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Abstract

This thesis is devoted to the characterisation of the plasma instabilities causing the
Plasma Wall Interaction (PWI) observed during a high current discharge by the Optical
Camera System in the RFX-mod reversed field pinch (RFP) device, operated by Consorzio
RFX in Padova, Italy. The PWI shows two distinct stripes of neutral carbon radiation on
the internal graphite wall of the device. The main goal is to simulate and understand the
origin of the pattern.
The topic is not specific to the RFP configuration, but is is studied in perspective of ITER,
the nuclear fusion experimental reactor which is under construction in Cadarache, south
of France. The complicate 3D topology of the plasma which gives birth to the PWI in the
case study is investigated via the Hamiltonian guiding center code Orbit .
A preliminary analysis with a simplified model of 3D topology shows that the maximum
toroidal mode number of plasma instabilities involved in the PWI event is higher than the
measured n ≤ 23. This information is important in view of the refurbished RFX-mod2
device.
Further analysis is performed with Orbit and regards the description of the map of con-
nection lengths to the wall. This map qualitatively reproduces the experimental PWI
pattern on the surface of the RFX-mod wall. Finally, it shows that the two stripes of the
PWI, represented by low connection lengths, are caused by modes with different poloidal
number, m = 0 and m = 1.
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Introduction

In the current economic scenario characterised by the crisis of the traditional electric energy supply
system, the research of new energy sources is continuously expanding. Nuclear fusion reactions rep-
resent a possible way to get a huge amount of energy, potentially available for people and factories,
with a small environmental footprint.
Since 1950s, several efforts were invested to make fusion a commercial source of energy. Presently, such
a goal has not yet been achieved. The major international project finalised at building a commercial
fusion reactor is represented by ITER (which stands for International Thermonuclear Experimental
Reactor) which is currently under construction in Cadarache (France) and whose operations are going
to start by December 2025. ITER is a prototype for the creation of the first fusion reactor, DEMO
(which stands for DEMOnstration power plant), which will be the first plant for commercial purposes
and will start operating likely by the end of 2050s. Indeed, the main aim of ITER is to demonstrate
that it is possible to realise in laboratory a reproducible and relatively long-lasting controlled nuclear
fusion process with a sufficiently high energy gain. On the other hand, the DEMO reactor is designed
even to double the energy gain of ITER!

Figure 1: Path from ITER to DEMO. Picture taken from Ref. [1].

Both ITER and DEMO employ the Tokamak magnetic configuration which presently shows the best
performance in terms of particle and energy confinement. However, this is not the only available
configuration. For example, the Consorzio RFX, located in the area of the Italian National Research
Council (CNR) in Padova, Italy, hosts the largest fusion experiment in the world which operates in an
alternative configuration, i.e. the Reversed Field Pinch (RFP). Its name is RFX-mod1, and operated
between 2004 and 2015. It consists of a doughnut-shaped chamber (geometrically a torus) with major
radius R0 = 2 m and minor radius a ≈ 0.46 m. Since, this configuration is more compact than a
tokamak, the RFP is favored in terms of size and cost. RFX-mod is currently being upgraded and
will start operating by the end of 2024.

1To be precise, RFX-mod’s peculiar versatility lets to exploit both Tokamak and RFP configurations. However it
works mostly in RFP.
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The work presented in this thesis summarises my activity at Consorzio RFX. It was devoted to the
study of the impact of tearing modes on Plasma Wall Interaction (PWI) in RFX-mod. The number
of tearing modes determining the PWI can change during a plasma discharge. By changing some
experimental parameters of the discharge, a situation where there is a dominant tearing mode is
observed. In this case, the state of the plasma is described as the ordered Quasi-Single Helicity
(QSH) state. The QSH is often interrupted by a more chaotic state called Multiple Helicity (MH)
which is characterised by a broad spectrum of tearing modes. Both in MH and QSH states, the tearing
modes tend to align their phases due to non-linear coupling. This condition is called Locked Mode
(LM), which is observed to be detrimental to magnetic confinement, since it is responsible for a large
loss of particles towards the Plasma Facing Components (PFC) of the device, resulting eventually in
their damage. Such an event is called Plasma Wall Interaction (PWI). More details on the phase
locking of tearing modes are given in Chapter 3.
My work was focused on a specific PWI event, whose image was taken with a CCD
camera during the RFX-mod experimental campaign, in the discharge #29324 at time
tPWI = 218 ms. Therefore, the major goal has been to estimate which modes were more
detrimental in generating such PWI.
For this purpose, several approaches, like the calculation of the magnetic field lines displacements
induced by the instabilities, and the description of the plasma magnetic topology both perceived
with the Orbit guiding center code [2] are discussed. In particular, an useful quantity, namely the
Connection Length to the wall, Lc,w, has been calculated with Orbit. Lc,w of a given point A is
defined as the distance which is traveled by a single charged particle starting from A to hit the first
wall, formally:

Lc,w =

∫ ζw

ζA

B dζ

B⃗ · ∇ζ
, (1)

where ζA and ζw represent the initial and final toroidal angles, respectively. This quantity is discussed
more in detail in the second Chapter of the thesis, in Section 2.2.3. Particles causing a larger PWI in
the RFP are characterised by shorter connection lengths. Therefore, the map of Lc,w is expected to
follow the pattern of PWI.
The topic of the thesis is not specific to the RFP configuration only. In fact, in the tokamak magnetic
perturbations, called RMPs, are imposed by external means to reduce the impact on the PFC of more
violent instabilities, called Edge Localised Modes (ELMs). The latter are present due to high pressure
gradients which often arise in this configuration. Tokamak like ITER can tolerate a limited number of
these events. Then, inducing RMPs represent an efficient way to mitigate the effects of such disruptive
perturbations. Therefore, the analysis of the way these magnetic perturbations interact to determine
particle transport is also in perspective of ITER.
The main property of the non-linear interaction of perturbations, both in tokamaks and RFPs is that
it creates regions of magnetic chaos in the plasma. This mechanism reduces large pressure gradients
driving ELMs in tokamaks. On the contrary, in the RFP, the ordered QSH is to be preferred to the
chaotic MH state since it is characterised by a smaller PWI. The 3D structure of these chaotic regions
is investigated by mapping the Connection Length to the wall.

In this thesis, the first two Chapters summarise the context and methods used in the thesis. Starting
from Chapter 3, the main original results coming from my analysis are pointed out. The outline is as
follows:

• Chapter 1 describes the basics of a fusion reactor, such as the reaction energy balance and the
need for magnetic confinement of charged particles. The plasma equilibrium condition and the
instabilities perturbing this state are treated in the framework of the Magnetohydrodynamics
(MHD), which is a common tool for describing both Tokamak and the RFP configurations.

• In Chapter 2 a brief description of the RFX-mod experimental setup is pointed out. The
major interest is reserved to the Optical Camera System (OCS) which hosted the CCD cameras
observing the PWI’s during the discharge # 29324. The guiding center Orbit code, which was
used for the Lc,w calculations, is also briefly discussed.
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• Chapter 3 reports the PWIs description which is based on the comparison between the profile
of the ideal displacements of magnetic field lines induced by tearing modes and the toroidal
profile of a parameter that quantifies how much the modes are aligned during the Locked Mode,
the so-called Locking-Strength (LS). A preliminary estimate of the number of modes that were
involved in the PWI of interest is provided.

• Chapter 4 deals with a description based on the characterisation of the plasma magnetic
topology during the PWI event of interest by exploiting its representation on a Poincaré plot.
Some information about which kind of magnetic perturbations have led to the PWI of interest
is deduced.

• Finally, Chapter 5 regards the analysis of the Lc,w maps. A further understanding of the
phenomenology resulting in the PWI of interest, coming from the comparison between such
maps and the image of the PWI taken on camera, is reported.

The thesis ends with a final section of concluding remarks.
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Chapter 1

Main aspects of Nuclear Fusion

In this Chapter, a detailed summary of the main concepts to be taken into account in order to suc-
cessfully exploit nuclear fusion reactions as a commercial energy source are described. Some topics,
such as the problem of the energy balance inside a reactor and particle confinement are underlined.
The role of magnetic instabilities is further discussed and investigated. A brief theoretical description
of the MHD model of tearing modes is also provided, to describe the framework in which the research
activity has been carried out.

1.1 The thermo-nuclear fusion reactions

1.1.1 Definition of plasma

Ordinary fluids such as air or water are made by electrically neutral molecules and atoms. Though, by
heating a gas to very high temperatures or by passing an electric discharge through it, one in principle
can reach a configuration where atoms have been ionised into positively charged nuclei and negatively
charged electrons. Such a collection of ions and electrons is called plasma. Though, everyday life
phenomena, like flames or thunders are made of plasma, plasma is not very common in our daily life.
On the contrary, it pervades the universe outside the Earth. For example, shining stars are made by
gas heated at high temperatures, so nothing but plasma!
From a phenomenological point of view, a plasma can be simply described as a special kind of fluid
which is globally neutral and whose particles are electrically charged and interact with each other
through Coulumb’s force.

1.1.2 The binding energy per nucleon

The mechanism that powers the stars is led by the thermo-nuclear fusion reaction. It is a process
where two atomic nuclei join into a heavier nucleus, forming a new element.
The probability to make two nuclei bind together through fusion can be predicted simply with energetic
considerations. In fact, each nucleus is composed of a certain number of protons and neutrons which
are held together by the nuclear force. Therefore, given a nucleus having a mass M , and made of Z
protons and A− Z neutrons, its binding energy is defined in this way:

EB = Zmp + (A− Z)mn −M , (1.1)

where mp and mn represent respectively the mass of a proton and that of a neutron. Notice that the
definition of the binding energy reported in Eq. (1.1) implies that the most stable elements are those
which maximise EB. The binding energy of a certain nucleus can be predicted in the framework of
the Liquid Drop Model (LDM) and it can be experimentally measured. Its trend depending on the
mass number A is shown in Fig. 1.1.
Therefore, the energy gain related to a general nuclear reaction is quantified as the difference between

5



the sum of the binding energies of the reactants and that of the binding energies of the products,
namely:

Ereleased = Ereactants
B − Eproducts

B . (1.2)

Ereleased represents the amount of energy that is freed at the end of the reaction as kinetic energy
of its products, so the condition to be fulfilled to say a reaction convenient is that Ereleased must be
positive.

Figure 1.1: Trend of the binding energy per nucleon as a function of the atomic mass number A. The arrows
represent the direction that nuclei involved in nuclear fusion and fission reactions follow to reach more stable
states. Data are taken from Ref. [3].

Since the binding energy has its maximum at A = 56, corresponding to the 56Fe peak, there are two
opposite ways to get energy from a nuclear reaction: fusion, from light nuclei to a heavier one and
fission, from a heavy nucleus to lighter ones.
In principle, the energy released by a single nuclear reaction can be collected and properly converted
into electric energy for commercial purposes. However, it is a very difficult task and it has not been
achieved with fusion yet. This is the reason why, at the moment, fission represents the only way to
produce energy by exploiting nuclear reactions. One of the most exploited fission reactions is the
following [4]:

235
92 U+ n −→ 140

58 Ce +94
40 Zr + 2n + 6e− + 206 MeV , (1.3)

where, at the end of the formula, the amount of released energy (Ereleased) from a single reaction is
reported. The fission reaction written above has two main advantages. Firstly, while it takes only one
neutron to start, at the end two neutrons are produced. This implies that in principle a chain reaction
is triggered, making the fission reactor self-sustaining for a long time before it needs to be refueled.
The second advantage is linked to the fact that the reaction is started with a neutral particle, so it is
relatively easy to overcome the electron barrier surrounding the heavy nucleus that makes start the
reaction.
On the other hand, the main lack of exploiting nuclear fission processes as a source of energy is the
production of long-lasting radioactive waste which requires special storage for a practically infinite
time.

1.1.3 The D-T fusion reaction

As previously mentioned, exploiting fusion reactions is possible as long as one can overcome the en-
ergy barrier related to the nuclear force binding nucleons together. These conditions are fulfilled by
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heating fuel at a very high temperature, namely producing a plasma. Therefore, a fusion reactor can
be considered as a device which contains a plasma and employs the fusion reactions which occur inside
to generate a, possibly positive, energy output. Such a operation is also called discharge1.

In order to exploit controlled nuclear fusion, the reactions commonly taken into account are the
following:

• D+D −→ T+ p + 4.03 MeV ;

• D+D −→ 3He + n + 3.27 MeV ;

• D+T −→ 4He + n + 17.6 MeV (⋆) ;

• D+3 He −→ 4He + D+ 18.3 MeV .

where D indicates the deuterium hydrogen isotope, 2H, whose nucleus is made of one proton and one
neutron. Whereas T represents tritium, 3H, i.e. the hydrogen isotope whose nucleus counts one proton
and two neutrons.

Figure 1.2: Experimentally measured cross-
sections for the D-T, D-3He, and D-D fusion re-
actions as a function of deuterium energy KD [5].

Practically speaking, the convenience of a certain re-
action with respect to the others is determined by
three factors: the probability that the reaction has
to happen, the reactants’ abundance in nature, and
the amount of energy that is released at the end of
the reaction. Based on the latter criterion, on the
Earth the two most convenient reactions are the last
two. Moreover, looking at the trend of the cross-
section σ of the reactions as a function of the deu-
terium reactant kinetic energy, KD = 1

2mDv
2
D (the

graph is reported in Fig. 1.2), one can conclude
that the most convenient reaction among those re-
ported above is represented by the D-T one. This
is the reason why it is signaled with the (⋆) symbol
above. A scheme of the D-T reaction is sketched in
Fig. 1.3.

Figure 1.3: In a D-T fusion reaction, a nucleus of deuterium and another nucleus of tritium combine to form
an α-particle (namely a nucleus of 4He) with a kinetic energy of 3.5 MeV. In the reaction also a neutron with
an energy of about 14.1 MeV is freed. The total energy released in the reaction is thus 17.6 MeV.

The same graph in Fig. 1.2 also shows that the cross-section of the D-T reaction is sufficiently high
only for KD > 10 keV. This means that, in principle, a fusion reactor requires high temperatures
(around 25 keV) to deliver a sufficient amount of D-T reactions.
Exploiting fusion as a source of energy shows three main advantages [6]: fuel reserves, environmental

1In this thesis, a single discharge of the RFX-mod device is going to be call also shot since its typical duration is
’only’ of about ≈ 0.5 s.
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impact, and safety. Regarding the first one, there is one deuterium for every 6700 hydrogen atoms.
This means that it can be easily extracted, for example from ocean water where it occurs naturally.
Instead, tritium is obtained by breeding reactions with the lithium isotope 6Li:

6Li + n −→ T+ 4He + 4.8 MeV . (1.4)

The overall reserves of fuel for a D-T fusion reactor are thus limited by the reserves of lithium. But
new alternative materials, such as beryllium or lead, to get tritium are being studied [7].
The next advantage regards the environmental impact of fusion. During their activity, fusion reactors
do not emit CO2 or other harmful chemicals into the atmosphere. Instead, from the ecological point of
view, the most challenging issue is that concerning the disposal of the blanket surrounding the reactor.
In fact, as it has been already mentioned, at the end of the D-T reaction a neutron is released. The
major purpose of the blanket is to screen the environment outside the reactor from all the neutrons
which come from the reactions by exploiting the same process in Eq. (1.4), so producing tritium
meanwhile. As a consequence, the blanket is made mostly of lithium. Since the freed neutrons are
very energetic (their energy is about 14 MeV), they cause the structure to become activated. However,
these radioactive structural materials have a short lifetime, of the order of 100 years, so they can be
more easily stored than those produced with fission. Overall, considering the entire environmental
situation, fusion is a very reliable option with respect to other energy sources currently exploited for
commercial purposes such as oil, carbon, or the renewable sources too.
The last worthy advantage involves safety. All the fusion reactions reported above do not imply
the possibility to form a chain reaction. This means that the reactor requires to be filled almost
continuously during its operations. From the safety point of view this implies that, despite what
happens in fission, a fusion reactor activity can be stopped immediately if some damage is eventually
present. In other words, the possibility of a meltdown is null for a fusion reactor.

