
Structural identification of bridges:

development of an integrated system for

continuous dynamic monitoring.

Identificazione strutturale di ponti: sviluppo di

un sistema integrato per il monitoraggio

dinamico in tempo reale.

Laureando: Alberto Lorenzon

Relatore: Prof. Ing. Claudio Modena

Correlatore: Dr. Ing. Kleidi Islami

Correlatore: Ing. Mauro Caldon

Dipartimento di Ingegneria Civile, Edile ed Ambientale

Università degli Studi di Padova

Anno Accademico 2012-2013

Abstract

This thesis focuses on dynamic structural identification of existing structures

by means of output-only modal analysis (OMA). First an improved imple-

mentation, using Matlab R© environment, of a particular Operational Modal

Analysis method was developed, enabling the extraction of damping ratio.

Subsequently the development of a program with a graphical user interface

was performed in order to allow structural dynamic identification and auto-

matic monitoring using two OMA procedures. Finally, two applications of the

program are presented in detail and used in order to observe and validate the

results in the context of real structures.

Questa tesi si focalizza sull’identificazione strutturale dinamica di strutture

esistenti per mezzo di metodi di Analisi Modale Operazionale (OMA). In-

izialmente é stata sviluppata un’implementazione di un particolare metodo

di OMA, che permette di estrarre il parametro di damping ratio, usando

l’ambiente Matlab R©. Successivamente é stato sviluppato un programma con

interfaccia grafica, che permette di svolgere operazioni di identificazione di-

namica e monitoraggio dinamico automatico di strutture esistenti utilizzando

due metodi di analisi modale output-only. Infine sono state considerate nel

dettaglio due applicazioni del programma al fine di osservarne e validarne i

risultati relativamente a due strutture reali.

Table of Contents

1

Chapter 1

Introduction

1.1 Preface

The increasingly demanding safety requirements introduced in the regulatory

framework related to structural engineering field and the newly available tech-

nologies have created, in the last few decades, new challenges for the scientific

understanding of existing structures.

In the Italian context, characterized by a high seismic risk, it is necessary

not only to design new earthquake-resistant structures, but above all to be

able to correctly identify the dynamic behaviour of existing structures and

monitor them over time in order to ensure structural safety, since existing

structures built before the seismic regulations represent almost the totality.

Particular attention must be placed on structures of historical and strategic

nature. Current design and assessment procedures do not have much quanti-

tative linkage with the characteristics of actual constructed systems; such gaps

are filled by qualitative observation, anecdotal experiences, or laboratory stud-

ies reduced to a minimum because of the need to contain costs. For centuries,

the engineers were forced to rely on extremely simple and idealistic models of

constructed systems for analysis and design. As the profession moves towards

more performance-based design approaches, and begins to more seriously con-

sider durability, maintenance, and serviceability limit states as well as struggle

with contemporary challenges associated with preservation and renewal, such

simple modeling approaches are becoming inadequate.

2

Chapter 1: Introduction

Today more sophisticated modeling approaches are readily available, which

have the ability to simulate both the three-dimensional local and global be-

haviors of constructed systems, but it is proven that, to ensure that they are

a truthful representation of the real structure, a calibration is required using

experimental response data from the actual structure.

Activities of structural identification can aim the observation of many charac-

teristics of the structure, of both static and dynamic character. Static struc-

tural identification is essential to conduct activities of Structural Health Mon-

itoring, as it allows to observe, for example, how the geometry of the elements

changes over time (opening of the cracks, deformation, etc..). Dynamic struc-

tural identification has as its objective the extraction of the dynamic param-

eters of the real structure and allows, in addition to allowing monitoring the

health of the structure from the observation of any changes in dynamic char-

acteristics, to calibrate mathematical models based on real data.

During the last few decades modal analysis has become an increasingly im-

portant resource to conduct identification, monitoring and optimization of the

dynamic characteristics of civil structures.

Modal analysis provides as results the modal parameters of the structure,

namely natural frequencies, mode shapes and damping ratios. A particular

type of Modal Analysis is considered within this thesis: the Operational Modal

Analysis (OMA). In the last few years OMA has acquired a broad applica-

tion in structural and mechanical engineering fields because it measures the

response of the structure without interrupting its functionality. The structure,

in a OMA analysis, is in fact subject to its natural excitations, which may be,

in case of a bridge, due to wind, vehicular traffic or micro-seismic vibrations.

The fact that OMA does not need to perform shaker tests or impact tests, al-

lows the analysis to be performed over a long time span without compromising

the structure’s operability and therefore a it is actually possible to perform a

monitoring of the structure over time. Structural monitoring offers a series of

applications in the field of civil engineering, such as design, damage evaluation,

maintenance and reinforcement of the existing structures.

Of high interest for this thesis is the Frequency Domain Decomposition method.

It is a quite popular method of modal analysis operational that operates in

3

Chapter 1: Introduction

the frequency domain. In the context of the University of Padova, the FDD

method has been studied and used for some years in order to conduct identi-

fication and monitoring of many bridges and structures of historical interest.

Another OMA method that will be considered is Stochastic Subspace Identi-

fication.

In this thesis, on the basis of a first implementation of the FDD method con-

ducted by Piovesan D. in [36] and of the SSI method conducted by Islami K.

in [24], the implementation of the first method was improved, using Matlab R©

environment, and both methods were considered with two major goals:

• To develop an algorithm for Damping Ratio estimation using the En-

hanced Frequency Domain Decomposition;

• To develop a Graphical User Interface for EFDD and SSI algorithms in

order to allow automatic continuous monitoring of the structure.

Thus, by means of the methods and tools discussed later in this thesis, the

development a procedure of structural identification that provides a scientific

and objective description of some of the parameters of the existing structure

was carried out. Two study cases are considered, in order to show how the

program works and to validate its results with other methods.

1.2 Overview of chapters

Chapter 2 offers an overview of structural identification and monitoring meth-

ods. General purposes and applicability are discussed. Structural Health Mon-

itoring is introduced in order to set a context for the analysis. Modal models

are introduced, focusing on Operational Modal Analysis, which is the core

method considered in this thesis. An historical description of the available

methods is carried out.

Chapter 3 contains all of the theoretical basis required for the description of

the methods used. First the dynamic description of simple mechanical system

is presented. Then, signal analysis and random data analysis are considered.

Finally the methods implemented in the thesis (AutoEFDD and SSI) are ex-

4

Chapter 1: Introduction

plained.

Chapter 4 consists of the user manual for the computer program developed

for this thesis (SIM/AtOMA). In this chapter the functions of the program

are explained by a user perspective and an application of the program is given

for the case of a bridge in Peschiera sul Garda (Ponte sul Mincio).

Chapter 5 provides a detailed description of the code behind the program.

The main functions of the interface are explained with a focus on the way data

is passed between functions and between objects. In particular, an in-depth

description of the algorithm for the determination of the damping ratio with

Enhanced Frequency Domain Decomposition method, which was developed

during the present thesis, is provided.

Chapter 6 shows an application of the monitoring systems detailed in this

thesis for a bridge in Verona, namely Ponte Nuovo del Popolo. In this ap-

plication, the results of a previous identification analysis conducted using a

commercial software are compared to those provided by SIM/AtOMA.

5

Chapter 2

Overview of Structural

Identification and Monitoring

2.1 Introduction

Every structure, whether it is a bridge or a building, is subjected to degrada-

tion. The materials accumulate damage, which in the long run can affect the

operability of the structure. The excitations that involve the structure may

vary in intensity and characteristics, causing unexpected behaviours, and the

boundary conditions and the system constraints may change over time due to

an inadequate maintenance.

All these phenomena make it difficult, if not impossible, to understand the

actual behaviour of the structure on the only basis of physics-based modeling,

i.e. using Finite Elements method, because the knowledge of the structure is

very limited. Original designs of the structure, and inspection and testing of

the materials in laboratory environment, hardly provide enough information

in order to develop a model of the structure that actually describes its global

characteristics.

The answer to these needs for real information on the actual structure lies in

Structural Identification.

Structural identification (St-Id) is a paradigm that allows the understanding

of a certain set of parameters of the structure on the basis of measured data.

6

Chapter 2: Overview of Structural Identification and
Monitoring

The applications of St-Id are far wider than the only model calibration. St-Id

allows in fact to perform decisions based on the real status of the structure, as

well as many other tasks, as it will be addressed further on this chapter.

Mathematical models are a convenient way of describing the characteristics of

a dynamic system. In this thesis the interest was put in modal analysis meth-

ods, due to their ability to provide the dynamic characteristic of the structure

through modal parameters.

In this chapter the purposes of system identification (Sys-Id), including Struc-

tural Health Monitoring and model calibration, will be introduced, and spec-

ified for the structural context (St-Id). Then the different types of modal

analysis methods will be described, with a focus on Operational Modal Anal-

ysis (OMA).

Finally, an overview of available OMA methods will be carried out.

2.2 System Identification

System Identification (Sys-ID) deals with the problem of building mathemati-

cal models of dynamical system based on observed data from the systems [30].

A system is, in general terms, an object in which variables of different kinds

interact and produce observable signals, usually called outputs. The system

is also affected by external stimuli. Those that can be manipulated by the

observer are called inputs, others are called disturbances. Disturbances can

be divided into those that are directly measured (for example, temperature,

humidity) and those that are only observed through their effect on the output

signal.

It might also be that the actual input is unknown and therefore uncontrollable

in some applications. Thus, the output will be a mixture of dynamic response

of the system and characteristics of the input and disturbance as well.

The way the system variables relate to each other constitutes a model of the

system. For structural applications, it is necessary to use models that describe

the relationships among the system variables in terms of mathematical expres-

7

Chapter 2: Overview of Structural Identification and
Monitoring

Figure 2.1: A dynamic system with input u(t), output y(t), and distur-

bance v(t).

sions. There are two fundamental ways for building a model. A first way,

known as modeling, splits up the system into subsystems, whose properties are

well understood from previous experience. These subsystems are then assem-

bled mathematically and a model of the whole system is obtained. This is

how, for example, FEM models are built.

The other way is directly based on experimentation. Input and output sig-

nals from the system are recorded and subjected to data analysis to infer a

model. Therefore system identification aims to develop a model of a dynamic

system based on experimental data. System identification is not a substitute of

physical modeling, since identification can be based on model structures that

have physical origin, but physical modeling needs to be linked with parametric

models of a structure.

To provide a mathematical definition of Sys-ID, consider a dynamic mechanical

system. The Sys-ID process begins by hypothesizing a mathematical represen-

tation of the system, such as a state-space model [33]:

x(t) = F (x(τ), τ < t; u(τ), τ < t) (2.2.1)

y(t) = G(x(τ), τ < t; v(τ), τ < t) (2.2.2)

where x(t) represents the various states of the system, u(t) denotes the external

inputs to the system, y(t) denotes the outputs of the system, and v(t) denotes

observation uncertainty (all at time instant t), F (·) is the functional relation

of state transition, and G(·) is the functional relation of outputs and states.

In general, the states which define the system are not directly observable. As

a results Sys-ID aims to infer the states x(t) from the output y(t), and in

8

Chapter 2: Overview of Structural Identification and
Monitoring

some cases the input u(t) and measurement uncertainty v(t), by finding an

appropriate estimator H(·), such that:

x̂(t) = H(y(τ), τ ≤ t; u(τ), τ ≤ t; v(τ), τ ≤ t) (2.2.3)

2.3 Structural Identification

2.3.1 Introduction

Structural identification (St-ID) is a subset of Sys-ID which has been adapted

to mechanical and civil structural systems, and may be defined as "the paramet-

ric correlation of structural response characteristics predicted by a mathemat-

ical model with analogous quantities derived from experimental measurements

[33].

St-ID aims to fill the gap between the model and the real system by developing

reliable estimates of the performance of structural system through simulations.

Historical development The origins of St-ID are soundly founded on the

scientific method of observation (experiment), hypothesis (model) and vali-

dation. This approach is rooted in the argument that the establishment of

reality requires that mathematical models would be hypothesized and vali-

dated based on observations of the physical world. This concept dates back to

Plato, who claimed that "the reality which scientific thought is seeking must

be expressible in mathematical terms, mathematics being the most precise and

definite kind of thinking of which we are capable". These ideas embody the

scientific method and also provide the foundation for the concept of St-ID. In

its most general form, St-ID aims to establish the relationship between the

Physical, Mental and Platonic-Mathematical worlds. Up to modern times, in

1907 Robert Maillart argued that designers should be encouraged to check

their analytical assumption through load tests that establish deflections of the

completed structure [4]. The modern applications of St-ID have their origins

in systems engineering, which began to grow during the late 1950’s. The ad-

9

Chapter 2: Overview of Structural Identification and
Monitoring

vent of computers permitted extensive simulation and evaluation of systems,

subsystems, and components. St-Id is a transformation and application of Sys-

Id to mechanical (manufactured) and civil (constructed) structural systems.

The paradigm was first introduced to engineering mechanics researchers by

Hart and Yao (1977) and to Civil-structural engineering researchers by Liu

and Yao (1978). Over 30 years later St-Id remains an active research area in

both mechanical and civil-structural engineering.

Purpose of St-ID The use of FE models in Civil Engineering in recent years

has seen a huge spread, linked to the widespread diffusion of computational

tools and the steady increase in computing power. However, regardless of the

degree of precision of the FE analysis, the description of existing systems is

affected by an uncertainty that can not be filled except with calibration and

validation based on actual observations and experimental measurements.

Structural identification focuses on creating a model of a dynamic system based

on its measured response.

Reliability of St-ID Although St-ID is principally motivated by the need

to quantify and reduce uncertainty, its reliable implementation is also affected

by uncertainties, which must be properly addressed and quantified to provide

accurate estimates of the reliability of the identified model. One of the most

widely investigated and reported sources of uncertainty in making measure-

ments on constructed systems involves their observed non-stationary behavior

caused by environmental inputs such as temperature and humidity. This type

of uncertainty can be effectively reduced by using ARX models to distinguish

the effects of temperature fluctuations from real damage events on the param-

eters of the structure.

The difficulty in proving the reliability of a St-Id method is, however, still a

major challenge for St-Id. Most reported examples of St-Id have been in the

realm of research, and were considered successful once an agreement between

the measured and simulated properties was established. Unless this definition

of success is expanded to explicitly include the ability of the application to

influence the decision-making process, the use of St-Id won’t be as widespread

10

Chapter 2: Overview of Structural Identification and
Monitoring

as it could be. Therefore, the validation of a St-Id model is a critical step,

in the perspective of using the model to perform decisions of economic nature

regarding the structure.

Application Scenarios: There are several scenarios for which the intro-

duction of a model of structural identification would be advisable. Examples

include [4]:

1. Design verification and construction planning in case of challenging new

designs.

2. A means of measurement-based delivery of a design-built contract in a

performance -based approach.

3. Documentation of as-is structural characteristics to serve as a baseline

for assessing any future changes due to aging and deterioration, following

hazards, etc.

4. Load-capacity rating for inventory, operation or special permits.

5. Evaluation of possible causes and mitigation of deterioration damage

and/or other types of performance deficiencies.

6. Structural intervention, modification, retrofit or hardening due to changes

in use-modes, codes, aging, and/or for increasing system-reliability to

more desiderable levels,

7. Health and performance monitoring for operational and maintenance

management of large systems.

8. Asset management of a population of constructed systems.

9. Advancing our knowledge regarding how actual structural systems are

loaded, how they deform and how they transfer their forces through the

members to foundations and to soil.

11

Chapter 2: Overview of Structural Identification and
Monitoring

Steps for Structural-Identification of Constructed Systems St-ID re-

quires the integration of analytical, experimental and information technologies.

While all aspects of the St-ID process are critical to the overall success of the

effort, it is important to recognize that analytical modeling is perhaps the most

significant step. St-ID is usually involved with six basic steps:

Figure 2.2: St-ID stages [4].

