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Introduction

If we could look at what happens in a puddle with a microscope we would probably see a
myriad of different microorganisms moving around. Bacteria and protists of different species,
which size spans from 1µm to 100µm and which move at speeds of less than 1mm per second.
Most of these living creatures do not just diffuse passively, but actively swim around looking
for nutrients or better living conditions. Their movement has many interesting features and
can be studied from various points of view, each focusing on different aspects and seeking a
different level of description.

The advancement of imaging techniques allowed in the last decades a better comprehension
of the molecular and biochemical basis of motion peculiar to each organism (bacteria, ciliates,
amoeba,...), leading to a branch of study focusing on the physiology of the propelling means,
as for example the rotation of flagella by motor proteins in bacteria or the structure of the
cilia of eukaryotic cells [1]. An alternative approach pursues the understanding of the hy-
drodynamics of the motion, whose main feature is that viscous forces dominate over inertia,
requiring swimming techniques different from those seen in larger organisms [2].
Finally, at a further level of abstraction, one may completely neglect the above aspects and
analyse the statistical properties of motion, treating the organisms as point-like and non-
interacting objects [3]. This approach, which may appear like an overly simplified description
of a complex phenomenon, could be an appropriate starting point to shed light on the key
features of microbial behavior. Once a common ground for the description is established,
the desired level of specificity can be added a posteriori. A legitimate question is, although,
whether this general description overlooking specific details is possible or whether the differ-
ences in the mechanisms of motion of the various creatures influence deeply the statistical
properties of the motion itself. Microbial motility is an open problem in the study of active
matter, and a complete understanding has not been reached yet.

The point of view chosen in this thesis is this last, statistical one, and in particular the focus
is on active, or self-propelled, motion in absence of external signals (in contrast with chemo-
tactic motion, i.e. motion influenced by the presence of a gradient of certain substances, like
nutrients, which orient the motion of the organisms). Thus, in the original model of motion
proposed in this thesis [4], which will be presented in chapter 3, we do not take in considera-
tion whether the organisms swim with cilia, flagella, or how do they use their appendages to
propel themselves.
All the same, since it is instructive and fascinating to explore these issues, the first section of
chapter 1 reviews (a very little part of) what is known about the swimming of microorgan-
isms. In this first chapter we will examine the motion of organisms which are very different:
from bacteria to motile epithelial cells. They differ in dimension and typical speed, belong
to different domains (eukaryotes, prokaryotes), some are multicellular and some unicellular.
Also the reason of their motion is different: some, as bacteria, protists, and small animals,
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0. Contents

move to look for nutrients, while the motility of tissue cells seems to be connected to immune
response and tumour spreading [5]. The goal is to investigate the traits of the motion that
are common among them, to understand to what extent such common traits exist and finally
to have a look at how the issue of modelling this motion has been dealt with. Section 1.2
presents the statistical features of the motion which have been observed experimentally in the
past, the most peculiar of which being non-Gaussianity of P (v), while section 1.3 contains a
review of previous models which tried to explain these experimental results.
The original part of the thesis is exposed in chapter 3 and consists in the proposal of a
new microscopic model for microbial motility, prompted by the observation of experimental
trajectories of the ciliate Colpidium sp. (in this sense the model is “phenomenological”).
The novelty of the proposed model is that of using a non-white and non-Gaussian process
to model the propelling force exerted by the microorganisms, in contrast with all previous
models. This hypothesis allows to find a non-Gaussian P (v) which is in good agreement with
the experimental one.
Chapter 2 exhibits the analytical solution a one-dimensional stochastic process subject to
a Markovian dichotomous noise, which will serve as an analytical point of reference for the
model in chapter 3, in which a 2D generalization of this process is employed to describe the
motion of the microorganisms in a two-dimensional landscape.
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Chapter 1

Active motility of microorganisms

This chapter contains a review on the motility of microorganisms. The subject is vast, so a
selection had to be made: there is no claim of completeness. In section 1.1 mechanisms of
motion of microorganisms are explained, with particular emphasis on bacteria and protists.
In section 1.2 we look at statistical features of motion, exploring past experimental findings.
Finally, section 1.3 deals with the modelling of the motion, comparing some of the models
which have been proposed to explain the experimental results.

1.1 Mechanisms of motion

When we swim in water we use our arms and legs to push the water backwards, and conse-
quently get an acceleration forward. Thanks to that thrust, we are able to coast for some
meters before the drag stops us. For a microorganism some micrometers large things are
different. At that size, and at a speed of less than a millimeter per second, viscous forces
in water are dominating over inertial forces, so the latter cannot be exploited for propul-
sion. We can see this computing the Reynolds number, which measures the ratio between
inertial and viscous forces. Taking as a typical speed v ∼ 10−4m/s1, as a typical length
L ∼ 10µm = 10−5m 2, and using the density d and viscosity η of water, we get

Re =
vLd

η
=

10−4 · 10−5 · 103

10−3
= 10−3 � 1 (1.1)

For bacteria, which are typically one order of magnitude smaller, Re lowers to 10−5. (For
comparison, a fish has Re ≈ 105.) Both motions, of protists and of bacteria, may be classified
as motion at low Reynolds number with all the resulting consequences. For instance, it is
interesting to compute how far a bacterium will coast if it stops swimming [6]. At low Re we
are in the laminar regime so the viscous force is linear with v. Then we may approximate it
using Stokes Law, which would be valid for a smooth rigid sphere, obtaining an equation of
motion

−mdv

dt
= 6πηav (1.2)

for a bacterium of radius a which is not exerting any propelling force. The speed will then
decay as

v(t) = v0e
− t
τ (1.3)

1This speed is typical for protists. Bacteria, like E. coli, move at v ∼ 30 µ m/s [6], while other microor-
ganisms, like amoeba, are much slower (v ∼ 10 µm/min [7])

2This is the order of magnitude of the size of an eukaryote, as protists. Bacteria are usually an order of
magnitude smaller.
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1. Active motility of microorganisms

Figure 1.1: The beating of a cilium:
each cilium performs a cycle of movement
consisting in a fast power stroke and a slow
recovery stroke. In solid lines the power-
stroke, going from ahead to behind, with
the cilium fully extended. In dashed lines
the recovery stroke, during which the cil-
ium curls back to its initial position [1].

with τ = m
6πηa = 2a2ρm

9η , being ρm the density of the microorganism, which can be assumed
equal to that of water. The distance covered by the bacterium before stopping is then

s =

∫ ∞
0

v(t)dt = v0τ = 10−5m

s
· 2 · 10−7s = 2 · 10−12m (1.4)

which is smaller then the radius of an hydrogen atom, and also many order of magnitude
smaller than the bacterium itself. The bacterium will stop moving immediately if no force
is pushing it! This gives an idea of how different the life of microorganisms is from what we
experience.

Let us now get an overview of the mechanisms of propulsion which may be effective in these
conditions. The first point to make is that the reversible nature of the hydrodynamic equation
for low Reynold numbers (the limit of the Navier-Stokes equations for Re →0) makes useless
those mechanisms of motion which are reciprocal, i.e. which consist in a deformation of the
body to a certain shape, and then in a return to the initial shape by reversal of the sequence.
This was first explained by Purcell in his article [8] under the name of Scallop Theorem. The
name refers to the way scallops move, opening and closing their two half shells, which being
reciprocal wouldn’t work if they swam at low Re (but does work in water for them).
Purcell proposed various swimming mechanisms that avoid this problem, among which flexible
oars. This is the solution employed by eukaryotic organisms, like protists, which exploit the
flexibility of cilia or flagella, cylindrical appendages made of microtubules, which they move
in a way similar to breast stroke (see fig. 1.1). Each cilium performs a repetitive cycle of
movements consisting in a fast power stroke, during which the cilium extends in the fluid,
and a slow recovery stroke during which the cilium curls back to the initial position. While
flagella refers to a little number of long appendages, cilia refers to a large number of small
ones, usually covering the whole body and possibly organized in rows beating with a cyclical
pattern.
Prokaryotic organisms, like bacteria, also have flagella but with different features: in contrast

with the flagella of protists, theirs are semi-rigid helical filaments rotated by a protein motor
situated in the body, at the root of the flagellum. Some species have a unique filament which
can rotate both counter-clockwise and clockwise, one sense providing forward motion and the
other backward. Other species, as E. coli, a bacterium that has been extensively studied [2, 9],
have more filaments that form a unique bundle when rotating in one sense (forward motion),
but disband when rotating in the other, causing a change of direction. This mechanism
of propulsion gives rise to the motion known as run and tumble: the bacterium alternates
runs, when it moves mainly straight (unless some deviation due to rotational diffusion),
and tumbles, when the directional changes occur thanks to the reorientation of the flagella.
Duration of runs and tumbles are exponentially distributed, and tumbles display a mean
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1.1. Mechanisms of motion

(a) (b)

Figure 1.2: (a) Forces on a segment of thin wire falling slantwise in a viscous medium at velocity v.
This velocity can be decomposed into components perpendicular to the wire and parallel to the wire,
as shown below the wire. The drag due to the perpendicular component is twice as great per unit
velocity as the drag due to the parallel component, as shown by the dotted lines above the wire. The
net drag is F. It is not vertical but is tilted to the right, so it has a horizontal as well as a vertical
component, as shown by the dashed lines. The horizontal component tends to move the wire to the
right. If the wire were a segment of a rotating helix, this component would provide thrust. The
vertical component opposes v, and thus determines the power required to move the filament. If the
wire were a segment of a rotating helix, this component would contribute to the torque required to
rotate the helix [2]. (b) Mechanisms of generation of a forward thrust by rotating an helical filament
in a viscous fluid. Two segments of the helix are considered, moving with opposite velocity: one
upwards, ~v, and one downwards, ~v′. The same decomposition indicated in (a) can be done, and with
the same reasoning one finds the components of the drag force. As indicated in the figure, the vertical
components FΩ and F ′Ω are equal and opposite, so they contribute to the torque on the helix, but not
to the net force. The horizontal components Fv and Fv′ act in the same direction, and contribute to
thrust [6].

duration an order of magnitude smaller than runs (0.1 s for tumbles, 1 s for runs) [2].
The generation of a forward thrust by rotating an helix in a viscous medium is due to the
viscous drag on a thin filament being larger when the filaments moves sideways than when
it moves end-on. The mechanisms is explained very clearly in [2], the book by Berg on the
motion of E.coli. Consider a segment of thin wire falling in a viscous medium vertically, and
another falling horizontally. The second is subject to a viscous drag which is about twice as
large at that of the first due to the different outline it offers to the fluid. If now we drop
a wire tilted downwards to the right, like in figure 1.2(a), thanks to this difference in the
viscous resistance in the two directions (parallel and perpendicular to the wire), it will fall
slantwise to the right.
If we apply the same reasoning to each segment of a rotating helix, as seen in figure 1.2(b),
there will be a net force in the forward direction (right in the figure) given by the sum of
the forces parallel to the axis on each segment of helix. The components of the viscous force
perpendicular to the axis contribute to the torque, which is counterbalanced by the torque
of the body of the bacterium which rotates in the opposite sense. If the helix does not have
and integer number of turns, the net force perpendicular to the axis is not zero, and gives
rise to a conical wobble.

Other kinds of motion may be observed on solid or semi-solid media: organisms like amoeba
move by means of changing the shape of their body, with a mechanism known as crawling.
They cyclically create protruding extensions of their body, called pseudopods, using which
they push themselves forward. More pseudopods can be present at the same time on the
body, and their position determines the direction of motion. Each pseudopod follows a typ-
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1. Active motility of microorganisms

ical life cycle: a new one is extended every ∼ 15s and it expands for ∼ 12s. Well after it
has ceased to expand, it remains recognizable as a side bump on the body. It was suggested
that these extensions may be used for gliding on smooth surfaces, to walk on surfaces with
obstacles and also to swim [10]. In [11] it was found that pseudopodia can be of two types,
split and de novo, according to whether they grow out of an existing pseudopod or not. Series
of the first kind give rise to a motion with directional persistence, while the interruption of
such a series by a pseudopod of the second kind gives rise to a turn.

To conclude this overview, the motion of microorganism is influenced by many factors. The
medium in which they move determines which technique of swimming is necessary. The size
of the organism is also crucial, not only because it determines the condition of low Reynolds
number in which it swims, but also because it seems there is a minimum size for active motion,
below which it is not advantageous to actively look for nutrients (i.e. Brownian diffusion is
sufficient) [12]. Furthermore, the shape of the microorganism itself determines the viscous
drag it experiences, causing an ellipsoidal shape to be convenient. In fact, it can be shown
[13] that a spherical shape is the most efficient for diffusion, while an elongated one is the best
for swimming; the result is that the optimal ratio of the two axes is 2:1 (for many bacteria a
similar ratio of 3:1 is found). As a last remark, the density of organisms is also a factor to
consider, since at high concentrations collective motion was observed [14, 15]. Consequently,
to observe individual motion diluted conditions are required.
Much more could be said on mechanisms of motion: the variety of organisms to study is
great and the literature on the subject is vast. Since this is not the central issue of this
thesis, which is instead focused on modelling the statistical properties of motion, we stop
here, hoping that the material reviewed so far is be sufficient for the reader to form an idea
of the kind of phenomenon we are going to study.