1.2 Main features of a fusion reactor

1.2.1 The energy balance

Taking into account the main sources of energy gain and loss, it is possible to approximately predict
the operational conditions of a fusion reactor. A precise analysis of this topic can be found in Ref. [8].
Consider a fusion plasma, fully ionised (ni = ne) and at thermal equilibrium. The power per unit of
volume, pf , released from each one of all the D-T fusion reactions which happen inside the reactor is
given by:

pf = nDnT ⟨σv⟩Ef , (1.5)

where nD and nT represent respectively the numerical density of deuterium and tritium nuclei in the
reactor. Ef is the total energy released during a single reaction, namely Ef = 17.6 MeV. ⟨σv⟩ is called
reactivity and is calculated by averaging over the velocities the product between the cross-section, σ,
and the relative velocity, v, of two colliding plasma particles, i.e.:

⟨σv⟩ =

∫

Ω
d3v1

∫

Ω
d3v2 σ(v)v · f1(v1)f2(v2) , (1.6)

where v1 and v2 represent the velocities of the two particles, and f1, f2 are the corresponding distri-
bution functions.
It can be shown that the power pf is maximised when deuterium and tritium are equally present inside
the reactor, i.e. nD = nT = n

2 . In this case, the maximum released power density is given by:

pmaxf =
1

4
n2 ⟨σv⟩Ef . (1.7)

Since particles are at thermal equilibrium, the mean kinetic energy of a single particle is expressed
by 3

2T , according to the ideal gas law. Therefore, the total kinetic energy per unit of volume of the
system, w, is obtained by multiplying the last quantity by 2n:

w = 3nT . (1.8)
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The time evolution of w is expressed with the following power balance:

dw

dt
= pH + pα − pL − pR . (1.9)

On the right-hand side, several contributions of power are reported: pH is a positive contribution to
the energy given with external heating. In a modern reactor, several sources are employed to heat
plasma during the discharge, the most used are the Ohmic effect, which is always present, the Radio
Frequency Heating, and the Neutral Beam Injection (NBI). The last two are also called additional or
external heating sources. pα is another positive contribution of energy coming from the α-particles
which are produced by each D-T reaction, in the hypothesis that all α-particles remain confined in
the reactor. An expression for pα can be derived by analogy with the Eq. (1.7):

pα =
1

4
n2 ⟨σv⟩Eα , (1.10)

where Eα = 3.5 MeV is the kinetic energy of the α-particle at the end of the D-T reaction. pR is a
loss term corresponding to the energy that is radiated out from the plasma, most of this power comes
from bremsstrahlung phenomena and it is expressed with the following phenomenological formula [9]:

pR ≈ pb = αbn
2T

1

2 , (1.11)

where αb = 5.35 · 10−37 Wm3/keV
1

2 is a constant. Finally, pL is a loss term related to the conduction
and convection phenomena. In order to quantify this contribution of power, it is convenient to make
use of a phenomenological parameter called energy confinement time, τE , which is defined in this way:

pL =
w

τE
. (1.12)

If ideally one considers to isolate the fusion plasma, i.e. to switch off all contributions of energy gain
and losses, pH = pα = pR = 0, Then the Eq. (1.9) becomes:

dw

dt
= −

w

τE
. (1.13)

Namely, τE represents the time a fusion plasma survives whenever it is isolated.

1.2.2 The ignition condition

The term ignition is used to define the ideal situation when the power pα coming from fusion reactions
balances all the losses. Therefore, in such a situation, the plasma does not need any external heating,
but autonomously guarantees the activity of the reactor:

pα > pL + pR ⇔ pH = 0 . (1.14)

By substituting the ignition condition (1.14) inside the definition of the energy confinement time in
Eq. (1.12), one obtains:

τE >
w

pα − pR
. (1.15)

By making explicit w = 3nT at the numerator, and by substituting the expressions for pα and pR
(taken respectively from Eq. (1.10) and Eq. (1.11)), the ignition condition can be finally written in
the following form:

nτE >
12T

⟨σv⟩Eα − 4αbT
1

2

. (1.16)
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The trend of the nτE product for the D-T reaction as a function of the temperature T is shown in
Fig. 1.4. It has a minimum close to T = 25 keV. The requirement for ignition at this temperature is:

nτE > 1.5 · 1020 m−3·s . (1.17)

However, since τE is itself a function of the temperature, for practical reasons it is better to write
the ignition requirement as a product of n, τE , and T . In the temperature range 10 − 20 keV, the
reactivity is well represented with the approximation:

⟨σv⟩ = 1.1× 10−24 · T 2
[keV] m

3·s−1 . (1.18)

Taking into account Eα = 3.5 MeV, the ignition condition thus becomes:

nTτE > 3 · 1021 m−3·keV · s . (1.19)

Figure 1.4: Trend of nτE fulfilling the ignition
condition in Eq. (1.16) as a function of the plasma
temperature T for the D-T reaction [10].

This is a very convenient form to represent the igni-
tion condition since it brings out explicitly the require-
ments on density, temperature, and confinement time
to build an efficient fusion reactor. In other words, it
claims that, in order to make a fusion reactor properly
work in a regime of positive energy output, one needs
to put enough fuel for a sufficiently long time, and
heated at a sufficiently high temperature. The condi-
tion would be reached for example with n = 1020 m−3,
T = 10 keV and τE = 3 s.

1.2.3 The overall energy gain

The fusion reactor’s ability to have a positive energy
balance is actually measured with the ratio between
the total power obtained from fusion reactions during
the discharge, Pf , and that used to heat the plasma
inside the reactor during the same time, PH . Namely:

Q =
Pf
PH

=
5Pα
PH

, (1.20)

where the last passage is justified considering that, in
a single D-T reaction, the total released energy is 5 times the kinetic energy of the α-particle which
is produced. The condition Q = 1 is called break-even condition, it refers to the situation when the
reactor gives back the same energy that is required for the plasma sustainment. In the ignition regime,
PH = 0, so Q −→ +∞.
The highest Q ever reached is 1.25, with the Japanese Tokamak JT-60U in 1999 [11]. However, it
is not enough to make commercial use of the energy produced through fusion processes. One of the
major goals of ITER is indeed to achieve the value Q = 10 and possibly to overcome it. The first
commercial fusion reactor, DEMO, should reach even higher levels of Q.
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1.3 Magnetic confinement of charged particles

1.3.1 Towards the modern helical transform configuration

Figure 1.5: A charged particle immersed in a mag-
netic field draws a spiral around the magnetic field
line. ξ is the so called gyro-phase.

As already underlined in Eq. (1.19), in order to trigger
a sufficient number of D-T fusion reactions, particles
should be confined for a reasonably long time, at a
sufficiently high temperature, in a high-density condi-
tion. A possible way to solve this issue is to employ
the magnetic field.
Magnetic confinement is based on the principle that a
charged particle immersed in a magnetic field, draws
a spiral around the magnetic field line, see Fig. 1.5.
The center of the circular orbits is known as guiding-
center [12]. The radius, ρ, of the circular trajectory
drawn by the particle with charge e on the plane that
is perpendicular to the field line is historically known
as Larmor radius2, and it arises from the equilibrium between the Lorentz force and the centrifugal
force:

ev⊥B =
mv2⊥
ρ

⇒ ρ =
mv⊥
eB

, (1.21)

where v⊥ is the component of the particle velocity which is perpendicular to the magnetic field B⃗,
|q| is the modulus of its charge, and m indicates its mass. The frequency of such a circular motion
around the magnetic field line is said cyclotron frequency and it is calculated as: ωc =

v⊥
rL

= eB
m
.

A particle is said confined if its Larmor radius is smaller than the space available for its motion. Vice
versa it is said lost.

Figure 1.6: Sketch of the magnetic mirror configu-
ration. The magnetic field is represented in black.
The particle turns around the magnetic field line
following the red orbit. Then, it bounces due to
the increase of the magnetic field at the edge. The
bounced particles come back following the same
trajectory (coloured in blue) but in the opposite
direction.

The simplest magnetic configuration that can be pos-
sibly used to confine charged particles is represented
by the solenoid. In this way, particles are constrained
to do a circular motion perpendicularly to the mag-
netic field. However, in this device they are still
lost in the parallel direction. A possible solution
might be to increase the intensity of the magnetic
field at the edges of the solenoid, as it is shown in
Fig. 1.6. In fact, it can be easily shown that such a
configuration works as a magnetic mirror for most of
the particles. Indeed, even in this case, some parti-
cles are still lost, especially those that move quickly
enough along the direction parallel to the magnetic
field. Then, the most effective approach to avoid
these longitudinal losses is to close the magnetic field
lines on themselves, forming a sort of doughnut, ge-
ometrically called a torus. The simplest way to re-
alise such a spatial configuration of the magnetic
field is to use coils placed so as to form a toroidal
solenoid3.

2Alternatively, it can be called also as cyclotron radius or gyro-radius A more formal introduction to this quantity is
going to be reported in the next Chapter.

3As concerns the notation, it is going to be called toroidal (ϕ̂) the direction which turns around the major axis of
the torus, Whereas poloidal (θ̂) is going to identify the direction that turns around its minor axis. The minor radius
coordinate is going to be indicated with r̂.

11



Inside a torus, the magnetic field decays as 1
R

where R represents the distance from its center. It can
be demonstrated simply by using Ampére’s law. It can be shown that, if the magnetic field has a
gradient, then it is responsible for a guiding center drift. Its velocity thus would be given by:

v⃗d =
mv2⊥
2qB

·
B⃗ ×∇B

B2
+
mv2∥

qB
·
R⃗c × B⃗

R2
cB

. (1.22)

Figure 1.7: Sketch of the helical transform of the
magnetic field. Toroidal and poloidal directions
are respectively indicated with φ̂ and θ̂. r̂ indicates
the radial direction. Adapted from Ref. [13].

In the formula above, R⃗c indicates the curvature ra-
dius of the magnetic field. As a convention, the di-
rection towards the outer part of the torus is taken
positively. The overall effect of this velocity in the
geometrical case of a torus is a vertical drift of par-
ticles. Since v⃗d depends on the sign of the particle’s
charge, we have that electrons and ions are separated
with this drift. Therefore, an electric field is gener-
ated. This field is responsible for another contribution
of velocity:

v⃗E×B =
E⃗ × B⃗

B2
. (1.23)

In principle, such a separation of charges could be
detrimental for the plasma survival. Therefore, this
problem needs to be solved by introducing a new com-
ponent of the magnetic field along the poloidal direction. The overlap of the toroidal (Bφ) and the
poloidal (Bθ) components gives birth to a magnetic configuration where the magnetic field lines wind
helically around the torus as shown in Fig. 1.7. In other words, the magnetic field undergoes to the
so-called helical transform. The resulting guiding center orbit becomes helical itself. In fact, the tra-
jectory designed by each particle of the plasma performs a certain number of turns around both the
toroidal and the poloidal directions.

To conclude, a magnetically confined device is a toroidal vacuum chamber. Its typical dimensions are
of the order of magnitude of a meter regarding major (R0) and minor (a) radii. A useful parameter
to describe the reactor geometry is the so-called aspect-ratio, which is defined as A = R0/a.

1.4 Plasma equilibrium

1.4.1 Plasma dynamical theory

In the Magneto-Hydro-Dynamics (MHD) approach, the plasma is considered as a fluid made up of
charged particles, called magnetofluid. As a consequence, in the MHD model, a full dynamical theory
for plasma is provided by considering the conservation equations for neutral fluids which come out
from the collisional Boltzmann’s equation and then, by adding the Maxwell’s equation (in the non-
relativistic approach) for the electric (E⃗) and the magnetic (B⃗) fields:

∂ρm
∂t

+∇ (ρmv⃗) = 0 ; (1.24)

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −

1

ρm
∇p−

F⃗

m
+ ν ∇2v⃗ ; (1.25)

ρm

(
∂ε

∂t
+ v⃗ · ∇ε

)
−∇ · (K ∇T ) + p ∇ · v⃗ = 0 ; (1.26)

∇ · E⃗ =
Qtot
ε0

, ∇× E⃗ = −
∂B⃗

∂t
; (1.27)
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∇ · B⃗ = 0 , ∇× B⃗ = µ0j⃗ . (1.28)

ρm = mn is the mass density of the plasma, n is the numerical density of its particles, F⃗ represents
the total external force acting on the system, ν is the viscosity. Furthermore, ε represents the internal
energy of the system, while K is the thermal conductivity, and T is the temperature. Finally, as
concerns Maxwell’s equations, Qtot is the total charge contained within the system, ϵ0 is the vacuum
dielectric constant, µ0 is the vacuum diamagnetic constant, and j⃗ represents the electric current
density.

By combining the equations reported above to get a full dynamical theory for plasma, one finally
obtains the following set of equations, representing the local evolution of the most relevant quantities
characterising the system, respectively the mass density ρm, the velocity v⃗, and the magnetic field B⃗:

∂ρm
∂t

+∇ (ρmv⃗) = 0 ; (1.29)

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −

1

ρm
∇

(
p+

B2

2µ0

)
+

1

ρm µ0
∇

(
B2

2

)
+ ν ∇2v⃗ ; (1.30)

∂B⃗

∂t
= ∇×

(
v⃗ × B⃗

)
+ λ∇2B⃗ ; (1.31)

where the quantity λ = η
µ0
, with η the plasma resistivity, is called magnetic diffusivity. As a final

remark, it is worth mentioning that the simplified version of the MHD equations where resistivity is
assumed to vanish and η = 0 is called ideal MHD. This is a good, first-order approximation because
a plasma is a very good electricity conductor.

1.4.2 The β parameter

In the MHD model framework, by considering a single charged particle in a plasma, the evolution in
time and space of its linear momentum is well described with the Navier-Stokes equation, written for
a charged particles system:

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −

1

ρm
∇p+

1

ρm

(
j⃗ × B⃗

)
+ ν ∇2v⃗ . (1.32)

Assuming a condition of static equilibrium, the terms in v⃗ disappear and one finally obtains the
so-called Grad-Shafranov equation:

∇p = j⃗ × B⃗ . (1.33)

The equation above makes explicit the balance between kinetic forces and magnetic forces in a mag-
netofluid at static equilibrium.

The plasma equilibrium is completely described through the following set of equations: the Grad-
Shafranov equation (1.33), and the two Maxwell’s equations for the magnetic field (1.28), which can
be manipulated considering a cylindrical approximation, i.e. assuming to straighten the torus into a
cylindrical shape4. In fact, by assuming cylindrical symmetry, i.e. ∂

∂θ
= ∂

∂z
= 0, and that the plasma

is at static equilibrium, i.e. v⃗ = 0, the Eq. (1.30) becomes:

∂

∂r

(
p+

B2
θ +B2

z

2µ0

)
+
B2
θ

µ0r
= 0 . (1.34)

The equation above represents the balance of the kinetic pressure, the magnetic pressure, and the mag-
netic tension for a cylindrical magnetofluid at static equilibrium. The first two contributions tend to
push the magnetic field lines in the outside direction, instead the latter works to avoid their stretching.

4Passing from a toroidal to a cylindrical system of coordinates, the toroidal direction ϕ̂ becomes the axial one ẑ.
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Since, as we have already seen, magnetic confinement depends on the profile of the magnetic field line
determining the helical transform, a suitable way to quantify its performance is to calculate the ratio
between the average kinetic pressure and the magnetic pressure. This is the definition of the so-called
’beta’ parameter :

β =
2µ0 ⟨p⟩

B2
, (1.35)

where the average is meant to be calculated across the poloidal surface of the plasma.

1.5 Tokamak, Reversed-Field-Pinch and Stellarator

Depending on the amplitude of the toroidal and poloidal components of the magnetic field determining
the helical transform for a modern fusion reactor, one can distinguish between several configurations
for magnetic confinements. Presently, three are those most studied.

(a) Tokamak (b) Stellarator (c) Reversed-Field-Pinch

Figure 1.8: Comparison between the main confinement configurations available for a modern reactor.

Figure 1.9: Radial profiles of the toroidal Bϕ and
the poloidal Bθ magnetic fields (normalized to the
on-axis toroidal field value) for a Tokamak and Re-
versed Field Pinch. Taken from Ref. [14].

The first one is the Tokamak (Fig. 1.8a). In this con-
figuration, most of the magnetic field is in the toroidal
direction (Bφ ≫ Bθ), and it is obtained thanks to a set
of coils forming a sort of toroidal solenoid. Instead, the
poloidal one is provided by induction through a plasma
current which is triggered with a central solenoid and
flows toroidally.
An alternative magnetic configuration to the Tokamak
is called Stellarator (Fig. 1.8b) [15], which is charac-
terised by the absence of plasma current. The pe-
culiarity of this configuration is that the helical trans-
form of the magnetic field is obtained directly through
a properly designed set of magnetic field coils. Because
of this feature, the Stellarator configuration can avoid
disruptions, since no current is flowing into it. On the
other hand, the manufacture of a set of reliable mag-
netic coils for a Stellarator reactor currently is a very
challenging task because of several technological lim-
its in manifacturing and assembling the coils.

Finally, the second alternative to the Tokamak is represented by the Reversed-Field-Pinch (RFP,
Fig. 1.8c). Tokamak and RFP share some similar properties, such as the co-presence of a toroidal
and a poloidal magnetic field, and the pinch effect associated with the plasma current. However, the
mechanisms which sustain the discharge in the two configurations are completely different. This is
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mainly due to the different ratio between toroidal and poloidal fields inside RFP, where Bφ ≈ Bθ
contrary to the Tokamak. A comparison between the two configurations is shown in Fig. 1.9. The
way RFP sustains high magnetic fields in both directions is consequence of a large plasma current,
which can heat the discharge through Ohmic-heating only.

1.6 MHD instabilities

1.6.1 The safety factor and the magnetic shear parameters

(a) q = 1/10 (b) q = 2

Figure 1.10: Two examples of magnetic field lines characterised by different safety factors [16].

