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Abstract

The problem of consensus reaching with prescribed transient behaviour for a group of

agents with dynamics described by a double integrator model is addressed. In order

to achieve prescribed performance we employ an appropriately designed transformation

of the output error, that reflects performance specifications such as minimum speed of

convergence, maximum allowed overshoot and steady state error. Assuming that the

information exchange is described by a static communication network, we initially im-

pose time-dependent constraints on the relative positions between neighbouring agents

and we design a distributed control law consisting of a proportional term of the trans-

formed error through a transformation related gain and an additional damping term

depending on the agent’s absolute velocity. Also a second controller is proposed that

utilizes the relative velocities between agents that exchange information instead of the

absolute velocities. Furthermore, we design a controller that can additionally achieve

prescribed performance for the velocity error by imposing time-dependent constraints

for a combined error, linear combination of the relative positions and velocities. In this

case, the distributed controller has the same structure of the first one enriched with

term proportional to the transformed combined error with time variant gains. Under a

sufficient condition for the damping gains, the proposed nonlinear time-dependent con-

trollers guarantee that the predefined constraints are not violated and that consensus

is achieved with a convergence rate independent of the topology of the communica-

tion network. Furthermore, connectivity maintenance can be ensured by appropriately

designing the performance bounds. Theoretical results are supported by simulations.
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Chapter 1

Introduction

Distributed control of multi-agent systems is a relatively recent research area that is of

great interest due to the large variety of applications. A multi-agent system consists of

a collection of dynamical systems, called agents, that are able to exchange information

over a communication network. Cooperative control and formation control of unmanned

aerial vehicles and wheeled vehicles as well as energy systems, sensor networks, security

camera networks are only a few examples of the diverse fields in which this kind of

systems can be exploited. Some tasks such as patrolling, exploration and surveillance

can be carried out by a single autonomous agent, but having at disposal multiple agents

able to interact and cooperate allows to perform these tasks more efficiently and on a

larger scale. A centralized approach to the control of a group of agents would require

a considerable computational effort, growing with the number of agents, and would not

ensure robustness to system failures. To overcome these drawbacks, distributed control

algorithms based on local information exchange are applied: each agent updates its

current state evaluating only the states of the agents it can communicate with. However,

this type of approach introduces a new set of problems and challenges that need to be

taken into account and require specific mathematical tools.

When dealing with a group of agents the control objectives can be various, ranging

from agreement on a measured value, in the case of sensor networks, to rendez-vous [1]

(agreement on position), flocking [2] or platooning [3], in the case of multiple vehicles.

The problem of ensuring convergence to the same value is commonly known as con-

sensus: one of the first theoretical frameworks to address this problem was given by

Olfati-Saber et al. [4,5]. A typical approach to consensus consists in describing the way

agents exchange information with a graph, in which each vertex represents an agent

and the edges represent the communication links. A communication network in which

some agents are only able to receive information and others can only transmit can be

1



Chapter 1. Introduction 2

modelled with directed graphs [6], whereas if the agents have the same capabilities and

the exchange is bidirectional undirected graphs are used [7]. In this framework, the

properties of the multi-agent system are strictly related to the algebraic properties of

the graph matrices and the results of algebraic graph theory can be exploited to deter-

mine the behaviour of the system. In particular, for many linear agreement protocols

the conditions guaranteeing convergence, and the rate of convergence, depend on the

eigenvalues of the Laplacian matrix [8], [9]. Since the agents are moving during time,

their relative positions change and some links can fail as well as new one can be created

due to communication constraints: this situation can be described with time-variant

graphs. In [10] the problem of consensus seeking for first-order and second-order agents

under switching topology is treated and it is shown that convergence properties depend

on the second smallest eigenvalue of the Laplacian. It is important to notice that the

fundamental assumption that characterizes all the mentioned works is the connectedness

of the underlying communication graph. Lack of connectedness, in fact, implies that one

or more agents are not exchanging any information, therefore they are not able to reach

a common value with the rest of the group. Various solutions have been proposed for

the issue of connectivity maintenance. For example, in [11] constraints in the edge’s

space are imposed, introducing potential functions which value goes to infinity when

approaching the critical distance between two agents. It also is shown that if the initial

conditions are confined within a certain region, consensus is achieved while preserving

connectedness.

In general, constraints in the evolution of the state or the output of both linear and

nonlinear systems have been handled with a variety of different control techniques (e.g.

model predictive control [12], logarithimic barrier Lyapunov functions [13], prescribed

performance control [14], funnel control [15]). Prescribed performance control has been

formalized by Bechioulis and Rovithakis in [16], [17] and it has been applied to feedback

linearizable and strict feedback nonlinear systems to solve the tracking problem. A pre-

scribed performance controller ensures that the tracking error converges to an arbitrarily

small residual set, with a rate not less than a given value and with an overshoot less

than a specified value. To achieve this the tracking error is transformed with a function,

similar to a barrier function, which goes to infinity while approaching the predefined

bounds. Recently these controllers have been successfully applied to manipulators and

robots: for example in [18] a PID controller enriched with a prescribed performance

term has been designed to solve the joint position regulation and the tracking problems

whereas in [19] unicycle-like robots are considered.
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In this work, the framework of prescribed performance control is applied to multi-agent

systems. A set of time-dependent constraints are introduced on the edge’s space, forc-

ing the errors between communicating agent to evolve within predefined bounds. The

objective is to design a distributed law to achieve consensus while ensuring that the

relative positions of neighbouring agents evolve without violating the constraints. This

approach decouples the convergence rate of the system from the communication graph,

allowing to reach consensus in arbitrarily fast time by appropriately designing the per-

formance function. Furthermore, connectivity maintenance during the agent’s motion

can be ensured by properly defining the bounds. The average consensus problem with

prescribed performance guarantees has already been introduced in [20] for first-order

integrator agents: along the lines of this paper, we extend the results to second-order

integrator multi-agent systems. This extension is of particular interest since a variety

of vehicles need a double-integrator model to be described and some vehicle dynamics,

e.g. nonholonomic models, can be feedback linearized to a second-order integrator [8].

Three different nonlinear time-dependent agreement protocols are proposed: the first

two distributed controllers are designed in order to ensure that the position errors be-

tween communicating agents evolve within some predefined bounds whereas the third

also guarantees that some additional time-dependent constraints on the relative veloc-

ities are satisfied. Under certain assumptions, all the characteristics of the first-order

protocol are preserved, including convergence to the invariant centroid. Lyapunov-like

methods are used to investigate stability of the closed loop systems and conditions for

convergence are derived. The different controllers are simulated considering different

topologies for the underlying graph.

The thesis is organized as follows: in Chapter 2 the mathematical tools used throughout

the work are introduced and the control objective is plainly stated; in Chapter 3 the

first proposed controller is presented, stability and convergence properties are studied

and simulations are provided; Chapter 4 and 5 follow the same structure of the previous

one presenting the second and the third proposed controllers; Chapter 6 summarizes the

results and discusses future developments. Appendices provide the proofs omitted in

the previous chapters.



Chapter 2

Preliminaries and problem

formulation

2.1 Graph theory

Graphs are a useful tool to model the topology of the connections between agents, in

multi-agent systems. In this section we provide a brief overview of the concepts of graph

theory that will be widely used throughout the whole thesis. A graph G with N vertices

and m edges is usually characterized with two finite sets: V = {1, 2, . . . , N} is the set of

vertices and E = {(i, j) ∈ V ×V|j ∈ Ni} is the set of edges and, obviously, N and m are

the cardinalities of V and E respectively. Ni is the neighbourhood of vertex i, i.e. the set

of all the vertices j that are adjacent to i; two vertices i and j are said to be adjacent

if there is an edge connecting them. If the communication topology is changing during

time, the sets Ni are time-variant.

A graph is directed if the edges are oriented, i.e. the pairs (i, j) ∈ E are ordered,

otherwise it is undirected. A path of length r from i to j is a sequence of r + 1 distinct

vertices starting from i and ending with j, such that consecutive vertices are adjacent.

If the starting and ending vertices coincide, then we have a cycle. A graph is connected

if there is a path between any pair of vertices, otherwise it is disconnected. Additionally,

a connected graph without cycles is referred to as a tree.

To each graph is associated a N × N matrix, the adjacency matrix A = A(G) = [aij ],

representing the adjacency relationships between the vertices: each element aij is equal

to 1 if (i, j) ∈ E and equal to 0 otherwise. If the graph is undirected A is symmetric.

We call degree matrix ∆ = diag {δ1, δ2, . . . , δN} the N ×N diagonal matrix containing

the degrees of the vertices of the graph: the degree of the vertex i is the number of

incident edges and it is given by δi =
∑N

j=1 aij . By assigning and orientation to each edge

4



Chapter 2. Preliminaries and problem formulation 5

of G we can define the incidence matrix, a N ×m matrix denoted by B = B(G) = [bij ].

The rows of B are indexed by the vertices and the columns are indexed by the edges.

In particular bij = 1 if the vertex i is the head of the edge j, bij = −1 if i is the

tail of edge j and bij = 0 otherwise. The rank of B and the connectivity properties

of the relative graph are strictly related, as Theorem 2.1 in [21] states: for a graph

with h connected components, rank(B) = N − h. Another important property of the

incidence matrix is that the null space of its transpose, Ker(B>), is spanned by the

vector 1N = [1, 1, . . . , 1]>. We define the Laplacian matrix of G as L = ∆−A. We can

also obtain the Laplacian matrix as L = BB>. For an undirected graph L is a rank

deficient, symmetric, positive semi-definite matrix, whereas for directed graphs it does

not have these properties. In both cases, if the graph is connected, L has a single zero

eigenvalue with 1N corresponding eigenvector [21]. Therefore, the real spectrum of the

Laplacian can be ordered as

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L)

As a consequence of the previously cited theorem (Theorem 2.1, [21]), the multiplicity of

the zero eigenvalue of the graph Laplacian is equal to the number of connected compo-

nents of G. We define the edge Laplacian as LE = B>B: it is a m×m symmetric matrix

and it is positive definite if and only if the graph is a tree. The spectral properties of

LE are strictly related to those of L since they have the same non zero eigenvalues [9], [6].

Example 1. Consider a simple undirected graph with N = 3 and m = 2 with the

topology of Figure 2.1a. This is a connected graph, without cycles, therefore it is a tree.

Its associated adjacency, degree and Laplacian matrix are, respectively,

A =


0 1 1

1 0 0

1 0 0

 ∆ =


2 0 0

0 1 0

0 0 1

 L =


2 −1 −1

−1 1 0

−1 0 1


1

2 3

(a) Undirected graph

1

2 3

(b) Directed graph
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Assigning an orientation to the edges (Figure 2.1b) we can define the incidence matrix

B =


1 1

−1 0

0 −1


and easily verify all its properties: the sum of the elements on the columns is equal to

zero, equivalently 1
>
3 B = 0, and L = BB>.

The eigenvalues of the Laplacian matrix are λ(L) = {0, 1, 3} in accordance with the fact

that the graph is connected. The edge Laplacian is

LE =

[
2 1

1 2

]

and its eigenvalues are λ(LE) = {1, 3}, verifying the aforementioned relationship between

the two Laplacians. M

Before concluding the section, let us cite an important result on the characterization of

the eigenvalues of an Hermitian matrix [22]. The theorem is stated below for the specific

case of a symmetric matrix :

Theorem (Courant-Fischer). Let F ∈ Rn×n be a symmetric matrix with eigenvalues

λ1(F ) ≤ λ2(F ) ≤ · · · ≤ λn(F ) and let k be an integer with 1 ≤ k ≤ n. Then

min
w1,w2,...,wn−k∈Rn

max
z 6=0,z∈Rn

z⊥w1,w2,...,wn−k

zTF z

zT z
= λk(F )

and

max
w1,w2,...,wk−1∈Rn

min
z6=0,z∈Rn

z⊥w1,w2,...,wk−1

zTFz

zT z
= λk(F )

�

As a paricular case of Courant-Fischer theorem, taking k = 2 and w1 = 1N we can find

an upper bound to the second eigenvalue of the Laplacian: for a vector z ∈ Rm such

that z ⊥ 1

λ2(L) ≤ z>Lz

z>z

Therefore, defining λ2 , λ2(L), we obtain a vector inequality, that will be used further

on:

z>zλ2 ≤ z>Lz (2.1)
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ρ(t)

−M ρ(t)

case of y(0) > 0

−M ρ0

0
ρ∞

y0
ρ0

−ρ(t)

M ρ(t)

case of y(0) < 0
−ρ0

y0

−ρ∞
0

M ρ0

Figure 2.2: Performance bounds (dashed lines).

