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Introduction

Semiconductor Quantum dots are attracting an increasing interest from scientific com-

munity, due to their peculiar optical properties. They possess many different applications

in various research and industrial fields. With quantum dots it is possible to produce

for example solar cells, or new generation screens. An important property is their dis-

crete energy spectrum, and then their capability of emitting single photons, or entangled

photon pairs, under an appropriate optical excitation. This property is especially useful

when applied to quantum photonics and to quantum information protocols. In fact the

possibility of using photons as qubits to encode, transmit and process quantum infor-

mation has been considered and investigated many times, due to their low decoherence,

high-speed transmission and the possibility of using classical photonic technologies [1]

[2].

The goal of this thesis is the characterization of a single semiconductor quantum dots as

single photon source, for its use in quantum information protocols.

This goal will be achieved through the design, building and the optimization of some

optical devices, such as a spectroscopy set-up, a pulse stretcher and an interferometer.

The thesis is divided into three different chapters:

• Chapter 1 : In the first chapter the main physics regarding quantum dots will

be explained. It will start from their fabrication, briefly explaining the differences

between the Self-assembled quantum dots and the Site controlled quantum dots.

Then their energy structure will be explained, with a focus on the first two excited

states, the exciton (X) and the bi-exciton (XX). These two states are the most

significant states of a quantum dot for generation of quantum light and entangled

photon pairs. After this part the optical excitation schemes of a quantum dot

will be explained, dividing them into above band and in band excitations. Then

there is a section regarding the statistics of the emitted photons, and the methods

useful to investigate the quantum nature of light emission. The last part is about

the photon indistinguishability, and consequently the importance of the coherence

length in quantum photonics.

• Chapter 2 : The second chapter will explain all the experimental setup and the

reasons which led us to build it with that configuration. It will start with the

description of the cooling system, which cooled down the sample to 4 K. Then the

imaging system will be explained, that allowed us to see the sample and align and

focus the excitation laser on it. For investigation of the Quantum dot emission,
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iv INTRODUCTION

two different spectroscopic systems were used : a commercial Princeton instru-

ments spectrometer, useful to get a quick overview of the spectra of the excited

quantum dot, and a self-made spectrometer, used to measure important parameters

for the characterization of the photon emission, such as the second order correlation

function. Afterwards the design and building of a pulse stretcher will be presented.

A pulse stretcher allows us to easily tune the time duration of a pulse from a pulsed

laser source (in our case, a Ti:Sapphire pulsed laser with 140 fs pulse duration).

The set-up of a pulse stretcher is essential in order to obtain resonant excitation of

a quantum dot. At last, the principles ruling interference in a Michaelson interfer-

ometer (which was built as part of the experimental setup) will be presented, and

its importance for the measurement of coherence length of the emitted photons.

• Chapter 3 : In the third chapter the experimental results will be shown. These

include some spectra, taken under above band excitation, and using a continuous

wave He-Ne laser. Using these spectra, and measuring the counts corresponding to

different emission lines and their dependence under increasing excitation powers,

it is possible to discriminate between the emission lines corresponding to different

excitation processes (in our case the exciton and the biexciton). Once these lines

have been identified, it was possible to separate the paths followed by the emitted

photons with the self-made spectrometer, and measure the second order correlation

function of the exciton photons. In this way the quantum nature of the light emitted

by a single semiconductor quantum dot has been proved.



Chapter 1

Theory

1.1 Quantum Dots

The foundation of quantum photonic experiments is based on the generation, manipu-

lation and detection of quantum light. In the case of single photons, they are ideally

created by two-level systems. There are many two-level systems that can be used, such

as single atoms, molecules or color centers [3]. In addition to these systems, there are

other options. A particular atom-like system that can be described as a two level sys-

tem is a semiconductor quantum dot (QD). Quantum dots can be created embedding

a semiconductor with a small bandgap in between another semiconductor with a larger

bandgap.

Quantum dots are attracting an increasing interest from the scientific community, because

of their unique and interesting properties, making them useful for multiple applications

in both research and industry. For example, QDs can be used as light-emitting diodes or

solar cells [4] [5] [6].

QDs are used in Quantum photonics due to their ability to generate non-classical light.

Talking about non-classical light refers to those states that cannot be emitted by a clas-

sical source, like a thermal light or a laser. If excited under resonant excitation, these

devices become in fact a quasi deterministic single-photon sources with high emission ef-

ficiency. Several interesting properties have been already demonstrated for light emitted

from quantum dots, such as two-photon interference [7] and polarization entanglement

[8]. These properties make QDs very attractive for several applications in the fields of

quantum cryptography, quantum communication and quantum information [ref]. Fur-

thermore, Quantum Dots can easily be integrated in solid-state systems, and they are

easy to use in integrated photonics circuits. It is possible to tune their emission spectrum

in a wide range - from 850 to 1400 nm - by changing their size. The emission spectrum

can be changed modifying the QD geometry [9] or its composition.

In order to exploit quantum dots’ peculiar properties, it is crucial to have a strong three

dimensional spatial confinement of the semiconductor material. This means that quan-

tum dots cannot be bigger than ∼ 10 nm. If they are bigger than 10 nm, they start losing

their quantum confinement properties, and start behaving as a bulk material. There are

several ways to produce quantum dots, which will be described in the subsequent sections.

1



2 CHAPTER 1. THEORY

1.1.1 Self-assembled Quantum Dots

The lattice parameters mismatch between two different semiconductors gives rise to strain

when the two materials are deposited on top of each other. This circumstance is exploited

in the Stranski-Krastanov growth method [10][11]. In this method a material with small

band gap is deposited onto a substrate with larger bandgap. Here initially the layer

formed has the same lattice parameter as the substrate, with a strong deformation in

the chemical bonds. As the thickness increases, the total energy of the system does also,

until it reaches a critical value. Once reached this point, different energy relaxation pro-

cesses appear, producing dislocations, or increasing the surface through the formation of

tridimensional nucleus (dots) (Figure 1.1). Not all the atoms form these nucleus, a small

layer of them remains on all the surface, which is called the wetting layer. This layer can

influence the physics of the dot [12].

The size of these islands can be controlled by the amount of material deposited. In order

to complete the three dimensional quantum confinement, another layer of the semicon-

ductor with larger band gap is deposited [1].
3

Figure 2 Schematic capping process of a pyramidal InAs QD
(a) overgrown by GaAs layers with increasing thicknesses (b-e).
Reprinted with permission from [53]. ©2008, AIP Publishing LLC.

thereby extremely sensitive to the amount of material that is
deposited.

The growth of InAs on a GaAs (100) surface ini-
tially results in a thin 2D wetting layer. Due to the lattice-
mismatch, the two-dimensional growth mode turns into a
three-dimensional growth after deposition of a few mono-
layers resulting in the creation of randomly positioned QDs
with a pyramidal shape. In order to prevent the dots from
oxidation and to separate them from the surface (for the in-
tegration into photonic nanostructures, see Section 4), they
are commonly overgrown by a capping layer of GaAs com-
pleting the three-dimensional quantum confinement. The
capping changes the shape of the QDs from purely pyra-
midal to truncated pyramidal (see Figure 2) [53]. During
the capping process, intermixing between the capping ma-
terial and the QDs might occur leading to the formation of
In(Ga)As QDs. This intermixing strongly affects the QD
composition and potential profile as well as the QD emis-
sion.

In recent years, several techniques have been developed
that facilitate the direct manipulation of QD properties in-
cluding their size, their size distribution, their density, their
shape and emission wavelength. The QD size can be var-
ied by changing the composition of the dots [54]. The size
distribution of QDs directly determines the inhomogeneous
linewidth of the QD ensembles: large size variations lead to
an unwanted broadening of the emission. A way to reduce
the size distribution spread would be partial capping and
annealing: an almost uniform height of QDs can be achieved
by introducing an annealing step during the process of QD
capping [56]. This process is usually accompanied by a
blueshift of the QD emission due to the height reduction.

Besides the control of the uniformity, the growth condi-
tions can be used to change the shape of the confinement
potential and thereby the emission energy. Indeed, the emis-

Figure 3 Top row: Atomic force micrographs from QDs grown by
droplet epitaxy before (left) and after annealing (right) at 400◦C.
©IOP Publishing. Reproduced with permission. All rights reserved.
Bottom row: Scanning tunnel micrographs of monolayer fluctu-
ations just after growth interruption for bottom and top QW in-
terfaces (left and right). Adapted with permission from Ref. [70].
Copyrighted by the American Physical Society.

sion properties of QDs are determined by the strength of the
quantum confinement effect which can be altered in several
different ways. Besides changing the vertical height of QDs
by e.g. partial capping, the capping layer composition can
be optimized to alter the strain state and heterostructure
potential in the QD, or QDs can be annealed after growth
leading to an inter-diffusion of gallium and indium at the
QD surface. The diffusion process undermines the quan-
tum confinement and causes a blueshift [56–58] whereas
an InGaAs capping layer reduces the strain in the QD and
reduces the inter-diffusion, leading to a red-shift of the QD
emission [59, 60].

The control of the density of QDs is crucial for the per-
formance of single photon experiments since it requires
the ability to optically address individual QDs by conven-
tional spectroscopic methods. Several routes were already
demonstrated including the change of growth parameters
such as growth temperature [61], III/V-ratio [62] or growth
interruptions [63]. One of the most reliable ways to control
the density of QDs (over several orders of magnitude) is
the change of the growth rate, or by varying the amount
of deposited material (approaching the 2D to 3D material
growth transition range that can be controlled by system-
atically applying material flux gradients). In this way, den-
sities of self-assembled QDs as low as < 0.1 µm−2 can be
achieved [61, 64].

Alternatives to growing self-assembled QDs in the
Stranski-Krastanov growth mode are techniques such as
droplet epitaxy [65] or the control of monolayer fluctuations
in quantum wells [66, 67] (see Figure 3). Droplet epitaxy
is based on the affinity of some group-III elements to form

Copyright line will be provided by the publisher
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Figure 2.2: Atomic force microscope (AFM) images of uncapped, self-assembled InAs
quantum dots, grown under various conditions. All images cover one square micron.
(a) Dense quantum dots (Riber machine). (b) Fairly sparse quantum dots (Riber).
(c) Extremely sparse quantum dots, grown by G.S.S on CIS Varian machine. This
is a calibration growth for sample 903. (d) Sparse objects (Riber). Atomic steps are
visible in this image. The horizontal lines are artifacts

Figure 1.1: Left: illustration of the capping process of a InAs Quantum dots grown onto
GaAs layers. Image from [13]. Right : Atomic Force Microscope image of uncapped
self-assembled InAs quantum dots. The image covers one square micron. Image from
[14].

As the formation of these islands is a stochastic process, the position of the quantum

dot can not be controlled (see right panel in figure 1.1). Nevertheless the control of the

local density of nucleus is crucial for the performance of single photon experiments [1].

Moreover, also the size of a QD is not controllable, and the emission wavelength strongly

depends on it. However, in the last years new techniques have been developed for a bet-

ter manipulation of the size, density, shape and emission wavelength of quantum dots.

Frequent combinations of semiconductor materials used for the fabrication of quantum

dots are GaAs/InAs, GaInP/InP and GaN/AlGaN.

There are alternatives to the Stranski-Krastanov growth technique such as the droplet

epitaxy [15] [16]. This technique has the advantage that it does not require a mismatch

between the lattices of the materials involved during the process [17].
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Even with droplet epitaxy the position of the quantum dots cannot be controlled. Never-

theless an accurate control over the position of the quantum dot is requested for several

applications. Many times is more convenient using other kinds of growing methods, that

allow to precisely place a dot in a determined position. When using these methods, the

dots are usually called site-controlled quantum dots.

1.1.2 Site-controlled Quantum Dots

Several strategies have been developed to obtain a precise positioning of the dots on

a semiconductor platform. One common strategy is pre-patterning the semiconductor

substrate, drilling holes into it [18]. This can be achieved by using several techniques,

such as a combination of electron beam lithography and ion etching, by atomic force

nano-lithography [19], nanoimprint lithography [20] or local oxidation nanolithography

[21]. During the subsequent regrowth and deposition the atoms tends to nucleate in

these sites, obtaining regular patterns of Quantum Dots, and control their density as we

want (see in Figure 1.2), with a precision of ± 50 nm [1]. The position of quantum dots

Lithographic alignment to site-controlled quantum dots
for device integration

C. Schneider, M. Strauß, T. Sünner, A. Huggenberger, D. Wiener, S. Reitzenstein,
M. Kamp, S. Höfling,a� and A. Forchel
Technische Physik, Physikalishes Institut, Julius-Maximilians-Universität Würzburg, Am Hubland,
D-97074 Würzburg, Germany

�Received 14 March 2008; accepted 15 April 2008; published online 5 May 2008�

We report on a scalable fabrication technology for devices based on single quantum dots �QDs�
which combines site-controlled growth of QDs with an accurate alignment procedure. Placement of
individual QDs and corresponding device structures with a standard deviation of around 50 nm from
the target position was achieved. The potential of the technology is demonstrated by fabricating
arrays of mesas, each containing one QD at a defined position. The presence of single, optically
active QDs in the mesas was probed by scanning microphotoluminescence of the mesa arrays.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2920189�

One of the greatest challenges regarding the fabrication
of devices based on single semiconductor quantum dots1

�QDs� is the precise control of the absolute QD position. The
availability of a scalable process to control QD positions
with nanometer precision is of tremendous importance for
nanophotonic and nanoelectronic devices, including for in-
stance, single photon sources,2–4 semiconductor building
blocks for quantum information processing,5–8 and electron
memory devices.9,10 The corresponding fabrication
technology must be capable of aligning the device structures
relative to site-controlled QDs with nanometer scale accu-
racy. As a first step toward this goal, alignment of single
device structures relative to single, randomly grown QDs has
been recently demonstrated.11,12 Additionally, essential
progress has been reported with respect to site-controlled
growth of semiconductor QDs.13–19 However, the exploita-
tion of such site-controlled QDs for device fabrication on a
large scale is still in its infancy.

