconds, for
example). With this segmentation, the audio is divided intomanageable portions for additional
GAN training.

After the audio is divided into segments, the Short-Time Fourier Transform (STFT) is used
to convert each segment into a spectrogram. During the STFT, a Hann window is used to en-
hance the transformation’s quality and facilitate the transition between segments. Each audio
segment’s time-frequency representation is provided by the spectrogram, which is essential for
activities like audio reconstruction or analysis.

Ultimately, the function returns the sample rate and the spectrograms that were generated,
which qualifies it for additional application in GAN-based audio reconstruction. With the
flexibility to choose, divide, and modify the audio, this technique guarantees effective prepro-
cessing of the audio.

Real and imaginary components make up the segmented audio files as a result of the Short-
Time Fourier Transform (STFT). a function that converts complex input into a real-valued
format that the neural network can handle, as neural networks normally work with real-valued
data.

27

It divides the complex spectrogram into real and imaginary components first. It splits into
two sections, which it then combines into a single tensor along a new dimension. This effec-
tively eliminates the complex format by enabling the neural network to process the real and
imaginary components as real numbers. All the relevant information remains since the func-
tion transforms the imaginary part into a real-valued channel rather than discarding it. By re-
turning this merged tensor, the function preserves the data from both parts in a format that
can be utilized by the network at later stages. As a result, the data was transformed into a 2D
picture for our DCGAN-based model to use.

Following processing, all of the clean and noisy audio data will be kept in different lists. Ev-
ery noisy sample is coupled with a comparable clean sample to prepare the Data Loader. To
keep a matched set for training, the clean samples are cycled through if there are more noisy
samples than clean ones.

The training process is made smooth and efficient by this structure, which guarantees that
the model always gets well-prepared input (noisy spectrogram) and target (clean spectrogram)
pairs to learn from.

After Process

The resulting information must be transformed back into an audio format after processing.
The spectrograms have to be recombined to regain the complex format needed for audio gener-
ation because they were first divided into real and imaginary components for processing. The
two channels—the real and imaginary portions—thatwere split apart during preprocessing are
blended back together to accomplish this. This makes it possible to reassemble the audio signal
by transforming the data back into its original, complicated format. The inverse Short-Time
Fourier Transform (iSTFT) is used to transform the 2D spectrogram back into a waveform
after the complicated data has been restored. By reconstructing the audio signal from the spec-
trogram, this approach enables the output to be given back as a regular audio file.

28

Algorithm 3.1 Audio Preprocessing with Spectrogram Generation
Load the audio file: (waveform, sample_rate)← torchaudio.load(audio_path)
if waveform has multiple channels

Convert waveform to mono by averaging channels
end if
Trim the audio based on the start time and duration
Divide the trimmed waveform into smaller segments based on segment_length
for each segment in segments

Apply Short-Time Fourier Transform (STFT) to obtain spectrogram
end for
for each spectrogram

Extract real and imaginary parts
Combine real and imaginary parts into a real-valued tensor

end for
Pair noisy and clean spectrograms for training
if clean data is shorter than noisy data

Cycle through clean data
end if
Return the processed spectrograms and sample rate

Algorithm 3.2 After Processing: Reconstructing Audio from Spectrograms
Input: Real and Imaginary spectrogram components
Output: Reconstructed audio file
Combine real and imaginary components into a complex spectrogram
Apply Inverse Short-Time Fourier Transform (iSTFT) to convert the spectrogram back to
waveform
Save the reconstructed waveform as an audio file
return Reconstructed audio

29

3.4.2 Logarithmically Scaled STFT

Preprocess

The only difference in the preprocessing for the logarithmically scaled version is the logarithmic
scale used to modify the spectrogram’s magnitude. Following the creation of the spectrogram
from the waveform, the magnitude is taken out and scaled logarithmically. The spectrogram’s
phase is preserved, and it is reconstructed by combining the log-scaledmagnitudewith the orig-
inal phase. This procedure makes sure that the data’s finer features are more successfully cap-
tured while also enhancing the dynamic range.

After Process

After the GANproduces its output, the result data must be converted back to its original scale
during the post-processing stage. The result data was processed in a format that was logarith-
mically scaled. This is accomplished by applying the inverse logarithmic function to the mag-
nitude of the resulting spectrogram. The real and imaginary components are joined once the
magnitude is reversed, giving the spectrogram its complex format back. Ultimately, the audio
can be fully reconstructed by utilizing the inverse Short-Time Fourier Transform (iSTFT) to
convert the spectrogram back into the waveform.

By reversing the logarithmic transformation, this strategy assures that the GAN can handle
the log-scaled input and produce an accurate reconstruction of the final audio output. The
preservation of significant details while preserving the integrity of the audio signal throughout
GAN processing makes this method essential to the thesis.

30

3.5 MFCC

3.5.1 Normal ScaledMFCC

Preprocess

The goal of this approach’s preprocessing phase is to extract the audio data’s Mel-Frequency
Cepstral Coefficients (MFCC). As with other methods, the process starts with segmenting the
audio and trimming it to a certain section. The key spectral characteristics of the audio are
then compactly captured by converting each segment into anMFCC representation. With an
emphasis on lower frequencies, MFCCs are helpful in recognising a signal’s frequency charac-
teristics in a way that approximates human hearing.

AferProcess

Reconstructing the audio requires turning the MFCCs back into a mel spectrogram once it
has been converted intoMFCCs and run through the GAN. The spectrogram is then reversed
using techniques like theGriffin-Lim algorithm and the InverseMel Scale transformation to re-
turn it to the original audio format. By taking these precautions, the created data is guaranteed
to be converted back into a waveform that closelymimics the source audio signal. By using this
technique, the GAN can work with MFCCs, which simplify the data while preserving impor-
tant audio characteristics. The MFCCs are then processed by the GAN and converted back
into a usable audio format.

3.5.2 Logarithmically ScaledMFCC

Preprocess

With one significant exception, the preprocessing steps for the logarithmically scaled MFCC
technique are identical to those for the regular MFCC extraction: once the MFCCs are gen-
erated from the audio segments, a logarithmic scaling is applied to the coefficients. This scal-
ing can enhance the GAN’s capacity to recreate faint audio characteristics by compressing the
MFCCs’ dynamic range and highlighting the signal’s finer details.

31

AferProcess

The opposite procedure is used after the GAN produces the result. By using the inverse log-
arithmic function on the MFCCs, the logarithmic scaling is reversed. The MFCCs are con-
verted back into a mel spectrogram after being scaled back to their initial value. The audio file
is then rebuilt by converting this mel spectrogram into a waveform using the InverseMel Scale
and the Griffin-Lim technique.
This method makes use of logarithmic scaling to improve the performance of the GAN on

MFCC data while guaranteeing that, following the application of inverse transformations, the
final output stays faithful to the original audio signal.

32

4
Experiments

4.1 Methodology

The approach used in this thesis was created to handle the difficulties of repairing broken audio
files from vintage movies without sacrificing their authenticity. After careful consideration, a
number of important GANmodels and techniques were chosen for further consideration due
to their aptitude formanaging the complicated nature of audio data, especiallywhen combined
with spectrograms andMFCC representations.

Reasons for Choosing These Models:

1.DCGAN(DeepConvolutionalGAN): Becauseof its capacity tomanagehigh-dimensional,
structured data such as spectrograms, the DCGAN model was selected as the founda-
tion. Using convolutional layers that are well-suited for 2D data, DCGANpreserves the
spectrogram-represented audio’s time-frequency structure. Its ability to produce clean,
well-organized outputs and its consistency during training made it a sensible place to
start when reconstructing audio from spectral data.

Reasons for Not Picking Other Options

Although fully connected layers or conventional GANs might have been utilized, they don’t
have the spatial coherence required for data that resembles images, like spectrograms.

33

The spatial dependencies in time-frequency representations would be difficult for fully
connected networks to handle, which is why DCGAN’s convolutional method is so
much better.

2.SpecGAN:: Because of its emphasis on producing spectrograms of superior quality, Spec-
GAN was chosen. A compressed but relevant audio representation can be worked on
by the model thanks to spectrograms, which depict sound in the time-frequency do-
main. Because SpecGAN works directly with spectrograms and has been shown to be
successful in producing sound using spectrogram synthesis, it was especially useful in
our project.

Reasons for Choosing These Models

WaveGAN, an option that produces raw waveforms directly, may have been used. However,
because raw audio data is highly dimensional, creating waveforms takes significantly
larger models and longer training cycles. Conversely, SpecGAN preserves important
audio features while operating with a more reduced format—a spectrogram.

3.Combination ofDCGANand SpecGAN:These twomodelswere chosen to be combined
because of their unique advantages. The combination of SpecGAN’s emphasis on spec-
trograms and DCGAN’s architectural stability results in a potent hybrid method for
reconstructing damaged audio recordings while keeping noise and other original sound
characteristics. The goal was to increase the quality of the reconstruction by inserting
missing elements while preserving important time-frequency features by utilizing both
models.

”Reasons for Not Just One Model”

Although either DCGAN or SpecGAN alone could function effectively, their combination
guarantees that we take advantage of DCGAN’s stability in output creation while con-
centrating on high-fidelity sound reconstruction with SpecGAN’s spectrogram-based
generation approach. The goal of the integrated design is to offer a more reliable system
that canmanage different noise situations without compromising the underlying audio.

4.MelGAN:MelGANwas investigated because of its effective convolutional designs that pro-
duce high-quality audio. Mel-spectrograms, which are strongly linked to the perceptual
characteristics of audio, are used byMelGANto function in the time-frequency domain.

34

MelGAN’s ability to work with mel-spectrogram representations proved to be crucial
in the following trials when they switched to MFCC (Mel-Frequency Cepstral Coeffi-
cients).

Reasons for Choosing These Models

WaveGAN was taken into consideration but rejected because of its greater computing cost
and lengthier training times. WaveGANworks with unprocessed audio data. MelGAN
proved more effective in this specific challenge because of its capacity to generate high-
quality audio from compressed representations such as MFCC.

The Aim of the Chosen Architectures: The fundamental difficulty of recreating audio
while striking a balance between undoing damage and keeping original features was the driving
force for the selection and combinationof these particular architectures. Themodels have to be
able to replace any missing or damaged sections while maintaining the important elements of
the original sound. This was essential to preserving the authenticity of the audio, particularly
for historical audio recordingswhenflaws or backgroundnoise are inherent to the original char-
acter. When tackling various kinds of noise and audio distortion, the combinationofDCGAN
and SpecGAN, along with additional research into MFCC preprocessing and the application
of MelGAN, allowed for greater flexibility and improved outcomes.

In conclusion, these models were selected and merged from experiment to experiment be-
cause of their complimentary qualities, which balanced the requirements for high-fidelity au-
dio production, effective spectrogram processing, and rapid computing.

4.1.1 Explanation of the Training Code for DCGAN

The fundamental training protocol for aDeepConvolutional GAN (DCGAN) that processes
and produces audio spectrograms is implemented by this training code. We will dissect each
portion of the code and explain its purpose as well as why it is crucial to a typical GAN training
pipeline below.

1. Model andData Initialization

The first step in the training process is to initialize the models (generator and discriminator)
and load the data:

35

Dataloader:The dataloader is in charge of producing clean, noisy spectrograms in batches.
These spectrograms are divided into smaller segments; the generator receives the noisy
versions as input, while the discriminator uses the clean versions as the actual data.

Generator and Discriminator Initialization: Models for the discriminator and generator
are instantiated. Here, themodels are populated using default values, although the code
has the ability to apply specific weight initialization. The discriminator will determine
whether a particular spectrogram is real (from the dataset) or fake (produced by the gen-
erator). The generator will be in charge of creating clean spectrograms fromnoisy input.

Device Setup: For training themodels,mostlyRTX3090GPUisused. Using ahigh-performance
GPU like this significantly speeds up training, especially for deep models with large
datasets like this one.

Loss Functions andOptimizers:

In a GAN, two loss functions are used: one for the Discriminator and one or both for the
Generator model to model.