1. Observation and Conceptualization: definition of the investigation ob-

jectives.

2. A-Priori Modeling: a-priori models can be created on the basis of original

drawings, in order to provide analytical prediction, that is often useful

to determine optimal experimentation parameters such as critical sensor

locations and frequency band of interest.

3. Measurement, Monitoring, Controlled Experimentation.

4. Integration, Processing, and Interpretation of Data. Data processing

12

Chapter 2: Overview of Structural Identification and
Monitoring

activities aim to make the acquired data more appropriate for interpre-

tation.

5. Evaluating Modeling Errors, Model Calibration & Check Model Com-

pleteness. This step involves the selection and calibration of physics-

based models. These models are formulated to explicitly recognize the

underlying physics of the constructed system. If direct data interpre-

tation is employed in the St-Id application, this step may be optional.

However, this step is crucial to informing decisions.

6. Utilization of Model for Simulation, Scenario Analysis. The ability to uti-

lize the mode developed and calibrated (PB) or trained (NPB) through

the St-Id process for decision-making is essential if the application is to

be justified from an economic standpoint.

Today, it is not possible for any one individual to claim expertise throughout

the entire spectrum of critical knowledge pertinent to the St-Id of constructed

systems.

The 4th step (data processing) is the one mainly considered within this thesis,

as in case of dynamic structural identification, it leads to the extraction of the

modal parameters of the structure.

Analytical modeling forms for structural identification Generally ex-

isting analytical methods can be broadly classified as two categories, physics-

based models (PB) and non-physics-based models (NPB), as shown in Table.

Physics-based models are often preferred because most of the associated model

parameters always have a clear physical meaning behind them.

Currently the the most commonly employed PB St-ID approach relies on

modal analysis algorithms and linear(ized) finite element (FE) models [33].

Depending on how severely the structure being identified violates the implicit

assumptions of this approach (i.e., linearity, stationarity, and observability),

significant errors can occur. NPB techniques have the advantage that they are

data-driven, so the construction of NPB models is dependent entirely on the

data provided, but they may not be effective in the absence of PB models and

heuristics.

13

Chapter 2: Overview of Structural Identification and
Monitoring

Physics-based models Non-physics-based models

1. Laws of Mechanics

(a) Newton’s Laws of Motion

(b) Hooke’s Law

2. Continua Models

(a) Theory of Elasticity

(b) Idealized Differential Equa-

tions (e.g. Beam theo-

ries of Bernoulli, Timoshenko,

Vlasov)

3. Discrete Geometric

(a) Idealized macro or element

level models (e.g. idealized

grillage models)

(b) FEM for solids and field prob-

lems

(c) Modal models

i. Modal parameters (i.e.

natural frequency, mode

shape, damping)

ii. Ritz Vectors

1. Semantic Models

(a) Ontologies

(b) Semiotic Models

2. Meta Models

(a) Input-Output Models

(b) Rule-based Meta Models

(c) Mathematical (Ramberg-

Osgood, etc.)

3. Numerical Models

(a) Probabilistic Models

i. Historigrams to Fre-

quency Distribution

ii. Standard Prob. Distribu-

tions

iii. Independent events

iv. Event-based

v. Time-based

vi. Symptom-based

(b) Agents

(c) Statistical (data-based)

i. ARMA, ANN, others

ii. Signal/Pattern Analysis,

Wavelet, EMD, others
Table 2.1: PB and NPB models

14

Chapter 2: Overview of Structural Identification and
Monitoring

2.3.2 Modal Analysis

Once the model form has been chosen, an appropriate technique must be se-

lected in order to identify the parameters of that model. This selection depends

on many factors, including the details of the instrumented degrees of freedom,

the availability of measured input excitation, and the nature of the excitation

of the system.

In the context of the St-Id methods considered in this thesis, we intend to

introduce the concept of modal analysis.

What is modal analysis? As defined by He & Fu [22], modal analysis is

the process of determining the inherent dynamic characteristics of a system

in forms of natural frequencies, damping factors and mode shapes, and using

them to formulate a mathematical model for its dynamic behaviour.

A modal model expresses the dynamical behaviour of the structure as a linear

combination of different resonant modes. Each resonance mode is described in

terms of its modal parameters: natural frequency, damping ratio, mode shape

and participation vector.

Modal analysis embraces both theoretical and experimental techniques. In

order to describe the dynamic behaviour of the system, a theoretical modal

analysis uses a physical model of the system, comprising its mass, stiffness and

damping properties, in form of partial differential equations. Finite elements

analysis is perhaps the most used physical modal analysis technique.

On the other hand, modal analysis based on experimental data, namely modal

testing, leads to the derivation of the modal model by developing mathemati-

cal relationships between the measured response of the structure and the mea-

sured excitations. This relationship is known as Frequency Response Function

(FRF). The excitation can be of a selected frequency band, stepped sinusoid,

transient, random or white noise. The last case is that of greatest interest in

the context of this thesis as it provides a particular type of modal analysis,

which will be seen in detail later, called Operational Modal Analysis.

An experimental modal model does not contain specific information about the

structural connectivity or the geometric distribution of mass, structural damp-

ing, and stiffness. However, this kind of modal model is very useful since the

15

Chapter 2: Overview of Structural Identification and
Monitoring

modal parameters are directly analogous to the eigen-solution of the struc-

tural mass and stiffness matrix, so it’s well suited for the process of model

correlation. Also, the structural frequency response function can be written in

canonical form in terms of the modal parameters.

Modal Testing Modal testing is an experimental technique used to derive

the modal model of a linear time-invariant vibratory system by defining the

Frequency Response Function that relates the measured dynamic response

of the structure with the applied excitation. Modal testing has been widely

applied in vibration trouble shooting structural dynamics modification, ana-

lytical model updating, optimal dynamic design, vibration control, as well as

vibration-based structural health monitoring in aerospace, mechanical and civil

engineering [41]. Traditional Experimental Modal Analysis (EMA) makes use

of input (excitation) and output (response) measurements to estimate modal

parameters, consisting of modal frequencies, damping ratios, mode shapes and

modal participation factors. In the last four decades numerous modal iden-

tification algorithms have been developed, in Time Domain (TD), Frequency

Domain (FD) and Spatial Domain (SD):

• Single-Input/Single-Output (SISO)

• Single-Input/Multi-Output (SIMO)

• Multi-Input/Single-Output (MISO)

• Multi-Input/Multi-Output (MIMO)

Experimental Modal Analysis involves three constituent phases: test prepa-

ration, frequency response measurements and modal parameter identification.

Traditional EMA has some major limitations. It requires artificial excitation

in order to measure Frequency Response Functions (FRFs), or Impulse Re-

sponse Functions (IRFs); it’s normally conducted in lab environment, and it

is difficult to use to determine FRF or IRF for large structures; to use it in a

lab environment it is required to simulate reasonable boundary condition.

16

Chapter 2: Overview of Structural Identification and
Monitoring

The main problem associated with forced vibration tests on bridges, buildings,

or dams stems from the difficulty in exciting the most significant modes of

vibration in a low range of frequencies with sufficient energy and in controlled

manner [17]. In very large, flexible structures like cable-stayed or suspension

bridges, the forced excitation requires extremely heavy and expensive equip-

ment usually not available in most dynamic labs. Fortunately, recent techno-

logical developments in transducers and A/D converters have made it possible

to accurately measure the very low levels of dynamic response induced by am-

bient excitations like wind or traffic. This has stimulated the development of

output-only modal identification methods, also called Operational Modal Anal-

ysis methods.

Applications of Modal Models For engineers, the modal model is often

not the final goal, but only an intermediate result that can be used for a wide

range of applications [15]:

• Model updating : the initial values chosen for the material properties,

geometrical properties and boundary condition of a FE model of a con-

structed structure can be updated using modal testing, to more realistic

values.

• Structural health monitoring and damage detection: given a reference

model of a healthy undamaged structure a modal model can provide a

tool to perform a decision on the structural integrity of the structure by

comparing newly estimated models to the reference one.

Other applications include:

• Response prediction;

• Sensitivity analysis and structural modification;

• Sub-structuring;

• Load identification;

• Vibro-acoustics.

17

Chapter 2: Overview of Structural Identification and
Monitoring

2.3.3 Operational Modal Analysis

Operational modal analysis (OMA) has attracted great attention since early

1990’s in the civil engineering community. OMA, also named as natural-

excitation or output-only modal analysis, utilizes only response measurements

of the structures in operational condition, subjected to ambient or natural ex-

citation, in order to identify modal characteristics.

The main difference between OMA and EMA is therefore the source of applied

forces acting on the structures. Ambient excitation usually provides multiple

inputs and a wide-band frequency content thus stimulating a significant num-

ber of vibration modes. The identification algorithm used for OMA is therefore

MIMO-type. For simplicity, output-only methods assume that the excitation

input is a zero-mean Gaussian white noise. So, the real excitation can be

expressed as the output of a suitable filter excited with white noise input.

Figure 2.3: Operational Modal Model [20].

As previously introduced, in output-only modal testing, the testing is nor-

mally done by just measuring the responses under the natural (ambient or

operational) conditions. This avoids the need to interrupt the ordinary use of

the structure in analysis. This means, for instance, that if a bridge is going to

be tested, the bridge traffic and normal operation need not to be interrupted

during the test and will be used as the excitation source. The response of the

structure to the loading, as well as to natural excitations acting on it, will be

measured and used to perform an output-only modal identification.

OMA has become particularly popular over the past two decades due to some

of its advantages compared to traditional experimental modal testing and anal-

18

Chapter 2: Overview of Structural Identification and
Monitoring

ysis:

• It is cheap and fast to conduct, since it doesn’t require any excitation

equipment or boundary condition simulation;

• OMA provides a dynamic characterization of the complete system in its

actual environment;

• Owing to the use of real random forces applied to different points of

structure, a linear model is obtained around the operating conditions

rather than experimental condition;

• OMA is an appropriate method for complex and complicated structures,

since in this method the analysis is MIMO-type and close modes can be

easily identified;

• OMA is also suitable for conducting a monitoring of the structure and

damage detection, as it does not interfere with the functionality of the

structure[32]: .

Review of Operational Modal Analysis methods

There are two main groups of OMA methods: non-parametric methods, es-

sentially developed in frequency domain, and parametric methods in the time

domain. Five major categories of OMA methods can be identified:

1. NExT : Natural Excitation Technique;

2. SSI : Stochastic Subspace Identification;

3. FDD : Frequency Domain Decomposition;

4. ARMA: Auto-Regression Moving Average;

5. Stochastic Realization.

A brief description of these five categories will be provided. Then, the methods

implemented in the system identification and monitoring procedures presented

in this thesis (namely the FDD and SSI), will be analyzed from a theoretical

point of view.

19

Chapter 2: Overview of Structural Identification and
Monitoring

NExT-type procedures Natural Excitation Technique (NExT) was first

introduced by James et al. [27] in 1992 and it is a time domain OMA method.

This technique considers the correlation function (COR), given by the random

response of a structure due to ambient excitation, as a summation of decaying

sinusoids. Each decaying sinusoid is characterized by its damped natural fre-

quency, damping ratio and mode shape coefficients, which are related to the

parameters of a structural modes. Therefore the first step in NExT methods

consists on obtaining a Time Response Function (TRF) and the second step

leads to the extraction of the modal parameters by one of the common meth-

ods in Time Domain. In order to obtain the TRF, many methods have been

proposed:

• Inverse FFT ot the FRF estimation to obtain IRF for time domain EMA;

• Free decay response (FDR) can be measured from transient excitation

or sudden termination of broad band random excitation;

• Correlation function can be estimated from stochastic response via cor-

relogram, or from power spectral density via Inverse Fourier Transform;

• Random decrement provides an estimate of the Correlation function.

Major multi-input/multi-output (MIMO) TD modal identification procedures

developed in traditional EMA can be adopted for OMA:

• Improved Polyreference Complex Exponential (IPRCE);

• Eigensystem Realization Algorithm (ERA);

• Extended Ibrahim TD (EITD).

It is important to notice that NExT-type modal identification procedures

adopted for EMA are all developed in the deterministic framework, but in

OMA the data utilized for modal parameter estimation are of random re-

sponse, and belong to a stochastic process.

20

Chapter 2: Overview of Structural Identification and
Monitoring

SSI procedures Stochastic subspace base methods are one of the modal

identification methods in time domain used in OMA.

The Stochastic Subspace Identification (SSI) derives from systems and control

engineering and uses a subspace-based method to identify the system’s state-

space matrices.

SSI was first applied to measured random response of structures by Van Overchee

and De Moor in 1996 in [39].

The Stochastic Subspace Identification Method is based on the state-space

description of the system. The main steps necessary for a SSI procedure are:

• Computation of the projection of the future outputs on the basis of past

outputs via numerical techniques;

• Estimation of Kalman filter state via SVD of the projection matrix;

• Estimation of the discrete-time system matrices via LS techniques;

• Calculation of modal parameters.

SSI methods are preferable to methods such as NeXT since they do not require

the computation of the correlation functions. Since SSI makes direct use of

stochastic response data to identify modal parameters, it is also called data-

driven SSI.

An in-depth theoretical description of SSI method is provided in chapter 3.6.2.

FDD-type procedures Frequency Domain Decomposition (FDD) is a fre-

quency domain OMA method, which is based on the MIMO input-output

relationship for a random process [6]. Frequency Domain techniques provide

several advantages over TD techniques including the speed and simplicity, and

the fact that FD methods have no bother with computational modes. How-

ever, FD methods also have some disadvantages, which will be presented later.

FD OMA methods are based on the assumption that input Power Spectral

Density function is considered as a constant, so the PSD of the response of the

structure can be considered, by means of modal decomposition, as the super-

position of the effects due to the different modes of vibration of the structure,

21

Chapter 2: Overview of Structural Identification and
Monitoring

which are identifiable by the peaks of the PSD.

The simplest Frequency Domain method consists in Peak-Picking, where the

peaks of the Power Spectral Density calculated from measured data represent

a structural mode, and lead to the extraction of an estimate of the modal pa-

rameters. PP method gives reasonable modal estimates if the modes are well

separated [40], but it may not be very accurate in case of complex structures

due to the dependency of the result to the resolution of the PSD spectrum;

furthermore, operational deflection shapes is obtained instead of real modes

shapes, and damping ratio estimation via half-power point is inaccurate or

impossible.

Brinker et al. [13] proposed in 2000 a new OMA method in frequency domain,

called Frequency Domain Decomposition (FDD). FDD requires the calculation

of the Singular Value Decomposition (SVD) of the output Power Spectral Den-

sity, estimated at discrete frequencies, so that, when only a mode is dominating

at a corresponding modal frequency, the PSD matrix approximates to a rank

one matrix and the SV function can be utilized as modal indication functions,

while modal frequencies can be located by the peaks of the SV plots.

Further developments [12] allowed the calculation of damping ratios by tak-

ing back to time domain the SDoF auto-spectral functions and subsequently

evaluating by linear regression the logarithmic decrement of the envelope of

maximum values of the SDoF free decay function. This technique is called

Enhanced Frequency Domain Decomposition. Recently, a new generation of

FDD, Frequency-Spatial Domain Decomposition (FSDD), has been developed

[42] in order to improve the PSD through the use of spatial measurements.

Also, combined methods which use a frequency domain curve-fitting version

of the EFDD technique have been proposed by Jacobsen [26] in order to ex-

tract structural modes even when several harmonic components are present

and even when the harmonic components are located exactly at the natural

frequencies of the structural modes.

ARMA-type procedures Auto-Regression Moving Average (ARMA) meth-

ods can be employed for Operational Modal Identification. Since in Opera-

tional Modal Analysis the input source consists in multiple stochastic excita-

22

Chapter 2: Overview of Structural Identification and
Monitoring

tion, a multidimensional ARMA model (ARMAV) can be applied. The use

of Prediction-Error Method (PEM) for ARMAV models was proposed in 1997

by Andersen [2]. In 1999, Brinker and Andersen [3] used ARMA models def-

inition in state space as a new way for estimating ARMA model. In 2006,

Moore et al. [35] presented theory and application of the ARMAX method to

consider the cases characterized by high noise level and periodic and random

input excitations.