We report a process for nanoscale control of the absolute
spatial position of QDs and explore its potential for device
integration. Figure 1 shows a drawing of the corresponding
geometry. Initially, alignment cross markers and square me-
sas are defined on a GaAs substrate. The position of the QDs
is controlled by defining nanoholes as nucleation centers,13,14

which are patterned on top of the square mesas �Fig. 1�b��.
Figure 1�a� shows an atomic force microscope image of a
QD array formed on the nanoholes. The nanoholes and all
subsequent lithographic levels are aligned to the previously
defined set of markers. This allows a precise placement of
the device structure with respect to the QDs. In the follow-
ing, the fabrication procedure is described in more detail.

The process starts with the growth of a 350 nm thick
GaAs buffer on semi-insulating �100� GaAs substrates by
molecular beam epitaxy �MBE�. This improves the surface
quality and prevents nucleation of QDs in the space between
the target positions. Optical lithography was employed to
define the markers and square mesas. The structures were
dry-etched to a depth of 1.5 �m into the semiconductor. Sub-
sequently, circles with 30 nm diameter were patterned by

electron beam lithography �EBL� on the square mesas. This
lithographic level was aligned to the previously defined
markers. The circles were transferred into the GaAs by a
short electron-cyclotron-resonance reactive-ion-etch step, re-
sulting in the formation of nanoholes which act as nucleation
centers for the QD growth. The sample was cleaned with
pyrrolidon, isopropanol, sulfuric acid, hydrochloric acid, and
distilled water before it was transferred back into the MBE
system.

Prior to overgrowth, the sample was preheated in the
load lock chamber of the MBE system to 400 °C and an
atomic hydrogen cleaning procedure was applied for 30 min.
A 12 nm thick layer of GaAs was deposited before the QD
growth to smooth the surface. In order to achieve a proper
placement of QDs in nanohole arrays with periods in excess
of 1 �m, the migration length of the indium atoms on the
surface was enhanced. This was accomplished by decreasing
the InAs growth rate to values as small as 0.005 nm /s and
increasing the substrate temperatures up to 530 °C. For mor-
phological studies, the substrate temperature was ramped
down to room temperature just after QD growth. Otherwise,
the QDs were capped with 50 nm GaAs.

To assess the prospects of the presented technology for
the production of single QD based devices, the precision of
the alignment procedure has to be known. In order to evalu-
ate the alignment accuracy, we have combined the placement
of uncapped QDs using the process described above with the

a�Author to whom correspondence should be addressed. Electronic mail:
sven.hoefling@physik.uni-wuerzburg.de.

FIG. 1. �Color online� Square mesa structures on which the two-
dimensional QD array is grown, together with cross markers for accurate
lateral alignment. �a� Atomic force micrograph of site-controlled QDs with
1 �m square lattice period grown on the square mesa as shown schemati-
cally in �b�. �b� Schematic image of a square mesa structure with alignment
markers and the QDs.

APPLIED PHYSICS LETTERS 92, 183101 �2008�

0003-6951/2008/92�18�/183101/3/$23.00 © 2008 American Institute of Physics92, 183101-1

Figure 1.2: Atomic Force Microscope image of site-controlled QDs with 1 µm lattice
period. Image from [22].

can also be controlled using masked surfaces and making them grow in the uncovered

spots [23].

During this thesis InAs/GaAs quantum dots embedded in nanowires are used, of the

tipology that can be seen in figure 1.3. The nanowires act as waveguides and make

the quantum dot emit along the vertical direction. This fact allows a higher photon’s

collection. However in principle all the measurements shown in this thesis could have

been done with a quantum dot not embedded into a photonic structure.

1.2 Quantum Dots energy structure

The dimensionality of the system that is considered has strong effects on its energy struc-

ture. As can be seen in picture 1.4, depending on how many are the dimensions where

there is a quantum confinement of the electrons they have different densities of states. A

bulk material has a continuous density of states, depending on the energy as D(E) ∝
√
E.



4 CHAPTER 1. THEORY

growth, an InP shell was grown with a tapering angle at the tip of about 2°.
As a result, the QD is centered on the NW axis and efficiently surface-

passivated, thereby acting as an efficient tapered waveguide for the HE11
mode. This leads to potentially near-unity light extraction if a perfect mirror

is positioned at the substrate level. A sketch and a scanning electron micros-

copy (SEM) image are presented in Fig. 2A and B, respectively. Almost

100% light extraction is a fundamental requirement for truly deterministic

single-photon sources in quantum communication.

Low-power photoluminescence (PL) shows the neutral exciton

(X) recombination in the QD s-shell at 1.409 eV. At higher excitation

power, the biexciton (XX) line appears at some meV from the X line

(Fig. 2C). The XX line can be either above or below the X line, depending

on the biexciton binding energy that, in turn, depends on the QD size. The

distinction between X and XX emission was established according to a stan-

dard procedure: X- and XX-integrated intensities follow, respectively, a lin-

ear and a quadratic behavior in function of the excitation power (Fig. 2E). In

other works (Kouwen et al., 2010), the same kind of InAsP QDs in InP
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Figure 2 (A) Sketch of the system in PDMS and on gold. (B) SEM image of an as-grown
tapered InP NW. The arrows highlight the InAsP QD position. The tapering angle of the
nanowire is θ¼2°. The dotted line is at the position where the NW in PDMS breaks for
being transferred onto the gold mirror. The vertical and horizontal scale bars corre-
spond to 1μm. (C) PL spectra under pulsed laser excitation at increasing excitation
power. The emission lines are labeled as exciton (X), charged exciton (X�), and biexciton
(XX). (D) Second-order correlation function (g2) of the X line showing the antibunching
dip below 0.5. (E) Power dependence of the intensity of the X, X�, and XX lines. The
estimated collection efficiency at saturation is also reported for each line. Source:
Adapted with permission from Reimer et al. (2012). © 2012 NPG.
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Figure 1.3: Configuration of the type used during this thesis project. The quantum dot
of InAs is embedded in a nanowire of GaAs, which acts as a waveguide for the photons,
increasing in this way the emission rate along the vertical direction. Image from [24].

However, if the size of one dimension of the material is reduced to nanometric scale (in

the order of the De Broglie wavelength) the energies start to be quantized along that

direction, hence the density of states changes. In a quantum well the density of states

becomes a Heaviside step function, whereas in a quanum wire, as there are two dimen-

sions in which the energies are quantized the density of states depends on the energy as

D(E) = E−1/2. If the size of the third dimension of our material is reduced, a three

dimensional spacial confinement is achieved and the densities become Dirac delta func-

tions. This is what is usually called a quantum dot.

This characteristic gives quantum dots discrete energy states. This is the reason why

they are sometimes addressed as ”artificial atoms”. These energy levels can be partially

makes it possible to confine electrons and holes (virtual particles created by the

absence of electrons in the valence band of the material), thus yielding interesting

quantum properties. Figure 1.2 shows the form of the density of states functions for

different structures, respectively bulk (3 dimensions), quantum well (2 dimensions),

quantum wire (1 dimension) and quantum dot (0 dimension).

Figure 1.2: Form of the density of energy states for an electron in a semiconductor,
represented for 3D (bulk), 2D (slab), 1D (wire) and 0D (dot) systems. Taken from
[5].

As we can see on the lower part of the figure the density of states is asymptotic

of E1/2 for a bulk system, constant Heaviside function for a 2D system, proportional

to E−1/2 for 1D system and for a zero-dimensional system (namely a quantum dot)

is a Dirac function. The density of states is continuous for a bulk semiconductor

but starts to be quantized when the dimensionality is reduced in a quantum well.

We can see energy thresholds E1 and E2 corresponding to the discrete energy levels

that can be taken by electrons and holes in the direction of the quantization (the

growth direction in epitaxially made quantum wells). Those energy levels are of the

form En = h̄2π2n2/2m∗L where L is the width of the well and m∗ is the effective

mass of the particle. They are illustrated on figure 1.3.

In the case of the quantum wire and quantum dot, the discrete energy levels

are noted respectively with two and three indices (Eab and Eabc) corresponding to

the direction of quantization. If we take the example of a zero-dimensional cube

as represented on the far right of figure 1.2, an energy level labelled E121 would

correspond to the first level in the x direction, the second level in the y direction

and the first level again in z direction.

9

Figure 1.4: Density of the states as a function of the energy, depending on the system
dimension. As we can see, quantum dots have a discrete distribution of states. Image
from [25].
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controlled modifying various parameters, such as the material of the dot and of the ma-

trix (and consequently the strain between these two materials), the size and the shape

of the dot [9].

The evaluation of the energy levels of a quantum dot is difficult to be done analyti-

cally, and many numerical models which include various effects (such as the effect of the

strain), have been developed. A simpler approach that can be useful to have a qualita-

tive overview about the energy structure of quantum dots consists in using the effective

mass approximation [26]. In this approach, a single electron in the conduction band of a

semiconductor in a periodic lattice is considered, while the spin is ignored. In a crystal

atoms are arranged following a periodic structure, causing a periodic potential

V (r + R) = V (r) (1.1)

with periodicity equal to

R = n1a1 + n2a2 + n3a3 (1.2)

where R is a generic vector of the Bravais lattice, the ni are integer numbers and ai are

the basis vectors describing the unitary cell of the lattice. Due to this periodicity Bloch

theorem can be applied, and the wave function can be written as follows:

ψk(r) = eik·ruk(r) (1.3)

where k is called Bloch wavevector, and uk(r) is a function with the same periodicity of

the potential :

uk(r + R) = uk(r) (1.4)

A single electron in a direct-bandgap semiconductor is considered. Using the effective

mass approximation, in a region where the potential varies slowly with respect of the

lattice periodicity, the envelope function picture can be used [14][27]. This approach is

good when hetero-structures are considered, since the difference between the potentials

of the two materials is large, but inside the dot the potential is varies slowly. The

wavefunction can be written as

ψ(r) = f(r)u0(r) (1.5)

where the envelope function satisfies the Schrödinger equation[
− ~2

2m∗
∇2 + V (r)

]
f(r) = Ef(r) (1.6)

When dealing with low-energy states, it is possible to divide the confinement potential

into two different components: one in-plane and one perpendicular [28]

V (r) = V⊥(r⊥) + V‖(r‖) (1.7)

As such, the energy spectrum will be the sum of the energies of these two components. For

most of the nanostructures there is a strong confinement along the perpendicular direction

(few nanometers) while in the parallel direction the confinement is weaker (usually the
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horizontal dimensions of quantum dots are bigger than the vertical one) [28]. With

this assumption a 2D harmonic potential along the parallel direction and a infinite deep

square well along the perpendicular direction can be used.

V (r) =

{
V (r) = 1

2ω0r
2
‖ |r⊥| <

L
2

V (r) =∞ |r⊥| > L
2

(1.8)

where L is the vertical size of the quantum dot. With this potential the equation along

the two different directions can be factorized and solved for both of them. The resulting

energy spectrum can be described as following :

E = (n‖ + 1)~ω0 +
( ~2π2

2m∗L2

)
n2
⊥ (1.9)

As can be seen, this energy is the sum of the energies of a 2D harmonic oscillator and a

1D square well potential. Since L is considered small, the spacing between energy states

along the vertical direction is large. This model started from the assumption that only

low energies are considered, so only the state with n⊥ = 1 will be occupied.

What we obtain is a spectrum with equally spaced energy states. The wavefunctions

that satisfy the equation 1.6 are

f(R) ∝ Hnx(x)Hny(y)e−
1
2
m∗ω0

~ (x2+y2) cos(πz/L) (1.10)

where Hn are the Hermite polynomials [29].

The wavefunction for the electrons in the conduction band have an s-like symmetry,

hence there is only one conduction band, with spin degeneracy. The wavefunction for

the holes in the valence band has p-like symmetry, hence there are three different bands

(heavy-hole, light-hole, split-off). Often only the heavy-hole band is considered for the

calculations, and the highest valence band state is considered having a heavy-hole nature

[7].

The particular choice of the materials used in the quantum dots growth process enables

the system to produce transitions only between its states.

If the quantum dot system is cooled down to low temperatures, so that the thermal

energy of the whole system is lower than the energy required for the lowest excitation,

a quantum dot can be considered as a two-level system [30]. The lowest excited state

is the exciton state (X ). An exciton consists in a quasi-particle formed by an electron-

hole pair (bound together through Coulomb interaction). This excited state is similar

to an hydrogen atom, where the proton is substituted by the hole. This means that

also the wavefunction of this bound state is similar to the hydrogen atom one. However,

in the exciton, the binding energy between the electron and the hole is smaller than

the energy in the hydrogen atom, due to the screening of the other electrons inside the

semiconductor. The hole and the electron can have parallel or anti-parallel spin, and their

spins are related through exchange interaction [ref]. Considering the spin of the electron

on the z axis (±1/2) and the spin of the heavy hole (±3/2) there are four possibilities

for the total angular momentum. If the two spins are anti-parallel (Jz = ±1), we have a
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bright exciton, while if they are parallel (Jz = ±2) we have a dark exciton [31]. Only the

bright exciton is coupled to light, i.e. recombines emitting a photon, called the exciton

photon. The exciton photon is emitted with energy equal to the bangap energy.

An higher excitation process is the biexciton (XX ), where two electrons are excited in

the conduction band, with two holes in the valence band. Nevertheless the energy of

the biexciton state is usually reduced [32], and it’s not twice the energy of the exciton,

even if sometimes the opposite situation has been observed [33]. Biexcitons have the

interesting property of having the net projection of the angular momentum equal to

0. When more than one electron is excited to the conduction band, the recombination

processes involve photons emitted in a cascade. This means that if the system is excited

to the biexciton state, during the recombination the biexciton photon associated to the

transition |XX〉 → |X〉 will be first emitted, and subsequently will be emitted the exciton

photon, correspondent to the transition |X〉 → |gs〉, where |gs〉 is the ground state.

There are also other excited states, such as trions (X+ or X−), i.e. charged excitons. A

schematic illustration of these states is shown in figure 1.5.

X XX X- X+

conduction band

valence band

X XX X- X+

Conduction band

Valence band

Figure 1.5: Schematics of some bound states in a quantum dot. From left to right : an
exciton (X), a biexciton (XX), a negative trion (X−), a positive trion (X+).