Helical magnetic field lines are usually described in terms of the so-called safety factor, q. Referring
to a single magnetic field line, it is defined as the ratio between the number of travelled toroidal turns
run by a magnetic field line while it completes a full poloidal turn:

q =
∆φ

2π
, (1.36)

where ∆φ is the portion of toroidal angle that is travelled by the magnetic field line during a complete
poloidal turn. A few examples of magnetic field lines at different q are reported in Fig. 1.10. Magnetic
field lines characterised by the same value of q form a magnetic surface.
In order to find an expression for the safety factor radial profile, q ≡ q(r), one can consider the field
line equation [17]:

R0 dφ

rdθ
=
Bφ
Bθ

, (1.37)

where rdθ is the distance run by the magnetic field line in the poloidal direction, and dφ is the
infinitesimal portion of the toroidal angle. q(r) is thus obtained by using Eq. (1.36) and integrating:

q(r) =
1

2π

∮
dφ =

1

2π

r

R0

Bφ
Bθ

∮
dθ =

r

R0

Bφ(r)

Bθ(r)
. (1.38)

The value of the safety factor on the axis is related to the plasma current through the relation:

q0 = q(0) =
2Bφ(0)

µ0jφR0
, (1.39)

where jφ is the plasma current density. The relation above is obtained under the assumption of a
uniform plasma current profile.

1.6.2 Plasma instabilities

In general, several instabilities might occur in plasma. They are well described in the MHD framework.
First of all, instabilities can be distinguished between pressure-driven and current-driven depending
on if respectively pressure gradients or current gradients are responsible for the arising instability.
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Alternatively, another way to classify plasma instabilities might be between ideal and resistive modes
depending on the role the plasma resistivity, η, plays in determining the time evolution of the insta-
bility.
All instabilities can be analysed in the Fourier space. Namely, δBr(r⃗), describing a local perturbation
of the magnetic field in the radial direction, can be written in terms of a Fourier series as follows:

δBr(r⃗) =
∑

k⃗

br
k⃗
(r⃗) ei(k⃗·r⃗+ωt) =

∑

m,n

brm,n(r⃗) e
i(mθ−nφ+ωt) , (1.40)

where k⃗ = (kr, kθ, kφ) = (kr,m/r, n/R) is the wave vector written in toroidal coordinates, while r⃗ is
the position vector in the real space. m and n are respectively known as poloidal mode number and
toroidal mode number. As a consequence, the couple (m,n) identifies uniquely a single mode.
For a uniform plasma, small perturbations have a spatial structure similar to a wave. In this case,
a single plane wave with a certain wave vector k⃗ and frequency ω arises. This wave is called normal
mode. The frequency that describes each mode is a complex quantity ω = ωR + iωI , where the real
part is related to the propagation velocity, while the imaginary part describes the growth (ωI > 0) or
the attenuation (ωI < 0) of its amplitude.

The perturbation described in Eq. (1.40) is maximised for:

mθ − nφ = 0 . (1.41)

Using the equation above we can calculate the distance traveled by the perturbed magnetic field line
during a complete poloidal turn:

∆φ =
m

n
· 2π ⇒ dφ = R0 ·∆φ =

m

n
· 2πR0 . (1.42)

By comparing the Eq. (1.42) just written above with the field line equation in Eq. (1.37), and by
taking into account the expression of the safety factor in Eq. (1.38), one gets the following resonance
condition:

q =
m

n
. (1.43)

Whenever the length of a magnetic field line is an integer multiple of the perturbation wavelength,
then a resonant mode is excited. To conclude, the most dangerous helical instabilities are localised in
those positions of plasma where the corresponding safety factor has rational values.

Figure 1.11: Sketch of a plasma perturbation
corresponding to a kink mode. Taken from
Ref. [18].

In an ideal plasma with no resistivity, η = 0, it can be
demonstrated that the geometrical arrangement of the
magnetic field lines, namely the plasma magnetic topol-
ogy, is preserved (further details about this topic are go-
ing to be provided in Section 1.8.1). It implies that the
magnetic field lines can not recombine in a new magnetic
configuration. In the context of ideal MHD typical insta-
bilities are the ideal modes, also called kink modes (see
Fig.1.11). They appear in the form of a global kinking of
the plasma column, they do not imply reconnection and
are non-resonant, for example they are characterised by
m/n > q(0). Kink modes are typically stable in a RFP
and they are not treated in this thesis.

On the contrary, a resistive plasma with η ̸= 0 displays
large current instabilities in the form of tearing modes.
In the case of the tearing modes, since the plasma is
resistive, magnetic field lines reconnect with each other
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forming the so-called magnetic islands. Topologically, tearing modes are very different from ideal
modes, as sketched in Fig. 1.12. The number of magnetic islands which lie on the toroidal and the
poloidal plane is uniquely related respectively to the toroidal and the poloidal mode numbers n and
m which describe the instability driving the phenomenon. Their radial position is determined by the
profile of the safety factor. Each magnetic island is characterised by two points: the O-point is that
around which the magnetic field lines rotate, while the X-point is that where magnetic reconnection
events take place. The magnetic surface on which the X-point lies is called separatrix, because it
separates the volume of the island from the surrounding plasma. The width of a single island, w, is

defined as the distance between the extremities of its separatrix, and is proportional to
(
δB
B

) 1

2 [19].

Figure 1.12: Sketch of the reconnection of magnetic field lines producing magnetic islands.

Another useful parameter is the magnetic shear, which is defined as:

s(r) =
r

q(r)

dq(r)

dr
. (1.44)

It represents the variation in the direction of the magnetic field, which affects the size of the islands [20].

1.6.3 Operational limit for a fusion reactor

By substituting the ideal gas law: p ∝ nT into the Eq. (1.19), then one has:

nTτE ∝ B2βτE . (1.45)

As a consequence, in principle, in order to fulfill the ignition condition, it is desirable to increase the
value of β as much as possible. However, the maximum achievable values are limited by the so-called
Troyon limit [21]:

β (%) < g
IP [MA]

a[m] ·Bφ[T]
, (1.46)

where a, Bφ, IP are respectively the minor radius, the toroidal magnetic field, and the plasma current,
while the constant g is called Troyon factor (its value is typically in the range between 2.8 and 3.5).
Experimentally, above this limit, pressure-driven instabilities development is found.

Another very important operational limit regards the numerical density. A phenomenological law
based on experimental data was found by Greenwald [22]. It states that stability (with respect to the
density limit) is obtained for the averaged values of the electronic density ⟨ne⟩ such that:

⟨ne⟩
(
1020 m−3

)
<
IP [MA]

πa2
[m2]

≡ nG , (1.47)

where the right-hand side is known as Greenwald density, nG.
For both Tokamaks and RFPs, the existence of a limit as concerns the electronic density is justified
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with the development of thermal instability at the plasma edge. In Tokamaks the consequent shrinking
of the plasma current might trigger a plasma disruption, i.e. an abrupt termination of the discharge.
Instead, in the case of RFPs, it usually leads to a soft landing of the plasma discharge rather than to
a fast termination [23].

1.7 Perturbations in Tokamak configuration

1.7.1 Edge Localised Modes

Figure 1.13: Experimental profile of (a) temper-
ature and (b) electron density in the very edge of
the plasma leading to the formation of the typical
pedestal structure in the pressure radial profile in
H-mode during an ASDEX Upgrade Tokamak dis-
charge. Taken from Ref. [24].

The typical radial profile of the magnetic fields in
the Tokamak magnetic configuration (see Fig. 1.9) im-
plies that q0 ≥ 1. This means that only a few tear-
ing modes, especially those characterised by n = 1
and m = 1, 2, 3 can arise in the plasma during a dis-
charge. Furthermore, the amplitude of the perturba-
tions caused by these instabilities, calculated accord-
ing to Eq. (1.40), is of the order of a few mT, very
small with respect to the on-axis magnetic field B0,
which is of the order of a few T.
In principle, since spontaneous resonances are almost
irrelevant for the MHD dynamics in Tokamak at n≪
nG, such a configuration is capable to achieve a very
high plasma confinement time τE , as it is desirable to
reach the ignition condition, thanks to the overall sta-
bility it guarantees. For instance, for the first time in
ASDEX [25], it has been observed that, in presence
of external heating sources, it is possible to sensitively
improve the confinement time. This discharge regime
is called High confinement mode or H-mode. Its pecu-
liarity consists of the formation of a steep gradient in
the pressure radial profile (named pedestal) just inside
the last closed flux surface, as shown in Fig. 1.13. It
results in an edge transport barrier since the transport
of heat and particles is strongly reduced compared to
the rest of the plasma. The drawback is that, as we
already mentioned, too steep pressure gradients destabilise pressure-driven modes at the edge. They
are the Edge Localised Modes (ELMs).

The ELMs are violent MHD events, associated with an abrupt decrease of the pressure gradient
forming the pedestal, resulting in a large loss of fast particles and energy toward the plasma-facing
components (PFC). The energy loss for a single ELM event might be tremendously dangerous for a
large device such as ITER since the amount of energy deposited on the first wall is so high that the
plasma-facing materials might be melted or even destroyed during the event. This is the reason why
methods that are able at least to mitigate such a release of energy during ELMs are one of the prime
interests in the field of fusion research, as concerns Tokamak devices. One possible solution in this
sense is represented by the application of Resonant Magnetic Perturbations (RMPs) through a set of
coils surrounding the vacuum vessel. Indeed, it has already been successfully demonstrated in some
experiments as TORE Supra [26] and TEXTOR [27], that such a set of coils, called ergodic divertor,
can mitigate or even completely suppress ELMs and, as a consequence, to control the power deposition
on PFC by externally applying a set of properly characterised resonating instabilities.
In a few words, sufficiently large tearing modes are not naturally present in the case of a Tokamak
magnetically confined plasma. Instead, they are artificially induced so as to avoid dangerous pressure-
driven instabilities which periodically arise in such a plasma.
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1.7.2 Homoclinic tangles

The mechanism driving the suppression of ELMs through RMPs is based on the induced stochasticity
of the magnetic field lines pattern, as well described by Evans in Refs. [28, 29].
Formally speaking, by looking at Fig. 1.12. The O-points and the X-points of such a scheme are
respectively the elliptic points and the hyperbolic points of the system particle dynamics. Moreover,
given a hyperbolic point x, one can notice two kinds of invariant manifolds, dubbed stable (or un-
stable). They are defined as the sets of points starting from which the dynamics of the system tend
to indefinitely move close (away) with respect to the hyperbolic point. They are easily recognisable
along the separatrix direction in Fig. 1.12.

Figure 1.14: Sketch of the invariant manifolds making up the
separatrix of a magnetic island. Picture taken from Ref. [29].

However, the stable (unstable) manifold of
one hyperbolic point cannot intersect the
stable (unstable) manifold of another hy-
perbolic point. But, if the two hyperbolic
points are connected with a field line, sta-
ble manifolds can intersect unstable man-
ifolds transversely resulting in homoclinic
tangles5.
Therefore, the real arrangement of magnetic
islands resembles much more the one re-
ported in Fig. 1.14, where it is shown that
the separatrix is composed of a pair of in-
variant manifolds mixing, rather than the
simplified scheme in Fig. 1.12.
The formation of homoclinic tangles is the
main effect of the overlapping of magnetic
islands, resulting in the chaotic tunneling of
magnetic field lines from one island to the
neighboring one. Thus, the importance of
the introduction of RMPs at the edge of the
plasma consists of the formation of a chaotic layer that mitigates the density and pressure gradients
of the H-mode pedestal by slowing down and then driving particles toward the vessel first wall. This
approach seems to reduce particle and heat transport to the wall and meanwhile to increase time
confinement as regards both energy and particles.

5Heteroclinic tangles are however possible for unconnected hyperbolic points, for example between those that appear
on the magnetic surface related to a mode like m = 4, n = 2. However, this is far beyond the contents of this thesis and
we are not going to point out further details in the following about this specific kind of tangles.
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1.8 MHD theory of RFP configuration

1.8.1 The magnetic helicity

Figure 1.15: Simple scheme of two interconnected
magnetic flux tubes.

Consider a region such that all magnetic field lines are
closed within it, with no field lines crossing its bound-
ary. Formally, it means that the normal component
Bn is null at the boundary surface of the region. The
magnetic helicity of the magnetic field in this region
is defined as:

H =

∫

V

A⃗ · B⃗ dV , (1.48)

where the integration has to be done over the whole
region V satisfying the so-called perfect boundary con-
dition, i.e. Bn = 0.

In Ref. [30] an useful example to understand the con-
nection between magnetic helicity and magnetic topol-
ogy is discussed by Moffatt. It consists of the calcu-
lation of the magnetic helicity of a simple magnetic
configuration like the one shown in Fig. 1.15, where
there are two interconnected tubes, C1 and C2. Cor-
respondingly there are two magnetic fields. No magnetic field exists outside so as to fulfill Bn = 0.
Let the magnetic fluxes through the sections of these two tubes respectively be Φ1 and Φ2. In order to
find the magnetic helicity of the entire system, consider a small volume element dV of tube C1 whose
contribution to the total magnetic helicity is A⃗ · B⃗ dV . Replacing B dV with Φ1 dx⃗, the contribution
coming from the whole tube C1 is then calculated by integrating over the circuit:

H1 = Φ1

∮

C1

A⃗ · dx⃗ = Φ1

∫

Σ1

(
∇× A⃗

)
· dS⃗ = Φ1

∫

Σ1

B⃗ · dS⃗ , (1.49)

where in the first passage the Stokes theorem has been used to transform the line integral
∮
C1
A⃗ · dx⃗

into the surface integral
∫
Σ1

(
∇× A⃗

)
· dS⃗, which corresponds exactly to the magnetic flux passing

through the surface Σ1 and turns out to be Φ2 in the present case. From Eq. (1.49), one finally gets:

H1 = Φ1Φ2 . (1.50)

Since the contribution of the other tube C2 would be analogously calculated, its contribution to the
magnetic helicity of the whole system would be the same. Hence:

H = H1 +H2 = 2Φ1Φ2 . (1.51)

The importance of this result is based on the fact that the expression of the magnetic helicity depends
only on if the two fluxes Φ1 and Φ2 are interlinked. In fact, the value of the magnetic helicity does
not change under the deformation of the two tubes C1 and C2 as long as their linkage stays the same.
Instead, if one tube was cut and removed so that the linkage between C1 and C2 was broken, then the
magnetic helicity of the whole new configuration would be zero. As a consequence, there is a direct
correspondence between the magnetic helicity and the topology of the magnetic lines. As long as the
magnetic topology does not change, the magnetic helicity is an invariant of the magnetic configuration.
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As concerns the magnetic topology, two relevant results have been demonstrated byWoltjer in Ref. [31]:

Theorem. (First Woltjer’s theorem) The magnetic topology is preserved for a magnetofluid with
zero resistivity.

Proof. Since the magnetic helicity is directly related to the topology, one expects that the magnetic
helicity also would be invariant for an ideal magnetofluid. Therefore, to prove the theorem one must
verify that:

dH

dt
= 0 . (1.52)

Using the definition of magnetic helicity in Eq. (1.48):

dH

dt
=

∫

V

∂A⃗

∂t
· B⃗ dV +

∫

V

A⃗ ·
∂B⃗

∂t
dV . (1.53)

Let us recall the induction equation (1.31) for an ideal magnetofluid:

∇×
(
v⃗ × B⃗

)
=
∂B⃗

∂t
=

∂

∂t

(
∇× A⃗

)
= ∇×

∂A⃗

∂t
⇔

∂A⃗

∂t
= v⃗ × B⃗ . (1.54)

By substituting inside the Eq. (1.53), it becomes:

dH

dt
=

✘
✘
✘
✘

✘
✘

✘
✘
✘✘

∫

V

(
v⃗ × B⃗

)
· B⃗ dV +

∫

V

A⃗ ·
[
∇×

(
v⃗ × B⃗

)]
dV . (1.55)

The first term is canceled because two vectors that are perpendicular each other are scalar multiplied.
Instead, the second term can be written in this way:

dH

dt
=

✘
✘
✘
✘

✘
✘

✘
✘
✘✘

∫

V

(
v⃗ × B⃗

)
· B⃗ dV −

∫

V

∇ ·
[
A⃗×

(
v⃗ × B⃗

)]
dV . (1.56)

The first term can be neglected for the same reason as before. Whereas, the second term can be
managed using the Gauss divergence theorem:

dH

dt
= −

∫

S

A⃗×
(
v⃗ × B⃗

)
dS . (1.57)

By taking into account that v⃗ and B⃗ are perpendicular to each other, one finally has:

dH

dt
=

∫

S

(
A⃗ · v⃗

)
· B⃗ dS = 0 , (1.58)

which is null since perfect boundary conditions (Bn = 0) have been assumed at the beginning.

