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Introduction

The greatest recent result in particle physics was the discovery of the Higgs boson in 2012 by the
ATLAS and CMS collaborations [[1, 2]]. With the discovery of the Higgs boson the last missing
ingredient of the Standard Model (SM) of particle physics has been found. It remains to show that
the Higgs boson is indeed the one predicted within the SM. So far the experimental results strongly
indicate so 3, 4].

Despite its ability to describe almost all up-to-date experimental results in particle physics, the SM is
far from being the ultimate theory of physics as it lacks different aspects to be complete. Some of the

problems we have not yet answered to are:

* The matter-anti-matter asymmetry: in the early stages of our Universe there must have been
a mechanism that has favoured baryons over antibaryons, this mechanism is not described in
the SM. The Shakarov conditions to successful generate this asymmetry require cannot be fully
satisfied by the SM.

» Naturalness problem: The Higgs boson mass receives quantum corrections that are highly
sensitive to any UV scale and requires a fine-tuning in order to match the expression to the

observed value of m;, = 125GeV.

* Dark matter (DM): Dark Matter represents 27 of the energy content of our Universe. The SM

lacks a suitable candidate for it.

* Smallness of neutrino mass: experiments have shown that the masses of neutrinos are considerably
smaller than the masses of the other particles such as quarks or leptons. The SM cannot explain
tis hierarchy of masses and strictly speaking does not provide any mass at all to the neutrinos.
This in turn raises also the question of the nature of neutrino masses, namely whether they are

Dirac o Majorana particles.

« EWSB: according to the Higgs mechanism when the scalar field assumes a vacuum expectation
value (v.e.v) then the so called electroweak symmetry of SM SU(2), ® U(1)y breaks into a
smaller subgroup U (1) .. This leads to the acquisition of mass by the 11 and Z bosons leaving
the photon massless. While the Higgs mechanism successfully explains this symmetry breaking,
it does not provide a deeper understanding of why this breaking occurs or why the Higgs field

takes the particular form observed experimentally.
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Research on the Higgs Sector could allow us to proceed further in all the mentioned directions. Solving
some of the above problems necessarily requires the addition of new physics (NP) in terms of new
particles. Going beyond Standard Model (BSM) is a natural way to improve our understanding on the
open questions we have.

Since so far no striking new signals of new physics has been discovered it is imperative to assume that
there is a mass gap between Electroweak scale Agy, ~ 246 GeV and the new physics scale.

When facing large separation of scales we can exploit the model independent approach of Effective
Field Theory (EFT). The latter holds when E < Ayy, where E is a generic energy of the process while
Ayv is a cutoff scale beyond which EFT description is no more valid.

Unless we find the ultimate theory valid up to arbitrary high energy scales, we can think about iterating
the above process where after an observation of a new particle we write down a theory that is valid
up to A’UV > Ayy. In this way we end up with an hierarchy of scales where different descriptions
are suitable for a specific energy domain. These EFTs have a common feature: the SM will be their
low-energy limit as they must reproduce what we observe up to now.

This way of proceeding is called Bottom-Up approach. In this work we try to go the other way around
and start assuming a very concrete UV completion of the SM (Top-Down approach). We proceed by
matching this model to two IR theories that are commonly used in Higgs physics: Standard Model
Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT).

They differ both in the power counting and on the the assumptions made on the Higgs field. Standard
Model Effective Field Theory is commonly used when the UV theory is weakly coupled, while HEFT
usually is needed if a strongly coupled UV scenario is assumed. In SMEFT, the Higgs field transforms
as in the SM in an SU(2) doublet. All new physics effects are parameterised by higher dimensional
operators suppressed by a new physics scale A. The dominant effects in Higgs physics stem from
dimension-six operators. The basic idea of HEFT stems from the chiral Lagrangian, hence a strongly
interacting theory. In this case, the Higgs boson no longer transforms together with the Goldstone
boson in an SU(2) doublet, but instead the Goldstones and the Higgs boson get seperated: the Higgs
boson now transforms as a singlet. Typically a counting of canonical dimensions is adopted [5-7]],
in which the Higgs boson does not count-up the dimensions. Higgs interactions with one or n Higgs
bosons hence arise at the same order in the counting of the canonical dimension. Hence processes
with a di-higgs final state are particularly convenient to make differences between SMEFT and HEFT
evident.

Our aim is to identify concrete models where SMEFT does not describe well the UV model and
consequently HEFT must be used. The opposite is not possible since SMEFT can be thought of as an
HEFT subcase.

In Ref. [8] potential particles that need HEFT instead of SMEFT have been identified and called
Loryon particles. Those acquire more than a half of their mass from EWSB. [8, 9]

As pointed out above, the SM electroweak sector undergoes a spontaneous symmetry breaking: the
gauge symmetry group leaves the SM lagrangian invariant under SU(2); ® U(1)y, however when

Higgs field acquires a v.e.v. the lagrangian is only invariant under U (1), and the W and Z bosons
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become massive. Understanding whethere HEFT or SMEFT is the right effective description might
go hand in hand with understanding whether the pattern we are assuming in the SM, namely SU (2);, ®
U(1)y — U(1)e.m. could be an effective description of another more fundamental dynamics. To give
a flavour of this aspect we recover an historical example from Ginzburg-Landau effective model for
superconductivity.

There the action functional is:
_ 31 . 2, 7 2 2
LG(s) = dv’ | =|(V — 2ieA)D|* + —(|P]* — a”) (1)
Re3 2 2

where (V — ieA) is the covariant derivative for a non relativistic system reflecting U(1) invariance
and ® = |®|e? is the order parameter, a macroscopic wave function representing the condensate of
Cooper pairs.

The minimum of the action is for |s| = a and (V — 2ieA)® = 0 (and v > 0).

The action of the SM Higgs is extremely similar to the latter:

Sy = /d4x<|DﬂH|2 _\HH - %2)2) @)

where H is the Higgs doublet and D, is the covariant derivative of the SU(2),, ® U(1)y. This theory
has a minimum at <H TH > = v%/2. The expansion around this minimum leads to massive W+, W~ Z
bosons.

However Landau-Ginzburg is the effective description of a more fundamental theory (BCS). In analogy
to Landau-Ginzburg, one would expect a shorter distance completion/origin of the Higgs mechanism.
The appearence of a Mexican hat with a minimum at v = 246 GeV may be the low energy effective
parametrization of a shorter distance dynamics, leading to an effective SU(2), @ U(1)y. In this sense
SMEFT and HEFT provides two possible parametrizations of the same, yet unknown UV sector,
leading to the observed massive gauge bosons.

The outline of this work is as follows: in Chapter 1 we revise the basics of SM and of EFT that we
consider, namely SMEFT and HEFT, in this way we set down the notation and appreciate the first
structural differences of the the two EFTs. Chapter 2 is about the scalar singlet model as a first UV
model chosen for the analysis, here we provide a phenomenological study to restrict the parameter
space. In chapter 3 we focus on matching the UV model to SMEFT and to HEFT using mainly a
diagrammatic approach, here first differences at the level of coupling correlations show up.

Chapter 4 shows the theoretical motivation behind our choice of the UV models. In chapter 5 we
perform a numerical evaluation of the scalar singlet model at the level of squared amplitudes and
check where HEFT and where SMEFT is needed. In chapter 6 we present a UV model with a colored
scalar suitable to show the differences between HEFT and SMEFET. We conclude in chapter 7 with

final comments on the relevance of this work in the interpretation of the upcoming HL-LHC data.



Chapter 1
Effective Field Theories for the Higgs boson

Once the Higgs boson existence was confirmed the SM was finally complete. The latest discovery of
scalar field interacting as the predicted Higgs boson stands as a confirmation of the theoretical stage
set down in the 60’s [10-12].
The SM has an inherit symmetry group that is gauged and it is given by a direct product of 3 Lie
groups:

Gsm = SU(3)c @ SU(2), @ U(1)y . (1.1)

Strong interactions mediated by gluons are described by the SU(3) gauge group. Gluons have colour
charge which is the charge associated to strong force. The electroweak sector is denoted by SU (2), ®
U(1)y where the first is associated with weak isospin force while the second is called hypercharge.
Besides the symmetry it is also crucial to specify a possible spontaneous symmetry breaking (SSB) of
the group Gs); into a smaller subgroup G337,

In the SM we observe exactly a SSB of the electroweak sector (EW), namely:
Gonr =2 GS3P = SUB)e @ U(1)em, (1.2)

In this pattern the strong force is left unaltered while EW sector breaks into two different interactions:
weak and electromagnetic.

The weak force is mediated by three vector bosons (W, W™, Z) while the electromagnetic force is
mediated by massless photons (). There are different reasons why EW sector has to be broken. In
nature we observe 3 different massive particles W=, Z with masses My, ~ 80.4 GeV and M, ~ 90
GeV, however the inclusion of an explicit mass term for the gauge bosons lead to a violation of
SU(2)r, ® U(1)y local symmetry. This problem is indeed solved by the Higgs mechanism [[13] [14].
Due to its ” Mexican-hat” shape when the scalar field corresponding to Higgs field goes into its vacuum
configuration it acquires a vacuum expactation value (v.e.v.) different from 0. This means that the
ground state is no more invariant under Ggy; but only under G53Z. From the Goldstone theorem we
have that the number of Goldstone bosons is equivalent to the number of broken generators. In the
SM we have 3 broken generators that corresponds to the longitudinal polarization of W=, Z. Thus the

latter become massive. Analogous reasoning holds for fermions such as electrons and quarks that are
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kept with no mass in the SM lagrangian and acquire mass only when EW sector is broken.

Another fact pointing towards SSB is that EW theory considers weak and electromagnetic force as
indistinguishable at high energy, however experimental evidences such as parity violation tell us these
interactions behave differently at low energiesﬂ

1.1 The Standard Model of particle physics

We report a brief summary of the SM as it will make it easier to follow the notation used. The SM

lagrangian can be written in compact form as:

Ly = LI+ LK™ + Lo + Ly + LT (1.3)

kin kin
The main sectors in Lg); are given by:

* The bosonic sector: It includes both gauge both kinetic terms of gauge bosons and the Higgs

sector. Terms describing duals of field strength tensors are also included for the sake of completeness:

1 1 1
i = L+ Ll + Ly = =G, GNY — W, W — 2B, B + (D, H) (D" H)

kin kin kin 4 M
9392 ~ 9292 7 9192 D
—V(H'H) — -==2G G — 2 W] W — —LB,, B" 1.4
( ) 3272 M 3272 M 32m2H ’ (1.4)

where the gauge coupling associated to gauge SU(3)¢, SU(2), and U(1)y are gs, g2, g1. The
field strength tensors are given by :

Gh, = 0,G) — 0,G + gsfAPCGRGY,
Wi, =0.W, —0,W] + g "N WIWE,
B, = 0,B, — 0,B,,

with fAPC and !/K the structure constants of SU(3) and SU(2) respectively. In the second

line we have the dual field-strength tensors defined as F** = €upe FP7

However the 0 F F terms can be rewritten as a total derivatives, they will contribute only via
topological effects that we are going to ignore in the followingE] In the SM the Higgs field

transforms as a doublet under SU(2), (more on this later). It can be written as :

"= \% =P (ﬁ(?&> (v +[;z(x)> (1.5)

IThe SM is also renormalizabile, and every theory beyond standard model (BSM) should reproduce such a
characteristic.

2While contributions from abelian gauge field never matters, it is possible to have an effect in perturbation theory from
non abelian gauge fields due to istanton configurations associated with those fields. Ignoring those terms implies istanton
configurations are not considered and that the only source of CP violation comes from phase of the CKM matrix Vg
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where 7 is a vector of the Goldstone bosons and in the unitary gauge it reduces to :

1 0
H,, =U(mH=— . 1.6
» =V ﬂ(wh@)) (10
The covariant derivative acting on H is:
ol
D, H = (au —igs S W - zleBM>H, (1.7)

where o! are the Pauli matrices and hence the generators of the fundamental representation of
SU(2), while Y = @) — T3 is the hypercharge. The scalar potential for the Higgs field reads:

V(H) = —p*(H'H) + \(H'H)?. (1.8)

After electroweak-symmetry breaking (EWSB) the electroweak (EW) vector bosons become

massive:

1 1 1 1 1
SSB _ _ — A ~Aww _ —y7l I/LV__B BHv - 2 ~.272
L3P = = GG = S W — 2B, B 4~ (0h)? = Smih

A
Z, 7" — \vh?® — Zh“ (1.9)

(v+h
+—

)93 o L (ot h)*(g5 + 97)
4 " 8

where the physical gauge bosons are written in terms of the Weinberg angle 0y :

— W)+ iW?
H \/§ ’
Z# = wai — SwB

Ay = cwBy + swW?,

"o

having set cyy = cos(fy) and sy = sin(fy ). The gauge boson masses are given by:

2.9
gov

(95 + g7)v?
1 ‘

M. = 3

M2 = (1.10)
the fermionic sector: This part contains kinetic terms for the fermions as well as interactions
of the fermions with gauge bosons. The most general covariant derivative acting on a fermion

field is:

A4 A ol 7
Dyt = <au — iy -Gl — igy W ilefBH>w (1.11)

with T4 = % and 71 = % are the generators of the fundamental representation of SU(3)¢
and SU(2),, while the U(1)y generator is denoted by Y. Fermions ) will couple to some or all
the gauge boson present in D,, accordingly with their quantum numbers. All the charges under

Gsr are summarized in [I.1]Note that we have introduced a convenient notation for left handed

10
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{ e gu d |HGW B

SU(3). representation| 1 1 33 3 |18 1 1
SU(2)y, representation] 2 1 21 1 (2|1 3 1
U(1)y charge —5 -1 22 -2[2][0 0 0

Table 1.1: Charges of the SM fermions, gauge bosons and H, under the SM gauge group.
quarks and leptons that are doublets under SU(2),, while right-handed components are singlet

under SU(2):
0, = (“L> Iy, = (”f) (1.12)
dy, €r

where ¢ = 1, 2, 3runs over the three generations. In the unitary gauge, this part of the Lagrangian
is:

50— i+ 3 Fuidfr - %(WJJ“ W) — Cg_;Zng (1.13)
f I

—eAyJb, — gsGo M (1.14)
JH = dpy*urn + ey JH =uytdy + vpyter, (1.15)
T =N "y T g, Ty =Y T fu+) Qe fv"f, (1.16)

q f f
Jh =Y Q" f (1.17)
f

It contains kinetic terms for fermions as well as interactions between gauge bosons W=+, Z, G
and matter fermions embedded in J’s.The kinetic terms of the fermions have a SU(ny), ®
SU(nys)r symmetry, that is explicitly broken by the interactions with gauge bosons down to
SM gauge group.

Yukawa lagrangian: Ly stands for the Yukawa terms, it describes interactions between the
Higgs field with fermions. In order to preserve gauge invariance we have to introduce a slight
modification of the H field, i.e. H = ioy H* that has quantum numbers (1,2, —1/2).

—ﬁy = [}/;]i,jiiHej -+ [Yu]qulzluj -+ [Yvd]l’]qud] + h.c. (118)

The indices {7, j} = 1,2, 3, stand for the generation of the fermions hence

U d e Ve
Ur/r = | ¢ ) dL/R = 1S ) €L/R= | K ) V=1 Vu | - (1.19)
t L/R b L/R T L/R Vr

After SSB Ly contains both mass terms for fermions as well as Yukawa interactions with the

11
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physical Higgs boson h:

—(v+ h(z L i i I
Ly = %(UZLYJ%& +dy Y,/ dp + e Y, e+ h.c). (1.20)
In principle Y, ,, 4 are 3 X 3 complex matrices representing the only source of flavour violation
in the SM. When we want to compute physical observable for the fermions it is necessary to go
to the so called mass eigenbasis or physical basis.
This requires obtaining a diagonal form for the Yukawa matrix y which is achieved by a unitary

transformations acting differently on right-handed and left-handed matter fields:

u/L = L,uy, ulR = R,ug
d;, = Lady, dy = Rydp , (1.21)
elL = L.ej, elR = R.egr

where rotation matrices are all unitary
LLV=L1L =1 RR'=R'R=1. (1.22)

Thus Yukawa matrices can be diagonalised by means of a bi-unitary transformation:

Y 00
Yy=LiViRh=| 0 Vp 0 |. (1.23)
0 0 Y

This change of basis where we act with matrices L, R on fields affects other sectors of the SM
lagrangian. While the kinetic sector, the electromagnetic and the weak neutral interactions are still

flavor diagonal in the mass basis, the weak charged interactions are modified as
Loo =~y (L LW dy + 7, (Lo LE)e, ). (1.24)

where L, LII is called Cabibbo-Kobayashi-Maskawa (V) matrix, while the analogous for leptons is
called Pontecorvo-Maki-Sakata-Nakagawa (Upy;ns) matrix. These are unitary matrices with flavor
mixing properties, note that as long as we keep neutrinos as massless particles we have to choose

Upmsny = L.

1.2 Doublet or singlet

In this work we use two different effective field theories: SMEFT and HEFT. Both can be used in the
description of low energy processes involving the Higgs boson.
In SMEFT the Higgs boson transforms as a part of a complete SU(2) doublet while in HEFT it

12
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transforms as a singlet under the SM chiral group SU(2);, ® SU(2)g.

A way of presenting this is based on symmetry arguments [[15]: SMEFT follows from a linear realization
of EWSB while HEFT is a consequence of a non-linear realization We recall that in the SM the Higgs
sector has the following Lagrangian:

Ly = (D,H)(D"H) - V(H), (1.25)

where H transforms as a doublet under the SM gauge group, written in terms of 4 real components ¢;:

1 [ 2 +i
H=— . 1.26
V2 (¢4 — iébs) ( )

In the limit of g; — 0 and y,, = y, it is possible to rewrite the Lagrangian in such a way to make the

global O(4) symmetry explicit. For the sake of simplicity consider D, — 0, just in the following

steps:
1, - R D S
Ly =5(0,0)(0"0) + 00— (- 6)*. (127)
The real fields ¢; are arranged into gg as follows:
o1 o1
J= P2 | ¢ 7 (128)
?3 ®3
¢4 v + h

where ¢; are the Goldstone bosons of EWSB and 4 is the physical Higgs boson. The field gg transforms
linearly under O(4) as g; — Ogg and in this sense custodial symmetry O(4) is an exact symmetry of
the pure Higgs sector of the SM.

EWSB induces a non vanishing v.e.v. (¢4) # 0 and the O(4) global symmetry is spontaneously
broken, the vacuum state is invariant only under the O(3) subgroup. In geometrical terms the vacuum

state is an S3 sphere with radius v:

-

(@7 - 6) = 2 + P2+ ¢ + 2 =12, (1.29)

The 3 Goldstone bosons are associated to the longitudinal polarization of the massive vector bosons.

Recalling a local isomorphism from group theory we know:
O(4) =~ SU(2), X SU(2)r/Z> . (1.30)

To see how the SU(2), @ SU(2)g act on H, we can combine it with its conjugate H = oo H* to
form the 2 X 2 matrix field ¥ = (ﬁ[, H) transforming as © — LY. R' where L(R) € SU(2)1/g. It

3This point is formalized in the CCWZ [[16, [17] framework that describes Goldstone Bosons under a generic SSB
pattern

13
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is convenient to decompose the > matrix field as:

1 i Ti%
zzﬁ(wh)a with U=¢€"5", (1.31)

where o; are the Pauli matrices providing a basis in the SU(2). The relation Tr[%TY] = 2HTH =

(¢)T¢ allows to rewrite £y in terms of U:

Ly = %(8h)2 + %(v + h)’tr[(0,U)1(0"U)] + m;tr[(v + h)?1] — g(tr[(v +h)?I)2. (1.32)

The latter Lagrangian is also know as Electroweak Chiral Lagrangian and invariant under the chiral
group SU(2)r, X SU(2)r/Zy which is isomorphic to O(4). The Goldstone bosons are coupled only
derivatively.

The different components of H transform under chiral group SU(2);, @ SU(2)g as follows:

h—h, U— LUR'. (1.33)

The Higgs boson A indeed transforms as a singlet under SU(2);, ® SU(2)g, and hence also under
the EW gauge symmetry. Following [[15H17] we say that the electroweak symmetry is non-linearly
realised. Equation is indeed an expression of the scalar sector of HEFT at LO.
HEFT contains SMEFT (and the SM) as a special case where a non-linear field redefinition can be
found to map the scalar components (h and 7;) into a single SU(2), doublet H. The O(4) invariants
of the SM Higgs Sector can indeed be rewritten in each of these different languages:

|8H|2:§< 05") - (9) = 5(OR)" + 5w+ KY(OU)?, (1.34

-,

(DIH*)* = (¢~ 6)* = (v +h)*(Dh)* (1.35)

It is therefore possible to express the so called linear o model in a non-linear realization exploiting a
change of basis.

