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Introduction

The greatest recent result in particle physics was the discovery of the Higgs boson in 2012 by the

ATLAS and CMS collaborations [1, 2]. With the discovery of the Higgs boson the last missing

ingredient of the Standard Model (SM) of particle physics has been found. It remains to show that

the Higgs boson is indeed the one predicted within the SM. So far the experimental results strongly

indicate so [3, 4].

Despite its ability to describe almost all up-to-date experimental results in particle physics, the SM is

far from being the ultimate theory of physics as it lacks different aspects to be complete. Some of the

problems we have not yet answered to are:

• The matter-anti-matter asymmetry: in the early stages of our Universe there must have been

a mechanism that has favoured baryons over antibaryons, this mechanism is not described in

the SM. The Shakarov conditions to successful generate this asymmetry require cannot be fully

satisfied by the SM.

• Naturalness problem: The Higgs boson mass receives quantum corrections that are highly

sensitive to any UV scale and requires a fine-tuning in order to match the expression to the

observed value ofmh = 125GeV.

• Dark matter (DM): Dark Matter represents 27 of the energy content of our Universe. The SM

lacks a suitable candidate for it.

• Smallness of neutrinomass: experiments have shown that themasses of neutrinos are considerably

smaller than the masses of the other particles such as quarks or leptons. The SM cannot explain

tis hierarchy of masses and strictly speaking does not provide any mass at all to the neutrinos.

This in turn raises also the question of the nature of neutrino masses, namely whether they are

Dirac o Majorana particles.

• EWSB: according to the Higgs mechanism when the scalar field assumes a vacuum expectation

value (v.e.v) then the so called electroweak symmetry of SM SU(2)L ⊗ U(1)Y breaks into a

smaller subgroup U(1)e.m.. This leads to the acquisition of mass by theW and Z bosons leaving

the photonmassless. While theHiggsmechanism successfully explains this symmetry breaking,

it does not provide a deeper understanding of why this breaking occurs or why the Higgs field

takes the particular form observed experimentally.
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Research on the Higgs Sector could allow us to proceed further in all thementioned directions. Solving

some of the above problems necessarily requires the addition of new physics (NP) in terms of new

particles. Going beyond Standard Model (BSM) is a natural way to improve our understanding on the

open questions we have.

Since so far no striking new signals of new physics has been discovered it is imperative to assume that

there is a mass gap between Electroweak scale ΛEW ∼ 246 GeV and the new physics scale.

When facing large separation of scales we can exploit the model independent approach of Effective

Field Theory (EFT). The latter holds whenE < ΛUV, whereE is a generic energy of the process while

ΛUV is a cutoff scale beyond which EFT description is no more valid.

Unless we find the ultimate theory valid up to arbitrary high energy scales, we can think about iterating

the above process where after an observation of a new particle we write down a theory that is valid

up to Λ
′
UV > ΛUV. In this way we end up with an hierarchy of scales where different descriptions

are suitable for a specific energy domain. These EFTs have a common feature: the SM will be their

low-energy limit as they must reproduce what we observe up to now.

This way of proceeding is called Bottom-Up approach. In this work we try to go the other way around

and start assuming a very concrete UV completion of the SM (Top-Down approach). We proceed by

matching this model to two IR theories that are commonly used in Higgs physics: Standard Model

Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT).

They differ both in the power counting and on the the assumptions made on the Higgs field. Standard

Model Effective Field Theory is commonly used when the UV theory is weakly coupled, while HEFT

usually is needed if a strongly coupled UV scenario is assumed. In SMEFT, the Higgs field transforms

as in the SM in an SU(2) doublet. All new physics effects are parameterised by higher dimensional

operators suppressed by a new physics scale Λ. The dominant effects in Higgs physics stem from

dimension-six operators. The basic idea of HEFT stems from the chiral Lagrangian, hence a strongly

interacting theory. In this case, the Higgs boson no longer transforms together with the Goldstone

boson in an SU(2) doublet, but instead the Goldstones and the Higgs boson get seperated: the Higgs

boson now transforms as a singlet. Typically a counting of canonical dimensions is adopted [5–7],

in which the Higgs boson does not count-up the dimensions. Higgs interactions with one or n Higgs

bosons hence arise at the same order in the counting of the canonical dimension. Hence processes

with a di-higgs final state are particularly convenient to make differences between SMEFT and HEFT

evident.

Our aim is to identify concrete models where SMEFT does not describe well the UV model and

consequently HEFT must be used. The opposite is not possible since SMEFT can be thought of as an

HEFT subcase.

In Ref. [8] potential particles that need HEFT instead of SMEFT have been identified and called

Loryon particles. Those acquire more than a half of their mass from EWSB. [8, 9]

As pointed out above, the SM electroweak sector undergoes a spontaneous symmetry breaking: the

gauge symmetry group leaves the SM lagrangian invariant under SU(2)L ⊗ U(1)Y, however when

Higgs field acquires a v.e.v. the lagrangian is only invariant under U(1)e.m. and theW and Z bosons
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become massive. Understanding whethere HEFT or SMEFT is the right effective description might

go hand in hand with understanding whether the pattern we are assuming in the SM, namely SU(2)L⊗
U(1)Y −→ U(1)e.m. could be an effective description of another more fundamental dynamics. To give

a flavour of this aspect we recover an historical example from Ginzburg-Landau effective model for

superconductivity.

There the action functional is:

LG(s) =

∫
Re3

dv3
[1
2
|(∇− 2ieA)Φ|2 + γ

2
(|Φ|2 − a2)

]
(1)

where (∇ − ieA) is the covariant derivative for a non relativistic system reflecting U(1) invariance

and Φ = |Φ|eiθ is the order parameter, a macroscopic wave function representing the condensate of
Cooper pairs.

The minimum of the action is for |s| = a and (∇− 2ieA)Φ = 0 (and γ > 0).

The action of the SM Higgs is extremely similar to the latter:

SH =

∫
d4x
(
|DµH|2 − λ(H†H − v2

2
)2
)

(2)

whereH is the Higgs doublet andDµ is the covariant derivative of the SU(2)L⊗U(1)Y . This theory

has a minimum at
〈
H†H

〉
= v2/2 . The expansion around this minimum leads to massiveW+,W−, Z

bosons.

However Landau-Ginzburg is the effective description of amore fundamental theory (BCS). In analogy

to Landau-Ginzburg, one would expect a shorter distance completion/origin of the Higgs mechanism.

The appearence of a Mexican hat with a minimum at v = 246 GeV may be the low energy effective

parametrization of a shorter distance dynamics, leading to an effective SU(2)L⊗U(1)Y . In this sense
SMEFT and HEFT provides two possible parametrizations of the same, yet unknown UV sector,

leading to the observed massive gauge bosons.

The outline of this work is as follows: in Chapter 1 we revise the basics of SM and of EFT that we

consider, namely SMEFT and HEFT, in this way we set down the notation and appreciate the first

structural differences of the the two EFTs. Chapter 2 is about the scalar singlet model as a first UV

model chosen for the analysis, here we provide a phenomenological study to restrict the parameter

space. In chapter 3 we focus on matching the UV model to SMEFT and to HEFT using mainly a

diagrammatic approach, here first differences at the level of coupling correlations show up.

Chapter 4 shows the theoretical motivation behind our choice of the UV models. In chapter 5 we

perform a numerical evaluation of the scalar singlet model at the level of squared amplitudes and

check where HEFT and where SMEFT is needed. In chapter 6 we present a UV model with a colored

scalar suitable to show the differences between HEFT and SMEFET. We conclude in chapter 7 with

final comments on the relevance of this work in the interpretation of the upcoming HL-LHC data.
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Chapter 1

Effective Field Theories for the Higgs boson

Once the Higgs boson existence was confirmed the SM was finally complete. The latest discovery of

scalar field interacting as the predicted Higgs boson stands as a confirmation of the theoretical stage

set down in the 60′s [10–12].

The SM has an inherit symmetry group that is gauged and it is given by a direct product of 3 Lie

groups:

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (1.1)

Strong interactions mediated by gluons are described by the SU(3)C gauge group. Gluons have colour

charge which is the charge associated to strong force. The electroweak sector is denoted by SU(2)L⊗
U(1)Y where the first is associated with weak isospin force while the second is called hypercharge.

Besides the symmetry it is also crucial to specify a possible spontaneous symmetry breaking (SSB) of

the group GSM into a smaller subgroup GSSBSM .

In the SM we observe exactly a SSB of the electroweak sector (EW), namely:

GSM
SSB−−→ GSSBSM = SU(3)C ⊗ U(1)e.m. (1.2)

In this pattern the strong force is left unaltered while EW sector breaks into two different interactions:

weak and electromagnetic.

The weak force is mediated by three vector bosons (W+,W−, Z) while the electromagnetic force is

mediated by massless photons (γ). There are different reasons why EW sector has to be broken. In

nature we observe 3 different massive particlesW±, Z with massesMW ∼ 80.4 GeV andMz ∼ 90

GeV, however the inclusion of an explicit mass term for the gauge bosons lead to a violation of

SU(2)L ⊗ U(1)Y local symmetry. This problem is indeed solved by the Higgs mechanism [13, 14].

Due to its ”Mexican-hat” shapewhen the scalar field corresponding toHiggs field goes into its vacuum

configuration it acquires a vacuum expactation value (v.e.v.) different from 0. This means that the

ground state is no more invariant under GSM but only under GSSBSM . From the Goldstone theorem we

have that the number of Goldstone bosons is equivalent to the number of broken generators. In the

SMwe have 3 broken generators that corresponds to the longitudinal polarization ofW±, Z. Thus the

latter become massive. Analogous reasoning holds for fermions such as electrons and quarks that are
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

kept with no mass in the SM lagrangian and acquire mass only when EW sector is broken.

Another fact pointing towards SSB is that EW theory considers weak and electromagnetic force as

indistinguishable at high energy, however experimental evidences such as parity violation tell us these

interactions behave differently at low energies.1

1.1 The Standard Model of particle physics

We report a brief summary of the SM as it will make it easier to follow the notation used. The SM

lagrangian can be written in compact form as:

LSM = Lg.b.kin + Lkinf + LH + LY + Lg.b.d.kin . (1.3)

The main sectors in LSM are given by:

• The bosonic sector: It includes both gauge both kinetic terms of gauge bosons and the Higgs

sector. Terms describing duals of field strength tensors are also included for the sake of completeness:

Lg.b.kin = Lg.b.kin + Lg.b.d.kin + LH = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (DµH)†(DµH)

− V (H†H)− θ3g
2
3

32π2
GA
µνG̃

Aµν − θ2g
2
2

32π2
W I
µνW̃

Iµν − θ1g
2
1

32π2
BµνB̃

µν , (1.4)

where the gauge coupling associated to gauge SU(3)C , SU(2)L and U(1)Y are g3, g2, g1. The

field strength tensors are given by :

GA
µν = ∂µG

A
ν − ∂νG

A
µ + g3f

ABCGB
µG

C
ν ,

W I
µν = ∂µW

I
ν − ∂νW

I
µ + g2ε

IJKW J
µW

K
ν ,

BI
µν = ∂µBν − ∂νBµ,

with fABC and εIJK the structure constants of SU(3) and SU(2) respectively. In the second

line we have the dual field-strength tensors defined as F̃ µν = 1
2
εµνρσF

ρσ.

However the θF F̃ terms can be rewritten as a total derivatives, they will contribute only via

topological effects that we are going to ignore in the following.2 In the SM the Higgs field

transforms as a doublet under SU(2)L (more on this later). It can be written as :

H =
1√
2
exp

(
i
~π(x)~σ

v

)(
0

v + h(x)

)
(1.5)

1The SM is also renormalizabile, and every theory beyond standard model (BSM) should reproduce such a

characteristic.
2While contributions from abelian gauge field never matters, it is possible to have an effect in perturbation theory from

non abelian gauge fields due to istanton configurations associated with those fields. Ignoring those terms implies istanton

configurations are not considered and that the only source of CP violation comes from phase of the CKM matrix VCKM .
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

where ~π is a vector of the Goldstone bosons and in the unitary gauge it reduces to :

Hu.g. = U(π)H =
1√
2

(
0

v + h(x)

)
. (1.6)

The covariant derivative acting on H is:

DµH =
(
∂µ − ig2

σI

2
W I
µ − ig1Y Bµ

)
H , (1.7)

where σI are the Pauli matrices and hence the generators of the fundamental representation of

SU(2)L while Y = Q− T3 is the hypercharge. The scalar potential for the Higgs field reads:

V (H) = −µ2(H†H) + λ(H†H)2 . (1.8)

After electroweak-symmetry breaking (EWSB) the electroweak (EW) vector bosons become

massive:

LSSBbos = −1

4
GA
µνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν +
1

2
(∂h)2 − 1

2
m2
hh

2

+
(v + h)2g22

4
W+
µ W

−µ +
(v + h)2(g22 + g21)

8
ZµZ

µ − λvh3 − λ

4
h4 (1.9)

where the physical gauge bosons are written in terms of the Weinberg angle θW :

W±
µ =

W 1
µ ± iW 2

µ√
2

,

Zµ = cWW
3
µ − sWBµ ,

Aµ = cWBµ + sWW
3
µ ,

having set cW = cos(θW ) and sW = sin(θW ). The gauge boson masses are given by:

M2
W± =

g22v
2

4
, M2

Z =
(g22 + g21)v

2

8
. (1.10)

• the fermionic sector: This part contains kinetic terms for the fermions as well as interactions

of the fermions with gauge bosons. The most general covariant derivative acting on a fermion

field is:

Dµψ =
(
∂µ − ig3

λA

2
GA
µ − ig2

σI

2
W I
µ − ig1YfBµ

)
ψ (1.11)

with TA = λA

2
and τ I = σI

2
are the generators of the fundamental representation of SU(3)C

and SU(2)L while the U(1)Y generator is denoted by Y . Fermions ψ will couple to some or all

the gauge boson present in Dµ accordingly with their quantum numbers. All the charges under

GSM are summarized in 1.1 Note that we have introduced a convenient notation for left handed
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1.1. THE STANDARD MODEL OF PARTICLE PHYSICS

Table 1.1: Charges of the SM fermions, gauge bosons and H, under the SM gauge group.

quarks and leptons that are doublets under SU(2)L, while right-handed components are singlet

under SU(2)L:

qiL =

(
uiL
diL

)
liL =

(
νiL
eiL

)
(1.12)

where i = 1, 2, 3 runs over the three generations. In the unitary gauge, this part of the Lagrangian

is:

LSMu.g.
f =

∑
f

f̄Li/∂fL +
∑
f

f̄Ri/∂fR − g2√
2
(W+

µ J
−µ +W−

µ J
+µ)− g2

cW
ZµJ

µ
Z (1.13)

− eAµJ
µ
em − g3G

A
µJ

A,µ . (1.14)

J+µ = d̄Lγ
µuL + ēLγµνL , J−µ = ūLγ

µdL + ν̄Lγ
µeL , (1.15)

JAµ =
∑
q

q̄γµTAq , JµZ =
∑
f

f̄Lγ
µT 3fL +

∑
f

Qf f̄γ
µf , (1.16)

Jµem =
∑
f

Qf f̄γ
µf . (1.17)

It contains kinetic terms for fermions as well as interactions between gauge bosons W±, Z,G

and matter fermions embedded in J’s.The kinetic terms of the fermions have a SU(nf )L ⊗
SU(nf )R symmetry, that is explicitly broken by the interactions with gauge bosons down to

SM gauge group.

• Yukawa lagrangian: LY stands for the Yukawa terms, it describes interactions between the

Higgs field with fermions. In order to preserve gauge invariance we have to introduce a slight

modification of the H field, i.e. H̃ = iσ2H
∗ that has quantum numbers (1, 2,−1/2).

−LY = [Ye]i,j l̄iHej + [Yu]i,j q̄iH̃uj + [Yd]i,j q̄iHdj + h.c. (1.18)

The indices {i, j} = 1, 2, 3, stand for the generation of the fermions hence

uL/R =

uc
t


L/R

, dL/R =

ds
b


L/R

, eL/R =

eµ
τ


L/R

, νL =

νeνµ
ντ

 . (1.19)

After SSB LY contains both mass terms for fermions as well as Yukawa interactions with the
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1.2. DOUBLET OR SINGLET

physical Higgs boson h:

LY =
−(v + h(x))√

2
(ūiLY

ij
u u

j
R + d̄iLY

ij
d d

j
R + ēiLY

ij
u e

j
R + h.c.) . (1.20)

In principle Ye,u,d are 3× 3 complex matrices representing the only source of flavour violation

in the SM. When we want to compute physical observable for the fermions it is necessary to go

to the so called mass eigenbasis or physical basis.

This requires obtaining a diagonal form for the Yukawa matrix y which is achieved by a unitary

transformations acting differently on right-handed and left-handed matter fields:
u

′

L = LuuL

d
′

L = LddL

e
′

L = LeeL


u

′

R = RuuR

d
′

R = RddR

e
′

R = ReeR

, (1.21)

where rotation matrices are all unitary

LL† = L†L = I RR† = R†R = I . (1.22)

Thus Yukawa matrices can be diagonalised by means of a bi-unitary transformation:

Ŷf = LfYfR
†
f =

Ŷf1 0 0

0 Ŷf2 0

0 0 Ŷf3

 . (1.23)

This change of basis where we act with matrices L,R on fields affects other sectors of the SM

lagrangian. While the kinetic sector, the electromagnetic and the weak neutral interactions are still

flavor diagonal in the mass basis, the weak charged interactions are modified as

LCC = − g2√
2
{ū′

L(LuL
†
d) /W

+
dL + ν̄

′

L(LνL
†
e)e

′

L} , (1.24)

whereLuL
†
d is called Cabibbo-Kobayashi-Maskawa (VCKM ) matrix, while the analogous for leptons is

called Pontecorvo-Maki-Sakata-Nakagawa (UPMNS) matrix. These are unitary matrices with flavor

mixing properties, note that as long as we keep neutrinos as massless particles we have to choose

UPMSN = I.

1.2 Doublet or singlet

In this work we use two different effective field theories: SMEFT and HEFT. Both can be used in the

description of low energy processes involving the Higgs boson.

In SMEFT the Higgs boson transforms as a part of a complete SU(2) doublet while in HEFT it
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1.2. DOUBLET OR SINGLET

transforms as a singlet under the SM chiral group SU(2)L ⊗ SU(2)R.

Away of presenting this is based on symmetry arguments [15]: SMEFT follows from a linear realization

of EWSBwhile HEFT is a consequence of a non-linear realization.3 We recall that in the SM the Higgs

sector has the following Lagrangian:

LH = (DµH)†(DµH)− V (H) , (1.25)

whereH transforms as a doublet under the SM gauge group, written in terms of 4 real components φi:

H =
1√
2

(
φ2 + iφ1

φ4 − iφ3

)
. (1.26)

In the limit of g1 → 0 and yu = yd it is possible to rewrite the Lagrangian in such a way to make the

global O(4) symmetry explicit. For the sake of simplicity consider Dµ −→ ∂µ just in the following

steps:

Lφ =
1

2
(∂µ~φ)(∂

µ~φ) +
m2

2
~φ · ~φ− λ1

8
(~φ · ~φ)2 . (1.27)

The real fields φi are arranged into ~φ as follows:

~φ =


φ1

φ2

φ3

φ4

 =


φ1

φ2

φ3

v + h

 , (1.28)

where φi are the Goldstone bosons of EWSB and h is the physical Higgs boson. The field ~φ transforms

linearly under O(4) as ~φ −→ O~φ and in this sense custodial symmetry O(4) is an exact symmetry of

the pure Higgs sector of the SM.

EWSB induces a non vanishing v.e.v. 〈φ4〉 6= 0 and the O(4) global symmetry is spontaneously

broken, the vacuum state is invariant only under theO(3) subgroup. In geometrical terms the vacuum

state is an S3 sphere with radius v:

〈~φT · ~φ〉 = φ2
1 + φ2

2 + φ2
3 + φ2

4 = v2 . (1.29)

The 3 Goldstone bosons are associated to the longitudinal polarization of the massive vector bosons.

Recalling a local isomorphism from group theory we know:

O(4) ' SU(2)L × SU(2)R/Z2 . (1.30)

To see how the SU(2)L ⊗ SU(2)R act on H , we can combine it with its conjugate H̃ = iσ2H
∗ to

form the 2× 2 matrix field Σ ≡
(
H̃,H

)
transforming as Σ → LΣR† where L(R) ∈ SU(2)L/R. It

3This point is formalized in the CCWZ [16, 17] framework that describes Goldstone Bosons under a generic SSB

pattern
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

is convenient to decompose the Σ matrix field as:

Σ =
1√
2
(v + h)U, with U = ei

πiσi
v , (1.31)

where σi are the Pauli matrices providing a basis in the SU(2). The relation Tr[Σ
†Σ] = 2H†H =

(~φ)T ~φ allows to rewrite LH in terms of U :

LU =
1

2
(∂h)2 +

1

2
(v + h)2tr

[
(∂µU)

†(∂µU)
]
+
m2

2
tr[(v + h)2I]− λ

8
(tr
[
(v + h)2I])2 . (1.32)

The latter Lagrangian is also know as Electroweak Chiral Lagrangian and invariant under the chiral

group SU(2)L × SU(2)R/Z2 which is isomorphic to O(4). The Goldstone bosons are coupled only

derivatively.

The different components of H transform under chiral group SU(2)L ⊗ SU(2)R as follows:

h −→ h , U −→ LUR† . (1.33)

The Higgs boson h indeed transforms as a singlet under SU(2)L ⊗ SU(2)R, and hence also under

the EW gauge symmetry. Following [15–17] we say that the electroweak symmetry is non-linearly

realised. Equation (1.32) is indeed an expression of the scalar sector of HEFT at LO.

HEFT contains SMEFT (and the SM) as a special case where a non-linear field redefinition can be

found to map the scalar components (h and πi) into a single SU(2)L doublet H . The O(4) invariants

of the SM Higgs Sector can indeed be rewritten in each of these different languages:

|∂H|2 = 1

2
(∂~φT) · (∂~φ) = 1

2
(∂h)2 +

1

2
(v + h)2(∂U)2 , (1.34)

(∂|H|2)2 = (~φ · ~φ)2 = (v + h)2(∂h)2 . (1.35)

It is therefore possible to express the so called linear σ model in a non-linear realization exploiting a

change of basis.

The aim of this thesis is to find physical processes where it is not possible to recover a SMEFT limit

(linear σ) from an HEFT formulation (non-linear σ model), hence the case in which the effective field

theory does not admit a linear realisation.

1.3 Standard Model Effective Field Theory

An increasing number of experimental facts suggests that the SM is the right theory to describe physics

up to a few hundreds of GeV. The absence of any direct or indirect signal of New Physics suggests

that new degrees of freedom if they are there might live much above the electroweak scale. Whenever

we face a scale separation, the use of an EFT is appropriate. In fact a way to think about SM is by

considering it as a low-energy theory of some UV model.
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

This means that, if we want to treat the SM as an EFT we need to address the following points:

• select the low-energy degrees of freedom: assuming that the SM is the correct theory at scales

E � Λ means the low-energy degrees of freedom are the same ones as in the SM.