1.2 Statistical features of motion

From a statistical point of view, motion of particles can be characterized by certain quan-
tities, e.g. the velocities distribution and autocorrelation, which can be extracted from the
trajectories of these particles.
For microorganism methods of tracking trajectories by means of sequential photographs ap-
peared in the ’60 and ’70, and since then a great variety of species have been observed. More
recently the high degree of automatization and the quality of microscopes available enhanced
greatly the quality and quantity of data, with trajectories followed up to hundreds of body-
lengths3.
This section presents some of the latest experimental observations, some drawn from the
book by Méndez et al. [3], which reviews the results obtained in several recent works, and
some directly from articles. All results presented are relative to spontaneous movement in an
isotropic and homogeneous medium, in the absence of external cues.

Velocity distribution

In the case of isotropic motion what one usually looks at is the distribution of the modulus
of ~v, P(v). Let us remark that if ~v was a Gaussian variable, the distribution of its modulus
would be in the 2D case the so-called Rayleigh distribution P (v) ∝ ve−v

2
and in the 3D

case the Maxwell distribution P (v) ∝ v2e−v
2
. This because in changing variables one has to

multiply by the Jacobian of the transformation.

3Depending on the organism, this may span from seconds to hours of tracking
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1.2. Statistical features of motion

Figure 1.3: Speed distribution observed in experiments on different species. a) P (vx, vy) for Dic-
tyostelium discoideum, taken from [17], for different values of the time lapse between two measurements
of position. b) P (v) for Hydra cells, taken from [16]. The solid line is the fit with a Rayleigh distribu-
tion. c) CDF of speed for various cells, among which human fibrocytes, found in [5]. Inset: graphic of
1−CDF(v) on lin-log scale, showing that the curve is an exponential. d) P (v) for HaCaT cells, from
[18]. The red lines are fits of the distribution with a model that will be discussed in section 1.3.
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1. Active motility of microorganisms

Experimental velocity distributions do not seem to have this form. Various different distri-
butions have been observed, some of the results are shown in figure 1.3. In [16], observing
the trajectories of Hydra cells4, they find a P (v) with a heavier tail than a a Rayleigh dis-
tribution (see fig. 1.3(b)), while in [17] they look at P (vx, vy) for Dictyostelium discoideum,
an amoeboid cell moving with the crawling mechanisms explained in section 1.1, and find it
is very different from a Gaussian distribution, showing a lower probability for speeds close
to zero (see fig. 1.3(a)). Note that they observe a variation of the distribution if they vary
the interval of time ∆t between two measurements of the position used to compute ~v as
~v = ~x(t+∆t)−~x(t)

∆t . For small ∆t they find a volcano-shaped distribution, while as ∆t gets
larger the “hole” fills-up and the distribution is peaked at the center. In fact, for ∆t much
larger than the typical persistence time of the trajectory, what we measure is not the ballis-
tic velocity of a straight segment of trajectory, but a velocity that is the average on many
segments of trajectory, with different orientations. Since the orientations are isotropic, this
averaged velocity will be close to zero. This gives us the opportunity to remark that an
appropriate resolution (∆t smaller than the typical persistence time) is essential to observe
the right P(v).
In [5] they observe a distribution that decays exponentially, i.e. its Cumulative Probability
Distribution (CDF) is well fitted by CDF (v) = 1 − e−αv (see fig. 1.3(c)). The cell species
on which they observe this behaviour are various: mouse fibroblasts5, human glioblastoma
and others, and authors claim this could be a general behaviour. Note that this distribution
implies that P(~v) is divergent at the origin. This is not impossible, but in [18] (fig. 1.3(d)),
from the observation of HaCaT cells6, an exponential distribution is seen only for velocities
above a certain value, while below there is a different trend. If we looked at P(~v), it would
have an enhanced probability of small velocities with respect to a Gaussian.
What emerges from this review of experimental findings is that there is a great non unifor-
mity of results, but a common feature is non-Gaussianity of P(~v). We must stress that the
cells observed in these experiments have very different features, from the dimensions (from ∼
1µm of Dictyostelium discoideum to ∼ 50-60µm of human fibroblasts, to ∼1mm of Hydra),
to the mechanisms of motion (crawling, swimming,...), to the average speed (of the order of
µm/min in the case of Dictyostelium discoideum, while for fibroblasts only ∼ µm/h). It is
certainly a possibility that this differences influence deeply the statistical features of motion.
However, as is made clear from fig. 1.3(a), a small difference in the experimental resolution
con qualitatively change the observed P(v). Thus, precision of tracking methods could bias
results, making it difficult to compare results of different experiments. This could also be the
cause of the contradiction between [5] and [18], which report different results for similar cells.

Velocity autocorrelation

Another feature characterizing the motion is the autocorrelation of velocity, which measures
the persistence of motion, i.e. how long direction of motion is maintained.
It is defined as

C(τ) = 〈~v(t) · ~v(t+ τ)〉 (1.5)

In figure 1.4 some examples of this quantity, also from different experiments with different
species. In all cases a non zero autocorrelation time is found, indicatince persistence, but the
trend varies: for Hydra cells and ephithelial cells a power-law decay is found (1.4(a) and (b)),

4Hydra is a small animal of ∼1mm, which moves moves by a crawling mechanism.
5Fibroblasts are the most common cells of connective tissue in animals
6HaCaT are a kind of human keratinocytes, motile cells of the epidermis which migrate to heal wounds.
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1.2. Statistical features of motion

Figure 1.4: Velocity autocorrelation observed in experiments on different species: a) Hydra cells,
from [16]. b) Epithelial Madin-Darby canine kidney cells of wild-type (full circles) and NHE-deficient
(open circles), from [19] c) Dictyostelium discoideum cells, from [20] d) Dictyostelium discoideum cells
during different states of their life, from [21].

while Dictyostelium discoideum displays a double-exponential (fig. 1.4(c) and (d)). More
insight on why a double exponential could emerge will be given in section 1.3.
Note that in figure 1.4(a) an oscillatory pattern is superimposed to the decay. This can be
explained by the zig-zag motion of cells which introduces a periodic oscillation of the velocity,
and consequently a periodicity in the velocity autocorrelation, as that found sometimes in
crawling amoeba [7, 17] or as the conical wobble described in section 1.1. An oscillating
autocorrelation is found also in [7], see figure 1.14 and subsequent discussion in section 1.3.

Mean Square Displacement

Defined as
MSD(t) = 〈~x2〉 (1.6)

the Mean Square Displacement gives a measure of the dispersal capacity of the particle.
Before looking at experimental findings, let us recall that if the MSD scales as t2 it is sign
of a ballistic motion, while a scaling with t means the particle is in the diffusing regime. If
MSD∼ tα with α 6= 1, 2, the motion is called anomalous diffusion.
The graphics in figure 1.5 show that data seem to present anomalous diffusion with 1 < α <

2, at least in a certain transient of time. This can be interpreted in two ways: either the motion
must be explained by anomalous diffusion, or the MSD has a form that implies a transient time
between ballistic regime and diffusing regime during which the scaling resembles anomalous
diffusion. This is for instance the case of an MSD of the form

MSD(t) = A(C1t− 1 + e−C1t) +B(C2t− 1 + e−C2t) (1.7)

where A, B, C1, C2 are positive constants. Figure 1.6 shows the behaviour of the MSD of
eq. (1.7) and the role of the two time-scales C1 and C2, compared with that of the MSD
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1. Active motility of microorganisms

Figure 1.5: Mean Square Displacement observed in experiments on different species. All graphics are
taken from [3], but based on data from different articles, as follows: a) Cells of amoebas Tetramitus
rostatus (full circles), Naegleria gruberi (open circles) an Acanthamoeba castellanii (triangles) [23]
b) Epithelial Madin-Darby canine kidney cells of wild-type (full circles) and NHE-deficient (open
circles) [19] c)neuN human mammary epithelial cells [24] d)MCF-10A human mammary epithelial
cells expressing pBABE (full circles), neuN (open circles) and neuT (triangles), [25] e) Strain AX4
of Dictyostelium discoideum cells [17] (red lines are for singular trajectories, blu line is the average)
f) Strain AX2 of Dictyostelium discoideum cells at the vegetative state (full circles) and after 5.5 h
starving (open circles) [21].
In all graphics, t is measured in minutes, and the MSD is in µm2. The graphics are in log-log scale, and
for comparison the lines corresponding to ballistic scaling and to diffusive scaling are shown. In almost
all cases, except e), the slope of the experimental MSD does not seem to match the one expected for
diffusive scaling, at least on the observed time scale. See the text for possible explanations of the
reason.
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1.2. Statistical features of motion

Figure 1.6: Comparison of the behaviour of the MSD predicted by an Ornstein-Uhlenbeck (1.8)
process with that of equation (1.7) [3]. The first has only one time scale, and passes from ballistic
to diffusive scaling. the second, instead, has two time scales, C−1

1 and C−1
2 , and displays a tran-

sient behaviour of duration C−1
2 − C−1

1 between ballistic and diffusive regimes, which could look like
anomalous scaling.

predicted by an Ornstein-Uhlenbeck process

MSD(t) = Ct− 1 + e−Ct (1.8)

where only one time-scale is present, and the scaling goes directly from ballistic to diffusive.
An MSD of the form (1.7) is predicted by some models, among which the one proposed in

[22] that will be explained in section 1.3.
An experimental support to the hypothesis that anomalous scaling is only a transient be-
haviour is given by [7], where diffusive behaviour is observed for the MSD (see fig 1.5(e)),
and authors comment that it is because they succeed in tracking the motion longer than
other experiments, and consequently they see the end of the transient, culminating in diffu-
sive scaling (while others stop before that time7).

Kurtosis

Kurtosis is defined as

K(t) =
〈~x4〉
〈~x2〉2

(1.9)

and it gives information about how much the observed process is different from diffusion
since for a diffusion process this ratio has the value of 3. In fact, the position ~x of a diffusion
process is a Gaussian variable with zero mean. Since for a Gaussian variable with mean µ
and standard deviation σ

〈~x4〉 = µ4 + 6µ2σ2 + 3σ4 〈~x2〉 = µ2 + σ2 (1.10)

if µ = 0 the kurtosis is equal to 3.
For the Ornstein-Uhlenbeck process (see sec. 1.3 and appendix A), ~x is also a Gaussian vari-

able, but with mean µ = v(0)
ρ (1− e−ρt) . Since for large t its standard deviation scales as t,

while the mean remains constant, the kurtosis approaches the value 3 growing monotonically.
As can be seen in figure 1.7 the kurtosis found experimentally is monotonically decreasing,

7What one must compare are not the tracking times, but the ratios of the tracking time and the persistence
time, because the long-run trend of the MSD is visible after many persistence times have passed.
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1. Active motility of microorganisms

Figure 1.7: Kurtosis observed in experiments on different species. Graphics are taken from [3], but
based on data from various articles, as follows: a) Strain AX2 of Dictyostelium discoideum cells at the
vegetative state (full circles) and after 5.5 h starving (open circles) [21] b) Epithelial Madin-Darby
canine kidney cells of wild-type (full circles) and NHE-deficient (open circles) [19].
In both graphics, t is in minutes.

and it does not always approach 3. This means that nor plain diffusion nor the Ornstein-
Uhlenbeck process correctly describe the motion observed.

The observed behaviour of kurtosis, together with that of the MSD, hints that the motion
process is such that the position is not Gaussian. This means that either the increments are
non-Gaussian, or they are not independent. Consequently, to correctly describe the motion
we will have to keep this in mind.

Turn angles distribution

The distribution of turn angles also gives us precious information on the motion, telling
us whether the microorganism changes its direction gradually (distribution centred at small
angles) or makes neat turns. Before looking at experimental results, let us establish a point:
many microorganisms, due to their specific mechanisms of motion, have a noisy zig-zagging
pattern8. In this case, we must distinguish between the instantaneous angle, which resents of
the noise, and the “average” angle, which indicates the average direction of motion (see figure
1.9). A detailed study of the problem was made in [17] for Dictyostelium discoideum cells,
and the distribution found for the average angle displays a bimodal pattern (fig. 1.8(a)). A
similar distribution is also found in [26]. Such a distribution is characteristic of a motion
similar to therun and tumble motion of E.coli : the particle stops and chooses a new direction
which can differ substantially from the previous one. The choice of the turn angle seems to
be biased in the forward direction, at least for some species. For E. coli the measure has been
taken with result 〈θ〉=68◦ [6] (if the probability were uniform, the mean turn angle would
be 90◦). In [27], although, a distribution peaked at small angles is found, indicating that
the persistence of the motion lasts also across several “runs” (fig. 1.8). The studied specie
is the same in all three cases, so the different results pose doubts on the compatibility of
experimental conditions among different experiments.

8It is the case of crawling amoeba, like Dictyostelium Discoideum, and also of some ciliates like the Col-
pidium sp. which motion we will examine in chapter 3
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1.2. Statistical features of motion

Figure 1.8: Turn angle distribution observed in experiments on different species. Graphics are
taken from [3], but based on data from various articles, as follows: a) Strain AX4 of Dictyostelium
discoideum cells [17] b) Dictyostelium discoideum cells [27] c) Strain AX3 of Dictyostelium discoideum
cells [26].

Figure 1.9: Example of a trajectory where a noisy pattern (in black, described by the instantaneous
angle φ) is superimposed on an average motion (in blue, described by the “averaged” angle θ) [17].