The second Woltjer’s result involves the magnetic energy (of a charged particles system), which is
defined as follows:

W =

∫

V

B2

2µ0
dV . (1.59)

Theorem. (Second Woltjer’s theorem) An ideal magnetofluid reaches the minimum of its mag-
netic energy in the configuration which satisfies the following relation:

∇× B⃗ = µB⃗ . (1.60)

Proof. Since, for an ideal magnetofluid, the magnetic helicity is an invariant (as the first Woltjer’s
theorem states), one way to calculate the minimum of the magnetic energy is to employ the method
of Lagrange’s multipliers, namely to impose:

δW −
µ

2µ0
δH = 0 , (1.61)
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where µ is formally a Lagrange’s multiplier. The ’δ’ symbol represents the differential operator. By
substituting in the equation above the expression for the magnetic energy (1.59), and for the magnetic
helicity (1.48), after having manipulated the r.h.s. of the equation, one gets:

0 = δ

[∫

V

B2

2µ0
dV −

µ

2µ0

∫

V

A⃗ · B⃗ dV

]
(1.62)

=
1

µ0

∫

V

B⃗ · δB⃗ dV −
µ

2µ0

∫

V

δA⃗ · B⃗ dV −
µ

2µ0

∫

V

A⃗ · δB⃗ dV (1.63)

=
1

µ0

∫

V

B⃗ · δB⃗ dV −
µ

µ0

∫

V

δA⃗ · B⃗ dV +
µ

2µ0

∫

V

∇ ·
(
A⃗× δA⃗

)
dV (1.64)

=
1

µ0

[∫

V

B⃗ ·
(
δB⃗ − µδA⃗

)
dV

]
+
✘
✘
✘
✘

✘
✘
✘
✘
✘
✘
✘

✘✘

µ

2µ0

∫

V

∇ ·
(
A⃗× δA⃗

)
dV , (1.65)

where it has been used the relation: δB⃗ = ∇× δA⃗. Namely:
∫

V

∇ ·
(
A⃗× δA⃗

)
dV =

∫

S

A⃗× δA⃗ dS = 0 , (1.66)

and the last term has been neglected because Bn = 0. Hence, one has:

δB⃗ − µδA⃗ = 0 ⇒ B⃗ = µA⃗ . (1.67)

Finally, by applying the curl operator to both sides:

∇× B⃗ = µ∇× A⃗ ⇒ ∇× B⃗ = µB⃗ . (1.68)

The process driving plasma to the minimum of the magnetic energy is called relaxation, and the
plasma energy state at its minimum is said relaxed state.

The results coming from Woltjer’s theorems can be considered sufficiently valid also for a plasma with
a finite but small resistivity. By remembering what has just been said at the end of Section 1.6.2, the
resistive MHD instabilities drive the plasma relaxation since they let the magnetic field lines break and
reconnect each other, leading the plasma to the relatively more stable available magnetic configuration
in closer proximity to the fully relaxed state. As Moffatt’s argument underlines, the magnetic helicity
and the magnetic topology are strongly bound. To conclude, by extending the results coming from the
two Woltjer’s theorems to slightly resistive plasmas, an important relationship between plasma relax-
ation events and magnetic reconnection phenomena delivered by tearing modes instabilities, is found.
Reversed-field pinch experiments, like RFX and RFX-mod later, have demonstrated the relevance of
this link. Further details are going to be provided in the next Section about reconnection events.

By combining the Eq. (1.60) with the Ampére’s law, ∇× B⃗ = µ0j⃗, it follows:

µB⃗ = µ0j⃗ . (1.69)

Therefore, for an ideal magnetofluid, the magnetic field and the current density are parallel. As a
consequence, the pressure gradient given according to the Grad-Shafranov equation (1.33) is null,
namely:

∇p = j⃗ × B⃗ = 0 . (1.70)

This is the reason why the magnetic field profile satisfying the Eq. (1.60) is called force-free field.
From the Eq. (1.69), one can calculate a formula for the coefficient µ:

µ = µ0
j⃗ · B⃗

B2
. (1.71)
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1.8.2 The Bessel Function Model

Figure 1.16: Comparison between the F − Θ curve which
has been derived from the BFM and the experimental points
measured in RFX. Adapted from Ref.[32].

The Bessel Function Model (BFM) provides
a simplified description of the RFP mag-
netic configuration. In this sense two use-
ful parameters are the reversal parameter F
and the pinch parameter Θ. Being a the mi-
nor radius, they are defined as:

F =
Bφ(a)

⟨Bφ⟩
, Θ =

Bθ(a)

⟨Bφ⟩
. (1.72)

⟨Bφ⟩ is the poloidal average of the toroidal
field Bφ. It is related to the flux of the
toroidal magnetic field, Φ(Bφ), through the
following relation:

⟨Bφ⟩ =
1

πa2

∫ a

0
dr 2πrBφ(r) =

1

πa2
Φ(Bφ) .

(1.73)
The safety factor at the plasma boundary is
thus given by:

qa = q(a) =
a Bφ(a)

R0 Bθ(a)
=

a

R0

F

Θ
. (1.74)

F and Θ are not independent. The relation
between the two parameters is graphically reported in Fig. 1.16. To make explicit the relation between
them, it is possible to solve the force-free field equation (1.60). For the sake of simplicity, consider
cylindrical coordinates and assume that µ is uniform across the whole cylinder section.

By writing the Eq. 1.60 along the axial and poloidal directions of the cylindrical coordinates system,
one gets:

∂Bz
∂r

= µBθ ,
1

r

∂

∂r
(rBθ) = µBz . (1.75)

By combining the equations above, and by subsequently making a change of variable, r′ = µr, one
obtains:

r′
∂

∂r′

(
r′
∂Bz
∂r′

)
+ r′2Bz = 0 . (1.76)

The one written above is the differential Bessel equation for Bz(r
′), which is solved by:

Bz(r
′) = B0 J0(r

′) ⇒ Bz(r) = B0 J0(µr) , (1.77)

where J0(r
′) is the zero-order Bessel function [33], while B0 represents the on-axis magnetic field

amplitude.
By substituting back Bz through the Eqs. in 1.75, a solution is found also for Bθ:

Bθ(r) = B0 J1(µr) , (1.78)

where J1(ρ) is the first-order Bessel’s function.
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Finally, the profiles of the axial and poloidal current densities, jz and jθ, are obtained by combining
the force-free field equation with the Ampére’s law:

µ0jz = µBz ⇒ jz =
µ

µ0
B0 J0(µr) ; (1.79)

µ0jθ = µBθ ⇒ jθ =
µ

µ0
B0 J1(µr) . (1.80)

Figure 1.17: According to BFM, the profiles of the normalised magnetic field and the current density compo-
nents are the same of the first two orders of Bessel’s functions: J0 and J1. Here, they are compared to a real
magnetic configuration realised during the shot #37537 in RFX-mod.

In Fig. 1.17, a comparison between the two Bessel’s function profiles and the profiles of the magnetic
fields in a typical RFX-mod discharge (# 37537) is shown. The first observation one can do is that
the BFM provides a good analytical explanation for the reversal of the toroidal magnetic field at the
edge in the case of the RFP magnetic configuration. Moreover, it can be easily seen that the argument
reported above can be adapted also in the case of a toroidal geometry with a sufficiently high aspect
ratio, the one of the RFX-mod is A ≈ 4 indeed.

On the whole, the results coming from the BFM are useful to determine an analytic expression for both
F and Θ which depends on the geometrical and physical characteristics of the RFP configuration.
First of all, by substituting the expression for Bz(r) (1.77) into the calculation of the mean axial
magnetic field (1.73), one can easily obtain the following relation:

⟨Bz⟩ =
2

µa
B0 J1(µa) . (1.81)

By inserting such an expression for ⟨Bz⟩ into the definition of Θ parameter in Eq. (1.72), one has:

2Θ = µa . (1.82)

Analogously, for the F parameter, it follows:

F = Θ
J0(µa)

J1(µa)
. (1.83)

From this equation, the profile of the F −Θ curve in Fig. 1.16 is deduced. Not only, but one can also
conclude that the reversal of the first-order Bessel’s function J0 indicates where the toroidal magnetic
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field changes sign in the RFP configuration. By looking at the graph in Fig. 1.17, it is found that this
is the case for µa > 2.405. Therefore, one can experimentally work in the magnetic RFP configuration
as long as the condition Θ > 1.2 is satisfied. This is confirmed also by the F −Θ curve in Fig. 1.16.
Finally, by using the following asymptotic expansion for J1(z):

lim
z−→0

J1(z) =
z

2
, (1.84)

one can calculate an expression for the safety factor on the axis. Namely:

q0 = q(0) =
a

R

1

Θ
=

ε

Θ
, (1.85)

where ε identifies the so-called inverse aspect-ratio, i.e. ε = A−1.

1.8.3 The µ & p model

Experimentally, to confine a plasma, a pressure gradient is needed. Since one of the main hypotheses of
the BFM is that the magnetic field that confines the plasma is free-force, in Figs. 1.16-1.17 experimental
data differ from the theoretically predicted curves, which do not consider the role of the pressure
gradient in the confinement, especially in the edge region.
In order to take into account the effects of a pressure gradient, a more refined model [34] introduces
some corrections to the initial assumption of the BFM. First of all, µ is not taken as uniform anymore
but it is considered as a function of the radius: µ ≡ µ(r). In particular, the following set of functions:

µ(r) = µ(0)
(
1−

r

a

)α
, (1.86)

give a good approximation for the radial profile of µ(r) in RFP.

By implementing the set of Eqs. in 1.75 with the hypothesis of a not-null pressure gradient, one gets
the following equations:

−
∂Bz
∂r

= µ0jθ = µBθ + µ0
∂p

∂r
·
Bz
B2

; (1.87)

1

r

∂

∂r
(rBθ) = µ0jz = µBz − µ0

∂p

∂r
·
Bθ
B2

. (1.88)

The system of differential equations we have just reported can be solved by taking as inputs the profiles
of µ and pressure p. This is the reason why this model is called µ & p. The model can be solved
numerically by normalising Eqs. (1.87) and (1.88) as:

∂B̃z
∂r̃

= −2Θ0µ̃B̃θ −
β0
2

∂

∂r̃

(
ñT̃

)
·
B̃z

B̃2
; (1.89)

∂B̃θ
∂r̃

= −
B̃θ
r̃

+ 2Θ0µ̃B̃z −
β0
2

∂

∂r̃

(
ñT̃

)
·
B̃θ

B̃2
. (1.90)

The symbol ·̃ indicates normalised quantities, namely:

r̃ =
r

a
, Bz(r) = B0 · B̃z(r) , Bθ(r) = B0 · B̃θ(r) (1.91)

p(r) = p(0) · p̃(r) = 2n(0)T (0) · ñ(r)T̃ (r) , µ(r) = µ(0) · µ̃(r) =
2Θ0

a
· µ̃(r) . (1.92)

Θ0 is called on-axis pinch parameter, and similarly β0 is the β-parameter on the axis. Considering the
case of a free-force field, i.e. p = 0, and µ̃ = 1, one comes back to the BFM with uniform Θ ≡ Θ0.

The µ & p model is going to be used in Chapters 3 and 5 to calculate the equilibrium of the RFX-mod
discharge studied in this thesis.
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1.9 Perturbations in RFP configuration

1.9.1 Self-organization of the magnetic field

Consider the hypothesis of an incompressible magnetofluid. In such a case a fully dynamical theory
consists uniquely of the motion equation (1.30) and the induction equation (1.31) which have to be
solved by calculating the velocity field v⃗ and the magnetic field B⃗. Such a problem is said kinematic
dynamo problem.

Figure 1.18: Poloidal section of the
cylindrical magnetic configuration con-
sidered in the argument.

In Ref. [35], a toy model which gives a simple example of the
self-organization of a cylindrical plasma (resembling the one in
the RFP configuration), which implies the reversal of the mag-
netic field near the edge, is pointed out.
Consider a situation like the one reported in Figs. 1.18-1.19a.
A current I flows along the axis with a wire, such that it is
also responsible for a poloidal magnetic field Bθ. Meanwhile, a
magnetic field Bφ is imposed in the axial direction thank to a
poloidal current Ishell flowing in a conducting shell.
Assume that the wire is unstable and it kinks, as shown in
Fig. 1.19b. Due to the kink, the magnetic field becomes stronger
in the inner part and weaker in the outer part. This makes
the wire kink further until, if the starting magnetic field is low
enough, the magnetic field in the outer region B′

φ becomes neg-
ative. Therefore, if the reversal is sufficiently high, the wire
reaches again a new equilibrium.
To conclude, under certain circumstances, the reversal of the
magnetic field in the outer region of the plasma can be seen as a way the plasma has to self-organise
[36] and relax.

Figure 1.19: Evolution of the wire dynamics explained with the toy model: (a) unperturbed starting configu-
ration, (b) perturbed configuration and final reversal of the toroidal magnetic field, B′

ϕ in the outer region.
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1.9.2 The QSH and the MH states

Figure 1.20: Safety factor profile during the #37537 shot, at t = 105 ms in RFX-mod.

As already mentioned at the end of Section 1.5, the peculiarity of the RFP magnetic configuration is
that the magnetic field components are of the same order of magnitude, and in particular Bφ reverses
its sign at the plasma edge. From a technological point of view, the RFP has the advantage that
no super-conducting coils are needed to generate the magnetic field. At the same time, the fact that
Bφ ≈ Bθ also implies that the safety factor q is relatively low across the whole plasma. For example,
by looking at Fig. 1.20, where the radial profile of the safety factor during a typical RFX-mod dis-
charge is reported, one immediately notices that q is always lower than 1, monotonically decreasing
and negative at the edge, due to the Bφ reversal. Due to this q profile, multiple resonant surfaces are
present inside the plasma, in particular those characterised by poloidal numbers m = 1 and m = 0.
Since the maximum of q is achieved at the center of the plasma and its value is about q0 ≈ 0.16,
the most internal resonant mode in RFX-mod is the one described by m = 1 and n = 7, such that
q1,7 ≈ 0.14.

All modes with m = 1 and n > 7 resonate inside the plasma during the discharge and are located in
those radial positions where the safety factor has rational values, q = m

n
. Instead, all m = 0 modes

are positioned in correspondence to the so-called reversal surface, where q = 0. Their amplitudes,
calculated according to Eq. (1.40), are of the order of a few mT in RFX-mod, which means that large
magnetic islands are generated since the perturbation is of the order of a few percent the magnetic
field at the axis. This information can be easily deduced by observing the graphs reported in Fig. 1.21.
Depending on the shape of the m = 1 tearing modes spectrum, the plasma regime can be classified
in two possible states. The Quasi Single Helicity (QSH) state, characterised by the dominance of the
most internal modem = 1, n = 7 over the other modes populating the plasma (which are consequently
considered as secondary), i.e. the amplitude of the dominant mode is almost ten times the one of the
secondary modes. The second state is called Multiple Helicity (MH), where it is not possible to recog-
nise a dominant mode.
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Figure 1.21: On the left, two examples of the typical spectra characterising respectively (a) the MH regime
(in blue) and (c) the QSH regime (in red) in RFX-mod are shown. Whereas, on the right, the evolution of
the amplitudes of the modes are correspondingly plotted for both (b) MH and (d) QSH states considering
two different discharges in RFX-mod (respectively #35894 and #37537). The black line represents the mode
amplitude of the dominant m = 1, n = 7 mode, the red line indicates the root mean square (r.m.s.) of the
measured secondary modes (m = 1, 7 < n < 24) amplitudes. Pictures (a) and (c) are taken from Ref. [37].

Figure 1.22: Reconstruction of the transition from (a)
the QSH-DAx state to (b) the QSH-SHAx state. The
separatrix of the magnetic island is coloured in red [37].

The QSH state is associated with the forma-
tion of a single magnetic island corresponding
to the magnetic helicity of the dominant mode
(m = 1, n = 7)6, which influence the topology
of the magnetic field lines throughout the whole
plasma. The general way a QSH state occurs
is where two magnetic axes are present in the
plasma, located on the magnetic island O-point
and on the equilibrium axis. In the RFP config-
uration, they can be easily recognised by looking
at a poloidal section of the plasma. This config-
uration is called Double Axes (QSH-DAx) state
(Fig. 1.22a). By increasing the plasma current
above a certain threshold (which can be set ex-
perimentally at about Ip = 1.4 MA, [14]), a transition from the QSH-DAx state to a configuration,
where only one degenerate magnetic axis remains, as it is shown in Fig. 1.22b, is observed. The new
regime is called Single Helical Axis (QSH-SHAx) state.
The QSH-SHAx state is accompanied by the formation of a large plateau in the profile of the elec-
tron temperature, Te, sustained by a large gradient in the outer region of the plasma, which is called
electron Internal Transport Barrier (eITB). The presence of an eITB corresponds to a condition of

6To be more precise, another set of seven magnetic islands, corresponding to the mode m = 0, n = 7, appears due to
an interaction process between modes which is called toroidal coupling. Since, at the moment, we focus only on the m = 1
modes spectrum, we are not going to investigate more this kind of modes, which actually are going to be mentioned later
in the Section 4.2 of this thesis.
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reduced particle transport and a consequent improvement of the confinement [38, 39].

Figure 1.23: Evolution of the m = 1 modes amplitude during the shot # 37537 in RFX-mod. The black line
represents the evolution of the m = 1, n = 7 mode amplitude, b7. Whereas the red line represents the evolution
of the r.m.s. secondary modes amplitudes, bsec, multiplied by a factor 2.5. The orange and the blue vertical
lines correspond respectively to the time instants of a minor and a major crash.

On the other hand, MH states are frequently observed in discharges at low plasma current (Ip ≤ 1)
or at large Greenwald fractions [40]. In any case, back-transitions from QSH to MH and vice versa
are always present during a single discharge. This kind of events is strongly linked to the phenomena
of plasma reconnection since they lead to the increase of secondary modes amplitudes. Therefore,
they find a full explanation in the framework of the MHD treatment of plasma instabilities shortly
introduced in Section 1.6.1.
The Figs. 1.23-1.24 summarise the evolution of the main parameters of an RFP discharge during
the shot #37537 in RFX-mod. #37537 is a typical example of high current discharge in RFX-mod
(⟨Ip⟩ ≈ 1.4 MA), as it is confirmed by the fact that the QSH state is the favorite plasma state in most
of the discharge. However, some time instants when the dominance of the m = 1, n = 7 mode over
the other ones is partially or totally lost are observed. This kind of events takes the name of crashes.
Their duration is of the order of a few milliseconds. Depending on the fact that, at the end of the
crash, the m = 1, n = 7 is still dominant or not, it is used to distinguish between partial or minor and
major crashes [41]. In particular, during a major crash the plasma completely loses its helical state,
while during a minor crash the QSH survives the increase of secondary modes. Examples of major
and minor crashes are both highlighted in Figs. 1.23-1.24. The orange line located at t ≈ 191 ms
represents a minor crash since, after the crash, b7 is still much higher than bsec. Instead, at t ≈ 220 ms
a major crash event is indicated in blue.