As quantum dots show discrete energy levels, their emission spectra have discrete emission

lines, where their wavelengths are equal to the energy transition between the states. As

the time evolution of a state population follows an exponential law

N(t) = N0e
− t
τ (1.11)

(where τ corresponds to the mean life time of a state), the emission line as function of

the emission energy follows a Lorentzian curve,

I(ε) =
I0Γ2/4

(ε− Eba)2 + Γ2/4
(1.12)

where Eba is the energy difference between the states b and a, and the broadness of the

curve depends on Γ = ~/τ . This is known as natural broadening of the line. When is

only present this factor the emitted photons are called Fourier transform-limited photons.
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However, there are other factors that make the emission lines broader. In the specific case

of a quantum dot, the interactions between the dot and the matrix causes fluctuations

of the energy levels of the dot, which reduce the lifetime of the state and then make the

emission line broader.

Depending on the geometry of the QD the harmonic potential along the x-y direction

can be asymmetric. This asymmetry causes a fine structure splitting of its emission

spectrum [34]. In this case the exciton line is split into two orthogonal, linearly-polarized

components [35]. This splitting can be an obstacle if the indistinguishability between two

photons emitted during the cascade is needed. In fact, in this case different transition

can occur during recombination process, between different energy levels (Figure 1.6).

However, if the splitting is smaller than the exciton linewidth, quantum dots can still

be used as sources of entangled photons. When there is no fine splitting of the energy

𝑋𝑋

𝑋, 𝑉

𝑔𝑠

𝑋,𝐻

Δ𝐸

Figure 1.6: Illustration of the energy splitting of the exciton, due to the asymmetry of the
harmonic potential along the x-y direction. The two exciton photons are emitted with
perpendicular polarizations. If the energy splitting is smaller than the energy fluctuation
of the level (∆E), the quantum dot can still be used as a source of entangled photons.

levels, the dot is called degenerate quantum dot, and the emitted photons show circular

polarization.

1.3 Excitation of a QD

As previously said, once the thermal energy is below the energy needed for the lowest

energy transition between the valence band and the conduction band of the quantum

dot, it can be treated as a two-level system. The QD can be optically excited using a

laser and make it emit single photons. There are two types of excitation schemes for

single-photons generation in QDs:

• above band excitation;

• resonant excitation;
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1.3.1 Above band excitations

The simplest excitation scheme is the above band excitation. This excitation can be

conducted in two different ways, as seen in figure 1.7. In the first one the system can be

excited using a laser light with a higher energy than the bandgap of the quantum dot

and the wetting layer, exciting the electrons in the conduction band of the substrate.

Since the transitions of an InAs/GaAs quantum dot are usually around 900 nm, a 635

nm wavelength laser can be used. The second procedure consists in the wetting layer

excitation. In this case the electrons are excited to the wetting layer conduction band,

which has an energy between the bandgap of the matrix and the bandgap of the quantum

dot.

Valence band

Conduction band

Valence band

Conduction band

𝛾

Wetting layer

𝛾𝛾 𝛾

Wetting layer

Figure 1.7: Schematics of the above band excitation schemes. On the left: excitation in
the matrix bandgap. On the right: wetting layer excitation.

In both cases, the laser excitation promotes the electrons in one of these two conduction

bands, producing an electron-hole couple. These carriers can be probabilistically captured

inside the quantum dot conduction band with subsequent relaxation to its ground state

(s-shell) through phonons scattering [36]. Then they recombine emitting a photon. Since

in wetting layer excitation there is less phonon scattering, it shows less background noise

than the excitation in the substrate conduction band. These phonon interactions cause

an asymmetric broadening of the emission lines. [37].

In order to understand how the carriers will populate the excited states a simplified

model of a multi-level system can be considered. Only the transition between close levels

are allowed, and only neutral states are considered. Pn is the occupation probability of

the state with n excited electrons, r the excitation rate and γ the de-excitation rate.

Then the time variation of the population of the state with n excited electron will have

a negative term
dPn
dt

= −rPn − nγPn (1.13)

where the first term on the right side is due to the excitation of one electron to the state

Pn+1, while the second term is due to the de-excitation to the state Pn−1. In fact each

electron in the state have a decay rate γ, and in a state with n electrons we will have a
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total decay rate equal to nγ.

On the other hand side the state will gain particles from the de-excitation of the Pn+1

state and prom the excitation of the Pn−1 state, so the number of particles will increase

of
dPn
dt

= rPn−1 + (n+ 1)γPn+1 (1.14)

The total time variation of the population of state Pn will be

dPn
dt

= −(r + nγ)Pn + rPn−1 + (n+ 1)γPn+1 (1.15)

If the Pn state is considered constant in time

dPn
dt

= 0 (1.16)

the equation becomes the following :

0 = −(r + nγ)Pn + rPn−1 + (n+ 1)γ (1.17)

and, substituting in this equation the subsequent expression for Pn:

Pn =
( r
γ

)n 1

n!
e
− r
γ =

µn

n!
e−µ (1.18)

the identity 0 = 0 is obtained. This means that this is a solution of this differential

equation [?]. µ is called the mean number of excitations. In fact, when estimating the

mean of the distribution :

∞∑
n=1

nPn =
∞∑
n=1

n
( r
γ

)n 1

n!
e
− r
γ =

=
r

γ
e
− r
γ

∞∑
n=1

( r
γ

)(n−1) 1

(n− 1)!
=

=
r

γ
e
− r
γ

∞∑
n=0

( r
γ

)n 1

n!
=
r

γ
e
− r
γ e

r
γ =

r

γ
= µ

(1.19)

The mean of the distribution is equal to µ. The equation 1.18 a Poissonian distribution,

with mean equal to µ. µ is proportional to the excitation power, µ = cP . In fact the

power of the beam used to excite the system is related to the number of photons that

are sent on it, and the more photons are sent, the more electrons will be excited.

What obtained tells that the probability of exciting n electrons at the same time under

above excitation follows a Poissonian distribution. Experimentally it’s not possible to

measure the occupation probability of a state, but its decay rate can be measured. In

fact the decay rate of a state with n excited particles is equal to

Rn = nγPn (1.20)
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If we substitute n = 1 the decay rate of a state with one excited particle, i.e. the decay

rate of the exciton, is obtained:

RX(µ) = γµe−µ (1.21)

While for n = 2 we have the probability of having a biexciton:

RXX(µ) = γµ2e−µ (1.22)

In figure 1.8 Pn versus the excitation power is plotted. As can be seen, different excitation

processes shows different slopes. Moreover, when the mean number of excitations µ

reaches a value close to one, the probability sharply drops to zero. Unfortunately this

behaviour cannot be seen experimentally because if the excitation power is too high, a

broadband emission dominates the spectrum, covering the lines under consideration [14].

Above band excitation is easy to obtain, since all is needed is a laser with a higher energy

2−10 1−10 1 10

 [a.u.]µ

3−10

2−10

1−10

R
 [a

.u
.]

n = 1

n = 2

 

Figure 1.8: Graphic of the emission rate Rn, from equation 1.15, as function of the mean
number of excitations.

than the matrix bandgap. Moreover it is quite efficient, and even with a small power

it is possible to excite many carriers to the conduction band, and then produce a good

amount of photons. Since the excitation energy is different from the one of the emitted

photons, they show different wavelengths and it is easy to discriminate the two sources

of light. Finally, since as can be seen in figure 1.8 different excited states show different

behaviours when the excitation power is increased, above excitation can be also useful

to discriminate different excitation processes.

On the other hand, there are complication related to various reasons. For example, the

non- radiative relaxation processes introduce time jitter in the generation of photons,

which reduces their indistinguishability [38]. Moreover there are problems related to

the probabilistic natures of the capturing process, the probabilistic occupation of excited

states and the relaxation to the s-shell through phonon scattering. All these factors cause

dephasing, which reduces the coherence length of the emitted photons, that is also crucial

for obtaining a good indistinguishability between the photons. These bad properties make
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the photons emitted after an above band excitation unsuitable for several applications,

like quantum information protocols [39].

1.3.2 Resonant excitations

A way to obtain a better controlled population of the excited states is using the resonant

excitations. This kind of excitations can be obtained following two different approaches,

the in-band quasi-resonant excitation and the in-band resonant excitation.

Valence band

Conduction band

Valence band

Conduction band

𝛾

Wetting layer

𝛾𝛾 𝛾

Wetting layer

Figure 1.9: Schematics of the in-band excitation schemes. On the left: quasi-resonant
excitation. On the right: resonant excitation.

When a quantum dot is excited with a in-band quasi-resonant excitation (also called

p-shell excitation) (figure 1.9, left), an electron is excited to the p-shell of the quantum

dot conduction band. Then this electron relaxes to the s-shell through phonon scattering

and recombines to the ground state emitting a photon. Usually the relaxation takes

place in few picoseconds [40]. This fact reduces the time jitter in the emission. Since

the relaxation happens with less phonon scattering than in the case of the above band

excitations, there is less dephasing from this source and the emitted photons have a

longer coherence length.

However this excitation scheme can’t compete with the pure resonant excitation (figure

1.9, right). With this excitation one electron is excited to the s-shell of the conduction

band, and it directly recombines to the ground state emitting a photon with energy

equal to the energy of the bandgap. Since in this scheme no relaxation processes through

phonon interaction are involved, with this kind of excitation several dephasing processes

can be avoided. Moreover, there is not a time jitter related to the emission time of the

photon after the excitation. Also this factor reduces dephasing, and allows to create

single photons on demand.

The emitted photons will have then a longer coherence length. On the other hand, in

order to get this excitation a laser with exactly the wavelength corresponding to the

transition to the s-shell is needed. This means that it’s harder to discriminate the two

sources of light (the laser and the quantum dot). To solve the problem, usually the

sample is excited by the side, while the emission is perpendicular. Another option is to
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use a collinear excitation, i.e. the excitation light and the emitted light follow the same

path. In this case the two lights, the one from the laser and the one from the quantum

dot, are divided into two different paths. As said before, realizing a resonant excitation is

challenging but has many advantages, such as better properties of the emitted photons.

Another important property of the resonant excitation is that allows the deterministic

creation of a population in excited state. In order to create the inversion of the population

a pulsed laser is needed. In fact under resonant π pulses (pulses with the area equal to

π) the system can be deterministically excited in the exciton state. The Rabi oscillations

are then observed [41], which can be seen in figure 1.10. Here the probability of finding

the system in the excited state depends on time, and oscillates with frequency Ω, called

Rabi frequency. If the light pulse is detuned from the frequency of the transition the

population oscillates at the generalized Rabi frequency Ω̃, which depends on the detuning

in the subsequent way

Ω̃(ω) =
√
|Ω|2 + ∆2 (1.23)

where ∆ = ω − ωab is the difference between the laser frequency and the transition

0 2 4 6 8 10 12
 tΩ

0

0.2

0.4

0.6

0.8

1(t
)

e
P

 = 0∆
Ω = 0.5 ∆

Ω = ∆
Ω = 2 ∆

 

Figure 1.10: Plot of the probability of finding the system in the excited state, as function
of time, for different detunings. As can be seen, when the detuning is different from
zero the probability of having the system in the excited state oscillates with a different
frequency, and becomes lower than 1.

frequency of the two levels of the system (ωab). The probability to find the system in the

excited state is [42]

Pe(t) =
Ω2

Ω̃2

(1

2
− 1

2
cos(Ω̃t)

)
(1.24)

When the laser is detuned from the transition frequency, the probability of bringing

the system to the excited level becomes lower than 1. Experimentally the resonant

excitation can be observed looking at the intensity of the considered emission line for

different lengths of the excitation pulses.

Another kind of resonant excitation is the two-photon excitation. Due to the optical

selection rules, it is impossible to excite from the ground state to the biexciton state

using only one resonant photon. With this excitation scheme two photons with energy

equal to half the energy gap between the ground state and the biexciton state are sent

on the quantum dot at the same time. In this way, exploiting a virtual level between
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the two states, it is possible to excite the quantum dot directly on the biexciton state

(as can be seen in figure 1.11). Afterwards the excited state recombines to the ground

state emitting photons in a cascade via the exciton level. As previously said, if there

is an asymmetry in the harmonic potential which confines electrons in the dot, two

different paths can occur, where the emitted photons have perpendicular polarizations.

This method is useful when the splitting is smaller than the linewidth of the exciton

state, in fact in this way the two paths become indistinguishable, and it emits a pair

of polarization-entangled photons. With this method is also easier to separate the laser

light from the emission of the quantum dot, in fact since the wavelengths are different,

only a spectral filter is needed.

𝑋𝑋

𝑋

𝑔𝑠

Δ𝐸

𝑋𝑋

𝑋, 𝑉

𝑔𝑠

𝑋,𝐻

Δ𝐸

𝑋𝑋

𝑔𝑠

𝐻𝑋𝑋 𝑉𝑋𝑋

𝐻𝑋 𝑉𝑋

𝐻𝑋𝑋 𝑉𝑋𝑋

𝑉𝑋𝐻𝑋

𝑋𝑋

Figure 1.11: Schematics of the two-photon resonant excitation scheme. The system is
excited with one photon to virtual energy level between the ground state and the biexciton
level. The second photon excite the system from the virtual to the biexciton level. Then
photons are emitted in a cascade. If the energy splitting of the exciton level is smaller
than the emission line bandwidth, this excitation scheme can be used to obtain pair of
polarization-entangled photons.

1.4 Photon statistics

As pointed out in appendix A, Fock states are the eigenvalues of the number operator,

but not of the Hamiltonian of the electromagnetic field. Coherent states (Glauber states)

are the best representation of a classical electromagnetic field in the quantum mechanical

description. The light emitted by a laser operated above its threshold is in a coherent

state |α〉. Coherent states are the eigenstates of the annihilation operator:

â |α〉 = α |α〉 (1.25)

the complex number α = |α|exp(iα) is the complex amplitude of an electromagnetic

wave, and |α|2 = 〈α|n̂|α〉 = N is the expectation value of the photon number operator
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|n〉 [43]. A coherent state has a not fixed number of photons, and can be expressed in

terms of Fock states as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (1.26)

The probability of finding n photons in this coherent state, with the mean number of

photons equal to α2 = N̄ is given by [43]

Pα(n) = |〈n|α〉|2 =
N̄n

n!
e−N̄ (1.27)

This probability is then a Poissonian distribution, with mean and variance equal to N.

This means that the light emitted by a laser follows this distribution, and since it is

Poissonian the more the distribution mean is increased, the more this distribution will

assume a gaussian shape. A distribution with the same mean but with bigger variance

is called Super-Poissonian. Respectively, a distribution with a smaller variance is called

Sub-Poissonian.