The aim of this thesis is to find physical processes where it is not possible to recover a SMEFT limit
(linear o) from an HEFT formulation (non-linear & model), hence the case in which the effective field

theory does not admit a linear realisation.

1.3 Standard Model Effective Field Theory

An increasing number of experimental facts suggests that the SM is the right theory to describe physics
up to a few hundreds of GeV. The absence of any direct or indirect signal of New Physics suggests
that new degrees of freedom if they are there might live much above the electroweak scale. Whenever
we face a scale separation, the use of an EFT is appropriate. In fact a way to think about SM is by

considering it as a low-energy theory of some UV model.

14
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This means that, if we want to treat the SM as an EFT we need to address the following points:

* select the low-energy degrees of freedom: assuming that the SM is the correct theory at scales

E < A means the low-energy degrees of freedom are the same ones as in the SM.

» symmetries of the theory: SMEFT needs to respect the same symmetries as the SM, meaning

that the operators are invariant under Gy, = SU(3) ® SU(2) ® U(1) gauge group.

* the vacuum preserves SU(3) ® U(1) symmetry after the SSB. This follows from the fact that
SMEFT has the same particle content as the SM, hence a scalar transforming as (1,2),, field

that acquires a non vanishing non zero vacuum expectation value.

» apower counting scheme: In case of SMEFT the canonical dimension of the operator is counted.
The operator itself is suppressed by A*~? where d indicated the canonical dimension of the

operator.

Strictly speaking SMEFT is not renormalizable as it contains infinite number of terms with a consequent
infinite number of divergences that would require an infinite number of counterterms to be absorbed.
However if we work at a specific order of accuracy, SMEFT is a truthfully renormalizable QFT. If we
take indeed only the above points as guiding principles in the construction of SMEFT, we could write
an infinite number of terms. Thanks to the power counting (PC) we can organize systematically the

terms in an expansion in 1/Agyppr :

(5) (6) (7
Lsyerr = Lsyr + — 0 + O ¢ L OFT .. (1.36)
; Asmerr ' ; Asyprr ; ANsyprr
Even though the series is well written it still has an infinite number of terms, we have to fix an order
of accuracy at which we stop the expansion. The order can be cut if one can assume that any order

higher gives contributions smaller than experimental accuracy of the problem:

(d)
c; 1
Lsyerr = Lsv + E Ad%(’)f + O(Ad+1> . (1.37)
. NoMEPT

In the expressions above O¢ are gauge invariant operator of dimension d while ¢; are called Wilson
coefficients. These coefficients are crucial in the search new physics (NP) as they encode information

about UV theory. A well known example is the Fermi Theory where the Fermi constant G is related

Gr _ _¢°
V2 T 2ME
The natural question to answer should be the meaning of Ay grr. If we consider accidental symmetries

to parameters of the UV theory, namely

(Baryon number, Lepton number) of SM we find they are broken around Ay, Apyy ~ 101GeV .
It is clear that, if Agy grr = Apnyyy then we could not observe any signal from new physics at
collider experiments.

On the other hand the naturalness problem seems to suggest a lower value for Agy;prr: the quadratic

sensitivity of the 1-loop corrections dm? to the Higgs mass would require a Agysprr close to 1 TeV

15



1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

in order to avoid a fine-tuning of the UV parameters. The usual assumption allows for different scales
in the problem, in particular a selection rule on the energy scales A < Apny, pny is taken.
The SMEFT expansion is rewritten as{|

—6)
05+2Ad —O°. (1.38)

i SMEFT

Lsyerr = Lsu +

From now on we deal only with a cutoff energy scale much below the scale where Lepton and Baryon
number are violated, therefore we assume Agyprr = A < 1019 GeV. For the purpose of this thesis,
we will focus on the part involving the Higgs doublet /. In particular, the rest of the thesis will focus

on di-Higgs production. In this case the relevant operators are:

C C C .
Lsmierr DLsm + ADf (H'H)O(H'H) + A—IZ{(HT H)? + %(HTDNH) (H'D*H)

c, Can Ce
+ Af(HTH)qHu+hc + 57 =M (FTH)gHd + he. + Af(HTH)lHeJrhc
C v, Chc vy, C v
+ /@W (H HYW! Wi /f (H'H)G4,GAm + AHBHTHBWB“ +O( A4)
(1.39)

SMEFT is usually written in the unbroken phase even though, when it comes to make comparison
with HEFT, we have to bring it in the broken phase. It is important to note how SSB is altered in the
SMEFT framework, where higher dimensional operators modify the relations we know from SM.

Importantly enough, this implies doing a redefinition of the v.e.v. which receives now contributions

from dimension-6 operators:

V(H H) = A(HTH — %2>2 (/j\Z (HTH) , (1.40)

therefore the new minimum will be:

2 2 2
7 P Ay S
(H'H) =L = 2 (14 =25 ). (1.41)

Beside the scalar potential part of Lsygrr, Wwe have to perform a shift in the h field to ensure

canonically normalized kinetic term. In unitary gauge we have:

1 0 C 2
H=— R where CH kin = (CHD — ﬂ)v— . (142)
(1 + capin)h + vy 4

These shifts, due to higher dimensional operators, affect all parameters of the model that include the
Higgs boson: gauge couplings, mass of gauge bosons as well as yukawa couplings. It is important to

note that the above h field redefinition introduces additional self couplings as h(0h)? or h%(Oh)?.

“In SMEFT we have only one five dimensional operator, the so-called Weinberg operator that violates Lepton Number.
A high value of Ay may explain why neutrino masses are so small.

16



1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

There is yet another another redefinition of the A field that does not present such derivative couplings
(at least at order 1/A?) is:

2 2 3

h%h+%<0Hg—%)(h+%+%>. (1.43)
In this way we get a canonically normalized kinetic term for h as well as no derivative self interactions
for the Higgs field. The Wilson coefficients C'yn and C'yp become a universal factor in every Higgs
coupling, this holds independently from the 4 field redefinition chosen. Importantly enough the non
linear redefinition of the A field[I.43]is not gauge invariant as we are shifting only one real component
out of the four that enters the Higgs doublet. For a gauge invariant shift we should shift the Goldstone
bosons as reported in [[18]]. We now comment on how dimension 6 operators modify the different parts

of the SM. The SM Yukawa sector is modified by gauge invariant dimension 6 operator as reported

in(1.39 In the broken phase the Yukawa matrices receive a correction of the order O <X—22> while the

interactions with h field are additionally shifted by a cg ki, term. The broken phase lagrangian reads
[19]:

Ly ukawa = — M (F2fr) — [Venl"" h(f7 fR) + hec.,
1 2
[Mf]p”” _r ([y}w _ Lt [CfH]p,r> 7

V2 2 \?
Vil = == (0 empan)y? = 25 (€ (1.44)
= —= CHkin)Y" — 555 Tl .
f.h /5 H.k 5 a2 (CrH
where p,r are flavor indeces while f = {u,d,e,v}. The Yukawa matrices )y are no longer

proportional to the mass matrices M. The crucial consequence is that once we move to the mass
basis we can set M ¢ to get a diagonal form so that the mass of the particles is well defined by the SM

’U2CfH
A2

and other fermions can become flavor violating starting at O(1/A?).

contribution plus a term proportional to . This means that the interaction between the h boson

In the broken phase these operators give corrections to the kinetic terms of the gauge fields. In
order to recover the right normalization a redefinition of the gauge field and gauge couplings is needed:
From eq.(1.39) we notice how the field strength tensors are modified by dimension-6 operators.

2

_ B _ v

W, =2Z,W,, Go=2,"'92, Zy=1- CHWF,
2

_ . v

B;IL:ZQ/B,i? £_71 IZgllgl, Zg = 1—CHBP,
2

_ B . (%

G;? :ZgGﬁ, gg :Zg31g37 Zg = 1—CHGF

It’s possible to rewrite the gauge sector in terms of W, B! and G [| Note that in this way the

SMore precisely this redefinition canonically normalize the kinetic term for gluons since the weak gauge bosons still
present a mixing terms proportional to Cy g operator, however if we assume it to vanish then the terms are already
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

covariant derivative form D, = 0, — ig;A® = 9, — ig; A" is preserved and consequently the sector
describing the gauge fermion interactions does not change.
These corrections affect also the definition of the W' boson mass:

_ Govr v?

MW = 5 s where Zg =1- CHWE .

Before matching to some UV theory, the Warsaw basis is a model independent ensemble of operators
that we use to parametrize small deviations from the SM due to new physics signals. By doing a naive
dimensional analysis one can obtain an idea of the relative size of the effective operators. We show
this for the subset of operators that will be relevant in the following.

In principle we consider only a subset of those operators depending on the process we are interested
in. In the following we mainly deal with Cyn, Cy gy, Cy and C'ye Wilson coefficients.

While considering only the canonical dimension of this operators non difference between their relative
size is evident, the 2 counting leads to differences [20]. Let us assume that we can express all the
couplings and the masses of the EFT in terms of reference coupling (mass) g. (m.) belonging to the
UV theory. From the path integral formulation we know that the action S must bring a dimension of

% such that the factor ¢'# has the right dimensions. Considering this counting in 7 leads to (9.] = =

Vi
and the Lagrangian is expressed in terms of these reference quantities of the UV model as £ = ’;f :
where £ ( %, mi) is a dimensionless quantity.

The relevant operators would have an £ counting as:
O = S8 (T YO(HTH C 2 1.45
HO — AQ( ) ( )7 HO ™~ Gy ( )
C
On = S5 (H'H)', Cu ~ g, (1.46)
Cu _
Ount = Af (H'H)(qHu), Cutr ~ ¢° (1.47)

therefore for strongly coupled UV theories C'y; will dominate while weakly interacting UV theories
will be mainly described by C'yn.

This apparently unrelated comment may be useful in the following as SMEFT will be shown to have an
“heavy” dependence on C'yn. SMEFT shows its limits exactly when the UV theory becomes strongly
interacting and in this sense C'yo may not be enough to parametrize new physics effects. Then HEFT
is supposed to take its place as more appropriate IR limit. A naive dimensional analysis (NDA) allows
us to organize the effective operators allowed in SMEFT showing also how a refined 7 counting can
give us additional information about operators with the same canonical dimension having different
weights in a top down approach. The higher dimensional part of the SMEFT lagrangian can be seen
as an object living in an n dimensional space £ O ) C, O, where n is the number of operators at
dimension 6, then O,, are the elements of the vector basis that should contain only independent objects.

We would like to find a non redundant basis for this object.

canonically normalized
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X’i (3'6 and @"IDZ 1,2(33
Qc f’lb‘(“ l;z(wUPG(f# Q¢ (@TQ)’i ch‘; (@T@)( pFr@)
Qs |.f%¢a ;"0”*“0(““ Qe | (¢10)D(¢10) Quo (6'0)(Qpurd)
Qw | KWIWIPW, ™ || Qup | (61D6)*(6'Dyd) || Quo (676)(Qpdr0)
Q W JIE ;{ v I-'V,;" PV ;)K e
XZ@Z L"TQX@ 1|£,2¢2D
Qe | #1eGLGY || Qaw | (Lyoer)aloW]), | QY | (#1iD o) (L Ly)
Qe | ot6GAeM | Qs | (Lyoer)dBu || Q) | (41 DLe)(Lyolv Ly)
Qo gtow! winw Quc | Qo u)TAGGA, || Que | (o1 JE’#@)( & yhes)
Quiv | SOWLW™ | Quw | (@ ur)ooWL, || Q¥ | (44D 1D u0)(Q"Qr)
chb‘ f.D'T(PB;mB"W QuB (on"ﬂpuf )ﬁngw QE;,J (@T?DI )(Q I'TFQI)
Q45 ¢t¢B,, B Quc | (Qpo*d.)T4¢G4, || Qpu (QT%D é)(upyHu,)
Qews | ¢laleW], Br Qaw | (Qpotdy)a oW}, || Qou (@TED#@)(QP’}”d )
Qs | ¢1'oWLB™ | Qus | (Q0™d)oBu || Quua | (311D ,0)(@ntdy)

Figure 1.1: Dimension 6 operators of the Warsaw basis. The upper part of the table contains the purely
bosonic operators which will be the main object of this thesis.

In particular possible redundancies may be due to:

1. Integration by parts: assuming all fields vanish at infinity i.e. total derivatives do no contribute

to S = [d*aL.

2. Field redefinition: A deep result in QFT, known as S matrix equivalence theorem, tells us that
fields are not fundamental objects. In fact particles are more fundamental objects. The .S matrix
remains equivalent under field redefinition. In practise, this is often implemented making use

of equations of motions relations.

3. Fierz Identities: these identities follow from a completeness relation on certain matrix space
especially when operators have internal symmetry, typically any SU(N) is provided with a

Fierz Identity.

Finding a non redundant basis is non trivial task that was accomplished in [21]]. The so called ”Warsaw
basis” up to dimension 6, considering all flavors, contains 2499 operators. The Warsaw basis is non-
redundant and as such neither of the basis elements can be mapped onto the others by field redefinition,
Fierz identities or Integration by parts i.e. they are independent. The subset of Warsaw basis at
dimension six is presented in fig[I.1]leaving though out the four fermion interactions, which will not

be relevant for the rest of the thesis.

1.4 HEFT

As it was pointed out in the previous section, HEFT is an EFT where the physical Higgs boson appears
as a gauge singlet under Gg, and as a singlet under the chiral group SU (2),®SU (2) g [22]]. As pointed
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1.4. HEFT

out above a change of variables allows us to express the Higgs sector in terms of 3 = %U where h
is the physical Higgs boson while the U matrix contains the Goldstone bosons.

The Higgs boson lagrangian reads:
1 2
(DuH)'D*H = V(H) = 5 (0h)* + %Tr [DU) D*U] = V(h).

We note also the scalar potential does not depend on U, in other words Goldstone modes are only
derivatively coupled. Since we are going to comment on the Yukawa sector as well, we rewrite it

using the polar parametrization of H:

v+ h

V2

where Y, = Diag(Y,,,Y,), ¥; = Diag(0, Y.) and the right handed doublets for single generation are

UR . 0
dR] . g = LR] : (1.48)

The transformations under the chiral group are:

~Y,q Hup — Y. He, + hec. — — (a.UYqqr + 1LUlR + hec.),

given by:

4qr =

h — h, U— LUR'.

The global custodial symmetry is then broken explicitly by the gauge coupling g; and the Yukawa

sector. For instance the covariant derivative in the scalar sector transforms as follows:
ol 3 R A S + 03
D,U = OMU—ZQQEWMU—I—zngMUE — L(0,U)R _ZQQ?WMLUR +ig:1B,LUR 5 (1.49)

where L /R are unitary matrices belonging to SU(2) . Clearly in the last term R commutes with o7
only if we take the diagonal subgroup of SU(2)g, so the last terms breaks explicitly the chiral group.
Even in the g — 0 limit we still have a breaking of the chiral group due to the Yukawa term. Take
for instance the quark bilinear:

v+ h v+ h

7 (q.UYoqr) — A (. L'LUR'YGRqgR) | (1.50)

since Y, is diagonal the only way to have an invariance under SU(2), ® SU(2)p is by restricting the

element R € SU(2)p to its diagonal subgroup U(1)y, in this way [R', Y] = 0| In this way we have

% Another way to see the breaking of the chiral group is by exploiting a spurion trick where Wu and B 1, are 2 X 2 matrix
spurion fields. They act as gauge bosons of the chiral group and therefore transform in the adjoint representation:

W, = ViW, V] +ivi (8, V)T, (1.51)
B, — VB,V +iVr(9,Vr)t, (1.52)

where Vg € SU(2) /. In this way the global custodial symmetry is promoted to a local one. If (T.5T)and(T.52) hold
the SM lagrangian is invariant under the chiral gauge group. When we reduce this to the SM case we fix the spurion fields
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1.4. HEFT

checked that the chiral symmetry is explicitly broken by ¢; and by Y,, # Y; also in the formulation
where H has been rewritten seperating i from the Goldstone bosons.
Once the quantities above have been defined the lagrangian in terms of the explicit Goldstone bosons

matrix is:

1 o1 1
Lo = — ~GA GAW(—> _Cwlwliw _ -, B
SM 4w v/ 4w ity

+> il ++ Y Upilyr + %aﬂhaﬂh + %Ztr[(DMU)TD“U} — V(h)
P P

—%(Q_LUYQQR + L UYplp + hec.). (1.54)
When we gauge the symmetry every element of L and of R acquires a dependence from the spacetime
coordinate such that L — L(x) and R — R(x), since g; # 0 and Y,, # Yj the above lagrangian is
only invariant under the subgroup SU(2),, ® U(1)y which coincides with[I.1} Under the SM gauge
group Gev we have (D, U)g = L(D,U )eis@)Y where Y stands for the hypercharge and the Yukawa
sector respects this gauge symmetry of course as well.
Thus the lagrangian of eq. is invariant under the SM gauge group SU(3). ® SU(2), @ U(1)y.
The HEFT is based on the same gauge symmetry as the SMEFT and contains the same degrees of
freedom but the Higgs doublet H is replaced by the scalar singlet /» and the matrix U describing the
Goldstone bosons. The HEFT lagrangian is obtained from eq. above by adding different Taylor
series terms to each gauge invariant block. These series have the gauge singlet % quantity as expansion
parameter with unknown coefficients in front of them up to order infinity. The HEFT Lagrangian reads
[22H28]]:

1 h - o 1
Luprr O — ~GA G T (;) n ; iy, + + ; bnilDibr + 50h0h

4
v? F h v, - h
+ (D) DU) Fy (;) = V(h) = (@0 Yoan + LUYaln + h.c.)Q(;) .
(1.55)
In particular when we consider an expansion around the EW vacuum we obtain (U) = 1 and we

recover the SM expressions both for fermion masses in the Yukawa sector as well as the expressions

for the masses of the massive vector bosons:

v? h h M?2 h
1 N2 T~ Z
Sue[(DU) DU Fy (;> = MZWHW “]—"U(;> + 22,2 Fy (5) ,
to their vecuum expectation value:
I 3
W, = =W/, B,—gZBl, (1.53)

2 2

and as a consequence the SM lagrangian is invariant only under SU(2);, ® U(1)y that is exactly the gauge group of the
SM.
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U contains an infinite number of interactions of the EW Goldstone bosons:

a 3

a aa b b
U1 2™ _2(7ra)§7r0)+0<7r_3)7 ab=1,2,3, (1.56)
v v v

and a summation over repeated indices is understood. Since the Pauli matrices are traceless the kinetic
term of U keeps only even powers of 7 so the imaginary part disappears. In the high energy regime,
thanks to the Goldstone Boson Equivalence theorem, these 7’s can be viewed as the longitudinally

polarized massive gauge bosons W+, W~ and Z.
h

v°

In particular the quantities F¢ 17, Yo, V (h), G appear as power series in

Fa(h) =1+ aglg + agz(%)2 + agg(%>3 + ag4<%)4 + ..., (1.57)
V(h) = o [b1<%>3+bz(%)4+...], (1.58)
Fulh) =1+ alg + ag(%)Q + ag(%>3 + a4(%>4 ¥ (1.59)
g(h):1—1—01%—i—cz(%)Z+03(%>3+C4<%>4+.... (1.60)

This framework is particularly useful in the analysis of processes involving multiple Higgs bosons as
it offers an immediate parametrization for interactions involving several h (see for instance [29])).
The expansion in % suggests that HEFT has a cutoff scale strictly related to the Higgs v.e.v. Given
also that the 4 and the Goldstone bosons do not come together in the same multiplet the Higgs boson
no longer unitarises longitudinal gauge boson scattering. In fact one finds that for energies greater
than 4mv HEFT ceases to be valid.

Let us consider the amplitude M(WW — hh) that is a relevant subprocess for the vector boson
fusion (VBF) production channel. In the limit of s > m3,, m? where my, is the vector boson mass
while m is the Higgs mass, the polarization vector has a dominant longitudinal part growing with the

energy. This allows to express the scattering amplitude as:

Miprr(WW = hh) ~ ——(az — 2a1). (1.61)
my

In the SM we have a precise relation ay = 2a; such that this amplitude does not grow with energy
and perturbative unitarity is preserved. This happens due to the Higgs doublet structure. Indeed, the
the SU(2) 1, symmetry protects the process from divergence, namely the Standard Model Higgs boson
“unitarizes” the scattering amplitudes.
However in HEFT the relation between a; and a, is not fixed, leading to a growth of the scattering
amplitude with energy which will lead to a violation of perturbative unitarity when /s .. ~ 47wv ~
3 TeV.
This statement might make it seem that the validity range of HEFT does not cover LHC energies,
however we recall that the energy usually involved in the partonic center of mass at colliders is smaller

than 3 TeV, therefore HEFT is a valuable tool to describe low energy effects of NP scenarios at the
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1.5. SMEFT VS HEFT

LHC.