To understand the phenomenology of such a crash in RFP configuration, it is sufficient to look at Fig.
1.24. As already anticipated in the previous section, the increase of modes’ amplitudes leads to the
formation of chaotic regions associated with the magnetic islands overlap. In other words, a crash is
a Discrete Reconnection Event (DRE) whose main effect is a loss of particles from the central to the
outer part of plasma. The first consequence of such a loss is an overall reduction of the plasma current,
determining the flattening of the q profile. According to Eq. (1.39) the safety factor at the center,
q0, is inversely proportional to the plasma current, so it must increase during the crash (Fig. 1.24a).
In response, the safety factor at the edge qa decreases (Fig. 1.24b) to avoid the flattening of the q
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profile. The relations between q0 and qa and the RFP parameters F and Θ are given by Eqs. (1.74)
and (1.85), according to the BFM. It follows that, during a crash Θ increases (Fig. 1.24c), while F
undergoes an abrupt fall (Fig. 1.24d). Even if the phenomenology is the same, the distinction between
major and minor crashes is obviously in the different amount of energy that is released with particles
during the crash. By looking at the same figure one can also notice that the profile of qa and F is
almost the same since they are proportional. This is the reason why in the following of this thesis the
crash analysis is going to be focused on the reversal parameter rather than qa.

Figure 1.24: Representation of the evolution of the main plasma parameters during the shot #37537 in RFX-
mod: (a) safety factor at the center, q0, (b) safety factor at the edge, qa, (c) the pinch parameter, Θ, and (d)
the reversal parameter, F . The orange vertical line at t ≈ 191 ms indicates a minor crash, while the blue line
at t ≈ 218 ms indicates a major crash.
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To conclude, both the BFM and the µ & p model, state that the RFP magnetic configuration is
the preferred equilibrium state for a resistive plasma that evolves according to the second Woltjer’s
theorem.
In other words, the tearing modes spontaneously occurring in the case of the RFP configuration drive
the plasma relaxation towards the most stable state described by the force-free field (1.60), namely
by reversing Bφ at the edge as sketched by the ’toy-wire-model’. In practice, this explains why re-
connection (associated with tearing modes formation) and relaxation (associated with stability) are
so strongly interconnected.

In this thesis we will focus on the analysis of particle loss and edge magnetic topology during a minor
crash. We will show that, despite the presence of a QSH state, secondary modes are still capable of
influencing particle transport and determine a large PWI.
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Chapter 2

Setup and Methods

In this Chapter, the experimental setup and the numerical methods used in the thesis are presented.
First, an overview of the RFX experiment, which is operated by Consorzio RFX in the CNR area in
Padova, Italy, is provided. A particular attention is devoted to the imaging system of RFX, which
allows to detect the Plasma-Wall Interaction (hereafter PWI) patterns which are the central topic of
the thesis. Then, the numerical methods are introduced, namely the guiding center code Orbit which
has been used to simulate the PWI patterns measured with the fast cameras.

2.1 The RFX-mod experiment

Figure 2.1: Picture of the RFX-mod device looking towards the assembly hall (image courtesy: Maria Teresa
Orlando).

The Reversed Field eXperiment (RFX-mod) is a medium-sized device that mainly works in the RFP
magnetic configuration, and is operated in the CNR research area in Padova, Italy. The main param-
eters of the machine are shown in Tab. 2.1.
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Figure 2.2: Arrangement of a set of coils forming the
active feedback system of RFX-mod [42].

Historically, the device had three phases of oper-
ation:
The RFX experiment itself, which started the
operations in 1992 [43]. Initially, it was an RFP
with a 65 mm (penetration time of the verti-
cal field τV ≈ 400 ms) thick shell made of Alu-
minum [44]. Such a shell was exploited to pas-
sively stabilize ideal modes.

In 1999 an accident at the Toroidal Field
(TF) power supply interrupted the experimen-
tal activities. The RFX experiment was mod-
ified, and the thick shell was replaced with a
thin, copper shell of 3mm (penetration time
of the vertical field τV = 50 ms). There-
fore, mode stabilization was no more per-
formed by passive means, but by a sophisti-
cated system of 192 (4 poloidally arranged ×
48 toroidally arranged, as in Fig. 2.2) feedback-
controlled saddle coils [45]. The new machine was called RFXmodified (RFX-mod) [46] and operated,
both in RFP and Tokamak configurations, from April 2004 until October 2015.

In 2015 it was decided to modify the engineering scheme of the saddle coils, and to revise thoroughly
the entire front-end system, by removing the vacuum vessel which was the primary source of tearing
mode braking. The new machine, which is much more similar now to the twin RFP called MST
which is run at the University of Wisconsin, Madison [47], is called RFX modified for the 2nd time,
or RFX-mod2 [48]: it will likely resume operation in the second half of 2024.

Geometry and plasma features Magnetic and Electric fields

Major radius R0 = 2 m Plasma current 50 kA < IP ≤ 2 MA
Minor radius a = 0.459 m Loop-voltage (10 < Vloop < 60) V
Vacuum pressure (2 < P < 6) · 10−11 Pa Toroidal field Bmax

φ ≤ 0.7 T

Electron density (1 < ne < 10) · 1019 m−3 Discharge duration 50 ms < ∆tsh. < 1 s
Max. temperature Tmaxe ≈ 1.2 keV

Table 2.1: Summary of the main properties of the RFX-mod device [46].

RFX-mod is equipped with a rather complete set of devices to measure plasma parameters, called
diagnostics. For the purposes of this thesis, it is important to mention the two arrays of 72 pick-up
coils located at the shell radius, at two different poloidal angles, θ = −20.5◦ and θ = 159.5◦ [49].
These arrays allow for the reconstruction of the magnetic field perturbations δB⃗ with toroidal mode
number 0 ≤ n ≤ 23 which are given as input to the code Orbit (see Section 2.2.2). A picture of
RFX-mod is shown in Figure 2.1.

2.1.1 The Optical Camera System

The RFX-mod device was equipped with a set of CCD cameras which covers the first wall of the device
both in the toroidal and the poloidal directions. The so-called Optical Camera System (OCS) was
devoted to the visualisation of the PWI events occurring during the discharges. An example of some
images that have been taken by employing this system in the shot # 29324 is reported in Fig. 2.3a.
Each camera had an integration time of τint = 2 ms with a field of view (FOV) of about ≈ 40°.
Since the first wall of the vacuum chamber is made of tiles that are covered by graphite, at the end of
PWI events a large quantity of carbon is freed in the vacuum chamber through a phenomenon known
as sputtering. Because of the fact that plasma is much colder in the external regions than in the center,

34



its temperature near the edge is well below the ionisation energy of carbon. A lot of neutral carbon
atoms thus enter hotter regions of the plasma and they are ionised. So a good way to experimentally
observe PWI is to look at the neutral carbon C-I emission line, at 970 nm, which is also the more
intense.

In the new RFX-mod2 it is planned to install 7 new Basler ace acA720-520um [50] cameras, which are
going to be located as reported in Fig. 2.3b, so as to cover a percentage of the 70% of the total first
wall surface, i.e. a total angulation of 260°. Each camera has a pixel dimensions of 6.9 µm× 6.9 µm,
a nominal focal distance 12 cm, and a maximum acquisition frequency of 525 frame/s.

(a) Some photos taken by the OCS during the shot #29324 in
RFX-mod.

(b) Camera coverage in RFX-mod2
reconstructed with the CAD soft-
ware CATIA. View of the toroidal
shape from above.

Figure 2.3: The Optical Camera System of RFX-mod and RFX-mod2.

2.2 ORBIT

In this thesis, the properties of magnetic islands, and their overlap generating chaos are examined
using a guiding center formalism, valid for frequencies well below the particle cyclotron frequency, ωc,
and cyclotron orbits, ρ, small compared to equilibrium scales. The code suitable for this purpose is
Orbit [2].

2.2.1 Guiding center equations of motion

The code Orbit was developed during the ’80s in Fortran77 language at the Princeton Plasma
Physics Laboratories (PPPL, Princeton, NJ, USA) by Roscoe White and Morrell Chance starting
from the guiding center Lagrangian, which was formulated a few years before by Littlejohn [51]. In
the code, particles are approximated by their guiding center, that is, the center of their circular motion
around the magnetic field line. Within this approximation, the particle motion is expressed by the
Lagrangian:

L = (ψ + ρ∥I)θ̇ + (ρ∥g − ψp)ζ̇ + µξ̇ −H , (2.1)

where the dot ẋi means a derivative of the coordinate xi with respect to time t, so ẋi = dxi/dt.
ρ∥ = v∥/B is the velocity parallel to the magnetic field, or parallel gyroradius, which is normalized
with mi = 1 and e = 1. µ is the magnetic moment, and ξ is the gyro-phase (see Figure 1.5), while ψ
and ψp are the toroidal and poloidal magnetic fluxes, respectively. Regarding the fields, g and I are
the co-variant components respectively of the toroidal and poloidal fields in the Boozer [52] coordinate
system (ψp, θ, ζ)

1, where the equilibrium field is given by:

B⃗ = g(ψp)∇ζ + I(ψp)∇θ + δ(ψp)∇ψp . (2.2)

1The Boozer system is a type of fluz coordinates which can be obtained analytically starting from the more traditional
toroidal system (r, θ, ϕ) sketched in Fig. 1.7.
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It can be immediately shown that Eq. (2.1) is equivalent to:

L = Pθ θ̇ + Pζ ζ̇ −H , (2.3)

where the Hamiltonian is given by:

H =
1

2
ρ2∥B

2 + µB +Φ , (2.4)

with B the magnitude of the magnetic field and Φ the electrostatic potential.
The two conjugate momenta are Pθ and Pζ , given by:

Pθ =ψ + ρ∥I (2.5)

Pζ =ρ∥g − ψp (2.6)

While Pθ can vary along a particle orbit, Pζ is conserved since the system is symmetric along ζ
(∂B/∂ζ = 0). This can be easily shown by considering the second canonical equation and by taking
the derivative of Eq. (2.4) with the assumption of no electrostatic potential, Φ = 0:

Ṗζ = −
∂H

∂ζ
= −(µ+ ρ2∥B)

∂B

∂ζ
= 0 . (2.7)

This is the well-known theorem by Noether and can be demonstrated explicitly [53]. The consequence
is that for unperturbed, toroidally symmetric systems, such as a Tokamak or an RFP, Pζ is an invariant
of the motion.

The equations for the momenta (Eqs. 2.5-2.6) show that the couple of variables Pθ, Pζ depend uniquely
on the couple of variables ρ∥, ψp (since all of the other terms depend on the “radius” ψp only, g = g(ψp),
I = I(ψp) and ∂ψ/∂ψp = q with q = q(ψp)). This means that, when constructing the equations of
motion, one can use alternatively the couple (Pθ, Pζ) or (ρ∥, ψp) as two equivalent forms. The choice
by White & Chance [2] is to use the couple (ρ∥, ψp), in order to avoid an implicit integration scheme
in terms of the canonical momenta. In fact, (ρ∥, ψp) have an immediate physical explanation, being
the parallel energy and the Boozer radial coordinate. To do this, they solve directly the Lagrange
equations of motion:

d

dt

∂L

∂ẋi
=
∂L

∂xi
, (2.8)

with xi = ξ, θ, ζ. The first equation, with xi = ξ, shows that the motion along such a direction can
be ignored. In fact:

d

dt

∂L

∂ξ̇
=

dµ

dt
= 0 =

∂L

∂ξ
. (2.9)

Eq. (2.9) is zero at all orders, since µ is a constant of motion: this is the reason for using the guiding
center formalism. Instead, the non-trivial equations regard θ, ζ (and parallel energy and radius). The
derivation of these equations is beyond the purposes of this thesis2. For its purpose, it is sufficient to
show that the outcome is the following matrix multiplication:

∣∣∣∣∣∣∣∣

0 −A −C 0
A 0 0 I
C 0 0 g
0 −I −g 0

∣∣∣∣∣∣∣∣
·




ψ̇p
θ̇

ζ̇
ρ̇∥


 =




−∂ψpH
−∂θH
−∂ζH
−∂ρ∥H


 (2.10)

The coefficients A,C are functions of the equilibrium fields g and I, and of the safety factor q, as
follows:

A =q + ρ∥I
′

C =ρ∥g
′ − 1

(2.11)

2For the interested reader, they are shown in detail in White’s book [54].

36



where the prime symbol ′ means a derivative with respect to ψp, for example I ′ = dI/dψp.

The equations of motion (2.10) are in the form A
˙⃗
X = Y , where the matrix A is skew-symmetric (or

anti-symmetric) such that ai,j = −δi,jaj,i. By definition, the diagonal contains only zeroes. It can be
demonstrated that a 4 × 4 skew-symmetric matrix is equivalent to a symplectic matrix S. Solving a
Hamiltonian system is equivalent to inverting a skew-symmetric (or a symplectic) matrix. This is a
quite general result of classical mechanics [55].

Hence, the final step to get Orbit equations is to invert the matrix A
−1. To do this, it is necessary

to calculate only n(n− 1)/2 co-factors, and not the original n2, since the inverse of a skew-symmetric
matrix is skew-symmetric.
The determinant of A is the square of a polynomial in A, g, C, I, which is named the Pfaffian, and it
is called D (which stands for ’denominator’) by White & Chance [2]:

D = Ag − IC . (2.12)

The Pfaffian can be expanded in terms of the field functions as follows:

D =g(q + ρ∥I
′)− I(ρ∥g

′ − 1)

=gq + I + ρ∥(gI
′ − Ig′)

(2.13)

which coincides with the expression of White’s book [56]. Finally, it can be easily demonstrated that
the inverse matrix is:

A
−1 =

1

Ag − IC

∣∣∣∣∣∣∣∣

0 g −I 0
−g 0 0 C
I 0 0 −A
0 −C A 0

∣∣∣∣∣∣∣∣
(2.14)

Therefore, the final guiding center equations of Orbit are expressed in compact form as:




ψ̇p
θ̇

ζ̇
ρ̇∥


 =

1

Ag − IC

∣∣∣∣∣∣∣∣

0 g −I 0
−g 0 0 C
I 0 0 −A
0 −C A 0

∣∣∣∣∣∣∣∣
·




−∂ψpH
−∂θH
−∂ζH
−∂ρ∥H


 (2.15)

To conclude, it is worth noticing that the Pfaffian D shown in Eq. (2.13) should contain derivatives
of the non-orthogonal function δ(ψp) which is retained in Boozer coordinates (2.2). It can be shown
that the function δ plays no role in the guiding center equations since it determines only a nonsecular
change in the motion, which is periodic in the speed of the particle and does not affect the form of
the trajectory. Therefore, in Orbit δ = 0 and is completely neglected [57].

2.2.2 Perturbations in Orbit

The equations of motion sketched in the previous Section do contain the equilibrium field (2.2), only.
In this form, they are suited for calculations of neoclassical transport in arbitrary equilibria (RFP,
Tokamak, or Stellarator): Orbit has been used, for example, to study ripple losses of energetic parti-
cles in a Tokamak equilibrium [58, 59] or to characterize the poor alpha confinement in a Stellarator
equilibrium [60]. But the most interesting results obtained with Orbit are those where a magnetic
perturbation, such as a tearing mode or an Alfvén mode, is added to the equilibrium.
All tearing and Alfvén modes are perturbations of B⃗ primarily orthogonal to the original B⃗. They
can be described as having the vector potential with gauge δA⃗ = αB⃗, i.e.:

δB⃗ = ∇× αB⃗ , (2.16)

where α is an arbitrary scalar function that contains information about all the three radial, poloidal,
and toroidal directions [61]. The representation of Eq. (2.16) breaks down with kink modes [62], but
we are not interested in this case for the present thesis.
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At this stage, it is important to underline that field perturbations must be given as input to
Orbit. Consequently, the code calculates exact particle motion in an arbitrary field (comprehensive
of both equilibrium and perturbations) which is not evolved self-consistently. Typical inputs which
have been used for studies in the RFX device are:

• the profile of δBr which is given as output of the 3D, cylindrical viscoresistive MHD code
SpeCyl [63];

• the perturbations (a.k.a. eigenfunctions) calculated with Newcomb’s equations in toroidal ge-
ometry with the code NCT [64].

In order to transform the profile of δBr provided with SpeCyl or NCT in the scalar function α, one
needs to decompose α in Fourier series, in analogy to what has been already done in Eq. (1.40) for
δB:

α =
∑

m,n

αm,n(ψp) sin(mθ − nζ + ϕm,n) . (2.17)

Then, by matching equations (2.17) and (1.40), one gets the expression for a single α-harmonic (in
cylindrical geometry) as:

αm,n(r) =
r brm,n(r)

mg + nI
, (2.18)

as reported for example in the Equation (17) of Ref. [65]. The generalised expression in Boozer
coordinates is slightly more complicated [61].