Having the system prepared in a Fock state |n〉 is considerably different than having it

in a coherent state |α〉. In fact if a coherent state is considered and the mean number of

photons of the distribution is equal to 1, the probability of detecting one photon when

a measurement is made is not equal to 1, but, according to the Poissonian distribution,

Pα(1) = 0.366. On the other hand, having a Fock state |n〉 means that when a measure-

ment is made the probability of detecting n photons is exactly equal to 1. This difference

is important, because it is easy to understand that with a single photon source single

photons can be deterministically produced.

Light emitted by classical light sources, i.e. a spectral lamp, is incoherent and follows a

Super-Poissonian distribution. A characteristic of this kind of light is that if the time of

arrival on a sensor of the photons emitted by this source is measured, it will be observed

that they arrive in groups: this is called as photon bunching. Since a Poissonian distribu-

tion describes random events, a laser source emits photons randomly in the time domain.

The light emitted by a single photon source follows a Sub-Poissonian distribution. The

relative associated state to this distribution is a Fock state |n〉. With a single-photon

source only one photon is emitted at a time, so if their arrival time is observed it can be

noticed that they are more equally spaced than in the other two cases. This phenomenon

is called photon antibunching. A clear sketch of these three cases can be seen in the

Figure 1.12.

t

a)

b)

c)

Figure 1.12: Photon time distribution for different types of sources: a) super Poissonian
(bunching), b) Poissonian (random), c) sub Poissonian (antibunching).
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A quantum dot is a single-photon source, so the emitted photons follow a Sub-Poissonian

statistic and show the antibunching. Remembering what was said in section 1.2, quantum

dots can be seen as a two-level system. From this point of view it is easy to understand

the antibunching : every excited state has its own finite lifetime, so when the excited

state de-excites to ground state and emits a photon, in order to have another photon it

must be excited again, and it must relax again to the ground state. Since every excited

state has its proper lifetime, there is a dead time before the emission of two subsequent

photons.

This property is really useful for all quantum photonics, in fact it means that with a

single photon source there is the possibility to produce single photons on demand.

Antibunching is thus a peculiar characteristic of single photon sources, and it can be

measured to estimate the quality of the source as a single photon emitter. Usually this

quantity is measured with the second-order correlation function g(2)(τ), which is defined

for a classical electric field as [44]

g(2)(r1, t1; r2, t2) =
〈E∗(r1, t1)E∗(r2, t2)E(r1, t1)E(r2, t2)〉

〈|E(r1, t1)|2〉 〈|E(r2, t2)|2〉
(1.28)

where 〈·〉 is a ensamble average. When dealing with stationary states, this average can

be replaced with a time average, calculated as

〈E∗(r1, t1)E(r1, t1)〉 =
1

T

∫ T

0
E∗(r1, t1)E(r1, t1)dt1 (1.29)

and T is bigger than the characteristic oscillation time of the electric field. With plane

parallel waves r = z. Moreover only stationary states are considered, therefore the

function will not depend anymore on the time, but on the time difference τ = t2 − t1.

Since the intensity is defined as the square modulus of the electric field g(2)(τ) can be

written as function of the intensity. :

g(2)(τ) =
〈I(t)I(t+ τ)〉
〈I(t)〉 〈I(t)〉

(1.30)

When the field is quantized, it is substituted with the correspondent operator:

E→ Ê+ E∗ → Ê− (1.31)

where

Ê+(r, t) = i

√
~ω

2ε0V
âei(k·r−ωt) (1.32)

Ê−(r, t) = −i
√

~ω
2ε0V

â†e−i(k·r−ωt) (1.33)

and the second order correlation function can be written as function of the annihilation

and creation operators:

g(2)(τ) =
〈â†(t)â†(t+ τ)â(t)â(t+ τ)〉

〈â†(t)â(t)〉2
(1.34)
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where â and â† are the annihilation and creation operators. When the second order

correlation function is calculated at t = 0 the commutation rule [â, â†] = 1 can be used

and g(2)(0) can be written as

g(2)(0) =
〈N̂(N̂ − 1)〉
〈N̂〉2

(1.35)

where N̂ is the number operator. Using the density matrix ρ̂ this value can be explicitly

calculated. The density matrix is defined as

ρ̂ =
∑
j

Pj |ψj〉 〈ψj | (1.36)

In fact, given an observable Ô its average value is calculated as

〈O〉 =
∑
j

Pj 〈ψj |Ô|ψj〉 =
∑
j

PjTr(|ψj〉 〈ψj | Ô) =

= Tr
(∑

j

Pj |ψj〉 〈ψj | Ô
)

= Tr(ρ̂Ô)
(1.37)

The value of g(2)(0) is calculated as

g(2)(0) =
〈N̂(N̂ − 1)〉
〈N̂〉2

=
Tr(ρ̂N̂(N̂ − 1))

(Tr(ρ̂N̂))2
=

=

∑∞
n=0 Pn 〈n|N̂(N̂ − 1)|n〉(∑∞

n=0 Pn 〈n|N̂ |n〉
)2 =

∑∞
n=0 Pnn(n− 1) 〈n|n〉(∑∞

n=0 nPn 〈n|n〉
)2 =

=
2P2 + 6P3 + 12P4 + 20P5 + . . .

N̄2

(1.38)

g(2)(τ) is essentially the probability of detecting a photon after a time delay τ when

a photon is detected at t = 0. For sources that emit photons with different statistics

g(2)(0) will assume different values. For a single photon source P1 = 1, so g(2)(0) = 0 and

the antibunching can be seen. For a Poissonian source g(2)(0) = 1 and the photons are

uncorrelated, while for a super-Poissonian source 1 < g(2)(0) < 2 and the photons show

bunching. These three cases can be seen in picture 1.13. Since the coherent states are the

link between the classical electric field and the quantum electric field (because we have

〈α|Ê(r, t)|α〉 = E(r, t), as can be seen in appendix A), if a value g(2)(0) < 1 is observed,

it is possible to affirm that the considered source is a non-classical light emitter.

Experimentally these different behaviours related to different kind of sources can be ob-

served with an Hanbury-Brown-Twiss setup, which consists essentially of a 50:50 beam

splitter, and two Avalanche Photodiodes (APDs). A scheme of this setup is shown in

figure 1.14. A light beam is sent through this beam splitter, and the two out coming

beams are sent on the two APDs. The signals are then directed to a time to amplitude

converter (TAC). A Time To Amplitude converter is a device that converts a time inter-

val into a voltage, that increases linearly as the time increases.
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Figure 1.13: Second order correlation function g(2)(τ) for different kind of sources. Image
from [45].

The first signal coming from one of this detectors is the start of this module, while the

signal of the other detector is the stop. The resulting plot is a histogram with the number

of photon pairs as function of the delay time between the two signals.

This measurement can be done to observe the autocorrelation between two exciton pho-

tons, two biexcion photons, or the cross-correlation between an exciton and a biexciton

photon. Typical results of these measurements for continuous and pulsed excitations are

shown in figure 1.15. As can be seen, for continuous wave sources the correlation between

excitons shows a dip when close to τ = 0. In the same way using a pulsed source the

peak at τ = 0 vanishes. The other peaks are due to the use of a pulsed excitation light

with a certain repetition rate.

1.5 Photons indistinguishability

In quantum photonics one crucial property is the indistinguishability of the photons.

While in classical mechanics two different entities are always distinguishable, in quantum

mechanics identical states are always indistinguishable.

Two photons are perfectly indistinguishable if their density matrices ρ̂1 and ρ̂2 are the

same. The indistinguishability between two sources is defined as

I = 1− 1

2
‖ρ̂1 − ρ̂2‖2 (1.39)

The difference between the two density matrices is equal to 0 when they describe exactly

the same state. The perfect indistinguishability is hence reached when I = 1, while when

it is equal to 0 the sources are perfectly distinguishable. If each source is in a pure state
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Figure 1.14: Schematics of the experimental setup used for a Hanbury-Brown-Twiss
measurement. A beam is sent through a 50:50 beam splitter. The two out coming beams
are sent in two different APDs. The first signal starts a clock and the second signal stops
it. The two signals are sent into a Time To Digital Converter and the time difference
between the two signals is recorded.
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Fig. 5 a) Photoluminescence (Inset: Time resolved PL) signal of a QD under non-resonant exci-
tation; c) quasi-resonant excitation; e) resonance fluorescence. The inset in e) depicts the power
dependency of the emission under pulsed resonance fluorescence, which is characterized by the
occurrence of distinct Rabi-oscillations. Corresponding second order correlation histograms: b)
non-resonant pumping, d) p-shell excitation; f) resonance fluorescence.).

Figure 1.15: Second order correlation function g(2)(τ) for different kind of excitation.
Left: under above band continuous excitation. Right: under above band pulsed excita-
tion.

the density matrices are equal to

ρ̂1 = |ψ1〉 〈ψ1| ρ̂2 = |ψ2〉 〈ψ2| (1.40)

and the indistinguishability can be calculated as [46]

I(ρ̂1, ρ̂2) = |〈ψ1|ψ2〉|2 (1.41)



20 CHAPTER 1. THEORY

In principle the indistinguishability can be calculated by measuring all the quantum prop-

erties of the two states, like the polarization state, or the spectral, spacial and temporal

profiles. Experimentally the indistinguishability between two different sources is mea-

η
APD

APD

a

b
b

a

Figure 1.16: Illustration of the experimental setup for the Hong-Ou-Mandel interference.
Two photons are sent on a 50:50 beamsplitter, and the outcoming signal is sent into two
APDs. These signals are sent then on a coincidence counter.

sured with the Hong-Hou-Mandel (HOM) interference [47], that is realized sending onto

a 50:50 beamsplitter two photons at the same time. According to quantum mechanics,

since photons follow Bose-Einstein statistics, when they are perfectly indistinguishable

and are sent on a beamsplitter, they always go out coupled.

Let’s consider a two photon interference: the initial state of the system is [48]

|ψin〉ab = â†j b̂
†
k |0〉ab = |1; j〉a |1; k〉b (1.42)

where â† and b̂† are bosonic creations operators related to the two different ways pho-

tons can enter in a beamsplitter, while j and k are some properties of the two photons

that make them distinguishable, like the polarization. So far no assumptions about the

distinguishability of the two photons. The situation can be seen in figure 1.16.

A beam splitter with reflectivity η can be represented in a quantum mechanical point of

view as an unitary operator ÛBS that acts on the creations operators in the following

way [44]

â†j
ÛBS−−−→

√
1− η â†j +

√
η b̂†j (1.43)

b̂†k
ÛBS−−−→ √η â†k −

√
1− η b̂†k (1.44)
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Where the minus sign is due to the fact that ÛBS is an unitary operator. Applying this

operator to the initial state |ψin〉ab the final state is:

|ψout〉ab = ÛBS |ψin〉ab = ÛBS â
†
j b̂
†
k |0〉ab =

=
(√

1− η â†j + η b̂†j
)(√

η â†k −
√

1− η b̂†
)
|0〉ab =

=
(√

η(1− η) â†j â
†
k − (1− η) â†j b̂

†
k −

√
η(1− η) b̂†j b̂

†
k + η b̂†j â

†
k

)
|0〉ab

(1.45)

If η = 1/2 the result is

|ψout〉ab =
1

2

(
â†j â
†
k − â

†
j b̂
†
k + b̂†j â

†
k − b̂

†
j b̂
†
k

)
|0〉ab (1.46)

The figure 1.17 shows the four different terms of the equation. As said before, when Hong-

η
APD

APD

a

b
b

a

Figure 1.17: Schematics that shows the different ways two photons can interact with a
beamsplitter. These terms are written in equation 1.46.

Ou-Mandel interference is made, the number of coincidence counts from the two APDs is

important. The probability of detecting two photons at the same time is related to their

distinguishability. For example, the polarization distinguishability can be considered.

A photon can have a vertical (V) or horizontal (H) polarization, or a linear combination

of them, αV + βH, where α2 + β2 = 1.

If two photons with different polarizations are sent on the beamsplitter, the output state

will be

|ψout〉ab =
1

2

(
â†H â

†
V − â

†
H b̂
†
V + b̂†H â

†
V − b̂

†
H b̂
†
V

)
|0〉ab =

=
1

2

(
|1;H〉a |1;V 〉a − |1;H〉a |1;V 〉b + |1;H〉b |1;V 〉a − |1;H〉b |1;V 〉b

) (1.47)

In this case all the four possibilities shown in figure 1.17 are still present in the output

state. This means that the probability of having a coincidence count, i.e. outcoming

photons in the two different output ports, will be equal to 1/2.

When two photons with same polarization are considered (e.g. vertical polarization), the
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final state will be

|ψout〉ab =
(
â†V â

†
V −���â†V b̂

†
V +���b̂†V â

†
V − b̂

†
V b̂
†
V

)
|0〉ab =

=
(
â†V â

†
V − b̂

†
V b̂
†
V

)
|0〉ab =

=
1√
2

(
|2;V 〉a − |2;V 〉b

) (1.48)

In this case the states related to one photon for each output port of the beam splitter

vanish. This means that the probability of having a coincidence is equal to zero. When

we have perfectly indistinguishable photons they always exit coupled after interacting

with a beamsplitter.

The crucial part of this analysis is that in order to see the HOM interference the two

photons must have identical physical properties, such as polarization, spatio-temporal

mode structure, and frequency.

In this case the photons are assumed to interact at the same time with the beamsplitter.

In an experimental setup, however, a time delay can be added to tune their level of

indistinguishability.

Moreover, they are generated in the same state. This means that they have the same

spectral properties. The wavepacket associated to both the photons is exactly the same,

i.e. they have a constant phase relation during the time duration of the wavepacket. This

means that an important parameter in order to obtain a good HOM interference between

photons is the coherence length of the photons we are considering. If they have a low

coherence degree the photons are partially distinguishable, and the HOM interference

dip is reduced, or vanishes. The result from the original article about HOM interference

is shown in figure 1.18. Here τ is the time delay between the photons. As can be seen, if

the time delay is equal to 0 the coincidence counts drop to 0. The shape and the width

of the dip depend on the the spectral function of the photons [48].VOLUME 59, NUMBER 18 PHYSICAL REVIEW LETTERS 2 NOVEMBER 1987
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FIG. 2. The measured number of coincidences as a function
of beam-splitter displacement c Bi, superimposed on the solid
theoretical curve derived from Eq. (11) with R/T =0.95,
Aco =3 x 10 ' rad s '. For the dashed curve the factor
2RT/(R +T ) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whereas
horizontal error bars are based on estimates of the measure-
ment accuracy.

time spread of the photoelectric pulses and the slewing of
the discriminator pulses, a range of time intervals cen-
tered on zero delay was obtained with a spread of several
nanoseconds. For the purpose of the measurement, pulse
pairs received within a 7.5-ns interval were treated as
"coincident. " Pulse pairs received within an interval of
35 to 80 ns were regarded as accidentals, and when
scaled by the factor 7.5/45 provided a measure of the
number of accidental coincidences that occur within any
7.5-ns interval.