PEM-ARMAV-type OMA procedures have, however, two major drawbacks

[41]: they are very computational intensive and they require an initial "guess"

in order to identify the parameters. These disadvantages make ARMAV-type

procedures rather difficult to apply, especially for large dimension structures.

Stochastic Realization method System Realization, i.e. recovering or

identification of system matrices, is a concept developed in the ’60 by Ho &

Kalman. The key feature of the stochastic system realization is the system

decomposition of the covariance matrix instead of IRF matrix in deterministic

system realization [41]. Stochastic Realization methods are often called as

Covariance-driven Stochastic Subspace Identification (SSI) methods.

2.4 Applications

Of the many applications that were previously listed, two are of particular

interest for the current thesis since they regard the two study cases that will

be presented: Structural Health Monitoring and Model Calibration. A brief

introduction of these two applications is provided below.

2.4.1 Structural Health Monitoring

Structural Health Monitoring (SHM) has been defined in the literature as the

"acquisition, validation and analysis of technical data to facilitate life-cycle

management decisions" [21]. More generally, SHM denotes a system with

the ability to detect and interpret adverse "changes" in a structure in order to

improve reliability and reduce life-cycle costs. The major challenge in designing

23

Chapter 2: Overview of Structural Identification and
Monitoring

a SHM system is knowing what "changes" to look for and how to identify them

[28]. The damage signature will dictate the type of sensors that are required,

which in-turn determines the requirements for the rest of the components in

the system.

It is very important to define what is meant for damage. In most general terms,

damage can be defined as changes introduced into a system that adversely

affects its current of future performances [23]. Damage is only meaningful

when two states of the system are compared. In structural and mechanical

engineering, the definition of damage is limited to changes to the material

and/or geometric properties of the systems, including changes to the boundary

conditions and system connectivity that negatively affect the performance of

the systems.

In terms of length scale, all damage begins at the material level and then under

appropriate loading scenarios expands to component and system level damage.

In terms of time scale, damage can accumulate incrementally over time, as for

example, due to fatigue.

The basic premise of most damage detection methods is that damage alters

the stiffness, mass, or energy dissipation properties of a system, which in turn

alter the measured dynamic response of the system.

Damage identification using frequency changes The observation that

changes in structural properties cause changes in vibration frequencies was the

origin for using modal methods for damage identification and health monitor-

ing [18]. Many methods use a forward approach, which consists of calculating

frequency shifts from a known type of damage, which is modeled using FEM

models. The measured frequencies are then compared to the predicted fre-

quencies to determine the damage. Among others, an example of this type of

application was presented by Brinker in [11], which used a statistical analysis

method to detect damage in two concrete beams with different reinforcement

ratios using changes in the measured vibration frequencies.

The major challenge in monitoring the damage of the structure by analyzing

its dynamic response consists on the fact that damage is typically a local

24

Chapter 2: Overview of Structural Identification and
Monitoring

phenomenon which may not alter the lower-frequency global response of a

structure that is normally measured using modal testing. Therefore it is not

easy to state that shifts in the modal frequencies can be used to identify more

than the mere existence of damage, since this parameter is a global property

of the structure, and therefore, to conduct SHM operations, it is necessary to

combine the dynamic monitoring system to a static monitoring system.

2.4.2 Model calibration

The calibration of a FE model on the basis of a Modal Testing can be performed

by means of the following steps:

• Comparison of frequencies (FE) of the modal analysis with the frequen-

cies obtained from the experimental data;

• Use of the MAC values (Modal Assurance Criterion), which provides an

indication that the modal vectors experimentally measured and numeri-

cally calculated are consistent or not. Values of MAC near unity indicate

a quasi-perfect correlation between reciprocal mode shapes (numerical vs.

experimental).

The comparison between experimental and numerical frequencies is performed

by means of the calculation of an average percentage error (ε):

ε =
fFEM − fS
fFEM

· 100 (2.4.1)

where:

• fFEM is the numerical frequency;

• fS is the experimental frequency.

The MAC index is defined as:

MAC(X,A) =
|
∑n

j=1 ΦX,jΦA,j|2

|
∑n

j=1 ΦX,jΦX,j||
∑n

j=1 ΦA,jΦA,j|
(2.4.2)

where:

25

Chapter 2: Overview of Structural Identification and
Monitoring

• ΦX,j is the experimental mode shape vector;

• ΦA,j is the numerical mode shape vector.

In this case a manual calibration can be applied in order to achieve a progres-

sive improvement of the model, through successive changes and corrections on

the mass and stiffness matrices.

Parameters related to the elastic properties of the materials, mass density and

boundary conditions must iteratively be changed until the average percentage

error assumed values less than 5% for each couple of numerical and experi-

mental frequencies.

Experimental vs. numerical frequencies and mode shapes are compared dur-

ing the calibration process, trying to minimize the average error in term of

frequency and maximize the MAC index for each calculated/extracted mode

shape. Various steps compose the calibration process: generally speaking an

increase of the Young’s modulus corresponds to an increase of the stiffness

of the structure and therefore of frequencies, vice versa an increase of mass

density and hence of the total mass of the structure corresponds to a decrease

of frequencies.

26

Chapter 3

Theoretical Basis

3.1 Introduction

The purpose of this chapter is to provide the theoretical basis necessary for

a proper understanding of the dynamic identification system considered and

developed within this thesis. The dynamic identification methods used in

Operational Modal Analysis make use of sets of measuring accelerations ex-

perienced by the structure in response to ambient excitation without exerting

any controlled excitation. The methods defined in the frequency domain work

by calculating the frequency response functions (FRF) from which the modal

parameters of the structure are derived. The FRF are typically obtained by

application of the Fast Fourier Transform (FFT). This chapter is developed

following a logical path that first introduces the fundamental concepts (such

as frequency response functions and impulse response functions) in the context

of classical structural mechanics (initially for simple SDoF systems, then for

MDoF systems), then considers them in the context of signal analysis. It is

therefore important to understand how the random signals are acquired and

processed in digital format. It is then indicated how the relations (functions

of frequency response) between the input data and output data in the sys-

tem are obtained. The considered system, in respect to the assumptions of

operational modal analysis, is a system of the multi-input/multi-output type.

Finally, the theoretical basis of the two methods in the dynamic identification

system considered in the thesis are addressed: the FDD and SSI methods.

27

Chapter 3: Theoretical Basis

3.2 Transform Relationships

The theory from the vibrations point of view requires the comprehension of how

the structural parameters of mass damping, and stiffness relate to the impulse

response function (time domain), the frequency response function (Fourier, or

frequency domain), and the transfer function (Laplace domain) for single and

multiple degree of freedom systems.

The relationships between time, frequency, and Laplace domains, with respect

to a structural system, are the integral transforms (Fourier and Laplace) that

reflect the information contained by the governing differential equations trans-

formed to each domain.

Adopting a digital approach to the measurement data leads to consider the dis-

crete case, for which the relationships are represented by discrete transforms

(Discrete Fourier Transform, Z Transform).

Both in the continuous case that in the discrete case, the transform process in-

volves a change of independent variable which represents the change from one

domain to another. The transformed variable must be the variable of interest,

and the transform process must be computationally simple but unique, and it

should not lead to loss of data.

3.2.1 SDOF Systems

Single degree of freedom systems, evaluated in the time, frequency, and Laplace

domains serve as the basis for many of the models that are used in modal

parameter estimation. In fact, the multiple degree of freedom case can be

viewed as a linear superposition of single degree of freedom systems [1].

Figure 3.1: Single degree of freedom system.

The general mathematical representation of a SDOF system is expressed as

28

Chapter 3: Theoretical Basis

follows:

Mẍ(t) + Cẋ(t) +Kx(t) = f(t) (3.2.1)

where:

• M = Mass constant

• C = Damping constant

• K = Stiffness constant

By setting f(t) = 0, the homogeneous form of the general equation can be

solved:

Mẍ(t) + Cẋ(t) +Kx(t) = 0 (3.2.2)

The solution can be assumed to be on the form x(t) = Xest, where s is a

complex constant to be determined. Substituting in the previous equation:

(Ms2 + Cs+K)Xest = 0 (3.2.3)

Thus, for a non-trivial solution:

Ms2 + Cs+K = 0 (3.2.4)

where:

• s = Complex-valued frequency variable (Laplace variable)

The previous equation is the characteristic equation of the system, whose roots

λ1 and λ2 are:

λ1,2 =
−C
2M
±

{(
C

2M

)2

− K

M

} 1
2

(3.2.5)

Thus the general solution is:

x(t) = Aeλ1t +Beλ2t (3.2.6)

A and B are constants determined from the initial conditions imposed on the

system at time t = 0.

For most real structures the damping ratio is rarely greater than 10% and all

29

Chapter 3: Theoretical Basis

further discussion is restricted to undampered systems (ζ < 1). In this case,

the two roots, λ1,2, are always complex conjugates and the two coefficients (A

and B) are complex conjugates of one another (B = A∗).

For an undampered system, the roots of the characteristic equation can be

written as:

λ1 = σ1 + jω1 λ1
∗ = σ1 − jω1 (3.2.7)

where:

• σ1 = Damping factor.

• ω1 = Damped natural frequency.

The root of the characteristic Equation can also be written as:

λ1, λ1
∗ = −ζ1Ω1 ± jΩ1

√
1− ζ1

2 (3.2.8)

The damping factor σ1 is defined as the real part of a root of the characteristic

equation and it describes the exponential decay or growth of the oscillation.

Time Domain: Impulse Response Function (IRF)

The impulse response function of the SDOF system can be determined from

the general solution, assuming:

• The initial conditions are zero;

• the system excitation, f(t), is a unit impulse.

The response of the system, x(t), to such a unit impulse is known as the

impulse response function (IRF), h(t), of the system. Therefore:

h(t) = Aeλ1t + A∗eλ1
∗t (3.2.9)

h(t) = eσ1t
[
Ae+jω1t + A∗e−jω1t

]
(3.2.10)

The residue A controls the amplitude of the impulse response, the real part of

the pole is the decay rate and the imaginary part of the pole is the frequency

of oscillation.

30

Chapter 3: Theoretical Basis

Frequency Domain: Frequency Response Function

An equivalent equation of motion is determined for the Fourier or frequency (ω)

domain. The advantage of this representation is that it converts a differential

equation to an algebraic equation.

Fourier series is a representation of a periodic function. For a periodic time

domain function x(t) with period T, we have:

x(t) = x(t+ nT) (3.2.11)

Mathematically, x(t) consists of a number of sinusoids with frequencies mul-

tiple to a fundamental frequency. The fundamental frequency f is set by the

period such that f = 1
T
. The amplitude of the kth sinusoid can be determined

by:

X(fk) =
1

T

∫ T/2

−T/2
x(t)e

−j2πkt
T dt (3.2.12)

where:

• fk is the kth frequency

• e−j2πktT represents a unit vector rotating at a frequency of − k
T

Thus, the equation of the general solution becomes:[
−Mω2 + jCω +K

]
X(ω) = F (ω) (3.2.13)

Restating the above equation:

B(ω)X(ω) = F (ω) (3.2.14)

where:

• B(ω) = −Mω2 + jCω +K

The system response X(ω) is directly related to the system forcing function

F (ω) through the quantity B(ω) known as the impedance function.

If The system forcing function F (ω) and its response X(ω) are known, B(ω)

can be calculated:

B(ω) =
F (ω)

X(ω)
(3.2.15)

31

Chapter 3: Theoretical Basis

Introducing the frequency response function H(ω) we can rewrite the equation

as follows:

X(ω) = H(ω)F (ω) (3.2.16)

where:

• H(ω) = 1
−Mω2+jCω+K

The FRF relates the Fourier transform of the system input to the Fourier

transform of the system response. The FRF can be defined as:

H(ω) =
X(ω)

F (ω)
(3.2.17)

The frequency response function can be written:

H(ω) =
1

−Mω2 + jCω +K
=

1/M

−ω2 + j
(
C
M

)
ω + (K

M
)

(3.2.18)

The denominator is know as the characteristic equation of the system.

The characteristic values of this equation are known as the complex roots of

the characteristic equation or the complex poles of the system, and they are

also called the modal frequencies.

The frequency response function H(ω) can also be written as a function of the

complex poles as follows:

H(ω) =
1/M

(jω − λ1)(jω − λ1
∗)

=
A

(jω − λ1)
+

A∗

(jω − λ1
∗)

(3.2.19)

where:

• λ1 = Complex pole

• λ1 = σ + jω1

• λ1
∗ = σ − jω1

The frequency response function is a complex valued function of a real valued

independent variable (ω).

Frequency response functions are of particular importance for the identification

techniques in the frequency domain.

32

Chapter 3: Theoretical Basis

Types of Frequency Response Functions When a FRF is referred to

without response parameter specification, it is usually denoted as H(ω). When

a response parameter is specified, individual FRFs have their own denotation.

In complex notation, displacement can be expressed as a function of time as:

x(t) = Xeiωt (3.2.20)

By derivation, the expressions for velocity and acceleration in complex notation

are obtained:

v(t) = ẋ(t) = iωXeiωt (3.2.21)

a(t) = ẍ(t) = −ω2Xeiωt (3.2.22)

FRF of type receptance with displacement as a response parameter is defined:

α(ω) =
X

F
(3.2.23)

Other types of FRF can be obtained, using the derived forms of the displace-

ment. When the response parameter is velocity, the FRF is called mobility,

and when it’s acceleration the FRF is called inertance.

Laplace transform and transfer function

The Laplace transform is a systematic technique for finding the solutions of a

differential equation. For a time domain function f(t), the transform is defined

and denoted by [22]:

F (s) = L(f(t)) = lim
n→∞

∫ n

0

f(t)e−stdt (3.2.24)

In the context of vibration and modal analysis, this limit exists and is a func-

tion of s that is called the Laplace variable. In fact, the integration constitutes

a transformation from the time domain signal f(t) to the s domain.

An important use of Laplace transform in modal analysis is to convert a dif-

ferential equation into an algebraic equation. For a SDoF system.

Assuming all initial conditions to zero, can apply the Laplace transform on the

equation of motion, yielding an algebraic equation:

Ms2X(s) + CsX(s) +KX(s) = P (s) (3.2.25)

33

Chapter 3: Theoretical Basis

The response of the system becomes:

X(s) =
1

Ms2 + Cs+K
P (s) (3.2.26)

The transfer function of the system, which defines the relationship between

the force input and the response in displacement, can be found as:

G(s) =
X(s)

P (s)
=

1

Ms2 + Cs+K
(3.2.27)

This transfer function becomes the frequency response function when only the

imaginary part of the s operator is considered:

G(jω) =
X(jω)

P (jω)
=

1

−Mω2 + Cjω +K
(3.2.28)

3.2.2 MDoF Systems

The real application of modal analysis concepts considers a multiple degree-

of-freedom system, for a continuous non-homogeneous structure described as

a lumped mass. The modal parameters (natural frequencies, damping ratios

and mode shapes), can be found by estimating the mass, damping and stiffness

matrices or measuring the associated frequency response functions [1].

Since there is no difference in concept between systems with two or more de-

grees of freedom, a simple two degree of freedom system is considered as the

most basic example of a MDoF system.

Figure 3.2: Multiple degree of freedom system.

The system has as many natural frequencies as the degrees of freedom. A

mode of vibration is associated with each natural frequency. Since the equa-

tions of motion are coupled, the motion of the masses are the combination of

34

Chapter 3: Theoretical Basis

the motions of the individual modes. If the choice of coordinates allows the

uncoupling of the equations, each mode can be examined as an independent

SDoF system.