The α profile is very similar to the original δBr perturbation (which is the main perturbation compo-
nent for a tearing mode), as it can be seen in Fig. 2.4 for a mode m = 0, n = 4 in an RFP. Physically,
α is the perturbation of the poloidal flux associated with the magnetic island generated by the tearing
mode itself.

(a) Normalised α radial profile (b) Normalised δBr radial profile

Figure 2.4: Comparison between (a) α-profile and (b) SpeCyl and Orbit perturbation component for an
m = 0 n = 4 mode. In (b) the Orbit radial component matches the radial perturbation of the SpeCyl run by
construction. As expected, the α-profile is very similar to the radial perturbation. The α has dimension m−1,
here it is normalized to the major radius R0. Magnetic perturbations are normalized to the field on the axis.
Pictures are taken from Ref. [65].

Extensive verification work has been done in the past to verify the validity of the representation
provided by Eq. (2.16) for tearing modes [65]. By benchmarking Orbit and the volume-preserving
field line tracing code Nemato [66] on the same SpeCyl input, it was shown that the representation
with α is perfectly valid for a tearing mode, giving a small error only in the longitudinal component
δBθ which is not relevant for the quantitative description of both conserved and chaotic magnetic
fields in the RFP [65].
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The advantage of a single scalar function α is that it is straightforward to add it to the guiding center
equations of motion (2.15). In fact, formally α is an additive constant to the vector potential, and it
can be shown (see on this respect Ref. [67]) that the perturbed equations of motion are obtained from
the unperturbed ones (2.15) with the position:

ρ∥ → ρ∥ + α . (2.19)

The canonical momenta are also modified accordingly, and in particular, the toroidal component is
modified as follows:

Pζ = (ρ∥ + α(ψp, θ, ζ))g − ψp , (2.20)

which adds up a new term in the equation of evolution (2.7) as follows:

Ṗζ = −(µ+ ρ2∥B)
∂B

∂ζ
+ ρ∥B

2 ∂α

∂ζ
. (2.21)

It is evident from Eq. (2.21) that the new term ∂α/∂ζ breaks the toroidal symmetry and, in particular,
now Ṗζ ̸= 0, which allows magnetic islands [68] to grow and chaos to creep in the system [69].

2.2.3 Calculation of the Connection Length to the wall

In this Section the calculation with Orbit of the Connection Length to the wall in the case of RFX-
mod discharge #29324, at time t = 218 ms (that is the case study discussed in Chapters 3, 4, and 5)
is briefly described. The equilibrium field is calculated via the µ & p model of Section 1.8.3 in toroidal
coordinates, and then it is transformed in Boozer form according to Eq. (2.2).

Figure 2.5: Spectrum of brm,n for shot #29324 and time t = 218 ms, as calculated with NCT: (a) maximum of
the eigenfunction brm,n(r), (b) edge value brm,n(a) for the m = 1 modes.

The perturbations are calculated starting from the pick-up coils measurements [49] with the NCT [64]
code for modes with poloidal mode number m = 0, 1 and toroidal mode numbers 0 ≤ n ≤ 23. The
spectrum of brm,n calculated with NCT is shown in Fig. 2.5. It is evident the presence of a QSH state
where the dominant mode is characterised by m = 1, n = 7.
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Figure 2.6: Comparison between (a) and (c), perturbations (eigenfunctions) calculated with the code NCT, and
(b) and (d), the same perturbations transformed in Orbit as α profiles.(a) and (b) regard the m = 1, n = 7
QSH dominant mode, while (c) and (d) its m = 0, n = 7 toroidally coupled mode.

Figure 2.7: Relationship between the Boozer radial coor-
dinate (magnetic poloidal flux) ψp and the radial coordi-
nate r, for the shot #29324 and time t = 218 ms equi-
librium. The dashed line represents the tokamak limiting
value ψp = r2/2q. The edge value ψw = 0.096 and corre-
sponds to the geometrical minor radius r = a.

The radial profile of the eigenfunctions brm,n(r)
is then transformed in the scalar function
αm,n(r) using Eq. (2.18). An example of pro-
files of α and δBr for the QSH mode and
m = 0, 1 is shown instead in Figure 2.6. It is
worth noting that in the RFX-mod the dom-
inant mode of the QSH is characterised by a
quite large amplitude, δBr ≈ 50 mT, corre-
sponding to a scalar α ∼ 10−3. This value is
one order of magnitude larger than the typ-
ical value of a tearing mode, α ∼ 10−4 in a
tokamak [70]. The toroidally coupled m = 0,
n = 7 mode is order ϵ = a/R0 smaller, being
in the range α ≈ 6× 10−4.

An alternative way to represent α in Or-

bit is to use the Boozer radial coordinate ψp
(poloidal flux label) instead of the circolar mi-
nor radius r. In Orbit the transformation of
the Boozer coordinate system into the cylin-
drical one is straightforward, and it is pro-
vided through a file, called spdata, which contains the splined equilibrium. Here it suffices to show
that the two radial coordinates are linked to the cylindrical poloidal magnetic field Bcyl

θ = I/r through
the relation:

∇ψp = Bcyl
θ (r)∇r , (2.22)

which, by integration, yields:

ψp(r) =

∫ r

0
Bcyl
θ (r) dr . (2.23)
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Since near the origin Bcyl
θ ≈ r/q, it follows that ψp ≈ r2/2q, as it is evident in Figure 2.7 for the

equilibrium of shot #29324, t = 218 ms. The value of ψp at the wall is ψw = 0.096, which is the total
poloidal flux, normalized to B2

0R0. This value obviously corresponds to the geometric minor radius a,
r(ψw) = a.

Figure 2.8: Schematic representation of a particle orbit
which starts at (ψp,0, θ0, ζ0) and ends up to the wall at
(ψp,w, θw, ζw).

Taking into account the sketch reported in
Fig. 2.8, the Connection Length Lc,w is the par-
allel path along a field line from a given point
(ψp,0, θ0, ζ0) to the wall ψp,0 = ψp,w, and can be
thus formally defined as:

Lc,w(ψp,0, θ0, ζ0) =

∫ ζw

ζ0

B dζ

B⃗ · ∇ζ
. (2.24)

This definition has already been reported in the
Introduction, Eq. (1). The original term ’connec-
tion’ referred to the length of the magnetic field
line which actually connected two coils placed at
different toroidal angles in the Ergodic Divertor
of the TORE Supra Tokamak [26]: the term survived for describing the properties of the stochastic
layer in the RMPs literature.

In Orbit, particles with very low energy (E = 10−2 eV) are actually considered to represent a field
line since, when ρ∥ ≈ 0, a particle follows closely a field line [65]. Moreover, since the edge field of an
RFP is chaotic due to the arising of multiple modes whose magnetic islands overlap each other, for a
given initial position (ψp,0, θ0, ζ0), the Connection Length to the wall is estimated by averaging over
a bundle of 1000 particles (field lines), all started at the same initial position. This is repeated in a
matrix of initial positions (ψp,i, θj , ζk) with i = 8, j = 32 and k = 64. Finally a matrix with 8×32×64
elements is obtained: Li,j,k = Lc,w(ψp,i, θj , ζk), where each value in the matrix represents the length
travelled from the initial point (ψp,i, θj , ζk) to the wall. Therefore, the matrix Li,j,k is the output of a
grand total 16384 Orbit simulations.

The Lc,w parameter in the RFX-mod edge can vary in between a few centimeters to tens of kilome-
ters [71]. This range is consistent with analogous results found in the edge stochastic layer of Tokamaks
and in the island divertor of Stellarators [72].
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Chapter 3

Analysis of the Locked Mode in the
shot #29324

This Chapter is devoted to the analysis of the magnetic perturbations leading to the Plasma-Wall
Interaction reported in Fig. 3.1 [73]. The image has been collected through the fast CCD cameras
system of RFX-mod, during the shot #29324, at time tPWI = 218 ms. The image shows two red
footprints of a localised emission in the C-I line. The positions of the two stripes of the interaction
were measured on the equatorial plane (namely θ = 0), respectively at toroidal angles φ1 ≈ 352° and
φ2 ≈ 7° underlying a mutual toroidal distance of ∆φS = 15°. A preliminary calculation, based on the
comparison between the PWI shape and the toroidal profile of the ideal displacement induced by the
secondary modes, results in a quantitative estimation of how many modes were involved in the crash
event.

Figure 3.1: Image of the PWI of interest in this work. The image has been taken through a CCD camera
during discharge 29324 at time tPWI = 218 ms. The two stripes are located on the toroidal plane at φ1 = 352°
and φ2 = 7°. Taken from Ref. [73].
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3.1 Characteristics of the discharge #29324

3.1.1 Magnetic and electrical features of the discharge

The shot #29324 is a typical example of an RFP discharge at high plasma current regime, ⟨Ip⟩ ≈
1.6 MA. As a matter of fact, both QSH and MH phases are present, in the sense that several transitions
from one state to the other can be observed. Its main features are reported in Fig. 3.2. The flat-top
condition, i.e. the condition where the plasma current is sufficiently high and stable is highlighted in
red in Figs. 3.2a-3.2b. Conventionally, the flat-top condition is set at:

∣∣∣∣
1

I

dI

dt

∣∣∣∣ < 10% s−1 . (3.1)

In the graphs reported in Fig. 3.2, the time instant (tPWI = 218 ms) of the PWI of interest is high-
lighted with a vertical orange line.

By multiplying the mean plasma current ⟨Ip⟩ with the mean loop-voltage ⟨Vloop⟩, one concludes that,
on average, the injected power during the discharge was of about ⟨Pinput⟩ ≈ 50 MW. Furthermore,
regarding the electronic density (3.2c), it can be easily noticed that, during the whole discharge, ne
stays well below the experimental Greenwald n = nG limit, calculated as in Eq. (1.47). The mean ratio
between the two quantities is ⟨ne/nG⟩ = 0.119. These properties are enough to justify the relatively
long-lasting (about 200 ms) of the flat-top phase.

Figure 3.2: Evolution of the discharge #29324’s main features: (a) the plasma current Ip, and (b) the loop-
voltage Vloop, i.e. the voltage difference applied to make plasma current flowing in the toroidal direction. In
(a) and (b) the flat-top phase is highlighted in red. In (c) the evolution of the numerical electronic density
during the flat-top phase is shown. In this graph, Greenwald’s limit is reported through a green line. Whereas,
the orange vertical line highlights the time instant, tPWI = 218 ms, corresponding to the PWI of interest.
The discharge duration is about 400 ms. Its evolution can be divided in three main parts: the lighting (until
t ≈ 20 ms) when plasma is accelerated by applied Vloop. In the subsequent flat-top phase ((20 < t < 250) ms)
both Ip and Vloop stabilise. For t > 250 ms discharge slowly terminates.
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Moreover, from the observation of the graphs in Fig. 3.3, further information about the magnetic
configuration at the moment of the interaction can be easily deduced. For instance, in 3.3a the radial
profile of the toroidal (Bφ) and the poloidal (Bθ) magnetic field components is shown. As we expected
for a typical RFP discharge, Bφ’s sign was negative at the edge. By looking at the radial profile of
the safety factor (q(r)) in 3.3b, one can notice that several instabilities were radially resonating in the
plasma depending on the rational values assumed by q.

Figure 3.3: Magnetic characterisation of the shot #29324 at t = tPWI : (a) the magnetic field components
radial profile, (b) the safety factor radial profile. q rational values, corresponding to the radial positions of the
magnetic surfaces associated with tearing modes, are highlighted.

3.1.2 Crash characterisation

Since, as it has been just said, during shot # 29324, many resonances populated radially the plasma,
some crashes have occurred. In Fig. 3.4, similarly to what has been already done in Section 1.9.2, the
evolution of the main parameters characterising the phenomenology of the plasma relaxation during
a short time interval around the interesting event at t = tPWI is reported. The PWI’s time instant
is highlighted with a vertical orange line. A vertical blue line indicates the time instant t = 221 ms.
The two lines indicate two different kinds of crashes. Concerning the blue line, most of the relevant
quantities like q0, Θ, and F are characterised by a strong variation correspondingly to the time instant
of the crash. A strong decrease of the dominant mode amplitude follows soon in a few milliseconds1.
This description is compatible with the notion of a major crash. In fact, the plasma helicity is almost
completely lost during the event as the graph of the modes amplitudes evolution in Fig. 3.4d clearly
confirms. On the contrary, in the same graph one can see that, at t = tPWI , even if the dominant
mode slightly decreases, the QSH state survives, i.e. the mode m = 1, n = 7 remained dominant after
the plasma relaxation. In fact the m = 1 spectrum at t = 218 ms is shown in Fig. 2.5, and it is a
typical QSH spectrum. As a consequence, the DRE observed in Fig. 3.1 is the consequence of a minor
crash. In the remainder of the thesis we will concentrate on the minor crash at tPWI = 218 ms.

1Take into account that the pick-up coils are placed outside the vacuum vessel so that the signal in Fig. 3.4d is
attenuated and delayed.
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Figure 3.4: Evolution of main parameters during a short time interval around t = tPWI : (a) safety factor at
the center q0, (b) pinch parameter Θ, (c) reversal parameter F , (d) amplitude of m = 1 modes. Time instant
t = tPWI is highlighted with a vertical orange line. Whereas, a vertical blue line underlines the time instant
t = 221 ms.

3.2 The Locked Mode

During a plasma discharge, a mechanism of non-linear coupling between tearing modes resembling
constructive interference occurs [74]. The main consequence of such a mode coupling is the formation
of a toroidally localised deformation called Locked Mode [75] (LM). The locking phenomena regards
mainly the m = 1 modes, even if a m = 0 locking is also observed [64]. In the remainder of the
thesis, we will refer always to m = 1 locking. In this section, some useful parameters to describe this
phenomenon are introduced.

3.2.1 The inverse-sigma and the Locking-Strength parameters

The helical phase of a generic resonating mode (m,n) can be written as in Eq. (2.18):

Φm,n (θ, φ, t) = mθ − nφ+ ϕm,n(t) ,

where ϕm,n indicates the FFT phase of the mode (m,n).
For sake of simplicity, consider here to focus on the equatorial plane (θ = 0) so as to work with only
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one degree of freedom. Then, the resulting helical phase of the (m,n) mode is given by:

Φm,n (φ, t) = nφ+ ϕm,n(t) .

According to Ref. [76], the degree of alignment of the modes is studied by calculating the inverse-sigma
parameter, σ−1, where σ is defined as:

σM (θ, φ, t) =
1

1 + 2 + · · ·+ (nmax − nmin)

nmax−1∑

j=nmin

nmax∑

k=j+1

∣∣∣∣sin
(
Φm,j(θ, φ, t)− Φm,k(θ, φ, t)

2

)∣∣∣∣ , (3.2)

where nmax and nmin respectively represent the range of toroidal mode numbers which interact to-
gether. A simplified version of the quantity above is obtained by focusing the attention only on the
m = 1 modes, which are those driving the DREs in RFX-mod:

σM (φ, t) =
1

1 + 2 + · · ·+ (nmax − nmin)

nmax−1∑

j=nmin

nmax∑

k=j+1

∣∣∣∣sin
(
Φ1,j(φ, t)− Φ1,k(φ, t)

2

)∣∣∣∣ . (3.3)

Such an expression for σ was inspired by a precedent definition given by Kusano, Tamano, and Sato
in Ref. [75]:

σKTS(φ, t) =

√∑nmax

j=nmin
[Φ1,j(φ, t)− ⟨Φ(φ, t)⟩1]

2

Nsum
.

Where ⟨Φ(φ, t)⟩1 indicates the m = 1 modes helical phases average, while Nsum is the number of
modes taken into account: Nsum = nmax − nmin + 1. The latter expression for σ clarifies which is its
meaning. In fact, since the formula above corresponds formally to the calculus of the r.m.s. of the
phases sample {Φ}1,j , σ represents a measure of the overall dispersion of the modes phases set.
The inverse-sigma σ−1 is particularly effective in quantitatively describing the quality of the modes
locking, namely the condition where the modes are aligned sharing the same helical phase. In fact,
where and when the plasma is in the LM, i.e. when the coupled modes are aligned, both σM (φ, t) and
σKTS(φ, t) go to zero. Correspondingly, σ−1 diverges.

An alternative way to quantify the strength of the Locked Mode is to calculate the so-called Locking-
Strength parameter [74, 77], which is defined as the normalized sum over the main interacting modes
of their mutual phase difference cosine:

LS(φ, t) =
1

1 + 2 + · · ·+ (nmax − nmin)

nmax−1∑

j=nmin

nmax∑

k=j+1

cos [Φ1,j(φ, t)− Φ1,k(φ, t)] . (3.4)

The main difference between the Locking-Strength, LS, and the inverse-sigma, σ−1, parameters is that,
whereas the latter diverges in the LM, the first tends to 1. In fact, by imposing Φ1,j(φ, t) = cost. ∀j,
we have for a complete locking condition2:

LS(φ, t) =
1

1 + 2 + · · ·+ (nmax − nmin)

nmax−1∑

j=nmin

nmax∑

k=j+1

1

=
1

1 + 2 + · · ·+ (nmax − nmin)
· [1 + 2 + · · ·+ (nmax − nmin)] = 1 .