2.2 Prescribed performance control

In this section we will introduce the theoretical background for prescribed performance

control ( [16], [17]). The objective is to prescribe the evolution of a certain quantity of

the system, e.g. the output, within certain bounds, guaranteeing its convergence to a

predefined arbitrarily small set with a chosen convergence rate and a limited overshoot.

The bounds are defined using functions ρ(t) : R+ → R+ \ {0} which are

1. positive, smooth and decreasing functions

2. s.t. limt→∞ ρ(t) = ρ∞ > 0

and called performance functions. Let y = [y1, y2, . . . , yn]> denote the quantity (be it a

state, an output or a function of them) whose time evolution we want to bound. The

control objective is equivalent to

−Miρi(t) < yi(t) < ρi(t) if yi(0) > 0 (2.2a)

−ρi(t) < yi(t) < Miρi(t) if yi(0) < 0 (2.2b)

for all t ≥ 0, where Mi is the maximum allowed overshoot for the i-th component.

Remark 2.1. ρ∞ represents the maximum allowable error from the desired value of y(t)

at the steady state, while the rate of descent of the performance function is a lower

bound on the speed of convergence. C

Example 2. An exponentially decreasing function ρ(t) satisfying the previously stated

properties is

ρ(t) = (ρ0 − ρ∞) e−τt + ρ∞ (2.3)

with ρ0, ρ∞ and τ appropriate constants. A graphical representation of the bounds (2.2)

is shown in Figure 2.2. M

By normalizing yi(t) with respect to the performance function we get the modulated (or

modified) variable

ŷi(t) ,
yi(t)

ρi(t)
(2.4)
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and we can define the corresponding prescribed performance regions

Dŷi , {ŷi(t) : ŷi(t) ∈ (−Mi, 1)} if ŷi(0) ≥ 0 (2.5a)

Dŷi , {ŷi(t) : ŷi(t) ∈ (−1,Mi)} if ŷi(0) < 0 (2.5b)

that are equivalent to (2.2).

We now introduce a function Ti of the modulated variable, called transformation func-

tion, with the following properties:

1. Ti : Dŷi −→ R is smooth and strictly increasing

2.
limŷi→−Mi

Ti(ŷi) = −∞

limŷi→1 Ti(ŷi) = +∞

 if yi(0) > 0

limŷi→−1 Ti(ŷi) = −∞

limŷi→Mi
Ti(ŷi) = +∞

 if yi(0) < 0

for i = 1, 2, . . . , n. Then we denote with

εi(ŷi) = Ti (ŷi) (2.6)

the transformed variable, where we dropped the time argument t from ŷi(t) for notation

convenience. We additionally define the stack vector of all transformed variables

ε(ŷ) = [ε1(ŷ1), ε2(ŷ2), . . . , εn(ŷn)]> (2.7)

The domain of the vector function ε(ŷ) is the Cartesian product

Dŷ = Dŷ1 ×Dŷ2 × · · · ×Dŷm

Differentiating (2.6) with respect to time, we obtain

ε̇i(ŷi) = JTi(ŷi, t) [ẏi + αi(t)ŷi] (2.8)

where

JTi(ŷi, t) ,
∂Ti(ŷi)

∂ŷi

1

ρi(t)
> 0 (2.9)

αi(t) ,−
ρ̇i(t)

ρi(t)
(2.10)

for i = 1, . . . , n are, respectively, the the normalized Jacobian of the transformation Ti

and the normalized derivative of the performance function. The functions αi(t) ≥ 0,
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Figure 2.3: Error transformation with natural loga-
rithm.

with domain Dŷi are such that limt→∞αi(t) = 0 for i = 1, . . . , n.

We also denote with

JT (ŷ, t) , diag {JT1(ŷ1, t),JT2(ŷ2, t), . . . ,JTn(ŷn, t)} (2.11)

the diagonal matrix of all the normalized Jacobians, with

P (t) , diag {ρ1(t), ρ2(t), . . . , ρn(t)} (2.12)

Ṗ (t) , diag {ρ̇1(t), ρ̇2(t), . . . , ρ̇n(t)} (2.13)

P−1(t) , diag

{
1

ρ1(t)
,

1

ρ2(t)
, . . . ,

1

ρn(t)

}
(2.14)

the diagonal matrices of all the performance functions, their derivatives and their inverse

functions, respectively. Finally we denote with

A(t) , diag

{
− ρ̇1(t)

ρ1(t)
,− ρ̇2(t)

ρ2(t)
, . . . ,− ρ̇n(t)

ρn(t)

}
= Ṗ (t)P−1(t) (2.15)

the diagonal matrix of all the αi(t) functions.

If the transformation function is such that Ti(0) = 0, an inequality, useful for stability

analysis, is implied (cfr. [18]):

y>i JTi(ŷi, t)εi(ŷi) ≥ µ1,iε
2
i (ŷi) (2.16)

for some positive constant µ1,i for i = 1, 2, . . . , N .

Example 3. As suggested in [18] and [20], a possible transformation function can be

T (ŷ) =

 ln
(

M+ŷ
M(1−ŷ)

)
if y(0) > 0

ln
(
M(1+ŷ)
M−ŷ

)
if y(0) < 0

(2.17)
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Either the first or the second expression can be used if y(0) = 0 (Figure 2.3).

Note that with such a transformation we cannot set M = 0, because otherwise the

transformation function would be infinite for any value of ŷi within the domain.

If we do not want to allow overshoot, we can use a transformation function of the form

(cfr. [18], [20])

T (ŷ) =

 ln
(
M+ŷ
1−ŷ

)
if y(0) > 0

ln
(
M−ŷ
1+ŷ

)
if y(0) < 0

(2.18)

M

2.3 Problem formulation

In this work we will consider a group of N agents each one described with a double-

integrator model

ẋi = vi

v̇i = ui
(2.19)

where xi ∈ R is the position and vi ∈ R is the velocity of the i-th agent, for i = 1, . . . , N .

ui ∈ R is the control input which, in such a model, corresponds to the acceleration of

the agent. System (2.19) can be alternatively written as

ẍi = ui (2.20)

For k = 1, 2, . . . ,m we define the position error (or relative position) between two

communicating agents as

x̄k , xij = xi − xj with j ∈ Ni

In order to put the model of the multi-agent system in a vector form, we need to define:

. x = [x1, x2, . . . , xN ]> as the stack vector of absolute positions of the agents.

. v = ẋ = [v1, v2, . . . , vN ]> as the stack vector of absolute velocities of the agents.

. x̄ = [x̄1, x̄2, . . . , x̄m]> as the stack vector of relative positions between pair of agents

that form an edge in G. Hence the following relation holds

x̄ = B>x (2.21)
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We also denote with

v̄k , vij = vi − vj with j ∈ Ni

the velocity error (or relative velocity) between two neighbouring agents. Therefore

. v̄ = [v̄1, v̄2, . . . , v̄m]> is the stack vector of relative velocities between pair of agents

that form an edge in G and the following identity holds

v̄ = B>v (2.22)

In a multi-agent system, the agents are supposed to communicate between each other

with an arbitrary connection topology, which affects the behaviour and the stability

properties of the system. Concerning this aspect, the main assumption we make is that

the topology is time-invariant and all the communicating agents mutually exchange their

current positions and velocities. We can summarize this in the following

Assumption 1. The communication topology of the multi-agent system is described by

a static graph with bidirectional links.

The objective of this thesis is to provide a solution for these two problems:

Problem 1. Design a distributed controller for system (2.19) able to guarantee

1) Consensus of the position of the agents, i.e. ensuring that the trajectories of the

agents will meet at a certain point.

2) Prescribed transient evolution of the position errors between two communicating

agents.

In the last part of the thesis another control objective will be added, resulting in

Problem 2. Design a distributed controller for system (2.19) able to guarantee

1) Consensus of the position of the agents.

2) Prescribed transient evolution of the position errors between two communicating

agents.

3) Prescribed transient evolution of the velocity errors between two communicating

agents.



Chapter 3

Prescribed transient behaviour

for the position errors: approach

with absolute velocities

3.1 Proposed controller

For each agent, the proposed controller is the composition of a term based on prescribed

performance of the position errors between the neighbouring agents and a second term

which is proportional to the absolute velocity of the agent:

ui = −
∑
j∈Ni

gijJTij (x̂ij , t)εij(x̂ij)− γvi i ∈ V (3.1)

with gij and γ being positive constants. The terms JTij (x̂ij , t) and x̂ij have been defined

in Section 2. The position errors xij are modulated by the performance functions ρij(t)

and then transformed with Tij(·) , εij(·). The corresponding allowed overshoot is

denoted with Mij .

Independence of the evolution of the centroid 1 of the prescribed performance term can

be ensured by making the following assumptions:

Assumption 2. The graph G describing the communication topology of the multi-agent

system is connected.

Assumption 3. For each pair of communicating agents the performance functions and

the overshoot indices are the same, i.e. ρij(t) = ρji(t) and Mij = Mji, and the transfor-

mation functions are such that Tji(x̂ji) = −Tij(−x̂ij).
1The centroid is defined as the average of the positions of the agents forming the system

12
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This choice implies JTij (x̂ij , t)εij(x̂ij) = −JTji(x̂ji, t)εij(x̂ji) (cfr. [20]).

The system (2.19) with the control input (3.1) can be written in vector form as follows:

ẋ = v

v̇ = −BJT (ˆ̄x, t)Gε(ˆ̄x)− γv
(3.2)

or equivalently:

ẍ = −BJT (ˆ̄x, t)Gε(ˆ̄x)− γẋ (3.3)

where G ∈ Rm×m is a positive definite diagonal gain matrix with entries gij . The matrix

JT (ˆ̄x, t) and the vector ε(ˆ̄x) are defined as (2.11) and (2.7), respectively.

In the following sections we will prove that the closed loop system (3.3) is stable, the

consensus objective is achieved and the relative positions evolve within the performance

bounds.

3.2 Time evolution of the centroid

In this section we investigate how the mean of the positions and the mean of the velocities

of the agents of (3.2) vary during time by deriving an analytical expression that describes

their evolution. We are also interested in their asymptotic value. The results we obtain

are instrumental to the study of the equilibrium point of the controlled system. From

now on v0 , v(0) ∈ RN is the vector of initial absolute velocities and x0 , x(0) ∈ RN is

the vector of initial absolute positions of the agents.