• symmetries of the theory: SMEFT needs to respect the same symmetries as the SM, meaning

that the operators are invariant under GSM = SU(3)⊗ SU(2)⊗ U(1) gauge group.

• the vacuum preserves SU(3) ⊗ U(1) symmetry after the SSB. This follows from the fact that

SMEFT has the same particle content as the SM, hence a scalar transforming as (1, 2)1/2 field

that acquires a non vanishing non zero vacuum expectation value.

• a power counting scheme: In case of SMEFT the canonical dimension of the operator is counted.

The operator itself is suppressed by Λ4−d where d indicated the canonical dimension of the

operator.

Strictly speaking SMEFT is not renormalizable as it contains infinite number of termswith a consequent

infinite number of divergences that would require an infinite number of counterterms to be absorbed.

However if we work at a specific order of accuracy, SMEFT is a truthfully renormalizable QFT. If we

take indeed only the above points as guiding principles in the construction of SMEFT, we could write

an infinite number of terms. Thanks to the power counting (PC) we can organize systematically the

terms in an expansion in 1/ΛSMEFT :

LSMEFT = LSM +
∑
i

c
(5)
i

ΛSMEFT

Od=5
i +

∑
i

c
(6)
i

Λ2
SMEFT

Od=6
i +

∑
i

c
(7)
i

Λ3
SMEFT

Od=7
i + ... . (1.36)

Even though the series is well written it still has an infinite number of terms, we have to fix an order

of accuracy at which we stop the expansion. The order can be cut if one can assume that any order

higher gives contributions smaller than experimental accuracy of the problem:

LSMEFT = LSM +
∑
i

c
(d)
i

Λd−4
SMEFT

Od
i +O

( 1

Λd+1

)
. (1.37)

In the expressions above Od
i are gauge invariant operator of dimension d while ci are called Wilson

coefficients. These coefficients are crucial in the search new physics (NP) as they encode information

about UV theory. A well known example is the Fermi Theory where the Fermi constantGF is related

to parameters of the UV theory, namely GF√
2
= g2

2M2
W
.

The natural question to answer should be themeaning ofΛSMEFT . If we consider accidental symmetries

(Baryon number, Lepton number) of SM we find they are broken around ΛLNV ,ΛBNV ∼ 1016GeV .

It is clear that, if ΛSMEFT = ΛBNV,LNV then we could not observe any signal from new physics at

collider experiments.

On the other hand the naturalness problem seems to suggest a lower value for ΛSMEFT : the quadratic

sensitivity of the 1-loop corrections δm2
H to the Higgs mass would require a ΛSMEFT close to 1 TeV
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

in order to avoid a fine-tuning of the UV parameters. The usual assumption allows for different scales

in the problem, in particular a selection rule on the energy scales Λ � ΛLNV,BNV is taken.

The SMEFT expansion is rewritten as:4

LSMEFT = LSM +
c(5)

ΛLNV
O5 +

∑
i

c
(d=6)
i

Λd−4
SMEFT

Od
i . (1.38)

From now on we deal only with a cutoff energy scale much below the scale where Lepton and Baryon

number are violated, therefore we assume ΛSMEFT = Λ � 1016 GeV. For the purpose of this thesis,

we will focus on the part involving the Higgs doubletH . In particular, the rest of the thesis will focus

on di-Higgs production. In this case the relevant operators are:

LSMEFT ⊃LSM +
C2H

Λ2
(H†H)2(H†H) +

CH
Λ2

(H†H)3 +
CHD
Λ2

(H†DµH)∗(H†DµH)

+
CuH
Λ2

(H†H)q̄H̃u+ h.c.+
CdH
Λ2

(H†H)q̄Hd+ h.c.+
CeH
Λ2

(H†H)l̄He+ h.c.

+
CHW
Λ2

(H†H)W I
µνW

Iµν +
CHG
Λ2

(H†H)GA
µνG

Aµν +
CHB
Λ2

H†HBµνB
µν +O(

1

Λ4
) .

(1.39)

SMEFT is usually written in the unbroken phase even though, when it comes to make comparison

with HEFT, we have to bring it in the broken phase. It is important to note how SSB is altered in the

SMEFT framework, where higher dimensional operators modify the relations we know from SM.

Importantly enough, this implies doing a redefinition of the v.e.v. which receives now contributions

from dimension-6 operators:

V (H†H) = λ
(
H†H − v2

2

)2
− CH

Λ2

(
H†H

)3
, (1.40)

therefore the new minimum will be:

〈
H†H

〉
=
v2T
2

=
v2

2

(
1 +

3CHv
2

4λ

)
. (1.41)

Beside the scalar potential part of LSMEFT , we have to perform a shift in the h field to ensure

canonically normalized kinetic term. In unitary gauge we have:

H =
1√
2

(
0

(1 + cH,kin)h+ vT

)
, where cH,kin =

(
CH2 − CHD

4

) v2
Λ2

. (1.42)

These shifts, due to higher dimensional operators, affect all parameters of the model that include the

Higgs boson: gauge couplings, mass of gauge bosons as well as yukawa couplings. It is important to

note that the above h field redefinition introduces additional self couplings as h(∂h)2 or h2(∂h)2.

4In SMEFTwe have only one five dimensional operator, the so-calledWeinberg operator that violates Lepton Number.

A high value of ΛLNV may explain why neutrino masses are so small.
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

There is yet another another redefinition of the h field that does not present such derivative couplings

(at least at order 1/Λ2) is:

h −→ h+
v2

Λ2

(
CH2 − CHD

4

)(
h+

h2

v
+

h3

3v2

)
. (1.43)

In this way we get a canonically normalized kinetic term for h as well as no derivative self interactions

for the Higgs field. The Wilson coefficients CH2 and CHD become a universal factor in every Higgs

coupling, this holds independently from the h field redefinition chosen. Importantly enough the non

linear redefinition of the h field 1.43 is not gauge invariant as we are shifting only one real component

out of the four that enters the Higgs doublet. For a gauge invariant shift we should shift the Goldstone

bosons as reported in [18]. We now comment on how dimension 6 operators modify the different parts

of the SM. The SM Yukawa sector is modified by gauge invariant dimension 6 operator as reported

in 1.39. In the broken phase the Yukawa matrices receive a correction of the order O
(
v2

Λ2

)
while the

interactions with h field are additionally shifted by a cH,kin term. The broken phase lagrangian reads

[19]:

LY ukawa = − [Mf ]
p,r (f̄pLf

r
R)− [Yf,h]p,r h(f̄pLf

r
R) + h.c. ,

[Mf ]
p,r =

vT√
2

(
[Y ]p,r − 1

2

v2

Λ2
[CfH ]

p,r

)
,

[Yf,h]p,r =
1√
2

(
(1 + cH,kin)Y

p,r − 3

2

v2

Λ2
[Cf,H ]

p,r

)
, (1.44)

where p, r are flavor indeces while f = {u, d, e, ν}. The Yukawa matrices Yf,h are no longer

proportional to the mass matrices Mf . The crucial consequence is that once we move to the mass

basis we can setMf to get a diagonal form so that the mass of the particles is well defined by the SM

contribution plus a term proportional to
v2CfH

Λ2 . This means that the interaction between the h boson

and other fermions can become flavor violating starting at O(1/Λ2).

In the broken phase these operators give corrections to the kinetic terms of the gauge fields. In

order to recover the right normalization a redefinition of the gauge field and gauge couplings is needed:

From eq.(1.39) we notice how the field strength tensors are modified by dimension-6 operators.

W̄ I
µ = ZgW

I
µ , ḡ2 = Z−1

g2
g2 , Zg = 1− CHW

v2

Λ2
,

B̄I
µ = Zg′B

I
µ , ḡ1 = Z−1

g1
g1 , Zg = 1− CHB

v2

Λ2
,

ḠA
µ = ZgG

A
µ , ḡ3 = Z−1

g3
g3 , Zg = 1− CHG

v2

Λ2
.

It’s possible to rewrite the gauge sector in terms of W̄ I
µ , B̄

I
µ and ḠA

µ
5. Note that in this way the

5More precisely this redefinition canonically normalize the kinetic term for gluons since the weak gauge bosons still

present a mixing terms proportional to CHWB operator, however if we assume it to vanish then the terms are already
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1.3. STANDARD MODEL EFFECTIVE FIELD THEORY

covariant derivative form Dµ = ∂µ − igiA
i = ∂µ − iḡiĀ

i is preserved and consequently the sector

describing the gauge fermion interactions does not change.

These corrections affect also the definition of theW boson mass:

MW =
ḡ2vT
2

, where Zg = 1− CHW
v2

Λ2
.

Before matching to some UV theory, the Warsaw basis is a model independent ensemble of operators

that we use to parametrize small deviations from the SM due to new physics signals. By doing a naive

dimensional analysis one can obtain an idea of the relative size of the effective operators. We show

this for the subset of operators that will be relevant in the following.

In principle we consider only a subset of those operators depending on the process we are interested

in. In the following we mainly deal with CH2, CuH , CH and CHG Wilson coefficients.

While considering only the canonical dimension of this operators non difference between their relative

size is evident, the } counting leads to differences [20]. Let us assume that we can express all the

couplings and the masses of the EFT in terms of reference coupling (mass) g∗ (m∗) belonging to the

UV theory. From the path integral formulation we know that the action S must bring a dimension of

} such that the factor eiS} has the right dimensions. Considering this counting in } leads to [g∗] = 1√
}

and the Lagrangian is expressed in terms of these reference quantities of the UV model as L = m4
∗

g2∗
L̂

where L̂
(
g∗H
m∗
, ∂
m∗

)
is a dimensionless quantity.

The relevant operators would have an } counting as:

OH2 =
C2H

Λ2
(H†H)2(H†H) , CH2 ∼ g2∗ , (1.45)

OH =
CH
Λ2

(H†H)3 , CH ∼ g4∗ , (1.46)

OuH =
CuH
Λ2

(H†H)(q̄H̃u) , CuH ∼ g3∗ , (1.47)

therefore for strongly coupled UV theories CH will dominate while weakly interacting UV theories

will be mainly described by CH2.

This apparently unrelated comment may be useful in the following as SMEFTwill be shown to have an

”heavy” dependence on CH2. SMEFT shows its limits exactly when the UV theory becomes strongly

interacting and in this sense CH2 may not be enough to parametrize new physics effects. Then HEFT

is supposed to take its place as more appropriate IR limit. A naive dimensional analysis (NDA) allows

us to organize the effective operators allowed in SMEFT showing also how a refined } counting can
give us additional information about operators with the same canonical dimension having different

weights in a top down approach. The higher dimensional part of the SMEFT lagrangian can be seen

as an object living in an n dimensional space L ⊃
∑

nCnOn where n is the number of operators at

dimension 6, thenOn are the elements of the vector basis that should contain only independent objects.

We would like to find a non redundant basis for this object.

canonically normalized
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Figure 1.1: Dimension 6 operators of theWarsaw basis. The upper part of the table contains the purely

bosonic operators which will be the main object of this thesis.

In particular possible redundancies may be due to:

1. Integration by parts: assuming all fields vanish at infinity i.e. total derivatives do no contribute

to S =
∫
d4xL .

2. Field redefinition: A deep result in QFT, known as Ŝ matrix equivalence theorem, tells us that

fields are not fundamental objects. In fact particles are more fundamental objects. The S matrix

remains equivalent under field redefinition. In practise, this is often implemented making use

of equations of motions relations.

3. Fierz Identities: these identities follow from a completeness relation on certain matrix space

especially when operators have internal symmetry, typically any SU(N) is provided with a

Fierz Identity.

Finding a non redundant basis is non trivial task that was accomplished in [21]. The so called ”Warsaw

basis” up to dimension 6, considering all flavors, contains 2499 operators. The Warsaw basis is non-

redundant and as such neither of the basis elements can bemapped onto the others by field redefinition,

Fierz identities or Integration by parts i.e. they are independent. The subset of Warsaw basis at

dimension six is presented in fig.1.1 leaving though out the four fermion interactions, which will not

be relevant for the rest of the thesis.

1.4 HEFT

As it was pointed out in the previous section, HEFT is an EFT where the physical Higgs boson appears

as a gauge singlet underGSM and as a singlet under the chiral groupSU(2)L⊗SU(2)R [22]. As pointed
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out above a change of variables allows us to express the Higgs sector in terms of Σ = v+h√
2
U where h

is the physical Higgs boson while the U matrix contains the Goldstone bosons.

The Higgs boson lagrangian reads:

(DµH)†DµH − V (H) → 1

2
(∂h)2 +

v2

4
Tr
[
D(µU)

†DµU
]
− V (h) .

We note also the scalar potential does not depend on U , in other words Goldstone modes are only

derivatively coupled. Since we are going to comment on the Yukawa sector as well, we rewrite it

using the polar parametrization of H:

−Yuq̄LH̃uR − Yel̄LHer + h.c. → −v + h√
2

(
q̄LUYQqR + l̄LUlR + h.c.

)
,

where YQ = Diag(Yu, Yd), Yl = Diag(0, Ye) and the right handed doublets for single generation are

given by:

qR =

[
uR

dR

]
, lR =

[
0

eR

]
. (1.48)

The transformations under the chiral group are:

h→ h, U → LUR† .

The global custodial symmetry is then broken explicitly by the gauge coupling g1 and the Yukawa

sector. For instance the covariant derivative in the scalar sector transforms as follows:

DµU = ∂µU − ig2
σI

2
W I
µU + ig1BµU

σ3
2

→ L(∂µU)R
†− ig2

σI

2
W I
µLUR

†+ ig1BµLUR
†σ3
2
, (1.49)

where L/R are unitary matrices belonging to SU(2)L/R. Clearly in the last termR commutes with σ3

only if we take the diagonal subgroup of SU(2)R, so the last terms breaks explicitly the chiral group.

Even in the g1 → 0 limit we still have a breaking of the chiral group due to the Yukawa term. Take

for instance the quark bilinear:

−v + h√
2

(q̄LUYQqR) → −v + h√
2

(
q̄LL

†LUR†YQRqR
)
, (1.50)

since YQ is diagonal the only way to have an invariance under SU(2)L⊗SU(2)R is by restricting the

element R ∈ SU(2)R to its diagonal subgroup U(1)Y , in this way [R
†, YQ] = 0.6 In this way we have

6Another way to see the breaking of the chiral group is by exploiting a spurion trick where Ŵµ and B̂µ are 2×2matrix
spurion fields. They act as gauge bosons of the chiral group and therefore transform in the adjoint representation:

Ŵµ −→ VLŴµV
†
L + iVL(∂µVL)

† , (1.51)

B̂µ −→ VRB̂µV
†
R + iVR(∂µVR)

† , (1.52)

where VL/R ∈ SU(2)L/R. In this way the global custodial symmetry is promoted to a local one. If (1.51)and(1.52) hold

the SM lagrangian is invariant under the chiral gauge group. When we reduce this to the SM case we fix the spurion fields
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checked that the chiral symmetry is explicitly broken by g1 and by Yu 6= Yd also in the formulation

where H has been rewritten seperating h from the Goldstone bosons.

Once the quantities above have been defined the lagrangian in terms of the explicit Goldstone bosons

matrix is:

LSM =− 1

4
GA
µνG

Aµν
(h
v

)
− 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

+
∑
ψ

ψ̄Li /DψL ++
∑
ψ

ψ̄Ri /DψR +
1

2
∂µh∂

µh+
v2

4
tr
[
(DµU)

†DµU
]
− V (h)

− v√
2
(q̄LUYQqR + l̄LUYQlR + h.c.) . (1.54)

When we gauge the symmetry every element of L and ofR acquires a dependence from the spacetime

coordinate such that L → L(x) and R → R(x), since g1 6= 0 and Yu 6= Yd the above lagrangian is

only invariant under the subgroup SU(2)L ⊗ U(1)Y which coincides with 1.1. Under the SM gauge

group GSM we have (DµU)G = L(DµU)e
iσ3α(x)Y where Y stands for the hypercharge and the Yukawa

sector respects this gauge symmetry of course as well.

Thus the lagrangian of eq. (1.54) is invariant under the SM gauge group SU(3)c ⊗ SU(2)L ⊗U(1)Y .

The HEFT is based on the same gauge symmetry as the SMEFT and contains the same degrees of

freedom but the Higgs doublet H is replaced by the scalar singlet h and the matrix U describing the

Goldstone bosons. The HEFT lagrangian is obtained from eq. 1.54 above by adding different Taylor

series terms to each gauge invariant block. These series have the gauge singlet h
v
quantity as expansion

parameter with unknown coefficients in front of them up to order infinity. The HEFTLagrangian reads

[22–28]:

LHEFT ⊃− 1

4
GA
µνG

AµνFG

(h
v

)
+
∑
ψ

ψ̄Li /DψL ++
∑
ψ

ψ̄Ri /DψR +
1

2
∂h∂h

+
v2

4
tr
[
(DµU)

†DµU
]
FU

(h
v

)
− V (h)− v√

2
(q̄LUYQqR + l̄LUYQlR + h.c.)G

(h
v

)
.

(1.55)

In particular when we consider an expansion around the EW vacuum we obtain 〈U〉 = 1 and we

recover the SM expressions both for fermion masses in the Yukawa sector as well as the expressions

for the masses of the massive vector bosons:

v2

4
tr
[
(DµU)

†DµU
]
FU

(h
v

)
=M2

WW
+
µ W

−µFU

(h
v

)
+
M2

Z

2
ZµZ

µFU

(h
v

)
,

to their vecuum expectation value:

Ŵµ −→ g2
σI

2
W I

µ , B̂µ −→ g1
σ3

2
BI

µ, (1.53)

and as a consequence the SM lagrangian is invariant only under SU(2)L ⊗ U(1)Y that is exactly the gauge group of the

SM.
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U contains an infinite number of interactions of the EW Goldstone bosons:

U ∼ 1 + 2i
πaσa

v
− 2

(πaσa)(πbσb)

v2
+O

(π3

v3

)
, a, b = 1, 2, 3 , (1.56)

and a summation over repeated indices is understood. Since the Pauli matrices are traceless the kinetic

term of U keeps only even powers of π so the imaginary part disappears. In the high energy regime,

thanks to the Goldstone Boson Equivalence theorem, these π’s can be viewed as the longitudinally

polarized massive gauge bosonsW+,W− and Z.

In particular the quantities FG,U , YQ, V (h), G appear as power series in h
v
:

FG(h) = 1 + ag1
h

v
+ ag2

(h
v

)2
+ a3g

(h
v

)3
+ ag4

(h
v

)4
+ ... , (1.57)

V (h) = v4
[
b1

(h
v

)3
+ b2

(h
v

)4
+ ...

]
, (1.58)

FU(h) = 1 + a1
h

v
+ a2

(h
v

)2
+ a3

(h
v

)3
+ a4

(h
v

)4
+ ... , (1.59)

G(h) = 1 + c1
h

v
+ c2

(h
v

)2
+ c3

(h
v

)3
+c4

(h
v

)4
+ ... . (1.60)

This framework is particularly useful in the analysis of processes involving multiple Higgs bosons as

it offers an immediate parametrization for interactions involving several h (see for instance [29]).

The expansion in h
v
suggests that HEFT has a cutoff scale strictly related to the Higgs v.e.v. Given

also that the h and the Goldstone bosons do not come together in the same multiplet the Higgs boson

no longer unitarises longitudinal gauge boson scattering. In fact one finds that for energies greater

than 4πv HEFT ceases to be valid.

Let us consider the amplitude M(WW −→ hh) that is a relevant subprocess for the vector boson

fusion (VBF) production channel. In the limit of s � m2
W ,m

2 where mW is the vector boson mass

whilem is the Higgs mass, the polarization vector has a dominant longitudinal part growing with the

energy. This allows to express the scattering amplitude as:

MHEFT (WW −→ hh) ∼ s

m2
W

(a2 − 2a1) . (1.61)

In the SM we have a precise relation a2 = 2a1 such that this amplitude does not grow with energy

and perturbative unitarity is preserved. This happens due to the Higgs doublet structure. Indeed, the

the SU(2)L symmetry protects the process from divergence, namely the Standard Model Higgs boson

”unitarizes” the scattering amplitudes.

However in HEFT the relation between a1 and a2 is not fixed, leading to a growth of the scattering

amplitude with energy which will lead to a violation of perturbative unitarity when
√
smax ∼ 4πv ∼

3 TeV.

This statement might make it seem that the validity range of HEFT does not cover LHC energies,

however we recall that the energy usually involved in the partonic center of mass at colliders is smaller

than 3 TeV, therefore HEFT is a valuable tool to describe low energy effects of NP scenarios at the
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LHC.

Similar to SMEFT we need to organize the terms in HEFT by establishing a power counting (PC) rule.

Since HEFT is a mixture of SMEFT and chiral perturbation theory (χ-PT) the PC rule becomes more

complicated as in SMEFT. Here we adopt the convention used in [30] where terms are organized in

loop counting dχ = 2L + 2 where L is the loop number. In the following we will mainly deal with

dχ = 2 terms (especially for singlet model) but we also treat dχ = 4 later in the project.

It is worth to recall that due to the Higgs boson being a gauge singlet the coefficients a, b, c are

uncorrelated, while in the SM limit they are taken to be for instance b1 = b2 (more on this point

later).

Because of this property, the HEFT parametrization is usually considered to describe large deviations

from the SM. HEFT provides a more general framework where SMEFT and SM are contained as

particular limit in its parameter space. This framework is still invariant under the gauge groupSU(3)C×
U(1)e.m. while the pure scalar sector has an additional invariance under the chiral group SU(2)L ×
SU(2)R .

While the Higgs boson is a singlet both under chiral transformation and under EW gauge symmetry,

the πa Goldstone boson transforms non-linearly under EW chiral transformation. This indeed is a

consequence of the specific SSB pattern and can be formalized by the CCWZ formalism [16, 17].

1.5 SMEFT vs HEFT

One can now ask when one should use HEFT instead of SMEFT. This has been discussed in various

approaches in the literature. For instance in [31] it was found that HEFT is required when non analytic

terms in the electroweak doubletH appear in the expressions. Instead in [9] a geometric approach was

adopted. Defining some geometric invariant quantities in the scalar field space that are not affected by

field redefinition problem, these quantities tend to diverge when HEFT is the right low energy theory

to use [9]. According to the latter the scalar fields (here πi and h) are treated as coordinates over a

Riemannian manifold M. As we know, change of coordinates should not change the physics. The

latter statement naturally implies that in the field space we can build geometric like quantities that are

invariant under the Lagrangian basis that is used.

In general terms, a kinetic term with a field dependent metric is written as:

L =
1

2
gi,j(Φ)∂µΦ

i∂µΦj , (1.62)

where i, j are indices running over components of the scalar fields that are multiplets in general.