BCEWithLogitsLoss:The rawoutput from the discriminator, or logits, are used to apply this
binary cross-entropy loss. Both the discriminator and the generator are trained with it.
The generated andgenuinedata are compared to their corresponding labels (real =1, fake
= 0) using the discriminator. The generator’s objective is to deceive the discriminator
into believing that the created data is real.

MSELoss:At some models, the generator’s training also includes the MSE (Mean Squared
Error) loss in addition to the adversarial loss (BCE). This makes it more likely that the
spectrograms producedwill not onlymislead the discriminator, butwill also prevent the
generator from attempting to make small adjustments to the damaged data it receives
before rebuilding it to match the original data.

AdamOptimizer:Because of its adjustable learning rate properties, Adam is a well-liked opti-
mizer for GAN training and is used for both the generator and discriminator. It makes
use of twoparameters, betas (0.5 and 0.999), to regulate the optimizer’smomentumand
improve its ability to tolerate noisy gradients. The results obtained by training morels
have led to adjustments in learning rates. For the purpose of improving the model train

36

or fine-tuning themodel, learning rate experiments have been conductedon themajority
of trained models.

3. Training Loop:

The training loop is the main portion of the code and it runs for a predetermined number of
epochs. The model processes a batch of spectrograms from the dataloader for every epoch.
Training the Discriminator

BCEWithLogitsLoss:The discriminator’s goal is to correctly distinguish between real and
fake spectrograms. The training proceeds in two steps:

Step 1: Real Data: There are real spectrograms (clean audio) for the discriminator. In this
phase, the target labels are 1, indicating that the data is authentic. Based on how success-
fully it classifies this actual data as real, the discriminator computes a loss (d loss real).

Step 2: Fake Data: The generator creates simulated spectrograms by using noisy spectro-
grams as input. These bogus spectrograms are then submitted to the discriminator,
which tries to classify them as fake (target label = 0). The discriminator’s ability to rec-
ognize created data as fake can be seen in the step’s loss, or d loss fake.

Discriminator Loss: The total discriminator loss is the sum of the real and fake losses (d loss
= d loss real + d loss fake). This loss is used to update the weights of the discriminator.
The discriminator needs to develop the ability to distinguish between legitimate and
fraudulent data with accuracy.

Training theGenerator: The generatorwants to produce spectrograms that are convincing
enough to trick the discriminator into thinking they are real.

Adversarial Loss (BCE):The level to which the generator can trick the discriminator deter-
mines how much of a loss it has. It creates spectrograms from noisy input, which are
then classified as fake by the discriminator. In essence, the generator wants to reduce
the binary cross-entropy loss such that the discriminator will mistakenly identify fake
spectrograms as real.

Content Loss (MSE): An MSE loss is introduced to guarantee that the generated spectro-
grams are near in structure to real spectrograms and good enough to trick the discrim-
inator. This loss reduces the pixel-wise difference between the generated and real spec-
trograms from the dataset.

37

Combined Loss:The adversarial loss and the content loss add up to the overall generator loss.
The generator is guaranteed to concentrate on creating spectrograms that closely resem-
ble real audio, rather than just tricking the discriminator, because to the high weighting
(100x) for the MSE.

Multiple Updates for Generator: Each batch, the generator receives many training sessions.
In situations where the discriminator is already effective in distinguishing between real
and fake data, this aids in the generator’s improvement more quickly.

4. Logging and Saving:

Logging:The generator and discriminator losses are recorded at the end of each epoch. Gain-
ing insight into the learning capacities of both networks is made possible by this knowl-
edge. In order to prevent mode collapse or weak convergence, it is important to keep an
eye on the performance of both the discriminator and the generator.

Model Saving: The generator and discriminator’s current weights are periodically recorded
to disk. Model checkpoints and the option to resume training from a saved state if
needed are made possible by this. Torch.save is used to save the models and holds the
network weights as of right now.

In conclusion, the DCGAN’s training procedure is similar to the standard GAN paradigm
in that the discriminator and generator engage in competition with one another[19] [20]. The
generator is trained to create realistic-looking spectrograms from damaged sound files in order
to trick the discriminator, while the discriminator is trained to discriminate between actual
and reconstructed spectrograms. The generator generates high-quality outputs by combining
binary cross-entropy loss for adversarial training and occasionally mean squared error loss for
spectrogram quality. The Adam optimizer, which offers consistent and effective updates to
the model parameters, is used to optimize the training sequence, which is created to balance
the learning of both networks.

4.2 Experiments

In the first section, we have used all the damaged datasets which are 150, 250, 500,1000,1500,
2000, and 3000Hz cut versions of the white noise applied dataset for the generator. Lastly, in
all sections, the Discriminator used only white noise and applied uncut sound.

38

4.2.1 Experiment 1

Used DataAt the first experiments, a complete model that can understand all of the 7-cut ver-
sions of the sound aimed, therefore as the dataset all of the 7-cut versions has been used.

Pre-Process of the Dataset:As the first experiment, the data was segmented into 2-second
intervals. The Short-Time Fourier Transform (STFT) was applied to the segmented sound
files, creating spectrograms for each segment. The resulting spectrograms, with dimensions of
(2, 1025, 188), were processed to be suitable for feeding into the DCGAN. Specifically, the
real and imaginary parts of the spectrogram were separated, and the imaginary numbers were
transformed into real numbers. These two channels were then combined into 2D images with
dimensions of (2, 1025, 188), effectively creating 2-channel images that could be fed into the
DCGAN. From a 126-second sound sample, each divided into 2-second segments, a total of
63 segments were created per sound file.

To properly train the model, the clean and noisy data needed to be paired consistently. The
clean dataset contained one version of the original audio file, while the noisy dataset included
seven distinct variations of the same file, each altered by different noise conditions. This setup
was crucial to ensure that the generator could learn to reconstruct the original sound from var-
ious types of noise.

Since the generator needed to handle multiple noisy versions of the same clean audio file,
the pairing mechanism was designed so that the same clean audio sample was repeated across
different noise conditions. Each noisy sample was paired with the original clean version, allow-
ing the generator to learn from multiple noisy examples while always comparing its generated
output to the same clean target. As a result, with 63 segments per audio sample and seven noisy
variations for each, a total of 441 paired examples were created in the dataset, significantly en-
hancing the learning capacity of the model.

Structure: The generator focused on rebuilding missing or damaged frequencies while
maintaining the undistorted portions of the input audio through the application of the ReLU
activation function. ReLUencourages the generator to regenerate the cut-out ornoisy frequen-
cies while preventing it from affecting the audio’s clear portions. It does this by outputting the
input directly if it is positive and zero otherwise. In the convolutional layers, higher feature

39

counts have been used to improve the generator’s understanding.

Normally ReLU activation function is not used in the DCGAN’s structure like this struc-
ture, But to preserve the feeded frequencies, and just to make the Generator reconstructs the
missing frequencies addition to feeded frequencies, ReLU activation function has been used.
Because while training, it have a big possibility to overwrite the feeded frequencies, and try to
learn those frequencies by itself with training.

Figure 4.1: Structure of Genererator

• TheLeakyReLUactivation function, which has a standard negative slope, is utilized by the
Discriminator. This option allows the Generator to receive more feedback from the Discrim-
inator by permitting modest negative values in the gradient. As opposed to the conventional
ReLU, which completely eliminates any negative input, LeakyReLU allows the Discriminator
to identify evenminute errorsmade by theGenerator. This feedback system corrects faults that
might otherwise go unnoticed if only positive gradients were taken into account, assisting the
Generator in learning more efficiently.

• ReLU activation function has been not used in the Discriminator because the model still
should be able to learn the negative resulting changes in the generated spectrograms.

40

Figure 4.2: Structure of Genererator

• AdamOptimizer has been used for bothGenerator andDiscriminator, with a learning rate
of 0,002 at the start.
• Both Discriminator and Generator used Binary Cross Entropy with Logits loss (BCEWith-
LogitsLoss).
• Each of the Generator and Discriminator have been trained once in every iteration
• The DCGAN has been trained for 50 Epochs
• No dropouts were used in this first experiment to see the balance of the network.
• Training: During the training phase, the model checkpoints were saved every 10 epochs to
not lose any pieces of training. But in this experiment, the Convergence did not appear and the
Discriminator totally overpowered the Generator in every aspect. Also, the balance may not
achieved because of the layer counts of the Generator and Discriminator.
• Also in the results, it can be seen that the Generator generates the output while maxing out
or mining out almost every output. This model creates 2 channel spectrograms, which it max
out all the values in one channel, and min out all the values in the other channe.. And lastly, a
clear decrese in dB levels are visible in the results.

By looking at the waveform and dB level results, it was clear that we could do different ap-
proaches first to make the Discriminator not overpower the generator and create the balance
between.

41

(a)Waveform of original sound (b) dB levels of original sound

(c) 50 epoch result:Waveform (d) 50 epoch result:dB levels

Figure 4.3: Original and Cut sound’s Waveforms and dB levels

From the look of the results in figure 4.3, it can be said that training completely minimized
the waveform values, and db levels almost flattened out.
Also from the spectrograms of the results in Figure 4.4, It can be seen that the network still

tries to understand the fed data, but it does not understand the fed data fully yet.

42

(a) 50 epoch: Original Sound Spectro‐
gram

(b) 50 epoch:Cut Sound Spectrogram
(c) 50 epoch: Reconstructed Sound File
Spectrogram

Figure 4.4: 50 epoch model Spectrograms

Negative Results:

• Generated output channels either maximized or minimized

• Training was unbalanced

• Each Epoch took too much time to train, and the modes is not feasible

• A clear decrease in dB levels of the results can be seen.

4.2.2 Experiment 2

The same structure for both the Generator and Discriminator, the same pre-process, and the
same segment lengths were used in the first experiment. This experiment aimed to balance the
network training in the first place.

After some investigation of the dataset, it could be clearly seen that we have pre-processed
each 7 of the cut sound files whichwere processed to feed theGenerator and segment it. Still, it
also feeds to train the network by matching segments with the segments created from original
data corresponding to its sections. This means that we are feeding each of the 7 cut sound files
to the Generator, and feeding the original sound to the Discriminator 7 times.

To overcome this, in the second experiment, the learning rates have been arranged differently
than each other. The learning rate of the Discriminator has been set to 0.00007 and Genera-
tor’s learning rate has been set to 0.00021. As a result, there is a 3 times difference between
the learning rates. This has been made to prevent the Discriminator from overpowering the

43

generator. However, this change in the learning rates will probably cause some problems to
occur in future training at the fine-tuning step.

With this change in the Learning rates, it was possible for us to train the network for 500
epochs but around the 500 epoch line, the Discriminator again started to overpower the Gen-
erator and cause mode collapse. Therefore Discriminator overpower the generator, and the
results do not improve with training. The results were close to the first experiment. The Gen-
erator maxes out the results again. The waveform is not even similar to the original result, but
it gets smaller. Also, we can say the same with the dB levels too. DB of the generated sounds
getting smaller, smaller than the first experiment. It can be thought from this, that the dB levels
decrease with each training.

(a)Waveform of original sound (b) dB levels of original sound

(c) 500 epoch result: Waveform (d) 500 epoch result: dB levels

Figure 4.5: Original and Cut sound’s Waveforms and dB levels

44

(a) 500 epoch result:Original Sound
Spectrogram

(b) 500 epoch result:Cut Sound Spectro‐
gram

(c) 500 epoch result:Reconstructed
Sound File Spectrogram

Figure 4.6: 500 epoch result:Spectrograms

• In the figure 4.5, it is visible that the waveform is flattened again like experiment 1. But this
time dB levels are not flattened as the experiment 1. In results dB levels, it can be said that there
are some improvements. But from looking at the levels of dB, it is clear withmore training, the
dB levels are decreasing.

• According to the figure 4.6 (c) which is a bit vanished version of the fed data which is figure
4.6(b), It can be thought that generator still tries to understand the fed data before it can start
to generate the missing frequencies as the original version figure 4.6(a).

Adopted Strategies:

•According to the prepared dataset, the learning rates of the both discriminator and generator
have changed

Negative Results:

• generated outputs channels either maximized or minimized again

• Training was unbalanced after around epoch 450

• Using a higher learning rate fixed the balance problem for only 450 epoch

• More training decreases the dB levels

Positive Results:

• dB levels are not flattened like first experiment, the dB is still showing similar features as the
original sound’s dB visually.