Velocities

By multiplying both sides of the second equation in (3.2) by 1
T
N , we obtain

1
T
N v̇ = −1TNBJT (ˆ̄x, t)Gε(ˆ̄x)− γ1T

N ẋ

and therefore

d

dt

(
N∑
i=1

vi

)
= −γ

N∑
i=1

vi (3.4)

where the identity 1
T
NB = 0 was used. As explained, Assumption 3 implies that the

evolution of the mean of both velocities and positions is independent of the prescribed

performance term. In fact under this assumption, the incidence matrix B appears in

the first control term. The linear differential equation (3.4) means that the sum of the
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agents’ velocities decreases exponentially during time, hence so does their mean

1

N

N∑
i=1

vi(t) =

(
1

N

N∑
i=1

vi(0)

)
e−γt (3.5)

It is straightforward from (3.5) that the mean of the velocities will converge to zero

asymptotically

lim
t→∞

(
1

N

N∑
i=1

vi(t)

)
= 0 (3.6)

Positions

By multiplying both sides of the first equation in (3.2) by 1
T
N , we obtain

1
T
N ẋ =1TNv

d

dt

(
N∑
i=1

xi

)
=

N∑
i=1

vi = e−γt

(
1

N

N∑
i=1

vi(0)

)
(3.7)

Solving (3.7) by means of integration, we have

∫ t

0

N∑
i=1

ẋi(τ)dτ =− 1

γ

(
N∑
i=1

vi(0)

)∫ t

0
−γe−γτdτ

N∑
i=1

xi(t)−
N∑
i=1

xi(0) =− 1

γ

(
N∑
i=1

vi(0)

)(
e−γt − 1

)
Therefore, the mean of the agents’ positions evolves according to

c(t) =
1

N

N∑
i=1

xi(t) =
1

N

N∑
i=1

xi(0)− 1

γ

(
1

N

N∑
i=1

vi(0)

)(
e−γt − 1

)
(3.8)

and asymptotically converges to

c∞ = lim
t→∞

c(t) =
1

N

N∑
i=1

xi(0) +
1

γ

(
1

N

N∑
i=1

vi(0)

)
(3.9)

that can be written in a vector form as:

c∞ =
1

N
1

T
N

(
x0 +

1

γ
v0

)
(3.10)

Based on this analysis, the centroid is time-variant and in particular it evolves expo-

nentially from its initial value c0 = 1
N 1

T
Nx0 to its final value c∞. Note that if the sum

of initial velocities is zero, then the time-dependent term of (3.8) vanishes and the the

mean of the agents’ positions becomes time-invariant, i.e. c(t) = c0 = c∞ for t ≥ 0.
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3.3 Stability analysis

The controller (3.1) introduces a dependence on time and alters the linearity of (2.19),

transforming the original system in a nonlinear and time-variant one. We will use

Lyapunov-like tools in order to prove that the controlled system is stable and at the

same time consensus and prescribed performance are guaranteed.

Before stating the main result we need to introduce a change in the notation: instead

of using xij and ρij(t), we denote the performance function associated to the position

error x̄k between two neighbouring agents with ρk(t).

Theorem 3.1. Consider the prescribed performance agreement protocol (3.1) applied

to the double integrator dynamics (2.19) under Assumptions 1,2 and 3. Consider also

performance functions ρk(t) with bounded derivative and transformation functions s.t.

Tk(0) = 0 for all k.

If 1) the condition

γ > max
t≥0

αk(t) (3.11)

holds ∀ k and 2) the initial conditions x̄k(0) are inside the performance bounds (2.2) for

k = 1, . . . ,m, then

i) the relative errors x̄k(t) will evolve within the prescribed performance bounds for k =

1, . . . ,m and ∀ t ≥ 0,

ii) the relative errors xk(t) will converge to zero for k = 1, . . . ,m ,

iii) the absolute velocities vi(t) will converge to zero for i = 1, . . . , N . �

Proof. Let ξ =
[
xT vT

]T
be the state vector of (3.2). Consider an arbitrarily chosen

positive constant θ and the following potential function

V (ξ, ˆ̄x) =
1

2
ξTQξ +

1

2
εT(ˆ̄x)Gε(ˆ̄x) (3.12)

where Q =

[
θγIN θIN

θIN IN

]
. V is positive definite if

{
θγ > 0

θ(γ − θ) > 0
and therefore if

{
θ > 0

γ > θ
(3.13)

Differentiating (3.12) along the trajectories of (3.3) and considering (2.8) we obtain

V̇ (ξ, ˆ̄x) = − [θIm −A(t)] x̄TJT (ˆ̄x, t)Gε(ˆ̄x)− (γ − θ)vTv (3.14)
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which is negative semi-definite when (3.13) holds and

[θIm −A(t)] > 0 (3.15)

where A(t) is the m × m diagonal matrix with entries αk(t) = − ρ̇k(t)
ρk(t) . Condition

(3.13) and (3.15) together give (3.11) and since ρ̇k(t) is bounded ∀ k, this ensures

that maxt≥0 αk(t) < ∞. Hence if (3.11) is satisfied, V̇ is negative semi-definite and

this implies that V (ξ, ˆ̄x) ≤ V (ξ(0), ˆ̄x(0)) which in turn implies that ξ, ε(ˆ̄x) ∈ L∞, given

that V (ξ(0), ˆ̄x(0)) is bounded. Therefore, if ˆ̄x(0) is chosen within the regions (2.5) then

V (ξ(0), ˆ̄x(0)) is finite, ε(ˆ̄x) ∈ L∞ and consequently x̄(t) evolves within the prescribed

performance bounds ∀ t. Thus, we have proved i).

Computing the second derivative of V (ξ, ˆ̄x), we can conclude that it is bounded based

on the fact that ε(ˆ̄x) and ε̇(ˆ̄x) are bounded. Boundedness of V̈ (ξ, ˆ̄x) implies that V̇ (ξ, ˆ̄x)

is uniformly continuous and therefore, by applying Barbalat’s Lemma, V̇ (ξ, ˆ̄x) → 0 as

t → ∞. This means that the trajectories of (3.3) will converge to the set in which V̇

is equal to zero, that is E = {(v, ˆ̄x) | v = 0, ˆ̄x = 0} (note that the derivative does not

depend on the absolute positions). If the transformation functions Tk are chosen such

that Tk(0) = 0 ∀ k, then V̇ (ξ, ˆ̄x) → 0 implies x̄ → 0 and v → 0 as t → ∞. This proves

ii) and iii).

Theorem 3.1 states that under certain assumptions the multi-agents system will asymp-

totically reach consensus, but still does not say anything about the actual value of the

absolute positions at the equilibrium. In that sense the Corollary below fills this gap:

Corollary 3.2. The prescribed performance agreement protocol (3.1) applied to the

multi-agent system (2.19), under all the assumptions of Theorem 3.1 ensures the con-

vergence of the agents’ absolute positions to the centroid. �

Proof. Equation (3.9) yields

lim
t→∞

[
1

T
Nx(t)

]
=1T

N

(
x0 +

1

γ
v0

)

1
T
Nx∞ =β (3.16)

On the other hand from Theorem 3.1 we know that the agents will asymptotically reach

the same absolute position

x∞ = 1Nϑ (3.17)
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and need to find which is the value of the constant ϑ. By combining (3.16) and (3.17)

we obtain the following linear system: IN −1N
1

T
N 0

 x∞
ϑ

 =

 0N

β

 (3.18)

which is a Cramer’s system and has only one solution, given by

ϑ =
1

N
det

([
IN 0N

1
T
N β

])
=

1

N
β = c∞ (3.19)

where we used the identity det

(
E F

G H

)
= det(E)det(H −GE−1F ) that holds for every

E invertible.

Details about how the function (3.12) was obtained are shown in Appendix A. For the

expression of V̈ see Appendix B.

3.4 Simulations

In this sections simulation results are presented in order to validate the theoretical

findings of the previous sections. We consider N = 6 agents moving on a planar surface.

Let pi =
[
xi yi

]T
, i ∈ {1, 2, . . . , N}, be the position of each agent and let d denote the

sum of the distances between the agents and the centroid

d ,
6∑
i=1

‖pi − pc‖

with pc , 1
6

∑6
i=1 pi. The positions errors are modulated by an exponentially decreasing

performance function

ρk(t) = ρ(t) = (ρ0 − ρ∞) exp−τt +ρ∞ for k = 1, 2, . . . ,m

which is the same for all the pairs of connected agents, and then transformed by the

logarithmic function

T (ˆ̄x) =

 ln
(

M+ˆ̄x
M(1−ˆ̄x)

)
if ˆ̄x(0) > 0

ln
(
M(1+ˆ̄x)

M−ˆ̄x

)
if ˆ̄x(0) < 0

(3.20)
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1 2 3 4

56

Figure 3.1: Communication graph of
the multi-agent system used in the sim-
ulations: spanning tree G1 in solid lines
and connected graph with one cycle G2 in
solid and dashed lines.

−1 0 1 2 3
−2

−1

0

1

2

3

4

5

x(m)

y
(m

)

p01

p02

p03

p04

p05

p06

Figure 3.2: Agents trajectories on the
x− y plane for PPC1 in case of G1, with
γ = 250 and G = 36.5Im.

already presented in Section 2.2. With this performance function the condition (3.11),

sufficient for the convergence of the trajectories of (3.3), becomes

γ > τ

(
ρ0 − ρ∞
ρ0

)
(3.21)

By choosing ρ0 = 8, ρ∞ = 10−2, M = 0.1 and τ = 2 the condition on the damping

becomes γ > 1.9975. Furthermore we set the maximum allowed overshoot to M = 0.1.

We also consider three different topologies for the connection between the agents: a

spanning tree (G1) and connected graph with a cycle (G2), shown in Figure 3.1, and also

a complete graph (G3). Note that in all the proposed cases we have a connected graph,

satisfying Assumption 2. The initial positions of the agents are: p01 =
[
−0.5 −1

]T
,

p02 =
[
1 −1.5

]T
, p03 =

[
2 2

]T
, p04 =

[
2.5 4.5

]T
, p05 =

[
0 4

]T
, p06 =

[
−1 1.5

]T
.

Given this set of initial conditions we have that x̄k(0) < ρ0 and ȳk(0) < ρ0 ∀ k and

for each configuration of the communication graph. Furthermore the agents’ initial

velocities are equal to 0. The presented controller (PPC1) has been tuned with the

following values for the parameters: γ = 250, G = 36.5Im. With this settings, all the

hypothesis of Theorem 3.1 are satisfied, therefore agreement and prescribed transient

evolution are guaranteed and Corollary 3.2 ensures convergence to the centroid. The

same Corollary gives the final consensus value, which is equal to the mean of initial

conditions c∞ = 1
N

∑6
i=1 pi0 =

[
0.6667 1.5833

]T
.

In Figure 3.2 the trajectories of the agents on the plane shown while in Figure 3.3 we

can see that the relative positions evolve within the performance bounds. The large

value of γ, that acts as a damping, avoids oscillations on the absolute velocities, and

consequently on the relative velocities, but implies a slower response as the agents start

to move (Figure 3.4). Repeated simulations with this settings (same ρ(t), T (ˆ̄x) and M)

have revealed that for values of γ lower than 80 the velocity response oscillates, especially

when the system is approaching the steady state value (Figure 3.5). Note that when γ
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Figure 3.3: Relative postitions (solid lines) and performance bounds (dashed lines) in case
of G1, with γ = 250 and G = 36.5Im.

changes the gain matrix G = diag{gk} 2 has to be re-tuned in order to have adequate

values for the control inputs. In fact, the parameters gk are scaling factors acting on

the transformation functions Tk: their values can be adequately increased in order to

reduce the value of ε(ˆ̄x) and therefore avoid high control inputs. On the other hand if

the transformed errors are smaller, this means that the distance between x̄(t) (ȳ(t))and

ρ(t) is bigger, implying not only small inputs but also a faster convergence to 0 of the

errors (Figure 3.6). Given the choice of the performance functions ρk(t) each agent can

know a priori the minimum rate of convergence of the system by setting the value of τ .

However the choice of ρ0 can further affect the time needed to reach consensus: in fact

if ρ0 >> x̄0, ȳ0, the agents will not start moving (or will slowly move) at the beginning

because of the small contribution of BJT (ˆ̄x, t)Gε(ˆ̄x) and BJT (ˆ̄y, t)Gε(ˆ̄y) due to the fact

that x̄(t) and ȳ(t) evolve far from the performance bounds.