With the metric in this field space defined we are able to obtain the Christoffel symbols and Riemann

curvature tensor. In practice we discern whether a model can be parametrized by SMEFT or HEFT

only computing some geometrical quantities such as Ricci scalar curvature of M and see whether

it is finite or infinite at the putative O(4) invariant point where electroweak symmetry is restored.

Topological consideration will make the differences between SMEFT, HEFT and SM clear:
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1.5. SMEFT VS HEFT

• The SM has a flat scalar manifold with an O(4) fixed point in it. In this point the custodial

symmetry group SU(2)L × SU(2)R is restored. When
〈
H†H

〉
= v2/2 only a subgroup

SU(2)L+R is unbroken. It is possible to perform a local linear transformation ofM coordinates,

which results in the SM assumption of H as a linear multiplet (doublet).

• SMEFT has a curved scalar manifold. This is due to the additional derivative Higgs operators

CH2, CHD.

SMEFT has anO(4) fixed point, since theH multiplet transforms in a linear way. The curvature

is crucial in SMEFT and cannot be completely removed by a gauge invariant field redefintion,

i.e. it has some physical effects. In the geometric formulation of the SMEFT, the SM limit is

recovered for:

gSMEFT
i,j

Λ−→∞−−−−→ δi,j = gSMi,j

• HEFT has a curved scalar manifold and in general does not contain an O(4) fixed point. Only

when the HEFTmanifold contains anO(4) invariant point a mapping to SMEFT is possible and

the linear transformation under the EW group is restored.

For a detailed treatment on the geometry of the field space see [24, 32] based on the two-derivative

terms. These arguments can be generalised to higher-derivatives making use of jet bundles [33].

The path we are going to take here in order to highlight possible differences between these EFTs is a

more phenomenological one. We want to see how correlations among couplings arising in SMEFT do

not hold anymore in HEFT. These relations are induced by the assumption of having H as a doublet,

which is not assumed in the HEFT context. This point may be clearly seen when we focus on the

couplings of the Higgs boson to SM particles. Let us consider for instance the coupling between

gluons and Higgs doublet H in both SMEFT and HEFT:

LSMEFT ⊃ CHG
Λ2

GA
µνG

AµνH†H
SSB−−→ CHG

2Λ2
(v2 + 2hv + h2)GA

µνG
Aµν , (1.63)

LHEFT ⊃ −1

4
GA
µνG

AµνFG

(
h

v

)
= −1

4
GA
µνG

Aµν
(
1 + a1

h

v
+ a2

(
h

v

)2)
. (1.64)

(1.65)

As long as the Higgs boson is part of the doublet we see a correlation among single Higgs boson and

double Higgs production. This does not need to hold true in HEFT. There the coefficients of one

Higgs boson to gluons and two Higgs bosons to gluons are uncorrelated.

We could then exploit the relation h =
√
2H†H − v to reconstruct the doublet, namely:

LHEFT ⊃ −1

4
GA
µνG

Aµν

1 + a1

√
2H†H

v
− a1 + a2

(√
2H†H − v

v

)2
 =

= −1

4
GA
µνG

Aµν

[
1 + (a1 − 2a2)

√
2H†H

v
+

2H†H

v2
a2

]
. (1.66)
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1.6. LORYON PARTICLES

This shape of LHEFT introduce the second way to differentiate HEFT from SMEFT cited above, i.e.

non-analyticities in H†H at the Lagrangian level. Crucially this non-analyticity cannot be removed

by field redefinition and it’s placed in |H|2 = 0 which is the point where EW symmetry is restored.

It’s interesting to note the waywe delete non-analytic terms is by considering a1 = 2a2 that is precisely

the SMEFT relation. In that specific case LSMEFT = LHEFT, therefore at the lagrangian level the

SMEFT case is a particular case of the HEFT one where coefficient are correlated by expression such

as the one above.

We note that adding higher terms in the SMEFT expansion also decorrelates a1 and a2. The statement

that we hence obtain by performing such an analysis is a statement on the convergence of theHEFT/SMEFT

series rather than an answer whether SMEFT can indeed not describe the model.

The presence of such non-analytic terms indicates that low energy physics must be described in terms

of HEFT. This was first pointed out in the article by Falkowski and Rattazzi [31].

1.6 Loryon particles

Aparticularly interesting scenario for SMEFT/HEFT comparison deals with particles called Loryons [8].

Loryons are particles that get most of their mass from EWSB, hence all the SM particles are Loryons.

New particles are Loryons if their physical mass is at least given by 50% from electroweak symmetry

breaking. Suppose to deal with a scalar particle as a NP candidate, its total (field dependent) mass is:

m2
NP (H

†H) = m2
ex + λΦhH

†H . (1.67)

In (1.67)m2
ex is the explicit mass which is a free parameter and can be taken arbitrarily high, whereas

the other contribution is fixed by Higgs expectation value 〈H†H〉 = 0 and requiring λΦh < 4π for

validity of perturbation theory limits the mass of the Loryon particles. In this sense Loryons can be

considered as non decoupling particles.

Consider for instance a generic scalar fieldΦwith quantum numbers [L,R] representing charges under

chiral group. Then Φ transform as Φ → ULΦU
†
R where UR/L ∈ SU(2)L/R. The mass terms of such a

scalar read:

LNP ⊃ −m
2
ex

2ρ
tr(Φ†Φ)− λΦh

2ρ
tr(Φ†Φ)

1

2
tr(H†H) , (1.68)

where ρ = 0(1) for a complex (real) representation. Here λex = 2m2
ex/v

2 , in this way m2
ex = λexv2

2

is independent from the v.e.v. while the second term represents the Higgs portal interaction.

In the broken phase the latter term provides amass for all the components ofΦ together with interaction

terms between Φ and h. A useful quantity for the following is the ratio:

f =
λΦh

λex + λΦh
, (1.69)

which provides an indication of how much mass new particles get their mass from EWSB. As found

in [34] when f > 0.5 no SMEFT description exists and we are forced to use HEFT to describe the low
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1.7. HIGGS PAIR PRODUCTION AT LHC

Figure 1.2: Higgs pair production in ggF, the main contribution come from top and bottom quark since

the Yuakawa interaction is proportional to the mass of the quark. [3]

energy description of a specific UV model. Even though in this work we’ll restrict ourselves to scalar

Loryons it is natural to extend the above considerations to the fermionic case. We define a L × R

matrix Ψ transforming as [L,R]Y under custodial irrepresentation (irreducible representaion). In that

case the explicit mass terms would be:

L ⊃ −Mextr
(
Ψ̄Ψ
)
y12 − Ψ̄1HΨ2 + h.c. . (1.70)

We can define as before a yex =
√
2Mex/v as coming from an explicit mass term, while the second

term in (1.70) leads to a mass term stemming from EWSB.

In the following we refer to ”Loryon limit” or ”extreme Loryon” in the case f −→ 1. Another case, that

requires HEFT instead of SMEFT is the presence of new sources of electroweak symmetry breaking

that remain in the limit v → 0 [32].

1.7 Higgs pair production at LHC

As already stated above, we are interested in finding a concrete UV realisation that needs to be

described by HEFT rather than SMEFT and that shows phenomenological difference that can be

measured at the LHC. For this reason a discussion of the major Higgs pair production channel at

colliders is in order here. For an hadronic collider such as LHC with (hadronic) centre of mass energy√
S = 13TeV the largest contribution to Higgs pair production comes from gluon gluon fusion (ggF)

σggF = 31.7fb (at next-to-next-to leading order in the strong coupling constant) [4] whose diagrams are

shown in fig. 1.2. The second biggest channel is given by vector boson fusion (VBF) with σvbf = 1.73

fb at next-to-next-to-next-to leading order (N3LO) [35] whose relative diagrams are shown in fig.1.3.

In the following we focus on the EW sector of the SM that can be tested through the VBF process.

VBF is a 2 −→ 4 process where two protons collide giving two jets and two Higgs particles in the

final state. The initial state particle that really interacts withW± is a quark. At the LHC the diagrams

contributing to the process at LO are given in fig.1.3. Despite its cross section being 10 times lower

than ggF, VBF has other interesting properties that will be evident in higher luminosity machines:

high pT distribution: pT measures the momentum of the particles perpendicular to the beam axis,

in this case we refer to Higgs bosons pT distribution meaning the number of events that are

detected at a specific pT . While ggF has a maximum for pggFT,max ∼ 30 GeV VBF offers higher
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1.7. HIGGS PAIR PRODUCTION AT LHC

Figure 1.3: From left to right we display the Feynman diagrams according to SM: the s channel, the
contact diagram and the s channel, the missing u channel is equivalent to t channel with two Higgs
bosons in the final state exchanged.[3]

peak values pV BFT,max ∼ 80 GeV. High pT is a distinctive feature of VBF and can be used to

separate signal from background.

Distinctive signature: Rapidity measure relative velocity of a particles along beams axis, VBF has

2 high-energy jets with a large rapidity gap between them, i.e. they are emitted in opposite

directions along beam axis. This feature allows to better isolate events signatures coming from

VBF with respect to the background signal. In other words background events can be rejected

with higher efficiency and signal to noise ratio is enhanced significantly.

theory uncertainty: The VBF process is generically under much better control on what regards the

theory uncertainties with respect to the ggF process. Gluon fusion processes have usually very

large higher order corrections (for instance they increase the LO cross section by nearly a factor

two at NLO [36]). The VBF process instead can be seen as a color singlet exchange between

two quarks, namely σ̂ is αS independent. More precisely, due to color conservation the NLO

QCD corrections affect only the external quark lines, so that there is no color exchange between

the two incoming quarks. This does though not hold at higher orders [37]. when we compute

cross section at LHC we rely on the parton model theory thinking about quarks and gluons as

the proton constituents which we call parton [38]. In a generic cross section computation we

make use of the so called ”LHC master formula” where the partonic distribution function and

partonic cross section are convoluted:

σ(pp −→ X) =
∑
ab

∫ 1

0

dx1dx2fa(x1, µ
2
F )fb(x2, µ

2
F )× σ̂ab−→X(x1, x2, αS(µ

2
R),

Q2

µ2
F

,
Q2

µ2
R

) .

(1.71)

fi(xi, µF ), i = q, g are the parton distribution functions (PDFs), these scale dependent object

quantify the probability to find a partonwith amomentum pi = xiP where P is protonmomentum,

while σ̂ is the partonic cross section. Strictly speaking the parton distribution function refer

to quarks and gluons. By µF and µR we refer to the factorization and the renormalization

scales. The former is a crucial quantity in collider physics, it ’s an energy scale establishing

the border between perturbative and non perturbative regime. The latter is a parameter from

renormalization prescription in since quantum field theory parameters usually run with energy

scale.

VBF at LO (in QCD) can be seen as a color singlet exchange between two quarks, namely σ̂ is
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1.7. HIGGS PAIR PRODUCTION AT LHC

αS independent, leading to more precise theoretical predictions.

More precisely, due to color conservation also QCDNLO correction affects only external gluon,

so that there’s no color exchange between the two incoming quarks, this does not hold at higher

orders [37].

EWSB nature: VBF is particularly sensible to EWSB patterns since it directly involves weak gauge

bosons and only contains EW interactions at LO. This means it is a preferred channel if we want

to test whether EWSB is linearly (SMEFT) or non linearly (HEFT) realized.
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Chapter 2

Scalar Singlet

As an exemplatory case to outline the differences between the two EFTs we chose an extension of the

SM with a scalar singlet field for which we perform a matching both to the SMEFT and to the HEFT.

The reason why we chose the real scalar singlet (RSS) model can be summarized as follows:

• It appears in the list of Loryon particleswith large parameter space compared to other candidates.[8]

• It gives a contribution to a specific Wilson Coefficient, namely (CH2) at tree level. CH2

generates a deviation to the Higgs couplings to vector bosons and fermions when performing

a field redefintion to canconically normalise the Higgs kinetic term. This means the operator

generates deviations in the Higgs couplings both relevant for VBF and ggF.

• The simplicity of the model.

Introducing a scalar singlet is a quite popular choice studied in great detail in literature in various

context. For instance if the singlet field is stable it is a possible candidate for Dark Matter and it could

explain matter-antimatter asymmetry of the Universe [39, 40].

We note though that the addition of a scalar singlet does not fix the hierarchy problem as mass of the

Higgs is quadratically sensitive to the new physics scale.

In the first part of the chapter we define the parameters entering the model, after that we perform a

phenomenological analysis in order to constrain the parameter space, both theoretical and experimental

constraints are taken into account. The UV model introduces a real scalar singlet Φ with SM gauge

group couplings equal to:

Field (C,L)Y [L,R]Y

Φ (1, 1)0 [1, 1]0

where in the second column we have charges under SM gauge group while the last column shows the

charges under the chiral group. The Lagrangian of the scalar singlet model is given by

LUV = LSM + (DµH)†(DµH) +
1

2
∂µΦ∂

µΦ− µ2
1H

†H

−µ
2
2

2
Φ2 − λ1(H

†H)2 − λ2
4
Φ4 − λ3

2
Φ2(H†H)− AH†HΦ− µ

3
Φ3 .

(2.1)
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The model is clearly invariant under the SM gauge group since Φ is a singlet. Often a Z2 symmetry

for Φ is introduced. In that case, A = 0 and µ = 0. The fields and their vacuum expectation values

are defined as follows:

H =
v + h√

2
U(π)

(
0

1

)
, Φ = vs + S , (2.2)

〈0|H |0〉 = v√
2

(
0

1

)
, 〈0|Φ |0〉 = vs . (2.3)

Here the U matrix contains the Goldstone bosons associated to SSB:

U(π) = ei
πaσa

v , a = 1, 2, 3 .

As stated in the first chapter, this formulation naturally leads to a chiral version of the SM lagrangian.

Here we are going to write the Lagrangian for our BSM in the broken phase, where similarities with

Chiral lagrangian and HEFT basis are clear. As a first step we try to know the spectrum of the theory,

and consider minimum of the potential :

∂V (H,Φ)

∂H

∣∣∣
〈H〉,〈Φ〉

= 0 ,
∂V (H,Φ)

∂Φ

∣∣∣
〈H〉,〈Φ〉

= 0 . (2.4)

(2.5)

We require a theory free from tadpoles obtaining the following conditions:

−Avs −
λ3v

2
s

2
− µ2

1 − λ1v
2 = 0 , (2.6)

−Av
2

2
− 1

2
λ3v

2vs − µ2
2vs − λ2v

3
s − µv2s = 0 . (2.7)

In order to pass to the physical basis we should rotate the mass sector by means of a special orthogonal

matrix R, such that RTR = I . We have introduced a new parameter χ which we call mixing angle.

Its sine and cosine will link unphysical fields h and S to the physical ones h1 and h2.

The mass matrix in the interaction basis correspond to:

Mint =

(
m11 m12

m21 m22

)
=

(
m11 m12

m12 m22

)
= RMDR

T , (2.8)

where in the last step we’ve expressedMint in terms of a diagonal matrix whose elements are exactly

the values in the mass basis. More explicitly:

Mint =

(
cos(χ) sin(χ)

− sin(χ) cos(χ)

)(
m 0

0 M

)(
cos(χ) − sin(χ)

sin(χ) cos(χ)

)
. (2.9)
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The relation between physical and unphysical fields reads as follows:(
cos(χ) − sin(χ)

sin(χ) cos(χ)

)(
h

S

)
=

(
h1

h2

)
. (2.10)

Note that we have just rotate the field variables by quantities proportional toχ, however, the combination

h2 + S2 = h21 + h22 is invariant. Hence we could think of the above transformation as a rotation in the

space of field basis.

The Higgs boson h1 appears as a linear combination of h and S rescaled by a proper trigonometric

function. The eigenvalues of the mass matrix corresponds to physical masses and are given by:

m2
1,2 =

1

2

(
m11 +m22 ∓

√
4m2

12 + (m11 −m22)2
)

=
1

2

(
m11 +m22 ± (m11 −m22)

1

cos(2χ)

)
. (2.11)

Substituting back the expression obtained from tadpole conditions I get the physical masses formulas:

m2 = 1
2

[
2λ1v

2 + µ2
2 +

1
2
(λ3v

2 + 6v2sλ2 + 4vsµ)−
√

4v2(λ3vs + A)2 + (2λ1v2 − µ2
2 − 1

2
(λ3v2 + 6v2sλ2 + 4vsµ))

2
]
,

(2.12)

M2 = 1
2

[
2λ1v

2 + µ2
2 +

1
2
(λ3v

2 + 6v2sλ2 + 4vsµ) +
√
4v2(λ3vs + A)2 + (2λ1v2 − µ2

2 − 1
2
(λ3v2 + 6v2sλ2 + 4vsµ))

2
]
,

(2.13)

where we have identified m2
1 → m2(GeV)2 and m2

2 → M2(GeV)2 . In the following we assume the

former to be the scalar particle observed at LHC with m = 125 GeV. We can link the mixing angle

to the other parameters:

tan(2χ) =
2m12

m22 −m11

=
2(λ3vvs + Av)

µ2
2 +

1
2
(λ3v2 + 6v2sλ2 + 4vsµ) − 2λ1v2

. (2.14)

Note that it’s possible to express the λ’s couplings in terms of other parameters of the model, using

(2.12) and (2.14) we have:

λ3 =
(M2 −m2) sin(2χ)−

√
2Av

2vvs
, (2.15)

λ1 =
cos(2χ)(m2 −M2) +m2 +M2

4v2
, (2.16)

λ2 =
m2 + (M2 −m2) cos2(χ)−

√
2µvs

4v2s
. (2.17)

In the following we will assume thatm is the mass of the light Higgs observed at LHCm = 125GeV,

while M will describe the physical mass of heavy d.o.f., in other words our hierarchy of masses is
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m�M .

The UV parameters of the model can be expressed in terms of the masses, the v.e.v.s and the mixing

angle as follows:

λ1 =
cos(2χ)(m2 −M2) +m2 +M2

4v2
, (2.18)

A =
sin(2χ)(M2 −m2)− 2λ3vvs

2v
, (2.19)

µ2
1 = −1

4

[(
−2λ3v

2
s +m2 +M2

)
+ cos(2χ)(m2 −M2)− 2

vs
v
sin(2χ)(m2 −M2)

]
, (2.20)

µ2
2 =

1

2

[(
λ3v

2 −m2 −M2 + 2λ2v
2
s

)
+
v

vs
sin(2χ)(m2 −M2) + cos(2χ)(m2 −M2)

]
, (2.21)

µ =
1

2vs

[
m2 +M2 − λ3v

2 − 4λ2v
2
s −

1

4

v

vs
sin(2χ)(m2 −M2)− cos(2χ)(m2 −M2)

]
. (2.22)

The choice of the input parameters is quite arbitrary and other choices are possible. A comment is

in order. The scalar singlet with an explicit breaking of a Z2 symmetry can be also written elsewise.

As shown in [41–43] if one adds a tadpole term to the Lagrangian the singlet v.e.v. can be absorped,

leading to a dramatic simplification in the expressions of theWilson coefficients for the effective field

theory analysis. Instead of the v.e.v one than has as input parameter one of the potential parameters,

i.e. for instance µ.

We can rewrite (2.1) in the broken phase once the mass sector has been rotated:

LUV = −1

4
Ga
µνG

aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν − V (h, S) +
v2

4
Tr
[
(DµU)

†DµU
]

[
1 + 2 cos(χ)

h1
v

+ 2 sin(χ)
h2
v

+ cos(χ)2
(h1
v

)2
+ sin(χ)2

(h2
v

)2
+ 2 cos(χ) sin(χ)

h1h2
v2

]
+
1

2
(∂µh1)(∂

µh1) +
1

2
(∂µh2)(∂

µh2) + i
∑

j=l,q,e,ν,d,u

Ψ̄j /DΨj

− v√
2

(
YQq̄LUqR + Yl l̄LUlR + h.c.

) [
1 + cos(χ)

h1
v

+ sin(χ)
h2
v

]
, (2.23)

where YQ = diag(Yu, Yd), Yl = diag(0, Ye) and the right handed doublets for single generation are

given by:

qR =

[
uR

dR

]
, lR =

[
0

eR

]
. (2.24)

Note that while in the unbroken phase the singlet field Φ couples only to the Higgs doublet H , this

is no longer true for h2 as it couples to W
±, Z gauge bosons as well as to fermions. This happens

only through mixing between H and Φ. In agreement with the last statement we note that the typical

interaction strength of S with SM particles is proportional to sin(χ)while hHiggs boson couples with

a cos(χ). The SM limit is recovered for sin(χ)
SM−→ 0 and cos(χ)

SM−→ 1. An additional note is that

terms proportional to A and µ only enters in the scalar potential therefore the complementary part of

broken phase lagrangian is the same irrespectively of A,µ .
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The scalar potential contains all non derivative interactions between the two scalar fields and has the

following form:

V (h, S) =
m2

2
h21 +

M2

2
h22 + d1h

3
1 + d2h

2
1h2 + d3h1h

2
2 + d4h

3
2 + z1h

4
1

+ z2h
3
1h2 + z3h

2
1h

2
2 + z4h1h

3
2 + z5h

4
2 . (2.25)

The explicit expressions for the coefficients are collected where the shorthand notation c = cos(χ)

and s = sin(χ) was adopted:

d1 =
Ac2s

2
+ c3λ1v −

1

2
c2λ3svs +

1

2
cλ3s

2v − µs3

3
+ λ2s

3vs , (2.26)

d2 =
Ac3

2
− Acs2 +

1

2
c3λ3vs − 3c2λ1sv + c2λ3sv + cµs2 + 3cλ2s

2vs − cλ3s
2vs −

1

2
λ3s

3v ,

(2.27)

d3 =
1

2
λ3vc

3 + c2s(−λ3vs + 3λ2vs + µ− 2A) + cs2(3vλ1 − λ3v) + s3(λ3vs +
A

2
) , (2.28)

d4 =
Acs2

2
+
c3µ

3
+ c3λ2vs −

1

2
c2λ3sv +

1

2
cλ3s

2vs − λ1s
3v , (2.29)

z1 =
1

4
c4λ1 +

1

4
c2s2λ3 +

1

4
λ2s

4 , (2.30)

z2 = −c3sλ1 +
1

2
c3λ3s+ cλ2s

3 − 1

2
cλ3s

3 (2.31)

z3 =
λ3
4
c4 + c2s2(−λ3 +

3

2
λ1 +

3

2
λ2) +

1

4
s4λ3 , (2.32)

z4 = c3sλ2 −
1

2
λ3sc

3 − cs3λ1 +
1

2
s3cλ3 , (2.33)

z5 =
1

4
c4λ2 +

1

4
c2s2λ3 +

1

4
s4λ2 . (2.34)

2.1 Phenomenology

In this section, I will discuss phenomenological and theoretical constrains on the singlet model. This

will allow to restrict the parameters of the model. In particular we address the following points :

Theory:

• Perturbative Unitarity.

• Vacuum Stability.

• Perturbativity and 1-loop RGE.

Experiments:

• EW precision tests (EWPO).

• Higgs signal strength.

Since the scalar singlet is well studied in the literature [44–46] most of the results we need were already
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Figure 2.1: Upper bounds on sin(χ) with respect to the heavy particle mass, i.e. the eigenvalue in the
mass basis. The figure is taken from ref. [45].

presented elsewhere.