45

4.2.3 Experiment 3

At this point it was obvious the Balance between the Generator andDiscriminator was not the
cause of the learning rates or the datasets. Making the Learning Rate of the Generator 7 times
higher than theDiscriminator’s learning rate could still bemade because theDiscriminator has
been learning the original file 7 times, while generator learns the all uncut files 1 time. It could
be logical to the ear but this big difference between the learning rates will make the training
unbalanced. After some point, when it comes to fine-tuning the results, as result of ofDiscrim-
inator’s learning rate is much smaller than theGenerator’s learning rate, theDiscriminator will
learn the data with more details. But the Generator understands it is not as detailed as the Dis-
criminator. This means that the Fine tuning of the generations will be unbalanced for sure.

In the training phase, label smoothing [21],[22] has been utilized to address the imbalance
issue. Label Smoothing is a method that modifies the target labels only a little bit in order to
stabilize GAN training. It assigns 0.9 for actual data and 0.1 for fake data, rather than explicit
labels like 1 for real data and 0 for fake data. This keeps the discriminator fromover-confidence,
resulting in more stable training and smoother gradients.

Also the Max out and Min out problems have not been solved. However, these problems
are not the result of the balance between the Generator and Discriminator training. It can be
thought that way because some results that are not minimized or maximized should be seen
after the 450 epochs as done in the previous experiment. As a result, the Structure of the Dis-
criminator and Generator was checked again. Changes in the activation functions of the gen-
erator structure have been decided. The Relu activation function has been changed with the
Leaky ReLU activation function
. And lastly because the data we are using is big, for example, each segment’s dimensions are
(2,1025,188), and ourGenerator andDiscriminator structures contain 5 layers, decrease of the
layer amount and the features of the layers have been decided. Tomake the training more feasi-
ble, and to see a result much faster layer amount and the feature amount in the layers have been
decreased.

The generator’s 5 layers decreased to 4 layers. Also, the features on the layers decreased too.
As a result, 4 convolutional layers have been used on the generator, with a change of Activa-
tion functions from ReLU to LeaykReLU with a standard negative slope. This change has

46

beenmade tomake the trainingmore feasible and to prevent the generator results from getting
min out or max out.

Figure 4.7: New Structure of Genererator

47

The discriminator’s layer count has not been changed. But to prevent overpowering the
generator, a dropout rate of 0.25 was added for each layer of the Discriminator.

Figure 4.8: New Structure of Discriminator

• 220 epochs of training have been donewith this structure. The trainingwas balanced. Also
from the loss plot below, it can be seen the convergence. It can also be seen that the Generator
tries new strategies to deceive the discriminator. And as result, It can be thought that the label
smoothing worked to balance the training.

Figure 4.9: Loss Values of Generator and Discriminator

48

• Generated results have been checked at the 70 epoch, and seen that the results are not min
out or max out anymore.

• 70 epoch, 120 epoch, 145 epoch, and 220 epoch results have been saved to see the results.
The dB levels decrease with each trained epoch.

• The most clear result was created at 70 epochs.

(a)Waveform of original sound (b) dB levels of original sound

(c) 70 epoch results: Waveform of reconstructed sound (d) 70 epoch results:dB levels of reconstructed sound

Figure 4.10: Original and 70 epoch result’s Waveforms and dB levels

49

(a) 120 epoch results: Waveform of reconstructed
sound

(b) 120 epoch results:dB levels of reconstructed sound

(c) 220 epoch results: Waveform of reconstructed
sound

(d) 220 epoch results:dB levels of reconstructed sound

Figure 4.11: 120 and 220 epoch results: reconstructed sound’s Waveforms and dB levels

• From the dB levels(figure 4.10 and 4.11) and waveforms, it can be seen the results looks
better if it compared with the previous experiments. The dB levels are still lower, but the fea-
tures are not flattened out this time, visually it can be seen. But in the waveform side, it is still
looking like flattened at all of them.
Sadly, from the results of this experiment, we can say with more training, the cut version

of the sounds that we feed to the generator not learning. The generator should understand
that the fed data already is true at some point, it should just generate the missing parts of the
fed data. But from the results we can say the fed data is disappearing with more trains. 70
epoch trained result should not be the best result. However according to the spectrograms
in Figures 4.12,4.13 and 4.14, the best looking, and the most visible frequencies appear in 70
epoch training in Figure 4.12 (c). More training did not make the base frequencies clearer as it
seems in Figure 4.13 (c) and 4.14 (c).

50

(a) 70 epoch: Original Sound Spectro‐
gram

(b) 70 epoch:Cut Sound Spectrogram
(c) 70 epoch:Reconstructed Sound
Spectrogram

Figure 4.12: 70 epoch Spectrograms

(a) 120 epoch: Original Sound Spectro‐
gram

(b) 120 epoch: Cut Sound Spectrogram
(c) 120 epoch: Reconstructed Sound
Spectrogram

Figure 4.13: 120 epoch Spectrograms

(a) 220 epoch: Original Sound Spectro‐
gram

(b) 220 epoch: Cut Sound Spectrogram
(c) 220 epoch: Reconstructed Sound
Spectrogram

Figure 4.14: 220 epoch Spectrograms

51

Adopted Strategies:

• Label smoothing used to balance the train

• Learning Rates kept the same as Experiment 2

• For feasibility, for time and hardware, the layer count of the Generator, and those layer’s
feature (neuron) counts decreased

•Topreventminimizingormaximizing the values,Generator’sActivationFunctions changed
from ReLU to LeakyReLU with standard negative slope

52

Positive Results:

• From the spectrograms, It can be seen the generator starts to learn at least the fed data to
itself, but not the way we wanted.

• The training balanced

• More features are visible in dB levels.

Negative Results:

• With each training the waveform gets smaller, and dB levels decrease like previous experi-
ments

• No new frequencies generated to acquire the original result, the base frequencies which we
fed to Generator disappears with more training.

•Network training inbalance but after somepoint in the training, it cannot be learned further.
It could be seen if the results of epoch 120, and the 220 compared(figure 4.13(c) and
4.14(c)).

4.2.4 Experiment 4

The same pre-process is used, and the same dataset to feed the Generator and Discriminator
have been used on this experiment. As seen, after the 70th epoch, the generator could not
learn better and as a result, generated results started to break down. This result can be divided
into 2 possibilities:

• The first possibility is that after some point the label smoothing prevented the Discrimi-
nator learn the original data properly. As a result of this, after the 70th epoch, discriminators
did not have any improvements for the generator. Therefore, because the Discriminator loss is
not changing anymore, the Generator tries to keep learning more and still get the same results
from the discriminator. This causes the Generator to start breaking down the learned ways of
generating data and disturb the results.

• And the second possibility was the Learning rate difference caused this problem.(the gen-
erator’s learning rate was 3 times of the Discriminators) Because the learning rate of the Gen-
erator is 3 times higher than the Discriminator’s, this big learning rate difference results in the

53

Discriminator’s ability to capture more features than the Generator’s. This causes that after
some point of the training, it is getting harder or impossible for the Generator to find and use
new features like the Discriminator,

As a result of these possibilities, the difference between the learning rates of the Generator
and Discriminator equalized. And both of the Learning Rates have been set to 0.0002. Also
to see if the Label Smoothing was the problem, the label smoothing has been canceled. These
two changes in the Training stepwill show us if the result of Experiment 3was caused by them.

As a result of these changes, some strategies should be used at the Training step. Because can-
celing the Learning Rate difference between the Generator and Discriminator and also cancel-
ingLabel Smoothingwill cause the balance to be disturbed again. Themod collapse should not
happen, therefore a new strategywas added to theTraining step to keep balancing theTraining.

As an alternative training strategy for the Generator to be trained multiple times for each
training step of the Discriminator has been implemented. This approach was employed to
maintain the balance between the Generator and the Discriminator, especially as the Discrim-
inator tended to learn faster and overpower the Generator. By training the Generator more
frequently within each iteration, the Generator is given more opportunities to adjust and im-
prove its outputs, thus preventing the Discriminator from dominating the training process.
This strategy aims to ensure that the Generator remains competitive, enabling it to produce
better reconstructions and gradually close the gap in performance between the two networks.

The Training step has been changing according to this strategy. For each iteration, while the
Discriminator trained once, the Generator Trained twice. In the end, the difference between
the learning rates of the Generator and Discriminator occurred again but in a different way
which will not affect the results, or there will be no difference in how much detail they will
learn at each iteration.

Lastly, as a result of the new Training Step Result, the Dropout rates of the Discriminator
have been canceled. To see how the new Training Strategy affects the Training balance this has
been made.

• The Training has been made for 1100 Epoch

54

• 320 epoch, 700 epoch, and 1100 epoch results have been saved to see the results. The Db
levels decrease with each trained epoch again.

• The Training plot looks pretty solid and balanced, but the actual values show after some
point, the discriminator will start to overpower the Generator again.

Figure 4.15: Exp4 Balanced Training

The results were not much different from Experiment 3’s results, especially the reconstructed
waveforms are flattened and look almost the same as Experiment 3. From Figure 4.16, it can
be seen that 320 epoch results have higher dB levels than 700, but 1100 epoch result is almost
the same as 320 epoch results in dB levels. from this, it can be said that the model is learning
the base for some epochs, and until the point it learns, the results decrease in quality, but after
it increases the quality again. An example of this can be seen in Figure 4.16 (a) to (c).

On the other hand, if we look at the spectrograms in Figures 4.17, 4.18, and 4.19, we can
see that our analysis of the dB levels is accurate. The 320 epoch training result has a good
baseline figure 4.17 (c) because it did not havemuch time tomodify the baseline. The result of
700 epoch training in Figure 4.18 (c), shows visible the model is trying to modify the baseline
because the baseline is half vanished. And the figure 4.19(c) it is visible that the model is more
confident about the baseline there.

55

(a) 320 epoch result: dB levels sound (b) 700 epoch result: dB levels sound

(c) 1100 epoch result: dB levels sound

Figure 4.16: Original and Cut sound’s Waveforms and dB levels

Adopted Strategies:

• Label Smoothing Cancelled.

• Learning rate of the Both Generator and Discriminator have been set to 0.0002

• To avoid disturbing the training balance, an alternative training strategy was implemented.
In each iteration, the Generator will trained multiple times, but the Discriminator will
train once.

• Dropout rates in the Discriminator Structure have been cancelled to see the effects of new

56

(a) 320 epoch result: Original Sound
Spectrogram

(b) 320 epoch result: Cut Sound Spectro‐
gram

(c) 320 epoch result: Reconstructed
Sound Spectrogram

Figure 4.17: 320 epoch Spectrograms

(a) 700 epoch result: Original Sound
Spectrogram

(b) 700 epoch result: Cut Sound Spectro‐
gram

(c) 700 epoch result: Reconstructed
Sound Spectrogram

Figure 4.18: 700 epoch Spectrograms

(a) 1100 epoch result: Original Sound
Spectrogram

(b) 1100 epoch result: Cut Sound Spec‐
trogram

(c) 1100 epoch result: Reconstructed
Sound Spectrogram

Figure 4.19: 1100 epoch Spectrograms

57

strategy for training step

Positive Results:

• Generator’s ability to learn slightly improved, Generator learned the baseline.

• Frequencies look slightly more clear.

• canceling label smoothing has affected the results positively, but it also affects the balance.
Therefore, it should be used to acquire training balance. The train-step strategy was not
as effective as label smoothing to maintain balance completely, but it did a good job.

• The training was almost balanced, It was balanced at the end of the 1100 epoch.

Negative Results:

• With each training the waveform gets smaller, and dB levels decrease as Experiments 2 and
3

• No new frequencies were generated to acquire the original result as Experiment 2

• Balance of Training will be disturbed after some point. The discriminator overpowers the
generator slowly but surely. It was not overpowering around the 1100 epoch, but in the
losses, the linear increase with more training is visible.