Assuming viscous damping, the equations of motion are derived by applying

Newton’s second law to each of the masses. The equations of motion for the

2-DoF system in Figure, using matrix notation, are:[
M1 0

0 M2

]
·

[
ẍ1

ẍ2

]
+

[
(C1 + C2) −C2

−C2 (C2 + C3)

]
·

[
ẋ1

ẋ2

]
+

+

[
(K1 +K2) −K2

−K2 (K2 +K3)

]
·

[
x1

x2

]
=

[
f1(t)

f2(t)

]
(3.2.29)

or

M {ẍ}+ C {ẋ}+K {x} =
{
f̈(t)

}
(3.2.30)

where f1(t) and f2(t) are the excitation forces applied to the respective masses.

For an undamped system, free of excitations and damping, the equations of

motion are reduced to:[
M1 0

0 M2

]
·

[
ẍ1

ẍ2

]
+

[
(K1 +K2) −K2

−K2 (K2 +K3)

]
·

[
x1

x2

]
=

[
0

0

]
(3.2.31)

The equations are linear and homogeneous and are in the form of:

x1 = B1e
st (3.2.32)

x2 = B2e
st (3.2.33)

where B1, B2 and s are constants. since the system is undamped, the values

of s are imaginary, s = ±jw, and by Euler’s formula the solutions must be

harmonic:

x1 = A1sin(ωt+ φ) (3.2.34)

x2 = A2sin(ωt+ φ) (3.2.35)

where A1, A2 and φ are constants and ω is a natural frequency of the system.

Therefore the equations of motion can be rearranged as:

(K1 +K2 − ω2M1)A1 −K1A2 = 0 (3.2.36)

35

Chapter 3: Theoretical Basis

−K1A1 + (K1 +K3 − ω2M2)A2 = 0 (3.2.37)

which are homogeneous linear algebraic equations in A1 and A2. By setting

the determinant ∆(ω) of the coefficients of A1 and A2 to zero, we obtain the

frequency equation of the system from which the values of ω are found, that

is:

∆(ω) =

∣∣∣∣∣K1 +K2 − ω2M1 −K1

−K1 K1 +K3 − ω2M2

∣∣∣∣∣ = 0 (3.2.38)

This leads to two real and positive values for ω2, namely ω2
1 and ω2

2, whose

roots in modulus are the natural frequencies of the 2 degree-of-freedom system.

Damping mechanism In order to evaluate real MDoF systems, the effect

of damping on the complex frequencies and modal vectors must be considered.

Some classical types of physical mechanism used to describe all of the possible

forms of damping that may be present in a particular structure are:

1. Structural damping;

2. Viscous damping;

3. Coulomb damping.

Most structures exhibit damping characteristics that result from a combination

of all the above. The model that is usually adopted is only concerned with the

resultant mathematical form and represent a hypothetical form of damping ,

that is proportional to the system mass or stiffness matrix:

{C} = α {M}+ β {K} (3.2.39)

Under this assumption, proportional damping is the case in which the equiva-

lent damping matrix is equal to a linear combination of the mass and stiffness

matrices. In this case, the coordinate transformation that diagonalizes the sys-

tem mass and stiffness matrices, also diagonalizes the system damping matrix

and the system of coupled equations of motion can be transformed to a system

of equations that represent an uncoupled system of SDoF systems.

36

Chapter 3: Theoretical Basis

Response functions The development of the response functions for the

MDoF case is analogous to the SDoF case. The mass, damping, and stiffness

matrices are related to a transfer function model involving multiple degrees of

freedom. The frequency response functions between any input and response

degree of freedom can be represented as a linear superposition of the single

degree of freedom models derived previously:

• Impulse Response Function:

{h(t)} =
N∑
r=1

{Ar} eλrt + {A∗r} eλ
∗
rt =

2N∑
r=1

{Ar} eλrt (3.2.40)

• Frequency Response Function:

{H(ω)} =
N∑
r=1

{Ar}
jω − λr

+
{A∗r}
jω − λ∗r

=
2N∑
r=1

{Ar}
jω − λr

(3.2.41)

• Transfer Function:

{H(s)} =
N∑
r=1

{Ar}
s− λr

+
{A∗r}
s− λ∗r

=
2N∑
r=1

{Ar}
s− λr

(3.2.42)

where:

• t = Time variable

• ω = Frequency variable

• s = Laplace variable

• r = Modal vector number

• Ar = Qrφprφqr Residue

• Qr = Modal scaling factor

• φpr = Modal coefficient

• q = Measured degree of freedom (input)

• p = Measured degree of freedom (output)

• λr = System pole

• N = Number of positive modal frequencies

37

Chapter 3: Theoretical Basis

3.2.3 State-Space concept

The state space system model is frequently used in control and has also found

applications in modal analysis. It can be applied in both the frequency and

time domains. The main advantage of the state space form is that it reduces

the second order differential equation that describes the system into two first

order equations.

A state-space model is a different representation of the input-output relation-

ship compared to the transfer or frequency response function approach [22].

The state of a dynamic system is the smallest set of variables which, together

with the future inputs to the system, can determine the dynamic behaviour

of the system, so the state at a time t is uniquely determined by the state at

time t0 and the inputs at time t > t0.

Considering the SDoF system, governed by:

Mÿ + Cẏ +Ky = f(t) (3.2.43)

and applying to it a Laplace transform, the system can be derived as:

G(s) =
Y (s)

F (s)
=

1

Ms2 + Cs+K
(3.2.44)

Introducing two new variables:

x1(t) = y(t) x2(t) = ẋ1(t) (3.2.45)

The SDoF governing equation becomes:

ẋ2(t) =
1

M
f(t)− C

M
x2(t)− K

M
x1(t) (3.2.46)

It is now possible to define the state equations :[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−K
M
− C
M

][
x1(t)

x2(t)

]
+

[
0
1
M

]
f(t) (3.2.47)

The state equations, which use only the first derivatives, can be used to rep-

resent the dynamics of the system.

For a MIMO system we can define n state variables x1(t), x2(t), ..., xn(t) such

that each variable is the integrator of the one after it in the time domain, r

38

Chapter 3: Theoretical Basis

inputs u1(t), u2(t), ..., ur(t) and p outputs y1(t), y2(t), ..., yp(t). The state-space

equations can be written in the following shape:

{ẋ(t)} = [A] {x(t)}+ [B] {u(t)} (3.2.48)

{y(t)} = [C] {x(t)}+ [D] {u(t)} (3.2.49)

The first equation is known as the state equation, while the second one is known

as the output equation.

A is known as the system matrix or state transition matrix, B as the input

matrix, C as the output matrix, D is the direct transmission matrix. For the

SDoF system, the differential equation of the system can be recast as:

{y} =
[
−CaM−1K − CaM−1C2

]
{x}+ CaM

−1B2{u} (3.2.50)

y = Cx+Du (3.2.51)

where Ca is the output location matrix for acceleration measurements (dis-

placement and velocity can also be included), and B2 relates the inputs to

their physical location on the structure.

The discrete time state space model is more applicable in modal analysis where

measurement data is sampled, and may be expressed as:

xk+1 = Adxk +Bduk yk = Cdxk +Dduk (3.2.52)

where the system matrices are related to their continuous time counterparts

by Ad = eAc∆t, Bd = (Ad − I)A−1
c Bc, Cd = Cc, Dd = Dc. An eigenvalue

decomposition of Ad yelds:

Ad = Ψ


. . .

µi
. . .

Ψ−1 (3.2.53)

where the eigenvectors are identical to the continuous time case, and the ein-

genvalues are related to the continuous time eigenvalues by µ=e
λ1∆t. The

modal participation matrix and observed mode shapes are expressed as for the

continuous case.

39

Chapter 3: Theoretical Basis

Of greater relevance to OMA is the stochastic state space model which includes

noise terms:

xk+1 = Adxk +Bduk + wk yk = Cdxk +Dduk + vk (3.2.54)

where wk and vk are both unmeasurable, zero mean, white noise. The relevance

of this model to OMA will be discussed in the SSI section.

3.3 Signal analysis

The concepts of frequency response function and impulse response function

were earlier introduced in relation to the physical mechanical system.

In this section, the same concepts are addressed from the point of view of the

signal analysis. The physical characteristics of the system, previously needed

to define the response of the system, do not appear in the analysis. In fact,

the signal analysis considers the observable signals of the system (the output),

the signals that can be manipulated (the input), and those that cannot be

manipulated but affect the system (noise). Signal analysis aims to build a

model that reconstructs, by inference, the behaviour of the system.

3.3.1 Response Characteristics of Ideal Linear Systems

An ideal system is one that has constant parameters and is linear between

the input and the output (or response). The dynamic characteristics of a

constant-parameter linear system can be described by an impulse response

function h(τ), also called the weighting function. For any arbitrary input x(t),

the system output y(t) is given by:

y(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ (3.3.1)

The system must respond only to past inputs, so:

h(τ) = 0 for τ < 0 (3.3.2)

40

Chapter 3: Theoretical Basis

3.3.2 Frequency Response Functions

The dynamic characteristics of a constant-parameter linear system can be de-

scribed by a frequency response function H(ω), which is defined as the Fourier

transform of the impulse response function h(τ):

H(ω) =

∫ ∞
0

h(τ)e−j2πωτdτ (3.3.3)

The frequency response function is a special case of the transfer function de-

fined by the Laplace transform, where the complex variable has the real part

equal to zero. Taking the Fourier transform of the input X(ω), and the Fourier

transform of the output Y (ω), it follows that:

Y (ω) = H(ω) ·X(ω) (3.3.4)

The FRF is generally a complex-valued quantity that can be thought in terms

of a magnitude and an associated phase angle, by writing H(ω) in complex

polar notation as:

H(ω) = |H(ω)|e−jφ(ω) (3.3.5)

where:

• |H(ω)| is called the system gain factor

• φ(ω) is called the system phase factor

The frequency response function H(ω) of constant-parameter linear system is

a function of only frequency and is not function of either time or the system

excitation.

3.3.3 Autospectrum

Given an input signal a(t), the autocorrelation function is defined as:

Raa(τ) = lim
T→∞

1

T

∫ T

0

a(t)a(t+ τ)dt (3.3.6)

The Fourier transform of the autocorrelation function is the autospectrum,

also named Power Spectral Density (PSD):

SAA(ω) =

∫ ∞
−∞

Raa(τ)e−j2πωτdτ (3.3.7)

41

Chapter 3: Theoretical Basis

The autospectrum is a function computed from the instantaneous Fourier spec-

trum as:

SAA(ω) = E [A(ω)A(ω)∗] = FE [a(t)∗a(−t)] = F [Raa(τ)] (3.3.8)

where E denotes the expected value, F denotes the Fourier transform,

A(ω) = |A(ω)|ejφA(ω) (3.3.9)

A∗(ω) = |A(ω)|e−jφA(ω) (3.3.10)

and Raa(τ) is the autocorrelation function. The definition of autospectrum

Figure 3.3: Auto-spectrum.

can be recast as:

SAA(ω) = E
[
|A(ω)| · |A∗(ω)|ej0

]
= E

[
|A|2(ω)

]
(3.3.11)

3.3.4 Cross-spectrum

Given two signals, a(t) and b(t), the cross-correlation function is defined as:

Rab(τ) = lim
T→∞

1

T

∫ T

0

a(t)b(t+ τ)dt (3.3.12)

The cross-correlation function is a measure of the correlation of two different

signals.

Its Fourier transform is the Cross spectrum SAB (from A to B):

SAB(ω) =

∫ ∞
−∞

Rab(τ)e−j2πωτdτ (3.3.13)

The cross-spectrum can be written in function of the Fourier transform of each

complex instantaneous spectra A(ω) and B(ω):

SAB(ω) = E [A∗(ω)B(ω)] = FE [a(−t)∗b(t)] = F [Rab(τ)] (3.3.14)

42

Chapter 3: Theoretical Basis

Figure 3.4: Cross-spectrum.

where:

A(ω) = |A(ω)| · ejφA(ω) (3.3.15)

B(ω) = |B(ω)| · ejφB(ω) (3.3.16)

Therefore, the cross-spectrum can be recast as:

SAB(ω) = E
[
|A(ω)| · |B(ω)| · ej(φB(ω)−φA(ω))

]
(3.3.17)

The amplitude of the cross-spectrum SAB is the product of the amplitudes of

A(ω) and B(ω), and it is a measure of the correlation between the functions

of the frequency of the two signals.

The phase of the cross-spectrum is the difference of both phases (from A to B).

It measures the phase shift between the function of frequency of the two signals.

The advantage of the cross-spectrum is that influence of noise can be reduced

by averaging because the phase angle of the noise spectrum takes random

values so that the sum of those several random spectra tends to zero. So

while the measured autospectrum is a sum of the true autospectrum and the

autospectrum of noise, the measured cross-spectrum is equal to the true cross-

spectrum.

3.3.5 Coherence

Coherence function indicates the degree of linear relationship between two

signals as function of frequency [7]. It is defined by two autospectra and a

cross spectrum as:

γ2(ω) =
|GAB(ω)|2

GAA(ω) ·GBB(ω)
(3.3.18)

Coherence can be considered as a squared correlation coefficient at each fre-

quency, where the magnitudes of autospectra correspond to variances of the

43

Chapter 3: Theoretical Basis

two variables and the magnitude of cross-spectrum corresponds to covariance.

Coherence value varies from zero to one. A coherence value of zero indicates

that there is no correlation between the two variables, whilst a coherence value

of one means a perfectly linear relationship

0 ≤ γ2(ω) ≤ 1 (3.3.19)

Coherence function provides useful information only when spectra GAA(ω),

GBB(ω) and GAB(ω) are estimates, i.e. spectra averaged from more records.

In case of no averaging, coherence is always equal to 1.

Effect of Noise on the FRF

In reality, FRF measurement cannot be noise free and usually a measured

signal, i.e. a force F̂ (ω) is a combined signal of the genuine force F (ω) and the

noise from the input M(ω). These two are normally inseparable in the time

domain but they are not correlated to each other [22]. Therefore, we have

SMF (ω) = 0. This property is useful in deriving FRF estimators to combat

noise. The same happens at the output end. The measured response X̂(ω)

encompasses both the true response X(ω) and the noise from the output N(ω).

They are not correlated so that SNX(ω) = 0.

A dual channel analyzer allows three alternative estimates, defined using the

auto-spectrum and the cross-spectrum:

H1(ω) =
GAB(ω)

GAA(ω)
(3.3.20)

H2(ω) =
GBB(ω)

GBA(ω)
(3.3.21)

H3(ω) =

√
GBB(ω)

GAA(ω)
· GAB(ω)

|GAB(ω)|
=
√
H1(ω) ·H2(ω) (3.3.22)

Coherence function could be defined as:

γ2(ω) =
|GAB(ω)|2

GAA(ω) ·GBB(ω)
=
H1(ω)

H2(ω)
(3.3.23)

The choice of the best estimate depends on whether there is noise on the input

or output.

44

Chapter 3: Theoretical Basis

Influence of noise at the output A typical case of noise-influenced output

is when FRF is measured using impact excitation: the input signal is clean,

without noise, whilst the output signal is modified by system response and

deteriorated by noise.

H(ω) =
V (ω)

A(ω)
(3.3.24)

H1(ω) =
GAB

GAA

=
GAV

GAA

= H (3.3.25)

In case of noise-influenced output H1 is an exact estimator of the FRF.

Influence of Noise at the Input. When FRF is measured using dynamic

exciter, the input signal is deteriorated by noise in the vicinity of resonances,

particularly for slightly damped structures. The structure behaves as short

circuit in the vicinity of resonances and the input power spectrum has lower

values even if the signal entering the exciter is white noise, while the output

signal is relatively clean.

H(ω) =
B(ω)

U(ω)
(3.3.26)

H2(ω) =
GBB

GBA

=
GBB

GBU

= H (3.3.27)

In case of noise-influenced output H2 is an exact estimator of the FRF.