Similar to SMEFT we need to organize the terms in HEFT by establishing a power counting (PC) rule.
Since HEFT is a mixture of SMEFT and chiral perturbation theory (x-PT) the PC rule becomes more
complicated as in SMEFT. Here we adopt the convention used in [30] where terms are organized in
loop counting d,, = 2L + 2 where L is the loop number. In the following we will mainly deal with
d, = 2 terms (especially for singlet model) but we also treat d,, = 4 later in the project.

It is worth to recall that due to the Higgs boson being a gauge singlet the coefficients a, b, c are
uncorrelated, while in the SM limit they are taken to be for instance by = by (more on this point
later).

Because of this property, the HEFT parametrization is usually considered to describe large deviations
from the SM. HEFT provides a more general framework where SMEFT and SM are contained as
particular limit in its parameter space. This framework is still invariant under the gauge group SU (3) ¢ X
U(1)e.m. while the pure scalar sector has an additional invariance under the chiral group SU(2), X
SU(2)g .

While the Higgs boson is a singlet both under chiral transformation and under EW gauge symmetry,
the 7* Goldstone boson transforms non-linearly under EW chiral transformation. This indeed is a

consequence of the specific SSB pattern and can be formalized by the CCWZ formalism [[16, 17]].

1.5 SMEFT vs HEFT

One can now ask when one should use HEFT instead of SMEFT. This has been discussed in various
approaches in the literature. For instance in [31]] it was found that HEFT is required when non analytic
terms in the electroweak doublet H appear in the expressions. Instead in [9] a geometric approach was
adopted. Defining some geometric invariant quantities in the scalar field space that are not affected by
field redefinition problem, these quantities tend to diverge when HEFT is the right low energy theory
to use [9]. According to the latter the scalar fields (here 7* and h) are treated as coordinates over a
Riemannian manifold M. As we know, change of coordinates should not change the physics. The
latter statement naturally implies that in the field space we can build geometric like quantities that are
invariant under the Lagrangian basis that is used.

In general terms, a kinetic term with a field dependent metric is written as:

L= %gi,j@)aucbiaﬂcbj , (1.62)

where 4, j are indices running over components of the scalar fields that are multiplets in general.
With the metric in this field space defined we are able to obtain the Christoffel symbols and Riemann
curvature tensor. In practice we discern whether a model can be parametrized by SMEFT or HEFT
only computing some geometrical quantities such as Ricci scalar curvature of M and see whether
it is finite or infinite at the putative O(4) invariant point where electroweak symmetry is restored.

Topological consideration will make the differences between SMEFT, HEFT and SM clear:
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* The SM has a flat scalar manifold with an O(4) fixed point in it. In this point the custodial
symmetry group SU(2); X SU(2)g is restored. When (H'H) = v%/2 only a subgroup
SU(2) 4 g is unbroken. It is possible to perform a local linear transformation of M coordinates,
which results in the SM assumption of H as a linear multiplet (doublet).

* SMEFT has a curved scalar manifold. This is due to the additional derivative Higgs operators
Cho, Cup.
SMEFT has an O(4) fixed point, since the H multiplet transforms in a linear way. The curvature
is crucial in SMEFT and cannot be completely removed by a gauge invariant field redefintion,
1.e. it has some physical effects. In the geometric formulation of the SMEFT, the SM limit is
recovered for:
SM A—roo SM
i " 0ij = i
» HEFT has a curved scalar manifold and in general does not contain an O(4) fixed point. Only
when the HEFT manifold contains an O(4) invariant point a mapping to SMEFT is possible and

the linear transformation under the EW group is restored.

For a detailed treatment on the geometry of the field space see [24, 132]] based on the two-derivative
terms. These arguments can be generalised to higher-derivatives making use of jet bundles [33]].

The path we are going to take here in order to highlight possible differences between these EFTs is a
more phenomenological one. We want to see how correlations among couplings arising in SMEFT do
not hold anymore in HEFT. These relations are induced by the assumption of having H as a doublet,
which is not assumed in the HEFT context. This point may be clearly seen when we focus on the
couplings of the Higgs boson to SM particles. Let us consider for instance the coupling between
gluons and Higgs doublet H in both SMEFT and HEFT:

Cua s Chc

Lsmprr D FGﬁya/*wmf 558, S (V° 2k + h?)Ga, G (1.63)
1 h 1 h R\ >
»CHEFT D) ——G;?VGAMV]:G <—) = ——GﬁVGAIW<1 +a1— + as (—) ) . (164)
4 v 4 v v

(1.65)

As long as the Higgs boson is part of the doublet we see a correlation among single Higgs boson and
double Higgs production. This does not need to hold true in HEFT. There the coefficients of one
Higgs boson to gluons and two Higgs bosons to gluons are uncorrelated.

We could then exploit the relation h = V2H'H — v to reconstruct the doublet, namely:

2
1 Q2H'H 2HYH —
*CHEFT D) —ZG;?VGAMV 1+ a—— — a1 + as (—U> —
v v

1 SHTH 2HTH
— ——G4 gAm +

= —71Cw 1+ ((11 — 2&2)

a2] . (1.66)

24



1.6. LORYON PARTICLES

This shape of Ly grr introduce the second way to differentiate HEFT from SMEFT cited above, i.e.
non-analyticities in H'H at the Lagrangian level. Crucially this non-analyticity cannot be removed
by field redefinition and it’s placed in | H |* = 0 which is the point where EW symmetry is restored.
It’s interesting to note the way we delete non-analytic terms is by considering a; = 2as that is precisely
the SMEFT relation. In that specific case Lsyerr = Lugrr, therefore at the lagrangian level the
SMEFT case is a particular case of the HEFT one where coefficient are correlated by expression such
as the one above.

We note that adding higher terms in the SMEFT expansion also decorrelates a; and a,. The statement
that we hence obtain by performing such an analysis is a statement on the convergence of the HEFT/SMEFT
series rather than an answer whether SMEFT can indeed not describe the model.

The presence of such non-analytic terms indicates that low energy physics must be described in terms
of HEFT. This was first pointed out in the article by Falkowski and Rattazzi [31]].

1.6 Loryon particles

A particularly interesting scenario for SMEFT/HEFT comparison deals with particles called Loryons [§]].
Loryons are particles that get most of their mass from EWSB, hence all the SM particles are Loryons.
New particles are Loryons if their physical mass is at least given by 50% from electroweak symmetry

breaking. Suppose to deal with a scalar particle as a NP candidate, its total (field dependent) mass is:
mip(HVH) = m2 + \ep H H . (1.67)

In (T.67) m2 is the explicit mass which is a free parameter and can be taken arbitrarily high, whereas
the other contribution is fixed by Higgs expectation value (HTH) = 0 and requiring Ay, < 47 for
validity of perturbation theory limits the mass of the Loryon particles. In this sense Loryons can be
considered as non decoupling particles.

Consider for instance a generic scalar field ® with quantum numbers [L, R] representing charges under
chiral group. Then ® transform as & — ULQ>U; where Ug/ 1, € SU(Z)L/R. The mass terms of such a
scalar read:

Loop O _m_gxtr(qﬂq)) _ @tr((IDT(I))ltr(HTH) (1.68)
NP 20 20 2 ’ '

Aegv?

2

where p = 0(1) for a complex (real) representation. Here \., = 2m?2_/v? , in this way m?, =
is independent from the v.e.v. while the second term represents the Higgs portal interaction.
In the broken phase the latter term provides a mass for all the components of ® together with interaction

terms between ® and h. A useful quantity for the following is the ratio:

)\<I>h
_ A 1.69
f )\er + )\<I>h ( )

which provides an indication of how much mass new particles get their mass from EWSB. As found
in [34] when f > 0.5 no SMEFT description exists and we are forced to use HEFT to describe the low
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Y H

Figure 1.2: Higgs pair production in ggF, the main contribution come from top and bottom quark since
the Yuakawa interaction is proportional to the mass of the quark. [3]]

energy description of a specific UV model. Even though in this work we’ll restrict ourselves to scalar
Loryons it is natural to extend the above considerations to the fermionic case. We definea L X R
matrix ¥ transforming as [L, R}y under custodial irrepresentation (irreducible representaion). In that

case the explicit mass terms would be:
Lo —Mextr(\IJ\I/) Yis — O HU + hoc. | (1.70)

We can define as before a y., = V2M.,, /v as coming from an explicit mass term, while the second
term in leads to a mass term stemming from EWSB.

In the following we refer to ”Loryon limit” or “extreme Loryon” in the case f — 1. Another case, that
requires HEFT instead of SMEFT is the presence of new sources of electroweak symmetry breaking
that remain in the limit v — 0 [32].

1.7 Higgs pair production at LHC

As already stated above, we are interested in finding a concrete UV realisation that needs to be
described by HEFT rather than SMEFT and that shows phenomenological difference that can be
measured at the LHC. For this reason a discussion of the major Higgs pair production channel at
colliders is in order here. For an hadronic collider such as LHC with (hadronic) centre of mass energy
V'S = 13TeV the largest contribution to Higgs pair production comes from gluon gluon fusion (ggF)
oger = 31.7fb (at next-to-next-to leading order in the strong coupling constant) [4] whose diagrams are
shown in fig. The second biggest channel is given by vector boson fusion (VBF) with oy,s = 1.73
fb at next-to-next-to-next-to leading order (N3LO) [33]] whose relative diagrams are shown in ﬁg
In the following we focus on the EW sector of the SM that can be tested through the VBF process.
VBF is a 2 — 4 process where two protons collide giving two jets and two Higgs particles in the
final state. The initial state particle that really interacts with W= is a quark. At the LHC the diagrams
contributing to the process at LO are given in fig[I.3] Despite its cross section being 10 times lower
than ggF, VBF has other interesting properties that will be evident in higher luminosity machines:

high pr distribution: p; measures the momentum of the particles perpendicular to the beam axis,
in this case we refer to Higgs bosons pr distribution meaning the number of events that are

detected at a specific pr. While ggF has a maximum for p%’*  ~ 30 GeV VBF offers higher

T ,maz
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Figure 1.3: From left to right we display the Feynman diagrams according to SM: the s channel, the
contact diagram and the s channel, the missing u channel is equivalent to ¢ channel with two Higgs
bosons in the final state exchanged.[3]]

peak values pY.BF' =~ 80 GeV. High pr is a distinctive feature of VBF and can be used to

T, max

separate signal from background.

Distinctive signature: Rapidity measure relative velocity of a particles along beams axis, VBF has

2 high-energy jets with a large rapidity gap between them, i.e. they are emitted in opposite
directions along beam axis. This feature allows to better isolate events signatures coming from
VBF with respect to the background signal. In other words background events can be rejected

with higher efficiency and signal to noise ratio is enhanced significantly.

theory uncertainty: The VBF process is generically under much better control on what regards the

theory uncertainties with respect to the ggF process. Gluon fusion processes have usually very
large higher order corrections (for instance they increase the LO cross section by nearly a factor
two at NLO [36]). The VBF process instead can be seen as a color singlet exchange between
two quarks, namely & is ag independent. More precisely, due to color conservation the NLO
QCD corrections affect only the external quark lines, so that there is no color exchange between
the two incoming quarks. This does though not hold at higher orders [37]. when we compute
cross section at LHC we rely on the parton model theory thinking about quarks and gluons as
the proton constituents which we call parton [38]. In a generic cross section computation we
make use of the so called "LHC master formula” where the partonic distribution function and

partonic cross section are convoluted:

1 2 2
U(pp — X) = Z/ dxldx2fa(x17ui7)fb(x27ﬂi7) X &ab—>X<xlax2>Oés<,u%%)7 Q_27 Q_2> :
o J0 Hp MR
(1.71)

filzi, pr), i = q, g are the parton distribution functions (PDFs), these scale dependent object
quantify the probability to find a parton with a momentum p; = z; P where P is proton momentum,
while ¢ is the partonic cross section. Strictly speaking the parton distribution function refer
to quarks and gluons. By prand pi we refer to the factorization and the renormalization
scales. The former is a crucial quantity in collider physics, it ’s an energy scale establishing
the border between perturbative and non perturbative regime. The latter is a parameter from
renormalization prescription in since quantum field theory parameters usually run with energy
scale.

VBF at LO (in QCD) can be seen as a color singlet exchange between two quarks, namely ¢ is
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1.7. HIGGS PAIR PRODUCTION AT LHC

ag independent, leading to more precise theoretical predictions.

More precisely, due to color conservation also QCD NLO correction affects only external gluon,
so that there’s no color exchange between the two incoming quarks, this does not hold at higher
orders [37].

EWSB nature: VBF is particularly sensible to EWSB patterns since it directly involves weak gauge
bosons and only contains EW interactions at LO. This means it is a preferred channel if we want
to test whether EWSB is linearly (SMEFT) or non linearly (HEFT) realized.
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Chapter 2
Scalar Singlet

As an exemplatory case to outline the differences between the two EFTs we chose an extension of the
SM with a scalar singlet field for which we perform a matching both to the SMEFT and to the HEFT.

The reason why we chose the real scalar singlet (RSS) model can be summarized as follows:

* Itappears in the list of Loryon particles with large parameter space compared to other candidates.[§]]

* It gives a contribution to a specific Wilson Coefficient, namely (C'yp) at tree level. Cyn
generates a deviation to the Higgs couplings to vector bosons and fermions when performing
a field redefintion to canconically normalise the Higgs kinetic term. This means the operator

generates deviations in the Higgs couplings both relevant for VBF and ggF.

* The simplicity of the model.

Introducing a scalar singlet is a quite popular choice studied in great detail in literature in various
context. For instance if the singlet field is stable it is a possible candidate for Dark Matter and it could
explain matter-antimatter asymmetry of the Universe [39, 40].

We note though that the addition of a scalar singlet does not fix the hierarchy problem as mass of the
Higgs is quadratically sensitive to the new physics scale.

In the first part of the chapter we define the parameters entering the model, after that we perform a
phenomenological analysis in order to constrain the parameter space, both theoretical and experimental
constraints are taken into account. The UV model introduces a real scalar singlet & with SM gauge

group couplings equal to:

Field | (C, L)y | [L, Ry
P (171)0 [171]0

where in the second column we have charges under SM gauge group while the last column shows the

charges under the chiral group. The Lagrangian of the scalar singlet model is given by

1
Lyv = Lsy + (D, H)(D'H) + 5(9#(1)8“(1) — 2H'H

: A A
—%qﬂ ~ M(H'HY - 20— 20’ (HH) - AH'H® — %@3.

2.1)
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The model is clearly invariant under the SM gauge group since @ is a singlet. Often a Z, symmetry
for @ is introduced. In that case, A = 0 and p = 0. The fields and their vacuum expectation values

are defined as follows:

H= U:/LihU(w) (?) L d—u, 4S9, 2.2)
0
(O] H [0) = % <1> , (0] 2]0) = vs. (2.3)

Here the U matrix contains the Goldstone bosons associated to SSB:

U(r)=¢e"v a=1,23.

As stated in the first chapter, this formulation naturally leads to a chiral version of the SM lagrangian.
Here we are going to write the Lagrangian for our BSM in the broken phase, where similarities with
Chiral lagrangian and HEFT basis are clear. As a first step we try to know the spectrum of the theory,

and consider minimum of the potential :

OV (H,® oV (H,®

(H,2) o, (H,9) _o. 2.4)

oH (H),(®) 0P (H),(®)
(2.5)

We require a theory free from tadpoles obtaining the following conditions:
A 2
—Av, — 32”3 A =0, (2.6)
Av? 1

—TU - 5)\32;2115 — p,gvs — A2v§ — ;w? =0. (2.7)

In order to pass to the physical basis we should rotate the mass sector by means of a special orthogonal
matrix R, such that RT R = I. We have introduced a new parameter Y which we call mixing angle.
Its sine and cosine will link unphysical fields & and S to the physical ones h; and hs.

The mass matrix in the interaction basis correspond to:

My = (m” m”) ~ (m“ m”) — RMpR”, 2.8)

map  Ma2 mia  Ma2

where in the last step we’ve expressed M;,,; in terms of a diagonal matrix whose elements are exactly

the values in the mass basis. More explicitly:
M., — 00§(X) sin(x) \ (m 0 CQS(X) —sin(x) ) (2.9)
—sin(x) cos(x) 0 M) \sin(x) cos(x)
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The relation between physical and unphysical fields reads as follows:

(ags(x) —sin(x)> <h> _ (hl) . (2.10)
sin(x)  cos(x) S ha

Note that we have just rotate the field variables by quantities proportional to x, however, the combination
h*+ S? = h} + h3 is invariant. Hence we could think of the above transformation as a rotation in the
space of field basis.

The Higgs boson h; appears as a linear combination of h and S rescaled by a proper trigonometric

function. The eigenvalues of the mass matrix corresponds to physical masses and are given by:

1
miZ =3 <m11 + Mmoo + \/4777%2 —+ (m11 — m22)2)

2
— + + ( _ )— (2 11)
= m m m m . .

Substituting back the expression obtained from tadpole conditions I get the physical masses formulas:

m? =3 [2>\1v2 + p3 4 S(A30% + 6v2 A + dvgp) — \/41}2()\31)3 + A)? + (2A10% — pd — S(A30% + 6v2Xs + 4vs,u))2} :
2.12)

M2 =1 [2/\11)2 + 13 + $(Asv? + 602 Xg + dv,p) + \/41)2(/\3115 + A)2 4+ (2A0% — p3 — $(A3v® + 602Xy + 4vsu))2} ,
(2.13)

where we have identified m? — m?(GeV)? and m3 — M?(GeV)? . In the following we assume the
former to be the scalar particle observed at LHC with m = 125 GeV. We can link the mixing angle
to the other parameters:

2mqo 2(Agvvg + Av)

tan(2y) = = .
( X) Moo — M1 /L% + % ()\3?)2 + 6’03)\2 -+ 41}5,“) — 2)\11}2

(2.14)

Note that it’s possible to express the A\’s couplings in terms of other parameters of the model, using
(2.12) and (2.14) we have:

(M? —m?)sin(2x) — v2Av

g = (2.15)
2005
2 2 MQ 2 M2
A — cos(2x)(m ) +m* + 7 (2.16)
4v?
2 (M2 —m2 2 /2
N = m4)c20s (0) = v2p. 2.17)
US

In the following we will assume that m is the mass of the light Higgs observed at LHC m = 125 GeV,

while M will describe the physical mass of heavy d.o.f., in other words our hierarchy of masses is
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m < M.
The UV parameters of the model can be expressed in terms of the masses, the v.e.v.s and the mixing

angle as follows:

_cos(2x)(m? — M?) +m? + M?

i : (2.18)
40?2
: 2 2\
g sin(2x)(M? — m?) — 23005 7 (2.19)
2v
1 .
12 = - [(_2A3v§ +m® + M?) + cos(2x)(m* — M?) — 2% sin(2y)(m? — MQ)] : (2.20)

1
s = 3 {()\3112 —m® — M? +2\07) + Ulsin(Qx)(m2 — M?) + cos(2x)(m* — MQ)} . (2.21)

S

1 1
n=3 {mQ + M? — A3v® — 402 — ZE sin(2x)(m? — M?) — cos(2x)(m? — MQ)} . (2.22)
Vs v

s
The choice of the input parameters is quite arbitrary and other choices are possible. A comment is
in order. The scalar singlet with an explicit breaking of a Z, symmetry can be also written elsewise.
As shown in [41-43]] if one adds a tadpole term to the Lagrangian the singlet v.e.v. can be absorped,
leading to a dramatic simplification in the expressions of the Wilson coefficients for the effective field
theory analysis. Instead of the v.e.v one than has as input parameter one of the potential parameters,
i.e. for instance p.