13



1. Active motility of microorganisms

Figure 1.10: Different representations of turn angle correlations observed in experiments on different
species. a) Strain AX4 of Dictyostelium discoideum cells [17]. Black points are a fit with the simple
model for turns explained in the text. b) Strain AX3 of Dictyostelium discoideum cells [26].

Angles correlation

Another quantity that gives us information about the type of motion is the correlation of
consecutive angles or turn angles. If the motion starts with direction α, after one turn will
the new direction be similar to the previous one, or not? And after two turns? Provided that
we succeed in determining turning events, which can be not so simple given the oscillations of
the direction, this information can be represented in two ways: one solution is to look at the
turning direction autocorrelation function, i.e. the correlation between the starting direction
and the direction after n turns, with n varying. The other solution is to plot the current turn
angle versus the previous turn angle.
Figure 1.10(a) shows the turn direction autocorrelation function relative to Dictyostelium
discoideum: the plot shows that correlation is negative for consecutive turn directions, and
then goes quickly to zero9. Authors of [17] argue that this is explained by supposing that
the turning process is a markov process, with probability p to turn in the same direction
of the previous turn (the black dots in figure 1.10(a) correspond to the autocorrelation of
this process, which fits closely the experimental one ). Also figure 1.10(b), where the current
turn angle versus the previous turn angle is plotted, suggests there is no correlation between
consecutive changes of direction.

Run and Tumble

From the observation of trajectories it was discovered that many microorganisms, including
for instance E. coli, alternate directional displacement (runs) and angle reorientations (tum-
bles). This motion was then called run and tumble, or also bimodal motion. To understand
whether a certain organism moves in this way visual inspection of trajectories can provide a
first intuition, but a quantitative evidence comes from the correlation between the turn angle
rate and the velocity. In fact in run and tumble motion changes of the angles occur during
pauses of the motion, so a negative correlation is expected (see figure 1.11).

9Turns refer to the “noise averaged” trajectory.
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1.3. Stochastic models of motility

Figure 1.11: Correlations between the turn rate and the velocity for the AX3 strain of Dictyostelium
discoideum, showing evidence of run and tumble motion [28]

1.3 Stochastic models of motility

After having examined the statistical features of the motion of microorganisms, we are only
partially satisfied. We know how they behave, but why do they behave like that? What are
the laws controlling their motion, and giving rise to those particular features we observe?
The process of modelling motility is then interesting not only for predictive purposes, but
also because it gives us an insight of the origins of what we see. A good model should, in fact,
not only give good predictions but also offer a realistic and enlightening description of the
process. Modelling self-propelled motility poses a particularly stimulating challenge, since
it requires that we make hypotheses on the propelling force exerted by the microorganisms
themselves, which makes the problem quite different from the one of modelling the motion
of non-living particles.

Modelling can be dealt with on different levels, depending on the degree of detail of the
information we have on the motion and on the degree of detail we want to reach. If the
tracking of trajectories is available, we may pursue a microscopic description, based on a
Langevin equation, which predicts the probability of finding a single individual at position ~x
at a certain time t.
On the other hand, if we only have averaged data for the motion, there is no use in going
further than a mesoscopic description, which produces as a output the density of individuals
expected in average at position ~x at a certain time t. With such a description, although, we
can still keep in consideration aspects like memory effects, which are still deducible from the
averaged information on trajectories [3].
Finally, if all we can measure are effective parameters (like diffusion coefficients), the appro-
priate description is a macroscopic one, also dealing with probability distributions for the
average behaviour of the population but, differently from the mesoscopic description, not
accounting anymore for memory effects or other such subtle aspects of the process.
In the following we will focus on microscopic description, since the original model proposed in
chapter 3 of this thesis is a microscopic one. This kind of model, although more demanding
from the mathematical point of view, gives the most accurate and exhaustive description of
the process, and consequently is the most useful to characterize motility.
This kind of approach is more common in the study of the motion of cells and microorganisms
than in that of bigger organisms (like animals), since tracking of trajectories is easier.
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1. Active motility of microorganisms

In this section we will try to retrace the attempts that have been made to model active
dispersal of microorganisms, dwelling on some models of particular interest. Again, the
discussion follows that in the book by Méndez et al. ([3]).
When naming dispersal one cannot but think of diffusion, which was first introduced to
describe the dispersal of molecules in water. Microscopically, the equations of motion for a
particle in a viscous fluid are given by the Langevin equation

dx

dt
= v (1.11)

m
dv

dt
= −ρv + σξ(t) (1.12)

where ξ(t) is a Gaussian white noise, i.e. a stochastic process with the following properties:

1. ξ(t) is Gaussian

2. 〈ξ(t)〉 = 0

3. 〈ξ(t)ξ(t′)〉 = δ(t− t′)

However, for a microorganism in water, as we have seen in sec. 1.1, the inertial forces are
negligible with respect to the viscous drag, which means m|dv

dt | � |ρv|, so equation (1.11)
reduces to

ρ
dx

dt
= ξ(t) (1.13)

meaning that xt is a Wiener process, and vt is a purely fluctuating variable.This does not
seem a realistic description of the process, though. In fact, it does not describe the observed
persistence of direction: at each step the direction chosen for the motion does not depend on
the previous history of the trajectory, since vt is a white process, and changes in an erratic
way. On the other hand, the velocity of microorganisms changes smoothly.
We need then to find a different process to describe the motion, which gives a more realistic
description. It turns out that the Ornstein-Uhlenbeck (O-U) process, which description is
given by eq. (1.11), does a much better job. In fact if we keep the inertial term that we had
neglected due to its being much smaller than the friction term we obtain that the value of
v at a certain time depends on its previous values, and consequently the particle tends to
maintain its velocity (and thus its direction) for a certain time, a measure of which is ρ−1

(persistence time). The resulting trajectory of the velocity is smooth: see in figure 1.12 a
comparison between the fluctuating velocity found in the strong friction limit and the velocity
of the O-U process.

It is important to remark that the term dv
dt that we are now keeping does not represent true,

physical inertia (since that is negligible, as said above). We are giving a statistical description
of the motion, or better a phenomenological description: we observe that the motion shows
persistence, and consequently describe it by means of a process which predicts this feature.
This means also that ρ does not have the meaning of friction coefficient any more: we can
only attribute to it the statistical meaning of persistence parameter.

Now we are going to examine some of the two dimensional models of motion based on the
O-U process. In appendix A the one-dimensional O-U process is defined and the main results,
which will be employed in the following, are derived.
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1.3. Stochastic models of motility

Figure 1.12: Comparison of the evolution of velocity described by a Gaussian white noise (strong
friction limit) and by an O-U process [3].

Models based on the Ornstein-Uhlenbeck process

Since the motion observed experimentally is two or three-dimensional, we must find an ap-
propriate extension of the 1D O-U process analysed in the previous section. Let us discuss
the 2D case, both for simplicity and because the original model presented in chapter 3 is 2D.

The first idea that comes to mind is to take two independent O-U process in the two directions,
as follows

dx

dt
= vx

dy

dt
= vy (1.14)

dvx
dt

= −ρvx + σξx
dvy
dt

= −ρvy + σξy (1.15)

where ξx(t) and ξy(t) are two independent Gaussian white noise terms. A model of this form
was employed for instance in [29].
A likable feature of this equations is that they predict anticorrelation between the velocity
and the turn angle rate, meaning that when the velocity is large the direction of motion does
not change much, and viceversa. This can be seen passing to polar coordinates (v,θ), for
which the equations become [30]

dv

dt
= −ρv +

1

2

σ2

v
+ σξv (1.16)

dθ

dt
=
σ

v
ξθ (1.17)

where ξv(t) and ξθ(t) are again two independent Gaussian white noise terms.
Such a dependence between the dynamic of v and θ is often found experimentally for motions
of the run and tumble type (see fig. 1.11 of section 1.2).

However, this aside, it clearly has some flaws. First of all it seems quite unrealistic for the
motion in the x direction to be totally independent from that in the y direction. In particular,
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1. Active motility of microorganisms

if the noise terms must represent the stochastic propelling force they should be the projection
on the two axis of a certain vectorial force exerted by the microorganism, and so they would
not be independent. Moreover, the statistical features it predicts for the motion (P (v),
velocity autocorrelation, MSD,..) do not seem to describe those observed experimentally (of
which we had an overview in section 1.2).
Let us see what its predictions are. Employing the results for the 1D case (see appendix
A), we can straightforwardly derive those for the 2D case, where we have two identical and
independent copies of the 1D process.
To begin with, ~v(t) is again Gaussian, since its two components are Gaussian and P (~v, t) =
P (vx, t) · P (vy, t).
The autocorrelation is

〈~v(t)~v(t+ τ)〉 = 〈vx(t)vx(t+ τ)〉+ 〈vy(t)vy(t+ τ)〉 =

=
[
vx(0)2 + vy(0)2 − σ2

ρ

]
e−ρ(2t+τ) +

σ2

ρ
e−ρτ

(1.18)

while for the MSD we find

〈~x(t)2〉 = 〈x(t)2〉+ 〈y(t)2〉 =
vx(0)2 + vy(0)2

ρ2
(1− e−ρt)2 + 2

σ2

ρ2

[
t− 2

ρ
(1− e−ρt)+

+
1

2ρ
(1− e−2ρt)

] (1.19)

If we furthermore assume that we start at stationariety, i.e.

v2
x(0) = v2

y(0) =
σ2

2ρ

the above results simplify to

〈~v(t)~v(t+ τ)〉 =
σ2

ρ
e−ρτ (1.20)

〈~x(t)2〉 =
σ2

ρ3

(
2ρt− 1 + e−2ρt

)
(1.21)

where again we can identify the two regimes, ballistic and diffusive.
Finally, the kurtosis for one of the two components is [3]

〈x4〉
〈x2〉2

=
(1− e−2ρt)4 + 3(4ρt− 1 + e−4ρt)(4ρt− 3 + 4e−2ρt − e−4ρt)

4(2ρt− 1 + e−2ρt)
(1.22)

which for large t approaches 3 growing monotonically.

To summarize, according to the O-U process in 2D

• ~v has a Gaussian probability distribution

• the velocity autocorrelation has an exponential decay

• the MSD shows a transition between ballistic and diffusive behaviour

• the kurtosis increases monotonically and approaches 3.
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1.3. Stochastic models of motility

Looking at the findings listed in section 1.2, it seems that the experiments show quite dif-
ferent features: non-Gaussianity, anomalous diffusion, a decreasing kurtosis which does not
always approach 3.

However we must keep the O-U process in consideration as a general framework for the
description of the motion, since an equation of that form correctly describes the motion per-
sistence and this is a key factor in the motility of living organisms. For this reason other
models made various modifications to the process we just described, in order to try to solve
its flaws.

In [19] the authors propose to employ a modified form of the O-U Fokker-Plack equation, with
the introduction of fractional derivatives (see [31], appendix) which account for long-range
time correlations. This predicts anomalous diffusion and a power law decay of the autocor-
relation of speeds, explaining the behaviour they observe for migrating epithelial cells.

In [7] and [18] an interesting solution is suggested to reproduce a form of the velocity autocor-
relation that is not a simple exponential like the O-U process would predict. In both articles,
in fact, a more complex behaviour is found for the autocorrelation. In [18] two types of motile
cells are observed, fibroblasts and keratinocytes, and it is found that the autocorrelation has
a multiexponential form

C(t) = C1e
− t
τ1 + C2e

− t
τ2 (1.23)

In [7], instead, the microorganism observed is Dictyostelium discoideum. Due to the nature
of its mechanism of motion (crawling, explained in sec. 1.1), the microorganisms moves with
a zig-zagging pattern, so that the trajectories show a persistent motion overlaid with a noisy
periodic motion (figure 1.13). The velocity autocorrelation they find is on the whole decaying
as a double exponential , but superimposed to this trend they see oscillations of amplitude
that remain constant in time (see figure 1.14). This latter feature is due to the zig-zagging
motion.

In both cases a data-driven model is proposed that predicts the observed form of the
autocorrelation. The question is, what generalization of an O-U process predicts a certain
autocorrelation C(t)? The fact that it is not simply an exponential means that the rate of
change of velocity dv

dt does not depend only on the current velocity like in the O-U equation,
but there must also be a dependence on previous velocity, a memory. Thus the proposed
form for the process is

d~v

dt
= −

∫ t

−0
K(t− τ)~v(τ)dτ + σ~ξ(t) (1.24)

where K(t) is a memory kernel whose form is to be deduced directly from the observed
autocorrelation (in this sense the approach is data-driven), and ~ξ(t) is the usual vector of
two independent Gaussian white noises. The appropriate form of K(t) is found by means of
comparing the power-spectrum of the experimental autocorrelation with the power-spectrum
of the autocorrelation for a solution ~v(t) of eq. (1.24).
Let us consider a formal solution of the form

~v(t) =

∫ t

0
g(t− τ)σ~ξ(τ)dτ (1.25)

where g(t) is an arbitrary function satisfying g(t) = 0 for t < 0 to account for the fact that
the velocity cannot depend on future values of the noise, for causality.
Which form must g(t) have for equation (1.25) to be a solution of (1.24)? We can discover
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1. Active motility of microorganisms

Figure 1.13: An example of trajec-
tory of Dictyostelium discoideum, show-
ing persistent motion overlaid with a
noisy periodic motion. The red line is
an “oscillation-averaged” motion where
only the persistent component is present.
It is obtained as the time integral of a
mean velocity which is a weighted aver-
age of past values of velocity, using as
weight the exponentially decaying auto-
correlation [7].