The results of the experiment are presented in Fig. 2,
which is a plot of the number of observed photon coin-
cidences, after subtraction of accidentals, as a function
of the displacement of the beam splitter. It will be seen
that for a certain symmetric position of the beam spli-
tter, the two-photon coincidence rate falls to a few per-
cent of its value in the wings, by virtue of the destructive
interference of the two two-photon probability ampli-
tudes. The width of the dip in the coincidence rate pro-
vides a measure of the length of the photon wave packet.
It is found to be about 16 pm at half height, correspond-
ing to a time of about 50 fs, which should really be dou-
bled to allow for the greater movement of the mirror im-

age. This time is about what is expected from the
passband of the interference filters.

Direct measurements of the beam-splitter reAectivity

and transmissivity show that R/T = 0.95, which makes
the combination 2RT/(R + T ) = 0.999, and implies
that iV, should fall close to zero when 6~=0. That it
does not fall quite that far is probably due to a slight
lack of overlap of the signal and idler fields admitted by
the two pinholes, causing less than perfect destructive in-
terference. The solid curve in Fig. 2 is based on Eq. (11)
with R/T=0. 95 and Ato=3x10' rad/s =5x10' Hz,
if we identify c6'i with the beam-splitter displacement
(x —302.5) in micrometers. For the dashed curve the
factor 2RT/(R + T ) was multiplied by 0.9 to allow for
less than perfect overlap of the signal and idler photons.
It will be seen that, except for the minimum, Eq. (11) is

obeyed quite well, corresponding to a coherence time of
about 100 fs.

We have therefore succeeded in measuring sub-
picosecond time intervals between two photons, and by
implication the length of the photon wave packet, by
a fourth-order interference technique. Unlike second-
order interference, this method does not require that
path differences be kept constant to within a fraction of a
wavelength. The method is applicable to other situations
in which pairs of single photons are produced, but be-
comes less e%cient for more intense pulses of light, be-
cause the "visibility" of the interference is then reduced
and cannot exceed 50% at high intensities. In principle,
the resolution could be better than 1 pm in length or 1 fs
in time.
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Figure 1.18: Graphic of the HOM interference from the original article published by
Hong-Ou-Mandel [47]. Here the number of coincidence counts measured in ten minutes
is plotted versus the displacement of the beam splitter. When its position is such that the
two photons arrive interacts at the same time with it, the number of counts diminishes.



Chapter 2

Development of the experimental

Setup

2.1 Cooling system

In order to make measurements with quantum dots it is necessary to cool them down to

low temperatures, hence reducing the system energy. This causes a reduction of transi-

tions between energy levels associated to thermal energy and a reduction of background

noise. Once cooled, the sample can be excited with a laser, and its emission spectrum

can be characterized.

The electron occupation probability of a state with energy E inside a semiconductor

follows the Fermi-Dirac distribution, which is plotted in figure 2.2 for different values of

the ratio E/EF

f(E, T ) =
1

e
E−EF
kT + 1

(2.1)

where k is the Boltzmann constant, T the absolute temperature and EF the Fermi
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Figure 2.1: Plot of the Fermi distribution for different values of the ratio EF /kBT .

energy of the system, i.e. the highest kinetic energy of the occupied states.

23
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The Fermi energy is usually in the middle of the bandgap for intrinsic semiconductors,

with a linear dependence on the temperature [49]

EF =
EV + EC

2
+
kBT

2
ln
(Nv

Nc

)
(2.2)

where EV and EC are the energies of the valence and conduction band, and Nv and Nc

are the effective density of states in the valence and conduction band. With an extrinsic

semiconductor, the Fermi energy moves closer to the conduction band if the material is

n-doped, while it moves closer to the valence band if the material is p-doped.
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Figure 2.2: Schematics showing the density of electrons in the conduction band at dif-
ferent temperatures in a bulk semiconductor. As we can see, for high temperatures the
Fermi distribution becomes f(E) becomes broader and there is a non-null probability of
having electrons in the conduction band. This leads to a high density of electrons in the
conduction band n, which is calculated as written in equation 2.3.

In order to calculate the density of electrons inside the conduction band the density of

states as function of the energy must also taken into account. Usually the electron density

is calculated as

n =

∫ ∞
EC

D(E)f(E, T )dE (2.3)

As known from section 1.2 a bulk material has a density of energy states D(E) ∝
√
E.

Making the calculations, the density of electrons in the conduction band is equal to [50]

n = 2
(m∗nkBT

2π~2

)2
e
−EC−EF

kBT (2.4)

where m∗n is the effective mass of the electrons.

If a commonly used semiconductor for quantum dots like InAs is considered, which has a

bandgap energy equal to 0.415 eV at 4.2 K [51], The Fermi energy will be about 0.207 eV

for low temperatures. Using the formula 2.4 the electron density in the conduction band
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equal can be approximated to 0, while at room temperature we usually have n ∼ 1022.

Therefore reducing the temperature to 4.2 K makes very unlikely the chances of having an

electron in conduction band due to a thermal transition. This means that the background

noise due to this source is strongly reduced.

Considering that due to its three dimensional spacial confinement a quantum dot has

discrete energy states 1.2, this transition probability becomes even lower.

Reducing the noise given by thermal excitation is then the reason why the system is

cooled down to 4.2 K. Once cooled down the sample to this temperature it is possible

to excite the quantum dot and treat it like a two-level system. The cryostat model is a

Montana Instruments cryostation s50.

Inside the cryostat the position of the sample is piezo controlled. In this way we are sure

that we are hitting exactly the quantum dot with the laser.

2.2 Imaging of the sample

The sample can be observed trough a microscope system containing two lenses. The

first one is placed above the access window of the vacuum chamber. With a differential

micrometer screw we can adjust the position of this lens in the vertical direction over

the cryostat to achieve the correct focus. The reflected beam is then sent to another

lens, and it is collected by a CCD camera. The sample is illuminated using a diode. The

light it emits is collected through a lens, which collimates the beam, and then focused

on the sample with the same method described above. Since to access the window of the

cryostat the beam has to come from above, a periscope was built to lift the beam and

direct it from above to the sample. In figure 2.3 a schematic of this part of the setup

is shown, while an image of the sample taken with this method can be seen in figure

2.4. These are nanowires embedding a single quantum dot each. For the excitation it

was used a 635 nm continuous wave laser and a Ti:Sapphire pulsed laser that will be

described in the section 2.4. The excitation scheme we use is called collinear because the

incoming beam and the photons emitted by the QD follow the same path.

2.3 Spectroscopy methods

In our experimental setup we used two different kinds of spectrometers: a commercial

one from Princeton Instruments, used to get a general overview of the spectra we are

taking, and a self-made spectrometer, used to discriminate between the exciton and the

biexciton lines of our QDs’ spectra.

2.3.1 Princeton Instruments spectrometer

The Princeton Instruments spectrometer is connected to a CCD camera, which has a

quantum efficiency above 80 % between 400 and 900 nm. Since these cameras are sensi-

tive to single photons, it is necessary to reduce the dark current and the thermal noise

typical of these devices. This is the reason why the camera has a thermoelectric cooling

to −70◦ [52]. In this way we are able to observe also the photons emitted by a single
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Figure 2.3: Sketch of the optical line built for the imaging and excitation system. For
the imaging system The light from the diode is collimated and focused on the sample.
Then the reflection is sent back on the same path and focused on the CCD. The mirror
on the right side of the pellicle beamsplitter (polarization beamsplitter with asymmetric
splitting ratio) was used for the allignment of the beam.

20 μm

Figure 2.4: Image of the sample obtained with the imaging system described above.
These are nanowires embedding quantum dots.

quantum dot. Moreover, since the camera is very sensitive, the spectrometer has two

shutters, one for each input port, that prevents the chip from being damaged by the

incoming light. This shutter can also be set as always open, always closed and normal,

which means that it opens and closes every time just for the exposure time that is set.

The spectrometer’s configuration is illustrated in Figure 2.5: it has two different input

ports, with two slits, one for each port, which reduce the background light. The focal

point of the beam must be on the slits, and the beam must be well aligned when it passes

through the slits. The beam is reflected by a concave mirror, which collimates it into a

blazed diffraction grating. This grating diffracts the light and sends it to another concave

mirror, that focuses the beam onto the camera.

The output signal from the camera can be analyzed with a software developed by Prince-

ton instruments. With this software also several useful parameters can be set. For

example, the area of the chip used for taking data can be selected, the Region of Interest
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Figure 2.5: Sketch of the Princeton Instruments used in the setup. The beam is focused
on the input slit, collimated by a spherical concave mirror and then diffracted by a blazed
diffraction grating. At the end it’s reflected by another concave mirror and focused on a
CCD camera, cooled at −70◦ C. when we cool the camera we reduce the dark counts due
to the thermal energy, and this makes us able to observe even single photons emitted by
our quantum dot.

(RoI). In this way only the data around the spot we are interested in can be selected

(Figure 2.6). The output from the software is a matrix of numbers (one for each pixel)

proportional to the intensity of the light that is hitting the CCD. During the data acqui-

sition the output from each pixel in a column is summed, obtaining a single value of the

intensity for each wavelength. If only a small portion around the light spot is considered,

summing the bins allows to reduce the background noise, compared to the case where we

consider all the chip of the camera.

Both the input ports are used, with the main input port used to see the emission spectra

of the quantum dots we excite, and the secondary port used to see other spectra, like the

one from the Ti:Sapphire laser or from the pulse stretcher.

Figure 2.6: Screenshot from the Princeton spectrometer software. This is the considered
region of interest. The spot corresponds to the beam sent in the spectrometer and that
is diffracted by the grating. The output of this software is a matrix of numbers, one for
each bin inside the RoI. In our case we sum over all the bins of each column. In this way
we obtain a better defined peak and reduce the background (compared to the peak).
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This spectrometer is useful because enables to have a fast overview of the spectrum of the

quantum dot we are exciting, and it was used to characterize their emission, for example

under above band excitation (section 3.1. Unfortunately with this spectrometer it is im-

possible to separate the path of the photons belonging to these excitation lines, and this

problem makes it unsuitable for other kind of measurements, like the cross-correlation

between the photons from the exciton and the biexciton. This is the reason why also a

self-made spectrometer was built.

2.3.2 Self-made spectrometer

With the self-made spectrometer we can measure the signals from the biexciton and

exciton photons at the same time. It consists essentially in a blazed diffraction grating.

The grating is mounted on a computer-controlled rotation stage. The incident light is

reflected and diffracted in multiple directions, depending on the wavelength. A schematics

of diffraction gratings can be seen in Figure 2.7. The path difference between two rays

α

β

d

d sinβ d sinα

grating

normal

+ -

Figure 2.7: Scheme of a blazed diffraction grating. The black solid line is the normal to
the grating.

is equal to d sinα + d sinβ (where β is a negative angle, and d the distance between

two grooves). in order to obtain a constructive interference between these two rays this

optical path difference must be a multiple of the wavelength. We obtain then the grating

equation [53]:

mλ = d(sinα+ sinβ) (2.5)

where m is the diffraction order and λ the wavelength of the incoming beam. This

equation tells us at which angle the outcoming beam is diffracted. As we can see, if

m = 0 we obtain a simple reflection, with α = −β.

Blazed diffraction gratings are made in such way that they maximize the amount of light

in one specific order for one wavelength. The diffracted beam has its highest intensity

when it comes back in the same direction as the incident beam, this is the so called

Littrow configuration. Using this equation we calculated then the angle β at which the

beam is diffracted. Since we have fixed input and output angles, we have to rotate the

grating in order to obtain the maximum diffracted intensity at the output angle for the
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wavelength we are using.
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Figure 2.8: Design of the self-made spectrometer. The beam is magnified and collimated
with a telescope, and is diffracted by the diffraction grating. The beam is then sent
through a lens and focused on a knife edge prism, where we separate the exciton and
the biexciton photon. Afterwards the two beams are coupled in two fibers, connected to
APDs.

The configuration of the self made spectrometer can be seen in Figure 2.8 : The beam is

magnified and sent on the diffraction grating, we want in fact to maximize its resolution.

Resolution or ”chromatic resolving power” for a device used to separate the wavelengths

of light is defined as [54]

R =
λ

∆λ
(2.6)

where ∆λ is the smallest resolvable wavelength difference. The resolving power gives an

expression of if two spectral lines can be seen as two different lines.

The limit of resolution is determined by the Rayleigh criterion as applied to the diffraction

maxima, i.e., two wavelengths are just resolved when the maximum of one lies at the first

minimum of the other. This means that equality between the maximum at wavelength

λ+ ∆λ and the minimum at λ is satisfied :

Nd sin θ = Nm(λ+ ∆λ) = Nd sin θ = Nmλ+ λ (2.7)

where d corresponds to the distance between two slits, N is the number of slits illuminated

and m is the order of diffraction. This gives us

R = mN (2.8)

This equality depends on the diffraction order of interest and is proportional to the

number of groves that are illuminated, and means that the higher is our resolution, the

bigger is the separation between different wavelengths.

Taken two lines separated by ∆λ and with central wavelength λ, they are resolved if

R = mN >
λ

∆λ
(2.9)
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The beam is diffracted by the grating, and focused on a knife edge prism. With this

prism we separate the two beams, which are coupled into two single-mode fibres.

After the coupling, the fibers are connected to two Avalanche PhotoDiodes (APDs). The

signal from the APDs is then sent into a Time to Digital Converter (TDC), which is

connected to the computer. A TDC is a device that is commonly used to measure a time

interval and convert it into a digital signal. In it’s simplest configuration, a TDC is a high-

frequency counter which increments its counts every clock cycle. For higher resolutions,

a higher frequency is needed. Our TDC has a time resolution of 1 ps [55]. Often it’s

more useful to measure time intervals. When used for this purpose, two different signals

are sent into the device, one starts the counter and the other one stops it. This device

has many application in physics, and in our case it’s useful when we want to measure the

autocorrelation and the cross-correlation between the photons emitted by the quantum

dot.