We can rewrite in the broken phase once the mass sector has been rotated:

1 1 2

1
*CUV — _ZGe Goemv _ W;VWIMV _ ZB/WB/W _ V(h, S) + UZ Tr [(DMU)TDHU}

4 " 4

hy : ha 2(h1\? | . 2 (ha? : hihy
[1 + 2cos(x)7 +2 sm(x); + cos(x) <7> + sin(x) <7> + 2 cos(x) sin(x) 2 ]
1 1 . =
+§(8“h1)(8“h1) + 5(8#]12)(8”]12) +1 A Z \I/le\I/j
ji=l,q.e,v,du
. (YoqrUqr + Vil Ulg + h.c.) [1 + cos(X)E + sin(x)@] (2.23)
V2 v vl’
where Y, = diag(Y,, Ys), ¥, = diag(0,Y.) and the right handed doublets for single generation are
given by:
0
gr= ", lp= . (2.24)
dR €ER

Note that while in the unbroken phase the singlet field ® couples only to the Higgs doublet H, this
is no longer true for h, as it couples to W*, Z gauge bosons as well as to fermions. This happens
only through mixing between H and ®. In agreement with the last statement we note that the typical
interaction strength of S with SM particles is proportional to sin(x) while » Higgs boson couples with
a cos(x). The SM limit is recovered for sin(y) M0 and cos(x) M, 1. An additional note is that
terms proportional to A and x only enters in the scalar potential therefore the complementary part of

broken phase lagrangian is the same irrespectively of A, .
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2.1. PHENOMENOLOGY

The scalar potential contains all non derivative interactions between the two scalar fields and has the

following form:

M2
2
+ zohthy + 23h3hy + z4hy B3 + 25hy . (2.25)

2
V(h,S) :m?hf B2+ dih + dohPhy + dshi B2 + dyhd + 2 b

The explicit expressions for the coefficients are collected where the shorthand notation ¢ = cos()

and s = sin() was adopted:

Ac? 1 1 3
dy = ; i + AN — §c2)\35v8 + §c)\35271 — % + Aosvs (2.26)
AC3 2 1 3 2 2 2 2 2 1 3
dy = - Acs” + 50 A3Us — 3C" A8V 4 c“A350 + cpus” 4 3cAas 05 — cA3s U5 — §>\3$ v,
(2.27)
1 3 2 2 3 A
ds = 5)\31)0 + “s(—A3vs + 3hus + 1 — 2A) + 5% (3vA] — A3v) + 7 (A3vs + 5) ) (2.28)
A 2 3 1 1
dy = ZS + % + AXvs — 562)\38@ + 50)\3821}5 — M\ s, (2.29)
1 1 1
21 = 1—104)\1 —+ 10282)\3 + Z)\2S4 s (230)
1 1
2o = —CPsA\ + 503/\33 + cAgs® — 50)\383 (2.31)
A 3 3 1
23 = ZBC4 + 253 (=3 + 5/\1 + 5)\2) + 184)\3 ; (2.32)
1 1
24 = sy — 5)\3503 —esPh + §s3c>\3 , (2.33)
2= b+ 26 4 st 2.34
5—40 2+4CS 3+4S 2. (2.34)

2.1 Phenomenology

In this section, I will discuss phenomenological and theoretical constrains on the singlet model. This

will allow to restrict the parameters of the model. In particular we address the following points :

Theory: Experiments:
* Perturbative Unitarity. * EW precision tests (EWPO).
* Vacuum Stability. * Higgs signal strength.

* Perturbativity and 1-loop RGE.

Since the scalar singlet is well studied in the literature [44-46] most of the results we need were already
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Figure 2.1: Upper bounds on sin(x) with respect to the heavy particle mass, i.e. the eigenvalue in the
mass basis. The figure is taken from ref. [45]].

presented elsewhere.
For instance, in fig. 2.1 taken from ref. [43] the limits on the sine of the mixing angle from various

constrains are collected.

2.1.1 Perturbative Unitarity

Perurbative unitarity is a fundamental feature of any field theory we deal with and is used to obtain
bounds on the parameters of the model. A relevant historical example is given in [47]] where authors
could set an upper bound on the Higgs mass before its discovery. They found a condition m? < %ﬁ
imposing perurbative unitarity on the Winberg-Salam model. Also for HEFT/SMEFT one always
employs perturbation theory to obtain unitarity bounds, in that case one usually find a critical energy
scale where EFT description breaks down.

In our case we impose perturbatitve unitarity to check whether some combinations of parameters
yielding a too large scattering amplitude, if we find those combination we can restrict even more the
parameter space of the scalar singlet model, in this sense perturbative unitarity can give information
on the allowed parameters.

The fundamental quantity we take into account is the partial wave amplitude for a generic 2 — 2

scattering [48]]:

d(cos (0))d:, .. (0)Tri(V/s,cos () , (2.35)

1/4 1/4
aJ . 5]” <8>m?‘17m?2)ﬁi (87m1217m122> /1
s 32ms

-1
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2.1. PHENOMENOLOGY

where f3;/; are some kinematical factor depending on the mass of the particle in the initial or in the
final state and 7; is the scattering matrix element. We especially look at O-th order partial wave with
total spin equal 0 in the initial and in the final state for a 2 — 2 scattering. In this case the Wigner
matrix d”’(6) reduces to P’ (cos(6)). Unitarity constraint leads to the well know formula:

Re(a’(s))| <= ,  Im(a(s)) <1. (2.36)

N | —

In this case we focus on all possible 2 — 2 processes involving hq, hy and later impose the above

constraints on every eigenvalue of the zero partial wave matrix.

0 0 0
ah1h1—>h1h1 ah2h2—>h1h1 ah1h2_>hlh1
0 _ 0 0 0
afi - ah1h1—>h2h2 ah2h2—>h2h2 ah1h2—>h2h2 : (237)

a? a’ a?
hihi—>hihs  Qhoho—hihe  Qhiho—>hiho

We start by writing down some of the amplitudes relative to different 2 — 2 scattering channels:

1 1 1
Muhihn (s,0) = —di { + + }

t(s,m,cos(d)) —m? = wu(s,m,cos(f)) —m? s—m?

1 1 1
2
- - 2.
d2 |:t(3,m,COS(9)) — M2 + u(s,m,cos(@)) Y + . M2:| z1, ( 38)

1 1 1
_ g2
Minanans (5,6) = —ds [t(s,M, cos(f)) — m? " u(s, M, cos(0)) —m? e mz]
1 1 1
2 — 2.39
d4 |:t(S7M7COS<9))_M2 +U(S7M7COS(9))—M2 +S_M2:| 257 ( )
1 1
Mh1h2h1h2 (87 0) - _d3d1 |]f(8,’l7”b, M, COS(Q)) _ m2 + u(s7m’ ]\47 COS(@)) - m2:|

4 e
S I (2.40)

s—m?2 s— M?2

We note that for a tree level evaluation we only obtain real amplitudes. In very general terms we
expect that contact interactions dominate for high energies while relevant operators such as d; become
important at low energy. In the vicinity of the poles scattering amplitudes diverge as an indication
that higher order corrections are needed. Since we are neglecting the width effects in this tree level
analysis we should not trust the results in the vicinity of the poles and we apply a kinematic cut to

avoid those divergences (following [49]]). In particular we neglect regions where:

s
’1 ~ 2 1>025 (2.41)
m
The remaining ¢ and « channel amplitudes may lead to divergences as well, again depending only on
s since we integrate over the scattering angle. In particular logarithmic expression that can diverge
under certain limits appear [49]]. The above kinematic cut is sufficient to avoid those divergences from
t and u channel under the assumption m < M.
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2.1. PHENOMENOLOGY

2.1.2 Vacuum Stability

We demand that the scalar potential V' (H, ®) is bounded from below, i.e. it has at least one stable
minimum at V' (v, v,) such that:
V(v,vs) < V(H,®).

We report the expression for V:

V<H7 (I)) - = VH<H7 (I)) + V¢(H7 ¢) + VH,¢><H7 ¢)
Vi (H,®) = 3H'H + )\ (H H)?,

I PRy A2 4
Vo(H, ®) = 2507 + 507 + 20!,
-
Vio(H,®) = AH'H® + 7‘*(11T H)®? . (2.42)

A stable minimum requires V and Vg to be bounded from below that is equivalent to A\; > 0 and
A2 > 0 ensuring no instabilities along the & = 0 and H = 0 directions.

Additional conditions have to be derived to ensure no instabilities in V' ( H, ®) as well. We have already
encountered the condition of stability for low field values, namely we identify the mass matrix with
the hessian of the scalar potential for small oscillation around V' (v, vs).

Substituting eq. to 12 we get the following mass matrix:

20\ 02 Asvvg + A
M — mi1 Mio _ 1V 30V + AV . ‘ (243)
My Moo A3vvg + Av 22002 + pug — 24

20¢

We have a stability condition valid at the electroweak scale when the fields are placed in their vacuum
(®) = 7% and (H) = - In other words we check V (v, vs) is indeed a minimum if the mass matrix
is positive definite[41]]:

detM‘ >0
(@), (H)

v2A
20,

(2)\11)2) (2)\205 + pvg — ) > ()\31121)3 +2A4%°% + 2\/§Av2vs> ) (2.44)
Note that in the Z, symmetric limit this reduces to 4\; Xy > A2 [50]]. At this stage we cannot say
whether V' (v, v) is a global minimum or just a local one. Thus we need to check the behaviour of
V(H, ®) also for large field values to avoid any unboundedness from below.

For large fields, it is enough to consider terms quartic in the scalar fields as they dominate over

quadratic or triple power of fields:

2
2 /N A
Vi(®, H) = (\/MHTH) + (72(1)2) +§¢2HTH. (2.45)
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2.1. PHENOMENOLOGY

We also recall canonically relevant couplings, i.e. associated to relevant operators, usually vanish
under RG flow, so we can safely neglect A and p.
In the end the scalar potential is reduced to:
VA 2 A
Vi(H,®) = (VAHTH - 7%2) + (33 VA ) HH®? (2.46)
We see two different scenarios, in the first case A3 > 0 we have that both terms are positive and for

any large field value I only need to impose :
)\1(A) > 0, AQ(A) > 0,

where A is some arbitrary energy scale.
In the case that \3 has negative values the first term remains positive while the second one may lead
to instabilities for large field values.

The potential is bounded from below in any direction only when an additional constraint is added:
4NN — A3 > 0. (2.47)

This must be satisfied at all energy scales and is a relevant constraint especially in the evaluation of
the 1-loop RGE.
The sign of A3 is a crucial information for the stability of scalar potential and it’s worth considering

how couplings evolve with the energy scale through 1-loop RGE running.

2.1.3 Coupling perturbativity and 1-loop RGE

We study the running of the couplings of the UV model with a twofold objective: 1.) to check if the
conditions for stability of V' (H, ®) is safe up to Planck scale Apjaner ~ 10 GeV and 2.) to verify that
the couplings do not exceed 47 value even at high scale values to remain within the applicability of
perturbation theory up to Apjanck.

In order to see how couplings evolve with energy we should consider the RG flow including one loop
corrections of the most relevant couplings of the model.

We impose the following condition on the couplings:
MM <dr, =123, A< A (2.48)

In the Appendix [A]we show in the results of a numerical analysis for the RGE evolution with a
specific choice of the initial values for the parameters of the model showing accordance with fig.
From the SM it is well known that \; turns to negative values for energies around A ~ 10% GeV
making the EW vacuum metastable [S1, [52]]. This issue can be indeed solved in the scalar singlet
model: consider the Z, symmetric model with v, > v then from eq. we getm? ~ 2 v? ( 1—
i.e. \; receives a shift at the EW scale due to its interaction with the singlet.
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For the sake of completeness we collect the one loop equations considered in the numerical analysis
[50]:

N0 = 15z |5 (207 = 0P + § om0 + (P + 0 0) @49
H=9 (0 = 30107 + 12002 0ul0) + )] 250
N,(t) = # {4)\3(15)2 1220 () (t) — ;(ng(t)Q + a1 ()2)s(8) 2.51)
+61.(t)*As(t) + 6A2(t) A3 (t)] (2.52)
Ny(t) = 1617T2 [2X3(6)7 + 18X2(1)?] (2.53)
h(0) = 1o (b (1), (.54
g5(t) = 161772(_1)03)93@)3’ (2.55)
(1) = 25 (~b)oa(t)” 2.56)
) = g l0) |t — Jonlt)? — Toon ()7 — Sgu(? .57
AM(0) = Ao, A3(0) = A3,  A2(0) = Mgy, (2.58)
91(0) = g10,  93(0) = g30,  92(0) = go0.  %:(0) = wso, (2.59)
bo1 = —%, boe = %, bos = T7. (2.60)
(2.61)
A few remarks are in order before proceeding :
« by ' wemean \' = %(tt) where t is a combination of parameters including scale of RG evolution

t =log (%) . Note that by t = 0 we mean EW scale while the Planck scale leads to ¢ ~ 20.

» ), receives an additional contribution with respect to its SM RG, this term is crucial in the
stabilization of EW vacuum. In the scalar singlet extension EW vacuum turns from a metastable

(as in SM) to a fully stable minimum. In this scenario we say that the EW vacuum is stabilized.

* even though the gauge couplings g»,9; do not vary much over the different energy scales (this
doesn’t hold for g3) we consider their contribution. This means we have a system of 7 coupled

differential equations that will be solved numerically by means of Mathematica 13.3.

* We have not included the running of the A and p parameters of the UV model. Being super-
renormalizable operators they are significant at low energies and become less important at
higher ¢.

Performing a numerical evaluation in fig. and for the SM and the scalar singlet model
respectively we can infer that the EW vacuum becomes stabilized in the scalar singlet model.
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(a) SM case where A\ (t = 0) = 0.13 and V' (h) changes sign at u ~ 10° GeV, this
means we could enter an unstable phase at sufficiently high energies.

020 T T T T T T T T T T T T T T T T T T T T

0.15

= g0l 1 — At
< L i

— Aft]

0.05} — Zell]

000 1 1 L L 1 1 1 1 L 1 L 1 1 1 1 L L 1 1 1
0 5 10 15 20

P'runz}
2

(b) If we consider that the scalar singlet shifts \; at the EW scale we can end up with
A1(t = 0) = 0.16, in this way the quartic coupling stays positive up to the Planck scale.
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Figure 2.2: Evolution of \; (z = 1,2, 3) from the EW to the Planck scale. The labels are difficult to
read.
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2.1. PHENOMENOLOGY

2
Fine tuning the ratio 273; can let \; stay positive up to Planck scale. Note that singlet quartic
coupling A, and the mixed coupling A3 also remain positive if they are set to positive values at low

energy scales.

2.14 EWPO

Further constrains on the UV model come from the computation of different quantities connected
with the EW sector. As far as EW observables are concerned it is well known that the most relevant
contribution beyond tree level come from oblique corrections that are flavour independent. In general
we write a scattering amplitude involving an exchange of gauge bosons as M ~ J, II*"J, where the
J’s denote a fermionic weak current.

The most general vacuum polarization rank-2 tensor respecting Lorentz invariance is written as:
I (p*) = (") + A(p*)pp", (2.62)

however the second term is usually neglected as we usually contract it with massless fermionic currents
T =aqy'q.

For this reason in the following we will consider corrections to EW vacuum polarization in the form
[*» = IIp*”. Computing the vacuum polarisations the strongest bound on the mixing angle is
provided by W mass measurement [53]E]

Instead we use Peskin-Takeuchi parameters [56] to set a limit on the mixing angle. They provide a
shortcut to test our NP model through evaluation of the three different quantities:

rel(TO_1ZO)

Q M? M?2
TIZZ (M) — TIZZ (M3 mZ,(M2) T2, (M3
S = 46282(1/ ( new( )M2 new( ) . C2 . 8208 ne}v\4(2 ) nejw\;2 )) :
YW (ME,) — IV (M2) 1z (MZ) 7 (M2)
— 2 new new new new
U:4soz< g —cs M2 M2 >—S,

where a = a(My) = % ~ 15 ¢ = cos(fw), s = sin(fy ) and I} = II, + ITPY, quantifies
the contributions from BSM. Note that the electroweak sector considers also the vacuum polarization
correction from the photonic field I17” together with the mixed contribution 1127,

The corresponding interval where these quantities vary are:

0.02 <5 <0.04, —-0.07<T <0.17, —-0.07<U <0.13. (2.63)

"'Noting though that we will refrain from applying this bound, due to the discrepancies between various measurements
of the W boson mass [54] [55]].
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2.1. PHENOMENOLOGY

New physics (NP) extension of the standard model can be tested to respect these bounds, in particular
for the scalar singlet model we get a quite accurate bounds on the mixing angle. Contributions from

NP come with two basic effects:

* new Feynman diagrams not present in the Standard model.

* rescaling of the Standard model interaction by some factor. In the singlet model, the Higgs

boson interactions are usually multiplied by cos(y).

In this case we have two new Feynman diagrams coming from interactions with the new scalar singlet:

S
My = W= wsbvmnes (7= 4 W= e - =401, +412,. (2.64)

An analogous equation holds also for the Z boson. We can explicitly write the expression for the
corrections to the EW vacuum due to scalar singlet interactions exploiting a dimensional regularization
scheme shifting the number of dimensions to d = 4 — e.

The first diagram in dimensional regularization reads:

ar(LUV)pr . 2 ZZM‘%V 2 6/ d%k 7 o fet oV i
iy = sin(y) ( y ) K (2nd) k2 — MVQV( n" + M‘%V ) PRSIV (2.65)
. 2 QZM‘%V 2 /1 / ddk 7 kH LV
- o —p 2.66
sin(x) 2 ; T 2r9) ((k + pz)? — C)2< n+ M;%V) ( )

2 ! d’k i 1 €
€ 122 - — 2
. /0 dx/ (2md) (k% — 0)277 [ L+ 4]\4121,(1 * 4)k } (2.67)

(=)
(=)

— sin(X>2<2ngv)2nuu /01 d:c(—l'og F (1 E)L[LQ) (2.68)
(=)

47 4M3,
2

ey 1 dm{—Aeﬂog(“g) g (8 1 og(12))].

(2.69)

The main steps are as follows: the first line shows the loop integral of the first diagram in for
which we wrote the loop integral over the virtual momentum and the Feynman rules of the UV model.
In the second line Feynman parametrization is adopted assuming C' = —zp*(1—x)+ M3, (1—z)+xM?
and reducing the integrand to a unique denominator. In the third line we shift & — k& — px, note that
p is an external momentum. We decompose the tensor structure isolating the scalar integral that can

be solved with the master formula [57]:

o [d%s (R 1 P(r+$)0(m—r—9)
Lrm = / (2m)d (k3 — C)m (=1 (477)%0”1*7"*% F(m)F(g) .

(2.70)

In the last step we have included all the divergent quantities in A.. Note that up to this point we have
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2.1. PHENOMENOLOGY

made no approximation. Formally we apply a renormalization procedure known as modified minimal
subtraction scheme (MS) where we get rid of divergent quantities up to constant factors. This step
introduces a scheme dependence of the final result.

2 .
For H&,)W we can proceed in an analogous way:

e L o (21 ME, W/ d?k i

il " = 3 sin () ( ; )n e (2.71)
o —MZn™ [ di(p+ k) 1 k* — ME,
= 2.72
sin (X) 2 / 27T (p+ k‘) — M2k2 — Mgv ) ( )
Q—MVQVH‘“’ dd k ok + (1 —2)¢ — M
= sin ( 9 [k2 — P , (2.73)
— qi — MW 2 2.9 2

= 5in (00 ey /0 d:p[(?C (1= 2)%p? — M2)A, (2.74)

2
+ (20 + (1 —2)*¢" — Myy) log(%> + C} : (2.75)

Our approximation consists in M? >> M2, p? which implies C' ~ 2 M? and consequently log ("—2) ~

—log ( ) Fixing then the renormalization scale to ;1 = M, we get the following expressions for

the scalar part of EW vacuum polarization:

) M2 M2 2 M2

e () & sin (0 5 5 (3M5V + %) log (@)} (2.76)
) M2 M2 2 M2

M7(p) = sin ()’ —~—2— s [7 + <3M§ + %) log (@N 2.77)

Beyond these completely new contributions, we have that the SM contributions including the Higgs
boson couplings are suppressed by a factor of cos?(y). It is possible to rewrite the full polarization

tensor in a convenient form:
' = 1" + I, + I, (2.78)

where the first term includes corrections from fermions and gauge bosons which remains the same as
in the SM. The second term stands for the Higgs boson corrections, while the last terms describes the
contribution from the scalar singlet.

The explicit dependence on the mixing angle is written as an overall rescaling of the scalar integrals:
I = TP + (cos(x)” — DI, + sin(x) IIs = T + sin(x)* (I, — ) . (2.79)

We note that the scalar tensors are simply related by IT;, = I1g(M? — m?). It’s possible to explicitly

write the expression for I’ parameter as:

1 2 2

———————[3(M} — Mj)log— + 3(M;;, — M3
16W2U2O[(MZ) ( ) Og + ( Z)

T = sin(x)” M2

log— 2.
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2.1. PHENOMENOLOGY

The upper bound shown in fig. is well reproduced by the above expression, we can substitute

different values of M obtaining a correspondent upper bound for sin().

2.1.5 Higgs signal strength

Recent experimental results from CMS collaboration [3]] constrain the a; = a = ky coefficient in a

range that is about 5 times smaller than range at the discovery. At 20 confidence we have:
Ky = cos(x)”. (2.81)
As reported in [3]] for an s = 13 TeV machine with an integrated luminosity £ of 138 fb™!:
ky € [0.86,1.18].

This means:
1—sin(y)* <08  — sin() < 0.3741. (2.82)

Note that this result is completely independent from M and hence corresponds to a line parallel to the
x axis in the Fig. In the following numerical analysis we are going to adopt the latter condition

as the upper bound on the mixing angle.
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Chapter 3

Matching

Effective Field theories are predictive in a specific and limited energy range. The reasons why EFTs
break down may be differ from case to case: either new degrees of freedom enter into the dynamics
(as Fermi theory with massive vector bosons ¥, Z that require the full electroweak theory) or the
UV theory becomes strongly coupled (such as the Chiral Lagrangian with respect to UV theory, i.e.
QCD ). However, the EFT should reproduce the full UV theory in specific subsets of the parameter
space.