LS = 0 corresponds instead to the absence of a Locked Mode and random phases.
However, since both reach their maximum in the Locked Mode, LS and σ are equivalent. The LS has
the advantage of being bounded in the interval [0, 1]. Therefore, it was preferred over σ over σ in the
present thesis and in the RFX-mod database [74].

2The calculation is justified with the fact that, if j = nmax − 1 then k can assume just one value: k = nmax. If
j = nmax − 2, then k can assume 2 values, and so on so forth until j = nmin, then k can assume all values between
nmin + 1 and nmax, that are nmax − nmin.

47



Figure 3.5: Examples of locked mode configurations compared to the modes amplitude evolution: (a) wall-
locking (#35894), (b) phase-locking (#19955), (c) no wall-locking (#37537), (d) Locked-Mode shape in the
shot #29324 of interest in this work. The orange line indicates the time instant t = tPWI . In the figure LS has
been calculated with nmin = 7 and nmax = 23.

In principle, by associating the maximum of the parameter LS(φ, t) to the toroidal position of the
LM, φlock(t), one can observe the time evolution of the LM during the discharge. In this sense, two
main configurations are found. In the first case, the LM is wall-locked (Fig. 3.5a), since its toroidal
coordinate does not change in time. This is the typical pattern of the LM evolution as it occurred
in the old RFX device [78], where the feedback coil system was not available. In the second case, a
rotation of the LM was induced by a proper setting of the feedback system (Fig. 3.5b), this state is
called simply as phase-locking [79]. Wall-locking is the worst case, being responsible for the enhanced
localised PWI, which might induce overheating of the PFC, anomalous impurity influx (sputtering),
and radiation the so-called Carbon bloom [80]). On the contrary, the best case for what concerns the
integrity of the first wall is when the QSH is well sustained during the discharge and wall-locking
is not observed (Fig. 3.5c). This observation is confirmed by Fig. 3.6, where the evolution of the
mode amplitude (a) is compared to the one of the LS (b) and it is noticed that the growth of the
secondary modes is consequently followed by their alignment, since LS increases. In fact, in the figure
just reported it can be easily seen that LS never reaches its maximum value (LS = 1) during the entire
flat-top time interval of the discharge.
As concerns the DRE of interest at t = tPWI , the contour plot in Fig. 3.5d clearly shows that the LM
is wall-locked at a toroidal coordinate around φlock = 0. It is worthy to say that this conclusion is
compatible with what has been previously reported by Scarin et al. in Ref. [73].
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3.3 Comparison with the ideal displacement

3.3.1 Analytic version of LS through Dirichlet kernels

Figure 3.6: The picture is taken from
Ref. [81] and is obtained by averaging over
many RFX-mod shots. The time instant of
the reconnection event, trec, is highlighted
with an orange dashed vertical line.

Assume that the helical angles of the modes are constant,
ϕm,n = cost., which is equivalent to moving in the frame of
reference where the LM is at rest at φlock = 0 [82]. Then,
LS(φ) in Eq. (3.4) becomes:

LS(φ) =
2

N · (N + 1)

nmax−1∑

j=nmin

nmax∑

k=j+1

cos [(j − k)φ] ,

where N = nmax − nmin = Nsum − 1.
By calling ℓ = k − j, the formula above can be re-written
as:

LS(φ) =
1

N + 1

N∑

ℓ=0

cos (ℓφ) , (3.5)

where such a normalization has been introduced in or-
der to fulfill the prescription LS = 1 at its maxi-
mum.

The sum of cosine functions that appears in Eq. (3.5) is
a known mathematical object: the Dirichlet kernel. It is
formally defined as follows:

DN (x) =

N∑

k=−N

eikx = 1+2

N∑

k=1

cos (kx) =
sin

[(
N + 1

2

)
x
]

sin
(
x
2

) .

(3.6)

By comparing Eq. (3.5) with the definition of the Dirichlet kernel in Eq. (3.6), one can get an analytic
expression for LS(φ):

LS(φ) =
1

N + 1

N∑

ℓ=0

cos (ℓφ)

=
1

N + 1

[
1 +

N∑

ℓ=1

cos (ℓφ)

]

=
1

N + 1

[
1 +

1

2
(DN (φ)− 1)

]

=
1

2(N + 1)
[1 +DN (φ)] .

And finally:

LS(φ) =
1

2(N + 1)

[
1 +

sin
[(
N + 1

2

)
φ
]

sin
(
φ
2

)
]
. (3.7)

It can be verified that LS(φ) given in this way respects the property to be equal to 1 at its maximum.
Such an expression for LS(φ) depends on the parameter N . By looking at Fig. 3.7, one notices that,
by increasing N , the peak at φ = 0 in the LS(φ) profile shrinks.
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3.3.2 Definition of the ideal displacement

Figure 3.7: Examples of several LS(φ) profiles obtained
by varying N .

For sake of simplicity, consider working in the ap-
proximation where the resistivity of the plasma
is ignored. The local ideal displacement ∆m,n

(hereafter it is going to be called also shift) as-
sociated to the (m,n) mode depends on the per-
turbed radial field brm,n(r) through the relation
[83]:

∆m,n =
i rbrm,n e

i(mθ−nφ+ϕm,n)

(m− n · q(r))B0
θ (r)

, (3.8)

wherem, n, and q(r) are respectively the poloidal
mode number, the toroidal mode number, and
the safety factor profile. Instead, B0

θ is the
poloidal magnetic field at the equilibrium. The
formula above is obtained by taking into account
a cylindrical approximation. It diverges at the resonance, but this is not a problem since ∆m,n is
evaluated at the plasma edge in this section. The perturbation brm,n are calculated by the NCT code
as explained in Chapter 2. The total shift of the magnetic field lines generated by secondary modes is
then calculated as ∆sec =

∑23
n=8∆1,n.

The idea is that the position of the two stripes characterising the PWI in Fig. 3.1 should almost
correspond to the maximum deformation induced by all the perturbations together, i.e. the maxima
of ∆sec(φ).
Fig. 3.8 compares the LS profile in the LM reference system, as described by Eq. (3.7), with the
toroidal profile of the ideal shift, ∆sec(φ), calculated by taking θ = 0. It is shown that the positions of
the two peaks of ∆sec(φ) (φ

∆
1 = 351° and φ∆

2 = 16°), in particular the second one, differ with respect
to the ones measured in Ref. [73], φ1 and φ2, see Fig. 3.1. A possible reason for this difference is that
the ideal displacement is calculated using experimental data associated with the m = 1 modes with
n ≤ 23. Therefore, by considering more modes in the calculation of ∆sec, a better agreement should
likely be found.

3.3.3 Deduction of nmax causing PWI in #29324 at t = tPWI

From the comparison reported in Fig. 3.8 a link between the positions of the first two minima of LS
and the maxima of the deformation indicating the position of the two PWI stripes is deduced. Since
in Eq. (3.7) an analytic version of LS has been already provided, in principle one can deduce the
position of the first two minima of LS(φ) as a function of N analytically. Then, since N depends on
the toroidal numbers of the modes interacting in the DRE at t = tPWI , by imposing that the two
minima are found in the positions experimentally measured (φ1 ≈ 352° and φ2 ≈ 7°, ∆φS = 15°), a
first estimate of how many modes were involved in the PWI of interest can be found.

LS(φ) is an even function:

LS(−φ) =
1

2(N + 1)

[
1 +

sin
[(
N + 1

2

)
(−φ)

]

sin
(
−φ

2

)
]
=

1

2(N + 1)

[
1 +

sin
[(
N + 1

2

)
φ
]

sin
(
φ
2

)
]
= LS(φ) ,

so the distance ∆φ between the two first minima of LS(φ) can be written as: ∆φ = 2φ̂ where
φ̂ is the position of the first minimum such that φ̂ > 0. It follows that the analytic profile of
LS(φ) which describes the discharge #29324 at the time t = tPWI , must have the first minimum at
φS = ∆φS/2 = 7.5°.
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Figure 3.8: Comparison between (a) m = 1 LS(φ) and (b) ∆sec(φ) for the discharge #29324 at t = tPWI

calculated at θ = 0. The orange dashed vertical lines highlight the two maxima of the ideal displacement ∆sec.

The derivative of LS(φ) in Eq. (3.7) is given by:

dLS(φ)

dφ
=

1

2(N + 1)

[
cos

[(
N + 1

2

)
φ
]
·
(
N + 1

2

)

sin
(
φ
2

) −
sin

[(
N + 1

2

)
φ
]

2 sin2
(
φ
2

) · cos
(φ
2

)]
. (3.9)

By evaluating the equation above at the minimum φ = φ̂, it becomes:

cos

[(
N +

1

2

)
φ̂

]
· sin

(
φ̂

2

)
·

(
N +

1

2

)
−

1

2
sin

[(
N +

1

2

)
φ̂

]
· cos

(
φ̂

2

)
= 0 . (3.10)

By imposing the experimental result: φ̂ = φS , one gets the following equation in the variable N :

cos

[(
N +

1

2

)
φS

]
· sin

(φS
2

)
− sin

[(
N +

1

2

)
φS

]
· cos

(φS
2

)
= −2N cos

[(
N +

1

2

)
φS

]
· sin

(φS
2

)
.

(3.11)
By considering the following trigonometric identities:

sin (α− β) = sin (α) cos (β)− cos (α) sin (β)

cos (α− β) = cos (α) cos (β)− sin (α) sin (β)

the Eq. (3.11) becomes:

sin (NφS) = 2N
[
cos (NφS) · cos

(φS
2

)
− sin (NφS) · sin

(φS
2

)]
· sin

(φS
2

)
(3.12)

tan (NφS)

[
1

2N sin2
(
φS

2

) + 1

]
=

1

tan
(
φS

2

) (⋆) . (3.13)

By approximating 1
2N sin2 (ϕS

2
)
+ 1 ≈ 1, one has:

tan (NφS) = 2N cos
(φS

2

)
· sin

(φS
2

)
= N sinφS . (3.14)
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φS is supposed to be small such that φS ≈ sinφS . Finally, the equation above can be written as:

tan (NφS) = NφS ⇒ tanx = x , (3.15)

where the passage consists of a change of variable (namely x = NφS). This equation can be finally
solved graphically, obtaining:

x ≈ 4.5 ⇒ N ≈ 34 ⇒ nmax ≈ 41 . (3.16)

The first confirmation of the goodness of such an analytical derivation comes from Fig. 3.9 which re-
ports the comparison between ∆φ numerically calculated as the distance between the two first minima
in the LS(φ) profile by using nmax as a free parameter and the experimentally measured ∆φS .

Figure 3.9: Comparison between (a) ∆φ computationally calculated by varying nmax into the expression of
LS given by Eq. (3.7) and (b) the distance between emission footprints ∆φS measured in Ref. [73].

The physical interpretation of the result just obtained is that, during the shot # 29324, at t = tPWI ,
the plasma should have been populated by all tearing modes with m = 1 and 7 < n < 41 (well beyond
the nmax = 23 the feedback system of RFX-mod can detect), which non-linearly have interacted with
each other, locking their phases and stopping at φlock = 0. The two footprints of the PWI resemble
the shape of the plasma spatially resulting from the coupling between modes. The importance of
this result is that it can be used as a preliminary prescription for the implementation of the future
RFX-mod2 experiment with an improved feedback system of coils so as to be able to control the modes
characterised by higher toroidal mode numbers, approximately until n = 41 [48].
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Chapter 4

Description of the magnetic topology
during PWI through Poincaré plot

This Chapter is devoted to a more refined way to study PWI events like the one of interest in this
thesis. It deals with the description of the plasma magnetic topology at the crash. The kind of map
which is considered is the so-called Poincaré plot. In this way, the real radial displacement of the
magnetic field lines due to the tearing modes arising in the plasma at t = tPWI is directly visualised
and compared with the results of the previous Chapter. In the end, the role played by the m = 0
magnetic islands during the event is clarified.

4.1 Poincaré plot definition

Figure 4.1: Sketch to describe the
meaning of the definition of the
Poincaré section. v⃗1, represented in
blue, is a good flux vector being F a
Poincaré section, whereas the vector v⃗2
represented in red is not compatible
with the definition of F as a Poincaré
section.

Considering a dynamical system, a simple way to represent the
trajectory followed by a given particle is to record the intersec-
tion of its orbit with a surface, which must be perpendicular to
the dynamical flux. The collection of the intersections is called
Poincaré plot.

The formal definition can be found in Ref. [84]: the Poincaré
section is a surface F (x, y, z) = 0 on which there is no real point
that satisfies:

∂F

∂x
ẋ+

∂F

∂y
ẏ +

∂F

∂z
ż = 0 , (4.1)

and so F is not tangent to any trajectory.
In other words, the Eq. (4.1) is equivalent to:

v⃗ · ∇F (x, y, z) ̸= 0 ∀(x, y, x) , (4.2)

i.e. the velocity of each particle is never tangent to the
surface for any point of F . By looking at the sketch
in Fig. 4.1 and by taking into account the Eqs. (4.1)-
(4.2), one easily concludes that the vector which is rep-
resented in blue (v⃗1) is a trajectory that can be consid-
ered as compatible with the definition of F as a Poincaré
section. The opposite happens for the vector v⃗2 repre-
sented in red. In this thesis, trajectories are represented
by magnetic field lines, composing a magnetic Poincaré
plot.
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In the RFP case the Poincaré sections can be chosen in two ways. The first one is the poloidal
Poincaré section, obtained by cutting the torus with a poloidal plane, as shown in Fig. 4.2a. The
resulting plot lies in the θ − r plane, but the reversal surface can not be included in the plot since it
is a tangent trajectory. Alternatively, is possible to cut the torus with a toroidal plane, obtaining a
toroidal Poincaré plot in the φ− r plane as shown in Fig. 4.2b. In the toroidal Poincaré plot it is not
possible to include the axis at r = 0.

(a) Example of a poloidal Poincaré plot. (b) Example of a toroidal Poincaré plot on the equa-
torial plane θ = 0.

Figure 4.2: Construction of the two available kinds of Poincaré plots (coloured in blue) for a toroidal geometry
like the one of the RFX-mod. The red arrow indicates a generic magnetic field line. The intersection between
such a field line and the Poincaré section is indicated with a × symbol.

4.2 Poincaré plot in RFX-mod during #29324 at t = tPWI

In Fig. 4.3 a toroidal Poincaré plot at θ = 0 collects the magnetic topology of the plasma, simulated
with the Orbit code, during the discharge # 29324 at the crash time instant tPWI = 218 ms. The
points coloured in magenta were deposited inside the m = 1, n = 7 islands. The points in cyan were
deposited on the reversal surface.

The description of such a Poincaré plot can be divided into three regions:
The internal region (r ∈ [0,≈ 25]) is populated by the magnetic islands associated with the m = 1,
n = 7 mode. Notice that they are located around the same radial position, r ≈ 15 cm, which is
compatible with the radial position of the corresponding magnetic surface at q1,7 already sketched
in Fig. 3.3. The toroidal dimension of such islands is of the order of one meter, as can be seen by
comparing with the distance indicated with the bar reported in the graph. Whereas, in the radial
direction, these islands are of the order of ≈ 10 cm.

The mid-radius region (r ∈ [≈ 25,≈ 35]) is where secondary modes resonate. The chaos charac-
terising this region is the main consequence of the magnetic islands overlap [85] due to their locking.
The mechanism leading to the chaos formation is totally analogous to the one of Tokamaks as already
reported in the Section 1.7.2.
On purpose, a largely used in Tokamaks, useful parameter to quantitatively describe the chaos condi-
tion is the Chirikov parameter, c . Assume a standard map, i.e. consider a simplified scheme of two
adjacent magnetic islands which share same resonance and same helicity m = 1, n = 1. Given ri and
rj as the radial positions of the O-points, their reciprocal distance is given by:

dO = |rj − ri| . (4.3)
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Figure 4.3: Toroidal Poincaré plot representing the magnetic topology during the shot #29324 at the crash
time instant t = tPWI . Each point corresponds to a magnetic field line crossing the equatorial plane θ = 0.
Magenta points refer to the m = 1 modes, whereas the cyan ones refer to m = 0 modes. The black bar indicates
a distance of 125 cm. The points which are represented in blue highlight a set of smaller magnetic islands around
an m = 0 one. They are the confirmation that the arrangement of the magnetic islands is actually much more
complicated of the level of the description reported in this Chapter of the thesis since also the possible several
interactions between modes have to be taken into account while describing the overall magnetic topology. The
horizontal green line represents the position of the reversal surface, around which m = 0 magnetic islands are
located. The horizontal yellow line indicates the position of the device wall.
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Furthermore, consider wi and wj as the widths of the magnetic islands i and j respectively, according
to what already illustrated in Fig. 1.12.
Therefore, the condition for the magnetic islands overlap, resulting in chaos, occurs when:

dO <
wi + wj

2
. (4.4)

Then, the Chirikov parameter is defined as follows:

c =
wi + wj
2 · dO

=
wi + wj

2 · |ri − rj |
, (4.5)

and chaos condition corresponds to c > 1. Actually, since it can be shown that we are near the
stochastic threshold c ≈ 1 [69], the Chirikov parameter provides only a qualitative understanding of
the local presence of chaos regions in plasma in RFX-mod.
The overall physical interpretation of the description of the internal and the central part of the Poincaré
plot in Fig. 4.3 is that, despite the secondary modes locking resulting in chaos, radially enclosed into
the central region of the plasma, the magnetic helicity characterising the plasma is still well-defined
and coincides with the one imposed by the m = 1, n = 7 mode indeed. This result is compatible with
the one already provided in the previous Chapter, as summarised by Figs. 2.5-3.5d.