Regarding how the communication graph affects the properties of the proposed protocol,

we can notice that increasing the number of connections between the agents the time

required to reach consensus is reduced: this is particularly evident in the case of G3

(Figure 3.8).

2gk , gij for k = 1, 2, . . . ,m, where k is the edge connecting agent i and j
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Figure 3.4: Absolute velocities along (a) x coordinate and (b) y coordinate in case of G1,
with γ = 250 and G = 36.5Im.
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Figure 3.5: Absolute velocities along
the x coordinate with γ = 50 and G =
7.8Im, in case of G1.
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We also compared the nonlinear protocol with the linear one ξ̇ = Γξ, where Γ =[
0N IN

−L −γLIN

]
. The value of the parameter γL has been chosen in order to guaran-

tee the maximum rate of convergence possible with the considered configuration while

avoiding oscillations 3. Observing Figure 3.7, we can understand the advantages of the

nonlinear protocol with respect to the linear one: in fact, by decoupling the speed of

convergence from the graph topology, we can reach a much faster convergence by appro-

priately choosing the prescribed performance function. For G1 the value of the second

smallest eigenvalue of Γ is λ2+(Γ) = −0.0787 and this implies the slow convergence of

the linear algorithm (order of eλΓt): on the other hand, by using the nonlinear protocol

and choosing an exponentially decreasing performance function with τ = 2 we are able

to guarantee a rate of convergence of the order of e−2t, which is considerably faster.

3The eigenvalues of Γ directly depend on the eigenvalues of L and on the value of γL according to

λi±(Γ) = 1
2

(
−γL ±

√
γ2
L − 4λi(L)

)
. Therefore, to guarantee that all the eigenvalue of Γ are real (to

avoid oscillation) we have to choose γL > 2
√
λmax(L). Note also that the value of λ2+(Γ) decreases as

γL increases.
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Chapter 4

Prescribed transient behaviour

for the position errors: approach

with relative velocities

4.1 Proposed controller

In this chapter we propose a control law which is similar to (3.1), consisting of the same

term based on prescribed performance for the relative positions but using the relative

velocities between neighbouring agents instead of the absolute velocities:

ui = −
∑
j∈Ni

[
gijJTij (x̂ij , t)εij(x̂ij) + γvij

]
i ∈ V (4.1)

where all the terms are defined as before.

Considering Assumption 3 of the previous chapter, system (2.19) with the control (4.1)

can be written in a vector form as follows:

ẋ = v

v̇ = −BJT (ˆ̄x, t)Gε(ˆ̄x)− γBv̄
(4.2)

or equivalently:

ẍ =−BJT (ˆ̄x, t)Gε(ˆ̄x)− γB ˙̄v (4.3)

¨̄x =−B>BJT (ˆ̄x, t)Gε(ˆ̄x)− γB>B ˙̄x (4.4)

22
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4.2 Time evolution of the centroid

Same as in the previous case, we start the analysis of the controlled system (4.2) by

investigating the time evolution of both the mean of the positions and the mean of the

velocities of the agents. The results are instrumental for the stability analysis.

Velocities

By multiplying both sides of the second equation in (4.2) by 1
>
N , we obtain

1
>
N v̇ = −1>NBJT (ˆ̄x, t)Gε(ˆ̄x)− γ1>NBv

and therefore

d

dt

(
N∑
i=1

vi

)
= 0 (4.5)

where the identity 1>NB = 0 has been used. The linear differential equation (4.5) implies

that the sum of the agents’ velocity is constant during time and equal to the sum of

initial velocities, hence their mean evolves according to

1

N

N∑
i=1

vi(t) =
1

N

N∑
i=1

vi(0) (4.6)

which in vector form gives
1

N
1
>
Nv(t) =

1

N
1
>
Nv0 (4.7)

Positions

By multiplying both sides of the first equation in (4.2) by 1
>
N , we can obtain

1
>
N ẋ =1>Nv

d

dt

(
N∑
i=1

xi

)
=

N∑
i=1

vi =
1

N

N∑
i=1

vi(0) (4.8)

Solving (4.8) by means of integration, we get

∫ >
0

N∑
i=1

ẋi(τ)dτ =

∫ >
0

N∑
i=1

vi(0)dτ

N∑
i=1

xi(t)−
N∑
i=1

xi(0) =

(
N∑
i=1

vi(0)

)
t
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Therefore, the mean of agents’ positions (i.e. the centroid) evolves according to

c∞(t) =
1

N

N∑
i=1

xi(t) =
1

N

N∑
i=1

xi(0)−

(
1

N

N∑
i=1

vi(0)

)
t (4.9)

that can be written in a vector form as follows:

1

N
1
>
Nx(t) =

1

N
1
>
Nx0 −

(
1

N
1
>
Nv0

)
t (4.10)

Unlike in the previous solution, if the sum of initial velocities is not zero the centroid

does not converge to a constant value. This is a direct consequence of the fact that the

controller includes the relative rather than the absolute velocities.

Before proceeding with studying the stability of the system, we need to state the follow-

ing assumption:

Assumption 4. The sum of all initial absolute velocities of the agents is equal to 0, or

equivalently v0 is such that 1>Nv0 = 0.

Note that the latter condition is not too restrictive, since in most of the applications

the agents start with zero velocity. Given that Assumption 4 holds we can prove the

following Lemma:

Lemma 4.1. Consider the multi-agent system (2.19) with the prescribed performance

agreement control protocol (4.1). Under Assumptions 1,2, 3 and 4 the value of the

centroid remains constant and equal to cx = 1
N

∑N
i=1 xi(0) during the motion. �

Proof. The proof is straightforward from equation (4.10), which under Assumption 4

becomes
1

N
1
>
Nx(t) =

1

N
1
>
Nx0 = cx (4.11)

4.3 Stability analysis

By using a simple change of coordinates, we construct an equivalent model of (4.2)

where the state given by the difference between the state vector ξ and the equilibrium.

Instead of studying the stability of the system (4.2), we prove the convergence to zero

of this system.
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Let us denote with ξ∗ =

[
x∗

v∗

]
the equilibrium point of the controlled system, that

satisfies the equation ξ̇∗ = 0. From the first and second equation of (4.2) we get:

v∗ =0 (4.12a)

v̄ = B>v∗ = 0 and x̄∗ = B>x∗ = 0 (4.12b)

From (4.12b), x∗ has to be parallel to the vector 1N , i.e. x∗ = a1N , a ∈ R. Furthermore,

from (4.11) we know that 1>Nx = 1
>
Nx0, then

1
>
Nx = a1>N1N ⇒ 1

>
Nx0 = Na ⇒ a =

1

N
1
>
Nx0 = cx

Therefore the equilibrium is given by[
x∗

v∗

]
=

[
cx1N

0N

]
(4.13)

We are now ready to define the disagreement vector

e =

[
e

ė

]
=

[
x− x∗

v − v∗

]
=

[
x− cx1N

v

]
(4.14)

which clearly satisfies the following identities

x =e + cx1N

x̄ =B>x = B>e , ē

v̄ =B>v = B>ė , ˙̄e

and the disagreement dynamics

ė = v

ë = −BJT (ˆ̄e, t)Gε(ˆ̄e)− γB ˙̄e
(4.15)

where ˆ̄e(t) ,
[

ē>1 (t)
ρ1(t) ,

ē>2 (t)
ρ2(t) , . . . ,

ē>m(t)
ρm(t)

]>
= P−1(t)ē(t).

The previous definitions also suggest the following inequality

‖ē‖ = ‖x̄‖ ≤ ‖B‖‖(x− cx1N )‖ = ‖B‖‖e‖ (4.16)

relating the norm of the disagreement vector in the edge space with the one in the vertex

space. Another useful inequality can be derived as a consequence of Courant-Fischer
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theorem, giving a lower bound on the eigenvalue λ2 , λ2(L) (cfr. Section 2.1)

λ2(L) = min
e:e⊥1N

e>Le

e>e

and consequently yielding

e>eλ2 ≤ ē>ē (4.17)

which, since e⊥1N ∀ e 1, is always valid. Furthermore, exploiting again Courant-Fischer

theorem, the inequality

ė>ėλ2 ≤ ˙̄e> ˙̄e (4.18)

is valid ∀ ė if Assumption 4 holds.

A comprehensive result on stability and consensus achievement with prescribed perfor-

mance guarantees can now be stated:

Theorem 4.2. Consider the prescribed performance agreement protocol (4.1) applied to

the double integrator dynamics (2.19) under Assumptions 1,2,3 and 4. Consider also

performance functions ρk(t) with bounded derivative and transformation functions s.t.

Tk(0) = 0 for all k.

If 1) the condition

γ >
1

λ2(L)
max
t≥0

αk(t) (4.19)

holds ∀ k and 2) the initial conditions x̄k(0) are within the performance bounds (2.2) for

k = 1, . . . ,m, then

i) the relative errors x̄k(t) will evolve within the prescribed performance bounds for k =

1, . . . ,m ,

ii) the trajectories will converge to the equilibrium (4.13). �

Proof. To prove stability of the equilibrium we investigate the disagreement dynamics

(4.15) considering the following Lyapunov function candidate

V (e, ˆ̄e) =
θγ

2
ē>ē + θe>ė +

1

2
ė>ė +

1

2
ε>(ˆ̄e)Gε(ˆ̄e) (4.20)

with θ arbitrarily chosen positive constant. V (e, ˆ̄e) is such that V (0, 0) = 0 and in order

to prove that it is also positive definite we will proceed by bounding it from above and

below with two positive definite functions. By taking into account inequality (4.16) and

1By definition e = x − cx1N and then 1
>
Ne = 1

>
Nx −

(
1
N
1
>
Nx0

)
1
>
N1N = 1

>
Nx − 1

>
Nx0 = 0 as a

consequence of Lemma 4.1
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‖B‖2 = λmax(LE) , λM : we can bound V (e, ˆ̄e) from above with a function W2(e, ˆ̄e)

V (e, ˆ̄e) ≤W2(e, ˆ̄e) = θγ
2 λMe>e + θe>ė + 1

2 ė>ė + 1
2ε
>(ˆ̄e)Gε(ˆ̄e)

= 1
2

[
e

ė

]> [
θγλMIN θIN

θIN IN

][
e

ė

]
+ 1

2ε
>(ˆ̄e)Gε(ˆ̄e)

(4.21)

such that W2(0, 0) = 0, which is positive definite if{
θγλM > 0

θ(γλM − θ) > 0
and therefore if

{
θ > 0

γλM > θ
(4.22)

Since λ2 > 0, because the graph G is connected (Theorem 2.8, [23]), we can use (4.17)

to find a function W1(e, ˆ̄e) which represents a lower bound for V (e, ˆ̄e)

V (e, ˆ̄e) ≥W1(e, ˆ̄e) = θγ
2 λ2e>e + θe>ė + 1

2 ė>ė + 1
2ε
>(ˆ̄e)Gε(ˆ̄e)

= 1
2

[
e

ė

]> [
θγλ2IN θIN

θIN IN

][
e

ė

]
+ 1

2ε
>(ˆ̄e)Gε(ˆ̄e)

(4.23)

with W1(0, 0) = 0, which is positive definite if{
θγλ2 > 0

θ(γλ2 − θ) > 0
and therefore if

{
θ > 0

γλ2 > θ
(4.24)

Hence V (e, ˆ̄e) is a suitable Lyapunov function candidate, since W1(e, ˆ̄e) ≤ V (e, ˆ̄e) ≤
W2(e, ˆ̄e).