In this chapter we match our UV model both to SMEFT and HEFT. SMEFT and HEFT can’t be directly

compared as they have different power counting and consequently different domains of validity:

* SMEFT is the proper EFT description as long as the dimensionless parameter % remains small,
where F is an energy scale of the problem while A is a reference scale for NP. More precisely
we deal with two different expansions in SMEFT: % is the ratio between electroweak scale and
new physics scale, and /’{—22 where p? is some kinematic Lorentz invariant. The latter is related
to the derivative expansion while the former, in a geometric language is related to the curvature
of the scalar manifold [24].

« HEFT has a different power counting, we classify operators in the number of derivative also
called chiral counting d,, = 2{+2 where [ is the loop number. Hence HEFT basically counts the
loop order[3]. This EFT happens to be valid up to scale 47rv, this limit was briefly derived above
from an argument on the unitarity violation. Recalling a similarity with the chiral lagrangian
that ceases to be valid at 47 f,;, where f, is the pion decay constant, HEFT has an analogous

limit where f is replace by v.

A complete EFT program usually involves runnning of the EFT parameters after matching as we are
interesting in using EFT parameters at an energy scale lower than the matching one ﬂ

Once we get an expression for coefficients of the effective theory in terms of the UV parameters we
let parameters evolve through RGE down to the desired scale. In this case we are also able to resum
large logarithms that usually arise in QFT.

'The matching scale is usually identified with the scale of NP .
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3.1. INTEGRATING OUT

In this chapter we will restrict ourselves to tree-level accuracy, hence we match at tree-level and do

not preform the running of the Wilson coefficients since tree level matching is valid at every scale.

3.1 Integrating out

As said EFTs should reproduce the same prediction as the UV model within a specific energy range.
We can check whether this is true or not by looking at physical observables. In QFT every observable
is computed from the scattering amplitude that in turn are related to the partition function through the
Green functions. Formally we impose an equality between generating functionals of the UV model
and the EFT one:

ZwlJ] = / DH / DD SovHFIH — 7] = / D¢ eSerrleli] e, (3.1)

This is the usual way we write a path integral coupling an external current J to every field. From
the low energy prospective the heavy field is non dynamical so we just solve the E.O.M. for heavy
field and find the classical expression of ® in terms of . Then we substitute back into the original

Lagrangian:
(SSUV [CI), H] 8£U\/ E)EUV
— =0 -0 =0. 3.2
Y oc 0P "9(0,9) (3-2)
We say that the heavy degree of freedom has been integrated out.
After this replacement the lagrangian assumes a non-local form
/ DbeiSovHACH] _ iSnilt] £ giSprrlH] (3.3)

To obtain a proper EFT Lagrangian, and being interested in dynamics at £ < M, we could expand

the non local interaction arising from the above substitution H'H 547 (H'H)? in series of 5z (1 —
i)

Once we get an expression where the only dynamical field is the light one, i.e. H we can compare
with low energy model independent theory.

In particular we are going to match correlation functions computed in the UV theory with those
computed in the IR (EFT) since these quantities should describe the same physics in the IR limit:

ZowlJ] = ZestlJ]. (3.4)

However note that imposing an equality at the Green’s function level may be too stringent since
correlators may change under field redefinition while the matching at the level of S matrix element
(diagrammatic approach) relaxes this point.

Even though the diagrammatic approach is quite intuitive for EFT users, it could become tedious
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3.2. DIAGRAMMATIC APPROACH

especially at higher loop analysis where the number of diagrams grows exponentially with the loop
order.

The diagrammatic approach is equivalent to the functional matching method. The matching criterion
is built on the 1 light particle irreducible effective action (1LPI), where only light degrees of freedom
occupy external legs.

In particular we compute it both in the EFT and in the UV theory and equate them at RG scale yn = M:

Lo err[®(n=M)=Truv[®(n=M). (3.5)

If we consider Feynman diagrams in terms of their path integral formulation where Green functions
are written in terms of functional derivatives of the partition function then the equivalence between

functional and diagrammatic method is clear. In particular dealing with scalar fields:

S (x1)...0(x,
(6. (an)) = Lot n) 66

and the one particle irreducible (1PI) diagrams are obtained from functional derivatives of I :
orr

50(w1)--0an)

Since (¢(z1)p(x2)P(x3)..)1pr is constructed from the full correlator (¢ (z1)p(x2)P(x3)..) the functional

method and the diagrammatic one are both valid tools to perform the matching [58]. Since we are

(P(x1)--0(Tn))1pr =1 (3.7)

going to work with tree level (TL) processes we will mainly adopt the diagrammatic one for the scalar
singlet model. If we had to match the theory at higher loop a functional matching would have been

more convenient as we briefly mention in the colored scalar model.

3.2 Diagrammatic approach

As said in section [1.3| fields redefinitions, Integrations by parts and Fierz Identities connect different
bases (operators) giving the same physical result, in other words a diagrammatic approach at the
lagrangian level turns out to be field basis dependent. This problem is solved in diagrammatic approach
where we directly compare S matrix elements whose modulus squared is related to physical observable
such as cross sections and decay rates. Because of the .S matrix equivalence theorem [[59], the diagrammatic
approach does not suffer from ambiguities due to field redeﬁnition This method is based on expanding
Feynman diagrams in a Dyson series under the assumption of perturbativity.

Formally we impose an equation at the scattering amplitude level, also known as on-shell matching:

(f| Sov i) |z<n = (f] Serr |i) < - (3.8)

ZNote that even in the diagramatic approach we have to reduce the lagrangian basis bu integration by parts as well as
Fiertz identities
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3.2. DIAGRAMMATIC APPROACH

Here A is a generic cutoff energy scale where the EFT breaks down. It is crucial to keep the condition
E < A otherwise the EFT formulation is not valid. Note that matching at 1 loop level requires
to match at a fixed RG scale. Most of the times © = M is considered and one needs to adopt a
regularization and renormalization scheme.
Given our UV model the matching to HEFT can be naturally be performed in the broken phase
and the kinetic term is directly canonically normalized. Instead the matching in the SMEFT needs to
be done in the unbroken phase and special attention to the canonical normalisation of the kinetic terms
needs to be paid. Neglecting pre-factors and the delta ensuring momenta conservation in eq. we
get:

MUV—I—O(%) = Mgpr, (3.9

where the amplitude in the UV is truncated following a specific power counting scheme. Adopting
an abuse of notation we equate the amplitude to its diagrammatic representation to point out clearly
which process we are referring to.

For HEFT and SMEFT the particle content coincides with the SM one. In tab. we match some
the sub-graphs needed to compute the EFTs for the VBF process and to ggF di-Higgs production
processes. While we fix the notation by considering W+ as massive gauge bosons, the Z boson case
can be obtained by analogy. In the low energy regime the VBF channel reduces to four tree level

diagrams:
W
Mppr(WTW™ — hihy) = > + },hl 4\/ + + (u-channel) .
wt
(3.15)

While the UV theory presents the same channels as EFT plus a tree level exchange diagram from the

heavy new scalar field:

w- hy

/ W o W I
Muyy(WHW™ — hihy) = > + } 7]%17 7/\/ + } fﬁ% 7,\//
Wl h W oW hy
W= . hy
+ + (u-channel) . (3.16)
w+ \ hy
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3.2. DIAGRAMMATIC APPROACH

Feynman rules of the UV model are summarized in Tab.(3.2]) . The analytic expression of the amplitude
in VBF reads:

' , B , m? g,uu 2m2 guu -
MY W™ = ) = €)(pr)e) (p2) | = cos(x)* + = cos(x) —— (—ildy)+
2miy g . i , 2miy g"° —i (P = p3)o(P1 — p3), 2miy g™
e sm(X)S P (—idg) + — COS(X)t ) <ggp — oy > ; cos(x)+
2miy g7 —i (p1 — pa)o(p1 — p4)p> 2miy, g*” }
ZwWI — (gop — . 3.17
+— T cos(x)— 7, (9 , w2, . cos(x) (3.17)

The first term stems from the contact interaction, the second term is the s channel exhange of the light
Higgs bosong, the third term the s channel exchange of the new resonance and finally the ¢ and «
channels where the vector boson propagates.
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3.2. DIAGRAMMATIC APPROACH

t
, _ Y, _
iMpy(tt — hy) = - hy = _ZE cos(x)v(p1)u(p2), (3.18)
t
t
‘ _ N
iMuyy (tt — hs) = = hy = NG sin(x)(p1)u(p2) (3.19)
t
W
. )\7)\/ + _ _ o by /\/ ,m%/[/g'uy
iMpy WTW™ = hy) = by =€up)e, (p2)2i » cos(x), (3.20)
W+
o
AN (T - _ N iy gt
iMpy (WTW™ — hy) = — hy =€up)ey (p2)2i » sin(y) , (3.21)
W+
W= h1
MY (W = h L\H e ()i g1 cos(y)?
iMpy ( — hihi) D ;ﬂ; = eupr)ey (po)i— 5 —2lcos(x)”,  (3.22)
W+ hy
hy
Moy (hihy = hi) = »--- by = —i6d,, (3.23)
h
hy
Moy (hihy = he) = »--- hy = —i2d,. (3.24)
hi

Table 3.2: relevant vertices in Di-Higgs production in the UV model

For the sake of completeness we also write down My (tt — hh) as it enters the partonic
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subprocess of gluon gluon fusion production channel.

t hy t hy -
iMyy (tt = hihy) = > fz L+ > oy + (u-channel) . (3.25)
t hi t hy .

The analaytic expression for the scattering amplitude reads:

T imt 'dl 1 1 + my my 2
My (it = i) = 0 ()[4 == cos(1) + g - pzjié - m; (-%)

o AP, =P, M) omy2 ) my\ 2ds sin(y)
cos(00)” + 1 e (=) eost0”+ () T ) (:20)

The first term corresponds to an s channel exchange of the light Higgs boson with mass m, the second
and the third terms describes a fermion propagating respectively in the ¢ and u channel while the last

term describes s channel exchange of the new heavy scalar particle.

3.3 Matching to HEFT

First, we address the matching of the UV model to the HEFT basis. This step seems very easy as
both Ly and Lgpr are written in the broken phase. In this EFT basis each term is given by a gauge

invariant invariant part coupled with an integer power of the physical Higgs boson h.

Luprr DUZZTT[(D;LU)TD“U] (1 + Qa% + b(Z—z) + O(lﬁ))
— my <Ct% + Cy <h—2>)t_t — /<;,\m_’21h3 4% (ngh% + nghhz_z)GzyGa,;w C327)

V2 20 T

Proceeding via a diagrammatic approach, we compare tree level scattering amplitudes computed in

the scalar singlet model and in the IR theoryﬂ

MWW ™ = hy) = MPB,(WTW ™ — hy),

, 'm2 jnz , 'm2 jnz
Apr)e) (12)2i W — (py)e (py)2i Y

cos(x) ,
a = cos() . (3.28)

3The tree level condition does not require to fix the RG scale where I perform the matching however it is needed for
higher order matching. For our purposes a tree-level matching is sufficient. In some cases one-loop is important as for
instance for the colored scalars.
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Note that the same holds for the case of a single ~ boson coupling to fermion-antifermion pair:
MHEFT(Z?t — h1> = MU\/<LTt — hl) s
Y _ Mg _
—1—Cho(p1)u = —i—0(p1)u cos(x),
NG t0(p1)u(p2) » (p1)u(p2) cos(x)

Cy = cos(x) - (3.29)

The very same procedure give us the Higgs self coupling, note that in HEFT (as well as in SMEFT)
triple and quartic Higgs coupling are different while in SM they are equal.

MHEFT(hlhl — hl) = MUv(h1h1 — h1),

2

—i3lka Dk — 314, |
2v
2vd
RIEFT = 2201 (3.30)
s

Proceeding with the diagrammatic approach we work out the coefficient b appearing in eq. (3.27).
Note that by considering M ggrr = Myy we should match channels that are kinematically similar
The t channel and the u channel of My gpr(WW — hihy) can already be expressed in terms of UV
quantities obtained by equating M yppr(W W™ — hy) and Myy (WTW ™ — hy).

Analogous considerations allow us to not consider the s-channel where h boson propagate because it
essentially gives information on C; and ), that have already been found. We limit ourselves to match
the contact term and the s-channel where the heavy d.o.f. propagates of the UV theory with the only

one contact term in the low energy basis i.e.:

Migprr(WHW™ = hihy) = MG 4 Mige),
W— hl W~— h1

W+ hy W hy
Lo mi gt roo M . i .
eﬁ(pl)eﬁ (p2)i W2 b= eﬁ(pl)ei (p2)ig" —ZV cos(x)2 + 2vsin(y) 2(—zd2) ,
v v s—M
. d
b= cos(x)? + 2v sin(x) — 2M2 . (3.31)

“Note that this is no longer true when we introduce derivatives in the field redefinitions as they introduce momentum
dependence that could spoil this kinematic similarity between channels in the UV and in the EFT theory.
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Since we are interested in the low energy limit we simplify the last step as :

2

s< M2 dov sin(y S S dov sin(y
h S cos(x)? — QT;) <1 + Ve + W) o~ cos(X)2 — 2T2() ) (3.32)

Theoretical arguments lead to the expectation b > 0 [60]. Analogously C; is computed equating the
relevant scattering amplitudes in HEFT and UV. Note that such a coupling is not present in SM at tree

level, it arise in the low energy limit of the chosen UV model.

MHEFT(R — hlhl) = MUv(t_t — hlhl)

t hy
m - my . ] . _
—ZU—;CQtU(pQ)U<p1)2! = <—17t s1n(X)> p— (—22!dy) v(p2)u(pr) -
v sin(x)ds

Coy = ——~

2t s— M2’

o M2 in(y)d

c,, 2, _vsin()ds (3.33)

MQ

Let us comment on the SM limit of the above expressions: a and C} recover their SM limit by taking
X — 0. Furthermore they are M independent. A dependence on M will arise when matching at the
1-loop level. The b coefficient is SM like by taking sin(y) — 0. Cy; recover its SM form by taking
M — oo orsin(y) — 0.

3.4 SMEFT matching

Matching the scalar singlet model to the SMEFT basis ([1.39)) is not as straightforward as in the HEFT
case. In this section we are adopting a matching in the unbroken phase. We match to the Warsaw
basis given in [21]] at dimension 6. The first step is to integrate the heavy field ® out. For our tree

level analysis we solve the E.O.M. for ®, namely:

OLyy P Lov 0
90 “9(0,0)
(—D . >\3HTH><I> — AH'H + p®? + A ®® . (3.34)

3In the s < M? limit we neglect scalar singlet width effects, however in the following numerical analysis where we
compare the UV model and the HEFT, we could not guarantee an energy in the centre of mass always much below the
scalar singlet physical mass, therefore we have included the contribution from the width, namely m where I'g
is the total width of the new particle.
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The assumptions we make to solve the E.O.M. strongly affect the matching result we are going to
obtain. In a SMEFT scenario where UV physics is not strongly coupled we consider a mixing regime

that is negligible. Under the assumption of low mixing, perturbation theory and p3 > 3| H|? we

solve eq. iteratively getting:
P ~ %HTH. (3.35)
Ha
Note that solving eq. without perturbative assumption means solving a cubic equation in P.
Then we have to substitute back into Ly that will be written only in terms of H. Finally we
compare it with Lg,,ppr that we know is made by independent operators.
In principle Ly [P[H], H] contains both effective operators in Warsaw basis and other non Warsaw

operators. Applying Higgs E.O.M we can get rid of non-Warsaw effective operators [21]]:
D,D"H = \H + 2\(H'H)H — qY,uoy + dYyq + €Y.l (3.36)

This step brings in a dependence on the C), 5. Since the resulting expression still contains non Warsaw
operator as H'H (D, H)"(D"H)] we can exploit the formula (3.36) so that the latter operator is

rewritten as a combination of Oyn,Cy and C,y plus dimension 4 operator [61]]:

H'H [(D,H)"(D"H)] :%(HTH)D(HTH) + (H'H)gHu + (H'H)gHd + (H'H)[He

+ (H'H)® + m*(H'H)? + EOM., (3.37)

where E.O.M. stands for terms that vanish by substituting H equations of motion. In this way the
dependence on C, 5 vanishes. With this procedure we have also excluded the Oy p operator. Note
that Opp affects the two point functions of W and Z and thus contributes to the p parameter. The
constraints on Oy p from the electroweak precision data imply that the coefficient of this operators
to be extremely small. In our case we are safe though, since it vanishes by applying Higgs equations
of motion and consequently ¢ ki, = Cro . Hence we find that at tree level the only two Wilson

coefficients are generated:

A?
= —— 3.38
CHD 2#% ) ( )
N3 A% pA3 4dp
= —-——-—— _— = )\ . .
Ch 202 + 3,18 Cho [ A3+ 3ACHD (3.39)

In the Z, symmetric limit we would have no Wilson coefficient generated at tree-level at dimension 6,
but contributions matching at one loop level. These expression confirm the expectation traced in the #
counting given in eq.(1.43)),(1.46),(1.47). These quantities were checked by exploiting a Mathematica
package that adopts a functional matching Matchete [62] and automatizes matching for NP models

weakly coupled to SM up to 1-loop. We find agreement also with [63]] that lists all effective operators
generated at tree level for different UV models, and accordance with [[64] as well.
In order to make differences between SMEFT and HEFT more evident we have to work on the SMEFT
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lagrangian.

Two main issues are taken into account:

v.e.v. redefinition: with respect to SM we receive additional contribution from dimension 6. Those

terms shift the vacuum state of the SM by # suppressed terms.

turn SMEFT in broken phase: SMEFT is written in unbroken phase, i.e. in terms of A doublet
therefore it is still invariant under Ggy;. A comparison with the HEFT basis can happen when

turning to the broken phase |

Because of higher dimensional operators the v.e.v. obtained from the SMEFT lagrangian is given by

3CHv?

where v has the usual SM expression in terms of the SM Lagrangian parameters. This means that the

H doublet is written as:

1 im0 0 1 0
H = — R = —Ulr R , 3.40
\/ie (UT + h) \/§ ( ) (UT + h> ( )

and in the unitary gauge it further simplifies to:

1 0
H= 7 (UT . h) . (3.41)

When the EW symmetry is broken additional contributions to the A kinetic term appear and a shift is
needed to restore a canonically normalized term.

Here we choose to perform a non-linear shift that is gauge-dependent (1.43)). If we restrict ourselves
to order % then we get the SMEFT lagrangian in the broken phase contains the following pieces that

are relevant for us:

broken 1 " U_2 f SMEFT ﬁ SMEFT h_2 _ _SMEFT mi
h h? _
— My <CtSMEFT; + CS%VIEFT§> (tt) (3.42)

in particular VBF is related to xy, ko and x) coupling modifiers while ggF is mainly affected by

the anomalous couplings C;, Cy; and k). If we rewrite the above lagrangian in terms of canonically

%We are not going to compare the two EFT at the lagrangian level, this would be incorrect as the two EFTs come from
different assumptions on the Higgs.
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normalized h field we obtain:

e >0 2(0) (10 S )+ () (a5 ) o ()

(% Ur vr

() (L) ()] (s 2 ) s

The Yukawa part of SMEFT lagrangian that can be used to describe the t¢ — hh process is

32 v V2 h 3v2 v V2
L — [1——TCU —+-Lc — —-—L cun—+-LC
SMEFT = — ( oIk Hmt+A2 oH UT—I— SWoTY. Hmt+A2 OH
2

h—J (). (3.44)
Ut

Since we are going to stay within the SMEFT framework in the following equations we just write
v and not vy. The most relevant coupling modifiers of SMEFT formulation once the broken phase
is explicitly written down are collected in the following table A comprehensive paper about the
Feynman rules in the SMEFT framework can be found in [65] however the latter reference adopts a
linear field redefinition [.42] Therefore our results cannot be checked with this reference. The same
non-linear refedfinition was instead adopted by Ref. [30]], with which our expressions were checked
whenever possible.

For the gluon fusion process, also the couplings of the Higgs boson to gluons are relevant. Those
are though not generated in the singlet model as long as the top quark is not integrated out as there
are no new colored states. Later on, we will though come back to the couplings ¢4y, and cyg5, When
discussing the case of the colored scalar field with SM charges ®. — (3,1, —1/3).

The Lagrangian of egs. and show how different couplings are correlated in a linear way
in the SMEFT. In particular we note :

Roy — 4/42\/ — 3, (345)

Coy=1-0C,. (3.46)

These correlations hold only in SMEFT, this is because they are a remnants of the additional structure
we consider for Higgs field, i.e. that it transforms as a doublet under the chiral SM group SU(2); ®
SU(2)r. This means such relations do not hold in general in HEFT that therefore is much less
constrained from symmetry properties [66]].