4.2.5 Experiment 5

In this experiment, the methodology and pre-processing were modified in order to achieve the
goal of seeing theworking structurewith theworking train step as feasible as possible. Since the

58

dataset’s two-second segments were used in the first four experiments, the DCGAN Structure
was forced to work with data that had dimensions of (2,1025,188), meaning that each segment
was as large as 360 to 360 RGB images. This may have caused the improvement to stall or
required overly sensitive hyperparameter value adjustments. As a result, the segment lengths
were changed from 2 seconds to 0.5 seconds each.

Additionally, this experiment focuses on a more focused training technique than the previ-
ous ones, which paired the clean audio samplewith seven distinct noisy versions, each ofwhich
corresponded to the same part of the original sound. The clean audio had to be repeated seven
times in the prior way, one for each noisy variant. This produced a dataset in which each of the
seven different noisy cuts was associated with the clean sound. This experiment, on the other
hand, pairs the clean audio with a single noisy counterpart because it only employs one partic-
ular noisy version. The generator may concentrate more intently on accurately recreating the
original sound from this particular noise state thanks to this simplicity. The noisy variation
uses the 2000Hz chopped version.

The generator structurewas alteredwhen thepreprocess anddataset techniqueswere changed.
Theoriginal architecture of the generator usesLeakyReLU in its second and third layers, which
allows a small gradient for negative inputs due to its constant negative slope. LeakyReLU’s lin-
earity in the negative area makes it difficult to always extract finer information from complex
data, such audio signals.

To address the problem, it was replaced by the Exponential Linear Unit (ELU), which offers
a more non-linear and adaptive response. Because ELU smoothes the transitions for negative
inputs, the generator might capture more subtle variations in the audio. This change should
improve the generator’s ability to reconstruct finer details from the audio inputs, resulting in
outputs that are more accurate and of higher quality.
Tiny dropout layers have been added in between a few of the network’s layers to improve the

generator’s results even further. By randomly deactivating a subset of neurons during training,
dropout forces the network to acquiremore robust characteristics andhelps prevent overfitting.
A small dropout in the generator encourages the model to generalize more effectively, which
can result in more stable and high-quality output. By making this modification, the generator
should be less likely to become unduly dependent on particular patterns, which should enable
it to generate reconstructions of the audio data that are more accurate.

59

Figure 4.20: New Structure of the Generator

Finally, for discriminators, batchnormalizationhas been added. For thediscriminator, batch
normalization is typically not desired. Because the logic of batch normalization aligns the re-
sults with the feed batches, it makes sense. The reconstruction work done for this thesis does
not contain many data points with similar frequencies or a great deal of similarities. There are
neither similarities nor parallels among any of the input samples because every segment we feed
to the generator or discriminator is a separate section of a complete sound file.
We expect our network to be able to reconstruct the missing frequencies based on the feed

frequencies. As such, BatchNormalization has never been applied to theDiscriminator before.
Considering that the discriminator may not learn in the manner that it is intended to due to
batch normalization. But in this instance, it’s crucial to note how using Batch Normalization
modifies the results.

Figure 4.21: New structure of the discriminator

Learning rates 0.02, 0,0002, and 0,0004 have been used in this experiment’s training.

2 models have been trained until 1000 epoch, the first model with 0.02 learning rates, and
the secondmodelwith 0.0002 to see the difference in the results to be able to saywhich learning

60

(a) 1000 epoch with 0.0002 learning
rate: Original Sound Spectrogram

(b) 1000 epoch with 0.0002 learning
rate: Cut Sound Spectrogram

(c) 1000 epoch with 0.0002 learning
rate: Reconstructed Sound File Spectro‐
gram

Figure 4.22: 1000 epoch with 0.0002 learning rate Spectrograms

(a) 1000 epoch with 0.02 learning rate:
Original Sound Spectrogram

(b) 1000 epoch with 0.02 learning rate:
Cut Sound Spectrogram

(c) 1000 epoch with 0.02 learning rate:
Reconstructed Sound Spectrogram

Figure 4.23: 1000 epoch with 0.02 learning rate Spectrograms

rate could be better. In old experiments, a high learning rate like 0.02 was never used. There-
fore to be able to compare the results between the learning rate 0.0002 we used in the previous
experiments and this 0.02, this has been done.

According to the results you can see in figure 4.22 and 4.23, the learning rate of 0.0002works
way better than the learning rate of 0.02. Both of the results does not looks good, but if we
look at the baseline, it can be easly said that learning rate 0.0002 does look better(figure 4.22
(c)). Because it did not get rid of all of the baseline frequencies like the model which trained
with learning rate 0.02 (figure 4.23 (c)).

2 experiments with different learning rates started to train at the same timewhich bothmod-
els have the same structures, and both have used the 1000 epoch pre-trained version of the
model with 0.0002 learning rate which results have shown in figure 4.22. Both models have

61

(a) 4400 epoch with 0.0002 learning
rate: Original Sound Spectrogram

(b) 4400 epoch with 0.0002 learning
rate: Cut Sound Spectrogram

(c) 4400 epoch with 0.0002 learning
rate: Reconstructed Sound Spectrogram

Figure 4.24: 4400 epoch with 0.0002 learning rate: Spectrograms

(a) 4400 epoch with 0.00004 learning
rate: Original Sound Spectrogram

(b) 4400 epoch with 0.00004 learning
rate: Cut Sound Spectrogram

(c) 4400 epoch with 0.00004 learning
rate: Reconstructed Sound Spectrogram

Figure 4.25: 4400 epoch with 0.00004 learning rate:Spectrograms

trained for a 3400 epoch more, which results in a 4400 epoch. one model trained with 0.0002
learning rate, and the other one trained with 0.00004 learning rate.

The results of the experiment with a 0.0002 learning rate look more promising. but as you
can see in Figures 4.24 and 4.25, both of the results are bad. Themodel trained with a 0.00004
learning rate completely gets rid of all baseline as it seems in Figure 4.25 (c) but this may be the
result of the low learning rate. So, this model trained for 1600 epochs more.

It seems that the results above have not changedmuch from the 4400 epoch version. But we
can say that the model started to learn the baseline again from the result Figure 4.26 (c).

Adopted Strategies:

62

(a) 4400 epoch with 0.00004 learning
rate:Original Sound Spectrogram

(b) 4400 epoch with 0.00004 learning
rate:Cut Sound Spectrogram

(c) 4400 epoch with 0.00004 learning
rate:Reconstructed Sound File Spectro‐
gram

Figure 4.26: 4400 epoch with 0.00004 learning rate Spectrograms

• With pre-processing of the data, and changing segment lengths, lighter and faster networks
have been made. Therefore many feasible pieces of training have been done.

• Different ranges of learning rates have been used to see which rate is more compatible to use

• Strategy, which trainin generator multiple times for each training of the discriminator have
been used.

• Batch Normalization has been added to the Discriminator’s structure

• Label smoothing not used

Positive Resulst:

•More balanced networks have been made, but still, the Generator loss increased and Discrim-
inator loss decreased with more epochs. From this results, it can be said, that label smoothing
should be used to create a completely balanced model

Negative Results:

63

•With each training the waveform gets smaller, and dB levels decrease as the other experiments

• No new frequencies were generated to acquire the original result.

• Balance of Training may be disturbed after some point. Generator loss increases slowly.

• The result spectrograms show the batch normalization did not work well. But figure 4.26 (c)
shows some signs of rebuilding base frequencies.

4.2.6 Experiment 6:

In experiment 6, the same preprocess and same data as experiment 5 were used. 2000Hz cut
sound has been used like experiment 5

In experiment 5wehave seen that to be able to train our networkwithout thinking about the
balance, label smoothing is a must. This result of label smoothing has been achieved according
to the experiments 4 and 5. But this time the label smoothing will not made with values 0.9
for the original and 0.1 for fake data. Because with these values, the discriminator’s values will
be too softened, therefore discriminator will not learn the data properly. This will be resulting
the generator not learning the data properly as well as the Discriminator because of the Binary
Cross Entropy (BCE) loss function. This means the Generator maximum learns the data as
well as the Discriminator, cannot learn more than the Discriminator.

Discriminator’s dropout rates have been increased in each layer. All of the dropout rates
have been made over 0.7. The main logic behind increasing the dropout rates this much

The result of this model looks more promising than the others. According to the results of
this model, the fine-tuning attempt has started.The training is completely balanced.Multiple
pieces of training have been made, in each 1500 epoch results have been checked.

64

(a) epoch 17500:Original Sound Spectro‐
gram

(b) epoch 17500:Cut Sound Spectro‐
gram

(c) epoch 17500:Reconstructed Sound
File Spectrogram

Figure 4.27: epoch 17500 Spectrograms

(a) epoch 19000 with learning rate
0.00004:Original Sound Spectrogram

(b) epoch 19000 with learning rate
0.00004:Cut Sound Spectrogram

(c) epoch 19000 with learning rate
0.00004:Reconstructed Sound Spectro‐
gram

Figure 4.28: epoch 19000 with learning rate 0.00004:Spectrograms

According to the checked results, when it was obvious that the model was not learning any-
thing anymore, the label smoothing values and learning rate values changed. The values of label
smoothing softened from 0.9 for real,0.1 for take to 0.99 for real, and 0.01 for fake, from this
spot it softened to 0.995 for real, 0.005 for fake, and the last level of label smoothing values was
0.9995 for real and 0.0005 for fake.

By the end of this experiment, we have obtained 32000 models that have been trained for a
specified number of epochs.

The best results are shown in the figures for the training amount and the learning rates.

The result of the 17500 epoch can be seen in the figure 4.27. It is visible that the model

65

(a) epoch 19000 with learning rate
0.0002:Original Sound Spectrogram

(b) epoch 19000 with learning rate
0.0002:Cut Sound Spectrogram

(c) epoch 19000 with learning rate
0.0002:Reconstructed Sound File Spec‐
trogram

Figure 4.29: epoch 19000 with learning rate 0.0002:Spectrograms

(a) epoch 28000 with learning rate
0.000008:Original Sound Spectrogram

(b) epoch 28000 with learning rate
0.000008:Cut Sound Spectrogram

(c) epoch 28000 with learning rate
0.000008:Reconstructed Sound Spec‐
trogram

Figure 4.30: epoch 28000 with learning rate 0.000008 Spectrograms

(a) epoch 28000 with learning rate
0.00002:Original Sound Spectrogram

(b) epoch 28000 with learning rate
0.00002:Cut Sound Spectrogram

(c) epoch 28000 with learning rate
0.00002:Reconstructed Sound Spectro‐
gram

Figure 4.31: epoch 28000 with learning rate 0.00002 Spectrograms

66

(a) epoch 32000 with learning rate
0.000008:Original Sound Spectrogram

(b) epoch 32000 with learning rate
0.000008:Cut Sound Spectrogram

(c) epoch 32000 with learning rate
0.000008:Reconstructed Sound Spec‐
trogram

Figure 4.32: epoch 32000 with learning rate 0.000008 Spectrograms

(a) epoch 32000 with learning rate
0.00002:Original Sound Spectrogram

(b) epoch 32000 with learning rate
0.00002:Cut Sound Spectrogram

(c) epoch 32000 with learning rate
0.00002:Reconstructed Sound File
Spectrogram

Figure 4.33: epoch 32000 with learning rate 0.00002:Spectrograms

67

tries to generate the baseline from Figure 4.27 (c) and it looks promising. But because the re-
sults look like this for at least 4500 epochs, the label smoothing values have changed to 0.99 for
real, and 0.01 for fake tomake theDiscriminator learn better, therefore the generator will learn
more from a better Discriminator. Also from this point on, two models with the same label
smoothing but different learning rates have been trained to be able to do fine-tuning.

In Figures 4.28 and4.29, we can see the results after training the previousmodel 1500 epochs
more with learning rates 0.00004 and 0.0002. Making this train with different learning rates
which can be seen in Figures 4.28 (c) and 4.29(c) shows us the smaller learning rates better.
As you can see in both results, we can say our generator has much more confidence about the
base frequencies. But the main difference between the two is the details. The 0.00004 learning
rate has worked better and created more detailed results than the model with a learning rate of
0.0002.