The derivative of (4.20) along the trajectories of (4.15) is given by

V̇ (e, ˆ̄e) = − [θIm −A(t)] ē>JT (ˆ̄e, t)Gε(ˆ̄e)− γ ˙̄e> ˙̄e + θė>ė (4.25)

Exploiting inequality (4.18), we obtain

V̇ (e, ˆ̄e) ≤ − [θIm −A(t)] ē>JT (ˆ̄e, t)Gε(ˆ̄e)−
(
γ − θ

λ2

)
˙̄e> ˙̄e (4.26)

and therefore we have V̇ (e, ˆ̄e) ≤ 0 when (4.24) holds and

[θIm −A(t)] > 0 (4.27)
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By combining conditions (4.22),(4.24) and (4.27) we get
θ > αk(t)

γλM > θ

γλ2 > θ

⇒

γλM > θ > αk(t)

γλ2 > θ > αk(t)

⇒

γλM > maxt≥0 αk(t)

γλ2 > maxt≥0 αk(t)

∀ k (4.28)

If we denote with ᾱk the maximum of the αk functions, the last expression yields:

γ > max

{
ᾱk
λM

,
ᾱk
λ2

}
∀ k (4.29)

Since λM = λmax(LE) by definition and λmax(LE) = λmax(L) because the communica-

tion graph is connected (cfr. Lemma 4, [9]), the aforementioned condition becomes γ >

max {ᾱk/λmax(L) , ᾱk/λ2(L)}. Finally, λ2(L) < λmax(L) implies (4.19). Hence if (4.29)

is satisfied, V̇ (e, ˆ̄e) is negative semi-definite and this implies that V (e, ˆ̄e) ≤ V (e(0), ˆ̄e(0))

which in turn implies that e, ε(ˆ̄e) ∈ L∞, given that V (e(0), ˆ̄e(0)) is bounded. Therefore,

if ˆ̄e(0) is chosen within the performance regions (2.5) then V (e(0), ˆ̄e(0)) is bounded,

ε(ˆ̄e) ∈ L∞ and consequently ˆ̄e(t) evolves within the prescribed performance regions ∀ t.
Since x̄ = ē, the relative positions x̄(t) evolve within the prescribed performance bounds

(2.2) and we have proved i).

Computing now the second derivative of V̇ (e, ˆ̄e), we can conclude that it is bounded

based on the fact that ε(ˆ̄e) and ε̇(ˆ̄e) are bounded. Boundedness of V̈ (e, ˆ̄e) implies that

V̇ (e, ˆ̄e) is uniformly continuous and therefore, by applying Barbalat’s Lemma, V̇ (e, ˆ̄e)→
0 as t → ∞. If the transformation functions Tk are chosen such that Tk(0) = 0, then

V̇ (e, ˆ̄e)→ 0 implies ē→ 0 and ˙̄e→ 0 as t→∞. If ē→ 0, then B>e→ 0 and therefore

e→ {η11N , 0}. If e = 0, then x = cx1N , otherwise if e = η11N we have

x− cx1N = η11N =⇒ 1
>
Nx− cx1>N1N = η11

>
N1N

and as a consequence of Lemma 4.1 we obtain

1
>
Nx0 − cx1>N1N = η11

>
N1N =⇒ η1 = 0

Besides if v̄ → 0 then B>v → 0 and subsequently v → {η21N , 0}. If v = η21N , using

(4.6), we have

1
>
Nv = η21

>
N1N =⇒ 1

>
Nv0 = η21

>
N1N

that under Assumption 4 implies η2 = 0. Thus, we have also proved iii).
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Figure 4.1: Agents trajectories on the
x−y plane with PPC2 in case of G1. γ =
390 and G = 36Im

For details on how the Lyapunov function (4.20) was obtained refer to Appendix C. For

the expression of V̈ see Appendix D.

4.4 Simulations

In this section we present the simulations of the proposed controller (PPC2). Similarly

to the previous controller we consider N = 6 agents moving on a planar surface, starting

with velocity equal to zero from the initial positions p01 = [−0.5 − 1]>, p02 = [1 − 1.5]>,

p03 = [2 2]>, p04 = [2.5 4.5]>, p05 = [0 4]>, p06 = [−1 1.5]>. We also use the performance

function

ρ(t) =
(
8− 10−2

)
exp−2t +10−2

and the transformation function (3.20) with M = 0.1, which are the same for each pair

of neighbouring agents agent. For this choice of the transformation function condition

(4.19) becomes

γ >
τ

λ2(L)

(
ρ0 − ρ∞
ρ0

)
(4.30)

In this case the minimum allowed value for the damping γ is dependent on the underlying

graph of connections and in particular depends on the second smallest eigenvalue of the

associated Laplacian matrix. Three topologies are considered, which are the same of

Section 3.4 (see Figure 3.1), hence the condition is different in each case:

• spanning tree (G1): λ2(L) = 0.3249, and then it has to be γ > 6.148;

• connected graph with one cycle (G2): λ2(L) = 0.6972, implying γ > 2.865;

• complete graph (G3): λ2(L) = 6, and therefore γ > 0.3329.
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By choosing γ = 390 and G = 36Im all the other hypotheses of Theorem 4.2 are satisfied

and we are guaranteed that the position errors will evolve within the bounds and the

agents will reach consensus, with final value c∞ = 1
N

∑6
i=1 pi0 =

[
0.6667 1.5833

]>
.

In Figure 4.1 the trajectories of the agents on the plane are shown, whereas Figure 4.2

shows how the relative positions evolve within the performance bounds.

Observing the velocities’ plots (Figures 4.3-4.4) and comparing them with the simula-

tions of the previous controller, we notice that we need a higher value for the gain γ to

obtain a comparable behaviour in terms of oscillations of the absolute velocities while

approaching the steady state. On the other hand a larger gain induces a smoother evo-

lution for the relative velocities, that is reflected also on the behaviour of the absolute

velocities (compare to Figure 3.4 of the previous chapter).

We already pointed out, based on (4.30), that in order to tune the parameter γ it is nec-

essary to know a priori the structure of the communication graph, and that undermines

the distributed nature of this type of controller. On the other hand, experimental results

show that the value that γ should be considerably larger than the one given from (4.30),

independently of underlying topology. Hence the controller can be tuned disregarding

the information on λ2(L).

Moreover, observing Figure 4.7, we can notice that the structure of the communication

graph does not affect the time required to reach consensus: in fact if the graph is
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of G1, with γ = 390 and G = 36Im.
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Figure 4.3: Absolute velocities along (a) x coordinate and (b) y coordinate in case of G1,
with γ = 390 and G = 36Im.
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Figure 4.4: Relative velocities along (a) x coordinate and (b) y coordinate in case of G1, with
γ = 390 and G = 36Im.
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Figure 4.5: Control inputs along (a) x coordinate and (b) y coordinate in case of G1, with
γ = 360 and G = 36Im.
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Figure 4.6: Comparison of nonlinear
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line) protocol in case of G1: time evolu-
tion of the distance from the centroid.
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Figure 4.7: Comparison of the perfor-
mance of PPC2 with different topologies
for the connections between agents.

either a spanning tree, connected with a cycle or complete convergence is obtained in

approximately the same time. Repeated simulations showed that this behaviour persists

while changing the values of γ and G.

As with the previous controller, the nonlinear approach allows to obtain a consider-

ably faster convergence to the consensus value if compared to the linear one, ξ̇ =[
0N IN

−L −γLL

]
ξ 2.

2Once again the value of the parameter γL is chosen in order to guarantee the maximum rate of
convergence possible with the considered configuration while avoiding oscillatory behaviours. For this
type of second-order linear protocol, the condition ensuring that the eigenvalues of Γ are all real, is given
in [8].



Chapter 5

Prescribed transient behaviour

for both position errors and

combined errors

5.1 Combined error

In this chapter the objective is to constrain the relative positions x̄(t) within the regions

(2.5) while, at the same time, imposing some additional bounds to the evolution of a

linear combination of the velocity and the position error (addressed as combined error).

Let us define

qij , vij + κijxij i ∈ V and j ∈ Ni (5.1)

with κij positive constants, that can alternatively be written as

q̄k , v̄k + κ̄kx̄k (5.2)

with κ̄k , κij , for k = 1, 2, . . . ,m. We want to constrain q̄k within the following bounds:

−Mk,q̄ρk,q̄(t) < q̄k(t) < ρk,q̄(t) if q̄k(0) ≥ 0 (5.3a)

−ρk,q̄(t) < q̄k(t) < Mk,q̄ρk,q̄(t) if q̄k(0) < 0 (5.3b)

withMk,q̄ overshoot index and ρk,q̄(t) performance function of q̄k, for k = 1, 2, . . . ,m. By

denoting with ˆ̄qk(t) = q̄k(t)
ρk(t) the modified combined errors we can define the corresponding

33
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prescribed performance regions:

Dˆ̄qk
, {ˆ̄qk(t) : ˆ̄qk(t) ∈ (−Mk,q̄, 1)} if q̄k(0) ≥ 0 (5.4a)

Dˆ̄qk
, {ˆ̄qk(t) : ˆ̄qk(t) ∈ (−1,Mk,q̄)} if q̄k(0) < 0 (5.4b)

We also define the following quantities:

. q̄ is the stack vector of all combined errors q̄k for k = 1, . . . ,m. Therefore the

following identity holds

q̄ = v̄ +Kx̄ (5.5)

with K = κ̄kIm.

. ε(ˆ̄q) is the stack vector of all modified combined errors εk(ˆ̄qk) for k = 1, . . . ,m.

The domain of the vector function ε(ˆ̄q) is the Cartesian product of all the open

sets Dˆ̄qk
, k = 1, . . . ,m, i.e.

Dˆ̄q = Dˆ̄q1
×Dˆ̄q2

× · · · ×Dˆ̄qm

We want to establish a relation similar to (2.21) and (2.22) between the vectors q = ẋ+Γx

and q̄, i.e. we require

q̄ = B>q (5.6)

where Γ = γIN . Writing (5.6) as q̄ = B>v + B>Γx and considering that in (5.5) we

already defined q̄ as q̄ = v̄ +KB>x, it is clear that a condition on the matrices K and

Γ is implied:

B>Γ = KB> (5.7)

Consequently κ̄k = κ̄ ∀ k and γ = κ̄.

5.2 Proposed controller

In order to achieve the new control objective, we propose the following nonlinear dis-

tributed controller:

ui = −
∑
j∈Ni

[
JTij (q̂ij , t)εij(q̂ij) + gijJTij (x̂ij , t)εij(x̂ij)

]
− γvi i ∈ V (5.8)

where gij are positive constant gains and all the other terms have already been defined.

Let Gx̄ ∈ Rm×m be a diagonal, positive definite, gain matrix with diagonal elements gij .
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The system (2.19), with the control (5.8) can be now written in vector form as

ẋ = v

v̇ = −BJT (ˆ̄q, t)ε(ˆ̄q)−BJT (ˆ̄x, t)Gε(ˆ̄x)− γv
(5.9)

or equivalently

ẍ = −BJT (ˆ̄q, t)ε(ˆ̄q)−BJT (ˆ̄x, t)Gε(ˆ̄x)− γv (5.10)

Considering q = ẋ+ Γx, we can also write (5.10) as a first order system:

q̇ = −BJT (ˆ̄q, t)ε(ˆ̄q)−BJT (ˆ̄x, t)Gε(ˆ̄x) (5.11)

Such a form will be useful when studying the stability of the closed loop system.

5.3 Time evolution of the centroid

As in the previous cases we try to obtain an analytical expression describing how the

means of positions and velocities of the agents vary during time.

We multiply both sides of the second equation of (5.9) by the vector 1>N , obtaining

1
>
N v̇ = −1>NBJT (ˆ̄x, t)Gε(ˆ̄x)− 1>NBJT (ˆ̄q, t)ε(ˆ̄q)− γ1>Nv

d

dt

(
N∑
i=1

vi

)
= −γ

N∑
i=1

vi (5.12)

that is the same result we have for the first presented controller, cfr. (3.4). This renders

the investigation of the centroid evolution identical to what has already been done in

Section 3.2. Therefore, the equation describing the evolution of the sum of absolute

velocities is given by

1

N

N∑
i=1

vi(t) =

(
1

N

N∑
i=1

vi(0)

)
e−γt (5.13)

which will asymptotically converge to 0.