Influence of Noise at Both Input and Output. In the common case,

both input ad output signals are noise-influenced. The exact estimation of the

FRF stands between H1 and H2.

3.4 Analysis of Random Data

An observed data representing a physical phenomenon can be broadly classi-

fied as being either deterministic or non-deterministic. Non-deterministic data

are those that can’t be described by an explicit mathematical relationship, for

which there is no way to predict an exact value at a future instant of time.

These data are random in character and must be described in terms of proba-

bility statements and statistical averages rather than by explicit equations [6].

45

Chapter 3: Theoretical Basis

A single time history representing a random phenomenon is called a sample

function (or a sample record when observed over a finite time interval). The

collection of all possible sample functions that the random phenomenon might

have produced is called a random (or stochastic) process. A sample record of

data for a random physical phenomenon may be thought of as one physical

realization of a random process.

Classification of random data

Operational Modal analysis deals with random data input, given by the natural

excitement acting on the system. It is therefore essential to identify input/out-

put relations in case of random data.

When a physical phenomenon is considered in terms of random process, its

properties can be described at any instant of time by computing average val-

ues over the collection of sample functions that describe the random process.

The mean value of the random process at some t1 can be computed by taking

Figure 3.5: Ensemble of time history records defining a random process.

the instantaneous value of each sample function of the ensemble at time t1,

summing the values, and dividing by the number of sample functions. Simi-

larly, a correlation between the values of the random process at two different

times (called the autocorrelation function) can be computed by taking the en-

46

Chapter 3: Theoretical Basis

semble average of the product of instantaneous values at two times, t1 and

t1 + τ . For the random process x(t), composed of N sample functions, the

mean value and the autocorrelation function are given by:

µx(t1) = lim
N→∞

1

N

N∑
k=1

xk(t1) (3.4.1)

Rxx(t1, t1 + τ) = lim
N→∞

1

N

N∑
k=1

xk(t1) · xk(t1 + τ) (3.4.2)

For the general case where µx(t1) and Rxx(t1, t1 + τ) vary as time t1 varies, the

random process is said to be non-stationary. If the mean and the autocorrela-

tion function do not vary with time, the random process is said to be weakly

stationary.

For the special case where all possible means and autocorrelation functions are

time invariant, the random process is said to be strongly stationary.

In most cases it is possible to describe the properties of a stationary random

process by computing time averages over specific sample functions in the en-

semble. The mean value and the autocorrelation function of the kth sample

function are given by:

µx(k) = lim
N→∞

1

T

∫ T

0

xk(t)dt (3.4.3)

Rxx(t, k) = lim
N→∞

1

T

∫ T

0

xk(t) · xk(t+ τ)dt (3.4.4)

If the random process is stationary and µx(t) and Rxx(t, k) do not differ when

computed over different sample functions, the random process is said to be

ergodic, therefore all properties of ergodic random processes can be determined

by performing time averages over a single sample function

3.4.1 Input/Output Relations

Input/output cases of common interest can usually be considered as combina-

tions of one or more of the following linear system models:

1. Single-input/single-output model

47

Chapter 3: Theoretical Basis

2. Single-input/multiple-output model

3. Multiple-input/single-output model

4. Multiple-input/multiple-output model

As previously introduced, Operational Modal Analysis uses MIMO-type mod-

els. MIMO models are an extension of simpler cases. The MIMO problem

can be broken down into MISO problems and solved using MISO techniques:

this allows a better understanding of the physical relationship between each

input and output. However, since in OMA it is not possible to distinguish the

various inputs, the MIMO model is solved using matrix techniques.

Let X be a column vector representing the Fourier transforms of the q input

records Xi = Xi(f), i = 1, 2, · · · , q, and Y be a column vector representing

the Fourier transform of the q output records Yk = Yk(f), k = 1, 2, · · · , q:

X =


X1

X2

...

Xq

 Y =


Y1

Y2

...

Yq

 (3.4.5)

X∗,Y ∗= complex conjugate (column) vectors of X, Y .

X ′,Y ′= transpose (row) vectors of X, Y .

Gxx =
2

T
E {X∗X ′} (3.4.6)

Gyy =
2

T
E {Y ∗Y ′} (3.4.7)

Gxy =
2

T
E {X∗Y ′} (3.4.8)

whereGxx is the input spectral density matrix, Gyy is the output spectral density

matrix and Gxy is the input/output cross-spectral density matrix.

The basic matrix terms are defined as follows:

Gij =
2

T
E [X∗iXj] (3.4.9)

Gyiyj =
2

T
E [Y ∗i Yj] (3.4.10)

48

Chapter 3: Theoretical Basis

Gxiyj =
2

T
E [X∗i Yj] (3.4.11)

Gxx =
2

T
E




X∗1

X∗2
...

X∗q


[
X1 X2 · · · Xq

]


=


G11 G12 · · · G1q

G21 G22 · · · G2q

...
...

...

Gq1 Gq2 · · · Gqq

 (3.4.12)

Gyy =
2

T
E




Y ∗1

Y ∗2
...

Y ∗q


[
Y1 Y2 · · · Yq

]


=


Gy1y1 Gy1y2 · · · Gy1yq

Gy2y1 Gy2y2 · · · Gy2yq

...
...

...

Gyqy1 Gyqy2 · · · Gyqyq

 (3.4.13)

Gxx and Gyy are Hermitian matrices, namely, Gij = G∗ji for all i and j. For

those Hermitian matrices, G∗xx = G′xx and G∗yy = G′yy.

The system matrix between X and Y is defined by Hxy = Hxy(f) where the

input always precedes output. The matrix terms Hiyk = Hxiyk . Then:

Hxy =


H1y1 H1y2 · · · H1yq

H2y1 H2y2 · · · H2yq

...
...

...

Hqy1 Hqy2 · · · Hqyq

 (3.4.14)

From this definition, it follows that:

Y = H ′xyX (3.4.15)

49

Chapter 3: Theoretical Basis

where H ′xy is the transpose matrix to Hxy. Thus:
Y1

Y2

...

Yq

 =


H1y1 H2y1 · · · Hqy1

H1y2 H2y2 · · · Hqy2

...
...

...

H1yq H2yq · · · Hqyq

 ·

X1

X2

...

Xq

 (3.4.16)

This way any Yk is related to the inputs Xi. Initially it is assumed that the

number of outputs is the same as the number of inputs, and that all inverse

inverse matrix operations can be performed.

Y = H ′xyX (3.4.17)

Y ′ = (H ′xyX)′ = X ′H ′xy (3.4.18)

X∗Y ′ = X∗X ′Hxy (3.4.19)

Taking expected values of both sides and multiplying by 2
T
gives:

Gxy = GxxHxy (3.4.20)

Multiplying both sides by G−1
xx :

G−1
xxGxy = G−1

xx (GxxHxy)⇒ Hxy = G−1
xxGxy (3.4.21)

Matrices Gxx and Gyy are then related by the FRF:

Y = H ′xyX (3.4.22)

Y ′ = (H ′xyX)′ = X ′Hxy (3.4.23)

Y ∗ = (H ′xyX)∗ = H
′∗
xyX

∗ (3.4.24)

Y ∗Y ′ = (H
′∗
xyX

∗)(X ′Hxy) (3.4.25)

Taking expected values of both sides and multiplying by 2
T
gives:

Gyy = H
′∗
xyGxxHxy (3.4.26)

This final result represents the starting point for the FDD method, which will

be illustrated afterwards.

50

Chapter 3: Theoretical Basis

3.5 Data Acquisition and Processing

The measured random data that represent the response of the system, are

actually the expression of a continuous physical phenomenon, where specific

data acquisition and processing procedures are required before an analysis on

the data can be accomplished. In this section the focus will be put on the

procedures required for data acquisition and digital signal processing.

Digital processing of the data is a very important step in structural testing.

In order to determine modal parameters, the measured input (excitation) and

response data must be processed and put into a form that is compatible with

the test and modal parameter estimation methods [1]. The conversion of the

data from the time domain into the frequency and Laplace domains is im-

portant both in the measurement process and subsequently in the parameter

estimation process.

3.5.1 Data Acquisition

A data acquisition system usually involves a transducer with signal condition-

ing, transmission of the conditioned signal to an analog-to-digital converter

(ADC), and a calibration of the data acquisition system (standardization) to

establish the relationship between the physical phenomena being measured arid

the conditioned signal transmitted to the analog-to-digital converter. Each el-

ement of the data acquisition system must be selected to provide the frequency

range and dynamic range needed for the final engineering application of the

data.

Transducer →
Signal

conditioning
→ Transmission → Calibration

The transducer is the primary element in a data acquisition system. Any

device that translates power from one form to another is, in general terms, a

transducer. In structural identification context, this means the translation of

a physical phenomenon (i.e. a mechanical quantity, as the acceleration) into

an electrical signal, in a quantity proportional to the magnitude of the phe-

nomenon.

51

Chapter 3: Theoretical Basis

The generated electrical quantity is then converted by a signal conditioner

into a voltage signal with a low source impedance (generally less than 100Ω)

and the desired magnitude and frequency range for transmission to the re-

mainder of the data acquisition system.

Piezoelectric or strain-sensitive materials are employed for sensing elements for

force, pressure, and motion transducers. A piezoelectric material produces an

Figure 3.6: Schematic diagrm of piezoelectric accelerometer.

electrical charge when it is deformed. In case of a piezoelectric accelerometer,

the mechanical conversion is achieved through a seismic mass supported by a

flexible piezoelectric material, where an input acceleration at the base of the

accelerometer is converted to a relative displacement of the mass.

When transducers are obtained from commercial sources, supporting literature

is normally provided that specifies the limitations on their use.

The signal data from the signal conditioner is then calibrated and transferred

to the remainder of the data acquisition system. During the calibration pro-

cess the dynamic range of the system is determined. The dynamic range of

the system is defined as the ratio of the maximum to minimum data values the

system can acquire without significant distortion and is commonly assessed in

terms of a maximum allowable signal-to-noise ratio (SNR) defined as:

SNR =
ψ2
s

ψ2
n

(3.5.1)

or in decibels (dB) as:

(S/N) = 10 · log10
ψ2
s

ψ2
n

(3.5.2)

where ψs is the maximum rms value of the signal that can be acquired without

significant distortion and ψn is the rms value of the data acquisition system

noise floor (since the system noise floor is commonly assumed to have a zero

mean value, ψn = σn).

52

Chapter 3: Theoretical Basis

3.5.2 Data conversion

The conditioned signal must be converted into a digital format for it to be

processable. This operation is accomplished by an analog-to-digital converter

(ADC). The ADC is a device that translates a continuous analog signal, which

represents an uncountable set, into a series of discrete values (a time series)

which represents a countable set.

→ Analog-to-digital conversion → Sampling errors → Storage

The most common type of ADC in current use is that referred to as the sigma-

delta (Σ∆) converter, which is schematically illustrated in the following dia-

gram: Basically, the Σ∆ ADCs consist of an oversampling modulator followed

Figure 3.7: Schematic diagram of a sigma-delta converter.

by a digital/decimation filter that together produce a high resolution data-

stream output [5]. The rudimentary Σ∆ converter is a 1-bit sampling system.

An analog signal applied to the input of the converter needs to be relatively

slow so that the converter can sample it multiple times, a technique known as

oversampling. The sampling rate is hundreds of times faster than the digital

results at the output ports. Each sample is accumulated over time and aver-

aged with the other input-signal samples through the digital/decimation filter.

While most converters have one sample rate, the Σ∆ converter has two, the

input sampling rate fs and the output data rate fD.

The Σ∆ modulator is the heart of the Σ∆ ADC. It is responsible for digitiz-

ing the time-varying analog input signal and reducing noise at lower frequen-

cies. Low-frequency noise is pushed up to higher frequencies (outside of the

53

Chapter 3: Theoretical Basis

band of interest) by the noise shaping function of the integrator module.

The Σ∆ modulator acquires many samples of the input signal to produce a

stream of 1-bit codes. The system clock implements the sampling speed, fs, in

conjunction with the modulator’s 1-bit comparator. The ratio of the number

of ones and zeros represents the input analog voltage.

The digital-filter function implements a low-pass filter by first sampling the

modulator stream of the 1-bit code. The digital/decimation filter throws away

the high frequency noise that was shaped by the modulator stge and reduces

the data-output rate of the device to a usable frequency. The output-data is

constituted by frequencies from 0 to fD in the signal band.

The process of oversampling followed by low-pass digital filtering and deci-

mation can be interpreted as increasing the effective resolution of the digital

output by suppressing the spectral density of the digital noise in the output.

The use of an ADC requires some important general considerations:

Figure 3.8: Sampling of analog signal

1. Format. The output of the ADC consists of the natural binary output

of the converter. When the ADC is integrated into a general structural

identification equipment it might be necessary to convert the output data

in ASCII format in order to be able to process them.

2. Resolution. There is a round-off error introduced by the conversion, due

to the size of each digital word that define the magnitude of the input

signal.

3. Sampling Interval. In most cases, the ADC samples the input analog

signal with a fixed sampling interval ∆t.

54

Chapter 3: Theoretical Basis

4. Sampling rate. At least two sample values per cycle are required to define

the highest frequency in an analog signal.

3.5.3 Sampling Theorems for Random Records

A sample random time history record x(t) from a random process {xk(t)} is

considered and exists only for the time interval from 0 to T seconds, and is

zero elsewhere. Its Fourier transform can be expressed as:

X(ω) =

∫ T

0

x(t)e−j2πωtdt (3.5.3)

If x(t) is continually repeated, a periodic time function with a period of T

seconds is obtained and the fundamental frequency increments is f = 1/T . By

applying a Fourier series expansion, the x(t) can be re-written as:

x(t) =
∞∑
−∞

Ane
j2πnt/T (3.5.4)

where An is computed from x(t) as:

An =
1

T

∫ T

0

x(t)ej2πnt/Tdt (3.5.5)

Thus, X(n/T) determines An and, therefore, x(t) at all t:

X
(n
T

)
=

∫ T

0

x(t)ej2πnt/Tdt = TAn (3.5.6)

This result determines X(ω) for all ω, and it is the sampling theorem in the fre-

quency domain. The fundamental frequency increment 1/T is called a Nyquist

co-interval.

In a similar way, a Fourier transform X(ω) of some sample random time his-

tory record x(t) is considered. X(ω) exists only over a frequency interval from

−B to B H and is zero at all other frequencies. The actual realizable frequency

band ranges from 0 to B Hz. The inverse Fourier transform leads to:

x(t) =

∫ B

−B
X(ω)ej2πωtdω (3.5.7)

55

Chapter 3: Theoretical Basis

X(ω) is considered to be repeated in frequency in order to obtain a periodic

frequency function with a period of 2B Hz, and the fundamental time incre-

ment is t = 1/(2B). The Fourier transform X(ω) can be written as a Fourier

series:

X(ω) =
∞∑
−∞

Cne
−jπnω/B (3.5.8)

where Cn can be computed from X(ω) as:

Cn =
1

2B

∫ B

−B
X(ω)e−jπnω/Bdω (3.5.9)

Thus x
[
n

2B

]
) determines Cn and, therefore, X(ω) at all ω.

x
[n

2B

]
) =

∫ B

−B
X(ω)e−jπnω/Bdω = 2BCn (3.5.10)

Thus, this determines x(t) for all t:

x(t) =
∞∑
−∞

x [n/(2B)]
sinπ(2Bt− n)

π(2Bt− n)
(3.5.11)

The last equation shows how x(t) is reconstructed from the sample values taken

1/(2B) seconds apart. This result is the sampling theorem in the time domain

and the fundamental time increment 1/(2B) is called a Nyquist interval.