Since these correlation arise from a specific assumption on / they can be seen in multi-Higgs interactions
as was reported in [60]. In addition we emphasize these particular linear relations heavily depend
on the field redefinition we have used for the h field. Lagrangians and consequently couplings are
subject to field redefinitions. This means concretely that for VBF adopting a different field redefinition
than the one in eq. changes ko and also x), whereas it leaves the total amplitude invariant.
Hence, physical consideration on the difference between SMEFT and HEFT are better carried out at
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3.4. SMEFT MATCHING

the amplitude level. Analogously for the gluon gluon fusion process where the coupling modifiers
(5 and k), change their form according to which £ field redefinition is choosen. In the singlet model
case the 'y coupling is zero when h is linearly redefined while it obtains a contribution which is
non vanishing after (1.43)). This contribution is re-obtained for the linear redefinition due to extra
momentum-dependent terms in the trilinear Higgs self-coupling from the operator O n. This reminds
us that an analysis based solely on the coupling evaluation is not physical and we must compute
quantities that are not affected by different definitions of the h field. Our aim in the next chapter
will be to highlight differences between two EFT’s in a way that is not affected by field redefinition,

namely cross sections or amplitudes.
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t
‘ _ Yy
iMgpp(tt — hy) = ----hy = —i—=Cyo(p1)u(ps) , (3.10)
V2
t
t hy
iMgpr(tt — hihy) = ’ = —i2!—C%0(p1)u(p2) , (3.11)
t hy
W
) / ’ .m2 4
iMgpr(WEW™ = hy) = } b = e ()2, (3.12)
Wt
W= hy

N /! A N miy g
ZME’FT(WJrWi — h1h1> D \/ = 6N<p1)€’/ (pg)l 02 KJQ\/Z!, (313)

W+ hy
hy
R . 3m}
MEFT<h1 — h1h1> = - hl = —Zli)\T . (314)
hy

Table 3.1: relevant TL amplitudes in Di-Higgs production, x’s expression will change according to
the IR considered
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3.4. SMEFT MATCHING

HEFT SMEFT
CH,kin'U2
Ry ai 1 + A2
4cH xin¥
Kav a 1+ =%
202 Cyv? v?
K by — AT T 335 CH kin
C 1 37}% v v2
Kt t = 5v3A2 my CuH T 3z CHkin
C 31}% v v2
Kat 2 T 9vaA? my CuH T X2 CH kin
8 v2 C
Rhhg Cggh . AZVHG
K c iz w2 ¢
gghh gghh s A2 HG

Table 3.3: Relevant couplings in Higgs pair production, both in HEFT and in Warsaw basis. With
respect to [30] we have added the coupling modifiers of the VBF process.
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Chapter 4
Scalar singlet as Loryons

In the following we will concretely show for the scalar singlet model that the effective expansion does

not converge if the new particle gets most of its mass from EWSB.

4.1 Scalar singlet

In this section we are showcasing the validity of the expansion for the Z, symmetric scalar singlet
model as it simplifies the computation while not changing the physics we want to highlight.
The model we are using in this section is given by eq. (2.1) where A — 0, © — 0:

1
Lov =Lsy + (D,H) (D*H) + 30u 00" — piHH

e frne | A200 Aoy
- GO - N(HHP - et - ek H). (4.1)
Both ® and H acquire a v.e.v. according to (®) = vy and (H) = - In order to highlight the

difference between SMEFT and HEFT we are going to make only one crucial assumption on the
EWSB. If we only assume a weakly coupled UV theory then the new heavy degree of freedom does
not affect EWSB and consequently the mixing between h and S'is a subleading effect. Thus we can
identify & = v, + S and H = %U () where h and S are the physical fields.

Under this assumptions we consider @ takes a v.e.v. while the / doublet is left invariant, in this way
75 symmetry is spontaneously broken.

The UV model allows ¢ to acquire a v.e.v. and the lagrangian reduces to:

1 2 } 2
Lov = Lsu + (D, H) (D*H) + 59,59 — jiiHH — %52 - 1’2&5 — \(HTH)?
— %\H%@ — \3v|H|?S — %v?\]ﬂz — %(S‘l + 40, 4+ 4032 S + 20257). (4.2)

From tadpole equations for the heavy field we get:

oV (H,S)

55— = 0= us(ps + M) =0,
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4.1. SCALAR SINGLET

solving for cases where S has a non vanishing v.e.v. means to choose 2 = —\yv2.

Note we can define the field dependent mass for the singlet S:
mg(H) = 13+ 3| H|”. (4.3)

We can integrate the heavy field S out by means of the equations of motion, in the static limit it reduces

to:
0 _8£UV B g 5 9
- oS - (Us + )(2>\2USS+ AQS + 2)‘3|H| )a (44)
23| H|?
S[H| = —vs £4[v2 — A?’i | . (4.5)
2

Substituting back in Lyy I get an expression for the effective lagrangian, the latter include non analyticities
in the vicinity of |H| = 0 which is the physical vacuum, i.e. the lowest energy configuration of the

H field. This is indeed problematic since the SMEFT expansion is usually a polynomial expansion in
|H|? or 9| H|? in other words SMEFT lagrangian does not contain any non analyticity in | H|.

Therefore this might be the case where the low energy theory must be written in terms of HEFT. The

effective lagrangian is rewritten only in terms of H:

A3 2\ 2 2 4 1 2 272
OuHI )" + pilHI" = M|H[" + — (15 + Xs|H|P)?,  (4.6)
S+ iy ) 2

= |D,H|* -
Ly = | D, H| e

which is clearly problematic around | H| = 0 in the limit 43 — 0. Most importantly this issue cannot
be solved by any field redefinition and therefore is physical, in other words this non-analyticity is an
intrinsic property of the model independent on the field basis that we employ.

This is the typical case where SMEFT expansion is not possible and we must rely on HEFT.

Note that if we solve the E.O.M. for S assuming 2 >> As|H | then the expression for the heavy field
in eq. would be expanded as :

S ~ s+ g

13| HJ? A3 H|?)?
1+_a2|+0(<ag>)17 4
2 15 Ha

and we would cut away any non analyticity around | H| = 0 at the lagrangrian level [32]].
In the case of a singlet model where the Z, symmetry is explicitly broken we can’t solve the third order
equation as we did above, namely factorizing a second order equation and a first order polynomial in

S. In that case we have to solve:

S(u2 + 2pvs + As|H|? = S+ 3vs) + AoS?) = A|H|” + X3 H[*v, . (4.8)
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4.1. SCALAR SINGLET

The real solution of the latter equation is rather lengthy and crucially it contains terms non-analytic in

H| = 0. If we expand it for an infinite explicit mass ;3 we get:
p p aweg
A|H|* + \svs| H|? N A|H? + \svs| H|?
13 1
1
[(2pvs + A3|H)? + (A[H|? + Xsvs|HI?) (1 + 3vs) | + (’)(—8> : (4.9)

25

A|H|* + X3vs| H|?

S[H| ~
] s

(205 + As|H|?)

As expected if we substitute back this equation in the UV model with explicitly broken Z, symmetry

we get no non-analyticities around the O(4) invariant point |H| = 0. In eq. (4.9) we can identify the

AH >+ 30, H|?
2

. . . 2 .
quantity as an expansion parameter || which reduced to A?’”u# for the Z, symmetric
2

case for A — 0. These statements suggest the existence of a SMEFT expansion is related to the ratio

A|H|?+X3v|H|?
13

is analytic in | H|? and O H with terms suppressed by the inverse powers of the explicit mass. Hence

since expanding the S field in terms of that quantity leads to an effective lagrangian that

the expansion parameter crucial in the scalar singlet model that appear either in the Z, symmetric case

and in the non Z, symmetric case is:
A3U2
r =
2 Y
Ha

which is the field independent part of the expansion parameter in eq. (4.7).

(4.10)

The extrema for r are given by an infinte explicit mass (42 — o0) which correspond to » — 0 and
a vanishing explicit mass (¢ — 0) leading to » — oo. If the latter is small we can expand solution
for S E.O.M. getting an effective lagrangian that is analytic in H, if instead this ratio is non negligible
we cannot end up with an expansion in inverse powers of the explicit mass scale as in SMEFT. In
this case the mass contribution from EWSB is comparable with the explicit mass source and at the

lagrangian level L. ;¢ may show up non-analytic terms in |H | [31]).

! An expansion parameter is indeed dimensionless.
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Chapter 5
Results for the singlet model

In this chapter we collect all the meaningful results showing up evidence how different low energy
theories for the Higgs boson may lead to different predictions. Our results mainly concern the scalar
singlet model taking into account the two dominant production channels for Higgs pair production,
i.e. ggF and VBF.

5.1 Scalar singlet results

First of all we will discuss the coupling modifiers in the singlet model focusing on xppyy = Koy
(knyy = ky) that enters in the VBF and ¢y, = cor (cun = ;) relevant for the ggF channel. A scan
has been performed in these coupling modifier space.

The scan performed is shown in Fig. for the Higgs couplings to vector bosons and in Fig.
for the Higgs couplings to top quarks. The orange line represents the linear correlation that arises in
SMEFT while the points represent possible values in the coupling space according to HEFT. The red
(blue) color stands for a physical mass of the heavy scalar below (above) 1TeV.

The other parameters vary as:
sin(x) € [—0.37,0.37], vs € [0.01, 10v].

We can already appreciate two main aspects from these plots:

* In SMEFT the linear transformation of the Higgs doublet under O(4) allows for a linear relation
between these couplings while HEFT is not necessarily following a linear relation due to the

non linear realization of the EW symmetry.

* cynh—Cup points in the HEFT model provide strong deviation with respect to SMEFT prediction,

in other words these EFT coincide only in the vicinity of the SM point.

The second point can be clarified by the expressions of ¢y, and ¢y, resulting from matching and

taking an appropriate limit where HEFT and SMEFT give the same analytic form. Given the results
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1.1
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> ® M. 1e
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= ® M tev
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071 Mse ( 800, 3800)GeV
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thV

Figure 5.1: Behaviour of kv in function of k. We find qualitative accordance with results of
[67]. The SM limit is recovered in the point [kpny, kprvyv] = [1,1].
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-0, ' ;
&85 0.90 0.95 1.00

Figure 5.2: Behaviour of ¢, in function of ¢;y,. The SM limit is recovered in the point [cyp, Cinn] =
[1,0].
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5.1. SCALAR SINGLET RESULTS

from SMEFT we express the couplings in terms of our input parameters. We consider the coupling

modifiers of the Higgs to fermion in the limit of vanishing mixing angle and infinite mass M:

2
v 0,M—s00 VU
T =1+ —Cyo 1+< M23>X

e
1 2m? — 202X\ — 50?A3 v 8uvidg + 2703 A3 + 18vv2 Ny — 18m2v\ 4
+{—5+ X+ |-+ X
2 2M? Vg 6vs M2
N —90? — 202 N 36m%v? + 10m2v? — 36v%0v2 Ny — 100Ny — 4201 N3 — 25020203\
6v2 6v2M? X
1
+(9(W,x6), (5.1)
v S0,M =00 VUsA3 1 2m? — 202\ — 5023
v 81}1}2)\3 + 2733 + 18vv2 )y — 18m%v
+(— X
vs 6USM2
n —90? — 202 n 36m2v? + 10m2v? — 360202\ — 1002y — 42013 — 25020203
62 GuZ M2 X
1
+ (9( 1 X ) (5.2)

We adopt the same procedure to the results obtained from HEFT:

) 1
AT = cos(x) S 1 - 4 o+ O, (5:3)

dy sin(y 0,M—00 1 2m? 8  14m? 1
iy =t (S e (55 ) o) 69

These equations show HEFT and SMEFT couplings coincide only in the small mixing angle limit.

Note that additional conditions have to satisfied:

o BT and cHEFT do not have any term at O(x) therefore

VU

’\3 being small is also required if we

want to recover equality between SMEFT and HEFT couphngs.

—202 Ao —5v2 A\ .
. %5”3 must be small as well in order to to recover accordance at orderthe level of the

couplings at O(x?), note that c}FFT does not involve any mass scale in its expansion therefore

SMEFT : : : S o m
in ¢~ we must ensure a mass scale separation yielding a negligible {75

* Chiny and T do not have any term at O(x*) therefore we require ;- being negligible but this

3vng2

may enhance the other present at the same order in x. The ch01ce of v, value is therefore

non-trivial by this selectlon of the input parameters.

If these requirements are met we have an agreement between HEFT and SMEFT at least up to O(x*).
Given that we infer from the plot presented above (fig. that the range of the mixing angle is not
small enough to recover the agreement between SMEFT and HEFT.

These results do not have a clear physical relevance as they depend on the field basis that we are
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5.1. SCALAR SINGLET RESULTS

adopting. As we have previously mentioned 1y and ¢y, depends on whether we use or
(1.43). We have adopted here the one of since it does not lead to new Lorentz structures in the
Higgs self-coupling. In this case, when writing down the amplitudes one can see the correspondence
on the amplitude level between the SMEFT and HEFT couplings of two Higgs bosons to two vector
bosons. We now turn to the computation of the amplitudes to provide also a comparison with the full
UV model. Our results are based on the evaluation of unpolarized amplitudes squared, in particular

we consider their ratio in an EFT framework with respect to the UV model.

/
)\ *7)\
Z,\,X MUVMUV
b X 7
Z,\,,\’ MEFTMEFT

Ryv/err = (5.5)

where EFT may be either SMEFT or HEFT and a sum over all the polarization in the initial state
(VBF) and/or over color (ggF) is taken Iﬂ

The Rppr vy quantity describes how good the EFT limit is with respect to the full UV model. When
R ~ 1 our EFT is an appropriate description of the full model while R values deviating from unity
stands as a breakdown of the EFT prescription.

Our analysis consists in different scans of the above quantity taking into account all the constraints
from the phenomenological analysis of the singlet model. Our main quest is to see how this quantity
changes as the amount of mass that the new particle gets from EWSB grows. To do so we plot Rgpr

versus:

_ MlH[?
exp ,u% ’
more precisely we take its field independent part ’\Z’;Q. Recalling A\, = % we can related our
2
expansion parameter to the f parameter defined in [34]]:
A A 2 €X]
fore = e (5.6)

Thath By T2

therefore » = 0.5 corresponds to f = 0.5 which is the reference number above which HEFT is
required. We focus on the partonic amplitudes and computed them at different centre of mass (c.0.m.)
energies s at fixed value of the scattering angle. Since no significant deviation has shown up at
different values of s we refrained to compute the full cross sections.

For the UV model we use eq. and eq. (3.26). In our analysis the total width of the new scalar

resonance is included :
Ty tot = Sin(X)QFSM + Dhoshing (5.7)

"More precisely one averages over polarizations and color, for instance in ggF:

— 11 A o)
‘M| = 22 82 Z ZMab,EFTMab,EFT'

AN ab
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5.1. SCALAR SINGLET RESULTS

where ['gy the decay width of a SM Higgs boson h; with a mass M computed with HDECAY [[68] while
[',—n,n, 18 the decay of the new resonance in two SM Higgs bosons. The decay width I'y,, 5,5, 1S a
two body decay in the kinematically allowed region i.e. when M > 2m and given by

11
Fh2*>h1hl = m§p’M(h2 — hlhl)‘z

1, Am?
= — 11— — 5.8
16mM * M2’ (>-8)
where p is the two body phase space and % is due to identical particles in the final state.
For what concerns the SMEFT amplitude we consider Mgyerr = Msw+15M(© and keep the O ()

in the squared matrix element

2
c c
| Msmerr|” = [Msul® + +2FRC(MSMM(6)) + F|/\/l(6)|2 : (5.9)

However the last term is formally of the order of dimension 8 for which we would have to include also
dimension 8 operators leading to an interference with SM asK—;Re(M suM®) [69]. HEFT relies on
a different PC and these considerations are not needed in that case.

5.1.1 VBF

We consider the following truncated EFT amplitude for the VBF process:

2 2 2 2\ 2 9
m? m m m 1 _
My sr ~ee [KVKA——W + 52‘/1}_‘2/‘/ 4 /112} ( w) (_1 + (pl 2])3) )

s —m? v? v ) t—m¥, mi,
2\ 2 2
1 _
Y () R N il TV (5.10)
"\ v ) u—m¥ mé,

where p; 1s the momenta for gluon in the initial state while p3, p4 are the momenta of the higgses in
the final state. We collect results for VBF at different centre of mass energies, namely /s = 500
GeV, /s = 1000 GeV and /s = 1500 GeV. For each energy scale we plot the following quantities
with respect to the expansion parameter r.,, : ratio between UV theory and the SMEFT limit, ratio
between UV theory and the linearised SMEFT, ratio between full SMEFT prediction to the linearised

one and finally the ratio between the UV model and the HEFT limit. The parameters are varying as:
Ay € [0,47], A3 € [—4m,4n], 0= g, vs € [0,100], sin(x) € [—0.37,0.37], (5.11)

where 6 is the scattering angle in the partonic center of mass frame. For coefficients with mass
dimension one we require that the 1-loop corrections to the trilinear Higgs self coupling are smaller
than their tree level values in the SU(2) limit [[70]]. This leads to:

|A]
max (||, 1))

Fl<ur, (5.12)

Ho|

<Am, A

The points displayed in each set of figures put together results collected from 2 scans of the
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Figure 5.3: We display the UV model prediction divided by the SMEFT prediction (upper,left), the
UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).
These plots refer to s = 0.5TeV and M € [250, 3000]GeV.
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Figure 5.4: We display the UV model prediction divided by the SMEFT prediction (upper,left), the
UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).
These plots refer to s = 1TeV and M € [500, 3000]GeV.
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Figure 5.5: We display the UV model prediction divided by the SMEFT prediction (upper,left), the
UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).
These plots refer to s = 1.5TeV and M € [500, 3000]GeV.
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g - —h g _h g h

g < — —h q ~h q ~h

Figure 5.6: Feynman diagrams for double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram).

parameter space. For each value of s we consider the following ranges :

* scan 1: Ay € [0,1], A3 € [—1,1], |sin(f)| < 0.37 and vg € [0.02,8vgy] with M € [250, 3000]
GeV.

e scan 2: Ao € [0,47|, A3 € [—4m, 4x], |sin(f)| < 0.37 and vg € [0.02,8vy] with M €
250, 3000] GeV.

We note that scan 1 populates only values of r.,, < 0.1 while scan 2 mostly populates the contrary
regime. From these figures we interfere that while for r.,, < 0.1 SMEFT and HEFT do nearly
equally well, for larger values of 7., HEFT seems to describe a little better the full UV model. As the
energy in the centre of mass increases we observe in general terms a better convergence of the EFT.
This is mainly due to vanishing dependence on the anomalous couplings, i.e. the term proportional
to k) becomes irrelevant for large s. The process in the SM has destructive interference and the
interference behavior dependence on the energy scale. Since the matrix element of VBF My gp(s)
is maximal around s ~ 4m? it is no surprise that the plots at s = 0.5 TeV have a relative worse
convergence with respect to other those at higher values of s as there are more delicate cancellations
due to the destructive interference. As the energy s increases the contribution proportional to kyky is

iy (Ko, — 2K, for large s.

suppressed and My gp ~ %

v

5.1.2 ggF

In the effective field theory framework model we have three different diagrams contributing to ggF
shown in fig[5.6] These processes are written in terms of anomalous coefficients of eq. (3.27), in
particular the effective coupling ¢thh is a new coupling that is not present in the SM. This parameter
strongly affects the total cross section o(pp — hh) with respect to the SM prediction, see [[71 [72]].
The EFT amplitudes of the diagrams in fig. scale differently with the invariant masses /s, where
s is the Mandelstam variable. In the limit s > m?, m? the scattering amplitudes reduce to [28]):

2

m
Mg ~ cfasv—;, (5.13)
2,2 2 2
Ma ~ Ctli)\()és%% [log (%) + m] , (5.14)
2 2 2
M C%aS% [log (%) n m] . (5.15)
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The matrix elements Mg, M A correspond to the first two diagrams in fig. while M7 is the
amplitude with the new interaction. Triangle diagram M, is enhanced near threshold s ~ m? and
is suppressed for higher energies s > m? m?. If co; < ¢? and the centre of mass energies s > m?
(which is the case we’re focusing on) the contribution from new physics is comparable with the box
diagram contribution leading to significant deviation from SM independent from the effective field
theory framework we are going to use later. Therefore the squared amplitudes will be particularly
sensitive to cy; (and consequently to new physics) unless ¢? >> cy;.

As a first step we focus on the process ¢t — hh. In principle this is enough to investigate the deviation
from the SM prediction since all the anomalous couplings ¢;, co; and k), are already present in ¢t — hh.
This has to be seen as a preliminary step that cannot reproduce physically meaningful features such
as the destructive interference between the triangle and the box diagrams in ggF.