Using a graphical user interface it is possible to control the rotation grating of the self-

made spectrometer stage and see the number of counts. With this program is also easy

to see the coincidence counts, and the correlation and auto-correlation plots between the

photons emitted by the QD.

2.4 Optical line characterization

In order to design an optic line is crucial characterizing the propagation of the beam.

The light from a laser is emitted with particular spatial and frequency distributions,

depending on the boundary conditions for resonance on the cavity, called modes. A

transverse mode is a particular pattern of the electromagnetic field measured in a plane

perpendicular to propagation direction. The modes are denoted with TEMpl (transverse

electromagnetic), where p, l are the radial and angular modes. The output of the used

Ti:Sapphire laser is the fundamental mode TEM00. With this mode the intensity profile

has a gaussian shape, that for a beam propagating along the z axis is equal to

I(r) = I0

[ w0

w(z)

]2
e
− 2r2

w(z)2 (2.10)

where w(z) is the distance from the beam axis where the intensity is equal to 1/e2 times

the maximum value, and r is equal to
√
x2 + y2. Because of its shape, this beam is called

gaussian beam. This beam is one of the solutions of the wave equation. This solution

is obtained starting from the parabolic solution. Here a monochromatic spherical wave

with origin in r = 0 is considered (with complex amplitude equal to U(r) = A
r e
−ikr). The

wave is considered far from its origin, and close to a z axis, such that
√
x2 + y2 � z. In

this way the radius r can be written as

r ∼ z +
x2 + y2

2z
(2.11)

and the corresponding complex amplitude can be written as

U(r) =
A

z
e−ikze−ik

x2+y2

2z (2.12)
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Close to the z axis this wave can be approximated as a plane wave. If the normals to

the wavefronts form a small angle with the propagation direction the waves are called

paraxial waves. In this case the complex amplitude is taken as

U(r) = A(r)e−ikz (2.13)

The gaussian beam is obtained substituting z with a complex parameter q(z). A(r)

becomes

A(r) =
A1

q(z)
e
−ik ρ

2q(z) (2.14)

where q(z) = z + iz0 and ρ2 = x2 + y2. z0 is called Rayleigh range. With this complex

parameter the intensity, calculated as I(r) = |U(r)| has the gaussian profile written in

equation 2.10. With this solution she beam waist and the radius of curvature of the

wavefront evolve in space in the following way:

w(z) = w0

√
1 +

( z
z0

)2
R(z) = z

(
1 +

(z0

z

)2)
(2.15)

where w0 is the minimum waist of the beam, i.e. the waist at the focal point. From the

first equation is easy to understand that the Rayleigh range is the distance from the focus

where the beam waist is equal to
√

2 times the minimum waist. The Rayleigh range can

be written as function of w0, as z0 =
πw2

0
λ . All the beam is determined by the parameter

q(z).

The propagation of a gaussian beam is shown in figure 2.9. The curvature radius of the

wavefront is negative before the focus, and positive after it. When |z| � z0 w(z) the

beam expands linearly in space and w(z) can be approximated as

w(z) ' λ

πw0
z = θ0z (2.16)

The angle θ0 is called divergence angle. As can be seen, the divergence angle is propor-

tional to the wavelength and has an inverse relationship to the beam waist. This means

that an highly focalized beam has a large divergence, and in order to obtain a collimated

beam is useful to use a long wavelength and a large waist.

𝑧𝑤0

θ0

𝑤(𝑧)

Figure 2.9: Propagation of a gaussian beam along an axis z. w0 is the minimum wais of
the beam. The radius of curvature of the wavefront change sign after w0, and is infinite
in w0.

In order to characterize the beam some measurements of the waist were taken with the
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razor blade method. Here the beam is cut with a sharp blade, and the remaining power

of the beam is measured with a power meter (Figure 2.10). Since the intensity has a

gaussian profile, the measured power will be

P (x) =

∫ x

−∞

∫ +∞

−∞
I(x, y) dx dy = A erfc

( x− xc√
2w(z)

)
(2.17)

where A is a constant, xc is the center of the beam and w(z) is the waist at the measured

point. An example of this measurement can be seen in figure 2.10. The waist was

measured as

w =
x86.5 − x13.5

2
(2.18)

where x86.5 and x13.5 are respectively the points where the intensity is 1− 1/e2 and 1/e2

times the maximum intensity.
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Figure 2.10: Left: schematics of the razor blade method for measuring the waist The
beam is cut with a sharp blade and the remaining power is measured with a power meter.
Right: example of the measurement of the waist with this method. The error function
can be seen. The waist is measured as w = (x86.5 − x13.5)/2.

After measuring some points with this method, the q-parameter was calculated and the

propagation of the beam modeled, using the first of equations 2.15. With a real gaussian

beam these equations must be modified taking into account the M2 parameter. It is

defined from the relation

w0θ0 =
M2λ

π
>
λ

π
(2.19)

where w0 is the minimum waist of the beam, and θ is the divergence angle of the beam.

In this case, since it was close to the unity, M2 was approximated to 1. Afterwards using

the matricial optic formalism [56] the propagation of the beam through two lenses was

modeled. With the optical matrices formalism (also called the ABCD formalism) each

element of the optical line is modeled using a 2x2 matrix, and the effect of all the optical

system on the beam is the product of these matrices, from the last optical element to the

first one.

Mi =

(
A B

C D

)
M = Mn ·Mn−1 . . .M2 ·M1 (2.20)
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The q parameter after all the system is then calculated as

q(z) =
Aq0 + B

Cq0 + D
(2.21)

where q0 is the initial q parameter.

2.5 Pulse stretcher

As previously described (Section 1.2), due to their three dimensional spatial confinement

quantum dots have discrete energy levels, and then spectra with discrete emission lines.

These lines show a broadness due to different reasons.

Our goal is exciting the QD through a resonant excitation. If we want to use a resonant

excitation or the two-photon resonant excitation (section 1.3), in both cases we need

to reduce as much as we can the spectral width of our laser. In case of a two-photon

resonant excitation we want to lower the effect of laser scattering and reduce the overlap

between the laser and the exciton - biexciton lines. A Ti:Sapphire laser is used in order to

excite resonantly the quantum dot. It is a pulsed laser with 140 fs pulse duration (taken

as FWHM), and a pulse repetition rate of 80 MHz. This laser has a tunable wavelength

from 720 to 980 nm. The output power is equal to 0.6 W at 720, then goes up to 1.7 W at

800 nm and decreases to 0.45 W at 980 nm. Since it emits ultra-short pulses, its emission

spectrum is broad. The laser spectrum can be made narrower building a pulse stretcher:

this tool is based on the concept that the Fourier transform of a narrow distribution in

the time space corresponds to a broad distribution in frequency space. Therefore, if a

Fourier transform of our beam can be made and some frequencies can be cut, then after

the inverse Fourier transform the laser pulse will have a longer duration in time space.

Let’s see not only qualitatively the relation between the time duration of a light pulse

and its spectral width.

A monochromatic plane wave is defined with the following time dependence:

E = <(E0e
iω0t) (2.22)

This is an unlimited cosine function. If a pulse must be considered (i.e. a Gaussian pulse)

the function will be [57]

E = <(E0e
−Γt2+iω0t) (2.23)

where Γ ∝ t−2
0 , and t0 is the time duration of the pulse.

The spectral width of the pulse is then calculated as the modulus of the Fourier transform

of the function 2.23. The Fourier transform of a gaussian function is another gaussian

function, whose width is related to the time duration of the pulse. The time and frequency

Fourier transform of a pulse can be written as

ε(t) =
1

2π

∫ +∞

−∞
E(ω)e−iωtdω E(ω) =

∫ +∞

−∞
ε(t)eiωtdt (2.24)
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The duration and spectral width of the pulse are calculated in the following way:

〈∆t〉 =

∫ +∞
−∞ t|ε(t)|2dt∫ +∞
−∞ |ε(t)|2dt

(2.25)

〈∆ω2〉 =

∫ +∞
−∞ ω2|E(ω)|2dω∫ +∞
−∞ |E(ω)|2dω

(2.26)

It can be demonstrated that the relation between these two quantities is

∆t∆ω ≥ 1

2
(2.27)

and the equality is satisfied when the two pulses are Gaussian-shaped.

From an experimental point of view is easier to measure the FWHM of a pulse, so the

equation 2.27 is usually written as ∆ν∆t = K, where K is a constant which depends on

the shape of the pulse. For a Gaussian pulse, K = 0.44 [57].
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Figure 2.11: Design of the optical line. On the lower part the pulse stretcher can be seen.
Here the beam is diffracted on a blazed diffraction grating and is focused on a slit. Then,
reflected by a flat mirror, goes back a bit displaced and it’s extracted using a prism. In
this way we can separate the beam we obtain from the one coming from the fibre, and
at the end we couple it in another fibre.

Essentially the setup of the pulse stretcher consists of a diffraction grating and a slit.

The beam derived from the laser was sent to the grating, in order to make the Fourier

transform of our beam. Since diffraction angle depends on wavelength we are separating
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different wavelengths and switching to frequency domain. After that the frequencies are

cut by the slit.

In order to obtain a larger spatial separation between the wavelengths the resolution of

the grating (as written in section 2.3) has to be maximized. This is the reason why a

telescope is built before the stretcher.

Slit

Mirror
Telescope

Grating

Figure 2.12: Picture from Zemax Optic Studio, describing the design of the pulse
stretcher. The telescope was made using two convex lenses. We used a concave mirror,
with a long focal length, that was placed in such a way that we obtained a collimated
beam after the telescope. The beam was focused then on a slit.

The pulse stretcher was built using compact 4-f configuration [58], as shown in the lower

part of figure 2.11. With this configuration the beam is first collimated by the concave

mirror and diffracted by the grating. Then the beam is reflected again in the mirror and

focused on a slit, which cut the external frequencies of the laser spectrum. Behind the

slit is placed a flat mirror, which reflects the beam along almost the same path. This

out-coming beam is extracted using a prism, then it is coupled in a fibre, using another

telescope.

This stretcher was designed using Zemax Optic Studio. Two convex lenses are used for

the telescope. Then it is used a big concave mirror with long focal length. The long focal

length of the mirror is chosen to obtain a larger spatial displacement between the different

wavelengths along the propagation. This fact can be useful in order to obtain a narrower

spectrum when the beam is cut by the slit. The mirror is placed at the focal length from

the focus of the beam, so that it collimates our beam, which goes on a blazed diffraction

grating. In the end the beam passes through a square slit. A flat mirror is placed 1

cm behind the slit. The stretcher can be seen in figure 2.12. The central wavelength

was set equal to 880 nm. This wavelength was chosen because is close to the transition
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Slit

Mirror

Image

Figure 2.13: Pictures taken from Zemax Optic Studio. Top: part of the design with the
slit and the mirror. Since the crucial part of the stretcher is which interval of wavelengths
goes through the slit, we stopped after passing through the slit two times. Bottom: the
corresponding spot diagram (taken on the orange surface). We obtain a 0.4 nm interval
width, with 880 nm as central wavelength (we started from an interval width of 1 nm).
This FWHM spectral width corresponds (using this wavelength) to a pulse duration of
2.65 ps. Considering that we started from 140 ns, the duration pulse was increased 20.4
times.

wavelengths of most the InAs/GaAs quantum dots. Moreover the spectral width depends

not only on the time duration of the pulse, but also on its central wavelength.

Since Zemax Optic Studio was used in sequential mode, where the beam can pass through

a surface only once, for simplicity after the diffraction the beam goes on another con-

cave mirror. Moreover, even if we are using mirrors, the beam propagates through them

(and the flat mirror is modelled just as an empty surface). Since the crucial part of

the stretcher is which interval of wavelengths goes through the slit, the propagation of

the beam was stopped after passing through the slit two times (Figure 2.13, top). After
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passing through the slit two times the wavelengths that are still in the beam are observed

through the tool Spot Diagram (figure 2.13, bottom). This tool enables to project on a

surface the beam of our optical system, and look at its shape or, in our case, the spatial

distribution of its wavelengths. We decided to use this tool at the orange surface that

can be seen on the top of Figure 2.13.

For a 140 fs long pulse at that wavelength the spectral FWHM is 8.14 nm. Looking at the

Spot Diagram it can be seen that this configuration of the stretcher accepts a wavelengths

interval equal to 0.4 nm. This means that, making the inverse Fourier transform, a 2.85

ps pulse is obtained, increasing of a factor 20.4 its temporal width. In this design the

light spectrum is assumed to be a square function, but actually it’s a Gaussian-shaped

function, so when a narrower FWHM is expected when the experimental width of the

spectrum will be measured.

After assembling the stretcher the output fiber was connected to the secondary input

port of the spectrometer. The original spectrum of our Ti:Sapphire was first observed

using the out-coming beam from the second beam splitter. This spectrum can be seen

in Figure 2.14. Making a Gaussian fit of our spectrum a FWHM equal to 8.24 nm is

obtained, which is in good agreement with the prediction we made. the second peak

is probably due to the fact that inside the cavity there are other frequencies allowed,

corresponding to wavelengths about 855 nm.
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Figure 2.14: Spectrum of the Ti:Sapphire laser acquired with the 600 gr/mm grating. Do-
ing a Gaussian fit on our main peak we obtain a FWHM equal to 8.24 nm, measurement
that is in good agreement with the prediction we made.

Finally the output of the pulse stretcher was observed, and plotted for different widths

of the slit in the Figure 2.15. Since the diffracted beam is bigger than the slit, it is

impossible to see all the spectrum after the stretcher.

The output of the stretcher was optimized moving the slit along the propagation of the

beam, and verifying the shape and the FWHM of the resulting spectrum. For positions

far from the focal point of the beam the spectrum in fact shows a strong asymmetry, with
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two different slopes at the two sides of the peak (one sharper than the other). Depending

on where the slit is placed (before or after the focus), these different slopes invert the

sides. When there is a symmetric shape it means that the slit is placed closer to the

focal point of the beam (Figure 2.16). Moreover to the symmetric shape of the peak

corresponds the smallest FWHM.