For instance, in fig. 2.1 taken from ref. [45] the limits on the sine of the mixing angle from various

constrains are collected.

2.1.1 Perturbative Unitarity

Perurbative unitarity is a fundamental feature of any field theory we deal with and is used to obtain

bounds on the parameters of the model. A relevant historical example is given in [47] where authors

could set an upper bound on the Higgs mass before its discovery. They found a conditionm2 ≤ 4π
√
2

GF

imposing perurbative unitarity on the Winberg-Salam model. Also for HEFT/SMEFT one always

employs perturbation theory to obtain unitarity bounds, in that case one usually find a critical energy

scale where EFT description breaks down.

In our case we impose perturbatitve unitarity to check whether some combinations of parameters

yielding a too large scattering amplitude, if we find those combination we can restrict even more the

parameter space of the scalar singlet model, in this sense perturbative unitarity can give information

on the allowed parameters.

The fundamental quantity we take into account is the partial wave amplitude for a generic 2 → 2

scattering [48]:

aJfi =
β
1/4
f (s,m2

f1,m
2
f2)β

1/4
i (s,m2

i1,m
2
i2)

32πs

∫ 1

−1

d(cos (θ))dJµi,µf (θ)Tfi(
√
s, cos (θ)) , (2.35)
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where βi/f are some kinematical factor depending on the mass of the particle in the initial or in the

final state and Tfi is the scattering matrix element. We especially look at 0-th order partial wave with

total spin equal 0 in the initial and in the final state for a 2 −→ 2 scattering. In this case the Wigner

matrix dJ(θ) reduces to P J(cos(θ)). Unitarity constraint leads to the well know formula:

∣∣Re(a0(s))∣∣ ≤ 1

2
, Im(a0(s)) ≤ 1 . (2.36)

In this case we focus on all possible 2 −→ 2 processes involving h1, h2 and later impose the above

constraints on every eigenvalue of the zero partial wave matrix.

a0fi =

a
0
h1h1−→h1h1

a0h2h2−→h1h1
a0h1h2−→h1h1

a0h1h1−→h2h2
a0h2h2−→h2h2

a0h1h2−→h2h2

a0h1h1−→h1h2
a0h2h2−→h1h2

a0h1h2−→h1h2

 . (2.37)

We start by writing down some of the amplitudes relative to different 2 −→ 2 scattering channels:

Mh1h1h1h1(s, θ) = −d21
[

1

t(s,m, cos(θ))−m2
+

1

u(s,m, cos(θ))−m2
+

1

s−m2

]
− d22

[
1

t(s,m, cos(θ))−M2
+

1

u(s,m, cos(θ))−M2
+

1

s−M2

]
− z1 , (2.38)

Mh2h2h2h2(s, θ) = −d23
[

1

t(s,M, cos(θ))−m2
+

1

u(s,M, cos(θ))−m2
+

1

s−m2

]
− d24

[
1

t(s,M, cos(θ))−M2
+

1

u(s,M, cos(θ))−M2
+

1

s−M2

]
− z5 , (2.39)

Mh1h2h1h2(s, θ) = −d3d1
[

1

t(s,m,M, cos(θ))−m2
+

1

u(s,m,M, cos(θ))−m2

]
− d22
s−m2

− d23
s−M2

− z3 . (2.40)

We note that for a tree level evaluation we only obtain real amplitudes. In very general terms we

expect that contact interactions dominate for high energies while relevant operators such as di become

important at low energy. In the vicinity of the poles scattering amplitudes diverge as an indication

that higher order corrections are needed. Since we are neglecting the width effects in this tree level

analysis we should not trust the results in the vicinity of the poles and we apply a kinematic cut to

avoid those divergences (following [49]). In particular we neglect regions where:∣∣∣1− s

m2

∣∣∣ > 0.25 (2.41)

The remaining t and u channel amplitudes may lead to divergences as well, again depending only on

s since we integrate over the scattering angle. In particular logarithmic expression that can diverge

under certain limits appear [49]. The above kinematic cut is sufficient to avoid those divergences from

t and u channel under the assumptionm < M .
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2.1.2 Vacuum Stability

We demand that the scalar potential V (H,Φ) is bounded from below, i.e. it has at least one stable

minimum at V (v, vs) such that:

V (v, vs) ≤ V (H,Φ) .

We report the expression for V :

V (H,Φ) = = VH(H,Φ) + Vφ(H,φ) + VH,φ(H,φ)

VH(H,Φ) = µ2
1H

†H + λ1(H
†H)2 ,

VΦ(H,Φ) =
1

2
µ2
2Φ

2 +
µ

3
Φ3 +

λ2
4
Φ4 ,

VH,Φ(H,Φ) = AH†HΦ +
λ3
2
(H†H)Φ2 . (2.42)

A stable minimum requires VH and VΦ to be bounded from below that is equivalent to λ1 > 0 and

λ2 > 0 ensuring no instabilities along the Φ = 0 and H = 0 directions.

Additional conditions have to be derived to ensure no instabilities in V (H,Φ) as well. We have already

encountered the condition of stability for low field values, namely we identify the mass matrix with

the hessian of the scalar potential for small oscillation around V (v, vs).

Substituting eq. (2.7) to µ2
2 we get the following mass matrix:

M =

(
m11 m12

m12 m22

)
=

(
2λ1v

2 λ3vvs + Av

λ3vvs + Av 2λ2v
2
s + µvs − v2A

2vs

)
. (2.43)

We have a stability condition valid at the electroweak scale when the fields are placed in their vacuum

〈Φ〉 = vs√
2
and 〈H〉 = v√

2
. In other words we check V (v, vs) is indeed a minimum if the mass matrix

is positive definite[41]:

detM
∣∣∣
〈Φ〉,〈H〉

> 0(
2λ1v

2
)(

2λ2v
2
s + µvs −

v2A

2vs

)
>
(
λ3v

2v2s + 2A2v2 + 2
√
2Av2vs

)
. (2.44)

Note that in the Z2 symmetric limit this reduces to 4λ1λ2 > λ23 [50]. At this stage we cannot say

whether V (v, vs) is a global minimum or just a local one. Thus we need to check the behaviour of

V (H,Φ) also for large field values to avoid any unboundedness from below.

For large fields, it is enough to consider terms quartic in the scalar fields as they dominate over

quadratic or triple power of fields:

V4(Φ, H) =
(√

λ1H
†H
)2

+

(√
λ2
2

Φ2

)2

+
λ3
2
Φ2H†H . (2.45)
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We also recall canonically relevant couplings, i.e. associated to relevant operators, usually vanish

under RG flow, so we can safely neglect A and µ.

In the end the scalar potential is reduced to:

V4(H,Φ) =
(√

λ1H
†H −

√
λ2
2

Φ2
)2

+
(λ3
2

+
√
λ1λ2

)
H†HΦ2 . (2.46)

We see two different scenarios, in the first case λ3 > 0 we have that both terms are positive and for

any large field value I only need to impose :

λ1(Λ) > 0, λ2(Λ) > 0,

where Λ is some arbitrary energy scale.

In the case that λ3 has negative values the first term remains positive while the second one may lead

to instabilities for large field values.

The potential is bounded from below in any direction only when an additional constraint is added:

4λ1λ2 − λ23 > 0 . (2.47)

This must be satisfied at all energy scales and is a relevant constraint especially in the evaluation of

the 1-loop RGE.

The sign of λ3 is a crucial information for the stability of scalar potential and it’s worth considering

how couplings evolve with the energy scale through 1-loop RGE running.

2.1.3 Coupling perturbativity and 1-loop RGE

We study the running of the couplings of the UV model with a twofold objective: 1.) to check if the

conditions for stability of V (H,Φ) is safe up to Planck scale ΛPlanck ∼ 1019 GeV and 2.) to verify that

the couplings do not exceed 4π value even at high scale values to remain within the applicability of

perturbation theory up to ΛPlanck.

In order to see how couplings evolve with energy we should consider the RG flow including one loop

corrections of the most relevant couplings of the model.

We impose the following condition on the couplings:

|λi(Λ)| < 4π , i = 1, 2, 3, Λ < ΛPlanck . (2.48)

In the Appendix A we show in A.1 the results of a numerical analysis for the RGE evolution with a

specific choice of the initial values for the parameters of the model showing accordance with fig. 2.1.

From the SM it is well known that λ1 turns to negative values for energies around Λ ∼ 108 GeV

making the EW vacuum metastable [51, 52]. This issue can be indeed solved in the scalar singlet

model: consider theZ2 symmetricmodel with vs � v then from eq. (2.12)we getm2 ' 2λ1v
2
(
1− λ23

4λ2λ1

)
,

i.e. λ1 receives a shift at the EW scale due to its interaction with the singlet.
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For the sake of completeness we collect the one loop equations considered in the numerical analysis

[50]:

λ′1(t) =
1

16π2

[
1

2

(
24λ1(t)

2 − 6yt(t)
2 +

3

8

(
2g2(t)

4 + (g2(t)
2 + g1(t)

2)2
)

(2.49)

+(−9g2(t)
2 − 3g1(t)

2 + 12yt(t)
2)λ1(t) +

1

2
λ3(t)

2

)]
, (2.50)

λ′3(t) =
1

16π2

[
4λ3(t)

2 + 12λ1(t)λ3(t)−
3

2
(3g2(t)

2 + g1(t)
2)λ3(t) (2.51)

+6yt(t)
2λ3(t) + 6λ2(t)λ3(t)

]
, (2.52)

λ′2(t) =
1

16π2

[
2λ3(t)

2 + 18λ2(t)
2
]
, (2.53)

g′1(t) =
1

16π2
(−b01)g1(t)3, (2.54)

g′3(t) =
1

16π2
(−b03)g3(t)3, (2.55)

g′2(t) =
1

16π2
(−b02)g2(t)3, (2.56)

y′t(t) =
1

16π2
yt(t)

[
9

2
yt(t)

2 − 9

4
g2(t)

2 − 17

12
g1(t)

2 − 8g3(t)
2

]
, (2.57)

λ1(0) = λ1,0, λ3(0) = λ3,0, λ2(0) = λ2,0, (2.58)

g1(0) = g1,0, g3(0) = g3,0, g2(0) = g2,0, yt(0) = yt0, (2.59)

b01 = −41

6
, b02 =

19

6
, b03 = 7. (2.60)

(2.61)

A few remarks are in order before proceeding :

• by λ
′
wemean λ

′
= dλ(t)

dt
where t is a combination of parameters including scale of RG evolution

t = log
(
µ2run
v2

)
. Note that by t = 0 we mean EW scale while the Planck scale leads to t ∼ 20.

• λ
′

h receives an additional contribution with respect to its SM RG, this term is crucial in the

stabilization of EW vacuum. In the scalar singlet extension EW vacuum turns from ametastable

(as in SM) to a fully stable minimum. In this scenario we say that the EW vacuum is stabilized.

• even though the gauge couplings g2,g1 do not vary much over the different energy scales (this

doesn’t hold for g3) we consider their contribution. This means we have a system of 7 coupled

differential equations that will be solved numerically by means of Mathematica 13.3.

• We have not included the running of the A and µ parameters of the UV model. Being super-

renormalizable operators they are significant at low energies and become less important at

higher t.

Performing a numerical evaluation in fig. 2.2a and 2.2b for the SM and the scalar singlet model

respectively we can infer that the EW vacuum becomes stabilized in the scalar singlet model.
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(a) SM case where λ1(t = 0) = 0.13 and V (h) changes sign at µ ∼ 1010 GeV, this
means we could enter an unstable phase at sufficiently high energies.

(b) If we consider that the scalar singlet shifts λ1 at the EW scale we can end up with

λ1(t = 0) = 0.16, in this way the quartic coupling stays positive up to the Planck scale.

Figure 2.2: Evolution of λi (i = 1, 2, 3) from the EW to the Planck scale. The labels are difficult to

read.
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Fine tuning the ratio
λ23
4λ2

can let λ1 stay positive up to Planck scale. Note that singlet quartic

coupling λ2 and the mixed coupling λ3 also remain positive if they are set to positive values at low

energy scales.

2.1.4 EWPO

Further constrains on the UV model come from the computation of different quantities connected

with the EW sector. As far as EW observables are concerned it is well known that the most relevant

contribution beyond tree level come from oblique corrections that are flavour independent. In general

we write a scattering amplitude involving an exchange of gauge bosons asM ∼ JµΠ
µ,νJν where the

J’s denote a fermionic weak current.

The most general vacuum polarization rank-2 tensor respecting Lorentz invariance is written as:

Πµν(p2) = Π(p2)ηµν +∆(p2)pµpν , (2.62)

however the second term is usually neglected as we usually contract it withmassless fermionic currents

J µ = q̄γµq.

For this reason in the following we will consider corrections to EW vacuum polarization in the form

Πµ,ν = Πηµν . Computing the vacuum polarisations the strongest bound on the mixing angle is

provided byW mass measurement [53].1

Instead we use Peskin-Takeuchi parameters [56] to set a limit on the mixing angle. They provide a

shortcut to test our NP model through evaluation of the three different quantities:

T ≡ 1

α

(
ΠWW
new (0)

M2
W

− ΠZZ
new(0)

M2
Z

)
,

S ≡ 4c2s2α

(
ΠZZ
new(M

2
Z)− ΠZZ

new(M
2
Z)

M2
Z

− c2 − s2cs
ΠZγ
new(M

2
Z)

M2
Z

− Πγγ
new(M

2
Z)

M2
Z

)
,

U ≡ 4s2α

(
ΠWW
new (M2

W )− ΠWW
new (M2

Z)

M2
Z

− cs
ΠZγ
new(M

2
Z)

M2
Z

− Πγγ
new(M

2
Z)

M2
Z

)
− S,

where α = α(MZ) =
e(MZ)2

4π
∼ 1

127
, c = cos(θW ), s = sin(θW ) and Πnew

V V = Πtot
V V + ΠSM

V V quantifies

the contributions from BSM. Note that the electroweak sector considers also the vacuum polarization

correction from the photonic field Πγγ together with the mixed contribution ΠZγ .

The corresponding interval where these quantities vary are:

0.02 ≤ S ≤ 0.04 , −0.07 ≤ T ≤ 0.17 , −0.07 ≤ U ≤ 0.13 . (2.63)

1Noting though that we will refrain from applying this bound, due to the discrepancies between various measurements

of theW boson mass [54, 55].
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New physics (NP) extension of the standard model can be tested to respect these bounds, in particular

for the scalar singlet model we get a quite accurate bounds on the mixing angle. Contributions from

NP come with two basic effects:

• new Feynman diagrams not present in the Standard model.

• rescaling of the Standard model interaction by some factor. In the singlet model, the Higgs

boson interactions are usually multiplied by cos(χ).

In this case we have two new Feynman diagrams coming from interactions with the new scalar singlet:

iΠWW =

S

W− W− +

S

W− W− = iΠ
(1)
WW + iΠ

(2)
WW . (2.64)

An analogous equation holds also for the Z boson. We can explicitly write the expression for the

corrections to the EWvacuum due to scalar singlet interactions exploiting a dimensional regularization

scheme shifting the number of dimensions to d = 4− ε.

The first diagram in dimensional regularization reads:

iΠ
(1,UV)µν
WW = sin(χ)2

(2iM2
W

v

)2
µε
∫

ddk

(2πd)

i

k2 −M2
W

(
−ηµν + kµkν

M2
W

) i

(p+ k)2 −M2
(2.65)

= sin(χ)2
(2iM2

W

v

)2
µε
∫ 1

0

dx

∫
ddk

(2πd)

i

((k + px)2 − C)2

(
−ηµν + kµkν

M2
W

)
(2.66)

= sin(χ)2
(2iM2

W

v

)2
µε
∫ 1

0

dx

∫
ddk

(2πd)

i

(k2 − C)2
ηµν
[
−1 +

1

4M2
W

(1 +
ε

4
)k2
]

(2.67)

= sin(χ)2
(2iM2

W

v

)2
ηµν
∫ 1

0

dx
(
−I0,2 + (1 +

ε

4
)

1

4M2
W

I1,2

)
(2.68)

= sin(χ)2
(2iM2

W

v

)2 iηµν
(4π)2

∫ 1

0

dx
[
−∆ε + log

(
µ2

C

)
+

C

2M2
W

(
∆ε + 1 + log

(µ2

C

))]
.

(2.69)

The main steps are as follows: the first line shows the loop integral of the first diagram in (2.64) for

which we wrote the loop integral over the virtual momentum and the Feynman rules of the UVmodel.

In the second line Feynman parametrization is adopted assumingC = −xp2(1−x)+M2
W (1−x)+xM2

and reducing the integrand to a unique denominator. In the third line we shift k −→ k − px, note that

p is an external momentum. We decompose the tensor structure isolating the scalar integral that can

be solved with the master formula [57]:

Ir,m =

∫
ddkE
(2π)d

(k2E)
r

(k2E − C)m
= i(−1)r−m

1

(4π)
d
2Cm−r− d

2

Γ(r + d
2
)Γ(m− r − d

2
)

Γ(m)Γ(d
2
)

. (2.70)

In the last step we have included all the divergent quantities in∆ε. Note that up to this point we have

41



2.1. PHENOMENOLOGY

made no approximation. Formally we apply a renormalization procedure known as modified minimal

subtraction scheme (MS) where we get rid of divergent quantities up to constant factors. This step

introduces a scheme dependence of the final result.

For Π
(2)
WW we can proceed in an analogous way:

iΠ
(2,UV)µν
WW =

1

2
sin (χ)2

(2iM2
W

v

)
ηµν
∫

ddk

(2π)d
i

k2 −M2
, (2.71)

= sin (χ)2
−M2

Wη
µν

v2

∫
dd(p+ k)

(2π)d
1

(p+ k)2 −M2

k2 −M2
W

k2 −M2
W

, (2.72)

= sin (χ)2
−M2

Wη
µν

v2

∫ 1

0

dx

∫
dd(k

(2π)d)

k2 + (1− x)2q2 −M2
W

[k2 − C]2
, (2.73)

= sin (χ)
−iM2

W

(4π)2v2)
ηµν
∫ 1

0

dx
[(

2C + (1− x)2p2 −M2
W )∆ε (2.74)

+ (2C + (1− x)2q2 −M2
W ) log

(
µ2

C

)
+ C

]
. (2.75)

Our approximation consists inM2 �M2
W , p

2 which impliesC ∼ xM2 and consequently log
(
µ2

C

)
∼

− log
(
M2

µ2

)
. Fixing then the renormalization scale to µ = MZ we get the following expressions for

the scalar part of EW vacuum polarization:

ΠWW (p) ' sin (χ)2
M2

W

(4π)2v2

[M2

2
+

(
3M2

W +
p2

3

)
log

(
M2

M2
Z

)]
(2.76)

ΠZZ(p) ' sin (χ)2
M2

Z

(4π)2v2

[M2

2
+

(
3M2

Z +
p2

3

)
log

(
M2

M2
Z

)]
(2.77)

Beyond these completely new contributions, we have that the SM contributions including the Higgs

boson couplings are suppressed by a factor of cos2(χ). It is possible to rewrite the full polarization

tensor in a convenient form:

Πtot = Π
(SM)
f,W +Π

′

h +Π
′

S, (2.78)

where the first term includes corrections from fermions and gauge bosons which remains the same as

in the SM. The second term stands for the Higgs boson corrections, while the last terms describes the

contribution from the scalar singlet.

The explicit dependence on the mixing angle is written as an overall rescaling of the scalar integrals:

Πtot = Π
(SM)
f,W,h + (cos(χ)2 − 1)Πh + sin(χ)2ΠS = Π

(SM)
f,W,h + sin(χ)2 (Πh − ΠS) . (2.79)

We note that the scalar tensors are simply related by Πh = ΠS(M
2 −→ m2). It’s possible to explicitly

write the expression for T parameter as:

T = sin(χ)2
1

16π2v2α(MZ)

[
3(M2

Z −M2
W )log

m2

M2
Z

+ 3(M2
W −M2

Z)log
M2

M2
Z

]
. (2.80)
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The upper bound shown in fig. 2.1 is well reproduced by the above expression, we can substitute

different values ofM obtaining a correspondent upper bound for sin(χ).

2.1.5 Higgs signal strength

Recent experimental results from CMS collaboration [3] constrain the a1 = a = κV coefficient in a

range that is about 5 times smaller than range at the discovery. At 2σ confidence we have:

κV = cos(χ)2 . (2.81)

As reported in [3] for an s = 13 TeV machine with an integrated luminosity L of 138 fb−1:

κV ∈ [0.86, 1.18] .

This means:

1− sin(χ)2 ≤ 0.86 −→ sin(χ) ≤ 0.3741 . (2.82)

Note that this result is completely independent fromM and hence corresponds to a line parallel to the

x axis in the Fig. 2.1. In the following numerical analysis we are going to adopt the latter condition

as the upper bound on the mixing angle.
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Chapter 3

Matching

Effective Field theories are predictive in a specific and limited energy range. The reasons why EFTs

break down may be differ from case to case: either new degrees of freedom enter into the dynamics

(as Fermi theory with massive vector bosons W±, Z that require the full electroweak theory) or the

UV theory becomes strongly coupled (such as the Chiral Lagrangian with respect to UV theory, i.e.

QCD ). However, the EFT should reproduce the full UV theory in specific subsets of the parameter

space.

In this chapter wematch ourUVmodel both to SMEFT andHEFT. SMEFT andHEFT can’t be directly

compared as they have different power counting and consequently different domains of validity:

• SMEFT is the proper EFT description as long as the dimensionless parameter E
Λ
remains small,

where E is an energy scale of the problem while Λ is a reference scale for NP. More precisely

we deal with two different expansions in SMEFT: v
Λ
is the ratio between electroweak scale and

new physics scale, and p2

Λ2 where p
2 is some kinematic Lorentz invariant. The latter is related

to the derivative expansion while the former, in a geometric language is related to the curvature

of the scalar manifold [24].

• HEFT has a different power counting, we classify operators in the number of derivative also

called chiral counting dχ = 2l+2where l is the loop number. Hence HEFT basically counts the

loop order[5]. This EFT happens to be valid up to scale 4πv, this limit was briefly derived above

from an argument on the unitarity violation. Recalling a similarity with the chiral lagrangian

that ceases to be valid at 4πfπ, where fπ is the pion decay constant, HEFT has an analogous

limit where fπ is replace by v.

A complete EFT program usually involves runnning of the EFT parameters after matching as we are

interesting in using EFT parameters at an energy scale lower than the matching one 1.

Once we get an expression for coefficients of the effective theory in terms of the UV parameters we

let parameters evolve through RGE down to the desired scale. In this case we are also able to resum

large logarithms that usually arise in QFT.

1The matching scale is usually identified with the scale of NP .
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3.1. INTEGRATING OUT

In this chapter we will restrict ourselves to tree-level accuracy, hence we match at tree-level and do

not preform the running of the Wilson coefficients since tree level matching is valid at every scale.