Figure 4.4: Zoom of the Poincaré plot already reported in
Fig. 4.3 in proximity to the region where the PWI of interest
is observed. Two stripes of points, correspondingly to a set of
magnetic field lines, which overcome the barrier of the m = 0
islands, is effectively observed. The orange dashed vertical
lines highlight the first two maxima of the ideal displacement
∆sec.

The Poincaré plot provides a much more
detailed description of the PWI than the
one reported in the previous Chapter. In
the outermost edge region (r > 35 cm)
corresponding to the reversal surface, posi-
tioned at r ≈ 42 cm (as already indicated in
Fig. 3.3), a set of seven m = 0 magnetic is-
lands is present during the discharge. Their
dimensions are reduced by a factor ε = A−1

with respect to the m = 1 islands. The exis-
tence of such islands can be explained as the
main consequence of the toroidal coupling
[64] between the dominant mode (m = 1,
n = 7) with a mode (m = 1, n = 0)
corresponding to a radial shift of the mag-
netic surfaces, called Shafranov shift, which
is due to the toroidal geometry of the de-
vice. It can be demonstrated that the re-
sulting modes from such coupling are the
m = 2, n = 7 mode, which does not appear
in the Poincaré plot because it is not res-
onating since m/n = 2/7 ≈ 0.28 > q0, and
the mode characterised by m = 0, n = 7, which is the one that appears in Fig. 4.3. Moreover, since
the m = 1, n = 7 mode dominates over the other m = 1 modes (the plasma is in the QSH state, see
Fig. 2.5), it is expected that also the m = 0 mode resulting from its coupling with the Shafranov shift
dominates over the others m = 0 modes. This explains why the magnetic islands appearing in the
reversal surface share the same helicity of the dominant mode.

In Fig. 4.4 is reported a zoom of the previous Poincaré plot in the outer region. It shows two bundles
of points protruding from the chaotic sea to the plasma boundary. The convolution of these points
resembles the two maxima of the ideal displacement already shown in Fig. 3.8b, confirming that the
use of ∆sec is justified as a first approximation of the pattern of PWI. Not only, as in the case of
the ideal displacement profile, the positions of the two stripes also differ from the ones experimen-
tally measured in Ref. [73]. The reason is the same since also the Orbit simulation, from which the
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Poincaré plot in Fig. 4.3 is obtained, employs only the modes with n ≤ 23. Reasonably, by following
the result obtained at the end of the previous Chapter (3.16), and by properly updating the number
of sensors in RFX-mod2 [86], not only a much more detailed description of the magnetic topology
during the crash should be obviously obtained, but also a more precise comprehension of the chaotic
mechanism leading to the PWI observed should be achieved.

The main further conclusion we can draw by looking at the magnetic topology of the plasma during
the crash, and by comparing it with the methods applied in Chapter 3, is that the role of the m = 0
modes can not be neglected. In particular, regarding the first stripe located at φ1 = 352°, by looking
at the image in Fig. 3.1, it is visible that the width of the deformation touching the wall is a little
bit larger than the one at φ2 = 7°. As a consequence, whereas the stripe at φ2 can be associated with
the m = 1 LM, the stripe at φ1 = 352° can be probably ascribed to the nearest m = 0 island.
Such an argument suggests the need for some new methods in order to achieve a better understanding
of the mechanism leading to the occurrence of a PWI event with such a shape. One of these methods,
based on the calculation with Orbit of the Connection Length Lc,w, is the topic of the next Chapter.
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Chapter 5

The Connection Length

In this Chapter we present a further level of comprehension of the PWI event at tPWI = 218 ms by
using the Connection Length to the wall. The parameter Lc,w is calculated with Orbit both in the φ-r
plane and in the φ-θ plane. A comparison with the Poincaré plot introduced in the previous Chapter
is discussed. The image of PWI is then associated with the 2D profile of the Lc,w(φ, θ) map. Results
coming from previous analyses in Chapters 3 and 4 are confirmed and completed.

5.1 Lc,w(ϕ, r) map and the magnetic topology

The main result of the previous Chapter was that from the analysis of the magnetic topology, the two
footprints of the PWI at tPWI = 218ms might have different causes. In particular, the second one,
at φ2 = 7° is the consequence of the m = 1 secondary mode locking. On the contrary, the first one,
located at φ1 = 352°, might be associated with a ’tail’ of the nearest m = 0 island. This is suggested
by the observation that in Fig. 3.1 the first stripe at φ1 is broader than the second one at φ2. In
order to validate this argument, further investigation is needed.

The Connection Length to the wall, Lc,w(ψp,0, θ0, ζ0), of a certain point A of coordinates (ψp,0, θ0, ζ0)
represents the distance that is travelled by a plasma particle from A to the wall. The meaning of such
a quantity has been already discussed in Boozer coordinates in Section 2.2.3. Let us recall the formal
definition provided in Eq. (2.24):

Lc,w(ψp,0, θ0, ζ0) =

∫ ζw

ζ0

B dζ

B⃗ · ∇ζ
. (5.1)

It is worth underlining that such a distance is calculated along the magnetic field line since the mean-
ing of the scalar product present in the equation above is a projection of the particle orbit (which is
a spiral around the magnetic field line itself) on the direction parallel to the one of the magnetic field
B⃗. Through the definition in Eq. (5.1), each point of the space is uniquely associated with a certain
value of the Lc,w parameter in such a way each point of the spatial region occupied by plasma can
be mapped in terms of Connection Length to the wall. Thus it quantitatively describes the plasma
magnetic topology.

A comparison between the Lc,w map and the Poincaré plot in the φ-r plane (the poloidal coordinate
is fixed at θ = 0) near the region where the PWI at tPWI = 218 ms occurred is illustrated in Fig. 5.1.
In the RFP, shorter connection lengths correspond to particles jumping from the plasma core to the
wall in a very short time [69]. The toroidal position of the LM is a preferential channel of increased
particle losses and short connection lengths, as already shown with orbit in the past [73, 87]. By
looking at the regions where the Lc,w is lower, one can therefore easily associate them with the regions
at larger PWI. Such regions are coloured in red in the figure. The Poincaré plot is then over-plotted
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to provide a full sight of the plasma magnetic topology.

Figure 5.1: Comparison between the Lc,w(φ, θ) map and the Poincaré plot in the φ-r plane near the region
where the PWI at tPWI = 218 ms occurred. Regions coloured in red are characterised by low Lc,w (of the order
of magnitude of 10−1 m). Whereas, the regions where Lc,w is high (of the order of magnitude of 1 km) are
coloured in blue. The toroidal angles of the two PWI stripes observed with the OCS of RFX-mod, φ1 and φ2

are highlighted with two solid lines. Dashed lines indicate the toroidal angles where Lc,w is at minimum.

By looking at Fig. 5.1, three main zones can be horizontally distinguished:
To the right (φ ∈ [0,≈ 10]), there is the region corresponding to the second PWI stripe, the one
at φ2 = 7°, as the low level of Lc,w (of the order of magnitude of 10−1 m) confirms. To the left
(φ ∈ [≈ −45°,≈ −5°]), there is the region associated with the second stripe of the PWI at φ1 = 352°.
In this case, not only the pattern of the Lc,w map confirms that the interaction between plasma and
the PFC is spatially wider than the one of the second stripe, but also makes explicit that particles
which are responsible for this interaction come from the m = 0 magnetic island. Another observation
regards the fact that, also in this case, the positions around which the red regions are centered (i.e.
where Lc,w is at minimum) are not compatible with the toroidal positions measured for PWI, φ1 and
φ2. In fact, since the Connection Length is calculated by using Orbit from experimental data, only
the modes up to n = 23 are considered for calculations. This is a further confirmation that in order
to have a total comprehension of the PWI of interest, more modes would have been given as input to
Orbit.
Finally, the central one (φ ∈ [≈ −5, 0]) is a region characterised by high Lc,w (of the order of
magnitude of 1 km), so it is populated by particles that reached the wall only after a very long time.

5.2 Description of the Lc,w(ϕ, θ) map

In order to find an explanation of such a Lc,w map, one can look at the connection lengths on the
nearest φ-θ plane to the edge (r is set at 0.45 m, so only almost 1 cm far from the device’s first wall).
Such a map is shown in Fig. 5.2.

The Fig. 5.2 represents an arrangement of regions with high and low Lc,w analogous to the one already
described in the previous Section. By looking at the poloidal coordinate θ = 0, the positions of the
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two stripes of interaction can be approximately located at: φLcw1 = −15°, and φLcw2 = 8°. They are
highlighted with vertical white lines. Their mutual distance is not compatible with the ones experi-
mentally measured in Ref. [73], ∆φS = 15°, as previously shown by the Fig. 5.1.
However, in the case of the figure above, more details can be appreciated, for example, the fact that the
two red regions (corresponding to the regions of interaction between the plasma and the first wall) do
not follow the same slope. And this is a consequence of the fact that the two stripes of the interaction
had two different topological causes, i.e. they came from modes characterised by a different helicity.

Figure 5.2: Lc,w map at fixed r = 45.1 cm. The red regions indicate where the Connection Length is low (of
the order of magnitude of 10−1 m). In blue those regions where Lc,w is maximised (of the order of magnitude
of 1 km) are represented. The vertical white line indicates the position of the PWI at θ = 0.

Furthermore, regarding the central region, characterised by high Lc,w, it can be interpreted as the
main effect of a process that is analogous to the one leading to homoclinic tangles in Tokamaks. They
were described in Section 1.7.2. In this sense, the blue region (high Lc,w) and the red region at φ2 = 7°
(low Lc,w) could correspond respectively to the unstable and stable manifolds of the homoclinic tangle
which drove the chaos leading to the localised loss of particle to the first wall. Therefore, we speculate
that the first of the two secondary m = 1 modes major ideal displacements we have shown in 3.8b at
φ < 0, namely the one we have initially assumed to be the cause of the second stripe of the PWI of
interest, was actually located in such a central region.

5.3 Lc,w(ϕ, θ) map and PWI footprints

The main advantage of the use of the connection length is the possibility to compare directly with the
pattern of the PWI measured by the fast cameras. This type of analysis is customary in the Tokamak
community, where maps of Lc,w are compared to the PWI pattern, generated by RMPs in order to
optimise the current in the coils [27, 72]. Such a comparison for RFX-mod is reported in Fig. 5.3.
In Fig. 5.3a the image of the interaction already shown in Fig. 3.1 has been projected in the φ-θ plane.
The red zones represent the two stripes of the PWI, i.e. those characterised by a higher intensity of the
emitted Carbon radiation. The data plotted come directly from the output of the CCD electronics, so
the scale is in arbitrary units. Instead, the graph shown in 5.3b is the same as the one shown in Fig.
5.2. The toroidal angles where the red zones are centered are shifted, this can be mainly associated
to the image wrapping from which the Fig. a has been obtained.
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The patterns in experiment and simulation are qualitatively the same, being divided into the three
main regions already described in the previous Section. The two black lines show that the helicity of
each interaction stripe almost coincides with that of the related red zone in the Lc,w map. This is
a further confirmation of the fact the two stripes are the consequence of the interaction towards the
first wall of the m = 0 island, and the locking of the secondary m = 1 modes, respectively.

To conclude, the PWI stripe associated with the secondary m = 1 modes locking is located in the red
zone to the right where Lc,w is low. The zone occupied by the ’unstable manifold’ of a homoclinic
tangle, characterised by high Lc,w and coloured in blue is in the central part of the map. On the left
there is a second red region with low Lc,w which corresponds to the PWI stripe of the m = 0, n = 7
island.

Figure 5.3: Comparison between (a) the PWI image taken with the OCS of RFX-mod in #29324 at t = tPWI

and visualised through image wrapping [73] and (b) the Lc,w map in the φ-θ plane, at r = 45.1 cm. In (a), the
red regions are those characterised by more intense radiation. In (b) red and blue regions represent respectively
low and high connection lengths, such that regions with the same colours coincide in the two graphs. The black
lines follow the inclination of the stripes in both (a) and (b). They are added to help the comparison between
the two patterns.
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Summary and conclusions

This thesis is devoted to the study of the Plasma Wall Interaction (PWI) observed with the fast
cameras system of the RFX-mod device (Fig. 3.1), during the shot #29324 at time tPWI = 218 ms.
Such an image of the PWI was already reported in a paper by Scarin et al. [73]. The discharge is
characterised by two footprints located at φ1 = 352° and φ2 = 7°. The main goal has been to estimate
which modes are the most involved in determining the PWI pattern. The techniques used are the
same as those used in the tokamak community to analyse the PWI footprints left by the Resonant
Magnetic Perturbations (RMPs). The topic is relevant in the nuclear fusion community in perspective
of ITER.

A preliminary analysis aims at providing an overall description of the discharge characteristics at the
PWI time instant. It has been found that the shot #29324 is a high plasma current regime with a
long lasting flat-top with a duration of almost 200 ms (Fig. 3.2). The plasma shows a strong helical
state (QSH) with poloidal and toroidal mode numbers m = 1, n = 7 (Fig. 2.5). However, several back
transition from the helical state to magnetic chaos are observed (Fig. 3.4) due to discrete reconnection
events (DRE). During these events, the secondary modes with m = 1 and n > 7 align their phases in
a bulge protruding towards the wall, called Locked Mode (LM, see Fig. 3.5d). The LM causing the
PWI of interest is correlated with a minor crash, since the QSH state survives despite the secondary
mode increase. This is obviously of interest for studies in the reversed-field pinch configuration, since
the QSH state is a high-confinement condition which is foreseen for a possible RFP reactor [14, 38].

The original analysis presented in this thesis is structured along three levels of increasing complexity:

• The first part of the analysis introduces a simplified description of the LM as the sum of the
secondary mode ideal displacements ∆sec. In particular, it was possible to compare the toroidal
positions of the PWI stripes with the Locking Strength parameter, defined as in Equation (3.7).
The comparison of the LS with ∆sec, (Fig. 3.8), leads to the conclusion that more modes are
needed to explain the PWI shape than those observed experimentally, 0 < n ≤ 23. Toroidal
mode numbers up to nmax = 41 (3.16) need to be included.

• The Poincaré plot obtained with the guiding center codeOrbit (Fig. 4.3) provides a further level
of analysis, through the direct visualisation of the magnetic field line topology. This improves
the previous description by taking into account the presence of magnetic islands. Some features
of previous analysis are confirmed: the persistence of the QSH state despite the crash, the
occurrence of the secondary mode LM, and the presence of two ”bundles” of field lines protruding
from the chaotic sea to the plasma boundary. The envelope of the two bundles follows quite well
the profile of ∆sec (Fig. 4.4), consistently with the previous analysis. At the same time, more
information is added: the first stripe of PWI at φ1, which is broader than the second one at φ2

in Fig. 3.1, is caused by a tail of the nearest m = 0, n = 7 magnetic island.

• The third level of description involves the Connection Length to the wall Lc,w. This is calculated
with Orbit and mapped on the equatorial plane at θ = 0 together with the Poincaré plot. In
this way, a complete description of the magnetic topology at tPWI = 218 ms is provided in Fig.
5.1. This plot, complemented with the contour of Lc,w in the φ-θ plane, allows to draw the
following conclusions:

– The region related to the first large stripe of PWI at φ1 = 352° in the camera image is
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characterised by short connection lengths (of the order of 10−1 m), and it is associated with
the m = 0, n = 7 island;

– The region related to the second stripe at φ2 = 7°, is also characterised by short connection
lengths, and it is associated with the secondary mode locking (LM). It is found to correspond
to the second maximum of ∆sec in Fig. 3.8b at φ > 0;

– The region in between the two stripes in the camera image is on the contrary characterised
by long connection lengths, Lc,w ≈ 1 km. We associate it with the ’unstable manifold’ of
the homoclinic tangle generated by the LM. It corresponds to the first maximum of ∆sec

in Fig. 3.8b at φ < 0.

The analysis presented in this thesis can be improved in the future RFX-mod2 device [48] which
is expected to operate starting from mid 2024. In particular, the pattern of Lc,w calculated with
Orbit is systematically wider than the stripes in the camera image, see Figure 5.3. This has been
explained in the thesis as being due to the limited resolution of the 48-element array of pickup probes
installed on RFX-mod [49]: the present system allows to calculate a spectrum of tearing modes with
0 ≤ n ≤ 23 [64]. In the RFX-mod2 device a set of 6 (poloidal) × 72 (toroidal) pickup sensors will be
available [86], allowing for calculating modes with m = 0, 1, 2 and 0 ≤ n ≤ 35. In addition to this, an
improved optical camera system (OCS) of 7 fast cameras covering 70% of the wall will be installed,
allowing for a better experimental characterization of the PWI.

Finally, it is planned to improve Orbit simulations by adding a module that calculates the power
load pattern of thermal ions at r = a, considering the motion of thermal ions instead of magnetic field
lines. This will allow a direct comparison of maps of power load (in MW/m2) with the camera images.
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