Figure 1.14: Autocorrelation of velocities for trajectiories of Dictyostelium discoideum, on a lin-log
scale [7]. A double exponential decay is found.
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1.3. Stochastic models of motility

this by taking the Fourier transform of (1.25)

~v(ω) = σg(ω)~ξ(ω) (1.26)

and substituting it into the Fourier transform of (1.24). We find

g(ω) =
1

K(ω) + iω
(1.27)

Now the power-spectrum of the autocorrelation of ~v, S~v,(which is the Fourier transform of
the autocorrelation, thanks to the Wiener-Khinchin theorem) is expressible in terms of g(ω)
with the following method.
Using (1.25) we can write

C(τ) = 〈v(t)v(t+ τ)〉 = 〈
∫ t

0
g(t− t′)σξ(t′)dt′

∫ t+τ

0
g(t+ τ − t′′)σξ(t′′)dt′′〉 =

= σ2

∫ t

0

∫ t+τ

0
g(t− t′)g(t+ τ − t′′)〈ξ(t′)ξ(t′′)〉dt′dt′′

(1.28)

Now using
〈ξ(ω)ξ(ω′)〉 = πSξ(ω)δ(ω − ω′) (1.29)

where Sξ is the power spectrum of ξ, and recalling that if g(t) is real then g(−ω) = g∗(ω) we
get

C(τ) = π

∫ +∞

−∞
σ2g(ω)g∗(ω)Sξ(ω)eiωτdω (1.30)

Then we can identify the power-spectrum of velocity

Sv(ω) = C(ω) = σ2g(ω)g∗(ω)Sξ(ω) (1.31)

which using Sξ = const and (1.27) becomes

C(ω) =
σ2

(K(ω) + iω)(K(ω)− iω)
(1.32)

Thanks to this expression, if we fit the experimental autocorrelation with a certain function
and compute its power spectrum, we can deduce from the comparison with (1.31) the exact
form of K(t).
In [18] they find that a double exponential decay in C(t) requires K(t) = −ρδ(t)+Aθ(t)e−βt,
with A, β constants and θ(t) the Heaviside function. The equation of the model then becomes

d~v

dt
= −ρ~v −A

∫ t

0
e−β(t−τ)~v(t)dτ + σ(v)~ξ(t) (1.33)

Note that they have considered a variant with σ dependent on the modulus of velocity v:
they choose σ(v) = σ0 + vσ1, because they find, from data, that 〈~̇v〉 ∝ v. This multiplicative
noise allows to find a non-Gaussian P (~v), of the form

P (v) = C
e
− a

1+v/vσ

(1 + v/vσ)2+a
(1.34)

where a and vσ are parameters of the model.
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1. Active motility of microorganisms

In conclusion, what can be extrapolated by this approach is that a form of C(t) that is not
simply an exponential can be explained with a ”memory” that keeps track of past values of
velocity, which results in an additional term in the O-U equation, and that a non-Gaussian
P (~v) can be obtained if the intensity of the propelling force is dependent on v.
These models succeed in describing the observed data, and do so because they are finely
tailored on those data. In fact, both the form of K(t) and σ(v) are chosen in such a way that
they fit the observed C(t) and P (v). Memory is indeed a possibility to explain the trend of
the autocorrelation, and possibly different forms of K(t) could also explain other observed
behaviours, as power-laws. On the other hand, we will see in the following and also in chapter
3 that to predict non-Gaussianity of P (v) it is not necessary to suppose that the the intensity
of the force depends on v.

The other limit of the O-U process we had identified, and haven’t addressed yet, is indepen-
dence of the motion along the two axes.
In response to some experimental evidences [21] showing that accelerations in the component
of velocity parallel to the direction of motion behave differently than those in the perpen-
dicular component, some works (for instance [22]) suggested to choose for the modelling the
microorganism’s frame of reference, and thus to write an equation for the modulus of the
velocity and one for the direction. The form suggested in [22] is

dv

dt
= −ρ(v − vs) + σvξv(t) (1.35)

dθ

dt
= σθξθ(t) (1.36)

in the case of undirected motion, which can be generalized for directed motion by modifying
the equation for the angle’s dynamic.
The motion described by these equation displays fluctuation of the direction with mean zero,
while in the direction of motion the velocity is described by an O-U process with the addiction
of a term ρvs. This represents the propulsion force exerted by the cell to keep its cruise speed
constant at vs. The velocity and the direction of motion are considered independent, an
hypothesis that can be realistic for some microorganisms but not for others (as we already
noted, in the case of run and tumble motion the rate of change of the direction is anticorrelated
with velocity).
The probability distribution resulting for v is a Gaussian centered at vs (note that this is not
equivalent to having a Gaussian ~v, since that in 2D would result in P (v) ∝ ve−v2

). This has
the problem that it allows for negative values of v, which is of course impossible, and the fit
to the data relative to granulocites is not perfect, since data show a slightly asymmetrical
distribution around the peak velocity (see fig. 1.15). However, the model is interesting since
it introduces the novel idea of considering the microorganism’s frame of reference, which was
then employed by other models.
For the turn angles a Gaussian distribution is predicted, since they are simply the increments

of a Wiener process. This agrees with some of the experimental results presented in fig. 1.8.
Knowing the distribution for v and θ and using their independence, one can compute the
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1.3. Stochastic models of motility

Figure 1.15: Stationary speed distri-
bution for the model (1.35): dots rep-
resent experimental results for granu-
locites, while the line is the model’s pre-
diction. [22]

predicted MSD and velocity autocorrelation, with the following results

〈~v(t)~v(s)〉 = 〈v(t)v(t+ τ)〉〈cos θ(t) cos θ(t+ τ)〉 =
v2
s

2
e−

σ2
θ
2
τ +

σ2

4ρ
e−Λτ (1.37)

〈x2(t)〉 = 〈
(∫ t

0
v(τ) cos θ(τ)dτ

)2
〉 =

∫ t

0

∫ t

0
〈v(τ)v(s)〉〈cos θ(τ) cos θ(s)〉dτds = (1.38)

=
σ2

2Λ2ρ
(Λt− 1e−Λt) +

4v2
s

σ4
θ

(σ2
θ

2
t− 1 + e−

σ2
θ
2
t
)

(1.39)

where Λ = ρ+ σ2
θ .

This is a very interesting result, since it presents some feature different from those of the
O-U process: both the velocity autocorrelation and the MSD are governed by two different
time-scales, Λ−1 and (σθ

2/2)−1. The velocity autocorrelation is a double exponential, like
that observed in some experimental results [18], and the MSD has the form (1.7) which goes
from ballistic scaling to diffusive scaling, but in a transient Λ−1 − (σ2

θ/2)−1 has a behaviour
which can look like anomalous scaling, as already explained commenting eq. (1.7). More-

over, the two time-scales can be distinguished only if Λ is sufficiently greater than
σ2
θ
2 . This

could explain why in some cases a single exponential is observed, while in others a double
exponential is found.

In [32] a similar model is proposed, where the assumption of independence of v and θ is
relaxed. They consider active particle which are polar: they have a head and a tail, and
thus a heading direction is defined. This direction, dependent on time, is described by
~eh(t) = (cos θ(t), sin θ(t)), and let ~eθ(t) be the direction perpendicular to ~eh(t). The modelling
assumption they propose is that the stochastic propelling force can be described by two
independent Gaussian white noises, one in the direction of motion ~eh(t) and one in the
angular direction ~eθ(t), as follows:

~η(t) =
√

2Dvξv(t)~eh(t) +
√

2Dθξθ(t)~eθ(t) (1.40)

where Dv and Dθ are the intensities of the two noises.
They write an equation of motion of the form

d~v

dt
= −γ(~v)~v + ~η(t) (1.41)
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1. Active motility of microorganisms

where ~η is given by (1.40), since ~eh(t) depends on the current orientation θ(t) we have
obtained a multiplicative noise (giving non-Gaussianity of P (~v)) without having to introduce
an intensity of noise depending on v (the same happened in [22]).
Let us define v = ~v~eh(t), the velocity in the heading direction. This is not the modulus of
velocity, given that the particle can move both forward and backward, so both in direction
~eh(t) and −~eh(t). Thus, v may assume also negative values. In the coordinates (v,θ) the
equation of the process are

dv

dt
= −γ(v)v +

√
2Dvξv(t) (1.42)

dθ

dt
=

1

v

√
2Dθξθ(t) (1.43)

Thus, we find again a dependence of the turn rate on v.
The form of γ(~v) they consider is γ(v) = ρ(1 − vs/v), which gives rise to a cruise speed as
that of [22].
One can analytically find the stationary probability distribution of this process, and going
back to cartesian coordinates this gives

P (vx, vy) =
1

|~v|
[e−A(|~v|−v0)2

+ e−A(|~v|+v0)2
] (1.44)

where A = ρ/2Dv. The behaviour of this function for different values of Dv is depicted in
figure 1.16. As is clear from its expression (1.44), this function diverges at ~v = 0 in a non
integrable way. Thus, this model has a pathology, given that a probability distribution must
be normalizable.

To conclude this section, let us make a final comment on the models that we have examined.
All of them present interesting ingredients, but none is completely satisfactory. In fact, either
they do not give correct predictions for the statistical features of the motion, or they make
unrealistic assumptions on the motion process, or they have analytical pathologies.
Unrealistic aspects of such models look like the first problem to tackle, since it could be
also the cause of the incorrect predictions. The core of any model of active motility is the
description of the stochastic propelling force. All the models seen so far employed a Gaussian
white noise term, and although some of them abandoned the assumption of independent
forces along the two axis, none used a non-white process. Modelling the force by a white
process means that it changes value at every time-step, each time assuming a new value
completely uncorrelated with the previous ones. But since this is a force exerted by the
microorganism, for instance by rotating its flagella which has a certain orientation is space,
or by beating its cilia with the body orientated in a certain direction, this would mean that
the microorganism keeps changing its orientation while moving, rotating its whole body at
every time-step. However, looking at the real motion of microorganisms, it seems that big
changes of direction in the motion do not happen at every instant10, but only after some
periods of directed motion. Since direction of motion and direction of the propelling force
are clearly connected11, it seems likely that the force also remains the same for a certain
correlation time.
These observations are at the base of the new model proposed in chapter 3 of this thesis.

10We are talking of the “average” motion where we neglect the noise due to the particular motility mecha-
nism.

11As explained in section 1.1 talking of swimming at low Reynolds number
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1.3. Stochastic models of motility

Figure 1.16: P (vx, vy) as predicted by the model in [32], for different values of Dv, the intensity of
the propelling force. This probability has the pathology of being divergent at ~v = 0.

25





Chapter 2

Analytical solution of a process
subject to Markovian dichotomous
noise

In this chapter we will show the analytical solution of a one dimensional process subject to
Markovian dichotomous noise. This will be useful in chapter 3, where we will make use of a
noise which is a 2D generalization of Markovian dichotomous noise. The process subject to
this generalized dichotomous noise is, to the best of our knowledge, not analytically solvable,
so the 1D case will serve as an analytical point of reference.
As a first thing, in section 2.1 we will define Markovian dichotomous noise. Then in section
2.2 we will find, following [33], the stationary probability distribution of a process vt sub-
ject to this kind of noise, ps(vt). Then, in section 2.3 we will show that in a certain limit
this noise tends to a Gaussian white noise. Finally, in section 2.4 we will explain the con-
nection of the Markovian dichotomous noise with the 2D process that we will use in chapter 3.

2.1 Markovian dichotomous noise

Markovian dichotomous noise, or random telegraph signal, is a continuous time Markov pro-
cess σt with a discrete state space S = {∆+, ∆−}. For such a process the infinitesimal
generator 1 has the form

Lf(σ) = w(σ′|σ)[f(σ′)− f(σ)] σ, σ′ ∈ {∆+,∆−}, σ′ 6= σ (2.1)

where w(i|j) is the transition rate from state j to state i. Let us call α := w(∆−|∆+) and
β := w(∆+|∆−).
This means that σt jumps from ∆+ to ∆− after an exponential time of parameter α, and
from ∆− to ∆+ after an exponential time of parameter β.
Since there are only two state, the generator can be simply written as the matrix

L =

(
−β β
α −α

)
(2.2)

Let pi,j = p(σt = i|σ0 = j). Then, using the generator above, the resulting equation for the

1See appendix B for a brief introduction to infinitesimal generators for stochastic processes.
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2. Analytical solution of a process subject to Markovian dichotomous noise

evolution of the probability is

d

dt

(
p∆−,j(t)
p∆+,j(t)

)
=

(
−β α
β −α

)(
p∆−,j(t)
p∆+,j(t)

)
(2.3)

Using p∆−,j(t) + p∆+,j(t) = 1 ∀t, we get the time dependent solution

(p(t))i,j =
1

γ

(
α+ βe−γt α(1− e−γt)
β(1− e−γt) β + αe−γt

)
(2.4)

where γ = α+ β and i, j = ∆−, ∆+.
Letting t go to infinity we find the stationary solution

ps(∆+) =
β

γ
(2.5)

ps(∆−) =
α

γ
(2.6)

We can then compute the stationary mean of the process

〈σt〉s =
∑

i=∆+,∆−

ips(i) =
β

γ
∆+ +

α

γ
∆− (2.7)

and the stationary autocorrelation

〈σtσ0〉s =
∑

i,j=∆+,∆−

ijpij(t)ps(j)− 〈σt〉2s =
αβ

γ2
(∆+ −∆−)2e−γt (2.8)

This last result means that this process is non-white, meaning that it is not delta-correlated
in time but has instead a characteristic time 1/γ over which it remains correlated with itself.
If ∆+ = −∆− = a and α=β = γ/2 the process is called symmetric. This will be the case in
which we are interested.