By sampling X(ω) at Nyquist co-interval points 1/T apart on the frequency

scale from −B to B, the number of discrete samples required to describe x(t)

is:

N =
2B

1/T
= 2BT (3.5.12)

Whilst by sampling x(t) at Nyquist interval points 1/2B apart on the timescale

from 0 to T it follows that:

N =
T

1/2B
= 2BT (3.5.13)

Sampling rates and aliasing errors

The sampling of analog signals for digital data analysis is usually performed

at equally spaced time intervals. It is necessary to determine the appropriate

56

Chapter 3: Theoretical Basis

sampling interval ∆t. As discussed earlier, the minimum number of discrete

samples required to describe the analog signal is given by N = 2BT . Therefore

the maximum sampling interval is:

∆t =
1

2B
(3.5.14)

Sampling at more closely spaced than 1
2B

points will yield correlated and re-

dundant sample values, whilst sampling at points further apart than 1
2B

will

lead to confusion between the low and high frequency components in the orig-

inal data. This latter problem is called aliasing and is a source of error for the

Figure 3.9: Frequency aliasing due to an inadequate digital sampling rate.

processing of the data after the analog-digital conversion. The presence of high

frequencies in the original signal could be misinterpreted in the discretisation

process, and those frequencies will appear as low frequencies.

If the sampling frequency is fs, then the signal of frequency ω and signal of

frequency fs−ω are indistinguishable after discretization, and this causes dis-

tortion of the measured spectra using DFT. The highest frequency that can be

defined by a sampling rate of 1/∆t is 1/(2∆t) Hz. Frequencies in the original

data above 1/(2∆t) Hz will appear below 1/(2∆t) Hz and be confused with

the data in this lower frequency range.

fA =
1

2∆t
(3.5.15)

is called the Nyquistfrequency.

The signal appears in DFT as a distorted form: towards the upper end of the

applicable frequency range (0 − fA) the distortion is due to the fact that the

57

Chapter 3: Theoretical Basis

Figure 3.10: Aliasing error in the computation of an autospectral density

function.

portion of the signal with frequency components above fA will be reflected in

the range 0 − fA. The problem is solved using an anti-aliasing filter which

subjects the original time signal to a low-pass, sharp cut-off filter. Actually,

because the filters used are not perfect and have a finite cut-off rate, the

spectral measurements in a frequency range approaching the Nyquist frequency

must be rejected. Typically, the range from 0, 8 · fA to fA is rejected.

Leakage

Leakage is a direct consequence of the need to take only a finite length of time

history coupled with the assumption of periodicity. We consider a sinusoidal

signal. If the signal is perfectly periodic in the time window T , the resulting

spectrum will be simply a single line at the frequency of the sine wave. If,

Figure 3.11: Leakage error.

however, the periodicity assumption is not satisfied and there is a discontinuity

58

Chapter 3: Theoretical Basis

at the end of the sample, the spectrum will not indicate the single frequency

which the original time signal possessed, and this frequency may not even

prevail in the spectral lines, because the energy leaks into a number of spectral

lines close to the true frequency and the spectrum is spread over several lines.

Leakage is more relevant for low frequency signals and is a serious problem in

may applications of digital signal processing, including FRF measurements.

There are several ways of minimizing its effects [7]:

• Changing the duration of the measurement sample length to match any

underlying periodicity in the signal. This is possible only if the signal is

periodic and its period can be determined.

• Increasing the duration of measurement time T, so the separation be-

tween the spectral lines is finer.

• Windowing : consists on modifying the signal sample obtained in such

a way as to reduce the severity of the leakage effect. This process is

Figure 3.12: Influence of Hanning window to Fourier transform of a signal.

the most widely employed in modal testing. A prescribed profile w(t) is

imposed on the time signal prior to performing Fourier transform. The

analyzed signal is then product of original signal and window profile as

shown in the figure.

3.6 Operational Modal Analysis Techniques

In this thesis system for structural identification and monitoring is discussed,

which implements two methods commonly used to perform an Operational

59

Chapter 3: Theoretical Basis

Modal Analysis: Frequency Domain Decomposition and Stochastic Subspace

Identification. Being modal models, their outputs consist in modal parameter

of the system, while being Operational models their input consists in the mea-

sured response of the system (structure’s output). So input and output for

these methods are the same. How these two methods work, though, is com-

pletely different, and their results are heavily influenced by the mathematical

steps involved. Therefore it is necessary to understand the theory behind these

two methods, which will be presented in the next section, to be able to handle

them correctly.

3.6.1 Frequency Domain Decomposition

Frequency domain OMA methods are based on the previously introduced

formula of input and output power spectral density (PSD) relationship for

stochastic process [41]:

Gyy(jω) = H(jω)∗ ·Gxx(jω) ·H(jω)T (3.6.1)

where Gxx and Gyy are input and output PSD matrices, H(jω) is the FRF

matrix which can be expressed as a partial fraction form via poles λr and

residues Rr:

H(jω) =
N∑
r=1

(
Rr

jω − λr
+

R∗r
jω − λ∗r

)
(3.6.2)

where Rr = φrγ
T
r , φr, γr are mode shape and modal participation vector re-

spectively. When all output measurements are taken as references, then H(jω)

is a square matrix and γr = φr.

In OMA, the input is given by the natural excitations acting on the system and

it can be considered as white noise. Therefore Gxx(jω) equals to constant, and

the modal decomposition of the output PSD matrix Gyy(jω) can be derived

as modal decomposition:

Gyy(jω) =
N∑
r=1

(
Ar

jω − λr
+

AHr
−jω − λ∗r

+
A∗r

jω − λ∗r
+

ATr
−jω − λr

)
(3.6.3)

where the rth pole λr = −σr + jωdr, corresponding to the rth residue Ar ≈
drφ

∗
rφ

T
r , dr = γHr Gxxγr, is a real scalar for white noise excitation. In the vicinity

60

Chapter 3: Theoretical Basis

of a modal frequency, the PSD can be approximated:

GT
yy(jω)|ω→ωr ≈ φr

2dr
jω − λr

φHr = αrφrφ
H
r (3.6.4)

where αr is a scalar constant.

Peak Picking

A classical Frequency Domain approach is the Peak Picking technique (PP),

in which the natural frequency are directly obtained from the choice of peaks

in PSD graph. If the modes are well separated, this technique will lead to

acceptable estimates. However Peak Picking technique presents a low accuracy

especially for complex structures due to the dependency of the result to the

resolution of PSD spectrum, extraction of operational deflection shape instead

of the system natural mode shape, low accuracy in calculation of damping

ratio, and impossibility of its usage for the systems with close modes.

Frequency Domain Decomposition

At a certain frequency ω, only a limited number of modes will contribute

significantly, typically one or two modes. Let this set of modes be denote by

Sub(ω). Thus, in the case of a lightly damped structure, the response spectral

density can always be written as:

Gyy(jω) =
∑

k∈Sub(ω)

αrφrφ
T
r

jω − λr
+
α∗rφ

∗
rφ

H
r

jω − λ∗r
(3.6.5)

PSD Ĝyy(jω), known at discrete frequencies ω = ωi, is then decomposed by

taking the Singular Value Decomposition (SVD) of the matrix:

Ĝyy(jωi) = UiSiU
H
i (3.6.6)

where the matrix Ui = [ui1, ui1, ..., uim] is a unitary matrix holding the singular

vectors uij, and Si is a diagonal matrix holding the scalar singular values sij.

When only kth mode dominates at the modal frequency ωr, the PSD matrix

approximates to a rank one matrix as:

Ĝyy(jωi)|ωi→ωr = siui1u
H
i1 (3.6.7)

61

Chapter 3: Theoretical Basis

Compared to the previous PSD approximation formula, it is seen that the

first singular vector at kth resonance is an estimate of the kth mode shape:

φ̂k = uk1 and the corresponding singular value is the auto power spectral

density function of the corresponding single degree of freedom system. In case

there are more modes repeated at the same frequency, the rank of the matrix

will be equal to the number of multiplicity of the modes.

About Singular Value Decomposition Singular Value Decomposition

has found many applications in modal analysis. The Singular Value Decom-

position of a complex matrix A of dimensions n×m is given by:

A = UΣV H (3.6.8)

where U and V are unitary matrices, Σ is a diagonal matrix that contains the

real singular values:

Σ = diag(s1, ..., sr) (3.6.9)

r = min(m,n) (3.6.10)

The SVD can be computed by using some existing mathematical software.

Analytically, the eigenvectors of AAT constitute U and the eigenvalues of it

constitute ΣTΣ. Likewise, the eigenvectors of ATA constitute V and the eigen-

values of it (the same as the eigenvalues of AAT) constitute ΣΣT . Therefore,

SVD is closely linked to the eigenvalue decomposition.

SVD reveals useful information about A [22]. For instance, the number of

non-zero singular values (therefore the rank of Σ) coincides withe the rank of

A. Once the rank is known, the first k columns of u form an orthogonal basis

for the column space of A. In numerical analysis, zero singular values can

become small quantities due to numerical errors, measurement errors, noise

and ill-conditioning of the matrix.

The superscriptH on the matrix V denotes a Hermitian transformation (trans-

pose and complex conjugate). In the case of real valued matrices, the V matrix

is only transposed. The Si elements in the matrix Σ are called the singular

values, and their corresponding singular vectors are contained in the matrices

U and V .

62

Chapter 3: Theoretical Basis

The SVD is performed for each data-set at each frequency. The PSD matrix

is then approximated to the following expression after SVD:

Gyy(ωi) = ΦΣΦH (3.6.11)

with ΦHΦ = I.

Enhanced Frequency Domain Decomposition

The second generation of FDD, which is called as Enhanced FDD technique

allows the extraction of the resonance frequency and the damping of a particu-

lar mode by computing the auto-correlation function [20]. SDOF auto spectral

densities are identified using the modal assurance criterion (MAC) around a

peak of resonance, and are taken back to the time domain using the Inverse

Discrete Fourier Transform (IDFT). A more accurate estimation of the reso-

nance frequency is obtained by determining the zero crossing times, and the

damping ratio is calculated using the logarithmic decrement of the normalized

auto-correlation function.

Identification of the SDOF auto spectral densities As mentioned ear-

lier, near a peak corresponding to the kth mode in the spectrum, if only the

kth mode is dominating, the first singular vector Φ̂k = uk1 is an estimate of the

mode shape and the corresponding singular value is the auto power spectral

density function of the corresponding SDOF system. The singular value data

near the peak with corresponding singular vector having enough high MAC

value are transferred back to time domain via inverse FFT. The spectral bell

is therefore composed using the MAC criterion:

MAC =
(u1ku1i)

2

u2
1ku

2
1i

(3.6.12)

where u1i are the singular vectors around the peak and u1k is the singular

vector at the peak frequency.

The singular values for which MAC < Ω (the threshold MAC value) are

not part of the SDOF auto spectral density function so they are set to zero.

63

Chapter 3: Theoretical Basis

Therefore we consider only the singular values around the peak for which the

condition MAC > Omega is satisfied.

From the fully or partially identified SDOF auto spectral density function, the

natural frequency and the damping are obtained by taking the spectral density

function back to time domain by inverse FFT.

Calculation of modal parameters From the free decay time domain func-

tion, which is also the auto correlation function of the SDOF system, the nat-

ural frequency and the damping is found by estimating crossing times and

logarithmic decrement. First all extremes rk, both peaks and valleys, on the

correlation function are found. The logarithmic decrement δ is then given by:

δ =
2

k
ln

(
r0

|rk|

)
(3.6.13)

where r0 is the initial value of the correlation function and rk is the kth ex-

treme. Thus, the logarithmic decrement and the initial value of the correlation

function can be found by linear regression on kδ and 2ln(|rk|). The estimation

is performed by applying a linear fit to the part of the curve being close to a

straight line, therefore the damping ratio is given by the known formula, used

for under-damped systems:

ζ =
δ√

δ2 + 4π2
(3.6.14)

The frequency is found by making a linear regression on the crossing times

and the times corresponding to the extremes. The damped natural frequency

fd and the undamped natural frequency f is related by:

f =
fd√

1− ζ2
(3.6.15)

Harmonic Excitations in OMA

The algorithms used in Operational Modal Analysis assume stochastic input

forces, and this is usually verified for civil engineering structures, which are

mainly loaded by ambient forces like wind, waves, traffic or seismic micro-

tremors. The loading forces of many mechanical structures are, however, often

64

Chapter 3: Theoretical Basis

a combination of harmonic components (deterministic signals) originating from

the rotating and reciprocating parts and broadband excitation originating from

either self-generated vibrations from, for example bearings and combustions

or from ambient excitations like air turbulence and road vibrations [25].

As the input forces to the structure are not measured in OMA, the influence

of the harmonic components on the response must be identified and removed.

While SSI methods estimate both harmonic components and structural modes,

in EFDD the identified SDoF function used for modal parameter estimation

may be biased by the harmonic components and harmonic components outside

the SDoF function might narrow the SDoF function and might impoverish the

identification results.

Therefore the influence of the harmonic components must be eliminated from

the SDoF functions before processing them with the modal parameter extrac-

tion process. Harmonic components cannot, in general, be removed by simple

filtering as this would significantly change the natural frequency and modal

damping of the structural modes.

Identification of Harmonic Components using EFDD An efficient way

to discriminate harmonics is by the statistical characteristics of the response

in a narrow frequency band around a harmonic peak [10]. The statistical

properties of a harmonic are in fact different from the properties of a stochastic

response. The stochastic distribution of a modal response will be close to

Gaussian, due to the central limit theorem and the fact that in practice a

structure is loaded by many stochastically independent forces:

65

Chapter 3: Theoretical Basis

Figure 3.13: Normalized PDF of a pure structural mode.

Further, the distribution of a harmonic is different from Gaussian since it has

two distinctive peaks where the distribution gees to infinity [6].

Figure 3.14: Normalized PDF of a pure harmonic component.

In [25] it is shown how to use the kurtosis to discriminate between modal peaks

and harmonic peaks.

Kurtosis The kurtosis γ of a stochastic variable x provides a way of express-

ing how peaked or how flat the PDF of x is. The kurtosis is defined as the

fourth central moment of the stochastic variable x normalized with respect to

the standard deviation σ as follows:

γ(x|µ, σ) =
E {(x− µ)4}

σ4
(3.6.16)

66

Chapter 3: Theoretical Basis

the number 3 is then subtracted from γ to give a kurtosis of zero when x is

Gaussian:

γ∗(x|µ, σ) = γ(x|µ, σ)− 3 (3.6.17)

Therefore, for a structural mode the kurtosis will be equal to zero, since the

associated PDF will be normally distributed, while an harmonic component is

associated with a positive kurtosis.

3.6.2 Stochastic Subspace Identification

The data driven Stochastic Subspace Identification (SSI) is considered to be

the most powerful class of the known identification techniques for natural input

modal analysis in the time domain [9]. SSI methods have been proven efficient

for the identification of linear time-invariant systems (LTI), fitting a linear

model to output-only measurements taken from a system. During the last two

decades, subspace methods found a special interest in mechanical, civil and

aeronautical engineering for the identification of modal parameters of vibrating

structures, as they are computationally efficient methods and can deal with

realistic excitation assumptions.

The discrete time formulation

We consider the stochastic response from a system as function of time:

y(t) =


y1(t)

y2(t)
...

yM(t)


(3.6.18)

The system can be considered in classical formulation as a multi-degree-of-

freedom structural system:

Mÿ(t) +Dẏ(t) +Ky(t) = f(t) (3.6.19)

Where M,D,K is the mass damping and stiffness matrix and where f(t) is

the loading vector. In order to switch to a discrete time formulation, a state

67

Chapter 3: Theoretical Basis

space model is introduced, as the one previously shown. A new variable, x(t),

is introduced:

x(t) =

[
y(t)

ẏ(t)

]
(3.6.20)

With the state-space formulation, the original 2nd order system equation sim-

plifies to a first order equation:

ẋ(t) = ACx(t) +Bf(t) (3.6.21)

y(t) = Cx(t) (3.6.22)

Where the system matrix AC in continuous time and the load matrix B is

given by:

AC =

(
0 I

−M−1K −M−1D

)
(3.6.23)

B =

(
0

−M−1

)
(3.6.24)

This formulation allows to define a direct solution:

x(t) = eActx(0) +

∫ t

0

eAc(t−τ)Bf(τ)dτ (3.6.25)

The first term is the solution to the homogeneous equation and the last term

is the particular solution.