As the next step, we have loaded the 19000 epoch model with a learning rate of 0.00004 as
a pre-trained model, decreasing the label smoothing even more from 0.99 for real and 0.01 for
fake to 0.999 for real and 0.001 for fake and trained 9000 epochs more. But as in the previous
training sequence, we have trained 2models againwith learning rates of 0.00002 and 0.000008.
In Figure 4.30 (c) and 4.31 (c), you can see the results. The results are not as good as the result
in Figure 4.28 (c), butwe can still say that bothmodels are confident about thebase frequencies.

On the last try, the label smoothing decreased even further from 0.999 for real and 0.001 for
fake to 0.9995 for real and 0.0005 for fake. And the 2 models we had trained for 4000 more
epochs with the same rate of learning rates. In Figure 4.32 (c), we can see the learning rate of
0.000008 has started to affect the model badly because it is visible that the model is not as con-
fident as 4000 epochs before the version of itself. On the other hand, in Figure 4.33, it is visible
that the model is still confident about the baseline and it started to create some frequencies.
But the result is still not the way we wanted.

Adopted Strategies:

• Label smoothing got softened according to the results which shows the model is not learn-
ing properly anymore. The label smoothing effect, which was explained as a possibility in ex-
periment 4 has been confirmed.

68

•Different ranges of learning rates have been used to seewhich rate ismore compatible to use

• According to the results, more training has been done

• Strategy, which in each iteration, trains the Generator multiple times, but the Discrimina-
tor once has not changed.

• Batch Normalization used

Positive Results:

• The model is completely balanced.

• The First positive result in the spectrograms has been achieved with batch normalization.

• at 32000 epoch, one of our models has generated some new frequencies.
Negative Results:

• The waveform and the dB levels did not change much.

• Generated new frequencies at 32000 epoch is not accurate.

• this experiment took too much time to train.

4.2.7 Experiment 7

This experiment followed the identical preprocessing and dataset preparation procedures as the
previous two (Experiments 5 and 6). The audio samples were split into intervals of 0.5 seconds,
the same as in the previous studies. A major difference in this experiment, though, is that the
spectrograms that were produced were logarithmically scaled prior to being ready for training
after the audio segments were subjected to the Short-Time Fourier Transform (STFT). This is
the main change made to the model in this experiment. Instead of training it on linear data,
it will be trained on logarithmically scaled spectrograms, which should improve the model’s

69

capacity to catch and recreate frequency patterns.

The dynamic changes in the discriminator’s training frequency based on the generator’s per-
formance are an important addition to this training procedure. By using an adaptive technique,
it is ensured that during training, the discriminator won’t overrun the generator, a common
problem that can result in mode collapse or generator failure.

The discriminator’s training in this implementation is dependent on the value of the discrim-
inator’s fake loss (d loss fake). In particular, onlywhen the d loss fake surpasses a threshold value
of 0.1 is the discriminator taught. The discriminator’s training is stopped if the false loss falls
below this threshold, signaling that the discriminator is growing too strong and preventing the
generator from catching up and producing better results.

Additionally, the technique includes a counter (discriminator train counter) tomonitor con-
secutive occasions where the fake loss remains low. The discriminator training is stopped tem-
porarily if the counter rises above a predetermined threshold. This makes sure an excessively
precise discriminator doesn’t continuously penalize the generator, which could hinder its abil-
ity to learn.

In essence, this dynamic approach introduces the following steps:

• Discriminator Skipping: If the discriminator’s fake loss is below 0.1, it is considered to be
performing toowell. In such cases, the training of the discriminator is skipped for several
iterations, allowing the generator to improve without excessive pressure.

• Discriminator Reset: Once the ”discriminator train counter” reaches a threshold value, the
discriminator is retrained, resetting the balance between the generator and discrimina-
tor.

By introducing a more balanced adversarial training procedure, this technique makes sure
that the performance of the discriminator and generator does not significantly diverge. The ap-
proach sustains beneficial competition between the two networks, enabling better convergence
and raising the standard of the audio outputs that are produced, by dynamically regulating the

70

discriminator’s updates.

The Exponential Linear Unit (ELU) performs better overall in deep learning tasks, it was
initially chosen as the activation function in the generator’s second and third layers in this ex-
periment. ELU is renowned for producing smooth output, which helps improve learning dy-
namics. But more importantly, when inputs are much below zero, ELU tends to converge to a
constant negative value, adding to the computational complexity. Although helpful in certain
situations, this behavior made it difficult to use the generator for the current purpose of recon-
structing audio data because it made it harder to learn from specific mistakes.

Because of this, the activation function in the second and third layers of the generator has
changed from ELU to the Leaky ReLU activation function. Leaky ReLU, in contrast to ELU,
provides negative values proportionate to the mistake rather than convergent to a constant by
applying a constant negative slope to negative inputs. This guarantees that the gradient stays
active in the event that erroneous predictions are made, enabling the generator to more dy-
namically modify its output. Leaky ReLU fits this model better because of its adaptability to
negative values, which allows it to capture the mistake size without being limited by a preset
response.

3 models have been trained in this experiment.

As a result of feeding the logarithmically scaled data to the both generator and discrimina-
tor, the most suitable learning rate could be changed. Therefore 3 models with the
same structure, but different learning rates have been made. Learning rates of 0.00008,
0,000008, and 0,0000008 have been used. All of the 3 models have been trained for
6000 epochs. Result of the high epoch count of the training, and to see the effects of
low values of learning rates, these learning rate values have been used

The model with a learning rate of 0.00008(4.36 (c)) produced the best spectrogram, as evi-
denced by the comparison in Figure 4.34 (c), 4.35(c), and 4.36(c).

The model achieved the second-best result with a learning rate of 0.0000008 (4.34 (c)).

Result of the model with a learning rate of 0.000008 was not good as we can see in Figure
4.35 (c). However, it was illogical because this learning rate is within the range of the

71

(a) 6000 epoch with 0,0000008 learning
rate:Original Sound Spectrogram

(b) 6000 epoch with 0,0000008 learning
rate:Cut Sound Spectrogram

(c) 6000 epoch with 0,0000008 learning
rate:Reconstructed Sound File Spectro‐
gram

Figure 4.34: 6000 epoch with 0,0000008 learning rate Spectrograms

(a) 6000 epoch with 0,000008 learning
rate:Original Sound Spectrogram

(b) 6000 epoch with 0,000008 learning
rate:Cut Sound Spectrogram

(c) 6000 epoch with 0,000008 learning
rate:Reconstructed Sound Spectrogram

Figure 4.35: 6000 epoch with 0,000008 learning rate Spectrograms

(a) 6000 epoch with 0,00008 learning
rate:Original Sound Spectrogram

(b) 6000 epoch with 0,00008 learning
rate:Cut Sound Spectrogram

(c) 6000 epoch with 0,00008 learning
rate:Reconstructed Sound Spectrogram

Figure 4.36: 6000 epoch with 0,00008 learning rate Spectrograms

72

(a) 9000 epoch with 0,00008 learning
rate:Original Sound Spectrogram

(b) 9000 epoch with 0,00008 learning
rate:Cut Sound Spectrogram

(c) 9000 epoch with 0,00008 learning
rate:Reconstructed Sound File Spectro‐
gram

Figure 4.37: 9000 epoch with 0,00008 learning rate Spectrograms

lowest and highest rates we have used in this experiment. The stochastic nature of neu-
ral networks could be the cause of this. Therefore to get a better result and to see if
this is because of the stochastic nature of the neural networks, this model is trained for
3000 epochs more. The results worsened, as shown in Figure 4.37 (c). Themodel is not
confident about any kind of frequency.

Adopted Strategies:

• At the pre-processing step, the data logarithmically scaled.

• Label smoothingwas usedwith 0.9995 for real, and0.0005 for fake labels like the experiment
6

• Different ranges of learning rates have been used to see which rate is more compatible with
logarithmically scaled data

• Strategy: in each iteration, the Generator is trained multiple times, while the Discriminator
is utilized.

• Batch Normalization has been used

•Generator’s first two layers’ activation functionshavebeen changed fromELUtoLeakyReLU.

Positive Results:

• The training was balanced

• Better results with less training have been acquired

73

• Batch Normalization looks like still working

•Changing the activation functions in theGenerator increased the speed of themodel’s learn-
ing, making it more feasible.

Negative Results:

• created frequencies still not good

• with learning rates, the results change too much. Hyperparameters are too sensitive.

• Balance of Training may be disturbed after some point.

4.2.8 Experiment 8

Effect of Negative Slopes in Leaky ReLU:
This set of tests examined the effects of changing the Leaky ReLU activation function’s neg-

ative slope. In order to avoid the ”dead neuron” issue, leaky ReLU is preferred over normal
ReLU. This is because it permits a little, non-zero gradient when the input is negative. This is
necessary to ensure stable and effective training in deep neural networks by preserving gradient
flow even in areas where the input is less than zero.

Initially, as is typical ofGANarchitectures, the generator and discriminator employedLeaky
ReLU with a standard negative slope of 0.01. The outcomes were examined following 6,000
epochs of training this model. Another model was trained for 6,000 epochs with the negative
slope increased to 0.3 in both the discriminator and generator in order to further examine the
impact of negative slopes. This experiment aimed to examine the effects of various negative
slope values on learning and output quality.

model with a Negative Slope of 0.01 (Baseline): Although the learning process in the
model trained with a slope of 0.01 was comparatively slow, the results were reasonably consis-
tent. Although the spectrograms produced by the model were stable, they could not perfectly
recreate the original sound. This is probably because the network was unable to significantly
alter the generated data because to the tiny negative slope, which produced weaker gradient sig-
nals during backpropagation. Thewaveformswere visible but not very distinct, and as training
went on, the total decibel level dropped a little.

74

(a) 6000 epoch with standard negative
slope:Original Sound Spectrogram

(b) 6000 epoch with standard negative
slope:Cut Sound Spectrogram

(c) 6000 epoch with standard negative
slope:Reconstructed Sound File Spectro‐
gram

Figure 4.38: 6000 epoch with standard negative slope Spectrograms

Model With a Negative Slope of 0.3 (Experiment):

When the negative slope in the second model was raised to 0.3, the learning process con-
siderably improved. When compared to the baseline model, the generated audio shown more
consistent decibel levels and cleaner waveforms after 6,000 epochs. Larger gradient signals in
the negative input region weremade possible by the increased negative slope, which helped the
network make more significant training corrections. This showed that the model could better
capture the underlying structure of the target sound as it led to faster learning and more accu-
rate reconstruction of the audio.

It was clear from comparing the twomodels that the generator and discriminator performed
better when the negative slope in Leaky ReLU was increased from 0.01 to 0.3. Slower conver-
gence was the result of the model’s inability to perform large updates during training due to
the lesser slope. The greater slope, on the other hand, made learning faster and more efficient,
leading to outputs that were clearer and more accurate. This experiment emphasizes how cru-
cial it is to adjust LeakyReLU’s negative slope since it has a direct impact on themodel’s ability
to learn and get better over training.

A comparison of the spectrograms in Figures 4.39 (c) and 4.40(c) shows the higher negative
slope has given better results. Figure 4.39 (c) shows that the model with an increased negative
slope has more confidence in the base frequencies. Therefore the model with an increased neg-
ative slope value of 0.3 has trained 3000 epochs more to see the result.

75

(a) 6000 epoch with negative slope
value 0.3:Original Sound Spectrogram

(b) 6000 epoch with negative slope
value 0.3:Cut Sound Spectrogram

(c) 6000 epoch with negative slope
value 0.3:Reconstructed Sound File
Spectrogram

Figure 4.39: 6000 epoch with negative slope value 0.3:Spectrograms

(a) 9000 epoch with negative slope
value 0.3:Original Sound Spectrogram

(b) 9000 epoch with negative slope
value 0.3:Cut Sound Spectrogram

(c) 9000 epoch with negative slope
value 0.3:Reconstructed Sound File
Spectrogram

Figure 4.40: 9000 epoch with negative slope value 0.3:Spectrograms

76

TheFigure 4.40(c)which is trained 9000 epochwith an increasednegative slope of 0.3 shows
the best result. This result is the first result that deletes the base frequency but re-creates it after
more training. The model is confident about the base frequencies, and with more training, it
can be more confident.