2.2 Exact solution of a process subject to Markovian dichoto-
mous noise

Let us consider a process vt defined by the equation

v̇t = h(vt) + σtg(vt) (2.9)

where σt is a Markovian dichotomous noise. This is one of the few cases of a process subject
to coloured noise which is analytically solvable [33]. We are going to show in this section how
to find its stationary probability distribution.
Since σt is coloured, the process vt is non-Markovian2. But (vt, σt) is, and its infinitesimal
generator is

Lf(v, σ) = (h(v) + σg(v))∂vf(v, σ) + w(σ′|σ)[f(v, σ′)− f(v, σ)] (2.10)

2In fact, consider an increment of the process dvt: this depends on the value of the noise at time t, σt;
since the noise has a certain autocorrelation time, its value at a later time t′ will be correlated to that at time
t, if t′− t is shorter than the autocorrelation time. Consequently, the increment of the process at time t′, dvt′ ,
will be correlated to the increment at time t.
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2.2. Exact solution of a process subject to Markovian dichotomous noise

for σ, σ′ ∈ {∆−,∆+}, σ 6= σ. So we can write a master equation for the joint probability of
the form

∂tp(v, σ, t) = −∂v{[h(v) + σg(v)]p(v, σ, t)}+ w(σ|σ′)p(v, σ′, t)− w(σ′|σ)p(v, σ, t) (2.11)

The process σt has only two possible states, so we can write this equation as the following
system of two equations:

∂tp(v,∆−, t) =− ∂v{[h(v) + ∆−g(v)]p(v, σ, t)} − βp(v,∆−, t) + αp(v,∆+, t)

∂tp(v,∆+, t) =− ∂v{[h(v) + ∆+g(v)]p(v, σ, t)} − αp(v,∆+, t) + βp(v,∆−, t)

(2.12)

Now, since we are interested in p(v, t) = p(v,∆+, t) + p(v,∆−, t), we want to turn (2.12) into
a closed equation for p(v, t).
Let us introduce

q(v, t) = αp(v,∆+, t)− βp(v,∆−, t) (2.13)

Then p(v,∆+, t) and p(v,∆−, t) can be written asp(v,∆+, t) = γ−1(βp(v, t) + q(v, t))

p(v,∆−, t) = γ−1(αp(v, t)− q(v, t))
(2.14)

Substituting these into (2.12) we get∂t(αp(v, t)− q(v, t)) = −{∂v[h(v) + ∆−g(v)](αp(v, t)− q(v, t))}+ γq(v, t)

∂t(βp(v, t) + q(v, t)) = −{∂v[h(v) + ∆+g(v)](βp(v, t) + q(v, t))} − γq(v, t)
(2.15)

Now substitute to the first equation the sum of the two, and findγ∂tp(v, t) = −∂v{γ[h(v) + 〈σ〉g(v)]p(v, t) + (∆− −∆+)g(v)q(v, t)}

∂t(βp(v, t) + q(v, t)) = −{∂v[h(v) + ∆+g(v)](βp(v, t) + q(v, t))} − γq(v, t)
(2.16)

where we used 〈σ〉 = α
γ∆+ + β

γ∆−.
To find the stationary solution, we set the time derivative equal to zero:0 = −∂v{γ[h(v) + 〈σ〉g(v)]ps(v) + (∆− −∆+)g(v)qs(v)}

0 = −{∂v[h(v) + ∆+g(v)](βps(v) + qs(v))} − γqs(v)
(2.17)

The first of these equation implies

γ[h(v) + 〈σ〉g(v)]ps(v) + (∆− −∆+)g(v)qs(v) = C (2.18)

where C is a constant. Now, we can argue that C must be equal to zero in the following
way. We require that the system is deterministically stable, i.e. that if we fix the noise σ
in one of its possible value (let us call this value λ) then the process v(t) does not explode
(|v(t)|9∞) when t→∞. For the equation

v̇(t) = h(v) + λg(v) (2.19)
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2. Analytical solution of a process subject to Markovian dichotomous noise

this condition is met if ∃K(λ) such that

h(v) + λg(v) < 0 ∀v > K(λ) (2.20)

h(v) + λg(v) > 0 ∀v < −K(λ) (2.21)

In this case, if v(0) is finite, v remains inside [−K(λ),K(λ)] at every time.
This means, in turn, that ps(v, λ) has the compact support [−K(λ),K(λ)]. In our case, then

ps(v,∆−) = 0 ∀v > max(K(∆+),K(∆−)) (2.22)

ps(x,∆+) = 0 ∀x > max(K(∆+),K(∆−)) (2.23)

and the same for v < min(−K(∆+),−K(∆−)). Consequently, both ps(v) and qs(v) have a
compact support U(∆+,∆−), outside of which they are equal to zero. So, we can always
choose v such that both qs(v) = 0 and ps(v) = 0, which by (2.18) implies that C = 0.
Then from (2.18) we get the following expression for qs(v)

qs(v) = − γ

∆+ −∆−
[h(v) + 〈σ〉g(v)]

ps(v)

g(v)
(2.24)

which we substitute in the second of equations (2.17) to get for ps(v) the following differential
equation:

p′s(v) =
[
−γ h(v) + 〈σ〉g(v)

[h(v) + ∆+g(v)][h(v) + ∆−g(v)]
− h′(v) + ∆+g

′(v)

h(v) + ∆+g(v)
+

1

g(v)

h(v)g′(v)− g(v)h′(v)

h(v) + ∆−g(v)

]
ps(v)

=
[
−γ h(v) + 〈σ〉g(v)

[h(v) + ∆+g(v)][h(v) + ∆−g(v)]
− ∂vln

( [h(v) + ∆−g(v)][h(v) + ∆+g(v)]

g(v)

)]
ps(v)

(2.25)

where the prime denotes derivation with respect to v.
By integration we finally obtain

ps(v) = N
g(v)

[h(v) + ∆−g(v)][h(v) + ∆+g(v)]
e
−γ

∫ v dz
h(z)+〈σ〉g(z)

[h(z)+∆−g(z)][h(z)+∆+g(z)] (2.26)

with N a normalization constant.
A general discussion on the behaviour of this solution at the boundaries of its support
U(∆+,∆−) is done in [33]. It is found that different behaviours are possible depending
on the value of γ and on the values of the functions h and g at the boundaries. Here we will
not undertake this general discussion, but proceed to examine the particular case that will
be useful in next chapter.

The process we consider from now on is the one with h(v) = −ρv and g(v) = 1, subject to
a symmetric dichotomous noise σt. For the symmetric case, the generator has the simple
expression

Lf(σ) =
1

τ
[f(−σ)− f(σ)] (2.27)

where σ takes values in {a,−a}, and w(a| − a) = w(−a|a) = 1
τ = γ

2 .
Thus equation (2.9) becomes

v̇t = −ρvt + σt (2.28)

We can verify that in this case conditions (2.22) are satisfied, and the process is confined in
the interval [ −a

ρ , a
ρ ].

Noting that in the symmetric case 〈σ〉 = 0, the stationary solution (2.26) becomes

ps(v) = N
1

ρ2v2 − a2
e

2ρ
τ

∫ v dz z
ρ2z2−a2 = N

[
1−

(ρv
a

)2] 1
ρτ
−1

(2.29)
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2.3. Gaussian limit of Markovian dichotomous process

Figure 2.1: The solution (2.29) in the two regimes.

The support of ps(v) is [ −a
ρ , a

ρ ], in fact outside of this interval it would assume negative
values. The behaviour of ps(v) depends on the relative value of parameters ρ and γ as follows:

• if 1
ρτ > 1 the extremants are −a

ρ , 0, −a
ρ . The first and the last are minima, while 0 is

a maximum (see figure 2.1);

• if 1
ρτ = 1 the solution is constant on its support;

• if 1
ρτ < 1 in ±a

ρ the solution diverges, while the extremant in 0 is a minimum (see figure
2.1).

We see then that the behaviour of the solution depends not on the intensity of noise a, but
on τ which by eq. (2.8) is the autocorrelation time of the noise.

It is interesting to note that in the limit τ → 0, a → ∞ such that τa2

2 = const =: D, the
solution tends to a Gaussian:

lim
τ→0
a→∞

ps(v) = lim
τ→0
a→∞

N
(

1− ρv2

τa2
ρτ
) 1
ρτ
−1

= Ne−
ρv2

2D (2.30)

This is a consequence of the fact that the symmetric Markovian dichotomous noise in the
above mentioned limit tends to a Gaussian white noise, as will be shown in next section.

2.3 Gaussian limit of Markovian dichotomous process

In order to prove that the symmetric Markovian dichotomous noise tends to a Gaussian white
noise in the limit {

τ → 0

a→∞
such that D :=

a2τ

2
= const (2.31)

we are going to show, following [34], that its integral process xt converges in distribution to
the integral process of the Gaussian white noise, i.e. the Wiener process. In particular, we
will see that in the above limit the master equation for the process xt becomes the diffusion
equation

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t) (2.32)
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2. Analytical solution of a process subject to Markovian dichotomous noise

which is exactly the Fokker-Planck equation of the Wiener process [30].
The integral process xt is defined by the equation

ẋt = σt (2.33)

where σt ∈ {a,−a}.
This is a particular case of equation (2.9) where we have chosen h(x) = 0, g(x) = 1. Thus, in
analogy with what was done in the previous section, we may write for p(x, a) and p(x,−a)
the following system of equations:∂tp(x, a, t) = −a∂xp(x, a, t) + 1

τ [p(x,−a, t)− p(x, a, t)]

∂tp(x,−a, t) = a∂xp(x,−a, t) + 1
τ [p(x, a, t)− p(x,−a, t)]

(2.34)

Now we substitute to the second of eqs. (2.34) the sum of the two, and in the first we use
p(x,−a, t) = p(x, t)− p(x, a, t).∂tp(x, a, t) = −[a∂x − 2

τ ]p(x, a, t) + 1
τ p(x, t)

∂tp(x, t) = a∂xp(x, t)− 2a∂xp(x, a, t)
(2.35)

From the first, taking as initial conditions p(x, a, 0) = 0, we obtain

p(x, a, t) =

∫ t

0
ds e−[a∂x− 2

τ
](t−s) 1

τ
p(x, s) (2.36)

which substituted in the second gives us the following differential equation for p(x, t):

∂tp(x, t) = a
∂

∂x
p(x, a, t)− 2a

∂

∂x

∫ t

0
ds e−[a∂x− 2

τ
](t−s) 1

τ
p(x, s) (2.37)

It is interesting to note that this equation shows explicitly that xt is not Markovian: in fact
its evolution depends, through the integral, on the value of the process at all preceding times.
In the limit (2.31), the argument of the exponential tends to −∞, so the dominant term in
the integral will be that for s ≈ t. Then, assuming that p(x, t) is regular enough, i.e. that
its derivatives do not diverge too fast, we may make the approximation of calculating it in t,
and thus we have:

∂tp(x, t) = a
∂

∂x
p(x, a, t)− 2a

∂

∂x

∫ t

0
ds e−[a∂x− 2

τ
](t−s) 1

τ
p(x, t) (2.38)

Computing the integral

∂tp(x, t) = a
∂

∂x
p(x, a, t)− 2a

∂

∂x

1

a ∂
∂x + 2

τ

1

τ
p(x, t) (2.39)

where we have used the fact that e−[a∂x− 2
τ

]t tends to zero in the limit. Now, recalling that
τa→ 0, we get

∂tp(x, t) = a
∂

∂x
p(x, a, t)− a ∂

∂x

1
τa
2

∂
∂x + 1

p(x, t) ' a ∂
∂x
p(x, a, t)− a ∂

∂x
(1− τa

2

∂

∂x
)p(x, t)

= D
∂2

∂x2
p(x, t)

(2.40)

which is eq. (2.32).
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2.4. Generalizations of the Markovian dichotomous noise

2.4 Generalizations of the Markovian dichotomous noise

A possible generalization of the Markovian dichotomous noise is what is sometimes called
compound Markovian dichotomous noise [34]. Loosely speaking, the idea at the base of the
generalization is the following: the process has two possible states, + and −, but the value
of the process in a certain state is not a fixed value but a random variable with a certain
distribution. Thus, when the process is in state +, its value is a variable ∆+ with distribution
ρ+(∆+), and similarly in the state − it is a variable ∆− with distribution ρ−(∆−). These
distributions could be, for instance, Gaussians centred respectively in a and −a. In this case
the noise, instead of jumping between two values ∆+ and ∆− as in the analytically solvable
case above, jumps from a value gaussianly distributed around a to a value gaussianly dis-
tributed around −a. In the limit in which each of the two distributions tends to a δ-function
on one value, this compound process reduces to the simple process.