Similarly, the centroid will evolve as in (3.8), i.e.

c(t) =
1

N
1
>
Nx0 −

1

γ

(
1

N
1
>
Nv0

)(
e−γt − 1

)
(5.14)

asymptotically converging to, see (3.9),

c∞ =
1

N
1
>
Nx0 +

1

γ

(
1

N
1
>
Nv0

)
(5.15)
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5.4 Stability analysis

Let ρx̄,k(t), Mx̄,k and Tx̄,k be respectively the performance functions, the overshoot index

and the transformation functions associated to the position errors x̄k for k = 1, 2, . . . ,m.

Let also Tq̄,k denote the transformation functions applied to the modified errors ˆ̄qk. The

conditions that ensure stability of the closed loop system (5.10) are given in the following

theorem:

Theorem 5.1. Consider the prescribed performance agreement protocol (5.8) applied to

the double integrator dynamics (2.19), under Assumptions 1, 2, 3 and with performance

functions ρx̄,k(t) having bounded derivative ∀ t ≥ 0 and transformation functions s.t.

Tx̄,k(0) = 0 and Tq̄,k(0) = 0 ∀ k. Assume also that x̄(0) is within the performance

bounds (2.2) and that γ is chosen such that

γ > max
t≥0

αx̄,k(t) (5.16)

and q̄k(0) = v̄k(0) + γx̄k(0) is within the performance bounds (5.3) for all k.

Then:

i) the position error x̄(t) evolves within the performance bounds ∀ t ≥ 0 and asymptoti-

cally converges to zero,

ii) the combined error q̄(t) evolves within the performance bounds ∀ t ≥ 0 and asymp-

totically converges to zero. �

Proof. In order to prove the theorem, we first simplify the notation by indicating ε(ˆ̄q)

with εˆ̄q, ε(ˆ̄x) with εˆ̄x, JT (ˆ̄q, t) with JT ˆ̄q
and JT (ˆ̄x, t) with JTˆ̄x

.

The proof consists of three parts: a) proof of the boundedness of the term εˆ̄x, b) proof

of the boundedness of the term εˆ̄q, c) proof of the asymptotic stability of the equilibrium.

a) Consider the positive definite potential function

V1(q, ˆ̄x) =
1

2
q>q +

1

2
ε>ˆ̄xGεˆ̄x (5.17)

and its derivative along the trajectories of (5.10)

V̇1(q, ˆ̄x) = q>q̇ + ε>ˆ̄xGε̇ˆ̄x

V̇1(q̄, ˆ̄x) = −q̄>JT ˆ̄q
εˆ̄q − [γIm −A(t)] x̄>JTˆ̄x

Gεˆ̄x (5.18)

which is negative semi-definite if (5.16) holds ∀ k (similar to the proof of Theorem 3.1).

Since V̇1(q, x̄) is negative semi-definite V1(q, x̄) ≤ V1(q(0), x̄(0)) which in turn implies
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that q, εˆ̄x ∈ L∞, given that V1(q, ˆ̄x(0)) is bounded. Therefore, if x̄(0) is chosen within

the performance regions (2.5) then V1(q(0), ˆ̄x(0)) is bounded and hence εˆ̄x ∈ L∞. Con-

sequently ˆ̄x(t) evolves within the prescribed performance regions ∀ t ≥ 0. Furthermore

ε(ˆ̄x) is bounded and this implies also that the jacobian JT (ˆ̄x, t) is bounded. We have

then proved the first part of i).

b) Having proved the boundedness of the term prescribing the position errors, we can

define d(t) = BJTˆ̄x
εˆ̄x ∈ L∞ and write the system (5.11) in the form

q̇ +BJT ˆ̄q
εˆ̄q = d(t) or equivalently ˙̄q +B>BJT ˆ̄q

εˆ̄q = B>d(t) (5.19)

as a first order system evolving under the effect of a bounded disturbance.

For this part of the proof, let θ being an arbitrary positive constant and consider the

following potential function

V2(εˆ̄q, q) =
1

2
ε>ˆ̄q εˆ̄q +

θ

2
q>q (5.20)

and its derivative along the trajectories of system (5.19)

V̇2(εˆ̄q, q) = ε>ˆ̄q ε̇ˆ̄q + θq>q̇ (5.21)

Taking into account

ε̇ˆ̄q = JT ˆ̄q
[ ˙̄q +A(t)q̄]

= −JT ˆ̄q
B>BJT ˆ̄q

εˆ̄q + JT ˆ̄q
B>d(t) + JT ˆ̄q

A(t)q̄ (5.22)

and substituting (5.22) and (5.11) into (5.21), we obtain

V̇2(εˆ̄q, q) =− ε>ˆ̄q JT ˆ̄q
B>BJT ˆ̄q

εˆ̄q + ε>ˆ̄q JT ˆ̄q
B>d(t)− ε>ˆ̄q JT ˆ̄q

Ṗ (t)ˆ̄q

− θq̄>JT ˆ̄q
εˆ̄q + θq>d(t) (5.23)

Substituting ˆ̄q = P (t)−1B>q, with P (t) m ×m diagonal matrix defined in (2.12), and

considering that the edge Laplacian B>B of a connected graph is a positive semi-definite

matrix, the following inequality stands:

− ε>ˆ̄q JT ˆ̄q
Ṗ (t)ˆ̄q − θq̄>JT ˆ̄q

εˆ̄q ≤ −ˆ̄q> [θIm −A(t)]
∂εˆ̄q

∂ ˆ̄q
εˆ̄q (5.24)

The matrix A(t) can be simply bounded from above, i.e. supt(|A(t)|) < ᾱ, with some

constant ᾱ. By setting µ̄ := θ − ᾱ we can bound from above the term on the right of
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(5.24) with

− ˆ̄q> [θIm −A(t)]
∂εˆ̄q

∂ ˆ̄q
εˆ̄q ≤ −µ̄ˆ̄q>

∂εˆ̄q

∂ ˆ̄q
εˆ̄q (5.25)

Consider now the first two terms on the right side of (5.23). We have the following

inequalities:

− ε>ˆ̄q JT ˆ̄q
B>d(t) ≤ ζ1‖BJT ˆ̄q

εˆ̄q‖2 +
1

4ζ1
‖d(t)‖2 (5.26)

− ε>ˆ̄q JT ˆ̄q
B>BJT ˆ̄q

εˆ̄q ≤ −‖BJT ˆ̄q
εˆ̄q‖2 (5.27)

Putting (5.26) and (5.27) together we obtain

− ε>ˆ̄q JT ˆ̄q
B>BJT ˆ̄q

εˆ̄q − ε>ˆ̄q JT ˆ̄q
B>d(t) ≤ −(1− ζ1)‖BJT ˆ̄q

εˆ̄q‖2 +
1

4ζ1
‖d(t)‖2 (5.28)

for some appropriately chosen constants ζ1 < 1, whereas for the remaining term of the

same equation, we can write

q>d(t) ≤ ζ2‖q‖2 +
1

4ζ2
‖d(t)‖2 (5.29)

for some constant ζ2. Considering inequalities (5.25), (5.26),(5.29) and also (2.16) we

can bound V̇2(ˆ̄q, q) with

V̇2(εˆ̄q, q) ≤ −λV2(εˆ̄q, q) + ϕ(t) (5.30)

with λ appropriately chosen constant and ϕ(t) bounded term depending on q and d(t)

that have already been proved to be bounded in part a). For a complete proof of the

inequality refer to Appendix E. By applying Theorem 4.18 of [24] (see Appendix F), we

can conclude that εˆ̄q and, consequently, JT ˆ̄q
are bounded and we have proved the first

part of ii).

c) Let us recall the potential function (5.17) that we used in part a) and its first derivative

along the system’s trajectories

V̇1(q̄, ˆ̄x) = −q̄>JT ˆ̄q
εˆ̄q − [γIm −A(t)] x̄>JTˆ̄x

Gεˆ̄x

Calculating the second derivative V̈1(q̄, x̄), we can find that it is bounded based on

boundedness of εˆ̄q, εˆ̄x and ε̇ˆ̄q, ε̇ˆ̄x. This implies that V̇1(q̄, x̄) is uniformly continuous and

we can apply Barbalat’s Lemma to conclude that, since Tx̄,k(0) = 0 and Tq̄,k(0) = 0,

q̄(t)→ 0 and x̄(t)→ 0, completing the proof of both i) and ii).

The only thing remained is to verify if the agents’ absolute positions converge to the

system’s centroid. Along the lines of Corollary 3.2, we can state the following comple-

mentary result:
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Figure 5.1: Agents trajectories on the
x−y plane with PPC3 in case of G1, with
G = 2Im, γ = 3.

Corollary 5.2. Consider the prescribed performance agreement protocol (5.8) applied

to the double integrator dynamics (2.19) with all the assumptions of Theorem 5.1. The

agreement protocol ensures convergence of the agents’ absolute positions to the centroid.

�

Proof. The proof is identical to the one of Corollary 3.2.

5.5 Simulations

For the simulations we considered 6 agents moving on a plane, starting with initial

positions p01 = [−0.5 − 1]>, p02 = [1 − 1.5]>, p03 = [2 2]>, p04 = [2.5 4.5]>, p05 =

[0 4]>, p06 = [−1 1.5]> and zero initial velocity. We used an exponentially decreasing

performance functions for both the relative positions and q̄:

ρ(t) =
(
8− 10−2

)
exp−2t +10−2

ρq̄(t) =
(
20− 10−2

)
exp−3t +10−2

Note that ρ(t) is the same of Section 3.4 and γ > 1.9975. Note also that in this case

the agents do not need to have a priori knowledge of the structure of the underlying

communication graph to tune this parameter. The modified errors ˆ̄qx,k, ˆ̄qy,k
1, ˆ̄xk and

ˆ̄yk are transformed with the logarithmic function (3.20), which is the same for each k,

and the overshoot indices are chosen as M = 0.1 and Mq̄ = 0.1. By further choosing

the matrix gain as G = 2Im and the damping as γ = 3, and by considering a spanning

tree communication graph (G1), agreement is guaranteed and the controlled variables

1Let q̄x,k = v̄x + γx̄k and q̄y,k = v̄y + γȳk denote the modified errors along the x and y coordinate
respectively. ˆ̄qx,k and ˆ̄qy,k are the correspondent modified errors.
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Figure 5.2: Absolute velocities along (a) x coordinate and (b) y coordinate in case of G1,
with γ = 3 and G = 2Im.
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Figure 5.3: Relative velocities along (a) x coordinate and (b) y coordinate in case of G1, with
γ = 3 and G = 2Im.
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evolve within the bounds (see Theorem 5.1). Moreover, Corollary 5.2 ensures that the

final consensus value coincides with the centroid. Simulation results for this settings

are shown in Figures 5.1-5.6. With the introduction of the performance bounds on the

combined error, oscillations are avoided for values of γ which are considerably lower

than needed with the previous controllers. Yet, if compared to PPC1 and PPC2, we are

able to obtain a smoother evolution for the velocity response. Note also that, differently

form PPC1 and PPC2, even a small gain G allows to obtain a low value for the control

inputs. Repeated simulations have also shown that a value of τq̄ larger than τ reduces,

and in some cases prevents, oscillations in the evolution of q̄x(t) and q̄y(t) and yields

a smooth behaviour. Finally, we also considered the cases when the communication
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Figure 5.6: Control inputs along (a) x coordinate and (b) y coordinate in case of G1, with
γ = 3 and G = 2Im.

graph is connected with a cycle (G3) and complete (G3). Figure 5.5 shows that with G2

and G3 the rate of convergence increases due to the presence of cycles: this is evident

in the case of a complete graph. The same behaviour is typical of the linear agreement

protocols, since cycles influence the value of the second smallest eigenvalue of L. In

Figure 5.4 is shown the comparison with the linear protocol (the same of Section 3.4):

once again, the bounds on the evolution of x̄ (and ȳ) guaranteeing the independence of

the graph’s topology allow to reach a considerably faster rate of convergence.
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Conclusions and future work

In this thesis we proposed three different nonlinear distributed controllers able to reach

consensus while guaranteeing predefined specifications such as overshoot and maximum

rate of convergence in the edge’s space. We considered a group of agents described by a

double-integrator model exchanging information about their current position and veloc-

ity. By applying prescribed performance control we were able to restrict the evolution

of the position errors between neighbouring agents within a priori imposed time-variant

bounds, obtaining a rate of convergence which is independent of the topology of the

network. This overcomes a typical problem of the linear consensus algorithms, in which

the convergence is governed by the algebraic connectivity of the communication graph.