The scattering amplitude in the effective theory reads :

2 2 _ 2 _
~ my my  m; o7 (]751 Pyt my) oMy (Zi’l P, my)
Mo ~ m My My
tthi ~ w(p1)0(p2) | Car 02 + Ciha V2 s —m2 TG 02 t —m2 ty2 u —m?
(5.16)

A numerical analysis in complete analogy to the VBF case was performed, see fig. |5.7l5.8/and
The UV parameters vary as:

Ay € [0,47), A3 € [~4m, 47, v, € [0.01,100], sin(x) € [0.024,0.024] (5.17)

while the condition is left unchanged. As soon as | sin(y)| > 0.03 SMEFT does not reproduce
the UV model results, for graphical convenience we have chosen a mixing angle such that EFT agrees
with the UV model for low values of the expansion parameter. HEFT instead provides a better
convergence also in this case allowing a good accordance wit the UV model also for higher mixing
angles. Given that agreement between HEFT and SMEFT is found only for small mixing angles, we
have restricted the range for values of the mixing angle much more with respect to the VBF case.
In addition to small mixing angles we have to take into account the separation of the mass scales
that appear in the expressions of the couplings (5.1)),(5.2)),(5.3),(5.4). This is the reason why points
referring to the physical mass scale below 1 TeV seem to be displaced with respect to the rest of the
points.

At the squared amplitude level we agree with the statements made at the coupling level for Higgs-
fermion interaction i.e. the SMEFT can reproduce UV model only for low values of the mixing
angle while HEFT shows a better convergence. Therefore we conclude that SMEFT is a reliable
EFT description only for low mixing angles.

Another effect that may be inferred from the plots: SMEFT departs from UV prediction at lower
values of r as the scale s grows. This can be understood by looking at eq. where in the limit
s> m?, m? the anomalous couplings ¢; and k, are suppressed and we get M, ~ cor Which can

enhance significantly the cross section in ggF [28]].
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Figure 5.7: We display the UV model prediction divided by the SMEFT prediction (upper left), the
UV prediction divided by linearised SMEFT (upper right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower left) and the UV prediction divided by and HEFT (lower right).
These plots refer to s = 0.5 TeV and M € [500, 3000]GeV.
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Figure 5.8: We display the UV model prediction divided by the SMEFT prediction (upper,left), the
UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).
These plots refer to s = 1TeV and M € [500, 3000]GeV.
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Figure 5.9: We display the UV model prediction divided by the SMEFT prediction (upper,left), the
UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the
linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).
These plots refer to s = 1.5TeV and M € [500, 3000]GeV.
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Note in addition the significant difference between the SMEFT prediction and the linear SMEFT while

in the VBF their prediction were similar up to r ~ 1.
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Chapter 6
Colored scalar

So far we have been focusing only on the Higgs interactions with fermions or electroweak gauge
bosons. In this chapter, we will focus instead on a colored state that can generate effetive vertices of
the Higgs boson to gluon as those can modify the main Higsg pair production channel i.e. gluon gluon
fusion (ggF).

There is yet another reason why we have selected this colored model: it appears in the list of Loryon
particles [8]], namely it is a good candidate to show different predictions between the two EFTs of
the Higgs bosons we are considering throughout this work. In addition, this model will not produce
a new resonance in di-Higgs production but rather indirectly affect the cross section which is hence
qualitatively very different from the singlet model discussed before. With respect to the scalar singlet
case now we deal with 1-loop amplitudes in the UV model. In the first section we define the model
and the associated Feynman rules. After that we pass to the matching onto the HEFT and SMEFT
lagrangian. A final comment on the effective couplings involved will show clearly under which
additional conditions SMEFT can be derived from HEFT.

6.1 Model

In this section we enlarge the SM spectrum with a complex colored scalar w; whose charges under
the SM group are (3,1) , /3~ This particle couples to the SM Higgs doublet and to gluons via the

lagrangian :

[

L5 Dyw| D'y — M2wiw, — %"wileTH, 6.1)

D,w; = (8M —ig3GRT" — ileBu) w1, (6.2)

where 7% = % are the Gell-Mann matrices an a = 1,2, ..8. In eq. (6.1), the first term contains the
covariant derivative which couples w; to the gauge sector, the second piece is the explicit mass term

and the last one represents a Higgs-portal interaction which provides another mass contribution to w;

76



6.1. MODEL

in the broken phase. In other words after EWSB the physical mass of the new particle is given by:

CAh
M2, = M2 + Tzﬂ : (6.3)
The latter being a particular case of the general formula (1.67)). The new field w! has an internal index
v =1, 2, 3 labeling the color state i.e. it is a triplet under color hence transforming in the fundamental
representation of SU(3)c. Let U(z) be an element of SU(3)c gauge group, then the field and its

covariant derivative transform as;
wp — w; =U(x)w;, and (D“wl)l =U(z)(D,wr) . (6.4)

In order to evaluate the scattering amplitudes of this NP model we should work out the relative
Feynman rules. We note that D,,w; (D*w; )" gives the Feynman Rules of scalar electrodynamics where
the gauge group is not the photon field A, rather it’s a non abelian-one yielding an internal structure

that does matter in this particular coupling between w; and the gauge bosons g.

wy 1 . g
pl/ /1 g,b w1312
) )/ — p(Tay. ?%v/ — iq> T, (T, - 6.5
g; A 999~ igs(p2 + p1)"( )zm ﬁ): Zg3gW( )ik ( )kJ' (6.5)
P2\ . : S
Wi j g Wiy

The other Feynman rules of the model describe the interaction between w; and the Higgs boson:

w11 h w131

C\h i CX\h o q
,,,,, ’ = —j—vo*! = —j—-§"12! 6.6
h < ¢ 9 v ) ( ¢ 4 ) ( )
T, h wT. .
w3 1:J

where i, j are color indices of w; while a,b = 1,...,8 label different generators in SU(3)¢.// The
relevant diagrams for Higgs pair production are given in tabJ6.2] From a naive dimensional analysis
one would expect logarithmic divergences to arise therefore a dimensional regularization prescription
(DR) is adopted in order to regularise the loop integrals. We pass to dimension d = 4 — € and rewrite
the strong coupling g5 — ©°g3 where 1 is a renormalization group energy scale. Under the assumption

of perturbation theory we can write the following scattering amplitude for single Higgs production:

dk (2k + p1)*(2k — po)”
(2m)® (k2 — M) ((k + p1)? — Mp,)((k — p2)? — M)
dk 1

(2m) (k2 — M) ((k +p1)? — Mp,)((k — p2)* — Mp,) -

iMuyv(gg — h) = (—:Z(—:I;Wbasﬂc)\h/

- e“ebéabagwcAhZQ‘“’ 6.7
u-v
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Note this is a genuine 1-loop process, with no tree-level diagrams, thus the cross section will be at
least of order a%. While in principle the model matches also to other Wilson coefficients such as the
one modifying the trilinear Higgs self-coupling, those contributions are not relevant for our analysis
as they enter at a higher-loop order since the SM contribution is already one-loop order. The effective
coupling of the Higgs boson to gluons gives a tree-level contribution to the amplitude. So matching
the Higgs gluon coupling at one-loop level in total gives the same loop order as the SM contribution.
In our analysis of the double Higgs production we need My (g(p1)g(p2) — h(ps)h(ps)). Following
the literature [[73]] we write the scattering amplitude as a linear combination of two orthogonal Lorentz

structures 74" and T3 satisfying the Ward identity:

G Oé /’l’ Q2 a 1% 4
Moy (g9 — hh) = —z%eue‘; (FTP™ + FyTE) 6., 6.8)
F1:CAFA+FD, FQZGD. (69)

where Q = (p; + p2)? and G is the Fermi constant. The momenta p; and p, refer to the gluons.
The expressions for form factors Fa, Fo, Go depend on the physical scales of the process such as
m, My, s. Their expressions in terms of Passarino Veltman integrals are quite lengthy and are given
in [[74]. We note that the form factors are finite. Hence there is no parameter in the new UV Lagrangian
that needs to be renormalized.

Nevertheless we adopt a regularisation scheme as in intermediate steps there are divergencies. We
find it convenient to express our results in the language of dimensional regularization fixing the
renormalization scale p i appearing in ag to a different scale depending on the required matching
condition.

Note that ag is a running parameter and its running effects give sensible contributions that can’t be

neglected.

6.2 HEFT matching

As far as the matching onto the HEFT lagrangian is concerned we exploit a diagrammatic approach
where we impose an equivalence between the same matrix element computed both in the UV theory
and in the EFT framework, which allows us to extract the form of ¢y, and cy4,, depending on the
matrix element we consider. These effective vertices are parametrized in terms of ¢y, and cggnp,.

The corresponding scattering amplitudes written in the HEFT framework are:

. O{S a a 1 v 14

iMuerr(9(p1)g(p2) — h(ps)) = Z?GMG% b;ngh (piph — p1 - p2g™”) (6.12)

. Qg a a 1 3m2 v v

iMuprr(9(p1)g(p2) = h(ps)h(ps)) = z?euei’,é bﬁ (nghh + ﬁcgghﬁ)\) (piph — p1 - p2g™)
h

(6.13)
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iMuprr(g(p1)g(p2) — h(ps)) = - h (6.10)

iMurr(g)g(e) — hp)h(p) = e+ %%’w (6.11)
ST A

g h

Table 6.1: relevant vertices in the EFT formulation of ggF process.

We can proceed in the usual way equating amplitudes in HEFT with that in the UV model together
with the assumption that &/ < M. We have collected the Feynman diagrams relevant in the matching
procedure in tab. The UV theory includes many others diagrams for the My (gg — hh) matrix
element such as those with three and four gluon vertices however they are zero for color.

Even though the EFT limit requires to compute a tree level amplitude in terms of effective couplings,
the UV side is a purely 1—loop process. In the Appendix |C|we report the explicit calculation for a

diagrammatic matching leading to:

1 c)\hvz
Cggh = = .
991 6 (AM2, + cxpv?)

(6.16)

The diagrammatic matching for ¢y, 1s a bit more involved. We do not need all the diagrams in the
M(gg — hh) to come up with an expression for ¢ ,,, as many of them give contributions proportional
to cg4qn, and/or cupp,.

Therefore with respect to[6.15|we focus on the first four diagrams: the first and the second are simply
obtained from those in ¢y, replacing 22> — =02, the third and the fourth together with variants
with external legs exchanged give a contribution only at O ( Ml;‘h

) because the less suppressed terms

the following relation:

(9( 1 ) vanish once all the diagrams are considered. Thus if we stopped at O <M%) we would have
ph

1 1
CHEFT _ 2 HEFT | o _—_ | (6.17)
gghh 9 “9gh M;lh

In that case we would have no dependence on the momenta ps, p4 of the Higgs bosons in the final state
and the associated Lorentz structure would have been given just by pyph — p1p2g*” which satisfy the
Ward Identity.

In the ggF literature 73} (75, [76] two Lorentz structures arise: one is recovered by our computation
while the other is indeed proportional to ps and p,, we are going to neglect the latter as it gives

contributions that are higher order in M,,.
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Y
% g
ZMUV(99—> h/) — : ::*”** h —I— ?\ \IL777 h (614)
g
g
g /h
% N )
ot
;éé h g T h p x\\
g
h
9 h 9
%,,,,{ Y@\ h g L A
+ | + e n ;32 -
féggiiii\ AN (éﬁv h g o h
g h 9
+ (box diagrams exchanging final legs) (6.15)

Table 6.2: Relevant vertices for the matching of the colored UV model to the EFTs basis, note that
diagrams with three gluon vertices are zero for color.

6.3 SMEFT

One of the assumption of SMEFT to be a predictive field theory is that BSM physics must be weakly
coupled to SM.

This means that NP has a characteristic scale which is far from EW scale, from a top-down prospective
this means M2, = MZ, + cypv® =~ MZ,. In this scenario we integrate the new colored scalar out and
subsequently we break the EW symmetry, thus the hypothetical new particle does not interfere with
EWSB.

While the scalar singlet allows for a tree level the colored scalar gives pure 1-loop contribution to
Higgs pair production and must integrated out using functional methods. The latter becomes clear
when we solve the classical E.o.M. for w; from|[6.T}

(D2+Mjm+%|1{|2)w120—mf=0. (6.18)

Since w{ vanishes at tree level, the contribution from NP to the effective lagrangian arises only at

1-loop.
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6.3.1 Functional matching

We want to exploit the functional matching procedure which is easier to handle with respect to the
diagrammatic approach. In the functional matching one imposes a relation at the level of the action
and one does not need to enumerate all possible Feynman diagrams allowed in a specific model and
consequently there’s no need to work out the relative Feynman rules. It consists in the evaluation of
one particle irreducible effective action ['; p; (1PI) both in the UV theory and in the EFT. In particular
we are interested in the 1P actions where external states are only given by light fields, the so-called
light particle irreducible action (1L PI). Under the assumption of perturbation theory the following

relation holds for '}, ppr atany order, where we indicate the loop counting by [ :

Ty [H, Wsar) = Ty [H, Wsag), (6.19)
T epr [H, Wsar) = Ty [H, W) (6.20)

where H denotes the Higgs field while Wg,, stands for all the other SM fields. In general terms the
1PI effective action I'yy [H] is a fucntional of both the light fields and the heavy one. 'y the tree

level piece and the one loop level piece are respectively given by:

Fg)‘)/ [H’ \IISM,OJl] = SUV [H; \I]S]V[awl] )

525UV [H; ‘I/SM7W1]
6(H, Wspr,wr)? '

T [H, Ugpr,wi] = i log det (— (6.21)
This functional is not the I';, ;- yet as it still depends on the heavy field w;, however the I';, 7y can

be easily obtained by exploiting the Equations of motion:

F(LO,)UV [H, Vs = Suv [H, Vs, wicl,
525Uv [Hv ‘I’SM,M]
O(H,Wspr,wr)?

D8 [H, Wen] = i log det <— ) . (6.22)
w1=wi,c

We can proceed in a similar way for the EFT side where the 1PI effective action is already a 1L P/

as there is no heavy field. The tree level part contains all the effective operators with their Wilson

Coefficient, the one loop part contains in principle the same operators but their Wilson coefficients

are 1-loop sized, i.e. they are suppressed by a loop factor:

0 0
F(L,)EFT [H, \I’SM] = SJ(EI)?T [Hv ‘I’SM] )

(6.23)

. 5250 [H,
F%)EFT [H, Ygp] = SS}T [H, Vgpr] + i logdet (_ dl s

O(H, Vsn)

In our case we are considering the Warsaw basis as the EFT and it’s written in terms of dimension 6
operators. Because of the fact that w¢’ = 0, the matching condition between ') v and FEE #r0) does
not give any result. This entails no effective operators of the Warsaw basis are generated at tree level.

We must pass to the one loop contribution of I';, 7y that in general is quite involved. In this model
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we deal with loops where only heavy fields are circulating, in this case FS)UV can be easily computed.

We can rewrite the functional determinant of I';, ;71 embedding all the SM fields into H:

82Suv[H,¥smwi]  62Syv[Hwi]
logdet 5(&)1,&)1) 6(H,w1)

= log det <7623UV[H’“’1])

6(0.}1 ,wl)

+ log det <L Sal(f;[g ,)w1] )

82Syy [Hwi] 82Syv [Hwi]
0(H,w1) O0(H,H)

w1 :wlc

(6.24)

w1 :wlc w1 :wl

Note that we impose w; = w¢ after the functional trace and the functional determinant are evaluated.
We can then compute the functional determinant exploiting the fact that w{ = 0, thus F(Ll,)Uv is
diagonal, finally the basic properties of the logarithms leads to the expression above.

We keep the explicit expression of functional determinant as ' and w; could be multiplets that can
be decomposed further. By imposing we appreciate how the functional determinant of only the
light fields simplifies and we are left with:

52 H
_;%agL_ﬁid) =T,y = SO [H] (6.25)

F(Ll’)UV = log det < 5wr, 1)

Equation can be derived adopting the path integral formalism, in particular we integrate over
the heavy field configurations:

oTes s (H)@) _ / Dioy ¢iSIH 1)

This relation defines the effective action at the scale = M., where we match the UV theory to the
effective one. In these steps the SM fields are treated as a classical backgroundﬂ
A standard way to proceed is to express w; as w; = w{+w; and expanding close to its minimum given

by the classical field configuration:

o 1428
S[¢>w1+wl]_s[wl]+§(6wl)2

L&) (6.26)

c
w1

By using method of steepest descendent, one loop contribution to the effective action boils down to

the evaluation of a functional determinant:
i log det(D2 v M2y %"|H|2) - iTrlog(D2 M2 %’WHF) (6.27)

H|?)

is an elliptic operator that can be always computed using a covariant derivative expansion (CDE) which

where Tr is a trace over internal and external degrees of freedom. It turns out that (D?4 M7, + 4

is a way of performing one loop evaluations keeping gauge covariance of formulas at each step [58]].

T s can be considered as a Wilsonian action where we have integrated out shell of momenta Ag < p < A where
M > Ag. In this way non localities do not show up in 'y and an expansion in terms of local operators is possible.
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Following [[77] it is possible to rewrite the functional trace as:

OO

1 Cah 4 1 . 9 n 1 Ca\h 2
Tr[ D M2 ‘H‘ tr/d / — ng (QZP”DM + D )] ]92_—]\46217 H| ,
(6.28)
where tr on the right hand side stands for trace over internal degrees of freedom. Recalling that odd

powers of p/ vanishes after integration and that crucially G, = [D,,, D, ]| we obtain the following

contributions for the functional trace [58] valid for a single mass scale in the loop:

1 Cah ) / 4 —1 2 M C)\h
Tr|l— Sy } d t{M [—1 1) g }

1 M? M2
+M, [—510?%( ;x) (%h!m ) —ﬁ(log( " ) — 1)GWG‘“’]

2

L
1 1=1 rexn 0\ c,\h v, Oh
+W[? (7\5’\ ) \H\ GG + o1 (D, HP)®
e L (D, } +O<M4 >} (6.29)

Already at this level we can see that integrating out w; generates one relevant operator that corrects the
mass of the Higgs, as well as other irrelevant operators of dimension 6. The logarithmic divergences
that show up can be removed by renormalization by a redefinition of the Higgs mass (1st line) and
Higgs quartic coupling (2nd line).

As a first step we bring this lagrangian to the Warsaw basis such that it becomes clear we are generating
Op, Opyo and Oy at one loop level as they are suppressed by 16%. Functional matching does not
know anything about the set of operators of the EFT basis and does not give in general a minimal set
of effective operators, in other words I';, ;7 may contain redundancies.

The same procedure can be automatically implemented through the Matchete program [[62]]. This tool
is based on a functional matching routine and can be used to study weakly interacting BSM theories.
As far as the scattering amplitudes in SMEFT framework are concerned, we note that they correspond
to the expressions of M y g with the additional constraint that cygn, = 3ggn Where My, is replaced
by M., leading to :

2

(SMEFT _ OAnU (SMEFT _ 1 cwv”

ggh 2 gghh 2"
24M2, 2 (24Mex)

This linear relation among the couplings is again a consequence of the symmetry constraints imposed
in the SMEFT framework being H a doublet under SU(2). A physically meaningful limit relate these
expressions of cyq;, and cygpy: considering the case of M., > canv? and neglecting orders in 1 /M 4

we explicitly find that HEFT and SMEFT coefficients coincide.
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6.4 Low Energy Theorem

It is possible to recover the same results of the HEFT matching section adopting a low energy theorem
(LET) [78, [79]], which is an elegant way to get analytical structure of multi Higgs boson couplings.
LET treats Higgs boson as a background field with a low momentum such that A is very close to
its vacuum configuration. Following [79] we can think of gg — hh process as the QCD vacuum
polarization where two (or more) external Higgs bosons are attached to the heavy particle loop where
the heavy particle loop can consist of BSM particles, the top quark or the massive gauge bosons.