In chapter 3 we will make use of a noise which is a “double” generalization of the one dis-
cussed in this chapter.
The symmetric Markovian dichotomous process has only two states, so we can view it as
jumping between the point +a and −a of the x axis. Now consider a process which states
are the points of the circle of radius a in the plane, thus having a vectorial value ~σ. As in
the former case, the rate of transition from any state to any other is 1/τ . Then, this process
has infinite equiprobable state.
Now let us take a process ~xt subject to this two-dimensional noise, with an equation of the
same form of (2.28). Although to our knowledge this equation is not analytically solvable,
we may deduce the behaviour of ps(~v) with the following reasoning. For the one dimensional
process, each time the noise changes value, the process vt relaxes to its limit value σt/ρ
with a characteristic time of relaxation 1/ρ. Depending on whether this time of relaxation
is shorter or longer than τ , the process is able or not to reach the limit value between two
jumps of the noise, consequently we get the two regimes. One where the probability of v is
concentrated around the limit values, and one where it is concentrated at small values. In the
generalised process, ps(v) is built in a similar way: what changes is that the process is pulled
not to two possible limit values, but to infinite ones, all equiprobable. What we conclude
from this reasoning is that there will be again two regimes, one where the probability will
be concentrated near the circle of radius a/ρ, and one where it will be concentrated at the
origin. These assertions are supported by numerical simulations of the process, as presented
in next chapter.
Then we take an additional generalization: when the process is in one state, which corre-
sponds to choosing an angle θ for the vector ~σt, its modulus is not a but σ ∼ N(a, ξ), as in the
compound process discussed above. In the limit in which the variance of the Gaussian tends
to zero, this process reduces to the non compound one. The solution of a process subject to
this noise will be investigated in next chapter with the help of numerical simulations.
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Chapter 3

Our model

In this chapter we introduce a new stochastic model [4] to describe the motion of self-propelled
particles, such as bacteria or protists, in a viscous fluid in the absence of external stimuli.
The proposed model is presented in section 3.2.
To verify the efficacy of this model, in section 3.3 we compare its predictions with data rela-
tive to a protist species, Colpidium sp. Information on this microorganism and on the data
is gathered in section 3.1.

As explained in chapter 1, microorganisms move through various mechanisms, mainly em-
ploying cilia and flagella, but it is not our intent to include such specificity in the modelling,
which should remain as general as possible. The hope is that the model will be apt to de-
scribe qualitatively the motion of a large class of organisms, independently from the particular
means of propulsion they might use.
The reason why we expect a qualitative description is intrinsic to our approach: since the
various means of propulsion influence in a certain way the motion (as clear from chapter 1),
to finely reproduce the trajectories one should keep in consideration every detail. In this way,
however, one renounces to generality and arrives to a model valid for a certain particular
microorganism, that fails to enlighten about the common basis of microscopic motion. On
the other hand, if there are some common statistical features characterizing the motion of
microorganisms, to understand their emergence a general description is needed. Such a gen-
eral description should provide a theoretical basis on which to build, if necessary, a further
more specific model and possibly also a theory of directed motion.
One of these common statistical features we are looking for is non-Gaussian probability dis-
tributions for velocities, which has been confirmed by many experiments, as explained in
section 1.2. Another characteristic of the motion which is well established by observation is
persistence, i.e. the fact that the direction tends to remain the same for a certain persistence
time. These are then two elements that a model seeking a general description of microorgan-
isms motility should reproduce.
The model we propose in this chapter accounts for these two features by proposing a new
form of the propelling force term in the equation of the process, different from the Gaussian
white noises employed by previous models (see section 1.3). This proposal is motivated not
only by the need of describing a non-Gaussian probability distribution for velocity, but also
by the request of a certain realism in the modelling of the propelling force. As explained at
the conclusion of section 1.3, a Gaussian white noise does not seem a lifelike description of this
force, due to the fact that it changes its value at every time-step without any self-correlation:
this is not compatible with the observed persistence of the motion. Therefore the need of a
different term for the propelling force.
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We find there is a good agreement between the data and the predictions of the proposed
model, and in particular that the model fits accurately the experimental P (v).

3.1 Data

The dataset consists of trajectories of microorganisms of the protist species Colpidium sp.
(see fig. 3.1), swimming in a viscous solution.
The study organism was acquired at Carolina Biological Supply (USA). The culture medium
was made of local spring water and Protozoan Pellets (Carolina Biological Supply) at a
density of 0.45 g/L. Three bacteria species (Serratia fonticola, Breviacillus brevis, Bacillus
subtilis) were added to the culture and acted as a food source for Colpidium sp. The culture
of Colpidium sp. was initialized two weeks before the experiment and kept under fluorescent
light at a constant temperature of 22 ◦C. The experiment was performed by introducing 1
mL of Colpidium sp. in a Sedgewick Rafter Counting Cell S52 (Pyser - SGI, UK) made of
glass. The counting cell was placed under the objective of a stereomicroscope and a video
was recorded at a framerate of 0.15 s−1; the visible area in the video was 11, 0x8, 3 mm. The
experiment was repeated three times by extracting 1 mL of culture for each measurement.
Videos were analysed with the software Mathematica, version 9.0, which was used to extract
the position of each individual at all times. The plugin MOSAIC [35] for the software ImageJ
was used to reconstruct trajectories. A total of 1035 trajectories were recorded. Organisms
are tracked until they remain in the observation window, typically between 30 and 60s, con-
sequently each trajectory consists of 200 to 400 points. Microbial motion in the experiment
can be considered two dimensional, being the vertical component of the motion negligible, as
results from a visual inspection.

Colpidium is a ciliate, which means that it moves employing cilia, which are organized in rows
covering all its body. The size of the organisms may vary depending on the living conditions,
but the usual measures are 60 to 90 µm long and 20 to 30µm wide. The specimens employed
in this experiment were measured to have a mean radius of 14 µm.
Cilia are 10 µm long, arranged in around 30 rows. Each row beats in a synchronized way
and there is a small time lag between the beating of successive rows. The beating, called
metachronal wave, starts from the anterior part of the cell and sweeps to the posterior end.
Since successive rows have slightly different axes, the resulting thrust causes the microorgan-
ism to advance spiralling [36].

Examples of the trajectories obtained are in figure 3.2. These trajectories display a direc-
tional persistence of 10-20 s, alternating runs in a given direction at an about constant speed
to turns, with noise due to the spiralling pattern. This motion is similar to the run and
tumble of which we wrote in section 1.2, although in the case of Colpidium tumbles are in-
stantaneous, differently from what is observed in other species.
We computed the mean velocity between two measures of the position as ~v(t) = ~x(t+∆t)−~x(t)

∆t
with ∆t=0.45 s. This is approximately the duration of one spiral, and was chosen in order
not to follow too closely the spiraling pattern. In fact, since our model aims at describing the
motion of a large class of organisms, it is deemed reasonable that we overlook these specific
details.
Note that the velocity distribution depends on the size of ∆t: in the limit of a very large
∆t1 P (v) will be peaked at the origin. In fact the measured velocity will be an average of

1Where very large means much greater than the typical duration of a straight segment of the trajectories.
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3.1. Data

(a) (b)

Figure 3.1: (a) Portrayal of a Colpidium; (b) A photo of Colpidia in the culture medium.

Figure 3.2: Two examples of reconstructed trajectories of Colpidium individuals.
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3. Our model

Figure 3.3: Velocity distribution from data of Colpidium trajectories.

velocities of segments of trajectories with different orientation. Since these orientation are
isotropic, the average velocity will be close to zero.
The distribution P (v) exhibit a volcano-like shape (see figure 3.3) peaked at speeds of ap-
proximately 0.4mm/s. This shape cannot be predicted by a model which employs Gaussian
white noise as a propelling force, as that would predict a Gaussian distribution, nor by any
of the models reviewed in section 1.3. The distribution appears rotationally invariant, as
expected from the lack of any directional stimulus in the environment. Thus, we restrict our
investigation to the distribution of moduli P (v) (fig. 3.4 (a)) instead of the full two dimen-
sional distribution.
From the distribution of moduli we obtained a slice of the rotational-invariant distribution
P (vx, vy), which allows visual inspection of the volcano-like shape and facilitates comparison
between the model and the data (figure 3.4(b)). In fact, using isotropy, P (v) = 2πP (v, θ) =
2πvP (vx, vy) being v the determinant of the Jacobian of the transformation of variables.

Then P (vx, 0) = P (|vx|)
2π|vx| .

The velocity autocorrelation

C(t) =
〈~v(t) · ~v(0)〉
〈~v(0)2〉

(3.1)

was also computed from the experimental data and is shown in figure 3.4 (c).
Furthermore, we also observed the Mean Square Displacement (MSD)

MSD(t) = 〈( ~x(t)− ~x(0))2〉 (3.2)

shown in figure 3.4(d). The curve saturates for t≈ 25 s at a value MSD ≈ 35 mm2. This
is due to the finite dimensions of the observation window (11mm x 8mm), which makes it
impossible to follow the whole trajectory of the microorganisms. The microorganisms which
move more in terms of square displacement will exit the window first, so for longer times

38



3.2. The model

(a) (b)

(c) (d)

Figure 3.4: Experimental data for: (a) velocity’s moduli distribution; (b) velocity’s distribution
P (vx, 0); (c) velocity autocorrelation; (d) MSD.

the statistic will comprise only the microorganisms remained closer to their starting points,
which lower the MSD and cause its saturation. That this happens at about 25s is plausible,
being this approximately the time lapse required for an organism moving on a straight line
at the most frequent speed 0.4 mm/s (see fig. 3.4(a)) to cross the observation window: this
means that after that time the organisms giving the higher contributions to the MSD will
begin to exit. The consequence is that the MSD does not give us meaningful information
about the motion, because we cannot follow the singular trajectory for enough time to tell
how it behaves in the long term. The definitive trend of the MSD is in fact reached after
some persistence times have passed, but our tracking lasts only two or three. The same goes
for the other moments of the position, like kurtosis, which show the same saturation. None
of these, then, are useful to characterize the motion. Thus, we were only be able to judge the
model on its prediction regarding the velocity process (comparing P (v) and C(t)) and not
on its description of the spatial feature on the motion.

3.2 The model

The particles our model seeks to describe move in a two dimensional landscape and are subject
to the force they exert to propel themselves. Since as explained in section 1.3 the best frame-
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work to describe a process that shows persistence, as that of the velocity of microorganisms,
is the O-U process, we write a generalization of the O-U equation as follows:

~̇v = −ρ~v + ~σ (3.3)

where ρ is a parameter of the model and ~σ is a suitable stochastic process modeling the
self-propulsion force. The proposed form of this process is based on the observation of micro-
bial trajectories: in this sense the model is “phenomenological”. If we ignore the spiralling
pattern which is a feature connected to the particular motility mechanism of Colpidium, the
microorganisms’ trajectories alternate segments of directed movement to neat changes of di-
rection. Recalling that at low Reynolds numbers a change of the propelling force results in an
immediate change of direction due to the negligibility of inertia, we may suppose that during
the straight segments the force remains the same. Consequently, our hypothesis for the force
is a Markovian process ~σt = σt(cos θt, sin θt) with infinitesimal generator (see appendix for a
derivation)

Lf(θ, σ) =
1

2πτ

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′

1√
2πξ2

e
− (σ′−a)2

2ξ2 [f(θ′, σ′)− f(θ, σ)] (3.4)

that is, jumps are exponentially distributed with rate 1/τ and each jump is associated to the
choice of both a new direction (an angle θ uniformly distributed in [0, 2π]) and an updated
modulus for the propelling force, σ, where σ ∼N(a,ξ). The average time of permanence of
the process in a certain state is τ .
Note that this generator allows σ to take negative values, which are not acceptable if it is the
modulus of a vector. Consequently, in principle we should take instead a σ distributed as a
truncated Gaussian, assuming only positive values. However, as we will see in next section,
the values of a and ξ that will be of interest to us are such that the probability of negative
value is negligible, so this issue will not constitute a concrete problem.
To summarize, the stochastic force exhibits no directional preference (because we are modeling
movement in the absence of external stimuli) and has a modulus that fluctuates around a
non-zero mean.
This process is a generalization of the Markovian dichotomous noise studied in chapter 2, in
the sense explained in section 2.4.
We can characterize the process ~σt with its mean and variance, using

P (~σt+t′ ∈ [~σ′, ~σ′+ d~σ′]|~σt ∈ [~σ, ~σ+ d~σ]) =
1

2π

1√
2πξ2

e
− (σ′−a)2

2ξ2 (1− e−t′/τ ) + δ(~σ′−~σ)e−t
′/τdσ′

(3.5)
and

Ps(~σ) =
1

2π

1√
2πξ2

e
− (σ−a)2

2ξ2 (3.6)

which simply comes from 3.5 letting t′ go to infinity.
The mean of the stochastic force at stationarity is then

〈~σ〉 =

∫
d~σ ~σ Ps(~σ) = 0 (3.7)

and its autocorrelation

C(s) =
〈~σ(t+ s) · ~σ(t)〉
〈σ(t)2〉

=
1

ξ2

∫
d~σ

∫
d~σ′~σ · ~σ′P (~σ′, t+ s|~σ, t)Ps(~σ) = e−s/τ (3.8)
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3.2. The model