Adopted Strategies:

• Only strategy difference with experiment 7 is leaky relu negative slope change.The negative
slope value 0.3 is used.

Positive results:

• The increasing the negative slope value is effected results positively.

• Training for 9000 epochs initially removes the base frequency but re-creates it after further
training. This is the first model which re-creates the base frequency after deleting it.

4.2.9 Experiment 9

The generator’s loss now includesMean Squared Error (MSE). Themain goal of including the
Mean Squared Error (MSE) in the generator’s training phase is to keep important frequency
components that we feed to the Generator as base frequencies from vanishing during the feed-
forward procedure. The generator’s first objective was to enhance the incomplete frequency
information in the baseline data with the missing frequencies. However, after a few rounds,
the baseline itself started to disappear, which resulted in a wrong reconstruction of the original
audio. In order to mitigate this, the MSE loss was added to make sure that the output that is
produced stays very similar to the original data, which helps in maintaining the baseline fre-
quencies.

IncorporatingMSE encourages the model to reconstruct the missing sections while preserv-
ing the integrity of the input data, preventing the generator fromchanging the fundamental fre-
quencies to deceive the discriminator. When the missing frequencies are being reconstructed,
the adversarial loss (BCE) and content loss (MSE) combination helps stabilize the training pro-
cess and guarantees that the recreated sound stays true to the original. In essence, the obtained
results are progressively corrected and refined over time by the MSE loss.

77

(a) 4000 epoch with Learning Rate
0.000008:Original Sound Spectrogram

(b) 4000 epoch with Learning Rate
0.000008:Cut Sound Spectrogram

(c) 4000 epoch with Learning Rate
0.000008:Reconstructed Sound File
Spectrogram

Figure 4.41: 4000 epoch with Learning Rate 0.000008 Spectrograms

(a) 4000 epoch with Learning Rate
0.00008:Original Sound Spectrogram

(b) 4000 epoch with Learning Rate
0.00008:Cut Sound Spectrogram

(c) 4000 epoch with Learning Rate
0.00008:Reconstructed Sound File
Spectrogram

Figure 4.42: 4000 epoch with Learning Rate 0.00008:Spectrograms

We made the decision to discard the label smoothing method that had been applied in the
past to stabilize the discriminator’s training due to the corrective mechanism that MSE had in-
troduced. The generator was able to learn without the label smoothing since the MSE made
sure it was doing so.

We trained three models with learning rates of 0.0008, 0.00008, and 0.000008 for a total of
4000 epochs to assess the effects of the MSE and various learning rates in more detail. This
made it possible for us to compare the results at various learning rates while keeping the same
general structure, which allowed for a comprehensive assessment of the ideal training setup.

MSEwas effective which we can see in the figure 4.41(c), 4.42(c) and 4.43(c). If we compare
the reconstructed versions with their original and noisy versions in the figures, we can see that
we have some good results.

78

(a) 4000 epoch with Learning Rate
0.0008:Original Sound Spectrogram

(b) 4000 epoch with Learning Rate
0.0008:Cut Sound Spectrogram

(c) 4000 epoch with Learning Rate
0.0008:Reconstructed Sound File Spec‐
trogram

Figure 4.43: 4000 epoch with Learning Rate 0.0008:Spectrograms

The best result between them achieved with the learning rate 0.000008. It is not much dif-
ferent from the other ones but if the figure 4.41 (c) compared with the figure 4.42 (c) and 4.43
(c), it can be said that the 4.41 (c) is more confident about the base frequencies.

Adopted Strategies:

Mean Square Error has added to the Generator’s loss at the train step.

Leaky Relu negative slope value is 0.3

Other strategies and structures same as the experiment 8

Positive Results:

• The model is more feasible this way. Better base frequencies generated with less training

Negative Results:

• The Mean Square Error may cause the model to overfit after some point. So, it should be
used dynamically.

79

(a) 1500 epoch :Original Sound Spectro‐
gram

(b) 1500 epoch: Cut Sound Spectrogram
(c) 1500 epoch: Reconstructed Sound
File Spectrogram

Figure 4.44: 1500 epoch: Spectrograms

4.2.10 Experiment 10

Theprimary objective of this experimentwas to preprocess the audio files usingMel-Frequency
Cepstral Coefficients (MFCC) as opposed to the previously employed Short-Time Fourier
Transform (STFT). The goal of this method is to more accurately represent the frequency
characteristics of audio by using a mel-scaled representation that is more consistent with hu-
man perception.

Initially, the audio material was split up into smaller segments, each lasting 0.5 seconds. For
similarity across all files, the original waveform was loaded and, if needed, converted to mono.
TheMFCCwas calculated for each of these segments once thewaveformhad been divided into
them. TheMFCC data were subjected to logarithmic scaling in order to improve the training
procedure even more. This modification is essential because it ensures that the model concen-
trates on minute variations in the low-energy portions of the signal by compressing the audio
data’s enormous dynamic range.

The dataset was then prepared using each of these logarithmically scaled MFCC segments,
containing both clean and noisy versions of the audio files. To enable themodel to learn how to
rebuild the clean audio from the noisy input, the clean and noisyMFCC segments were linked
together. This technique made it possible to create a dataset that effectively taught the model
how to rebuild clean audio from noisy inputs by capturing both the crucial frequency features
and the time-domain fluctuations of the audio. With the earlier tests, the structure remained
the same.

80

(a) 3000 epoch: Original Sound Spectro‐
gram

(b) 3000 epoch: Cut Sound Spectrogram
(c) 3000 epoch: Reconstructed Sound
File Spectrogram

Figure 4.45: 3000 epoch: Spectrograms

(a) 3500 epoch: Original Sound Spectro‐
gram

(b) 3500 epoch: Cut Sound Spectrogram
(c) 3500 epoch: Reconstructed Sound
File Spectrogram

Figure 4.46: 3500 epochSpectrograms

81

Figure 4.44 (c) shows we have trained a confident model using both BCE and MSE at the
Generator loss. Figures 4.45 and 4.46 show us the models even with more confidence.
The best result ever gotten in all of the experiments is the figure 4.45 (c). It can be seen that the
model did not delete the base frequencies, and it generated the new frequencies accurately. We
can say that if we compare the figure 4.45 (a), (b) and (c). But this may cause the overfitting.

Adopted Strategies:

The dataset has been updated to use logarithmically scaledMFCCs instead of STFTs.

The structure is the same as the previous experiment, MSE was used in the Generator loss
with BCE as the previous experiment.

Positive results:

The first results achieved with the newly generated frequencies are accurate.

the model looks confident.

Negative Resuls

• MSE might make the model Overfit.

4.2.11 Experiment 11

Transition to Layer Normalization [23]

In the last experiment, layer normalization was used in place of batch normalization in both
the discriminator and the generator. This change was necessary due to the structure of the
dataset, where each data point represented a different segment of a single full sound record-
ing. Unlike datasets where samples share similar characteristics, the segments in this dataset
were highly varied. Some segments contained more frequencies, some fewer, and others had
parts with almost no sound. The goal of the model was to learn how to reconstruct missing
frequencies based on the unique characteristics of each segment.

Batch normalization, which normalizes based on the statistics of entire batches by calculat-
ing the mean and variance across the batch, was problematic in this context. Each segment
in the dataset represented a different frequency profile, leading to inconsistency in the batch
statistics. Batch normalization assumes some degree of similarity between batchmembers, but

82

because the segmentswere so varied, this resulted in unstable gradient updates and inconsistent
learning. The model would struggle to generalize the frequencies to reconstruct since no two
segments were alike, which led to a fluctuating performance in the discriminator and difficulty
for the generator to converge.
To address this, layer normalization was used, which normalizes across the features of each

individual data point rather than across the entire batch. Since layer normalization is indepen-
dent of batch size and focuses on the characteristics within each data point, it provided a more
stable learning dynamic for this particular dataset. By switching to layer normalization, the
model was better able to handle the varied frequency content of each segment, avoiding the in-
stability and oscillations that occurred when using batch normalization. This change resulted
in smoother training dynamics and more reliable frequency generation across the entire range
of segments.

The results of the training made the significance of this change especially clear. Lower dB
values in the reconstructed waveforms and noisier results were probably caused by the use of
batch normalizing. The majority of the input’s frequency values are low or very close to zero,
therefore it’s possible that batch normalization further decreased these values during training,
lowering the decibel levels even further. The waveforms that became flatter and had a decreas-
ing amplitude after each epoch showed that batch normalization was attenuating significant
frequency components.

Themodel avoided this problem by using layer normalization, which led tomore consistent
training and clearer reconstructions with waveforms that better preserved their amplitude and
frequency information. To see the effect of the layer normalization in the results, theMSE loss
have cancelled in this experiment.

Best results have been achieved without using MSE in the Generator. In Figure 4.47, it is
clearly seen the Reconstructed version (4.47 (c)) contains the generated missing frequencies.
And it generated those missing frequencies pretty much accurately if we compare it with the
4.47 (a). The first result with using just Adversarial Loss(Binary Cross entropy (BCE)).

To see the results in other models with the completely same structure, 5 models have been
trained which results can be seen in figures 4.48, 4.49, 4.50, 4.51, and 4.52. 2 models were
trained until 6000 epoch, and both themodels were able to re-create somemissing frequencies,

83

(a) 5000 epoch Best Result:Original
Sound Spectrogram

(b) 5000 epoch Best Result: Cut Sound
Spectrogram

(c) 5000 epoch Best Result: Recon‐
structed Sound File Spectrogram

Figure 4.47: 5000 epoch Best Result: Spectrograms

(a) 6000 epoch first model: Original
Sound Spectrogram

(b) 6000 epoch first model:Cut Sound
Spectrogram

(c) 6000 epoch first
model:Reconstructed Sound File Spec‐
trogram

Figure 4.48: 6000 epoch first model:Spectrograms

(a) 6000 epoch Second model:Original
Sound Spectrogram

(b) 6000 epoch Second model:Cut
Sound Spectrogram

(c) 6000 epoch Second
model:Reconstructed Sound File Spec‐
trogram

Figure 4.49: 6000 epoch Second model Spectrograms

84

(a) 8000 epoch Second model:Original
Sound Spectrogram

(b) 8000 epoch Second model:Cut
Sound Spectrogram

(c) 8000 epoch Second
model:Reconstructed Sound Spectro‐
gram

Figure 4.50: 8000 epoch Second model Spectrograms

(a) 10000 epoch Second model:Original
Sound Spectrogram

(b) 10000 epoch Second model:Cut
Sound Spectrogram

(c) 10000 epoch Second
model:Reconstructed Sound Spectro‐
gram

Figure 4.51: 10000 epoch Second model Spectrograms

(a) 21000 epoch model:original Sound
Spectrogram

(b) 21000 epoch model:Cut Sound
Spectrogram

(c) 21000 epoch model:Reconstructed
Sound File Spectrogram

Figure 4.52: 21000 epoch model Spectrograms

85

not as accurately as 5000 epoch version of themselves which can be seen in figure 4.47. But
still, the layer normalization results can be easily seen from the results we are getting. All of the
results show that each of them is confident about the base frequencies and trying to generate
the missing frequencies.

we can see that the models are confident about the base frequencies and try to generate the
missing frequencies in Figures 4.48 (c), 4.49 (c), 4.50 (c), 4.51 (c), and 4.52 (c).

Adopted Strategies:

Started using layer normalization instead of batch normalization.

to see the effect of the Layer normalization, MSE loss for the generator has been canceled.

Positive results:

• First results with generated accurate missing frequencies using Adversarial Loss (BCE) have
been acquired.

• The model works stable, and trains with balance,

• Model does not need the label smoothing for balance.

Negative Results:

• The stochastic nature of GANs can result in delayed generation of missing frequencies.

• In order to achieve better results, this structure still requires some further improvement.

86

5
Results

In this thesis, we explored multiple strategies to improve the generation and reconstruction of
damaged audio files using a combination of SpecGAN and DCGAN architectures. Through-
out the experiments, variouspreprocessing techniques,model architectures, and training strate-
gies were implemented to evaluate their impact on the quality of audio reconstructions. Below,
we summarize each of the key strategies and the rationale behind their use.