3.1 Integrating out

As said EFTs should reproduce the same prediction as the UV model within a specific energy range.

We can check whether this is true or not by looking at physical observables. In QFT every observable

is computed from the scattering amplitude that in turn are related to the partition function through the

Green functions. Formally we impose an equality between generating functionals of the UV model

and the EFT one:

ZUV[J ] =

∫
DH

∫
DΦ eiSUV [H,Φ]+i

∫
JH = ZEFT[J ] =

∫
Dφ eiSEFT [φ]+i

∫
Jφ . (3.1)

This is the usual way we write a path integral coupling an external current J to every field. From

the low energy prospective the heavy field is non dynamical so we just solve the E.O.M. for heavy

field and find the classical expression of Φ in terms of H . Then we substitute back into the original

Lagrangian:
δSUV [Φ, H]

δΦ

∣∣∣
ΦC

= 0 ,
∂LUV
∂Φ

− ∂µ
∂LUV
∂(∂µΦ)

= 0 . (3.2)

We say that the heavy degree of freedom has been integrated out.

After this replacement the lagrangian assumes a non-local form∫
DΦeiSUV [H,ΦC [H]] = eiSNL[H] 6= eiSEFT [H] . (3.3)

To obtain a proper EFT Lagrangian, and being interested in dynamics at E � M , we could expand

the non local interaction arising from the above substitution H†H 1
2+M2 (H

†H)2 in series of 1
M2

(
1 −

2

M2 + ..
)
.

Once we get an expression where the only dynamical field is the light one, i.e. H we can compare

with low energy model independent theory.

In particular we are going to match correlation functions computed in the UV theory with those

computed in the IR (EFT) since these quantities should describe the same physics in the IR limit:

ZUV[J ] = ZEFT[J ] . (3.4)

However note that imposing an equality at the Green’s function level may be too stringent since

correlators may change under field redefinition while the matching at the level of Ŝ matrix element

(diagrammatic approach) relaxes this point.

Even though the diagrammatic approach is quite intuitive for EFT users, it could become tedious
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3.2. DIAGRAMMATIC APPROACH

especially at higher loop analysis where the number of diagrams grows exponentially with the loop

order.

The diagrammatic approach is equivalent to the functional matching method. The matching criterion

is built on the 1 light particle irreducible effective action (1LPI), where only light degrees of freedom

occupy external legs.

In particular we compute it both in the EFT and in the UV theory and equate them at RG scale µ =M :

ΓL,EFT [Φ](µ =M) = ΓL,UV [Φ](µ =M) . (3.5)

If we consider Feynman diagrams in terms of their path integral formulation where Green functions

are written in terms of functional derivatives of the partition function then the equivalence between

functional and diagrammatic method is clear. In particular dealing with scalar fields:

〈φ(x1)...φ(xn)〉 =
∫
DφeiS[φ]φ(x1)...φ(xn)∫

DφeiS[φ]
, (3.6)

and the one particle irreducible (1PI) diagrams are obtained from functional derivatives of Γ :

〈φ(x1)...φ(xn)〉1PI = i
δnΓ

δφ(x1)...φ(xn)
. (3.7)

Since 〈φ(x1)φ(x2)φ(x3)..〉1PI is constructed from the full correlator 〈φ(x1)φ(x2)φ(x3)..〉 the functional
method and the diagrammatic one are both valid tools to perform the matching [58]. Since we are

going to work with tree level (TL) processes we will mainly adopt the diagrammatic one for the scalar

singlet model. If we had to match the theory at higher loop a functional matching would have been

more convenient as we briefly mention in the colored scalar model.

3.2 Diagrammatic approach

As said in section 1.3 fields redefinitions, Integrations by parts and Fierz Identities connect different

bases (operators) giving the same physical result, in other words a diagrammatic approach at the

lagrangian level turns out to be field basis dependent. This problem is solved in diagrammatic approach

where we directly compareSmatrix elements whosemodulus squared is related to physical observable

such as cross sections and decay rates. Because of theSmatrix equivalence theorem [59], the diagrammatic

approach does not suffer from ambiguities due to field redefinition.2. Thismethod is based on expanding

Feynman diagrams in a Dyson series under the assumption of perturbativity.

Formally we impose an equation at the scattering amplitude level, also known as on-shell matching:

〈f | ŜUV |i〉 |E�Λ = 〈f | ŜEFT |i〉 |E�Λ . (3.8)

2Note that even in the diagramatic approach we have to reduce the lagrangian basis bu integration by parts as well as

Fiertz identities
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3.2. DIAGRAMMATIC APPROACH

Here Λ is a generic cutoff energy scale where the EFT breaks down. It is crucial to keep the condition

E � Λ otherwise the EFT formulation is not valid. Note that matching at 1 loop level requires

to match at a fixed RG scale. Most of the times µ = M is considered and one needs to adopt a

regularization and renormalization scheme.

Given our UV model (2.23) the matching to HEFT can be naturally be performed in the broken phase

and the kinetic term is directly canonically normalized. Instead the matching in the SMEFT needs to

be done in the unbroken phase and special attention to the canonical normalisation of the kinetic terms

needs to be paid. Neglecting pre-factors and the delta ensuring momenta conservation in eq. (3.8) we

get:

MUV +O(
1

M4
) = MEFT , (3.9)

where the amplitude in the UV is truncated following a specific power counting scheme. Adopting

an abuse of notation we equate the amplitude to its diagrammatic representation to point out clearly

which process we are referring to.

For HEFT and SMEFT the particle content coincides with the SM one. In tab. 3.1 we match some

the sub-graphs needed to compute the EFTs for the VBF process and to ggF di-Higgs production

processes. While we fix the notation by consideringW± as massive gauge bosons, the Z boson case

can be obtained by analogy. In the low energy regime the VBF channel reduces to four tree level

diagrams:

MEFT (W
+W− −→ h1h1) =

W+

W−

h1

h1

+ h1

W+

W−

h1

h1

+

W− h1

W+ h1

+ (u-channel) .

(3.15)

While the UV theory presents the same channels as EFT plus a tree level exchange diagram from the

heavy new scalar field:

MUV (W
+W− −→ h1h1) =

W+

W−

h1

h1

+ h1

W+

W−

h1

h1

+ h2

W+

W−

h1

h1

+

W− h1

W+ h1

+ (u-channel) . (3.16)
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3.2. DIAGRAMMATIC APPROACH

Feynman rules of theUVmodel are summarized in Tab.(3.2) . The analytic expression of the amplitude

in VBF reads:

iMλλ
′

UV (W
+W− −→ h1h1) = ελµ(p1)ε

λ
′

ν (p2)
[m2

Wg
µν

v2
cos(χ)2 +

2m2
Wg

µν

v
cos(χ)

i

s−m2
(−i3!d1)+

2m2
Wg

µν

v
sin(χ)

i

s−M2
(−id2) +

2m2
Wg

µσ

v
cos(χ)

−i
t−M2

W

(
gσρ −

(p1 − p3)σ(p1 − p3)ρ
m2
W

)2m2
Wg

ρν

v
cos(χ)+

+
2m2

Wg
µσ

v
cos(χ)

−i
u−M2

W

(
gσρ −

(p1 − p4)σ(p1 − p4)ρ
m2
W

)2m2
Wg

ρν

v
cos(χ)

]
. (3.17)

The first term stems from the contact interaction, the second term is the s channel exhange of the light

Higgs bosong, the third term the s channel exchange of the new resonance and finally the t and u

channels where the vector boson propagates.
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3.2. DIAGRAMMATIC APPROACH

iMUV (tt̄→ h1) =

t

t̄

h1 = −i Yt√
2
cos(χ)v̄(p1)u(p2) , (3.18)

iMUV (tt̄→ h2) =

t

t̄

h2 = −i Yt√
2
sin(χ)v̄(p1)u(p2) , (3.19)

iMλ,λ
′

UV (W+W− → h1) =

W+

W−

h1 = ελµ(p1)ε
λ
′

ν (p2)2i
m2
Wg

µν

v
cos(χ) , (3.20)

iMλ,λ
′

UV (W+W− → h2) =

W+

W−

h2 = ελµ(p1)ε
λ
′

ν (p2)2i
m2
Wg

µν

v
sin(χ) , (3.21)

iMλ,λ
′

UV (W+W− → h1h1) ⊃

W+

W−

h1

h1

= ελµ(p1)ε
λ
′

ν (p2)i
m2
Wg

µν

v2
2! cos(χ)2 , (3.22)

MUV (h1h1 → h1) =

h1

h1

h1 = −i6d1 , (3.23)

MUV (h1h1 → h2) =

h1

h1

h2 = −i2d2 . (3.24)

Table 3.2: relevant vertices in Di-Higgs production in the UV model

For the sake of completeness we also write down MUV (t̄t → hh) as it enters the partonic

49
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subprocess of gluon gluon fusion production channel.

iMUV (tt̄→ h1h1) =
h2

t̄

t

h1

h1

+ h1

t̄

t

h1

h1

+

t h1

t̄ h1

+ (u-channel) . (3.25)

The analaytic expression for the scattering amplitude reads:

iMUV (t̄t→ h1h1) = v̄s(p2)us′(p1)
[imt

v

3!d1
s−m2

cos(χ) +
i(/p1 − /p3 +mt)

(p1 − p3)2 −m2
t

(
−mt

v

)2
cos(χ)2 +

i(/p1 − /p4 +mt)

(p1 − p4)2 −m2
t

(
−mt

v

)2
cos(χ)2 +

(
−mt

v

) 2d2 sin(χ)

s−M2

]
. (3.26)

The first term corresponds to an s channel exchange of the light Higgs boson with massm, the second

and the third terms describes a fermion propagating respectively in the t and u channel while the last

term describes s channel exchange of the new heavy scalar particle.

3.3 Matching to HEFT

First, we address the matching of the UV model to the HEFT basis. This step seems very easy as

both LUV and LEFT are written in the broken phase. In this EFT basis each term is given by a gauge

invariant invariant part coupled with an integer power of the physical Higgs boson h.

LHEFT ⊃v
2

4
Tr
[
(DµU)

†DµU
](

1 + 2a
h

v
+ b
(h2
v2

)
+O

(
h3
))

−mt

(
Ct
h

v
+ Ctt

(h2
v2

))
t̄t− κλ

m2
h

2v
h3 +

αs
π

(
Cggh

h

v
+ Cgghh

h2

v2

)
Ga
µνG

a,µν . (3.27)

Proceeding via a diagrammatic approach, we compare tree level scattering amplitudes computed in

the scalar singlet model and in the IR theory:3

Mλλ
′

HEFT (W
+W− −→ h1) = Mλλ

′

UV (W
+W− −→ h1) ,

ελµ(p1)ε
λ
′

ν (p2)2i
m2
Wg

µν

v
a = ελµ(p1)ε

λ
′

ν (p2)2i
m2
Wg

µν

v
cos(χ) ,

a = cos(χ) . (3.28)

3The tree level condition does not require to fix the RG scale where I perform the matching however it is needed for

higher order matching. For our purposes a tree-level matching is sufficient. In some cases one-loop is important as for

instance for the colored scalars.
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3.3. MATCHING TO HEFT

Note that the same holds for the case of a single h boson coupling to fermion-antifermion pair:

MHEFT (t̄t −→ h1) = MUV (t̄t −→ h1) ,

−i Yt√
2
Ctv̄(p1)u(p2) = −imt

v
v̄(p1)u(p2) cos(χ) ,

Ct = cos(χ) . (3.29)

The very same procedure give us the Higgs self coupling, note that in HEFT (as well as in SMEFT)

triple and quartic Higgs coupling are different while in SM they are equal.

MHEFT (h1h1 −→ h1) = MUV (h1h1 −→ h1) ,

−i3!κλ
m2
h

2v
= −i3!d1 ,

κHEFTλ =
2vd1
m2
h

. (3.30)

Proceeding with the diagrammatic approach we work out the coefficient b appearing in eq. (3.27).

Note that by consideringMHEFT = MUV we should match channels that are kinematically similar.4

The t channel and the u channel ofMHEFT (WW → h1h1) can already be expressed in terms of UV

quantities obtained by equatingMHEFT (W
+W− → h1) andMUV (W

+W− → h1).

Analogous considerations allow us to not consider the s-channel where h boson propagate because it

essentially gives information on Ct and κλ that have already been found. We limit ourselves to match

the contact term and the s-channel where the heavy d.o.f. propagates of the UV theory with the only

one contact term in the low energy basis i.e.:

Mλλ
′

HEFT (W
+W− −→ h1h1) = M(s−chann,S)

UV +M(cont.)
UV ,

W+

W−

h1

h1

=

k

h2

W

W

h1

h1

+

W+

W−

h1

h1

,

ελµ(p1)ε
λ
′

ν (p2)i
m2
Wg

µν

v2
b = ελµ(p1)ε

λ
′

ν (p2)ig
µνm

2
W

v2

[
cos(χ)2 + 2v sin(χ)

i

s−M2
(−id2)

]
,

b = cos(χ)2 + 2v sin(χ)
d2

s−M2
. (3.31)

4Note that this is no longer true when we introduce derivatives in the field redefinitions as they introduce momentum

dependence that could spoil this kinematic similarity between channels in the UV and in the EFT theory.
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Since we are interested in the low energy limit we simplify the last step as 5:

b
s�M2

−−−−→ cos(χ)2 − d2v sin(χ)

M2

(
1 +

s

M2
+

s2

M4

)
' cos(χ)2 − d2v sin(χ)

M2
. (3.32)

Theoretical arguments lead to the expectation b > 0 [60]. Analogously C2t is computed equating the

relevant scattering amplitudes in HEFT and UV. Note that such a coupling is not present in SM at tree

level, it arise in the low energy limit of the chosen UV model.

MHEFT (t̄t −→ h1h1) = MUV (t̄t −→ h1h1)

t̄

t

h1

h1

= h2

t̄

t

h1

h1

−imt

v2
C2tv̄(p2)u(p1)2! =

(
−imt

v
sin(χ)

) i

s−M2
(−i2!d2) v̄(p2)u(p1) .

C2t =
v sin(χ)d2
s−M2

,

C2t
s�M2

−−−−→ −v sin(χ)d2
M2

. (3.33)

Let us comment on the SM limit of the above expressions: a and Ct recover their SM limit by taking

χ → 0. Furthermore they areM independent. A dependence onM will arise when matching at the

1-loop level. The b coefficient is SM like by taking sin(χ) → 0. C2t recover its SM form by taking

M → ∞ or sin(χ) → 0.

3.4 SMEFT matching

Matching the scalar singlet model to the SMEFT basis (1.39) is not as straightforward as in the HEFT

case. In this section we are adopting a matching in the unbroken phase. We match to the Warsaw

basis given in [21] at dimension 6. The first step is to integrate the heavy field Φ out. For our tree

level analysis we solve the E.O.M. for Φ, namely:

∂LUV
∂Φ

− ∂µ
LUV
∂(∂µΦ)

= 0 ,(
−2− µ2

2 − λ3H
†H
)
Φ = AH†H + µΦ2 + λ2Φ

3 . (3.34)

5In the s � M2 limit we neglect scalar singlet width effects, however in the following numerical analysis where we

compare the UV model and the HEFT, we could not guarantee an energy in the centre of mass always much below the

scalar singlet physical mass, therefore we have included the contribution from the width, namely 1
s−M2+iΓSM where ΓS

is the total width of the new particle.
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The assumptions we make to solve the E.O.M. strongly affect the matching result we are going to

obtain. In a SMEFT scenario where UV physics is not strongly coupled we consider a mixing regime

that is negligible. Under the assumption of low mixing, perturbation theory and µ2
2 � λ3|H|2 we

solve eq. (3.34) iteratively getting:

Φ ∼ A

µ2
2

H†H . (3.35)

Note that solving eq. (3.34) without perturbative assumption means solving a cubic equation in Φ.

Then we have to substitute back (3.35) into LUV that will be written only in terms of H . Finally we

compare it with LSMEFT that we know is made by independent operators.

In principle LUV [Φ[H], H] contains both effective operators in Warsaw basis and other non Warsaw

operators. Applying Higgs E.O.M we can get rid of non-Warsaw effective operators [21]:

DµD
µH = λvH + 2λ(H†H)H − q̄Yuuσ2 + d̄Ydq + ēYel , (3.36)

This step brings in a dependence on theCuH . Since the resulting expression still contains nonWarsaw

operator as H†H
[
(DµH)†(DµH)

]
we can exploit the formula (3.36) so that the latter operator is

rewritten as a combination of OH2,CH and CuH plus dimension 4 operator [61]:

H†H
[
(DµH)†(DµH)

]
=
1

2
(H†H)2(H†H) + (H†H)q̄H̃u+ (H†H)q̄Hd+ (H†H)l̄He

+ (H†H)3 +m2(H†H)2 + E.O.M. , (3.37)

where E.O.M. stands for terms that vanish by substituting H equations of motion. In this way the

dependence on CuH vanishes. With this procedure we have also excluded the OHD operator. Note

that OHD affects the two point functions of W and Z and thus contributes to the ρ parameter. The

constraints on OHD from the electroweak precision data imply that the coefficient of this operators

to be extremely small. In our case we are safe though, since it vanishes by applying Higgs equations

of motion and consequently cH,kin = CH2 . Hence we find that at tree level the only two Wilson

coefficients are generated:

CH2 = − A2

2µ2
2

, (3.38)

CH = −λ3A
2

2µ2
2

+
µA3

3µ4
2

= CH2

(
λ3 +

4µ

3A
CH2

)
. (3.39)

In the Z2 symmetric limit we would have noWilson coefficient generated at tree-level at dimension 6,

but contributions matching at one loop level. These expression confirm the expectation traced in the }
counting given in eq.(1.45),(1.46),(1.47). These quantities were checked by exploiting a Mathematica

package that adopts a functional matching Matchete [62] and automatizes matching for NP models

weakly coupled to SM up to 1-loop. We find agreement also with [63] that lists all effective operators

generated at tree level for different UV models, and accordance with [64] as well.

In order to make differences between SMEFT and HEFTmore evident we have to work on the SMEFT
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lagrangian.

Two main issues are taken into account:

v.e.v. redefinition: with respect to SM we receive additional contribution from dimension 6. Those

terms shift the vacuum state of the SM by 1
M2 suppressed terms.

turn SMEFT in broken phase: SMEFT is written in unbroken phase, i.e. in terms of H doublet

therefore it is still invariant under GSM. A comparison with the HEFT basis can happen when

turning to the broken phase.6

Because of higher dimensional operators the v.e.v. obtained from the SMEFT lagrangian is given by

v2T = v2
(
1 +

3CHv
2

4λM2

)
,

where v has the usual SM expression in terms of the SM Lagrangian parameters. This means that the

H doublet is written as:

H =
1√
2
e

iπiσi
v

(
0

vT + ĥ

)
=

1√
2
U(π)

(
0

vT + ĥ

)
, (3.40)

and in the unitary gauge it further simplifies to:

H =
1√
2

(
0

vT + ĥ

)
. (3.41)

When the EW symmetry is broken additional contributions to the h kinetic term appear and a shift is

needed to restore a canonically normalized term.

Here we choose to perform a non-linear shift that is gauge-dependent (1.43). If we restrict ourselves

to order 1
Λ2 then we get the SMEFT lagrangian in the broken phase contains the following pieces that

are relevant for us:

Lbroken
SMEFT ⊃1

2
(∂µh)(∂

µh) +
v2

4
Tr
[
(DµU)

†DµU
](

1 + 2κSMEFT
V

h

v
+ κSMEFT

2V

h2

v2

)
− κSMEFT

λ

m2
h

2v
h3

−mt

(
CSMEFT
t

h

v
+ CSMEFT

2t

h2

v2

)
(t̄t) (3.42)

in particular VBF is related to κV , κ2V and κλ coupling modifiers while ggF is mainly affected by

the anomalous couplings Ct, C2t and κλ. If we rewrite the above lagrangian in terms of canonically

6We are not going to compare the two EFT at the lagrangian level, this would be incorrect as the two EFTs come from

different assumptions on the Higgs.
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normalized h field we obtain:

LSMEFT ⊃v
2
T

4
Tr
[
(DµU)

†DµU
][
1 + 2

( h
vT

)(
1 +

CH2v
2
T

Λ2

)
+
( h
vT

)2(
1 + 4

CH2v
2
T

Λ2

)
+
( h
vT

)3
(
8
CH2v

2
T

3Λ2

)
+
( h
vT

)4(
2
CH2v

2
T

3Λ2

)]
− λvTh

3
(
1− 5

2

2v2T
m2
h

CHv
2
T

Λ2
+ 3

v2T
Λ2
CH2

)
. (3.43)

The Yukawa part of SMEFT lagrangian that can be used to describe the tt̄ −→ hh process is

LSMEFT ⊃ −mt

[(
1− 3v2T

2
√
2Λ2

CuH
vT
mt

+
v2T
Λ2
C2H

)
h

vT
+

(
− 3v2T
2
√
2Λ2

CuH
vT
mt

+
v2T
Λ2
C2H

)
h2

v2T

]
(t̄t) . (3.44)

Since we are going to stay within the SMEFT framework in the following equations we just write

v and not vT . The most relevant coupling modifiers of SMEFT formulation once the broken phase

is explicitly written down are collected in the following table 3.3. A comprehensive paper about the

Feynman rules in the SMEFT framework can be found in [65] however the latter reference adopts a

linear field redefinition 1.42. Therefore our results cannot be checked with this reference. The same

non-linear refedfinition was instead adopted by Ref. [30], with which our expressions were checked

whenever possible.

For the gluon fusion process, also the couplings of the Higgs boson to gluons are relevant. Those

are though not generated in the singlet model as long as the top quark is not integrated out as there

are no new colored states. Later on, we will though come back to the couplings cggh and cgghh when

discussing the case of the colored scalar field with SM charges Φc → (3, 1,−1/3).

The Lagrangian of eqs. (3.43) and (3.44) show how different couplings are correlated in a linear way

in the SMEFT. In particular we note :

κ2V = 4κV − 3, (3.45)

C2t = 1− Ct . (3.46)

These correlations hold only in SMEFT, this is because they are a remnants of the additional structure

we consider for Higgs field, i.e. that it transforms as a doublet under the chiral SM group SU(2)L ⊗
SU(2)R. This means such relations do not hold in general in HEFT that therefore is much less

constrained from symmetry properties [66].

Since these correlation arise from a specific assumption onH they can be seen inmulti-Higgs interactions

as was reported in [60]. In addition we emphasize these particular linear relations heavily depend

on the field redefinition we have used for the h field. Lagrangians and consequently couplings are

subject to field redefinitions. Thismeans concretely that for VBF adopting a different field redefinition

than the one in eq. (1.43) changes κ2V and also κλ, whereas it leaves the total amplitude invariant.