Having established the properties of the stochastic force, eq. (3.3) defines the velocity process,
~vt. We may picture this process in the following way: if at time t the stochastic force has
a value ~σt, the velocity will approach the limit velocity ~vl = ~σt/ρ with a characteristic time
τc = 1/ρ. With probability e−t

′/τdt′ a time in the interval (t′, t′ + dt′] is chosen and a new
value of the noise, ~σt+t′ is drawn and the velocity will be pulled towards a new limit velocity.
The process (~vt,θt,σt) is Markovian, and the equation for the stationary joint probability
P(~v,θ,σ) can be written as

L∗Ps(~v, θ, σ) = 0 (3.9)

where L∗ is the adjoint of the infinitesimal generator of the process (vt,θt,σt). Inserting the
expression for L, the derivation of which can be found in appendix, we find

− ∇~v[(−ρ~v + ~σ)p(~v, θ, σ)] +
1

2πτ

∫ 2π

0

dθ′
∫ +∞

−∞
dσ′

1√
2πξ

e
− (σ′−a)2

2ξ2 [p(~v, θ′, σ′) − p(~v, θ, σ)] = 0

(3.10)

Equation (3.10) is, to the best of our knowledge, not solvable analytically. Instead, we can
study the stationary velocity distribution for the process ~vt, Ps(~v), with the help of numerical
simulations based on the Gillespie algorithm [37].
The equation of motion for the two components of the velocity are

v̇x = −ρvx + σ cos θ (3.11)

v̇y = −ρvy + σ sin θ (3.12)

Between two successive updates of the process, vx and vy are updated using the analytical
solution of eqs. (3.11) and (3.12) with the current value of the force:

vx(t) = e−vxt(vx(0)− σ cos θ) + σ cos θ (3.13)

vy(t) = e−vyt(vy(0)− σ sin θ) + σ sin θ (3.14)

The timing of the changes of the force are extracted from an exponential distribution of rate
1/τ . The values of ~v are then sampled every ∆t. Ergodic properties of the system ensure
that the histogram of such velocities, after waiting an initial transient in order to reach
stationarity, is close to the theoretical stationary distribution P (~v) [30].
Simulations show that P (~v) is strongly affected by the relative values of ρ and τ and exhibits,
in analogy with what was shown in chapter 2 for the one dimensional process, a crossover
between two regimes (see figure 3.5):

1. if ρτ > 1, the limit velocity ~vl = ~σ
ρ is reached before the stochastic force changes, so P (~v)

is concentrated near ~vl s and displays the volcano-like shape observed experimentally;

2. if ρτ < 1, the characteristic time of direction update is too small to allow complete
relaxation, so P (~v) is peaked in ~v = 0.

Depending on the study species, regime 1) or 2) might be of interest. In the case of Colpidium
the distribution of velocity has a shape similar to that of regime 1) and as shown in next
section it is not only qualitatively similar: the model provides a quantitatively satisfactory
fit of the experimental distribution.

With respect to the previous models explored in section 1.3, this new model conserves cer-
tain positive features achieved by those previous models and moreover brings the significant
novelty of a force which is non-Gaussian and non-white.
The forces along the two axes are not independent, as they are the projections of a unique
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3. Our model

Figure 3.5: P (~v) in the two different regimes of the model and at the crossover between the two
regimes: ρτ > 1 (solid line), ρτ = 1 (dash-dot line), ρτ < 1 (dashed line).

vectorial force ~σt. In previous models, this was obtained by choosing the microorganisms’
frame of reference [22, 32], and thus describing the motion in the coordinates (v, φ), where v
is the modulus of velocity and θ is the direction of motion. These approaches led however to
other problems: in one case the dynamic of v and θ were independent (while experimental
result suggest otherwise), in another the resulting P (~v) was non-integrable at the origin.
The model we propose, on the other hand, contains both the non-independence of the force
on the two axes and the non-independence of the dynamic of speed and direction. Moreover
it introduces a form of the stochastic propelling force which, as argued at the beginning of
this chapter, is more realistic in describing the process than a white noise.

3.3 Comparison between data and model

As mentioned above, our model predicts a volcano-shaped velocity distribution P(v) in certain
parameter ranges. This allows to perform a quantitative comparison between model and data
and to find the set of parameters that best describes the experimentally observed motion.
The comparison of the velocity distribution between model and data, however, only allows
fitting three of the four parameters (ρ, τ , a, and ξ) of the model. In fact, if we divide eq.
(3.3) by a constant c and redefine t′ = ct, we get the same equation with a→ a/c, ξ → ξ/c,
ρ → ρ/c, τ → cτ . Since the stationary distribution is not affected by the redefinition of
time, it will be left unchanged. Consequently, choosing for example c = ρ , we get that Ps(~v)
depends on a/ρ, ξ/ρ, τρ.
To fit all four parameters, we first fit a/ρ, ξ/ρ, τρ to the experimental velocity distribution
and subsequently fit ρ to the experimental velocity autocorrelation. The fitting of the velocity
distribution was performed via the MCMC algorithm DREAM [38], which allows computing
the posterior distribution of the parameters given the data. Fig. 3.6 shows such distribution
(obtained marginalizing the stationary distribution of the MCMC), while table 3.1 shows the
parameter values that give the maximum likelihood fit. Errors were estimated as the width
of the posterior distribution at half height.

The resulting best fit for the velocity distribution is shown in figure 3.8(a). The best
fit for the autocorrelation was found, instead, by minimization of the χ2 with a bootstrap
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method (in figure 3.7 the posterior distribution of the fitted parameter ρ). Figure 3.8(b)
shows the best fit of the autocorrelation curve and table 3.2 reports the estimated values
of the parameters. The plot with logarithmic scale shows that the model’s autocorrelation
follows the experimental one in an exponential decay.

Figure 3.6: Top: Posterior marginal probability distributions for the parameters, ensuing from the
MCMC algorithm, with ρ set to ρ = 1. Bottom: Scatter plots of the parameters explored after
reaching stationarity. The color indicates the log-likelihood for each choice of the parameters (light
blue = low, purple = high).

a/ρ 0.41 ± 0.01 m/s
ξ/ρ 0.070 ± 0.005 m/s
τρ 1.7 ± 0.1

Table 3.1: Best fit parameters
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Figure 3.7: Posterior distribution of ρ.

ρ 0.033 ± 0.005 s−1

a 0.014 ± 0.002 mm/s2

ξ 0.0023 ± 0.0004 mm/s2

τ 54 ± 8 s

Table 3.2: Best fit parameters.
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(a)

(b)

Figure 3.8: (a) Best fit of the stationary velocity distribution Ps(vx, 0); (b) Best fit for the velocity
autocorrelation. The oscillations in the experimental curve (red) are due to the spiraling pattern of
the motion.
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Conclusions

In this thesis we have examined microbial motility from the statistical point of view, trying
to deduce if there are characteristics of the motion common to different microorganisms. Re-
viewing previous experiments in section 1.2, we have seen that some interesting observations
stem from the data. First, the motion of active, living creatures in liquid media is not erratic
as that of a Brownian particle, which passively diffuses with a randomly fluctuating velocity
as a result of collisions with the molecules of the liquid. Instead, microorganisms tend to keep
their velocity, and thus their direction, for a certain persistence time [3]. This means that
the velocity has a non-zero autocorrelation time. This persistence of velocity is a well estab-
lished property of motion, and allows us to make an interesting inference about the motility
process. In the case of active living matter, the cause of motion and of changes of direction
are not collisions but the propelling action of the particle itself. Since these organisms swim
at low Reynolds number, a condition in which inertia is negligible, we must deduce that this
persistence of velocity is the result of a persistence in the propelling force they exert. In fact,
were they to stop swimming, they would immediately come to a halt, without coasting. Thus
we can conclude that the observed persistence of velocity implies persistence of the propelling
force.
While this qualitative observation comes already from a visual inspection of trajectories,
where constant velocity results in approximately straight segments, and changes of velocity
result in turns, additional observations can be made on the distribution of velocities. Ve-
locities are computed from the tracking of individual trajectories, and the result of a large
number of experiments is that the distribution P (v) of velocities is non-Gaussian. However,
not all experimental findings agree on the shape of this distribution: some experiments dis-
cover an enhanced2 probability of small velocities [18, 21], others report bigger tails [16],
others still observe a suppressed probability of small velocities, resulting in a volcano-shaped
distribution [17]. Thus, what is well established is that P (v) is non-Gaussian, but its shape
seems to be non unique. The conclusion we draw from this is that a model of the motility
must account for non-Gaussianity of v, and hopefully be able to explain different shapes of
P (v).
Experiments have also looked at other statistical features of motion: the autocorrelation of
the velocity, for example, has been often observed to display an exponential decay, although
in some cases a double-exponential [18, 7] or a power-law decay [16] was seen.
The interpretation of spatial features of the motion is even more difficult: many experiments
found, computing the Mean Square Displacement of trajectories, what seems anomalous dif-
fusion [16, 19]. However, it is not easy to track microorganisms for very long, and authors of
[7] advanced the hypothesis that this seemingly anomalous behaviour could only be a tran-
sient before a diffusive behaviour, unseen in experiments due to shortness of the tracking.

To sum up, experiments allow to establish some common features (persistence, non-Gaussianity),

2With respect to a Gaussian distribution.
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but on other aspects of the motion results are not univocal (exponential decay of autocorre-
lation, anomalous scaling). In the absence of clarifying experiments 3, the modelling should
start from the characteristics of the motion which have a solid base. In section 1.3 we saw
that to model persistence the Ornstein-Uhlenbeck process is a good start, and that there have
been many previous attempt to extend it in two dimensions. What is common to all these
attempts is that the stochastic propelling force is modelled through a Gaussian white noise,
so its value is uncorrelated in time. The claim of this thesis is that a more realistic choice for
the force is a coloured process, i.e. a process with a non-zero autocorrelation time. In fact, as
explained above, the observation of the motion hints that the microorganism keeps exerting
a force in the same direction for a certain lapse of time. In particular, we examined the
motion of the ciliates Colpidium sp., protists which trajectories alternate straight segments
and neat changes of direction (a motion similar to the run and tumble motion seen in E.
coli). Our guess of the propelling force is that exposed in chapter 3: a Markovian stochastic
process ~σt which direction θ is chosen uniformly in [0, 2π] and which modulus varies around
a non-zero mean. A model of the form ~̇vt = −ρ~vt + ~σt allowed us to recover both the ex-
perimental P (v), which displays a volcano-like shape, and the experimental autocorrelation
function C(t), which decays exponentially. That we succeeded in simultaneously recovering
both these feature is promising, and so is the fact that the model, for a different regime of
the parameters, predicts for P (v) a shape peaked at the origin but non-Gaussian 4, which
could be apt to describe the motion of different organisms, for which such a shape is found.
We were not able to study the spatial features of the motion due to short tracking time of
trajectories, but in the near future we plan to do experiments with a wider observation win-
dow, that will allow a longer tracking time. This will hopefully clarify whether the scaling
of the experimental Mean Square Displacement is diffusive or anomalous, and whether our
model succeeds in describing it correctly.
We also plan to verify the fitness of our model comparing it with data relative to other mi-
crobial species, to discover if the introduction of a non-Gaussian and coloured term in the
model brings good results not only for the species we examined so far, Colpidium sp., but
also for other species.

3A longer tracking time in particular seems essential to capture the MSD behaviour.
4Except in a certain limit.
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Appendix A

The Ornstein-Uhlenbeck process

The O-U process in one dimension is described by the equations

dx

dt
= v (A.1)

dv

dt
= −ρv + σξ (A.2)

where ξ is a Gaussian white noise process.
Although we write the equations in this form because the process was initially meant to
describe a particle moving with that equation of motion, i.e. subject to a stochastic force
with the above properties, they do not have a rigorous mathematical meaning, since ξ is
not a well-defined mathematical entity, due to the fact that it has a diverging variance (see
property 2 above).
However, we can write a mathematically sound equation for the process v(t) if we notice
([30]) that

∫ t
0 ξ(t

′)dt′ = W (t), where W (t) is the Wiener process, a perfectly well-defined
mathematical entity.
Thus by integration we can write for the process v(t) the following equation:

v(t) = v0 − ρ
∫ t

0
v(t)dt+ σ

∫ t

0
dW (t) (A.3)

where the integral in the last member is a stochastic integral, which in this case may be
defined simply as1 ∫ t

0
dW (t) := ms-lim

n→∞

n∑
i=1

[W (ti)−W (ti−1)] (A.4)

being 0 = t1, t2, ..., tn = t a partition of the interval [0,t] in n subintervals. Since we are dealing
with stochastic variables, when taking the limit of the partial sums we take the mean-square
limit 2.
Equation (A.3) can be written in the so called Stochastic Differential Equation (SDE) form

dv(t) = −ρv(t)dt+ σdW (t) (A.5)

1Since the Gaussian white noise ξ in eq. (A.2) is additive, i.e. it is not multiplied by a function of the
process v, there is no need to introduce the distinction between Ito and Stratonovich stochastic integral. In
fact, in this case the two formulations are equal. For the definition of stochastic integral in the general case
see [30].