5.1 Spectrogram-Based Audio Representation

The first step in our process involved converting raw audio data into a format that could be
effectively used by the generator and discriminator. Initially, Short-Time Fourier Transform
(STFT) was applied to 2-second segments of the input audio to generate spectrograms, which
represent the frequency content over time. The real and imaginary components of the spectro-
grams were separated, and the imaginary parts were transformed into real numbers, resulting
in two-channel images that could be processed by the DCGAN. This approach was selected
because DCGANs excel at generating two-dimensional data, making spectrograms a natural
fit for training.

As we progressed, we experimentedwith logarithmically scaledMel-FrequencyCepstral Co-
efficients (MFCCs) instead of using the STFT-based spectrograms. The rationale was that

87

MFCCs, being amoreperceptuallymeaningful representationof sound,would allow themodel
to focus on the most important frequencies for human hearing. Additionally, the logarithmic
scaling of the MFCCs was expected to help the model better handle the large dynamic range
of audio signals, potentially improving reconstruction quality.

5.2 Generator andDiscriminator Architectures

The generator and discriminator architectures were based onDeep Convolutional GAN (DC-
GAN), which employs convolutional layers for spatial feature extraction. Convolutional layers
are well-suited for learning the time-frequency patterns found in spectrograms, and by using
transposed convolutions in the generator, the model was able to upsample low-resolution in-
puts into higher-resolution outputs.

Over time, several modifications were made to the architectures:
Leaky ReLU in the Discriminator: Throughout the thesis, the Leaky ReLU activation func-
tion was consistently used in the discriminator. This choice was crucial, as Leaky ReLU allows
small negative values to pass through, enabling the model to provide feedback to the generator
even when it makes poor predictions. If ReLU had been used instead, negative values would
be zeroed out, depriving the generator of important information. By adjusting the negative
slope of Leaky ReLU (from the standard 0.01 to higher values like 0.3), we observed that the
discriminator was able to provide more nuanced feedback, resulting in better learning dynam-
ics.

Generator Activation Functions: Initially, ELU activation functions were used in the gen-
erator’s second and third layers, as ELU is known to handle negative inputs more gracefully
and accelerate convergence. However, it was later replaced by Leaky ReLU due to the constant
negative output producedbyELU.ByusingLeakyReLU,we allowed the generator to generate
negative outputs based on the magnitude of error rather than forcing constant negative values,
which improved the generation process by providing more adaptive feedback to the network.

88

5.3 Training Strategies

To stabilize training and improve the convergence of the model, we implemented several train-
ing strategies:

Multiple Generator Updates Per Discriminator Update: One of the major challenges
in training GANs is ensuring that neither the generator nor the discriminator overpowers the
other. To address this, we introduced a strategy where the generator was updated multiple
times for each discriminator update. This allowed the generator to ”catch up” to the discrim-
inator, ensuring a more balanced training process. The logic here was simple: by training the
generator more frequently, it could quickly adapt to the feedback provided by the discrimina-
tor, preventing the discriminator from becoming too dominant.

Dynamic Discriminator Training: Another key strategy was dynamically adjusting the
training frequency of the discriminator based on its fake loss. If the discriminator’s fake loss
dropped below a certain threshold (indicating that it was becoming too good at distinguishing
fake data from real data), we limited its training to prevent it from becoming overly dominant.
This adaptive training strategy ensured that both networks continued to improve without ei-
ther one overwhelming the other, promoting more effective learning.

5.4 IncorporatingMean Squared Error (MSE) Loss

While theBinaryCross-Entropy (BCE) loss functionwasused for the adversarial aspect of train-
ing (i.e., fooling the discriminator), it was not sufficient for ensuring that the generated audio
closely matched the target audio. To address this, we added a Mean Squared Error (MSE) loss
term to the generator’s objective. The MSE loss encourages the generator to minimize the dif-
ference between the generated and real spectrograms on a pixel-by-pixel basis. This addition
was crucial for preserving the frequency content of the input audio, particularly for ensuring
that the baseline frequencies (those present in the noisy data) were maintained.

The logic behind adding MSE was that while the adversarial loss helps the generator learn
to fool the discriminator, it doesn’t directly optimize for the accuracy of the generated spec-
trogram. By adding MSE, we could ensure that the generator focused not only on fooling

89

the discriminator but also on creating outputs that closely resembled the ground truth. This
combined loss function resulted in more accurate reconstructions and helped to prevent the
generator from discarding important frequency information during training.

5.5 Experiments with Leaky ReLU Slope

Weexperimentedwith different negative slopes for the LeakyReLUactivation function, specif-
ically testing values of 0.02 and 0.3. The results demonstrated that the model with a slope of
0.3 performed significantly better, especially in terms of waveform clarity and decibel levels. A
smaller slope of 0.02 slowed down the learning process, causing the network to make smaller
adjustments during training, resulting in lower-quality audio reconstructions. In contrast, the
higher slope of 0.3 allowed the model to make larger, more meaningful updates during each
training step, leading to improved performance and faster convergence.

This experiment highlights the importance of tuning activation function parameters to en-
sure that the model can learn effectively. In this case, the higher slope of 0.3 provided a good
balance between learning speed and stability, improving the overall performance of the GAN.

5.6 Normalization Strategies

Initially, batch normalization was employed in both the generator and discriminator. How-
ever, it became evident that this led to training instability, especially with smaller batch sizes.
Batch normalization, which normalizes inputs across the entire batch, introduced noise into
the training process, resulting in inconsistent gradient updates. To mitigate this, we switched
to layer normalization, which normalizes across features within each individual input. This
change improved the stability of the training process and led to clearer reconstructions, as the
network no longer overfit to specific batch statistics. Additionally, batch normalization seemed
to contribute to lower decibel levels in the reconstructed waveforms, likely due to its dampen-
ing effect on the low-amplitude frequency components.

90

5.7 Logarithmic Scaling ofMFCCs

In one of the later experiments, we switched from using STFT-based spectrograms to loga-
rithmically scaled MFCCs. MFCCs provide a more perceptually meaningful representation
of sound, and the logarithmic scaling allowed the model to better handle the wide dynamic
range of audio signals. This preprocessing step significantly improved the generator’s ability to
reconstruct missing frequencies in noisy audio, as the logarithmic scaling helped amplify low-
amplitude components that are often critical for human perception.

5.8 Final Remarks

Through these various strategies and experiments, we were able to incrementally improve the
performance of our GAN model for reconstructing damaged audio files. The combination
of dynamic training strategies, activation function adjustments, and preprocessing techniques
played a crucial role in enhancing the model’s ability to generate clear, high-fidelity audio. By
carefully balancing the adversarial loss with the content loss (MSE), we ensured that the gener-
ator could both fool the discriminator and accurately reproduce the original audio’s frequency
content. As a result, the final model, trained with layer normalization, logarithmically scaled
MFCCs, and a carefully tuned Leaky ReLU slope, produced the best overall reconstructions.
Future work could explore further refinements, such as incorporating Conditional GANs or
using advanced loss functions like theWasserstein loss, to push the boundaries of audio recon-
struction even further.

5.9 Result comparison:

The comparisons of the sounds have been made.

MSE (Mean Square Error): Measures the average squared difference between the original
and generatedwaveforms. The lower theMSE, the closer the generatedwaveform is to the orig-
inal, indicating better reconstruction quality.

91

RMSE (Root Mean Square Error): The square root of the MSE, representing the error
in the same units as the original signal. Like MSE, a lower RMSE indicates that the generated
audio is closer to the original. It is oftenmore interpretable since it maintains the same units as
the original signal.

SNR(Signal-to-NoiseRatio): Measures the ratioof theoriginal signal’s power to thenoise’s
power in the generated signal. A higher SNR value indicates that the generated waveform con-
tains less noise relative to the original signal, implying a more accurate reconstruction.

LSD (Log-Spectral Distance): A measure of the spectral distortion between the original
and generated audio in the frequency domain. It is calculated by comparing the logarithmic
power spectra of theoriginal andgenerated signals. LowerLSDvalues indicate better frequency
preservation, as this metric evaluates how well the generated audio maintains the frequency
characteristics of the original.

STOI (Short-Time Objective Intelligibility): Evaluates the intelligibility of the generated
audio by assessing how well the reconstructed signal matches the original in terms of speech
intelligibility. STOI is commonly used in tasks like speech enhancement and audio reconstruc-
tion. A higher STOI score (closer to 1) suggests that the generated audio is more intelligible
and closer to the original in terms of auditory clarity.

92

Table 5.1: Comparison Results for Each Experiment

Experiment MSE RMSE SNR LSD STOI
Experiment 1 0.0047 0.0685 0.1554 17.0925 0.3640
Experiment 2 0.0202 0.1421 0.0580 26.1517 0.7303
Experiment 3 0.0075 0.0868 0.1677 21.3527 0.5529
Experiment 4 0.0111 0.1052 0.0670 45.7435 0.3455
Experiment 5 0.0199 0.1410 0.0033 20.2756 0.0961
Experiment 6_1 0.0198 0.1409 0.0093 23.0172 0.4385
Experiment 6_2 0.0198 0.1408 0.0161 38.7754 0.2548
Experiment 6_3 0.0201 0.1417 -0.0414 21.8296 0.4998
Experiment 6_4 0.0199 0.1410 0.0036 20.9818 0.4293
Experiment 6_5 0.0198 0.1409 0.0106 24.3463 0.4207
Experiment 6_6 0.0199 0.1412 -0.0118 12.3863 0.4108
Experiment 6_7 0.0199 0.1412 -0.0102 18.0141 0.2418
Experiment 7 0.0197 0.1405 0.0334 14.0605 0.5530
Experiment 8 0.0181 0.1345 0.2097 9.6679 0.5550
Experiment 9 0.0190 0.1379 0.1950 8.8990 0.5159
Experiment 10_1 0.0811 0.2848 0.0013 12.6809 0.5886
Experiment 10_2 0.0483 0.2197 -0.0028 7.6526 0.6098
Experiment 10_3 0.0017 0.0414 -0.1185 11.4884 0.7542
Experiment 11_1 0.0172 0.1311 -0.0701 6.5866 0.6517
Experiment 11_2 0.0170 0.1305 -0.0117 14.5981 0.3509
Experiment 11_3 0.0170 0.1302 -0.0120 13.4141 0.3848
Experiment 11_4 0.0170 0.1305 -0.0260 15.8169 0.5218
Experiment 11_5 0.0168 0.1298 -0.0113 14.8529 0.4082
Experiment 11_6 0.0171 0.1308 -0.0442 15.8698 0.2933

93

• MSE (Mean Squared Error):

Best: Experiment 10-3 (0.0017)

Worst: Experiment 10-1 (0.0811)

• RMSE: (Root Mean Squared Error):

Best: Experiment 10-3 (0.0414)

Worst: Experiment 10-1 (0.2848)

• SNR (Signal-to-Noise Ratio):

Best: Experiment 8 (0.2097)

Worst: Experiment 11-1 (-0.0701)

• LSD (Log-Spectral Distance):

Best: Experiment 11-1 (6.5866)

Worst: Experiment 4 (45.7435)

• STOI (Short-Time Objective Intelligibility):

Best: Experiment 10-3 (0.7542)

Worst: Experiment 5 (0.0961)

94

Analysis of the Results

Balanced Performers

Experiment 10-3 has the best overall performance inMSE, RMSE, and STOI. Although its
SNR is negative, it performs well in LSD, showing a balance between different measures.

Experiment 11-1 is also balanced, with competitive results in MSE, RMSE, and LSD, mak-
ing it a top contender, though the SNR is negative.

Experiment 8 shows a strong balance between SNR, LSD, and STOI, making it a reliable
choice for balancing overall intelligibility and fidelity.