In the LET, we assume that the Higgs boson momentum is vanishing, namely the Higgs field is kept
to a constant value. In these conditions, interactions with Higgs field are formally equivalent to a

redefinition of the heavy particle mass. At the lagrangian level we have [78]]:

2
g a auv 1
Lingg = W;GWG " (Alh + §A2h2 + ) : (6.30)

where we have defined :

an
A, = =—1 t M> 31
n (30” ogde /\/lmass(v)> , (6.31)

= M

mass

where M2

mass

M ass 18 mass matrix of the new heavy particles interacting with the higgs
field. In our case we are interested in A; and A, standing for the effective couplings between the Higgs
and gluons. In the following we are integrating out just the w; particle leaving the other particles as

dynamical degrees of freedom, thus the determinant of the mass matrix reduces to M2, .. = M2, +

mass

2
CARY
4

Diagrammatically these effective couplings can be obtained by a QCD vacuum diagram corrected by
loops of w; where we attach n external legs of the higgs field h . The general form of QCD vacuum

polarization in the case of the new colored scalar is:

idragllly = ¢ \gm,{ e g+ g x99 g = idmags(ph'p” — p2g"”)1—[(p2)5%’

(6.32)

where p is the gluon momenta and ag = % . The second diagram is proportional to II* ~ p?g*1I,
given that the Higgs boson in LET has vanishing momenta and that the Higgs boson momenta is equal
to the gluon momenta by momentum conservation. It follows that this diagram does not contribute.
So we take into account only the bubble diagram in our analysis. E]

Factorizing out the tensorial part the explicit expression for the scalar quantity is given in dimensional

%For the sake of completeness a tadpole diagram should be considered in the QCD vacuum polarization however it
vanishes due to color conservation.
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6.5. HEFT AND SMEFT AT THE LEVEL OF THE COUPLINGS

regularization by :

A 1 1 M2 (v) — pPx(l —2)
I (p?) = —< — 1—22)%1 phys . .
07) = 15— s /0 de(1 — 27) og( - ) (6.33)

The first term contains the divergent part of the bubble diagram. The second terms is given by the
the bubble diagram and contains the field dependent mass of the new particle. If we focus on the
scalar part of the QCD vacuum polarization in the limit of vanishing momentum for the Higgs we
can expand II[v + h|(p = 0) getting the coefficients corresponding to ¢,gp, and to cggr,. Thus we can
Taylor expand around v:

I[v + h)(0) ~ I1(0) + A

OTI[v](0) K% 0*TI[v](0) L (6.34)

Jv i 2 (dv)

inserting it back into (6.30) clearly gives us the explicit form of cyy, and cggpp.
Note also that the same Lagrangian contains gggh, ggggh as well as ggghh, gggghh vertices due

to the Non-Abelian nature of G, field strength tensor. In other words we can say:

olljv] 1 CAnv?

= == 6.35

Cogh =¥ ov 6 4M2, + cypv?’ ( )
v’ [ ](0) 1 CAhUQ C)\hUQ 2

— _— 2 ) 6.36

Coghh = 73 (81})2 T 12 [AM2, + cy0? AM2, + cypv? (6.36)

The same result is recovered in the HEFT matching procedure where we have assumed the heavy
(physical) mass limit of the colored scalar, namely the two procedures are explicitly shown to be

equivalent at order 1/Mp2, ..

6.5 HEFT and SMEFT at the level of the couplings

We comment on the relations between c,,;, and ¢y 4,5, worked out in the different EFTs frameworks.From
the results obtained above one can interfere that under the assumption M?, >> c,,v? the couplings
found in the matching to the HEFT lagrangian reduce to those obtained in the matching to SMEFT.
This can be seen in :

1 eyv? MZ>c, 2 Cypv2 v’ 1
HEFT Av
_1 , 1 Lo 6.37
ooh T GAMZ + cppe 2402 iz O\ )| (©37

where the first contribution is indeed the SMEFT result, and the second term is higher order in 1/M?>

Again this holds true only in the so called decoupling limit where we have the freedom to take the
M., parameter high enough such that it satisfies M? > cy,v?. If the Higgs dependent mass of w;
is comparable with M., then HEFT does not converge to SMEFT prediction because terms of higher

3In the case a hard cut off was used as a regulator we would have to add £ = £5G,, ,, G In 25 for the one loop

247
contribution, so this result is independent from the regularization scheme adopted.

JV[Z
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6.5. HEFT AND SMEFT AT THE LEVEL OF THE COUPLINGS

. 2
order in % cannot be neglected anymore.
This holds also for the cg45, coupling up to O(M%) corrections, assuming again that M., is the

dominant contribution of the physical mass:

2
CHEFT _ i e’ _9 eV M2, >expv® Canv? 1_ Capv? Lo 1
99hh 19 | AM2, + cyp02 AM2, + capv? 48 M2, 4M?2, MA )|
(6.38)
Thus If we restrict ¢y, to its lowest order contribution in 5>~ and in addition to that we assume
ph

MZ, > cxpv® then it coincides with ¢5 7", These considerations suggest that the expansion parameter

that is suitable to show the differences between HEFT and SMEFT for the colored scalar model will
be most likely related to r = ‘3]1/’[1—2”2 Infact when this quantity is small the couplings in HEFT and
SMEFT coincide while in the norizdecoupling limit M2, > cy,v? HEFT predicts different couplings
than SMEFT. From the coupling point of view SMEFT is a local approximation of the more general
HEFT framework. We note that Higgs field redefinitions should not spoil this analysis at the level of
the couplings as c,qn, and cygp, have no tree level contribution. In the VBF for the scalar singlet case it
was necessary to work with amplitudes because of the ambiguity that / field redefinition introduced
at the level of the coupling. The colored scalar model does not suffer from this as any additional
redefinition in A is higher order in the mass suppression. If our aim is to highlight differences between
SMEFT and HEFT we may restrict our analysis to the coupling level but including the UV model in

the analysis necessarily requires to work at the (squared) amplitude level.
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Chapter 7
Conclusions

The ultimate aim in the EFT context is to shed light on the scale of new physics that may lead for
instance to a better understanding of the EWSB mechanism. With this idea we have analyzed the
main differences between two EFT of the Higgs boson, namely SMEFT and HEFT. To do so we have
considered processes with two Higgs bosons in the final state. Those processes allow to distinguish
between the two EFTs as at dimension-6 in SMEFT single and double Higgs couplings are correlated
whereas they are not in HEFT. This holds also true for triple or even more Higgs final states, but in this
case the cross section is too small to be accessible at the HL-LHC. The goal of this thesis was to check
whether differences in HEFT and SMEFT can be realised in concrete UV models and to investigate
how large this differences are in Higsg pair production.

Adopting a Top-Down approach we have selected two models from the Loryon list [34]: a real
scalar singlet and complex colored scalar. The UV models were matched to both SMEFT and HEFT,
showing already at the level of the couplings that differences between the HEFT and SMEFT description
can be realised. In particular, we found that in the singlet model only for small mixing angles the
SMEFT matching is accurate.

In the next step, the amplitudes for W W~ — hh and tt — hh were compared to the ones obtained
in the UV model. This has shown clearly that SMEFT description of Higgs pair production cannot
reproduce the UV model prediction when the new particle gets most of its mass from EWSB. We
quantify this by introducing a quantity » that measures the amount of mass that stems from EWSB.
In particular when » > 0.5 in VBF or r > 0.05 in t¢ — hh the SMEFT prediction is already 20%
off from the UV prediction. HEFT instead is showing a better convergence to the UV model even for
large . Therefore we could conclude that SMEFT is not enough to describe di-Higgs production in the
limit of high r, instead HEFT should be used. In practice we do not know what is the UV completion
of the SM and we proceed with a bottom-up approach driven by data. In this sense HEFT stands as
a proper EFT formulation even for Loryon-like new particles. In other words if we parametrize new
physics in terms of a SMEFT we are cutting away the possibility that it is a Loryon particle while
HEFT, being a more general framework can also cover the case of a Loryon particle. Our claim, in
its strongest version, is that the upcoming di-Higgs data should be interpreted in HEFT as concrete

UV models can realise HEFT even taking into account various constrains ranging from theoretical
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ones like perturbative unitarity to experimental ones like Higgs data or electroweak precision tests.
We did not investigate whether the differences that we see between the UV model and the SMEFT
decrease when going to dimension-8 but leave this to future research. Besides the models discussed in
this thesis, there may be more phenomenologically viable models showing differences between HEFT
and SMEFT. Those will constitute an additional motivation to adopt an HEFT formulation in the data

interpretation.
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Appendix A

Numerical analysis of a Z> symmetric singlet

model

In the following we present numerical results of the renormalization group equations for the irrelevant
couplings of the singlet model (2.1)). Let us mention that the lack of including A and 4 in the analysis
should not represent a problem as relevant operators usually vanish under the renormalization group

evolution. The idea is to express A; and A, in terms of the other parameters of the model:

)\1 = )\1 (m, MX, v, )\3) s
/\2 :)\2 (m7 Mvaa)‘?)) : (Al)
Exploiting relations between tan(2y),m? and M? I can express v, in terms of the other parameters:

(M? — m?) sin(20)
2)\31)

(A.2)

Vg =

I can substitute it back into the expressions of the physical masses getting formulas for Ay and )\,

which are valid at the electroweak scale:

2 2 2
m ) o M= —m
)\1 = 21}2 + Sln(X) 2’U2 )
222 v? M?
Ny — 3 —sin(y)?) . A3
7 sin(2y) MZ — m? (M2 — S ) (A-3)

The next step is to solve numerically the coupled system of seven differential equations in
Mathematica. A major problem is the choice of A3 value at the electroweak scale, since we have
no direct experimental measure of it we take a value which respects perturbativity at low energies.
In the analysis we require that the perturbativity condition holds for every coupling up to the Planck
scale and for negative values of \3 we impose the additional condition 4\; Ay > A2 to ensure vacuum
stability. From ﬁg we can only conclude that the sin(y) is decreasing by for higher values M this
is in accordance with 2.1 of the text.

&9
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Figure A.1: A set of points allowed by RGE are presented in the sin(y) — M plane. In this run we
have fixed A3 to have a value of 0.13 at the electroweak scale.
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Appendix B

Geometric formulation

Instead of considering the convergence of the effective theory expansion we can highlight the differences
between SMEFT and HEFT adopting a geometric approach. The following discussion is largely taken
from [9]].

We have seen by a suitable change of coordinates that it is possible to pass from the SMEFT to the
HEFT formulation, however, there are physical situations where this change of coordinates is not
possible.

To address this point one can rely on geometric arguments. Given the fact that the S matrix is invariant
under field redefinitions, while the form of the Lagrangian generically is not, can be understood
through the geometry of field space with the scalar fields as the coordinates.

If we restrict ourselves to the field redefinition ¢ — ¢+ F(¢) such that F/(¢) = ¢V, i.e. no derivatives
involved in the redefinition, we can rewrite the same scattering amplitudes in terms of geometrical
objects, see for instance [80]. As far as the scalar sector of the SM is concerned we can split the
physical Higgs boson from the Goldstone bosons. Recalling we can express the qz? field as:

—

¢ = (v+ h)n(m), where n(w) € SU2), ® SU(2)r/SU(2)v, (B.1)

where £ is the radial coordinate while n is a four-dimensional vector satisying n-n = v? and containing

3 degrees of freedom, namely the Goldstone bosons:

ny = m
Ng = T

n= S . (B.2)
ng = m3

NG
Under the chiral group G they transform as:

h%n  n%omn 0€g. (B.3)
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In this case n(7) transforms linearly while & is a singlet. As far as the scalar part of the SM is

concerned, we can build an HEFT like lagrangian:

(vF(h))*

1
£HEFT = K(h)a(ﬁh)Q + 1

Tr| (D,m) D'n| =V (1), (B.4)
since the covariant derivative does not play any role in this geometric formulation we can rewrite D,,n

as.
NgMy

1 —n?

(On)? = (5(1,1, + ) (Ong)(0ny), where a,b=1,2,3.
This means I can rewrite the HEFT lagrangian at the two derivative level as:

Mgy
1—n2

1 vF(h))?
»CHEFT = K(h)é(ﬁh)Q + # (5@1) + ) (Ona)(anb) — V(h) . (BS)
The SMEFT/HEFT analysis should clarify whether and when this lagrangian form can be mapped into
a SMEFT lagrangian, i.e. when it’s possible to construct the doublet H starting from {h,7*}. The
fundamental request for converting a HEFT into SMEFT are summarized in [9] as follows:

Leading Order (LO) Criteria: A physical HEFT can be converted to a SMEFT at the fixed point if and
only if the following three conditions hold:

* The function F'(h) has a zero at some real value h = h*. This h* is a candidate for an O(4)

invariant point.

* The functions K (h), F'(h), V(h) all have a convergent single argument Taylor expansion in A
ath = h".

* The scalar curvature R(h) is finite at h*.

We apply the above prescription to the scalar singlet model, in its Z, symmetric form. Recall the
effective lagrangian is given by:

A3

= |0H|? —
Feor = 1OHE = 0+ nlHP)

1
(O1H|*)? = pi [ H* = Ag|H|* + m(ug +X3|H)?. (B.6)

As we know SMEFT can be always expressed as an HEFT theory, in particular by making use of Eq.
[1.34] we recover the broken phase expression:

1 A(v+ h)? , 1 ) t
Lpfr= 5 1— WEIn Ag(v+h)2)} (Oh)? + §(v+h) Tr[(DU) DU}
L o1 PR P 2]?
Qul(wrh) 4>\1(v+h) + T6n [2u2+)\3(v+h)} . (B.7)

92



We identify the quantities relevant in the construction of geometrical objects:

_ B A(v+ h)?
K(h) = \/ L N @E R+ ) B8)
F(h) = v+ h. (B.9)
V(h) = S12(0+ h)® 4+ 2 (v + ) — — (203 + Mol +0?) (B.10)
bl 4 16Ag \H2 T 73 ‘ '

These quantities have a convergent Taylor expansion around the O(4) invariant point and therefore
point 1 and 2 of the LO criteria hold. We identify the kinetic term of the HEFT lagrangian in terms of

a metric in the scalar field manifold. In general terms we rely on:

1 A ,
L= 50:;(®) ((D.®")'D ) (B.11)
where in this case ® = {7% h} i.e. the Goldstone bosons and the radial scalar h together define
the spherical polar coordinates on the manifold. By looking at the HEFT lagrangian we note that our

metric has no off diagonal terms and is given by:

_ (K(h) 0
gi,j(q)) = ( O UF(h)g’(ﬂ“)) . (B12)

More in detail we have the following elements:

Ngn
gnn = K(h)?, Gap = V' F? <5a,b + ° > , Jha = 0. (B.13)

Analogous definition of connections for Yukawa sector as well as for gauge boson sector can be
constructed, here we are only interested in the scalar sector [81},[82]]. Note that when we make a field
redefinition to have a canonically normalized term for i we are indeed setting KX — 1, in that case we
would consider just the scalar manifold of Goldstone bosons.

Once the metric is defined we can compute Christoffel symbols taking derivatives of the metric with

respect to h or to the Goldstone bosons:

1 1 1
I, = §ghh(ah9hh) = 2 (OnK), I §9hh(0aghh) =0,
1 V2 F Nal : 1,
Iy = _§ghh(ahgab) = _ﬁ(ahF) <5a,b t1- £2> ; = =359 *(9ignn) = 0,
a 1 ak 1 a Ny
T = 59 (Ongrs) = F(ahF)5aba [ = 1q (5b,c + 1 n2) :

From these quantities it is possible to construct a non zero Riemann-tensor.
What we are interested in here is really the Ricci scalar curvature R in particular at the O(4) invariant

fixed point because it’s the putative point where EWSB is restored.
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For the ;3 # 0 the scalar curvature is finite at the candidate O(4) invariant point by

A2 Ny=3 A2
R(h = —v) = —%—?’/\SNd)(]\@ +1) E'=— Wis (B.14)

where N, is the number of scalar fields embedded in U. In this subcase, a mapping to SMEFT is
allowed according to the criteria stated above. Infact if we expand the Lagrangian Lg;sin powers
of “i% we recover an expression analytic in H which is of the same form as the SMEFT expansion.
Furthermore the decoupling limit is well defined, i.e. R(h = hx) m 0 that is the SM case which
is geometrically seen as a flat manifold.

When 2 = 0 the singlet gets all its mass from EWSB, it would be an extreme Loryon particle. In this
case Ly 1s not be analytic around /' = 0. The point where we think EWSB is restored shows up a

divergence in the scalar curvature:

_ Az N,=3
R\N%ZO— _(A3—2As)(h+v)2N¢(N¢+1) —— 0. (B.15)

In this case the EFT cannot be mapped into SMEFT and HEFT is required.
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Appendix C

Diagrammatic matching for c

In this Appendix we explicitly show how to perform a diagrammatic matching in the colored scalar
model. In particular we look at the processes gg — h both in the UV theory and in the HEFT limit.

Formally we are imposing the following matching condition:

Muv (9(p1)g(p2) = h(ps)) = Muerr(9(p1)g(p2) — h(ps)) - (C.1)

From the diagrammatic point of view we need to evaluate two diagrams in the UV theory whose low

energy limit is given in terms of a single effective vertex:

e h :;?) Looh - = h. (C.2)

From the left we identify M}, (g9 — h) and M%), (g9 — h) as the two contributions from the UV
theory. We start by writing down the amplitude in the HEFT framework:

. Qg 4 a, 1 4 v
iMuerr(g(p)g(p2) = h(p3)) = 175%% "~ Coon (PIP5 — P1 - P2g™) - (C3)
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In dimensional regularization we move to dimension d = 4—e and later and rewrite the strong coupling

constant g3 as g3 to keep g3 dimensionless. We start to evaluate the first diagram of the UV theory.

9
k—p2
kl :\T> h a b 26/ ddk tr [TaTb] ( )2(2]€+ )1/ 4 ( .C/\hv>
L - h =¢€% — ( -
. / vkt (2md) 93 h (k+p1)*— M2 2
{gg k+ P1
9
(2 ) (C4)
(k—p2)? — M;?h YR - M;?h ' .
We evaluate the trace in color space tr[T%T"] = % and rewrite g5 = 4ma,. As a first step we

implement the Feynman parametrization, then we shift the virtual momentum and we simplify terms

that are linear in the virtual momentum k:

1 1 1 !
=1(3 dx d dz
(k+p1)? — M2, (k —p2)* — M3, k2 — M2, ( )/0 0o o
S(x+y+z—1)
[((k = p2)2 = M2z + ((k +p1)? — M2y + (k2 — M2,)z]°

(C.5)

after that we perform shifts in the variable k£ — k — py + p22 neglecting those terms that have an odd

power of k.

AK"E” — piph + 2p7 K — 2phk” — A(k — pry + pe2)”(k — p1y + pe2)" — piph
+2p7 (k — pry + pa2)" — 2ph(k — pry + p22)”. (C.6)

A further simplification comes from the on-shell condition for gluons p? = 0 and p2 = 0, this means

the numerator is reduced to:
AEFEY — piph (1 — 2y — 22 + y2) .

In this way our integral has been decomposed from a tensorial structure to a sum of scalar integrals
that are tabulated for instance in Appendix B of [57]]. This means we have to evaluate two types of

d-dimensional integral for the first diagram:

I(l)—/ dk k? d L o (4-d
) (27) (k2 — A2 4-de)3 4 (4m)d/2 A2 4 2 )’

1(2)_/ddk 1 i L o (6-d
) @rh) (K2 — A +ie)d  2(4m)d2 A3 2 )
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In the case at hand A? = —2p poyz + Mgh while I' stands for the Euler Gamma function. We have
not made any assumption on the relative size of the masses involved in the process yet. Since we are
assuming the physical mass of the new scalar to be much greater than the other particles in the process
we are going to neglect the external momenta p; and p-, in other words we perform the computation
in the heavy loryon limit (HLM). When we solve I(}) substituting back d = 4 — ¢ we get in the limit

of vanishing ¢ :

4m 2 . € € My, — 2p1p2y» 2
e £€/)2/ L(e)=p [1 + §log(47r2) — ilog < ph 2 >] (Z - 7E-~) : (C.7)

A few comments are in order now: we make use of the modified minimal subtraction scheme as a
renormalization scheme (MS), then we set the renormalization group scale y = Mﬁh because this is

the scale at which we are performing the matching. Finally we expand the logarithm as:

2p1p2yz ! L 2pipayz 1
dy/ dzlog ~ —/ dy | dz2P277 o — ). (C.8)
/ ( Mﬁh ) 0 0 Mth M;lh

The final result from the first diagram is:

C)JLUZ
v 6(4M2, + c\pv?)

M (9(p)g(p2) = b)) =i S enebp (Wirh +pipag™) . (C)

This diagram by itself does not provide the right Lorentz structure. In order to obtain it we need to

take int account also the other diagram. We pass to the second diagram written as

//<\\‘ ddk 1 C\RU
c---h =€ 26/—tr ToT") ig2gh” (—i )
i;j\ X s (2m)d [ Jigs (k+p1+p2)? — M, 2
g

k+p1 + p2
7

TR (C.10)

The procedure to solve this loop integral is the same as for the last diagram and we do not repeat it.
We just quote the final result:

M2, (g(p)g(p) — hipy)) = 125 ener T ont”
vV m P u3(AM2, + cypv?)

(—p1p2)g’w . (C.11)
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This diagram contributes with a relative minus sign in the evaluation of ¢, yielding the right tensor
structure:
2

0 (142) a5 4 p el CARV v y
— h(p3)) =1— 04— — - C.12
ZMUV (g(p1>g(p2) (p )) ? T eueu v 6(4M62m + C)\hUZ) (p1p2 P1P29g ) ( )

We can now implement (C.1)) to get the expression for the Wilson coefficient in HEFT basis:

1 C)\hUQ
v 6(4M2, + c\pv?)

.0lg Qg
a b EZEb 5ab

A 1 vV v 14 v
z?eueyé ";cggh (PYDh — pip2g™") = i (Piph — pip2g™”) , (C.13)

which finally leads to :

CAhU2
6(4Me2x + C)\hUQ) ’

Cggh =
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