Closing the slit the minimum FWHM obtained is equal to 0.215 nm. This width corre-

sponds to a 5.4 ps long pulse for the used wavelength (880 nm). In this way almost 3.7 %

of the spectrum is selected, and the output power is equal to 3 % of the incoming power.

This means that about 20% of the power is lost going through the stretcher.
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Figure 2.15: Spectrum of our laser after the pulse stretcher, acquired using the 1200
gr/mm grating. Closing the slit and doing a Gaussian fit on the peak a FWHM equal to
0.215 nm is observed. This spectral width corresponds to a 5.4 ps long pulse.
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Figure 2.16: Left: FWHM of the spectrum obtained from the stretcher at different
positions of the slit. Right: Spectrum with the minimum FWHM.
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2.6 Interferometer

An important property of the quantum dot’s emitted photons is their coherence length.

The coherence length is the propagation distance over which the wave maintain a stable

phase relation. As pointed out in section 1.5, in order to obtain a good HOM interference

two photons must be exactly in the same state, i.e. they must have the same spectral

and temporal properties, and the same polarization. This means that their wavepackets

must be the same, and have a constant phase relation during their temporal length.

Measuring the coherence length hence gives an estimation of the ”quality” of the emit-

ted photons, and then of the used quantum dot. Sources of dephasing are usually the

interactions between our quantum dot and the environment. These interactions cause

fluctuations of the QD energy levels (called jittering) that seriously decrease the coher-

ence length of the emitted photons. Moreover, as said in section 1.3, other dephasing

sources are the relaxation processes through phonon scattering and Coulomb interactions

between carriers [59] [60], when the quantum dot is non-resonantly excited.

Wave interference is strong when the paths taken by all of the interfering waves differ

by less than the coherence length. Therefore measuring interference is a good way to

measure the photons’ coherence length. For this reason a Michaelson interferometer was

built, with the setup that can be seen in figure 2.17.
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Figure 2.17: Design of the Michaelson interferometer. The beam is sent to a 50:50 beam
splitter and then to two retroreflectors. The beams go back to the beamsplitter, where
they interfere. The resulting beam is then coupled through two lenses into an high power
polarization maintaining single mode fiber.

Let’s assume that the input radiation has a constant amplitude equal to E0, and a fixed

wavelength equal to λ. The output electromagnetic field will be

Eout = E1 + E2 (2.28)
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where E1 and E2 are the fields coming from the two arms of the interferometer, with

lengths equal to L1 and L2. Using the complex notation, Eout can be written in the

following way:

Eout =
E0

2
eik2L1 +

E0

2
eik2L2eiδref (2.29)

where E0/2 is given by the fact that the photons go through a 50:50 beamsplitter, k is

the wave number, equal to 2π/λ, and the term δref is a phase term due to the reflection

at the beamsplitter of one of the two beams. This formula can be also written as

Eout =
E0

2
eik2L1(1 + eiδ) (2.30)

where was used δ

δ = k2∆L+ δref ∆L = L2 − L1 (2.31)

The value of δref will be equal to 0 or π, depending on whether the relative refractive index

at the reflection, n2/n1, is bigger or smaller than 1. Since the intensity is proportional

to the square modulus of the electric field,

Iout ∝ |Eout|2 = E∗outEout (2.32)

The output intensity will be

Iout = I0 cos2
(δ

2

)
(2.33)

This means that there will be some phases at which it is possible to obtain the maximum

intensity, and some other phases at which the output intensity will be equal to zero.

These phases differences are

δmax =
4π

λ
∆L(+π) = 2mπ

δmin =
4π

λ
∆L(+π) = (2m+ 1)π

(2.34)

where the terms +π are added is there is a phase shift at the first reflection, i.e. if

δref = π.

The light from the QD goes through an high power polarization maintaining (pm) single

mode fiber. After a mirror the beam is sent through a 50:50 beamsplitter, where the

beam is split into two parts. Then two retroreflectors are used to send back the two

beams into the beamsplitter, where they overlap again. Here they interfere, and then

the beam coming from this interference is coupled, using two lenses, into another high

power polarization maintaining single mode fiber. In this way two perfectly overlapped

beams are obtsined. After the fiber a power meter is used, in order to see the intensity

of the resulting beam.

One of the two retroreflectors is mounted on a computer controlled translation stage

which has a maximum length of 50 cm. The other one is mounted on a mirror mount,

mounted on another translation stage with differential micrometric screws. Having all

these degrees of freedom allows to perfectly overlap the two beams, and obtain the same

coupling efficiency into the fibre. The position along the direction of propagation of the
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beam is piezo controlled.

Once the interferometer was mounted it was also tested, verifying that was working

properly. We made sure that the coupling efficiency into the fibre of the translation stage

mounted arm was the same at the shortest and longest distances. Then we also made

sure that the coupling efficiencies of the two arms were the same. We obtained 60 % of

coupling efficiency for each arm.

We first tested the interferometer alignment putting the two arms at almost the same

distance, and varying the phase difference using the piezo. In this way we obtained, as

we expected, an interference pattern. For this measurement we used a low power laser.

If the photons are emitted with a line bandwidth ∆ω = ω2 − ω1, the coherence time is

defined as

τc =
2π

∆ω
(2.35)

in fact in a time τ the phase will change of a quantity ∆ωτ , and there will be an

uncertainty on the phase. The coherence time is the time interval when this difference

is equal to 2π. From τc the coherence length of the photons can be calculated. This is

related to the first order correlation function g(1)(τ). Differently from the second order

coherence function, which looked at the intensity correlation, this parameter investigates

the correlation between the amplitude of two electromagnetic fields at different time

intervals. In classical terms it is defined as

g(1)(r1, t1; r2, t2) =
| 〈E(r1, t)E(r2, t)〉 |[

〈|E(r1, t)|2〉 〈|E(r2, t)|2〉
] 1

2

(2.36)

As in the case of the second order correlation function, if stationary states are considered

g(1)(τ) will only depend on the time difference τ = t2 − t1. The first order coherence

function can be written as

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

(2.37)

If the electric field has a constant amplitude E0 and a central frequency ω0 it can be

written as

E(t) = E0e
−i(ω0t+φ(t)) (2.38)

where φ is the phase. Then g(1)(τ) can be calculated:

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

=

=
〈E∗0ei(ω0t+φ(t))E0e

−i(ω0(t+τ)+φ(t+τ))〉
〈|E(t)|2〉

=

= e−iω0τ 〈eiφ(t)eiφ(t+τ)〉

(2.39)

The final result gives an oscillatory part and an amplitude which depends on the phases

at 0 and τ .

Three different cases can be easily seen:

• If τ = 0 then |g(1)(τ = 0)| = 1.
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• If 0 < τ � τc then |g(1)(τ)| ≈ 1 and φ(t+ τ)− φ(t) ≈ 0.

• If τ � τc then |g(1)(τ)| → 0.

The shape of the correlation function depends on the shape of the emission line. For

example, if a shape with a Lorentzian broadening is considered, g(1)(τ) can be written as

g(1)(τ) = e−iω0τe−|τ |/τc (2.40)

With a Michaleson interferometer the visibility can be calculated looking at the fringe

intensities, and this is equal to calculate the absolute value of g(1)(τ) [61].

V =
Imax − Imin

Imax + Imin
= |g(1)(τ)| (2.41)

In this case τ = 2∆L/c, where ∆L is the length difference between the two arms of the

interferometer.

After testing the interferometer the measurement of the coherence length of the photons

emitted by the single quantum dot was ready to be made. With a script the translation

stage was moved, and for every positions the voltage applied to the piezo was changed.

In this way the piezo changes its dimension, and consequently also the phase difference

of the equation 2.33 changes. This means that varying the applied voltage of the piezo

an interference pattern can be seen. This script records the maximum and the minimum

intensities of these patterns. At the end it calculates the visibility for every peak as in

equation 2.41, and calculates the average between all the obtained visibilities. As can be

easily seen, a perfect interference between two sources is obtained when V = 1.

The visibility is related to the first order correlation function g(1)(τ), and then to the

coherence time τc.

The output electromagnetic field can be written as

Eout(t) =
1√
2

(
E(t)− E(t+ τ)

)
(2.42)

where the minus sign is due to the reflection at the beamsplitter, and then a phase shift

equal to π and a term eiπ = −1. The 1/
√

2 term comes from the 50:50 beamsplitter.

The intensity will be

Iout ∝ 〈E∗out(t)Eout(t)〉 =

...

=
1

2

(
〈E∗(t)E(t)〉+ 〈E∗(t+ τ)E(t+ τ)〉−

− 〈E∗(t)E(t+ τ)〉 − 〈E∗(t)E(t+ τ)〉
)

(2.43)

If the average intensity is constant in time the first two terms are the same, while the last

two terms are one the complex conjugate of the other one. The intensity can be written
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as

Iout ∝
1

2

(
2 〈E∗(t)E(t)〉 − 2<

(
〈E∗(t)E(t+ τ)〉

)
=

= 〈E∗(t)E(t)〉
[
1−<

(〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉

)] (2.44)

The output intensity can be finally written as

Iout = I(τ) = I0

[
1−<

(
g(1)(τ)

)]
(2.45)

With the maximum and minimum intensity equal to

Imax,min = I0

[
1± |g(1)(τ)|

]
(2.46)

the visibility is exactly the first order correlation function:

V =
Imax − Imin

Imax + Imin
= |g(1)(τ)| (2.47)

With a constant average intensity, the visibility V is only function of the time difference

between the two paths τ .

The value of the visibility was supposed to be recorded for every position of the translation

stage, and then plotted versus the length difference of the two arms. Since the emitted

photons have a finite coherence length, when the length difference between the two arms

becomes larger than the coherence length the visibility decreases, until the photons don’t

interfere anymore and the visibility becomes equal to 0. Since from equation 2.40 the

first order correlation function has an exponential decrease with the increasing of τ , the

coherence length is then calculated as the characteristic time τ of an exponential fit e−t/τ .

Unfortunately, due to many technical problems which occurred during the thesis, it was

not possible to measure the coherence length of the emitted photons before the end of

the project.
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Chapter 3

Experimental results

3.1 A single Quantum Dot spectrum

In order to characterize the investigated sample, many different quantum dots of the

sample were excited, trying to find which ones among all the dots had the best emission

properties. The quantum dot with the required emission properties must have well-

defined characteristic emission lines (exciton and biexciton), and must not show much

background noise.

During the scanning procedure the sample was moved with the piezo controller until the

spot of the beam was above the quantum dot. Then, if the characteristic emission lines

of the dot (exciton and biexciton lines) were observed, the emission rate of these lines

was optimized. Looking at the intensity of the peaks the position of the sample was

first moved with the piezo controller, and then the focus of the laser beam was changed

moving the telescope lens with a differential micrometric screw.

This procedure was repeated multiple times in order to get the maximum emission rate.

Some emission spectra from the considered nanowire quantum dot can be seen in Fig-

ure 3.1, acquired with the spectrometer and different laser powers. These spectra were

obtained with an above band excitation, using a 635 nm continouos wave laser, with an

integration time of 0.3 s. The exciton and the biexciton lines can be seen, while the

line on the left is due to some light scattering from the laser. As previously explained,

with the above band excitation a large amount of carriers is produced, and this quantity

increases as the excitation power is increased. This fact produces a relevant background,

especially with high excitation powers.

As explained in the section 1.3.1, the exciton and biexciton lines show different behaviours

for an increasing excitation power, under above band excitation. In particular in a log-

arithmic scale the exciton line shows a linear dependence while the biexciton line shows

a quadratic one. If the intensities of the lines were plotted versus the excitation power

one should be able to distinguish the different nature of the two lines. The results can

be seen in Figure 3.2. The two colors shows the number of counts for each line. The

plot is made taking spectra for different excitation powers, and using a ROOT script the

background is removed (as can be seen in figure 3.3), the two peaks are fitted with a

gaussian function and the integral of the function is calculated. Then the data for each
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Figure 3.1: Spectra of the considered nanowire quantum dot, under above band excita-
tion, with a 635 nm continuous wave laser and different excitation powers. The exciton
and biexciton lines can be seen. The line on the left is a line due to some light scattering
from the laser, while the one on the right probably corresponds to another excited state.
The exciton and the biexciton lines show different behaviours when the excitation power
is varied. Due to the high efficiency of the above band excitation, with increasing powers
a large amount of carriers is created, and this contributes to a relevant background.
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Figure 3.2: Power dependence of the intensity of the exciton and biexciton lines under
above band excitation, with a 635 nm laser. Fitting the data with the function 3.1 we
notice that the exciton line shows linear slope, while the biexciton one a quadratic slope.
Increasing the excitation power they saturate, because other excitation processes start
arising.

It can be seen that the two lines show different slopes. The two sets of data for can be

fitted for low powers (i.e. when there is still no saturation) with the function

log(I) = k log(P ) + c (3.1)

where I is the intensity of the peak and P the excitation power. In the case of the

biexciton line the first point is removed, because when the power was too low the line

was submerged in the background noise. The following slopes for the two lines are

obtained:

kX = 1.02± 0.04 µW−1

for the exciton, and

kXX = 2.09± 0.06 muW−1

for the biexciton.

In first case the compatibility with the expected value is equal to 0.5, while in the second

case is equal to 1.5. In both cases these are good compatibilities. It can be said that

these lines are respectively the exciton and the biexciton line. When the excitation power

is increased the counts in the biexciton line become higher than the ones in the exciton

line, which start decreasing the counts. In fact photons by the biexciton will be created

once the exciton level is saturated [39]. If the excitation power is even more increased,

also the biexciton line start decreasing its intensity, because other excitation processes

start arising.
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Figure 3.3: Example of spectrum of the quantum dot with above band excitation (in this
case with a power of 105 mW) before and after removing the background. This procedure
was useful to estimate the number of counts under the emission lines and get the figure
3.2. It was also useful to better calculate the FWHM of the peaks.

Looking at the width of the emission lines it is possible to give and estimation of the

excited state lifetime. As explained in section 1.2, if Γ is the full width at half-maximum

of the emission line, it is linked to the natural lifetime of the state by the relation Γ = ~/τ .