Analysis of the Best Balanced Performer

MSE: Experiment 11-1 has a relatively low value of 0.0172, which is competitive with other
well-performing experiments like Experiment 10-3 (0.0017) and Experiment 8 (0.0181).
RMSE: Similarly, Experiment 11-1 shows a low RMSE of 0.1311, indicating it performs well
in minimizing overall error.
SNR: Though it has a slightly negative SNR of -0.0701, this value is still reasonably close to
zero, showing that the signal-to-noise ratio is not heavily skewed.
LSD:With 6.5866, Experiment 11-1 demonstrates strong performance inmaintaining spectral
fidelity, second only to Experiment 10-2.
STOI: Experiment 11-1 has a STOI score of 0.6517, placing it among the higher scores, mean-
ing that the intelligibility of the reconstructed audio is quite good.

Balanced Performer

Given thatExperiment 11-1maintains consistent andcompetitive results acrossMSE,RMSE,
LSD, and STOI, while only having a slightly negative SNR, we can conclude that Experiment
11-1 is the most balanced in terms of overall performance across all metrics.

The Most Balanced Experiment: Experiment 11-1
Low Errors: The MSE and RMSE values are consistently low, indicating that the generated

95

audio is close to the original. Good Spectral Preservation: The LSD is one of the best scores
across all experiments, which means it maintains the integrity of the spectral content.

Intelligibility: With an STOI score of 0.6517, the generated audio is sufficiently intelligible,
even in the presence of noise.

SNR Trade-off : While the SNR is slightly negative, this trade-off is acceptable given the
balance it strikes with other metrics, particularly in maintaining good intelligibility and spec-
tral content.

In summary, Experiment 11-1 shows the best balance across the board, and based on the
results, it is the most well-rounded experiment. This experiment strikes an optimal trade-off
between intelligibility, spectral preservation, and low error.

96

6
Conclusion

In this thesis, we investigated the use of Generative Adversarial Networks (GANs) to recon-
struct damaged audio files, focusing on old film restoration, where maintaining the authentic-
ity of the sound is essential. We executed and reviewed severalGANdesigns, such as SpecGAN,
DeepConvolutional GAN (DCGAN), and a blend of these withMelGAN.We experimented
with different performance-enhancing adjustments, like modifying activation functions, nor-
malization methods, and training approaches.

Our approach aims to find an equilibrium between restoring the lost audio elements and
maintaining the original sound’s authenticity, which includes the ambient noise typical of old
film recordings. We attempted to give the GAN models useful input material while reducing
the loss of spectral information by breaking up the audio into consumable segments and turn-
ing them into spectrograms or MFCCs for processing.

97

We conducted a thorough investigation into various GANmodels and training approaches,
assessing theoutcomeswithquantitativemetrics includingMSE,RMSE, SNR,LSD, andSTOI.
Experiment 11 consistently showed the most balanced results across all metrics, even though
some models did particularly well on certain metrics. This highlights how crucial it is to ap-
proach audio reconstruction holistically, since concentrating only on one metric—for exam-
ple, minimizingmean square error—can frequently result in poor outcomes in other domains,
including spectral fidelity or intelligibility.
Overall, this study’s findings highlight the promise of GAN-based architectures for audio

reconstruction in situations where maintaining the original sound—with all of its flaws—is
important. Even though there is still room for improvement, especially in terms of fine-tuning
the model’s capacity to manage extremely diverse and noisy datasets, the experiments offer a
solid basis for additional research in this area. To further improve the caliber of audio recon-
structions, future studies should investigate more GAN variations, different loss functions,
and more reliable assessment techniques.

6.1 Future Improvements

In the future, I want to further enhance the results of Experiment 11, whichwas the firstmodel
in this study to effectively use adversarial loss to create the missing frequencies with a high de-
gree of accuracy. Nevertheless, neural networks’ stochastic nature frequently poses difficulties,
especially when it comes to reliably reconstructing missing frequencies during training. In or-
der to address this, I suggest changing the training phase in a way that would lessen the unpre-
dictable nature of neural network results and increase the dependability of missing frequency
production.

In addition to the adversarial loss, the suggested improvement includes dynamically incor-
porating theMean Square Error (MSE) between the fed cut audio data and the created output
into the generator’s loss function. This strategy is innovative in that it conditions theMSE con-
tribution, either on a predeterminednumber of epochs or at themoment theMSEbetween the
input and the generated output approaches a minimal threshold. The generator would then
only depend on the adversarial loss for additional training after this requirement was satisfied,
canceling theMSE loss in the process. This dynamic addition and subtraction of theMSE loss
should help the model understand the missing frequencies’ structure more accurately in the
beginning while avoiding an over-reliance onMSE as training goes on.

Several discriminators, each entrusted with acquiring and enforcing unique audio features,

98

could be another enhancement for upcoming experiments. One discriminator could, for exam-
ple, be made to specialize in frequency reconstruction, making sure that the frequencies that
are produced closely resemble the original ones. In order to make sure that the reconstructed
audio has the correct frequencies and volume levels, a second discriminator would assess the
recreated audio’s decibel (dB) levels. The generator would receive more focused feedback from
many angles bymerging these two specialized discriminators, whichmight greatly enhance the
learning process.
Thus, the generator could balance its efforts between precisely replicating frequencies and

sustaining suitable volume levels. The generator loss would thus be a sum of the adversarial
losses from both discriminators. By employing several discriminators, the reconstructed audio
could have better aural quality and fidelity due to a more sophisticated reconstruction of its
features. The efficacy of this method in yielding more precise and well-rounded audio recon-
struction outcomes will be examined in subsequent studies.

99

100

References

[1] S. C. Alec Radford, Luke Metz, “Unsupervised representation learning with deep con-
volutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[2] M. P. Chris Donahue, Julian McAuley, “Adversarial audio synthesis,” arXiv preprint
arXiv:1802.04208, 2018.

[3] T. d. B. L. G. W. Z. T. J. S. A. d. B. Y. B. A. C. Kundan Kumar, Rithesh Kumar, “Mel-
gan: Generative adversarial networks for conditional waveform synthesis,” in Advances
in Neural Information Processing Systems, vol. 32, 2019, pp. 14 910–14 921.

[4] M. M. B. X. D. W.-F. S. O. A. C. Y. B. Ian J. Goodfellow, Jean Pouget-Abadie�, Gener-
ative Adversarial Nets, 2014.

[5] N. Upadhyay and A. Karmakar, “Speech enhancement using spectral subtraction-
type algorithms: A comparison and simulation study,” Procedia Computer Science,
vol. 54, pp. 574–584, 2015, eleventh International Conference on Communication
Networks, ICCN 2015, August 21-23, 2015, Bangalore, India Eleventh International
Conference on Data Mining and Warehousing, ICDMW 2015, August 21-23,
2015, Bangalore, India Eleventh International Conference on Image and Signal
Processing, ICISP 2015, August 21-23, 2015, Bangalore, India. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050915013903

[6] N. Upadhyay and R. K. Jaiswal, “Single channel speech enhancement: Using wiener
filtering with recursive noise estimation,” Procedia Computer Science, vol. 84, pp. 22–
30, 2016, proceeding of the Seventh International Conference on Intelligent Human
Computer Interaction (IHCI 2015). [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1877050916300758

[7] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao, “Symbolic music genre transfer
with cyclegan,” 2018. [Online]. Available: https://arxiv.org/abs/1809.07575

101

https://www.sciencedirect.com/science/article/pii/S1877050915013903
https://www.sciencedirect.com/science/article/pii/S1877050916300758
https://www.sciencedirect.com/science/article/pii/S1877050916300758
https://arxiv.org/abs/1809.07575

[8] V. Kuleshov, S. Z. Enam, and S. Ermon, “Audio super resolution using neural
networks,” 2017. [Online]. Available: https://arxiv.org/abs/1708.00853

[9] S.Deshmukh,R. Singh, andB.Raj, “Domain adaptation for contrastive audio-language
models,” 2024. [Online]. Available: https://arxiv.org/abs/2402.09585

[10] J. Pons, X. Liu, S. Pascual, and J. Serrà, “Gass: Generalizing audio source separation
with large-scale data,” 2023. [Online]. Available: https://arxiv.org/abs/2310.00140

[11] E. Karamatlı, A. T. Cemgil, and S. Kırbız, “Source separation and classification using
generative adversarial networks and weak class supervision,” Digital Signal Processing,
vol. 154, p. 104694, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1051200424003191

[12] T. Ince, S. Kiranyaz, O. C. Devecioglu, M. S. Khan, M. Chowdhury, and M. Gabbouj,
“Blind restoration of real-world audio by 1d operational gans,” 2023. [Online].
Available: https://arxiv.org/abs/2212.14618

[13] Y. Gong, Z. Xie, G. Duan, Z. Ma, and M. Xie, “Distribution fitting for combating
mode collapse in generative adversarial networks,” 2024. [Online]. Available: https:
//arxiv.org/abs/2212.01521

[14] L. B. Martin Arjovsky, Soumith Chintala, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017.

[15] H. Z. K. S. O. V.-A. G. N. K. A. S. K. K. Aaron van den Oord, Sander Dieleman,
WaveNet: A GenerativeModel for Raw Audio, 2016.

[16] S. O. Mehdi Mirza, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[17] T. Z. A. A. E. Phillip Isola, Jun-Yan Zhu, “Image-to-image translation with conditional
adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 5967–5976.

[18] T. B. Olaf Ronneberger, Philipp Fischer, “U-net: Convolutional networks for biomed-
ical image segmentation,” arXiv:1505.04597, 2015.

102

https://arxiv.org/abs/1708.00853
https://arxiv.org/abs/2402.09585
https://arxiv.org/abs/2310.00140
https://www.sciencedirect.com/science/article/pii/S1051200424003191
https://www.sciencedirect.com/science/article/pii/S1051200424003191
https://arxiv.org/abs/2212.14618
https://arxiv.org/abs/2212.01521
https://arxiv.org/abs/2212.01521

[19] L. B. Martin Arjovsky, “Towards principled methods for training generative adversarial
networks,” arXiv preprint arXiv:1701.04862, 2017.

[20] W. Z. V. C. A. R. X. C. Tim Salimans, Ian Goodfellow, “Improved techniques for train-
ing gans,” in Advances in neural information processing systems, 2016, pp. 2234–2242.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[22] G. H. Rafael Müller, Simon Kornblith, “When does label smoothing help?”
arXiv:1906.02629v3, 2015.

[23] G. E. H. Jimmy Lei Ba, Jamie Ryan Kiros, “Layer normalization,” arXiv:1607.06450,
2016.

103

http://www.deeplearningbook.org
http://www.deeplearningbook.org

104

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Context and Problem Statement
	Generative Adversarial Networks (GANs)
	GAN Loss Functions and Objectives
	The Discriminator’s Task
	The Generator’s Task
	The Push and Pull of GAN Training
	A Practical Adjustment for Better Training

	GAN Application in the Audio Domain
	Audio Enhancement and Denoising
	Speech and Music Synthesis
	Audio Super-Resolution
	Audio Domain Adaptation
	Sound Source Separation
	Music Restoration
	Challenges in GAN-Based Audio Processing

	The Goal of this Work

	State of the Art
	Overview of Generative Models in Audio Processing
	 GAN Architectures for Audio Processing
	 DCGAN (Deep Convolutional GAN)
	SpecGAN
	WaveGAN
	MelGAN

	Additional GAN Architectures in Audio Processing
	Wasserstein GAN (WGAN)
	Conditional GAN (cGAN)
	 Pix2Pix GAN

	 Summary of State of the Art

	Dataset
	Old Film’s Damaged Files
	Custom Dataset
	Pre-Process and After-Process of the Custom Dataset
	Stft Approach
	Normal Scaled STFT
	Logarithmically Scaled STFT

	MFCC
	Normal Scaled MFCC
	Logarithmically Scaled MFCC

	Experiments
	Methodology
	Explanation of the Training Code for DCGAN

	Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5
	Experiment 6:
	Experiment 7
	Experiment 8
	Experiment 9
	Experiment 10
	Experiment 11

	Results
	Spectrogram-Based Audio Representation
	Generator and Discriminator Architectures
	 Training Strategies
	Incorporating Mean Squared Error (MSE) Loss
	 Experiments with Leaky ReLU Slope
	 Normalization Strategies
	 Logarithmic Scaling of MFCCs
	Final Remarks
	Result comparison:

	Conclusion
	Future Improvements

	References