First we analysed the case in which time-dependent bounds are imposed only on the

evolution of the relative positions between communicating agents. The proposed con-

troller consisted of two terms: a nonlinear term depending on the position errors and a

damping term depending on the absolute velocities. We also proposed another controller

considering the relative velocities instead. In both cases the stability analysis yielded a

condition for the damping gain in order to guarantee that the trajectories converge to

the equilibrium that coincides with the agents’ centroid. Moreover we proved that when

the sum of initial velocities is equal to zero, time-invariance of the centroid is guaranteed

provided that the neighbouring agents share the same prescribed performance function,

overshoot index and transformation function. Simulations of both closed loop systems

validated the theoretical findings while demonstrating that by appropriately designing

the performance function, the nonlinear protocol can achieve a faster convergence com-

pared to the linear one. It was also observed that a large value for the damping parameter

can smoothen the velocity response. Furthermore, by modifying the constant gains of

the prescribed performance term, we can affect the distance between the error and the

bounds during the evolution.

43
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In the last part of the work, we considered additional time-dependent bounds on the

combined error. We proposed a protocol not only guaranteeing average consensus but

also ensuring that both relative positions and combined error evolve within the pre-

defined regions. Also in this case the condition for stability involved the value of the

damping gain and the agents positions converge to the centroid. Nonetheless, we proved

the invariance of the centroid during time when the sum of initial velocities is zero. Sim-

ulations showed that with such a controller the response of the velocities is considerably

smoother than in the previous cases and oscillations are avoided for small values of the

damping.

Future work includes further investigation the last controller in order to be able to

introduce some constraints on the the relative velocities and the extension of the results

to multi agent systems with more complex dynamics, such as nonholonomic robots.



Appendix A

Derivation of the potential function (3.12) in Theorem 3.1

We can derive a suitable potential positive definite function to prove Theorem 3.1

analysing the following inner products (we omit the argument ˆ̄x and t from JT (ˆ̄x, t)

and ε(ˆ̄x)):

θxTẍ = −θxTBJTGε− θγxTẋ

d

dt

(
θxTẋ

)
− θẋTẋ = −θxTBJTGε− θγxTẋ (A.1)

ẋTẍ = −ẋTBJTGε− γẋTẋ

d

dt

(
1

2
ẋTẋ

)
= −ẋTBJTGε− γẋTẋ (A.2)

Adding side by side (A.1) and (A.2) we obtain

ẋTẍ+ θxTẍ = −ẋTBJTGε− γẋTẋ− θxTBGJT ε− θγxTẋ

d

dt

(
θxTẋ

)
+
d

dt

(
1

2
ẋTẋ

)
+ θγxTẋ = −θx̄TJTGε− (γ − θ)ẋTẋ− ˙̄xTJTGε

d

dt

(
θxTẋ

)
+
d

dt

(
1

2
ẋTẋ

)
+
d

dt

(
θγ

2
xTx

)
= −θx̄TJTGε− (γ − θ)ẋTẋ− ˙̄xTJTGε

By adding and subtracting on the right side the quantity A(t)x̄TJTGε, the previous

equation becomes

d

dt

(
θxTẋ

)
+
d

dt

(
1

2
ẋTẋ

)
+
d

dt

(
θγ

2
xTx

)
=− θx̄TJTGε− (γ − θ)ẋTẋ

− [ ˙̄x+A(t)x̄]
T JTGε

+A(t)x̄TJTGε

d

dt

(
θxTẋ

)
+
d

dt

(
1

2
ẋTẋ

)
+
d

dt

(
θγ

2
xTx

)
=− θx̄TJTGε− (γ − θ)ẋTẋ

− ε̇TJ −1
T JTGε+A(t)x̄TJTGε
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d

dt

(
θxTẋ

)
+
d

dt

(
1

2
ẋTẋ

)
+
d

dt

(
θγ

2
xTx

)
+
d

dt

(
1

2
εTGε

)
=

− [θIm −A(t)] x̄TJTGε− (γ − θ)ẋTẋ

and the left side of this equation is the derivative of Lyapunov function (3.12) of Theorem

3.1.



Appendix B

Second derivative of the potential function (3.12) in Theorem 3.1

Let us briefly recall the expression (3.14) of the first derivative of Lyapunov function

(3.12)

V̇ (ξ, ˆ̄x) = − [θIm −A(t)] x̄TJT (ˆ̄x, t)Gε(ˆ̄x)− (γ − θ)ẋTẋ (B.1)

Let us then define ν , (γ − θ) and clarify that from now on we will omit the argument

ˆ̄x and t from JT (ˆ̄x, t) and ε(ˆ̄x).

Differentiating (B.1) with respect to time, we obtain

V̈ (ξ, ˆ̄x) =− d

dt

(
[θIm −A(t)] x̄TJTGε

)
− ν d

dt

(
ẋTẋ

)
=− d

dt
([θIm −A(t)]) x̄TJTGε− [θIm −A(t)]

d

dt

(
x̄TJTGε

)
− 2νẋTẍ

= Ȧ(t)x̄TJTGε− [θIm −A(t)]
(
x̄TJTGε̇+ ˙̄xTJTGε

)
+

− [θIm −A(t)]

(
x̄T d

dt
(JT )Gε

)
+ 2ν ˙̄xTJTGε+ 2νγẋTẋ

= Ȧ(t)x̄TJTGε+ 2ν ˙̄xTJTGε+ 2νγẋTẋ− [θIm −A(t)] x̄TJTGε̇+

− [θIm −A(t)]

(
˙̄xTJTGε+ x̄T

[
P−1(t)

d

dt

(
∂T

∂ ˆ̄x

)
+A(t)JT

]
Gε

)

= Ȧ(t)x̄TJTGε+ 2ν ˙̄xTJTGε+ 2νγẋTẋ − [θIm −A(t)] x̄TJTGε̇+

− [θIm −A(t)]
[

˙̄xTJTGε+A(t)x̄TJTGε
]

+ (B.2)

− [θIm −A(t)] x̄T

[
P−1(t)

d

dt

(
∂T

∂ ˆ̄x

)]
Gε

where we have denoted with ∂T
∂ ˆ̄x

the m×m diagonal matrix with entries ∂Tk
∂ ˆ̄xk

, with Ȧ(t)

the m × m diagonal matrix with entries α̇k(t) and with P−1(t) the m × m diagonal

matrix with entries 1
ρk(t) .

To infer the boundedness of V̈ (ξ, ˆ̄x), a further investigation of the terms JT (ˆ̄x, t) and
d
dt

(
∂T
∂ ˆ̄x

)
is required.

Recalling (2.9) and (2.11), it is clear that boundedness of JT depends on the terms ∂Tk
∂ ˆ̄xk

,
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whose analytical expression is:

• for x̄k(0) > 0
∂Tk
∂ ˆ̄xk

=
∂

∂ ˆ̄xk

(
ln

(
Mk + ˆ̄xk
Mk(1− ˆ̄xk)

))

=
Mk(1− ˆ̄xk)

Mk + ˆ̄xk

Mk(1− ˆ̄xk) + (Mk + ˆ̄xk)Mk

M2
k (1− ˆ̄xk)2

=
Mk + 1

(Mk + ˆ̄xk)(1− ˆ̄xk)

• for x̄k(0) < 0
∂Tk
∂ ˆ̄xk

=
∂

∂ ˆ̄xk

(
ln

(
Mk(1 + ˆ̄xk)

Mk − ˆ̄xk

))

=
Mk − ˆ̄xk
Mk(1 + ˆ̄xk)

Mk(Mk − ˆ̄xk) + (1 + ˆ̄xk)Mk

(Mk − ˆ̄xk)2

=
Mk + 1

(Mk − ˆ̄xk)(1 + ˆ̄xk)

where we have considered T defined as in (2.17).

Summarizing, the analytical expression for the partial derivative of the transformation

function is

∂Tk
∂ ˆ̄xk

=


Mk+1

(Mk+ˆ̄xk)(1−ˆ̄xk)
if x̄k(0) > 0

0 if x̄k(0) = 0
Mk+1

(Mk−ˆ̄xk)(1+ˆ̄xk)
if x̄k(0) < 0

(B.3)

The derivative with respect to time of (B.3) is

d

dt

(
∂Tk
∂ ˆ̄xk

)
=
∂2Tk
∂ ˆ̄x2

k

˙̄̂xk =
1

ρk(t)

∂2Tk
∂ ˆ̄x2

k

[
˙̄xk − ρ̇k(t)ˆ̄xk

]
and it is bounded if x̄k and ∂2Tk

∂ ˆ̄x2
k

are. In the following we calculate the second order

partial derivative, which is:

• for x̄k(0) > 0
∂2Tk
∂ ˆ̄x2

k

=
∂

∂ ˆ̄xk

(
Mk + 1

(Mk + ˆ̄xk)(1− ˆ̄xk)

)

= (Mk + 1)
− d
dt

(
(Mk + ˆ̄xk)(1− ˆ̄xk)

)
(Mk + ˆ̄xk)2(1− ˆ̄xk)2
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= −(Mk + 1)

[
−(Mk + ˆ̄xk) + (1− ˆ̄xk)

]
(Mk + ˆ̄xk)2(1− ˆ̄xk)2

= (Mk + 1)
2ˆ̄xk +Mk − 1

(Mk + ˆ̄xk)2(1− ˆ̄xk)2

• for x̄k(0) < 0
∂2Tk
∂ ˆ̄x2

k

=
∂

∂ ˆ̄xk

(
Mk + 1

(Mk − ˆ̄xk)(1 + ˆ̄xk)

)

= −(Mk + 1)
(Mk − ˆ̄xk)− (1 + ˆ̄xk)

(Mk − ˆ̄xk)2(1 + ˆ̄xk)2

= (Mk + 1)
2ˆ̄xk + 1−Mk

(Mk − ˆ̄xk)2(1 + ˆ̄xk)2

and then, summarizing

∂2Tk
∂ ˆ̄x2

k

=


(Mk+1)(2ˆ̄xk+Mk−1)

(Mk+ˆ̄xk)2(1−ˆ̄xk)2 if x̄k(0) > 0

0 if x̄k(0) = 0
(Mk+1)(2ˆ̄xk+1−Mk)

(Mk−ˆ̄xk)2(1+ˆ̄xk)2 if x̄k(0) < 0

(B.4)

Based on (B.2), (B.3) and (B.4), the boundedness of V̈ (ξ, ˆ̄x) depends on

. x̄ and ˙̄x, which are bounded based on V (ξ, ˆ̄x) ≤ V (ξ(0), ˆ̄x(0))

. ε(ˆ̄x), which is bounded since x̄ is bounded

. ε̇(ˆ̄x), which is bounded since ε(ˆ̄x) is bounded

. JT (ˆ̄x, t), which is bounded based on the fact that x̄ is

. d
dt

(
∂T
∂ ˆ̄x

)
, which boundedness is implied by the boundedness of x̄

we can conclude that V̈ (ξ, ˆ̄x) is bounded.