Therefore after removing the background signal it was possible to measure the full width

at half-maximum and then estimate the lifetimes of the excited states, which gave for

both the exciton and the biexciton a lifetime shorter than 5 ps. However as described

in literature [62], the measured lifetime for excited states in InAs/GaAs quantum dots is

of the order of few nanoseconds. Therefore there are some processes that lead to such a

broad distribution. One reason could be the non resonant excitation that we are using

for this measurement. Moreover it must be taken into account that if the beam is not

perfectly focused into the fiber, one would get a broadening of the peak.

3.2 Measurements of g(2)(τ)

3.2.1 Exciton autocorrelation

Some measurements of the autocorrelation between the exciton photons are taken, under

continuous wave above band laser excitation, with a wavelength λ = 635 nm. One

example of these measurements can be seen in figure 3.4. The output of the self-made

spectrometer was coupled in a single mode fibre, and the beam was split by a fiber beam

splitter. The two beams are then sent into two different APDs, and the signals are sent to

a Time to Digital Converter. As can be seen in figure 3.4, the function shows the typical

shape of a Sub-Poissonian source. The minimum value of the second order correlation

function is :

g(2)(0) ≈ 0.1 (3.2)

Since this value is lower than one, the excited single semiconductor quantum dot can be

considered a non classical light source.



3.2. MEASUREMENTS OF G(2)(τ) 49

40− 30− 20− 10− 0 10 20 30 40
 [ns]τ

0.2−

0

0.2

0.4

0.6

0.8

1

1.2

1.4

)τ(
(2

)
g

Figure 3.4: Measurement of the autocorrelation function of the exciton photons emitted
by the quantum dot, under above band excitation with 635 nm wavelength continuous
wave laser. As can be seen, the correlation function g(2)(τ) shows the typical behaviour
of a Sub-Poissonian source.
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Chapter 4

Conclusions

During this thesis project we addressed the complex task to produce and characterize

non-classical sources of light. We did a preliminary work to build and test some dedicated

set-ups for measuring the quantum nature of the emmitter, which was selected as ∼ 10

nm InAs quantum dots cooled to 4 K to reduce the thermal noise. The size was selected

to be less than the excitonic Bohr radius (which is 35.5 nm for bulk InAs) to be in the

strong confinement regime and obtain better excitonic and biexcitonic emission.

We have developed an apparatus composed by different devices for the characterization

of the emission of a single semiconductor quantum dot. With such apparatus, it is possi-

ble to excite the quantum dot from above, collect the emitted light with a high NA lens

and see its emission spectrum with a commercial spectrometer. In this way it is possible

to have a quick overview of the spectra of the excited quantum dot, and check if it is

emitting properly. The main emission lines of the quantum dots, corresponding to the

exciton and the biexciton lines, have been observed under above band excitation.

Moreover, the spectrum can also be observed using a self-made spectrometer. This spec-

trometer is especially useful when a separation of the path of the emitted photons is

needed. With a prism after the diffraction grating, it is possible to separate the exciton

photons from the biexciton photons. In this way it is possible to make important mea-

surements, such as the auto-correlation of the exciton and biexciton photons, and the

cross-correlation between the exciton and biexciton photons. These measurements prove

that if cooled down to low temperatures (4 K) and under a proper excitation, a single

semiconductor quantum dot can be considered a single photon source. This emission

regime cannot be reached with classical sources, so a single quantum dot can be an emit-

ter of quantum light. Moreover with the self-made spectrometer the emitted photons are

coupled into fibers, and consequently the light can be easily sent to other parts of the

experimental setup, which will be built in a future work.

An important parameter for the characterization of a photon source is its coherence

length. Since all quantum photonics is based upon Hong-Ou-Mandel interference (which

requires indistinguishable photons in order to happen) it is important to have photons

with a long coherence length. For this reason a Michaelson interferometer has been built,

in order to measure the coherence length of the emitted photons. Unfortunately, at

present the coherence length measurement is not yet available.

All the measurements have been taken under above band continuous wave excitation. As
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previously said in section 1.3.1, this kind of excitation has a great efficiency, but due to

the background noise and the time jitter caused by the phonon scattering, the emitted

photons have poor properties (e.g. short coherence length and low indistinguishability),

and are not suitable for applications in quantum information protocols. What is needed

is a resonant excitation of the single semiconductor quantum dot. This is the reason

why during the project a pulse stretcher has been designed and built. Starting from a

femtosecond Ti:Sapphire pulsed laser, with the pulse stretcher it is possible to easily tune

its temporal length by cutting its spectrum with a slit. The goal is to obtain the correct

temporal length of the pulse, in order to obtain the Rabi oscillations and an optimal

excitation probability, as can be seen for the biexciton photon in figure 4.1 (from [63]).

The longest pulse obtained with the stretcher is a 5.4 ps long pulse, which is long enough

to obtain Rabi oscillations.

4
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FIG. 3: (Color online) Biexciton emission probability, Pb (the-
ory) for different dephasing models. We observe a strong
damping of the Rabi oscillations even at moderate γI0 . From
this it is clear that the amplitude of the intensity-dependant
dephasing rate plays a much greater role than the exponent
np.

single photon process, the second one will dominate at
low powers despite of being non-resonant. As shown in
Fig. 5 better ratios are obtained at longer pulse durations
due to the intensity-dependent dephasing. Note that in
the lower graph of Fig. 4 the total exciton photon gen-
eration is depicted, which includes photons from a direct
excitation of the excition as well as those generated from
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FIG. 4: (Color online) Emission probability for a biexci-
ton, Pb, and exciton photon, Px, as a function of the laser
pulse area for linear (solid line) and quadratic (dashed line)
intensity-dependent dephasing compared to the experimental
data, respectively. The theoretical parameters, γI0 , are ob-
tained by fitting the ratio of the first maximum and minimum
of the Rabi cycle.
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FIG. 5: (Color online) Relative probability for biexciton ver-
sus single exciton excitation in the quantum dot as a function
of Ω2σ for two different pulse lengths (upper plot). The choice
of Ω2σ, which is proportional to the energy per pulse, as x-
axis allows for easier comparison of the maxima. We see an
optimum ratio of about 8 at a still moderate excitation rate.
The lower plot gives the biexciton photon emission probability
as a function of Ω2σ.

the decay of the biexcitons.
Conclusion. To observe the maximal degree of en-

tanglement from single quantum dots certain conditions
need to be fulfilled. In particular, an optimized result
is achieved when the quantum dot is excited in a pro-
cess that exhibits a high degree of coherence. Similarly,
the quantum dot should preserve the excitation laser’s
phase relation. In this work we have addressed the first
issue, the decoherence induced by the excitation pulse.
Our theoretical study indicates that with respect to the
parameters of our quantum dot system one can choose
an optimized excitation pulse length. Our measurements
are consistent with the theoretical study and show a con-
siderable degree of time-bin entanglement. The details
of the calculations are given in the supplementary mate-
rial. The same theoretical study can be readily extended
to other quantum dot systems where it can be used to
indicate the set of optimized parameters that allow for
generation of high degree of time-bin entanglement. In
addition, the same model will indicate the conditions
needed to achieve high photon pair generation probabil-
ity. Whether the latter coherence condition is fulfilled
depends predominantly on the degree of interaction of
the quantum dot with its semiconductor environment.
The coherence can be increased relative to the lifetime of
the emitted photons by the use of quantum dots embed-
ded in micro-cavities [4, 27] , particularly ones that are
resonant to both exciton and biexciton photons [4].

This work was funded by the European Research
Council (project EnSeNa) and the Canadian Institute
for Advanced Research through its Quantum Informa-
tion Processing program. G.S.S. acknowledges partial

Figure 4.1: Example of Rabi oscillations, with experimental data compared to theoretical
predictions, from [63]. Px is the emission probability of an exciton photon as function
of the laser pulse area. For a certain pulse area (π pulse) the emission probability is
maximized.

The further developments of the apparatus should include first of all the implementation

of the Michaelson interferometer to the experimental setup. Thanks to this device a fun-

damental parameter for quantum photonics can be measured, i.e. the coherence length

of the emitted photons.

Then the setup can be adapted to measure other important quantities, such as the au-

tocorrelation of the biexciton photons and the cross correlation between the exciton and

biexciton photons. In this way a deeper understanding of the emission and the temporal

ordering of the emission cascade of the single quantum dot can be achieved, obtaining a

more complete characterization of the used device.

Finally, the pulse stretcher should be also added to all the experimental setup. Using it,

it should be possible to obtain a resonant excitation of the single quantum dot. Then, all

the measurement previously done with above band excitation can be made with resonant

excitation. The results obtained with these two methods can be compared, measuring

the improvements that come with the resonant excitation.

Once the resonant excitation is achieved, it will be possible to measure the indistinguisha-

bility property of the emitted photons, through the Hong-Ou-Mandel interference, and
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it will be possible to decide whether the used quantum dots are suitable for quantum

information applications.

Another goal is to obtain with the help of the pulse stretcher the two-photons resonant

excitation. This kind of excitation is useful when a generation of entangled photon pairs

is needed.

After all these goals are achieved the setup can be used with any kind of quantum dots,

hence new configurations can be explored and fully characterized (different compositions

of quantum dots or different geometries, such as using other kind of cavities coupled with

the quantum dots). Moreover the feasibility of their use in different quantum information

protocols (e.g. how good are the Bells states that can be prepared of quantum dots, or

the quality of quantum teleportation) can be proved, leading maybe one day to their

implementation on a big scale also in these fields.
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Appendix A

Fock and coherent states

The quantum Hamiltonian of the electromagnetic field can be written as a sum of an

infinite number of not coupled harmonic oscillators [64]

Ĥ =
∑
k

∑
s

( p̂k,s
2

+
1

2
ω2
kq̂

2
k,s

)
(A.1)

where p̂ and q̂ are respectively the momentum and the position, ω is the angular frequency

of the harmonic oscillator, k is the wave vector, s is the polarization. If we define the

creation and annihilation operators â† and â as

â†k,s =

√
ωk
2~

(
q̂k,s −

i

ωk
p̂k,s

)
(A.2)

âk,s =

√
ωk
2~

(
q̂k,s +

i

ωk
p̂k,s

)
(A.3)

which satisfy the commutation rule

[âk,s, â
†
k′,s′ ] = δk,k′δs,s′

we can write the Hamiltonian as

Ĥ =
∑
k

∑
s

~ωk
(
â†k,sâk,s +

1

2

)
(A.4)

The creation and annihilation operators act in the Fock space, which is the Hilbert space

of the ”number representation”, obtained as

F = H0 ⊕H1 ⊕ · · · ⊕ Hn =
⊕
n

Hn (A.5)

where

Hn = H⊗H · · · ⊗ H = H⊗n (A.6)

is the Hilbert space of n identical photons, obtained as the tensor product of n single

particle Hilbert spaces.
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A typical Fock state is

|nk,s . . . nk′,s′ . . . nk′′,s′′〉 (A.7)

which means that there are nk,s photons with wavevector k and polarization s, nk′,s′

photons with wavevector k′ and polarization s’, and so on.

The creation and annihilation operators act on a generic Fock state |n〉 as:

â† |n〉 =
√
n+ 1 |n+ 1〉 (A.8)

â |n〉 =
√
n |n− 1〉 (A.9)

that means that Fock states are not eigenvalues of creation and annihilation operators.If

we define the number operator N̂k,s as

N̂k,s = â†k,sâk,s (A.10)

which counts the number of particles in the state |ks〉, we obtain the subsequent eigen-

value equation

N̂k,s |. . . nk,s . . .〉 = nk,s |. . . nk,s . . .〉 (A.11)

Which means that the Fock states are the eigenstates of the number operator, and the

relative eigenvalue is equal to the number of photons in the |n〉 state.

The Hamiltonian of the electromagnetic field can be written as

Ĥ =
∑
k

∑
s

~ωk
(
N̂k,s +

1

2

)
(A.12)

Where the second term is the energy of the vacuum state. This means that the energy

of vacuum state is not equal to zero.

The electric and magnetic fields can be quantized substituting the classical amplitudes

aks and a∗ks with the annihilation and creation operator. In this way we obtain the

subsequent fields:

Ê(r, t) = i
∑
k

∑
s

√
~ωk
2ε0V

[âk,se
i(k·r−ωkt) − â†k,se

−i(k·r−ωkt)]εk,s (A.13)

B̂(r, t) = i
∑
k

∑
s

√
~ωk
2ε0V

[âk,se
i(k·r−ωkt) − â†k,se

−i(k·r−ωkt)]i
k

|k|
× εk,s (A.14)

If we consider a perfect linear polarized monochromatic wave (and semplify the notation

substituting âks and â†ks with â and â† we can write the following electric field :

Ê(r, t) = i

√
~ω

2ε0V
[âei(k·r−ωt) − â†e−i(k·r−ωt)]ε (A.15)
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where ω = ωk = c|k|.
If we have a Fock state with n photons it is given by

|n〉 =
1√
n!

(â†)n |0〉 (A.16)

but if we calculate the expectation value of the electric field in this state is easy to see

that

〈n|Ê(r, t)|n〉 = 0 (A.17)

for every value of n. However if we calculate the expectation value

〈n|Ê(r, t)2|n〉 =
~
ε0V

(
n+

1

2

)
(A.18)

The expectation value of the intensity of the field is always different from zero, even for

the vacuum state.

This weird result is due to the fact that the expectation value is calculated in a Fock

state, which has a fixed number of photons. But usually this number in a radiation field

is not fixed. For example, the photon emission of a laser operating above the threshold

is well described by a coherent state |α〉, introduced by Roy Glauber in 1963 [65]. By

definition, coherent states are the eigenstates of the annihilation operator

â |α〉 = α |α〉 (A.19)

These states are normalized

〈α|α〉 = 1 (A.20)

They have complex eigenvalues α = |α|eiθ. Coherent states have not a fixed number of

photons, that means that they are not eigenstates of the number operator. They can be

written as function of the Fock states, as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (A.21)

and is easy to find that

N = 〈α|N̂ |α〉 (A.22)

Where N is the average number of photons in the coherent state [64]. If we calculate the

expectation value of the electric field on a coherent state what we get is

〈α|Ê(r, t)|α〉 = −
√

2N~ω
ε0V

sin(k · r− ωt+ θ)ε (A.23)

while the expectation value of Ê2(rt) is

〈α|Ê2(r, t)|α〉 = −2N~ω
ε0V

sin2(k · r− ωt+ θ) (A.24)

What we get is the classic electric field. This suggests that the coherent state is the

natural connection between the classical electric field and the quantum electric field.
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