Hence, physical consideration on the difference between SMEFT and HEFT are better carried out at
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the amplitude level. Analogously for the gluon gluon fusion process where the coupling modifiers

C2t and κλ change their form according to which h field redefinition is choosen. In the singlet model

case the C2t coupling is zero when h is linearly redefined while it obtains a contribution which is

non vanishing after (1.43). This contribution is re-obtained for the linear redefinition due to extra

momentum-dependent terms in the trilinear Higgs self-coupling from the operatorOH2. This reminds

us that an analysis based solely on the coupling evaluation is not physical and we must compute

quantities that are not affected by different definitions of the h field. Our aim in the next chapter

will be to highlight differences between two EFT’s in a way that is not affected by field redefinition,

namely cross sections or amplitudes.
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iMEFT (tt̄→ h1) =

t

t̄

h1 = −i Yt√
2
Ctv̄(p1)u(p2) , (3.10)

iMEFT (tt̄→ h1h1) =

t

t̄

h1

h1

= −i2! Yt√
2
C2tv̄(p1)u(p2) , (3.11)

iMλ,λ
′

EFT (W
+W− → h1) =

W+

W−

h1 = ελµ(p1)ε
λ
′

ν (p2)2i
m2
Wg

µν

v
κV , (3.12)

iMλ,λ
′

EFT (W
+W− → h1h1) ⊃

W+

W−

h1

h1

= ελµ(p1)ε
λ
′

ν (p2)i
m2
Wg

µν

v2
κ2V 2! , (3.13)

MEFT (h1 → h1h1) =

h1

h1

h1 = −iκλ
3m2

h

v
. (3.14)

Table 3.1: relevant TL amplitudes in Di-Higgs production, κ’s expression will change according to
the IR considered
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3.4. SMEFT MATCHING

HEFT SMEFT

κV a1 1 +
cH,kinv

2

Λ2

κ2V a2 1 +
4cH,kinv

2

Λ2

κλ b1 1− 2v2

m2
h

CHv
2

Λ2 + 3
v2T
Λ2 cH,kin

κt Ct 1− 3v2T
2
√
2Λ2

v
mt
CuH + v2

Λ2 cH,kin

κ2t C2t − 3v2T
2
√
2Λ2

v
mt
CuH + v2

Λ2 cH,kin

κhhg cggh
8π
αs

v2

Λ2CHG

κgghh cgghh
4π
αs

v2

Λ2CHG

Table 3.3: Relevant couplings in Higgs pair production, both in HEFT and in Warsaw basis. With

respect to [30] we have added the coupling modifiers of the VBF process.
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Chapter 4

Scalar singlet as Loryons

In the following we will concretely show for the scalar singlet model that the effective expansion does

not converge if the new particle gets most of its mass from EWSB.

4.1 Scalar singlet

In this section we are showcasing the validity of the expansion for the Z2 symmetric scalar singlet

model as it simplifies the computation while not changing the physics we want to highlight.

The model we are using in this section is given by eq. (2.1) where A→ 0, µ→ 0:

LUV =LSM + (DµH)†(DµH) +
1

2
∂µΦ∂

µΦ− µ2
1H

†H

− µ2
2

2
Φ2 − λ1(H

†H)2 − λ2
4
Φ4 − λ3

2
Φ2(H†H) . (4.1)

Both Φ and H acquire a v.e.v. according to 〈Φ〉 = vs and 〈H〉 = v√
2
. In order to highlight the

difference between SMEFT and HEFT we are going to make only one crucial assumption on the

EWSB. If we only assume a weakly coupled UV theory then the new heavy degree of freedom does

not affect EWSB and consequently the mixing between h and S is a subleading effect. Thus we can

identify Φ = vs + S and H = v+h√
2
U(π) where h and S are the physical fields.

Under this assumptions we consider Φ takes a v.e.v. while theH doublet is left invariant, in this way

Z2 symmetry is spontaneously broken.

The UV model allows Φ to acquire a v.e.v. and the lagrangian reduces to:

LUV = LSM + (DµH)†(DµH) +
1

2
∂µS∂

µS − µ2
1H

†H − µ2
2

2
S2 − vsµ

2
2

2
S − λ1(H

†H)2

− λ3
2
|H|2S2 − λ3vs|H|2S − λ3

2
v2s |H|2 − λ2

4
(S4 + 4vsS

3 + 4v3sS + 2v2sS
2) . (4.2)

From tadpole equations for the heavy field we get:

∂V (H,S)

∂S
= 0 ,−→ vs(µ

2
2 + λ2v

2
s) = 0 ,

59



4.1. SCALAR SINGLET

solving for cases where S has a non vanishing v.e.v. means to choose µ2
2 = −λ2v2s .

Note we can define the field dependent mass for the singlet S:

mS(H) = µ2
2 + λ3|H|2 . (4.3)

We can integrate the heavy field S out bymeans of the equations of motion, in the static limit it reduces

to:

0 =
∂LUV

∂S
= (vs + S)(2λ2vsS + λ2S

2 + 2λ3|H|2) , (4.4)

S[H] = −vs ±

√
v2s −

2λ3|H|2

λ2
. (4.5)

Substituting back inLUV I get an expression for the effective lagrangian, the latter include non analyticities

in the vicinity of |H| = 0 which is the physical vacuum, i.e. the lowest energy configuration of the

H field. This is indeed problematic since the SMEFT expansion is usually a polynomial expansion in

|H|2 or ∂|H|2 in other words SMEFT lagrangian does not contain any non analyticity in |H|.
Therefore this might be the case where the low energy theory must be written in terms of HEFT. The

effective lagrangian is rewritten only in terms of H:

LEff = |DµH|2 − λ3

8(µ2
2 + λ3|H|2)

(
∂µ|H|2

)2
+ µ2

1|H|2 − λ1|H|4 + 1

4λ2
(µ2

2 + λ3|H|2)2 , (4.6)

which is clearly problematic around |H| = 0 in the limit µ2
2 → 0. Most importantly this issue cannot

be solved by any field redefinition and therefore is physical, in other words this non-analyticity is an

intrinsic property of the model independent on the field basis that we employ.

This is the typical case where SMEFT expansion is not possible and we must rely on HEFT.

Note that if we solve the E.O.M. for S assuming µ2
2 � λ3|H|2 then the expression for the heavy field

in eq. (4.4) would be expanded as :

S ∼ vs ± µ2

[
1 +

1

2

λ3|H|2

µ2
2

+O
(
(λ3|H|2)2

µ4
2

)]
, (4.7)

and we would cut away any non analyticity around |H| = 0 at the lagrangrian level [32].

In the case of a singlet model where theZ2 symmetry is explicitly broken we can’t solve the third order

equation as we did above, namely factorizing a second order equation and a first order polynomial in

S. In that case we have to solve:

S(µ2
2 + 2µvs + λ3|H|2 − S(µ+ 3vs) + λ2S

2) = A|H|2 + λ3|H|2vs . (4.8)
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4.1. SCALAR SINGLET

The real solution of the latter equation is rather lengthy and crucially it contains terms non-analytic in

|H| = 0. If we expand it for an infinite explicit mass µ2
2 we get:

S[H] '− A|H|2 + λ3vs|H|2

µ2
2

+
A|H|2 + λ3vs|H|2

µ4
2

(2µvs + λ3|H|2)− A|H|2 + λ3vs|H|2

µ6
2[

(2µvs + λ3|H|2)2 + (A|H|2 + λ3vs|H|2)(µ+ 3vs)
]
+O

(
1

µ8
2

)
. (4.9)

As expected if we substitute back this equation in the UV model with explicitly broken Z2 symmetry

we get no non-analyticities around the O(4) invariant point |H| = 0. In eq. (4.9) we can identify the

quantity
A|H|2+λ3vs|H|2

µ22
as an expansion parameter 1 which reduced to

λ3vs|H|2
µ22

for the Z2 symmetric

case for A→ 0. These statements suggest the existence of a SMEFT expansion is related to the ratio
A|H|2+λ3vs|H|2

µ22
since expanding the S field in terms of that quantity leads to an effective lagrangian that

is analytic in |H|2 and ∂H with terms suppressed by the inverse powers of the explicit mass. Hence

the expansion parameter crucial in the scalar singlet model that appear either in the Z2 symmetric case

and in the non Z2 symmetric case is:

r =
λ3v

2

µ2
2

, (4.10)

which is the field independent part of the expansion parameter in eq. (4.7).

The extrema for r are given by an infinte explicit mass (µ2 → ∞) which correspond to r → 0 and

a vanishing explicit mass (µ2 → 0) leading to r → ∞. If the latter is small we can expand solution

for S E.O.M. getting an effective lagrangian that is analytic in H, if instead this ratio is non negligible

we cannot end up with an expansion in inverse powers of the explicit mass scale as in SMEFT. In

this case the mass contribution from EWSB is comparable with the explicit mass source and at the

lagrangian level Leff may show up non-analytic terms in |H| [31].

1An expansion parameter is indeed dimensionless.
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Chapter 5

Results for the singlet model

In this chapter we collect all the meaningful results showing up evidence how different low energy

theories for the Higgs boson may lead to different predictions. Our results mainly concern the scalar

singlet model taking into account the two dominant production channels for Higgs pair production,

i.e. ggF and VBF.

5.1 Scalar singlet results

First of all we will discuss the coupling modifiers in the singlet model focusing on κhhV V = κ2V

(κhV V = κV ) that enters in the VBF and ctthh = c2t (ctth = ct) relevant for the ggF channel. A scan

has been performed in these coupling modifier space.

The scan performed is shown in Fig. 5.1 for the Higgs couplings to vector bosons and in Fig. 5.2

for the Higgs couplings to top quarks. The orange line represents the linear correlation that arises in

SMEFT while the points represent possible values in the coupling space according to HEFT. The red

(blue) color stands for a physical mass of the heavy scalar below (above) 1TeV.

The other parameters vary as:

sin(χ) ∈ [−0.37, 0.37], vs ∈ [0.01, 10v] .

We can already appreciate two main aspects from these plots:

• In SMEFT the linear transformation of the Higgs doublet underO(4) allows for a linear relation

between these couplings while HEFT is not necessarily following a linear relation due to the

non linear realization of the EW symmetry.

• ctthh−ctth points in theHEFTmodel provide strong deviationwith respect to SMEFT prediction,

in other words these EFT coincide only in the vicinity of the SM point.

The second point can be clarified by the expressions of ctthh and ctth resulting from matching and

taking an appropriate limit where HEFT and SMEFT give the same analytic form. Given the results
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5.1. SCALAR SINGLET RESULTS

Figure 5.1: Behaviour of κhhV V in function of κhhV . We find qualitative accordance with results of

[67]. The SM limit is recovered in the point [κhhV , κhhV V ] = [1, 1].

Figure 5.2: Behaviour of ctthh in function of ctth. The SM limit is recovered in the point [ctth, ctthh] =
[1, 0].
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5.1. SCALAR SINGLET RESULTS

from SMEFT we express the couplings in terms of our input parameters. We consider the coupling

modifiers of the Higgs to fermion in the limit of vanishing mixing angle and infinite massM :

cSMEFT
tth =1 +

v2

µ2
2

CH2

χ→0,M→∞−−−−−−−→ 1 +

(
vvsλ3
M2

)
χ

+

(
−1

2
+

2m2 − 2v2sλ2 − 5v2λ3
2M2

)
χ2 +

(
v

vs
+

8vv2sλ3 + 27v3λ3 + 18vv2sλ2 − 18m2v

6vsM2

)
χ3

+

(
−9v2 − 2v2s

6v2s
+

36m2v2 + 10m2v2s − 36v2v2sλ2 − 10v4sλ2 − 42v4λ3 − 25v2v2sλ3
6v2sM

2

)
χ4

+O
(

1

M4
, χ6

)
, (5.1)

cSMEFT
tthh =

v2

µ2
2

CH2

χ→0,M→∞−−−−−−−→ vvsλ3
M2

χ+

(
−1

2
+

2m2 − 2v2sλ2 − 5v2λ3
2M2

)
χ2

+

(
v

vs
+

8vv2sλ3 + 27v3λ3 + 18vv2sλ2 − 18m2v

6vsM2

)
χ3+

+

(
−9v2 − 2v2s

6v2s
+

36m2v2 + 10m2v2s − 36v2v2sλ2 − 10v4sλ2 − 42v4λ3 − 25v2v2sλ3
6v2sM

2

)
χ4

+O
(

1

M4
, χ6

)
. (5.2)

We adopt the same procedure to the results obtained from HEFT:

cHEFTtth = cos(χ)
χ→0,M→∞−−−−−−−→ 1− χ2

2
+

1

24
χ4 +O

(
χ6
)
, (5.3)

cHEFTtthh =− v
d2 sin(χ)

M2

χ→0,M→∞−−−−−−−→
(
−1

2
+

2m2

M2

)
χ2 +

(
8

3
− 14m2

M2

)
χ4 +O

(
1

M4
.χ6

)
. (5.4)

These equations show HEFT and SMEFT couplings coincide only in the small mixing angle limit.

Note that additional conditions have to satisfied:

• cHEFTtthh and cHEFTtth do not have any term at O(χ) therefore vvsλ3
M2 being small is also required if we

want to recover equality between SMEFT and HEFT couplings.

•
−2v2sλ2−5v2λ3

M2 must be small as well in order to to recover accordance at orderthe level of the

couplings at O(χ2), note that cHEFTtth does not involve any mass scale in its expansion therefore

in cSMEFT
tth we must ensure a mass scale separation yielding a negligible m2

M2 .

• cHEFTtthh and cHEFTtth do not have any term atO(χ3) therefore we require v
vs
being negligible but this

may enhance the other 3vvsλ2
M2 present at the same order in χ. The choice of vs value is therefore

non-trivial by this selection of the input parameters.

If these requirements are met we have an agreement between HEFT and SMEFT at least up toO(χ4).

Given that we infer from the plot presented above (fig. 5.2) that the range of the mixing angle is not

small enough to recover the agreement between SMEFT and HEFT.

These results do not have a clear physical relevance as they depend on the field basis that we are
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adopting. As we have previously mentioned κhhV V and ctthh depends on whether we use (1.42) or

(1.43). We have adopted here the one of (1.43) since it does not lead to new Lorentz structures in the

Higgs self-coupling. In this case, when writing down the amplitudes one can see the correspondence

on the amplitude level between the SMEFT and HEFT couplings of two Higgs bosons to two vector

bosons. We now turn to the computation of the amplitudes to provide also a comparison with the full

UV model. Our results are based on the evaluation of unpolarized amplitudes squared, in particular

we consider their ratio in an EFT framework with respect to the UV model.

RUV /EFT =

∑
λ,λ′ Mλ

UVM
∗,λ′

UV∑
λ,λ′ Mλ

EFTM∗λ′
EFT

, (5.5)

where EFT may be either SMEFT or HEFT and a sum over all the polarization in the initial state

(VBF) and/or over color (ggF) is taken 1.

The REFT/UV quantity describes how good the EFT limit is with respect to the full UV model. When

R ' 1 our EFT is an appropriate description of the full model while R values deviating from unity

stands as a breakdown of the EFT prescription.

Our analysis consists in different scans of the above quantity taking into account all the constraints

from the phenomenological analysis of the singlet model. Our main quest is to see how this quantity

changes as the amount of mass that the new particle gets from EWSB grows. To do so we plot REFT

versus:

rexp =
λ3|H|2

µ2
2

,

more precisely we take its field independent part λ3v2

µ22
. Recalling λex =

µ22
2v2

we can related our

expansion parameter to the f parameter defined in [34]:

f =
λ3

λex + λ3
=

λ3
µ22
2v2

+ λ3
=

2rexp
1 + 2rexp

, (5.6)

therefore r = 0.5 corresponds to f = 0.5 which is the reference number above which HEFT is

required. We focus on the partonic amplitudes and computed them at different centre of mass (c.o.m.)

energies s at fixed value of the scattering angle. Since no significant deviation has shown up at

different values of s we refrained to compute the full cross sections.

For the UV model we use eq. (3.17) and eq. (3.26). In our analysis the total width of the new scalar

resonance is included :

Γh2,tot = sin(χ)2ΓSM + Γh2→h1h1 , (5.7)

1More precisely one averages over polarizations and color, for instance in ggF:

¯|M| = 1

22
1

82

∑
λ,λ′

∑
a,b

Mλ
ab,EFTM

∗,λ
′

ab,EFT .
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where ΓSM the decay width of a SMHiggs boson h1 with a massM computed with HDECAY [68] while
Γh2→h1h1 is the decay of the new resonance in two SM Higgs bosons. The decay width Γh2→h1h1 is a

two body decay in the kinematically allowed region i.e. whenM > 2m and given by

Γh2→h1h1 =
1

2M

1

2
ρ|M(h2 → h1h1)|2 =

1

16πM
d22

√
1− 4m2

M2
, (5.8)

where ρ is the two body phase space and 1
2
is due to identical particles in the final state.

For what concerns the SMEFT amplitude we considerMSMEFT = MSM+
c
Λ2M(6) and keep theO

(
1
Λ4

)
in the squared matrix element

|MSMEFT|2 = |MSM|2 ++2
c

Λ2
Re(MSMM(6)) +

c2

Λ4
|M(6)|2 . (5.9)

However the last term is formally of the order of dimension 8 for which we would have to include also

dimension 8 operators leading to an interference with SM as c
′

Λ4Re(MSMM(8)) [69]. HEFT relies on

a different PC and these considerations are not needed in that case.

5.1.1 VBF

We consider the following truncated EFT amplitude for the VBF process:

MV BF ∼εε
[
κV κλ

m2

s−m2

m2
W

v2
+ κ2V

m2
W

v2
+ κ2v

(
m2
w

v

)2
1

t−m2
W

(
−1 +

(p1 − p3)
2

m2
W

)
+ κ2v

(
m2
w

v

)2
1

u−m2
W

(
−1 +

(p1 − p4)
2

m2
W

)]
, (5.10)

where p1 is the momenta for gluon in the initial state while p3, p4 are the momenta of the higgses in

the final state. We collect results for VBF at different centre of mass energies, namely
√
s = 500

GeV ,
√
s = 1000 GeV and

√
s = 1500 GeV. For each energy scale we plot the following quantities

with respect to the expansion parameter rexp : ratio between UV theory and the SMEFT limit, ratio

between UV theory and the linearised SMEFT, ratio between full SMEFT prediction to the linearised

one and finally the ratio between the UV model and the HEFT limit. The parameters are varying as:

λ2 ∈ [0, 4π], λ3 ∈ [−4π, 4π], θ =
π

2
, vs ∈ [0, 10v], sin(χ) ∈ [−0.37, 0.37] , (5.11)

where θ is the scattering angle in the partonic center of mass frame. For coefficients with mass

dimension one we require that the 1-loop corrections to the trilinear Higgs self coupling are smaller

than their tree level values in the SU(2) limit [70]. This leads to:

|A|
max (|µ2|, |µ1|)

≤ 4π, ∧
∣∣∣∣ µµ2

∣∣∣∣ ≤ 4π . (5.12)

The points displayed in each set of figures put together results collected from 2 scans of the
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Figure 5.3: We display the UV model prediction divided by the SMEFT prediction (upper,left), the

UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).

These plots refer to s = 0.5TeV andM ∈ [250, 3000]GeV.
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Figure 5.4: We display the UV model prediction divided by the SMEFT prediction (upper,left), the

UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).

These plots refer to s = 1TeV andM ∈ [500, 3000]GeV.
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Figure 5.5: We display the UV model prediction divided by the SMEFT prediction (upper,left), the

UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).

These plots refer to s = 1.5TeV andM ∈ [500, 3000]GeV.
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Figure 5.6: Feynman diagrams for double Higgs production via gluon fusion (an additional

contribution comes from the crossing of the box diagram).

parameter space. For each value of s we consider the following ranges :

• scan 1: λ2 ∈ [0, 1], λ3 ∈ [−1, 1], |sin(θ)| < 0.37 and vS ∈ [0.02, 8vH ] with M ∈ [250, 3000]

GeV.

• scan 2: λ2 ∈ [0, 4π], λ3 ∈ [−4π, 4π], |sin(θ)| < 0.37 and vS ∈ [0.02, 8vH ] with M ∈
[250, 3000] GeV.

We note that scan 1 populates only values of rexp < 0.1 while scan 2 mostly populates the contrary

regime. From these figures we interfere that while for rexp < 0.1 SMEFT and HEFT do nearly

equally well, for larger values of rexp HEFT seems to describe a little better the full UV model. As the

energy in the centre of mass increases we observe in general terms a better convergence of the EFT.

This is mainly due to vanishing dependence on the anomalous couplings, i.e. the term proportional

to κλ becomes irrelevant for large s. The process in the SM has destructive interference and the

interference behavior dependence on the energy scale. Since the matrix element of VBF MV BF (s)

is maximal around s ∼ 4m2 it is no surprise that the plots at s = 0.5 TeV have a relative worse

convergence with respect to other those at higher values of s as there are more delicate cancellations

due to the destructive interference. As the energy s increases the contribution proportional to κλκV is

suppressed andMV BF ∼ s
m2

W

m2
W

v2
(κ2v − 2κ2V ) for large s.

5.1.2 ggF

In the effective field theory framework model we have three different diagrams contributing to ggF

shown in fig.5.6. These processes are written in terms of anomalous coefficients of eq. (3.27), in

particular the effective coupling tt̄hh is a new coupling that is not present in the SM. This parameter

strongly affects the total cross section σ(pp→ hh) with respect to the SM prediction, see [71, 72].

The EFT amplitudes of the diagrams in fig. 5.6 scale differently with the invariant masses
√
s, where

s is the Mandelstam variable. In the limit s� m2
t ,m

2 the scattering amplitudes reduce to [28]:

M2 ∼ c2tαs
m2
t

v2
, (5.13)

M4 ∼ ctκλαs
m2
t

v2
m2
h

s

[
log

(
m2
t

s

)
+ iπ

]2
, (5.14)

Mnew
4 ∼ c2tαs

m2
t

v2

[
log

(
m2
t

s

)
+ iπ

]2
. (5.15)
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The matrix elements M2,M4 correspond to the first two diagrams in fig. 5.6 while Mnew
4 is the

amplitude with the new interaction. Triangle diagram M4 is enhanced near threshold s ∼ m2 and

is suppressed for higher energies s � m2,m2
t . If c2t ≤ c2t and the centre of mass energies s � m2

t

(which is the case we’re focusing on) the contribution from new physics is comparable with the box

diagram contribution leading to significant deviation from SM independent from the effective field

theory framework we are going to use later. Therefore the squared amplitudes will be particularly

sensitive to c2t (and consequently to new physics) unless c2t � c2t.

As a first step we focus on the process tt̄→ hh. In principle this is enough to investigate the deviation

from the SM prediction since all the anomalous couplings ct, c2t and κλ are already present in tt̄→ hh.

This has to be seen as a preliminary step that cannot reproduce physically meaningful features such

as the destructive interference between the triangle and the box diagrams in ggF.

The scattering amplitude in the effective theory reads :

Mtthh ∼ u(p1)v̄(p2)

[
c2t
mt

v2
+ ctκλ

mt

v2
m2
h

s−m2
h

+ c2t
m2
t

v2
(/p1 − /p3 +mt)

t−m2
t

+ c2t
m2
t

v2
(/p1 − /p4 +mt)

u−m2
t

]
.