Appendix C

Derivation of the Lyapunov function (4.20) in Theorem 4.2

We can obtain a suitable Lyapunov function to prove Theorem 4.2 by taking the following

inner product (we omit the argument ˆ̄e and t from JT (ˆ̄e, t) and ε(ˆ̄e)):

θeTë = −θeTBJTGε− θγeTBBTė

d

dt

(
θeTė

)
− θėTė = −θeTBJTGε− θγēT ˙̄e

d

dt

(
θeTė

)
+
d

dt

(
θγ

2
ēTē

)
= −θeTBJTGε+ θėTė (C.1)

Then, if we consider the inner product

ėTë = −ėTBJTGε− γėTBBTė

further adding and subtracting on the right side the quantity A(t)ēTJTGε, we obtain

d

dt

(
1

2
ėTė

)
= − [ ˙̄e +A(t)ē]

T JTGε− γ ˙̄eT ˙̄e +A(t)ēTJTGε

d

dt

(
1

2
ėTė

)
+ ε̇TGε = A(t)ēTJTGε− γ ˙̄eT ˙̄e

d

dt

(
1

2
ėTė

)
+
d

dt

(
1

2
εTGε

)
= A(t)ēTJTGε− γ ˙̄eT ˙̄e (C.2)

Adding side by side (C.1) and (C.2), we finally get

d

dt

(
θγ

2
ēTē

)
+
d

dt

(
θeTė

)
+
d

dt

(
1

2
ėTė

)
+
d

dt

(
1

2
εTGε

)
= − [θIm −A(t)] ēTJTGε−γ ˙̄eT ˙̄e+θėTė

and the term on the left side is the derivative of Lyapunov function (4.20) of Theorem

4.2.
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Second derivative of the Lyapunov function (4.20) in Theorem 4.2

Let us recall the expression (4.25) of the first derivative of Lyapunov function (4.20)

V̇ (e, ˆ̄e) = − [θIm −A(t)] ēTJT (ˆ̄e, t)Gε(ˆ̄e)− γ ˙̄eT ˙̄e + θėTė (D.1)

Derivating (D.1) with respect to time, we find:

V̈ (e, ˆ̄e) =− d

dt

(
[θIm −A(t)] ēTJTGε

)
− γ d

dt

(
˙̄eT ˙̄e
)

+ θ
d

dt

(
ėTė
)

=− d

dt
([θIm −A(t)]) ēTJTGε− [θIm −A(t)]

d

dt

(
ēTJTGε

)
+

− 2γ ˙̄eT¨̄e + 2θėTë

= Ȧ(t)ēTJTGε− [θIm −A(t)]
(
ēTJTGε̇+ ˙̄eTJTGε

)
+

− [θIm −A(t)] ēT d

dt
(JT )Gε− 2γ ˙̄eT¨̄e + 2θėTë

= Ȧ(t)ēTJTGε− [θIm −A(t)]
(
ēTJTGε̇+ ˙̄eTJTGε

)
+

− [θIm −A(t)]

(
ēT

[
P−1(t)

d

dt

(
∂T

∂ˆ̄e

)
+A(t)JT

]
Gε

)
− 2γ ˙̄eT¨̄e + 2θėTë

Based on the analytical expressions for the terms JT (ˆ̄e, t) and d
dt

(
∂T
∂ˆ̄e

)
that have been

already given in Appendix B, we can state that the upper bound on V̈ (e, ˆ̄e) depends on

. ē and ˙̄e, which are bounded based on V (e, ˆ̄e) ≤ V (e(0), ˆ̄e(0))

. ε(ˆ̄e), which is bounded since ē is bounded

. JT (ˆ̄e, t), which is bounded based on the fact that ē is

. ë and ¨̄e, which are bounded due to boundedness of all previous terms

. ε̇(ˆ̄e), which is bounded since ε(ˆ̄e) is bounded

. d
dt

(
∂T
∂ˆ̄e

)
, whose boundedness is due to the boundedness of ē

and therefore V̈ (e, ˆ̄e) is bounded.
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Proof of inequality (5.30)

Let us recall (5.23):

V̇2(ˆ̄q, q) =− ε>ˆ̄q JT ˆ̄q
B>BJT ˆ̄q

εˆ̄q − ε>ˆ̄q JT ˆ̄q
Ṗ (t)ˆ̄q + ε>ˆ̄q JT ˆ̄q

B>d(t)

− q̄>JT ˆ̄q
εˆ̄q + q>d(t) (E.1)

Considering inequalities (5.25), (5.26) and also (5.27), we can bound V̇2(ˆ̄q, q) with

V̇2(ˆ̄q, q) ≤ −(1− ζ1)‖BJT ˆ̄q
εˆ̄q‖2 − µ̄ˆ̄q>

∂εˆ̄q

∂ ˆ̄q
εˆ̄q + ζ2‖q‖2 +

(
1

4ζ1
+

1

4ζ2

)
‖d(t)‖2

V̇2(ˆ̄q, q) ≤ −µ̄ˆ̄q>
∂εˆ̄q

∂ ˆ̄q
εˆ̄q + ζ2‖q‖2 +

(
1

4ζ1
+

1

4ζ2

)
‖d(t)‖2 (E.2)

Adding and subtracting the quantity µ2‖q‖2, with µ2 being an appropriately chosen

constant, (E.2) becomes

V̇2(ˆ̄q, q) ≤ −µ̄ˆ̄q>
∂εˆ̄q

∂ ˆ̄q
εˆ̄q − µ2‖q‖2 + ϕ(t) (E.3)

where ϕ(t) = (µ2 + ζ2)‖q‖2 +
(

1
4ζ1

+ 1
4ζ2

)
‖d(t)‖2 is a bounded term given the bounded-

ness of q and d(t).

From inequality (2.16), we obtain that

−µ̄ˆ̄q>
∂εˆ̄q

∂ ˆ̄q
εˆ̄q ≤ µ̄µ1‖εˆ̄q‖2

where µ1 chosen constant, hence imposing λ = 2µ2 = 2µ̄µ1 (E.3) becomes

V̇2(ˆ̄q, q) ≤ −λV2(εˆ̄q, q) + ϕ(t) (E.4)
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Proof of boundedness of ε(ˆ̄q) in Theorem 5.1

For the sake of completeness we recall Theorem 4.18 of [24]:

Theorem (4.18, Khalil). Let D ⊂ Rn be a domain that contains the origin and V :

[0,∞)×D → R be a continuously differentiable function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), ∀ ‖x‖ ≥ µ > 0

∀ t ≥ 0 and ∀ x ∈ D, where α1 and α2 are class K functions and W3(x) is continuous

positive definite function. Take r > 0 such that Br ⊂ D and suppose that

µ < α−1(α1(r))

Then, there exists a class KL function β and for every initial state x(t0), satisfying

‖x(t0)‖ ≤ α−1
2 (α1(r)), there is T > 0 (dependent on x(t0) and µ) such that the solution

of ẋ = f(t, x) satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀ t0 ≤ t ≤ t0 + T (F.1)

‖x(t)‖ ≤ α−1
2 (α1(r)), ∀ t0 ≥ t0 + T (F.2)

Moreover, if D = Rn and α1 belongs to class K∞ then (F.1) and (F.2) hold for any

initial state x(t0), with no restriction on how large µ is. �

In part b) of the proof of Theorem 5.1 we obtained the inequality

V̇2(εˆ̄q, q) ≤ −λV2(εˆ̄q, q) + ϕ(t) (F.3)

and denoting ϕ̄ = supt ϕ(t), (F.3) becomes

V̇2(εˆ̄q, q) ≤ −λV2(εˆ̄q, q) + ϕ̄ (F.4)

Let us define q =

[
εˆ̄q

q

]
and the set Ωσ =

{
q ∈ R2 : V (q) < ϕ̄

λ

}
s.t. V̇2(q) is negative

outside of Ωσ.
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Since, by definition, V2(q) = 1
2‖q‖

2, Ωσ is the set of all q ∈ Dˆ̄q such that

‖q‖ ≥
√

2ϕ̄

λ

Therefore, choosing for example

α1(‖q‖) =
1

4
‖q‖2, α2(‖q‖) = ‖q‖2 and µ =

√
2ϕ̄/λ

the previously stated theorem guarantees the uniformly ultimately boundedness of the

state q.



Appendix G

Condition (3.11) for an exponentially decreasing performance function

Consider a performance function of the form (2.3). The condition (3.11), i.e. γ >

maxt≥0 αk(t), for convergence of the prescribed performance controller (3.1) conse-

quently gives a relation between the time constants τ and the velocities’ gain γ. The

derivative of ρ(t) is given by ρ̇(t) = −τ (ρ0 − ρ∞) e−τt, therefore

α(t) =
−τ (ρ0 − ρ∞) e−τt

(ρ0 − ρ∞) e−τt + ρ∞

Calculating the derivative of the function α(t), we get:

˙α(t) = − τ2(ρ0 − ρ∞)e−τtρ∞

[(ρ0 − ρ∞)e−τt + ρ∞]2
< 0 ∀ t ≥ 0

implying that α(t) is monotonically decreasing. Hence the maximum value is given by

max
t≥0

α(t) = α(0) = τ

(
ρ0 − ρ∞
ρ0

)
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Proof of inequalities (4.17) and (4.18)

In this appendix an alternative way to prove inequalities (4.17) and (4.18) is presented.

As in [9], let us assume that the singular value decomposition of the incidence matrix B

of the communication graph is B = UΣV T with U ∈ RN×N composed by the normalized

eigenvectors of BBT = L and V ∈ Rm×m composed by the normalized eigenvectors of

BTB = LE . U and V are orthogonal matrices, implying UUT = UTU = I and the same

for V . The matrix Σ ∈ RN×m has the structure

Σ =



σN 0 · · · 0

0 σN−1 · · · 0
...

...
. . .

...

0 0
. . . σ2

0 0 0 0


with σN ≥ σN−1 ≥ · · · ≥ σ2 singular values. We know that σ2

i = λi(L) for i = 2, 3, . . . , N

are the first N − 1 eigenvalues of the Laplacian matrix; moreover we know that the

remaining eigenvalue of L is λ1(L) = 0.

Using the SVD of B, the Laplacian matrix can be decomposed as

BBT = (UΣV T)(UΣV T)T = UΣV TV ΣTUT = UΣΣTUT = USUT

with

S = ΣΣT =



λN 0 · · · 0 0

0 λN−1 · · · 0 0
...

...
. . .

...
...

0 0
. . . λ2 0

0 0 0 0 0


∈ RN×N

Given that the matrices U and V are not unique, we can always choose U = [uN , uN−1, . . . , u1]

s.t. ui is the normalised eigenvector relative to the eigenvalue λi. In particular, since

the eigenvector corresponding to λ1 = 0 is 1N , we can choose U s.t. u1 = 1√
N
1N .
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Consider now the quadratic form eTBBTe and the vectors e s.t. e ⊥ u1. Using the

decomposition obtained before, it can be written

eTBBTe = eTUSUTe =
N∑
i=1

λi
∣∣(UTe)i

∣∣2
=

N∑
i=2

λi
∣∣(UTe)i

∣∣2
≥λ2

N∑
i=2

∣∣(UTe)i
∣∣2

=λ2

N∑
i=1

∣∣(UTe)i
∣∣2

=λ2eTUUTe

=λ2eTe

Summarizing, we obtained that

eTBBTe ≥ λ2eTe

for all e such that e ⊥ 1N , completing the proof of (4.17). The proof of (4.18) is

equivalent.
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