2The process Xt is said to converge in mean square to X if limt→∞〈(Xt −X)2〉 = 0 [30]
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which form reminds us of the our original equation, although its meaning is exactly the same
as (A.3).

Now that we have written the equation for the process in a clearly interpretable form, we may
proceed to solve it. But first, let us establish a useful fact about the integral with measure
dW (t).
It can be proved [30] that

dW (t)2 = dt (A.6)

in the sense that ∫ t

0
dW (t′)2 =

∫ t

0
dt′ (A.7)

This can be interpreted saying that dW (t) is an infinitesim of order 1
2 in t.

A consequence of this is that if we want to change variables in eq. (A.5) to f [v(t)], to be
consistent at the order dt we have to consider dW (t)2 too. In particular:

df [v(t)] : = f [v(t+ dt)]− f [v(t)] = ∂vf [v(t)]dv + ∂2
vf [v(t)]dv2 + ...

= [−ρv∂vf + σ2∂2
vf ]dt+ σ∂vfdW

(A.8)

Let us employ a change of variables to put the equation (A.5) into a form easier to solve. If
we take y = ve−ρt, we get the new equation

dy(t) = ∂tydt+ ∂vydv + ∂2
vydv2 = σeρtdW (t) (A.9)

which can be straightaway integrated to obtain

y(t) = σ

∫ t

0
eρt
′
dW (t′) + y(0) (A.10)

Changing back to v(t) we get

v(t) = σ

∫ t

0
e−ρ(t−t′)dW (t′) + v(0)e−ρt (A.11)

From this result we notice that v(t) is a Gaussian variable, since the increments of the Wiener
process are Gaussian and the deterministic term can be seen as Gaussian with null variance.
This means that its distribution is completely determined by its first two moments, 〈v(t)〉
and 〈v(t)2〉, which we compute in the following way:

〈v(t)〉 = 〈σ
∫ t

0
e−ρ(t−t′)dW (t′)〉+ 〈v(0)e−ρt〉 = v(0)e−ρt (A.12)

having used 〈dW (t)〉 = 0.

〈v(t)2〉 = v(0)2e−2ρt + σ2〈
∫ t

0
e−ρ(t−t′)dW (t′)

∫ t

0
e−ρ(t−t′′)dW (t′′)〉

= v(0)2e−2ρt + σ2

∫ t

0

∫ t

0
e−ρ(2t−t′−t′′)〈dW (t′)dW (t′′)〉

= v(0)2e−2ρt + σ2

∫ t

0
e−2ρ(t−t′)dt′

= v(0)2e−2ρt +
σ2

2ρ
(1− e−2ρt)

(A.13)
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having used that the increments of the Wiener process at different times are independent [30].

The variance is then

σ2
v = 〈v(t)2〉 − 〈v(t)〉2 =

σ2

2ρ
(1− e−2ρt) (A.14)

and we can write the probability distribution of v as

P (v, t) =
e

(v−〈v(t)〉)2

2σ2
v√

2πσ2
v

(A.15)

We may also compute the autocorrelation as

〈v(t)v(s)〉 = v(0)2e−ρ(t+s) + σ2〈
∫ t

0
e−ρ(t−t′)dW (t′)

∫ s

0
e−ρ(s−s′)dW (s′)〉

= v(0)2e−ρ(t+s) + σ2

∫ min(t,s)

0
e−ρ(t+s−2t′)dt′

= [v(0)2 − σ2

2ρ
]e−ρ(t+s) +

σ2

2ρ
e−ρ(t+s−min(t,s))

(A.16)

meaning that, if we take s = t+ τ , the decay has a simple exponential form in τ :

〈v(t)v(t+ τ)〉 ∼ σ2

2ρ
e−ρτ (A.17)

Finally, let us have a look at the integral process x(t) and compute its second moment, which
is the Mean Square Displacement. From the integration of eq. (A.1) we get

x(t) =

∫ t

0
v(t′)dt′ (A.18)

having chosen x(0) = 0 for simplicity.
We notice that since v is Gaussian, x is also Gaussian, so it is also completely determined by
mean and variance, which we proceed to compute.

〈x(t)〉 =

∫ t

0
〈v(t′)〉dt′ = v(0)

ρ
(1− e−ρt) (A.19)

〈x(t)2〉 =

∫ t

0

∫ t

0
〈v(t′)v(t′′)〉dt′dt′′ (A.20)

=

∫ t

0

∫ t

0

([
v(0)2 − σ2

2ρ

]
e−ρ(t′+t′′) +

σ2

2ρ
e−ρ(t′+t′′−min(t′,t′′)

)
dt′dt′′

=
v(0)2

ρ2
(1− e−ρt)2 +

σ2

ρ2

[
t− 2

ρ
(1− e−ρt) +

1

2ρ
(1− e−2ρt)

]
This result is particularly interesting because we can distinguish two regimes in which the
MSD behaves in two different ways:

• when t� 1/ρ expanding the exponentials we get 〈x(t)2〉 ≈ v(0)2t2;

• when t� 1/ρ all the exponentials are negligible, thus we get 〈x(t)2〉 ≈ σ2

ρ t.

51



A. The Ornstein-Uhlenbeck process

The first regime is called ballistic. It lasts only in the first instants of the motion, when the
velocity is still strongly correlated with the initial velocity v(0).
After many persistence times ρ−1 have passed the direction of motion will have changed sev-
eral times, and as long as the Mean Square Displacement is concerned the motion will be
indistinguishable from diffusion. This regime is called diffusive.

A characteristic of the O-U process is that it admits a stationary distribution Ps(v), the mean
and variance of which we find making t tend to ∞. We get

〈v(t)〉s = lim
t→∞

v(0)e−ρt = 0 (A.21)

σ2
v,s = 〈v(t)2〉s = lim

t→∞

[
v(0)2e−2ρt +

σ2

2ρ
(1− e−2ρt)

]
=
σ2

2ρ
(A.22)

consequently the stationary distribution is

Ps(v) =
e−

ρv2

σ2√
π σ

2

ρ

(A.23)
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Appendix B

Infinitesimal generator for Markov
Processes

In this appendix we briefly give the definition of infinitesimal generator for a Markovian
stochastic process and recover the expressions given in section 3.2 for the generators of the
stochastic force and of the velocity process. For an exhaustive description of Markov processes
with continuous time and generic state space see [39].
Let (Xt)t≥0 be a Markov process with values in S. Then, if f ∈ C(S), its infinitesimal generator
is defined as

Lf(x) := lim
t↓0

Stf(x)− f(x)

t
(B.1)

where St is the transition semigroup of the process,i.e.

Stf(x) := E(f(xt)|x0 = x) (B.2)

In the case of the stochastic force of our model the process is (θt,σt) with state space S =
[0, 2π]× [−∞,+∞]. The semigroup is then

Stf(θ, σ) : = E(f(θt, σt)|θ0 = θ, σ0 = σ)

=

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′f(θ′, σ′)P (θt = θ′, σt = σ′|0)

(B.3)

where we denoted, for brevity,

P (θt = θ′, σt = σ′|0) := P (θt = θ′, σt = σ′|θ0 = θ, σ0 = σ) (B.4)

Now, let Nt be the Poisson process of parameter 1/τ counting the number of jumps of our
process. Then the probability on the right of eq. (B.3) is

P (θt ∈ [θ′, θ′ + dθ′], σt ∈ [σ′, σ′+dσ′]|0) =

∞∑
n=0

P (Nt = n)P (θn ∈ [θ′, θ′ + dθ′], σn ∈ [σ′, σ′ + dσ′]|0)

=
[
e−

t
τ δ(θ − θ′)δ(σ − σ′) +

∞∑
n=1

e−
t
τ

(
t
τ

)n
n!

1

2π

1√
2πξ

e
− (σ′−a)2

2ξ2

]
dθ′dσ′

=
[
e−

t
τ δ(θ − θ′)δ(σ − σ′) +

1

2π

1√
2πξ

e
− (σ′−a)2

2ξ2 (1− e− t
τ )
]
dθ′dσ′

(B.5)

where we have used the fact that the probability of jumping to a certain state is independent
of the starting point, so P (θn ∈ [θ′, θ′+dθ′], σn ∈ [σ′, σ′+dσ′]|θ0 ∈ [θ, θ+dθ], σ0 ∈ [σ, σ+dσ]) =
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P (θn ∈ [θ′, θ′ + dθ′], σn ∈ [σ′, σ′ + dσ′]).
From the definition of infinitesimal generator (B.1) we then get

Lf(θ, σ) : = lim
t↓0

Stf(θ, σ)− f(θ, σ)

t

= lim
t↓0

1

t

[∫ 2π

0
dθ′
∫ +∞

−∞
dσ′f(θ′, σ′)e−

t
τ δ(θ − θ′)δ(σ − σ′)+

+
1

2π

1√
2πξ

e
− (σ′−a)

2

2ξ2 (1− e−
t
τ )− f(θ, σ)

]
= lim

t↓0

[
f(θ, σ)

e−
t
τ − 1

t
+

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′f(θ′, σ′)

1

2π

1√
2πξ

e
− (σ′−a)

2

2ξ2
1− e−

t
τ

t

]
=

1

τ

[
−f(θ, σ) +

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′f(θ′, σ′)

1

2π

1√
2πξ

e
− (σ′−a)2

2ξ2

]
=

1

2πτ

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′

1√
2πξ

e
− (σ′−a)2

2ξ2 [f(θ′, σ′)− f(θ, σ)]

(B.6)

We recovered eq. (3.4).

Let us now obtain the expression of the generator of the velocity process (~vt,θt,σt). From the
definition given above

Lf(~v, θ, σ) =

lim
t↓0

1

t

[∫
d~v′
∫ 2π

0

dθ′
∫ +∞

−∞
dσ′P (~vt = ~v′, θt = θ′, σt = σ′|0)f(~v′, θ′, σ′)− f(~v, θ, σ)

]
(B.7)

where again we denoted

P (~vt = ~v′, θt = θ′, σt = σ′|0) := P (~vt = ~v′, θt = θ′, σt = σ′|~v0 = ~v, θ0 = θ, σ0 = σ) (B.8)

We can calculate the probability in the expression above neglecting terms o(t), since in the
limit they will go to zero. This means that the probability of having more than one jump of

the stochastic force in the time interval t is negligible: it would be e−
t
τ

(t/τ)n

n! , which for n < 1
is o(t).
We have then two cases to consider:

• if the force does not jump, which happens with probability 1− t
τ + o(t), the velocity at

time t will be ~vt = ~v0 + t(−ρ~v0 + ~σ0) + o(t)

• if the force jumps once, with probability t
τ+o(t), at time νt with ν ∈[0,1], the velocity

at time t will be ~vt = ~v0 + νt(−ρ~v0 + ~σ0) + (1− ν)t(−ρ~v0 + ~σt) + o(t)

Consequently

P (~v ∈ [~v′ + d~v′], θ ∈ [θ′ + dθ′], σ ∈ [σ′ + dσ′]|0) =

=δ(~v′ − [~v + t(−ρ~v + ~σ)])δ(θ − θ′)δ(σ − σ′)(1− t

τ
)d~v′dθ′dσ′+

+ δ(~v′ − [~v + νt(−ρ~v + ~σ) + (1− ν)t(−ρ~v − ~σ′)]) t
τ

1

2π

1√
2πξ

e
− (σ′−a)2

2ξ2 d~v′dθ′dσ′ + o(t)

(B.9)
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Substituting this expression into (B.7) we get

Lf = lim
t↓0

1

t

[∫
d~v′
∫ 2π

0
dθ′
∫ +∞

−∞
dσ′δ(~v′ − [~v + νt(−ρ~v + ~σ) + (1− ν)t(−ρ~v − ~σ′)])·

· t
τ

1

2π

1√
2πξ

e
− (σ′−a)

2

2ξ2 (1− t

τ
)f(~v′, θ′, σ′) + f(~v + t(−ρ~v + ~σ), θ, σ)

(
1− t

τ

)
− f(~v, θ, σ)

]
=

1

2πτ

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′f(~v, θ′, σ′)

1√
2πξ

e
− (σ′−a)

2

2ξ2 +

+ lim
t↓0

1

t

[
f(~v, θ, σ)

(
1− t

τ

)
+ t(−ρ~v + ~σ)∇~vf(~v, θ, σ) + o(t)− f(~v, θ, σ)

]
=(−ρ~v + ~σ)∇~vf(~v, θ, σ) +

1

2πτ

∫ 2π

0
dθ′
∫ +∞

−∞
dσ′

1√
2πξ

e
− (σ′−a)2

2ξ2 [f(~v, θ′, σ′)− f(~v, θ, σ)]

(B.10)

The knowledge of the infinitesimal generator for the process allows us to write the equation
for its stationary probability. In fact, a probability measure µ on S is stationary for the
process with infinitesimal generator L if∫

Lfdµ = 0 ∀f (B.11)

which if the measure is absolutely continuous with respect to the Lebesgue measure becomes

0 =

∫
Lfµdx = 〈Lf, µ〉 = 〈f,L∗µ〉 ∀f ⇔ L∗µ = 0 (B.12)

This last equation, substituting the adjoint of the generator we have just found ((B.10)),
gives equation (3.10) of section 3.2 for the stationary distribution.
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