(5.16)

A numerical analysis in complete analogy to the VBF case was performed, see fig. 5.7,5.8 and 5.9.

The UV parameters vary as:

λ2 ∈ [0, 4π], λ3 ∈ [−4π, 4π], vs ∈ [0.01, 10v], sin(χ) ∈ [−0.024, 0.024] , (5.17)

while the condition (5.12) is left unchanged. As soon as | sin(χ)| ≥ 0.03 SMEFT does not reproduce

the UV model results, for graphical convenience we have chosen a mixing angle such that EFT agrees

with the UV model for low values of the expansion parameter. HEFT instead provides a better

convergence also in this case allowing a good accordance wit the UV model also for higher mixing

angles. Given that agreement between HEFT and SMEFT is found only for small mixing angles, we

have restricted the range for values of the mixing angle much more with respect to the VBF case.

In addition to small mixing angles we have to take into account the separation of the mass scales

that appear in the expressions of the couplings (5.1),(5.2),(5.3),(5.4). This is the reason why points

referring to the physical mass scale below 1 TeV seem to be displaced with respect to the rest of the

points.

At the squared amplitude level we agree with the statements made at the coupling level for Higgs-

fermion interaction i.e. the SMEFT can reproduce UV model only for low values of the mixing

angle while HEFT shows a better convergence. Therefore we conclude that SMEFT is a reliable

EFT description only for low mixing angles.

Another effect that may be inferred from the plots: SMEFT departs from UV prediction at lower

values of r as the scale s grows. This can be understood by looking at eq. (5.16) where in the limit

s � m2
t ,m

2 the anomalous couplings ct and κλ are suppressed and we get Mtthh ∼ c2t which can

enhance significantly the cross section in ggF [28].
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Figure 5.7: We display the UV model prediction divided by the SMEFT prediction (upper left), the

UV prediction divided by linearised SMEFT (upper right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower left) and the UV prediction divided by and HEFT (lower right).

These plots refer to s = 0.5 TeV andM ∈ [500, 3000]GeV.
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5.1. SCALAR SINGLET RESULTS

Figure 5.8: We display the UV model prediction divided by the SMEFT prediction (upper,left), the

UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).

These plots refer to s = 1TeV andM ∈ [500, 3000]GeV.
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5.1. SCALAR SINGLET RESULTS

Figure 5.9: We display the UV model prediction divided by the SMEFT prediction (upper,left), the

UV prediction divided by linearised SMEFT (upper,right), the full SMEFT prediction divided by the

linearised SMEFT prediction (lower, left) and the UV prediction divided by and HEFT (lower,right).

These plots refer to s = 1.5TeV andM ∈ [500, 3000]GeV.
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Note in addition the significant difference between the SMEFT prediction and the linear SMEFTwhile

in the VBF their prediction were similar up to r ' 1.
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Chapter 6

Colored scalar

So far we have been focusing only on the Higgs interactions with fermions or electroweak gauge

bosons. In this chapter, we will focus instead on a colored state that can generate effetive vertices of

the Higgs boson to gluon as those can modify the main Higsg pair production channel i.e. gluon gluon

fusion (ggF).

There is yet another reason why we have selected this colored model: it appears in the list of Loryon

particles [8], namely it is a good candidate to show different predictions between the two EFTs of

the Higgs bosons we are considering throughout this work. In addition, this model will not produce

a new resonance in di-Higgs production but rather indirectly affect the cross section which is hence

qualitatively very different from the singlet model discussed before. With respect to the scalar singlet

case now we deal with 1-loop amplitudes in the UV model. In the first section we define the model

and the associated Feynman rules. After that we pass to the matching onto the HEFT and SMEFT

lagrangian. A final comment on the effective couplings involved will show clearly under which

additional conditions SMEFT can be derived from HEFT.

6.1 Model

In this section we enlarge the SM spectrum with a complex colored scalar ω1 whose charges under

the SM group are (3, 1)−1/3. This particle couples to the SM Higgs doublet and to gluons via the

lagrangian :

L ⊃ Dµω
†
1D

µω1 −M2
exω

†
1ω1 −

cλh
2
ω†
1ω1H

†H, (6.1)

Dµω1 =
(
∂µ − ig3G

a
µT

a − ig1Y Bµ

)
ω1, (6.2)

where T a = λa

2
are the Gell-Mann matrices an a = 1, 2, ..8. In eq. (6.1), the first term contains the

covariant derivative which couples ω1 to the gauge sector, the second piece is the explicit mass term

and the last one represents a Higgs-portal interaction which provides another mass contribution to ω1

76



6.1. MODEL

in the broken phase. In other words after EWSB the physical mass of the new particle is given by:

M2
ph =M2

ex +
cλh
4
v2 . (6.3)

The latter being a particular case of the general formula (1.67). The new field ωi1 has an internal index

i = 1, 2, 3 labeling the color state i.e. it is a triplet under color hence transforming in the fundamental

representation of SU(3)C . Let U(x) be an element of SU(3)C gauge group, then the field and its

covariant derivative transform as;

ω1 → ω
′

1 = U(x)ω1 , and (Dµω1)
′
= U(x)(Dµω1) . (6.4)

In order to evaluate the scattering amplitudes of this NP model we should work out the relative

Feynman rules. We note thatDµω1(D
µω1)

† gives the Feynman Rules of scalar electrodynamics where

the gauge group is not the photon field Aµ rather it’s a non abelian-one yielding an internal structure

that does matter in this particular coupling between ω1 and the gauge bosons g.

p1

p2

g; a

ω1 : i

ω†
1; j

= ig3(p2 + p1)
µ(T a)i,j,

g; a

g; b

ω†
1; j

ω1; i

= ig23gµν(T
a)i,k(T

b)k,j . (6.5)

The other Feynman rules of the model describe the interaction between ω1 and the Higgs boson:

h

ω1; i

ω†
1; j

= −icλh
2
vδi,j,

h

h

ω†
1; j

ω1; i

= −icλh
4
δi,j2!, (6.6)

where i, j are color indices of ω1 while a, b = 1, ..., 8 label different generators in SU(3)C .// The

relevant diagrams for Higgs pair production are given in tab.6.2. From a naive dimensional analysis

one would expect logarithmic divergences to arise therefore a dimensional regularization prescription

(DR) is adopted in order to regularise the loop integrals. We pass to dimension d = 4− ε and rewrite

the strong coupling g3 → µεg3 where µ is a renormalization group energy scale. Under the assumption

of perturbation theory we can write the following scattering amplitude for single Higgs production:

iMUV (gg → h) = εaµε
b
νδ
abαSπcλh

∫
ddk

(2π)d
(2k + p1)

µ(2k − p2)
ν

(k2 −M2
ph)((k + p1)2 −M2

ph)((k − p2)2 −M2
ph)

− εaµε
b
νδ
abαSπcλh2g

µν

∫
ddk

(2π)d
1

(k2 −M2
ph)((k + p1)2 −M2

ph)((k − p2)2 −M2
ph)

. (6.7)
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Note this is a genuine 1-loop process, with no tree-level diagrams, thus the cross section will be at

least of order α2
S . While in principle the model matches also to other Wilson coefficients such as the

one modifying the trilinear Higgs self-coupling, those contributions are not relevant for our analysis

as they enter at a higher-loop order since the SM contribution is already one-loop order. The effective

coupling of the Higgs boson to gluons gives a tree-level contribution to the amplitude. So matching

the Higgs gluon coupling at one-loop level in total gives the same loop order as the SM contribution.

In our analysis of the double Higgs production we needMUV (g(p1)g(p2) → h(p3)h(p4)). Following

the literature [73] we write the scattering amplitude as a linear combination of two orthogonal Lorentz

structures T µν1 and T µν2 satisfying the Ward identity:

MUV (gg → hh) = −iGFαS(µR)Q
2

2
√
2π

εaµε
b
ν (F1T

µν
1 + F2T

µν
2 ) δab , (6.8)

F1 = C4F4 + F2, F2 = G2 . (6.9)

where Q = (p1 + p2)
2 and GF is the Fermi constant. The momenta p1 and p2 refer to the gluons.

The expressions for form factors F4, F2, G2 depend on the physical scales of the process such as

m,Mph, s. Their expressions in terms of Passarino Veltman integrals are quite lengthy and are given

in [74]. We note that the form factors are finite. Hence there is no parameter in the newUVLagrangian

that needs to be renormalized.

Nevertheless we adopt a regularisation scheme as in intermediate steps there are divergencies. We

find it convenient to express our results in the language of dimensional regularization fixing the

renormalization scale µR appearing in αS to a different scale depending on the required matching

condition.

Note that αS is a running parameter and its running effects give sensible contributions that can’t be

neglected.

6.2 HEFT matching

As far as the matching onto the HEFT lagrangian is concerned we exploit a diagrammatic approach

where we impose an equivalence between the same matrix element computed both in the UV theory

and in the EFT framework, which allows us to extract the form of cggh and cgghh depending on the

matrix element we consider. These effective vertices are parametrized in terms of cggh and cgghh.

The corresponding scattering amplitudes written in the HEFT framework are:

iMHEFT (g(p1)g(p2) → h(p3)) = i
αS
π
εaµε

b
νδ
ab 1

v
cggh (p

ν
1p
µ
2 − p1 · p2gµν) (6.12)

iMHEFT (g(p1)g(p2) → h(p3)h(p4)) = i
αS
π
εaµε

b
νδ
ab 1

v2

(
cgghh +

3m2
h

s−m2
h

cgghκλ

)
(pν1p

µ
2 − p1 · p2gµν)

(6.13)
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6.2. HEFT MATCHING

iMHEFT (g(p1)g(p2) → h(p3)) =

g

g

h (6.10)

iMHEFT (g(p1)g(p2) → h(p3)h(p4)) =

g

g

h

h

+

g

g

h

h

(6.11)

Table 6.1: relevant vertices in the EFT formulation of ggF process.

We can proceed in the usual way equating amplitudes in HEFT with that in the UV model together

with the assumption that E �M . We have collected the Feynman diagrams relevant in the matching

procedure in tab. 6.2. The UV theory includes many others diagrams for theMUV (gg → hh) matrix

element such as those with three and four gluon vertices however they are zero for color.

Even though the EFT limit requires to compute a tree level amplitude in terms of effective couplings,

the UV side is a purely 1−loop process. In the Appendix C we report the explicit calculation for a

diagrammatic matching leading to:

cggh =
1

6

cλhv
2

(4M2
ex + cλhv2)

. (6.16)

The diagrammatic matching for cgghh is a bit more involved. We do not need all the diagrams in the

M(gg → hh) to come upwith an expression for cgghh as many of them give contributions proportional

to cggh and/or chhh.

Therefore with respect to 6.15 we focus on the first four diagrams: the first and the second are simply

obtained from those in cggh replacing
cλhv
2

→ cλhv
4
, the third and the fourth together with variants

with external legs exchanged give a contribution only at O
(

1
M4

ph

)
because the less suppressed terms

O
(

1
M2

ph

)
vanish once all the diagrams are considered. Thus if we stopped atO

(
1

M2
ph

)
we would have

the following relation:

cHEFTgghh =
1

2
cHEFTggh +O

(
1

M4
ph

)
. (6.17)

In that case we would have no dependence on the momenta p3, p4 of the Higgs bosons in the final state

and the associated Lorentz structure would have been given just by pν1p
µ
2 − p1p2g

µν which satisfy the

Ward Identity.

In the ggF literature [73, 75, 76] two Lorentz structures arise: one is recovered by our computation

while the other is indeed proportional to p3 and p4, we are going to neglect the latter as it gives

contributions that are higher order inMph.
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iMUV (gg → h) =

g

g

h +

g

g

h (6.14)

iMUV (gg → hh) ⊃
h

h

g

g

+

g

g

h

h

+

h

h

g

g

+

h

h

g

g

+

g

g
h

h

+

g

g

h

h

+ (box diagrams exchanging final legs) (6.15)

Table 6.2: Relevant vertices for the matching of the colored UV model to the EFTs basis, note that

diagrams with three gluon vertices are zero for color.

6.3 SMEFT

One of the assumption of SMEFT to be a predictive field theory is that BSM physics must be weakly

coupled to SM.

This means that NP has a characteristic scale which is far from EW scale, from a top-down prospective

this meansM2
ph = M2

ex + cλhv
2 ' M2

ex. In this scenario we integrate the new colored scalar out and

subsequently we break the EW symmetry, thus the hypothetical new particle does not interfere with

EWSB.

While the scalar singlet allows for a tree level the colored scalar gives pure 1-loop contribution to

Higgs pair production and must integrated out using functional methods. The latter becomes clear

when we solve the classical E.o.M. for ω1 from 6.1:

(D2 +M2
ex +

cλh
4
|H|2)ω1 = 0 → ωC1 = 0 . (6.18)

Since ωC1 vanishes at tree level, the contribution from NP to the effective lagrangian arises only at

1-loop.
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6.3.1 Functional matching

We want to exploit the functional matching procedure which is easier to handle with respect to the

diagrammatic approach. In the functional matching one imposes a relation at the level of the action

and one does not need to enumerate all possible Feynman diagrams allowed in a specific model and

consequently there’s no need to work out the relative Feynman rules. It consists in the evaluation of

one particle irreducible effective action Γ1PI (1PI) both in the UV theory and in the EFT. In particular

we are interested in the 1PI actions where external states are only given by light fields, the so-called

light particle irreducible action (1LPI). Under the assumption of perturbation theory the following

relation holds for ΓlUV /EFT at any order, where we indicate the loop counting by l :

Γ
(0)
L,EFT [H,ΨSM ] = Γ

(0)
L,UV [H,ΨSM ] , (6.19)

Γ
(1)
L,EFT [H,ΨSM ] = Γ

(1)
L,UV [H,ΨSM ] , (6.20)

where H denotes the Higgs field while ΨSM stands for all the other SM fields. In general terms the

1PI effective action ΓUV [H] is a fucntional of both the light fields and the heavy one. ΓUV the tree

level piece and the one loop level piece are respectively given by:

Γ
(0)
UV [H,ΨSM , ω1] = SUV [H,ΨSM , ω1] ,

Γ
(1)
UV [H,ΨSM , ω1] = i log det

(
−δ

2SUV [H,ΨSM , ω1]

δ(H,ΨSM , ω1)2

)
. (6.21)

This functional is not the ΓL,UV yet as it still depends on the heavy field ω1, however the ΓL,UV can

be easily obtained by exploiting the Equations of motion:

Γ
(0)
L,UV [H,ΨSM ] = SUV [H,ΨSM , ω1,C ] ,

Γ
(1)
L,UV [H,ΨSM ] = i log det

(
−δ

2SUV [H,ΨSM , ω1]

δ(H,ΨSM , ω1)2

∣∣∣
ω1=ω1,C

)
. (6.22)

We can proceed in a similar way for the EFT side where the 1PI effective action is already a 1LPI

as there is no heavy field. The tree level part contains all the effective operators with their Wilson

Coefficient, the one loop part contains in principle the same operators but their Wilson coefficients

are 1-loop sized, i.e. they are suppressed by a loop factor:

Γ
(0)
L,EFT [H,ΨSM ] = S

(0)
EFT [H,ΨSM ] ,

Γ
(1)
L,EFT [H,ΨSM ] = S

(1)
EFT [H,ΨSM ] + i log det

(
−δ

2S
(0)
EFT [H,ΨSM ]

δ(H,ΨSM)

)
. (6.23)

In our case we are considering the Warsaw basis as the EFT and it’s written in terms of dimension 6

operators. Because of the fact that ωC1 = 0, the matching condition between Γ0
L,UV and Γ

(
EFT0) does

not give any result. This entails no effective operators of the Warsaw basis are generated at tree level.

We must pass to the one loop contribution of ΓL,UV that in general is quite involved. In this model
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6.3. SMEFT

we deal with loops where only heavy fields are circulating, in this case Γ
(1)
L,UV can be easily computed.

We can rewrite the functional determinant of ΓL,UV embedding all the SM fields into H:

log det

(
δ2SUV [H,ΨSM ,ω1]

δ(ω1,ω1)
δ2SUV [H,ω1]
δ(H,ω1)

δ2SUV [H,ω1]
δ(H,ω1)

δ2SUV [H,ω1]
δ(H,H)

)∣∣∣
ω1=ωC

1

= log det
(
δ2SUV [H,ω1]
δ(ω1,ω1)

) ∣∣∣
ω1=ωC

1

+ log det
(
δ2SUV [H,ω1]
δ(H,H)

) ∣∣∣
ω1=ωC

1

.

(6.24)

Note that we impose ω1 = ωC1 after the functional trace and the functional determinant are evaluated.

We can then compute the functional determinant exploiting the fact that ωC1 = 0, thus Γ
(1)
L,UV is

diagonal, finally the basic properties of the logarithms leads to the expression above.

We keep the explicit expression of functional determinant as H and ω1 could be multiplets that can

be decomposed further. By imposing (6.20) we appreciate how the functional determinant of only the

light fields simplifies and we are left with:

Γ
(1)
L,UV = log det

(
δ2SUV [H,ω1]

δ(ω1, ω1)

)
= Γ

(1)
L,EFT = S

(1)
EFT [H] . (6.25)

Equation 6.22 can be derived adopting the path integral formalism, in particular we integrate over

the heavy field configurations:

eiΓeff (H)(µ) =

∫
Dω1e

iS[H,ω1](µ) .

This relation defines the effective action at the scale µ = Mex where we match the UV theory to the

effective one. In these steps the SM fields are treated as a classical background 1.

A standard way to proceed is to express ω1 as ω1 = ωc1+ ω̃1 and expanding close to its minimum given

by the classical field configuration:

S[φ, ωc1 + ω̃1] = S[ωc1] +
1

2

δ2S

(δω1)2

∣∣∣
ωc
1

+O
(
ω̃1

3
)
. (6.26)

By using method of steepest descendent, one loop contribution to the effective action boils down to

the evaluation of a functional determinant:

i log det
(
D2 +M2

ex +
cλh
2
|H|2

)
= iTr log

(
D2 +M2

ex +
cλh
2
|H|2

)
(6.27)

where Tr is a trace over internal and external degrees of freedom. It turns out that (D2+M2
ex+

cλh
2
|H|2)

is an elliptic operator that can be always computed using a covariant derivative expansion (CDE)which

is a way of performing one loop evaluations keeping gauge covariance of formulas at each step [58].

1Γeff can be considered as a Wilsonian action where we have integrated out shell of momenta Λ0 < p < Λ where

M > Λ0. In this way non localities do not show up in Γeff and an expansion in terms of local operators is possible.
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Following [77] it is possible to rewrite the functional trace as:

Tr
[ 1

−D2 −M2
ex

cλh
2
|H|2

]
= tr

∫
d4x

∫
d4p

(2π)4

∞∑
n=0

[ 1

p2 −M2
ex

(2ipµD
µ +D2)

]n 1

p2 −M2
ex

cλh
2
|H|2,

(6.28)

where tr on the right hand side stands for trace over internal degrees of freedom. Recalling that odd
powers of pµ vanishes after integration and that crucially Gµν ≡ [Dµ, Dν ] we obtain the following

contributions for the functional trace [58] valid for a single mass scale in the loop:

Tr
[ 1

−D2 −M2
ex

cλh
2
|H|2

]
⊃
∫
d4x

−i
(4π)2

tr
{
M2

ex

[(
− log

(
M2

ex

µ2

)
+ 1
)cλh
2
|H|2

]
+M0

ex

[
−1

2
log

(
M2

ex

µ2

)(cλh
2
|H|2

)2− 1

12

(
log

(
M2

ex

µ2

)
− 1
)
GµνG

µν
]

+
1

M2
ex

[−1

6

(cλh
2
|H|2

)3
− cλh

24
|H|2GµνG

µν +
cλh
24

(
Dµ|H|2

)2
+

1

60
(DµG

µν)2
]
+O

(
1

M4
ex

)}
. (6.29)

Already at this level we can see that integrating out ω1 generates one relevant operator that corrects the

mass of the Higgs, as well as other irrelevant operators of dimension 6. The logarithmic divergences

that show up can be removed by renormalization by a redefinition of the Higgs mass (1st line) and

Higgs quartic coupling (2nd line).

As a first step we bring this lagrangian to theWarsaw basis such that it becomes clear we are generating

OH , OH2 and OHG at one loop level as they are suppressed by 1
16π2 . Functional matching does not

know anything about the set of operators of the EFT basis and does not give in general a minimal set

of effective operators, in other words ΓL,UV may contain redundancies.

The same procedure can be automatically implemented through the Matchete program [62]. This tool

is based on a functional matching routine and can be used to study weakly interacting BSM theories.

As far as the scattering amplitudes in SMEFT framework are concerned, we note that they correspond

to the expressions ofMHEFT with the additional constraint that cgghh =
1
2
cggh whereMphys is replaced

byMex, leading to :

cSMEFT
ggh =

cλhv
2

24M2
ex

, cSMEFT
gghh =

1

2

cλhv
2

(24M2
ex)

.

This linear relation among the couplings is again a consequence of the symmetry constraints imposed

in the SMEFT framework beingH a doublet under SU(2). A physically meaningful limit relate these

expressions of cggh and cgghh: considering the case ofMex � cλhv
2 and neglecting orders in 1/M4

ex

we explicitly find that HEFT and SMEFT coefficients coincide.
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6.4 Low Energy Theorem

It is possible to recover the same results of the HEFT matching section adopting a low energy theorem

(LET) [78, 79], which is an elegant way to get analytical structure of multi Higgs boson couplings.

LET treats Higgs boson as a background field with a low momentum such that H is very close to

its vacuum configuration. Following [79] we can think of gg → hh process as the QCD vacuum

polarization where two (or more) external Higgs bosons are attached to the heavy particle loop where

the heavy particle loop can consist of BSM particles, the top quark or the massive gauge bosons.

In the LET, we assume that the Higgs boson momentum is vanishing, namely the Higgs field is kept

to a constant value. In these conditions, interactions with Higgs field are formally equivalent to a

redefinition of the heavy particle mass. At the lagrangian level we have [78]:

Lhngg =
g23

96π2
Ga
µνG

aµν

(
A1h+

1

2
A2h

2 + ...

)
. (6.30)

where we have defined :

An ≡
(
∂n

∂vn
log detM2

mass(v)

)
, (6.31)

where M2
mass = M†

massMmass is mass matrix of the new heavy particles interacting with the higgs

field. In our case we are interested inA1 andA2 standing for the effective couplings between the Higgs

and gluons. In the following we are integrating out just the ω1 particle leaving the other particles as

dynamical degrees of freedom, thus the determinant of the mass matrix reduces to M2
mass = M2

ex +
cλhv

2

4
.