To take the solution to discrete time, all variables are sampled like yk = y(k∆t)

and thus the solution of the homogeneous equation becomes:

xk = eACk∆tx0 = Akdx0 (3.6.26)

Ad = eAC∆t (3.6.27)

yk = CAkdx0 (3.6.28)

The Block Hankel Matrix

In discrete time, the system response is normally represented by the data

matrix:

Y = [y1, y2 · · · yN] (3.6.29)

68

Chapter 3: Theoretical Basis

where N is the number of data points. Let Y1:N−k be the data matrix where we

have removed the last k data points, and Yk:N the data matrix where we have

removed the first k data points. Then an unbiased estimate of the correlation

matrix at time lag k is given by:

R̂k =
1

N − k
Y1:N−kY

T
k:N (3.6.30)

The Block Hankel matrix Yh defined in SSI is simply a gathering of a family

of matrices that are created by shifting the data matrix.

Yh =


Y1:N−2s

Y2:N−2s+1

...

Y2s:N

 =

(
Yhp

Yhf

)
(3.6.31)

The upper half of the matrix is called the past and is denoted as Yhp, while the

lower half of the matrix is called the future and is denoted as Yhf . The total

shift is 2s and is denoted the number of block rows. The number of the rows

in the Blok Hankel matrix is 2sM , the number of columns is N − 2s.

The Projection

Projection is defined as a conditional mean. In SSI, the projection of the future

unto the past defines the matrix

O = E(Yhf |Yhp) (3.6.32)

The conditional mean can, for Gaussian processes, be totally described by

its covariances. Since the shifted data matrices also defines covariances the

projection can be calculated directly as:

O = YhfY
T
hp(YhpY

T
hp)
−1Yhp (3.6.33)

where the last matrix in the product defines the conditions and the first four

matrices introduce the covariances between hannels at different time lags. This

form of conditional mean consist of free decays of the system given by different

initial conditions specified by Yhp. The matrix is sM · sM and any column in

69

Chapter 3: Theoretical Basis

the matrix O is a stacked free decay of the system to a (so far unknown) set

of initial conditions. Any column of O can be expressed by:

Ocol = ΓSx0 (3.6.34)

ΓS =



C

CAd

CA2
d

...

CAs−1
d


(3.6.35)

where Γ is called the observability matrix.

The Kalman States

The Kalman states are the initial conditions for all the columns in the matrix

O, thus

O = ΓsX0 (3.6.36)

where the matrix X0 contains the Kalman states at time lag zero. If we remove

one block row from O from the top, and one block row of Γs from the bottom,

the Kalman state matrix at time lag one X1 is obtained.

Since the matrix ΓS is unknown, the states can be estimated using a Singular

Value Decomposition (SVD) on the O matrix:

O = U · S · V T (3.6.37)

The estimate of the matrix Γ is then given by:

Γ̂ = US1/2 ⇒ X̂0 = S1/2V T (3.6.38)

Estimating the system matrices

The system matrix Ad can be found from the estimate of the matrix Γ by

removing one block from the top and one block from the bottom:

Γ̂(2:s)Âd = Γ̂(1:s−1) (3.6.39)

70

Chapter 3: Theoretical Basis

and thus, the system matrix Âd can be found by regression. The observation

matrix C can be obtained by taking the first block of the observability matrix:

Ĉ = Γ̂1:1 (3.6.40)

Modal Analysis

An eigenvalue decomposition of the system matrix Âd is performed:

Âd = Ψ [µi] Ψ−1 (3.6.41)

The continuous time poles λi are found from the discrete time poles µi by:

µi = eλi (3.6.42)

Leading to the formulas for the calculation of the modal parameters:

λi = ln(µi)
∆T

ωi = |λi|
fi = ωi

2π

ζi = Re(λi
|λi|

(3.6.43)

The mode shape matrix is found from:

Φ = CΨ (3.6.44)

71

Chapter 4

SIM/AtOMA: User’s Manual

4.1 Introduction

4.1.1 Welcome to SIM/AtOMA 0.1

Operational Modal Analysis SIM/AtOMA (System Identification and Moni-

toring - Automatic tool for Operational Modal Analysis) is a software tool that

allows the user to perform structural dynamic identification and monitoring

tasks, implementing two Operational Modal Analysis methods: the Enhanced

Frequency Domain Decomposition and the Stochastic Subspace Identification.

The identification procedure requires a consistent set of raw acceleration mea-

surements performed on the structure and provides, for both methods, the

structure’s natural frequencies and damping ratios. It is also possible to config-

ureAtOMA to perform automatically the analysis on new data using template

files, in order to allow a continuous monitoring of the dynamic characteristics

of the structure. The program disposes of a graphical user interface (GUI)

(Figure 4.1), which makes it simple and user friendly.

72

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.1: AtOMA user interface.

73

Chapter 4: SIM/AtOMA: User’s Manual

4.2 Getting started

4.2.1 AtOMA: Description of the Graphical User Inter-

face

AtOMA provides a friendly user interface that guides the user through each

analysis step. It is composed of three major blocks:

• Input data panel: this is where the analysis starts. It is presented the

choice of method to be used for the analysis (AutoEFDD or AutoSSI)

and the parameters of the system configuration.

• Identification: in this panel the modal parameters for the AutoEFDD

method are determined. In the first part the natural frequencies are

identified, while the second part concerns the damping ratios.

• Results : this panel concerns the results managements. Here it is possible

to save new results, to view a results file, to merge compatible results

and to save a new template.

The menu bar has a number of global utility functions, some of which are

already present in the user interface:

• File

– New

– New from template

– Exit

• Results

– View Results

– Merge Results

• Schedule

– New Schedule

74

Chapter 4: SIM/AtOMA: User’s Manual

– Schedule Launcher

• Help

– User Manual

– About SIM/AtOMA

These functions will be discussed individually below.

4.3 AutoEFDD method

Identification AutoEFDD is an algorithm based on the Enhanced Frequency

Domain Decomposition. As an Operational Modal Analysis method, it as-

sumes that the input forces are stochastic in nature. The only inputs required

by the program are the raw measures sets containing the accelerations of the

structure.

First input data (the files containing the accelerations measurements) are se-

lected and the corresponding characteristics are specified by the user. The

Cross Power Spectral density function is computed for each file and then the

cpsd matrices are decomposed using the Singular Value Decomposition. Sub-

sequently the identification of the modal parameters is performed: after the

user has set up the parameters, natural frequencies and damping ratios are

calculated automatically. Finally, the user is able to save, merge and view the

results of the analysis.

The results of the analysis consist on two tables: Result_ Frequency and Re-

sult_ Damping. The first column of each file contains the date on which the

measurement was carried out. Each row contains, in ascending order, the nat-

ural frequencies calculated for each mode.

The flow chart in Figure 4.2 summarizes the steps required in order to conduct

a new identification.

Monitoring The AutoEFDD method is also suitable for dynamic monitor-

ing. As a frequency domain method, it is proven to be adequately fast and

precise.

75

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.2: New analysis flow chart.

Once an identification task on new data is performed, it is possible to save a

Template file. Inside the template files are stored information about the anal-

ysis, including the natural frequencies found for the structure. The template

file allows the user to perform a new, compatible, identification analysis on

the system, loading only the new measurement files. The program identifies,

if any, the natural frequencies calculated for the new files starting from those

saved in the template, and calculates the corresponding damping ratio.

It is also possible to configure a system for automatic execution of the moni-

toring tasks on the basis of a template file, by using schedule functions.

In Figure 4.3 is shown the flow chart that summarizes the steps required to

76

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.3: Automatic monitoring flow chart.

perform an automatic monitoring.

4.3.1 Step 1: select input data and perform CPSD &

SVD

To perform a new AutoEFDD analysis, select File, New from the menu. The

user can choose whether to select new data, or using a partial FDD file previ-

ously saved by selecting the corresponding radio button.

Figure 4.4: Input data type.

77

Chapter 4: SIM/AtOMA: User’s Manual

The second option may be useful if the user needs to perform an analysis on

large amount of data at a later time.

New input data

This function is used to load the raw data files containing the acceleration

measures on the structure. The requirements for the input files are:

• The file format is *.txt

• The file names must contain the suffix ’_Fast’

• In the file, after the header lines, the first column must contain the time

(in seconds) while subsequent columns, each separated by tabs, must

contain the accelerations for each channel. At each row corresponds an

instant of measurement.

A compatible measurement file is formatted as follows:
t0 2013/04/01 13:03:07

dt 0,010000

time ACC_ 1 ACC_ 2 ACC_ 3 ACC_ 4 ACC_ 5 ACC_ 6

0,000 -0,002162 0,000530 0,000205 -0,000008 0,000596 0,000383

0,010 -0,003193 0,002645 0,001280 -0,000015 0,002258 0,000427

0,020 -0,002941 0,001923 0,000775 -0,000013 -0,000508 0,000598

0,030 0,000869 0,000542 0,000129 -0,000000 -0,002076 0,000295

0,040 0,000703 0,003234 0,000398 0,000001 -0,003874 -0,000573

0,050 0,001065 0,001131 -0,000630 0,000017 -0,002438 -0,000626

0,060 0,005938 0,003836 -0,000669 0,000015 -0,000689 -0,001197

0,070 0,000362 0,002768 -0,000732 -0,000005 0,002879 -0,001018

0,080 -0,001838 0,000678 -0,000241 0,000004 0,003595 -0,000771

· · ·

Figure 4.5 shows how the loading interface looks.

78

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.5: New input data.

First, press Browse button to select the folder in which the data are stored.

Then, set the parameters required for the FDD analysis.

• NFFT is the FFT length which determines the number of frequencies

in which the frequency domain is subdivided using the discrete Fourier

transform.

• Number of rows in the data-set is the minimum number of measurements

within each file.

• Sampling frequency is the number of samples per unit of time.

• Channels are the columns of each file to consider in the analysis, sepa-

rated by commas.

The Start button loads the compatible files found inside the selected folder and

performs Cross Power Spectral Density and Singular Value Decomposition.

Once you have completed this first phase of analysis, you may save the tempo-

rary FDD file using the Save FDD button, or simply go on with the analysis

and move on to phase two.

79

Chapter 4: SIM/AtOMA: User’s Manual

Existing FDD file

If you previously saved a temporary FDD file, you can select it using the

Browse button and then load it using the Load existing FDD file button.

This allows you to skip the step of calculating the CPSD and SVD matrices.

Figure 4.6: Existing FDD file.

4.3.2 Step 2: identification of natural frequencies and

damping ratios

Natural frequencies identification

To perform the natural frequencies identification, press the Calculate Natural

Frequency button.

Figure 4.7: Natural frequency identification panel.

80

Chapter 4: SIM/AtOMA: User’s Manual

Required user input The parameters required for the Natural Frequency

identification are the following:

1. MAC Threshold

2. Frequency sensibility

3. First file

4. Step

Process To understand their purpose you need to consider how the frequen-

cies identification works. For an in-depth explanation of this procedure, look

at [36].

In Step 1 power spectral density matrices were calculated and subsequently

decomposed using the singular value decomposition.

The singular value matrices are then divided into subgroups, whose dimension

is set by the user through the Step (4) parameter. All files preceding the First

file (3) specified by the user are ignored. Each subgroup contains a number of

svd matrices sets (containing U and S) equal to step.

Within each subgroup, for each frequency, a MAC value is calculated by com-

paring the singular vectors related to each measurement files belonging to the

subgroup. A mean MAC value is then calculated between the MAC of each

subgroup.

A high mean MAC value in a certain frequency sub-domain indicates a strong

correlation between the singular vector and thus it is possible that a mode of

vibration may be present in that sub-domain.

In order to adequately separate the potential vibrating modes, a MAC Thresh-

old is set (by the user, through the MAC Threshold (1) parameter).

The singular values can be displayed using the Singular Values & MAC Figure

button. The red line shows the MAC Threshold specified by the user and at

what level filters the MAC values.

81

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.8: Singular Values.

Not all mean MAC peaks that exceed the threshold value are actually struc-

tural modes, only the broadest are considered: the parameter Frequency sensi-

bility (3) sets the minimum allowable width in frequency for which the values

that exceed the threshold are considerable as part of a modal domain.

Figure 4.9: MAC Treshold and non-structural peaks filtering.

At higher values of this parameter could correspond a lower sensitivity to the

weaker structural modes, while lower values are likely to also identify non-

structural modes. A typical case that explains the meaning of the Frequency

sensibility parameter is shown in figure. It is clear that the frequency sub-

domain from 11, 2 to 12 Hz contains a structural mode, while the other peaks

must be excluded.

Selected potential modal domains are then subject to further analysis to con-

firm that they actually represent structural modes.

Results Once this step is completed, the natural frequencies found are dis-

played in the Results block.

82

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.10: Identified Natural Frequencies.

Figure 4.11: Natural frequency trend.

You can observe the trend of the natural frequencies found for each file using

the button Natural Frequencies Trend (Figure 4.11). You can launch the figure

that represents the singular values, pressing the Singular Values Figure (Figure

4.8).

Damping Ratio Estimation

To calculate Damping Ratios press the Calculate damping ratios button.

83

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.12: Damping Ratio Estimation Panel.

Required User Input Three parameters are required to perform the pro-

cess:

1. MAC Threshold

2. Max Correlation

3. Min Correlation

Process The calculation of the damping ratio can be decomposed into three

main steps.

1. Identification of the spectral bell: the SDoF Auto-spectral functions are

identified around the natural frequencies using MAC criterion;

2. Transformation of the spectral bell to time domain: the normalized SDoF

auto-correlation functions are calculated;

3. Damping ratio estimation using logarithmic decrement of the absolute

extreme values in the range set by the user.

84

Chapter 4: SIM/AtOMA: User’s Manual

Identification of the spectral bell The power spectral density function

is identified around each peak by comparing the mode shape estimate with

the singular vectors for the frequency lines around the peak. As long as a

singular vector is found that has MAC value with the mode shape estimate

the corresponding singular value belongs to the SDoF density function.

MAC =
(urifuf)

2

u2
rifu

2
f

(4.3.1)

The singular values for which MAC < Ω (where Ω is the user-specified pa-

rameter MAC Threshold (1)), are set to zero. Therefore only the frequencies

around the peak that satisfy the condition MAC > Ω are considered and

constitute the spectral bell.

Figure 4.13: Identification of the autospectrum and of the SDoF Auto-

Spectral Function.

Setting a higher value for the MAC Threshold would shrink the spectral bell,

while a lower value would widen it.

Transformation of the spectral bell to time domain From the fully or

partially identified SDOF auto spectral density function, the natural frequency

and the damping are obtained by taking the spectral density function back to

time domain by inverse FFT. A n-point inverse discrete Fourier transformation

is used, where n is the previously specified NFFT parameter.

The output given by the Fourier inverse transformation, is then normalized and

represents the Normalized Correlation Function of the Singular Value Spectral

85

Chapter 4: SIM/AtOMA: User’s Manual

Bell, and is shown in Figure 4.14.

Figure 4.14: Normalized Correlation Function of the Singular Value Spec-

tral Bell.

Damping ratio estimation The rectangle, visible in Figure 4.14, defines

the values used for the calculation of the damping ratio. Its limits are specified

by the user through the parameters Max Correlation (2) and Min Correlation

(3). The first part and the tail of the correlation function are excluded from

the analysis, as these parts are more sensitive to noise.

For Max Correlation are recommended values around 0.9 and for Min Correla-

tion around 0.2. Since these values influence the final value of damping ratio,

it is recommended to calibrate them on the basis of expected damping results,

if available.