Diagrammatically these effective couplings can be obtained by a QCD vacuum diagram corrected by

loops of ω1 where we attach n external legs of the higgs field h . The general form of QCD vacuum

polarization in the case of the new colored scalar is:

i4παSΠ
µν
ab = g g + g g = i4παS(p

µpν − p2gµν)Π(p2)δab,

(6.32)

where p is the gluon momenta and αS =
g23
4π

. The second diagram is proportional to Πµν ' p2gµνΠ,

given that the Higgs boson in LET has vanishing momenta and that the Higgs boson momenta is equal

to the gluon momenta by momentum conservation. It follows that this diagram does not contribute.

So we take into account only the bubble diagram in our analysis. 2

Factorizing out the tensorial part the explicit expression for the scalar quantity is given in dimensional

2For the sake of completeness a tadpole diagram should be considered in the QCD vacuum polarization however it

vanishes due to color conservation.
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regularization by3 :

Πω1(p2) =
∆ε

16π2
− 1

16π2

∫ 1

0

dx(1− 2x)2 log

(
M2

phys(v)− p2x(1− x)

µ2

)
. (6.33)

The first term contains the divergent part of the bubble diagram. The second terms is given by the

the bubble diagram and contains the field dependent mass of the new particle. If we focus on the

scalar part of the QCD vacuum polarization in the limit of vanishing momentum for the Higgs we

can expand Π[v + h](p = 0) getting the coefficients corresponding to cggh and to cgghh. Thus we can

Taylor expand around v:

Π[v + h](0) ' Π(0) + h
∂Π[v](0)

∂v
+
h2

2

∂2Π[v](0)

(∂v)2
+ ..., (6.34)

inserting it back into (6.30) clearly gives us the explicit form of cggh and cgghh.

Note also that the same Lagrangian contains gggh, ggggh as well as ggghh, gggghh vertices due

to the Non-Abelian nature of Gµν field strength tensor. In other words we can say:

cggh = v
∂Π[v]

∂v
=

1

6

cλhv
2

4M2
ex + cλhv2

, (6.35)

cgghh =
v2

2

∂2Π[v](0)

(∂v)2
=

1

12

[
cλhv

2

4M2
ex + cλhv2

− 2

(
cλhv

2

4M2
ex + cλhv2

)2
]
. (6.36)

The same result is recovered in the HEFT matching procedure where we have assumed the heavy

(physical) mass limit of the colored scalar, namely the two procedures are explicitly shown to be

equivalent at order 1/M2
phys.

6.5 HEFT and SMEFT at the level of the couplings

Wecomment on the relations between cggh and cgghhworked out in the different EFTs frameworks.From

the results obtained above one can interfere that under the assumption M2
ex � cλhv

2 the couplings

found in the matching to the HEFT lagrangian reduce to those obtained in the matching to SMEFT.

This can be seen in :

cHEFTggh =
1

6

cλhv
2

4M2
ex + cλv2

M2
ex�cλv2−−−−−−→ cλhv

2

24M2
ex

[
1− cλhv

2

4M2
ex

+O
(

1

M4
ex

)]
, (6.37)

where the first contribution is indeed the SMEFT result, and the second term is higher order in 1/M2
ex.

Again this holds true only in the so called decoupling limit where we have the freedom to take the

Mex parameter high enough such that it satisfies M
2
ex � cλhv

2. If the Higgs dependent mass of ω1

is comparable withMex then HEFT does not converge to SMEFT prediction because terms of higher

3In the case a hard cut off was used as a regulator we would have to add δL = αS

24πGa,µνG
a,µν ln Λ2

M2
ph

for the one loop

contribution, so this result is independent from the regularization scheme adopted.
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6.5. HEFT AND SMEFT AT THE LEVEL OF THE COUPLINGS

order in cλhv
2

M2
ex

cannot be neglected anymore.

This holds also for the cgghh coupling up to O
(

1
M4

ex

)
corrections, assuming again that Mex is the

dominant contribution of the physical mass:

cHEFTgghh =
1

12

[
cλhv

2

4M2
ex + cλhv2

− 2

(
cλhv

2

4M2
ex + cλhv2

)2
]

M2
ex�cλhv

2

−−−−−−−→ cλhv
2

48M2
ex

[
1− cλhv

2

4M2
ex

+O
(

1

M4
ex

)]
.

(6.38)

Thus If we restrict cHEFTgghh to its lowest order contribution in 1
M2

ph
and in addition to that we assume

M2
ex � cλhv

2 then it coincides with cSMFET
gghh . These considerations suggest that the expansion parameter

that is suitable to show the differences between HEFT and SMEFT for the colored scalar model will

be most likely related to r = cλhv
2

M2
ex
. Infact when this quantity is small the couplings in HEFT and

SMEFT coincide while in the non decoupling limitM2
ex ≥ cλhv

2 HEFT predicts different couplings

than SMEFT. From the coupling point of view SMEFT is a local approximation of the more general

HEFT framework. We note that Higgs field redefinitions should not spoil this analysis at the level of

the couplings as cgghh and cggh have no tree level contribution. In the VBF for the scalar singlet case it

was necessary to work with amplitudes because of the ambiguity that h field redefinition introduced

at the level of the coupling. The colored scalar model does not suffer from this as any additional

redefinition in h is higher order in the mass suppression. If our aim is to highlight differences between

SMEFT and HEFT we may restrict our analysis to the coupling level but including the UV model in

the analysis necessarily requires to work at the (squared) amplitude level.
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Chapter 7

Conclusions

The ultimate aim in the EFT context is to shed light on the scale of new physics that may lead for

instance to a better understanding of the EWSB mechanism. With this idea we have analyzed the

main differences between two EFT of the Higgs boson, namely SMEFT and HEFT. To do so we have

considered processes with two Higgs bosons in the final state. Those processes allow to distinguish

between the two EFTs as at dimension-6 in SMEFT single and double Higgs couplings are correlated

whereas they are not in HEFT. This holds also true for triple or even more Higgs final states, but in this

case the cross section is too small to be accessible at the HL-LHC. The goal of this thesis was to check

whether differences in HEFT and SMEFT can be realised in concrete UV models and to investigate

how large this differences are in Higsg pair production.

Adopting a Top-Down approach we have selected two models from the Loryon list [34]: a real

scalar singlet and complex colored scalar. The UV models were matched to both SMEFT and HEFT,

showing already at the level of the couplings that differences between theHEFT and SMEFT description

can be realised. In particular, we found that in the singlet model only for small mixing angles the

SMEFT matching is accurate.

In the next step, the amplitudes forW+W− → hh and tt̄ → hh were compared to the ones obtained

in the UV model. This has shown clearly that SMEFT description of Higgs pair production cannot

reproduce the UV model prediction when the new particle gets most of its mass from EWSB. We

quantify this by introducing a quantity r that measures the amount of mass that stems from EWSB.

In particular when r ≥ 0.5 in VBF or r ≥ 0.05 in tt̄ → hh the SMEFT prediction is already 20%

off from the UV prediction. HEFT instead is showing a better convergence to the UV model even for

large r. Therefore we could conclude that SMEFT is not enough to describe di-Higgs production in the

limit of high r, instead HEFT should be used. In practice we do not know what is the UV completion

of the SM and we proceed with a bottom-up approach driven by data. In this sense HEFT stands as

a proper EFT formulation even for Loryon-like new particles. In other words if we parametrize new

physics in terms of a SMEFT we are cutting away the possibility that it is a Loryon particle while

HEFT, being a more general framework can also cover the case of a Loryon particle. Our claim, in

its strongest version, is that the upcoming di-Higgs data should be interpreted in HEFT as concrete

UV models can realise HEFT even taking into account various constrains ranging from theoretical
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ones like perturbative unitarity to experimental ones like Higgs data or electroweak precision tests.

We did not investigate whether the differences that we see between the UV model and the SMEFT

decrease when going to dimension-8 but leave this to future research. Besides the models discussed in

this thesis, there may be more phenomenologically viable models showing differences between HEFT

and SMEFT. Those will constitute an additional motivation to adopt an HEFT formulation in the data

interpretation.
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Appendix A

Numerical analysis of a Z2 symmetric singlet

model

In the following we present numerical results of the renormalization group equations for the irrelevant

couplings of the singlet model (2.1). Let us mention that the lack of including A and µ in the analysis

should not represent a problem as relevant operators usually vanish under the renormalization group

evolution. The idea is to express λ1 and λ2 in terms of the other parameters of the model:

λ1 = λ1 (m,Mχ, v, λ3) ,

λ2 = λ2 (m,Mχ, v, λ3) . (A.1)

Exploiting relations between tan(2χ),m2 andM2 I can express vs in terms of the other parameters:

vs =
(M2 −m2) sin(2θ)

2λ3v
(A.2)

I can substitute it back into the expressions of the physical masses getting formulas for λ2 and λ1

which are valid at the electroweak scale:

λ1 =
m2

2v2
+ sin(χ)2

M2 −m2

2v2
,

λ2 =
2λ23

sin(2χ)2
v2

M2 −m2

(
M2

M2 −m2
− sin(χ)2

)
. (A.3)

The next step is to solve numerically the coupled system of seven differential equations (2.49) in

Mathematica. A major problem is the choice of λ3 value at the electroweak scale, since we have

no direct experimental measure of it we take a value which respects perturbativity at low energies.

In the analysis we require that the perturbativity condition holds for every coupling up to the Planck

scale and for negative values of λ3 we impose the additional condition 4λ1λ2 > λ23 to ensure vacuum

stability. From fig.A.1 we can only conclude that the sin(χ) is decreasing by for higher valuesM this

is in accordance with 2.1 of the text.
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(a) Allowed sin(χ) and relativeM values. (b) Zoom into the mass range from 1TeV to 3 TeV

Figure A.1: A set of points allowed by RGE are presented in the sin(χ) −M plane. In this run we

have fixed λ3 to have a value of 0.13 at the electroweak scale.
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Appendix B

Geometric formulation

Instead of considering the convergence of the effective theory expansionwe can highlight the differences

between SMEFT and HEFT adopting a geometric approach. The following discussion is largely taken

from [9].

We have seen by a suitable change of coordinates that it is possible to pass from the SMEFT to the

HEFT formulation, however, there are physical situations where this change of coordinates is not

possible.

To address this point one can rely on geometric arguments. Given the fact that the S matrix is invariant

under field redefinitions, while the form of the Lagrangian generically is not, can be understood

through the geometry of field space with the scalar fields as the coordinates.

If we restrict ourselves to the field redefinition φ̃→ φ+F (φ) such that F (φ) = φN , i.e. no derivatives

involved in the redefinition, we can rewrite the same scattering amplitudes in terms of geometrical

objects, see for instance [80]. As far as the scalar sector of the SM is concerned we can split the

physical Higgs boson from the Goldstone bosons. Recalling (1.34) we can express the ~φ field as:

~φ = (v + h)n(π), where n(π) ∈ SU(2)L ⊗ SU(2)R/SU(2)V , (B.1)

where h is the radial coordinate while n is a four-dimensional vector satisying n·n = v2 and containing

3 degrees of freedom, namely the Goldstone bosons:

n =


n1 = π1

n2 = π2

n3 = π3√
v2 − π2

1 − π2
2 − π2

3

 . (B.2)

Under the chiral group G they transform as:

h
G−→ h, n

G−→ On, O ∈ G . (B.3)
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In this case n(π) transforms linearly while h is a singlet. As far as the scalar part of the SM is

concerned, we can build an HEFT like lagrangian:

LHEFT = K(h)
1

2
(∂h)2 +

(vF (h))2

4
Tr
[(
Dµn

)†
Dµn

]
− V (h), (B.4)

since the covariant derivative does not play any role in this geometric formulation we can rewriteDµn

as:

(∂n)2 =

(
δa,b +

nanb
1− n2

)
(∂na)(∂nb), where a, b = 1, 2, 3 .

This means I can rewrite the HEFT lagrangian at the two derivative level as:

LHEFT = K(h)
1

2
(∂h)2 +

(vF (h))2

2

(
δa,b +

nanb
1− n2

)
(∂na)(∂nb)− V (h) . (B.5)

The SMEFT/HEFT analysis should clarify whether and when this lagrangian form can be mapped into

a SMEFT lagrangian, i.e. when it’s possible to construct the doublet H starting from {h, πi}. The
fundamental request for converting a HEFT into SMEFT are summarized in [9] as follows:

Leading Order (LO) Criteria: A physical HEFT can be converted to a SMEFT at the fixed point if and

only if the following three conditions hold:

• The function F (h) has a zero at some real value h = h∗. This h∗ is a candidate for an O(4)

invariant point.

• The functions K(h), F (h), V (h) all have a convergent single argument Taylor expansion in h

at h = h∗.

• The scalar curvature R(h) is finite at h∗.

We apply the above prescription to the scalar singlet model, in its Z2 symmetric form. Recall the

effective lagrangian is given by:

LEff = |∂H|2 − λ23
8λ2(µ2

2 + λ3|H|2)
(∂|H|2)2 − µ2

1|H|2 − λH |H|4 + 1

4λS
(µ2

2 + λ3|H|2)2 . (B.6)

As we know SMEFT can be always expressed as an HEFT theory, in particular by making use of Eq.

1.34 we recover the broken phase expression:

LEff =
1

2

[
1− λ23(v + h)2

2λS(2µ2
2 + λ3(v + h)2)

]
(∂h)2 +

1

2
(v + h)2Tr

[(
DU

)†
DU

]
− 1

2
µ2
1(v + h)2 − 1

4
λ1(v + h)4 +

1

16λ2

[
2µ2

2 + λ3(v + h)2
]2
. (B.7)
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We identify the quantities relevant in the construction of geometrical objects:

K(h) =

√
1− λ23(v + h)2

2λ2(2µ2
2 + κ(v + h)2)

, (B.8)

vF (h) = v + h , (B.9)

V (h) =
1

2
µ2
1(v + h)2 +

1

4
λ1(v + h)4 − 1

16λS

(
2µ2

2 + λ3(v + h)2
)2
. (B.10)

These quantities have a convergent Taylor expansion around the O(4) invariant point and therefore

point 1 and 2 of the LO criteria hold. We identify the kinetic term of the HEFT lagrangian in terms of

a metric in the scalar field manifold. In general terms we rely on:

L =
1

2
gi,j(Φ)

(
(DµΦ

i)†DµΦj
)
, (B.11)

where in this case Φi = {πa, h} i.e. the Goldstone bosons and the radial scalar h together define

the spherical polar coordinates on the manifold. By looking at the HEFT lagrangian we note that our

metric has no off diagonal terms and is given by:

gi,j(Φ) =

(
K(h) 0

0 vF (h)g
′
(πa)

)
. (B.12)

More in detail we have the following elements:

ghh = K(h)2 , gab = v2F 2

(
δa,b +

nanb
1− n2

)
, gha = 0 . (B.13)

Analogous definition of connections for Yukawa sector as well as for gauge boson sector can be

constructed, here we are only interested in the scalar sector [81, 82]. Note that when we make a field

redefinition to have a canonically normalized term for h we are indeed settingK −→ 1, in that case we

would consider just the scalar manifold of Goldstone bosons.

Once the metric is defined we can compute Christoffel symbols taking derivatives of the metric with

respect to h or to the Goldstone bosons:

Γhhh =
1

2
ghh(∂hghh) =

1

K
(∂hK) , Γhha =

1

2
ghh(∂aghh) = 0 ,

Γhab = −1

2
ghh(∂hgab) = −v

2F

K2
(∂hF )

(
δa,b +

nanb
1− n2

)
, Γihh = −1

2
gab(∂jghh) = 0 ,

Γahb =
1

2
gak(∂hgkb) =

1

F
(∂hF )δab , Γabc = na

(
δb,c +

nbnc
1− n2

)
.

From these quantities it is possible to construct a non zero Riemann-tensor.

What we are interested in here is really the Ricci scalar curvature R in particular at the O(4) invariant

fixed point because it’s the putative point where EWSB is restored.
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For the µ2
2 6= 0 the scalar curvature is finite at the candidate O(4) invariant point by

R(h = −v) = − λ23
4µ2

2λS
Nφ(Nφ + 1)

Nφ=3
= = −3

λ23
µ2
2λS

(B.14)

where Nφ is the number of scalar fields embedded in U . In this subcase, a mapping to SMEFT is

allowed according to the criteria stated above. Infact if we expand the Lagrangian LEff in powers
of 1

µ22
we recover an expression analytic in H which is of the same form as the SMEFT expansion.

Furthermore the decoupling limit is well defined, i.e. R(h = h∗) −−−−−→
m2−→∞

0 that is the SM case which

is geometrically seen as a flat manifold.

When µ2
2 = 0 the singlet gets all its mass from EWSB, it would be an extreme Loryon particle. In this

case LEff is not be analytic around H = 0. The point where we think EWSB is restored shows up a

divergence in the scalar curvature:

R
∣∣
µ22=0

= − λ3
(λ3 − 2λS)(h+ v)2

Nφ(Nφ + 1)
Nφ=3
−−−→
h→h∗

∞ . (B.15)

In this case the EFT cannot be mapped into SMEFT and HEFT is required.
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Appendix C

Diagrammatic matching for cggh

In this Appendix we explicitly show how to perform a diagrammatic matching in the colored scalar

model. In particular we look at the processes gg → h both in the UV theory and in the HEFT limit.

Formally we are imposing the following matching condition:

MUV (g(p1)g(p2) → h(p3)) = MHEFT (g(p1)g(p2) → h(p3)) . (C.1)

From the diagrammatic point of view we need to evaluate two diagrams in the UV theory whose low

energy limit is given in terms of a single effective vertex:

g

g

h +

g

g

h →

g

g

h . (C.2)

From the left we identify M(1)
UV (gg → h) and M(2)

UV (gg → h) as the two contributions from the UV

theory. We start by writing down the amplitude in the HEFT framework:

iMHEFT (g(p1)g(p2) → h(p3)) = i
αS
π
εaµε

b
νδ
ab 1

v
cggh (p

ν
1p
µ
2 − p1 · p2gµν) . (C.3)
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In dimensional regularizationwemove to dimension d = 4−ε and later and rewrite the strong coupling
constant g3 as g3µ

ε to keep g3 dimensionless. We start to evaluate the first diagram of the UV theory.

k

k − p2

k + p1

g

g

h = εaµε
b
νµ

2ε

∫
ddk

(2πd)
tr
[
T aT b

]
(ig3)

2(2k + p1)
ν i

(k + p1)2 −M2
ph

(
−icλhv

2

)

i

(k − p2)2 −M2
ph

(2k − p2)
µ i

k2 −M2
ph

. (C.4)

We evaluate the trace in color space tr[T aT b] = δa,b

2
and rewrite g23 = 4παs. As a first step we

implement the Feynman parametrization, then we shift the virtual momentum and we simplify terms

that are linear in the virtual momentum k:

1

(k + p1)2 −M2
ph

1

(k − p2)2 −M2
ph

1

k2 −M2
ph

= Γ(3)

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz

δ(x+ y + z − 1)[
((k − p2)2 −M2

ph)x+ ((k + p1)2 −M2
ph)y + (k2 −M2

ph)z
]3 , (C.5)

after that we perform shifts in the variable k → k−p1y+p2z neglecting those terms that have an odd

power of k.

4kµkν − pν1p
µ
2 + 2pν1k

µ − 2pµ2k
ν → 4(k − p1y + p2z)

ν(k − p1y + p2z)
µ − pν1p

µ
2

+ 2pν1(k − p1y + p2z)
µ − 2pµ2(k − p1y + p2z)

ν . (C.6)

A further simplification comes from the on-shell condition for gluons p21 = 0 and p22 = 0, this means

the numerator is reduced to:

4kµkν − pν1p
µ
2(1− 2y − 2z + yz) .

In this way our integral has been decomposed from a tensorial structure to a sum of scalar integrals

that are tabulated for instance in Appendix B of [57]. This means we have to evaluate two types of

d-dimensional integral for the first diagram:

I(1) =

∫
ddk

(2πd)

k2

(k2 −∆2 + iε)3
=
d

4

i

(4π)d/2

1

∆2− d
2

Γ

(
4− d

2

)
,

I(2) =

∫
ddk

(2πd)

1

(k2 −∆2 + iε)3
=

−i
2(4π)d/2

1

∆3− d
2

Γ

(
6− d

2

)
.
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In the case at hand ∆2 = −2p1p2yz +M2
ph while Γ stands for the Euler Gamma function. We have

not made any assumption on the relative size of the masses involved in the process yet. Since we are

assuming the physical mass of the new scalar to be much greater than the other particles in the process

we are going to neglect the external momenta p1 and p2, in other words we perform the computation

in the heavy loryon limit (HLM). When we solve I(1) substituting back d = 4− ε we get in the limit

of vanishing ε :

µε
(4πµ2)ε/2

∆ε/2
Γ(ε) = µε

[
1 +

ε

2
log
(
4π2
)
− ε

2
log

(
M2

ph − 2p1p2yz

µ2

)](
2

ε
− γE..

)
. (C.7)

A few comments are in order now: we make use of the modified minimal subtraction scheme as a

renormalization scheme (M̄S), then we set the renormalization group scale µ = M2
ph because this is

the scale at which we are performing the matching. Finally we expand the logarithm as:

∫ 1

0

dy

∫ 1

0

dz log

(
1− 2p1p2yz

M2
ph

)
' −

∫ 1

0

dy

∫ 1

0

dz
2p1p2yz

M2
ph

+O

(
1

M4
ph

)
. (C.8)

The final result from the first diagram is:

iM(1)
UV (g(p1)g(p2) → h(p3)) = i

αS
π
εaµε

b
νδ
ab 1

v

cλhv
2

6(4M2
ex + cλhv2)

(pν1p
µ
2 + p1p2g

µν) . (C.9)

This diagram by itself does not provide the right Lorentz structure. In order to obtain it we need to

take int account also the other diagram. We pass to the second diagram written as

k + p1 + p2

k

g

g

h =εaµε
b
νµ

2ε

∫
ddk

(2π)d
tr
[
T aT b

]
ig23g

µν i

(k + p1 + p2)2 −M2
ph

(
−icλhv

2

)

i

(k2 −M2
ph)

. (C.10)

The procedure to solve this loop integral is the same as for the last diagram and we do not repeat it.

We just quote the final result:

iM(2)
UV (g(p1)g(p2) → h(p3)) = i

αS
π
εaµε

b
ν

1

v

cλhv
2

3(4M2
ex + cλhv2)

(−p1p2)gµν . (C.11)
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This diagram contributes with a relative minus sign in the evaluation of cggh yielding the right tensor

structure:

iM(1+2)
UV (g(p1)g(p2) → h(p3)) = i

αS
π
εaµε

b
νδ
ab 1

v

cλhv
2

6(4M2
ex + cλhv2)

(pν1p
µ
2 − p1p2g

µν) . (C.12)

We can now implement (C.1) to get the expression for the Wilson coefficient in HEFT basis:

i
αS
π
εaµε

b
νδ
ab 1

v
cggh (p

ν
1p
µ
2 − p1p2g

µν) = i
αS
π
εaµε

b
νδ
ab 1

v

cλhv
2

6(4M2
ex + cλhv2)

(pν1p
µ
2 − p1p2g

µν) , (C.13)

which finally leads to :

cggh =
cλhv

2

6(4M2
ex + cλhv2)

.
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