First all extremes rk, both peaks and valleys, on the selected part of the

correlation function are found. The logarithmic decrement δ is then given

by:

δ =
2

k
ln

(
r0

|rk|

)
(4.3.2)

where r0 is the initial value of the correlation function and rk is the kth extreme.

r0 and rk correspond to the maximum and minimum values of correlation de-

fined by the user, while k is the number of extreme values (maximum and

minimum) present in the interval.

The more the curve exhibits a linear logarithmic decrement, the more the

86

Chapter 4: SIM/AtOMA: User’s Manual

damping value will be significant.

Figure 4.15: Validation of Damping Ratio Estimate: Logarithmic Decre-

ment.

The damping ratio is given by the following formula:

ζ =
δ√

δ2 + 4π2
(4.3.3)

An estimate of the natural frequency is also calculated, by simply counting

the number of times in which the correlation function is zero in the range

considered.

Results The main output given by this block consists on the estimated

damping ratio results for each measurement set and for each structural mode.

The mean damping calculated for each structural mode (excluding the outliers)

is displayed in the results block.

Figure 4.16: Identified Mean Natural Frequencies and Damping Ratios.

The damping results are saved in the results management block.

In the damping identification block it is possible to launch some graphs useful

for understanding and analysing the results.

87

Chapter 4: SIM/AtOMA: User’s Manual

• Damping vs Frequency : puts to graph (Figure 4.17) all values of damp-

ing ratio calculated with respect to the relative natural frequencies de-

termined in the frequency domain.

Figure 4.17: Damping versus Natural Frequency Graph.

• Mean damping vs Frequencies : shows the mean values of the damping ra-

tio compared with mean values of the relative natural frequencies (Figure

4.18).

Figure 4.18: Mean Damping Ratio vs. Mean Natural Frequency Graph.

• Box plot : it is a statistical description of the data through the quartiles

(Figure 4.19).

88

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.19: Box Plot.

What is a Box-Plot The meaning of a box-plot is explained in Figure

4.20. It is clear that, the narrower the Inter-Quartile Range is, the less

data are dispersed and the better the estimate of the damping ratio is.

Figure 4.20: What is a Box Plot.

• Damping ratio trend : it shows, for each structural mode, the trend over

time of the calculated damping ratio (Figure 4.21).

89

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.21: Damping Ratio Trend.

It is also possible get more detailed information on the process of the damping

ratio calculation by opening the Validation window (Figure 4.22).

Figure 4.22: Damping ratio validation tool.

This screen allows the user to observe, for each input file, and for each struc-

tural mode, some graphs useful in understanding the process and possibly

make changes in the configuration parameters. Initially the user must select

the file to check and the structural mode of interest from the two drop-down

menu. Then it is possible to launch the following graphs:

• Spectral bell shows the selected SDOF auto spectral density function,

which is subsequently transformed in time domain, as in Figure 4.23. If

the selected SDoF auto-spectral density function includes more than one

90

Chapter 4: SIM/AtOMA: User’s Manual

peak the user might want to edit the input parameters for damping ratio

calculation.

Figure 4.23: Selected SDOF auto spectral density function.

• Normalized auto-correlation function shows (Figure 4.24) the result of

the normalized inverse Fourier transform of the SDOF auto spectral den-

sity function.

Figure 4.24: Normalized auto-correlation function.

• Logarithmic decrement shows (Figure 4.25) the logarithmic decrement of

the absolute extreme values compared with the linear trend assumed in

the calculation of the damping ratio. If the logarithmic decrement of the

absolute extreme values is far from a linear behaviour, the user should

check the input parameters.

91

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.25: Logarithmic decrement of the absolute extreme values.

• Frequency(F) vs Frequency(T): Figure 4.26 shows the relationship be-

tween the frequencies previously calculated in the frequency domain and

the values estimated in the time domain using Enhanced Frequency Do-

main Decomposition. Values that deviate from linearity may indicate

coupled structural modes or bad selections of the SDoF auto spectrum.

If natural frequencies calculated in time domain (using EFDD) are very

different than those calculated in frequency domain, then the structural

modes are not properly selected in frequency domain.

Figure 4.26: Natural frequencies calculated in frequency domain vs natu-

ral frequencies calculated in time domain.

92

Chapter 4: SIM/AtOMA: User’s Manual

4.3.3 Results management

Once the analysis is completed, the results can be saved inside a file. After a

results file is saved, it is possible to view this file or to merge it with other com-

patible results files. The compatibility between results files will be discussed

further.

Figure 4.27: Results management panel.

Saving the results

When the calculation of natural frequencies and damping ratios is complete,

the Save Results button becomes enabled . Once the user presses the button,

a dialog window is displayed in order to select the file name and its path inside

the computer.

After the saving process is complete a dialog will confirm the save.

Viewing the results

The View results button provides a simple interface that allows the user to

display and export the results of a particular file.

First, select a compatible results file pressing the Load results file button.

Every result saved within the SIM/AtOMA program is compatible, so both

AutoEFDD and AutoSSI results files can be selected.

View results provides some graphs for the reading of the results. All these

graphs are also available in the analysis phase and have already been discussed.

• Natural frequencies results

– Natural frequencies trend : the trend of the natural frequencies found

for each file.

93

Chapter 4: SIM/AtOMA: User’s Manual

• Damping results

– Damping vs Frequency : puts to graph all values of damping ratio

calculated with respect to the relative natural frequencies deter-

mined in the frequency domain.

– Mean damping vs Frequencies : shows the mean values of the damp-

ing ratio compared with mean values of the relative natural frequen-

cies.

– Box plot : it is a statistical description of the data through the

quartiles.

– Damping ratio trend : it shows, for each structural mode, the trend

over time of the calculated damping ratio.

In addition to these charts, you can export the results to excel and save the

graphics as an image.

Figure 4.28: ’View results’ interface.

94

Chapter 4: SIM/AtOMA: User’s Manual

Merging the results

It is possible to merge multiple results files into one file using the merge results

button. A simple interface is displayed:

Figure 4.29: ’Merge results’ interface.

Press Select results file to merge button to load two or more results files. It is

possible to remove a file from the list by pressing the Remove selected button;

a file can be moved up or down on the list by pressing the Move up or the

Move down buttons.

By checking the check-box Delete duplicate items, if two items belonging to

the files in the list are attributable on the same date of measurement, only the

item belonging to the higher file in the list will be preserved in the merged file.

If the check-box is not checked, no item will be deleted.

Selecting Sort by date, the elements will be sorted in ascending order based on

the date of measurement. Otherwise, selecting Sort by user order, the order

set by the user in the list will be kept in the merged file.

Pressing the Merge & Save button the files are merged according to the spec-

ified settings and a dialog to save the merged file is displayed.

The View button will open the View Results window, with the merged file

already loaded.

Not all files can be merged In fact, only files with the same number of

structural modes are compatible. The results obtained from a template are

95

Chapter 4: SIM/AtOMA: User’s Manual

always mutually compatible.

4.4 Structural monitoring using AutoEFDDmethod

4.4.1 Monitoring using templates

Structural monitoring requires the ability to update the analysis over time

with the new measurements performed on the structure.

AutoEFDD method provides a fast and efficient way to do so: once a first

analysis is completed and the major structural modes of the structure are

identified, a Template file can be saved. The template file contains informa-

tion about the structure upon which new analysis will be based.

When a new analysis is started on the basis of an existing template the program

skips the modal domain identification phase. The auto-spectrum functions of

the new files are analyzed in correspondence of the modal domains previ-

ously identified and listed in the template, in search of the vibrating modes

of the structure. If a vibrating mode exists inside the modal domain, the

corresponding natural frequency and damping ratio are calculated and auto-

matically saved in a results file, which is then merged with the previous results

files.

Therefore, once you have a template file, simply select the new measurement

files available and launch analysis to update the time profile of the results.

Saving a template

To save a template file, complete an identification analysis using AutoEFDD

method, then press the Save template button.

Figure 4.30: Save template button.

The following dialog is then displayed:

96

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.31: Save template dialog.

It is required to set a series of details for the template file:

• Template name: an identifying name for the template. Only alphanu-

meric characters are allowed.

• Description: some useful details regarding the design or analysis.

• Author : the reference operator who carried out the first analysis.

• Image: select an image file representing the structure.

Once you have specified the details, press OK to save the template. The

template is automatically saved within the template folder of the program in

*.efdd file format.

New from template

To start a new analysis based on a template select from the drop-down menu

File → New from template.

A dialog prompts the user to select the template file. Once a template file is

loaded, a summary screen of the analysis is shown, which contains the data

entered by the user when saving the template.

It is then required to select input files using the AutoEFDD: New input data

panel. Once the user presses the START button the analysis is carried out

automatically using the parameters of the template. The results are saved in

the Results folder of the program and automatically merged with the older

files.

97

Chapter 4: SIM/AtOMA: User’s Manual

4.4.2 Automatic monitoring using schedules

AtOMA allows the user to set the automatic execution of dynamic monitoring

tasks at specific times through the use of Schedules. A schedule is a configu-

ration file that contains information about the required analysis:

• The template to be used for analysis;

• The hours in which to launch the analysis;

• The folder where the new measurement files are placed.

This function is particularly useful in the case in which the computer where

AtOMA is installed automatically receives new files measuring one or more

times per day, because it allows the operator to have information on the dy-

namic state of the structure without first having to transfer the new measure-

ment files, an operation that in the case of files of large dimensions can be

particularly onerous if made via the internet network.

Creating a new schedule file

To create a new schedule file, select from the drop-down menu Schedule →
New schedule.

A window will be displayed. To create a schedule file is required to enter some

details:

• The name of the Schedule (only alphanumeric characters allowed);

• The template on which to perform the analysis;

• The folder where new measurement files are put;

• The times in which it is scheduled to run automatic analysis.

98

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.32: Creating a new schedule.

Once the configuration is completed, press Save button to save the schedule.

The schedule will be saved as a file in the Schedule folder of AtOMA program.

Schedule launcher

In order to start a scheduling task, the user has to select from the drop-down

menu the voice Schedule → Schedule Launcher. It is required to select the

schedule file.

Figure 4.33: Waiting for a scheduled event.

Once the scheduler is active, the time of the subsequent execution of the anal-

ysis is displayed. To interrupt the scheduler, press OK in the dialog. At the

specified time, AtOMA will launch the analysis without requiring any user

input. The results will be saved and merged with the previous ones and the

scheduler will wait for the subsequent scheduled execution.

99

Chapter 4: SIM/AtOMA: User’s Manual

4.5 AutoSSI method

Stochastic Subspace Identification is the second method implemented in AtOMA

for structural identification purpose. The main reason for which this method

was implemented lies in its strength and reliability. The SSI method is, in fact,

considered to be one of the most powerful tools for the structural dynamic iden-

tification. SSI is however characterized by a high computational burden that

does not makes it very suitable for monitoring operations, or analysis of a large

number of measurement files.

The aim is therefore to provide the results of reference on which to base the

analysis with the method AutoEFDD, in the absence, or in addition, to the

results provided by an FE model of the structure.

4.5.1 Identification using AutoSSI

To select the AutoSSI method for dynamic identification, check the AutoSSI

check-box in the input data block.

Figure 4.34: AutoSSI panel.

Then, select the folder containing the measurement files by pressing the Browse

button.

Channels is the list of valid channels of the measurements files, divided by

commas. To start the SSI analysis, press the Start SSI button. Please notice

that the analysis might take a lot of time and might be very demanding for

100

Chapter 4: SIM/AtOMA: User’s Manual

the computer’s resources.

After The analysis is completed, it is asked to save the results. The results are,

like the ones provided with the AutoEFDD method, composed of two tables:

Result_frequency, containing the natural frequencies, and Result_damping,

containing the damping ratios.

The results can be displayed using the View results button.

Since AutoSSI procedure is much more onerous than AutoEFDD, it has been

implemented in order to validate the results provided by AutoEFDD. Validate

AutoEFDD results is a tool that allows the user to compare the results obtained

with AutoEFDD and AutoSSI. It provides information about the relative error

between the average results of each structural mode obtained by means of the

two methods in the form of two tables (one for the natural frequencies and the

other for the damping ratios).

4.6 Tutorial: Ponte sul Mincio, Verona

In this section, an application of the tools inAToMA for the identification and

monitoring of dynamic structures, will be carried out in relation to a bridge

located along the A4 highway in the municipality of Peschiera sul Garda, as a

step-by step tutorial for the program.

Figure 4.35: Bridge over the River Mincio.

It is assumed to operate in typical conditions in order to perform a dynamic

101

Chapter 4: SIM/AtOMA: User’s Manual

monitoring. Initially an identification of the dynamic structure, with relative

calibration of the parameters of the program, is performed. Subsequently a

dynamic monitoring system is configured by means of the scheduling tools.

Finally, the results provided by the monitoring will be analyzed and compared

with the dynamic characteristics of the FEM model of the structure.

4.6.1 Inventory of information

The structure is a three-spans bridge constituted by two side-by-side indepen-

dent continuous beams, with a box steel section, leaning on concrete piers and

abutments [37].

The side spans of the viaduct are 41 m long, while the central span is 70 m

long. The total length of the girders measured between the axes of the sup-

ports on the abutments is therefore equal to 152 m.

The total width of the deck, for each of the two girders, is equal to 15.55 m,

14.50 m of which are used by the carriageway and 00.50 +0.55 = 1.05 m are

occupied by the guard-rails.

The current configuration of the road is due to the works of widening of the

road, carried out in the years 1991-1992, which enlarged it from the initial 25

m to the current 33 m. In the occasion of such works the girders of pre-stressed

concrete have been replaced with the current steel box girders, while piers and

abutments have undergone reinforcement, cant and, only for the abutments,

side extension.

The cross section of the bridge has a constant height, approximately equal to

3.30 m, and is constituted by a single-celled body of trapezoidal shape hav-

ing the bottom flange width of 5 m and the sides wide apart symmetrically

upwards forming, with the upper plate of the deck, the upper base of the

trapezoid with a width of 7 m.

102

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.36: Cross section of the decks in the span.

The cross section of the deck is then completed by two lateral cantilevers,

supported by continuous crosspieces on three supports, which are part of the

diaphragms transverse stiffening of the body. The road surface was obtained

directly on the top flange of the girder, through processes of blasting and wa-

terproof protective flooring with application of a special polymer conglomerate.

The plates constituting the thin walls of the cross section of the girders of the

bridge are made longitudinally rigid through the use of "V" stiffeners, with

are welded with continuity to the plates and form, with these, closed sub-cells.

The thickness of the plates and the distribution of the stiffeners, are as follows:

• Top flange:

– Metal sheet with constant thickness for all types of cross-section

equal to 13 mm;

– "V" stiffeners with a thickness of 7 mm, with a gap equal to 30 cm,

distributed at a distance of about 60 cm.

• Bottom flange:

– Metal sheet of variable thickness, ranging from a minimum of 14 to

a maximum of 28 mm;

– "V" stiffeners with a thickness of 7 mm, in number of 4, distributed

at a distance of about 100 cm,

– "T" stiffeners with a height of 200 mm, consisting of profiles 10 mm

thick, replacing the "V" stiffeners, continuing along the axis line for

a distance of approximately 3 m before and after the intermediate

supports (on the piers).

103

Chapter 4: SIM/AtOMA: User’s Manual

• Lateral sides:

– Variable metal sheet thicknesses ranging from 13 to 16 mm,

– "V" stiffeners, 7 mm thick, in number of 2, respectively at 70 cm

and 180 cm from the bottom edge of the sides.

For all plates S355 steel was used, while the corner pieces that form the inter-

mediate diaphragms utilize S235 steel.

Each of the girders is constrained in four cross sections characterized by the

presence of particularly stiff continuous diaphragms, namely in correspondence

of the abutments and of the two intermediate piers. There are two support

apparatus for each of these sections: they are arranged symmetrically with re-

spect to the vertical plane of symmetry of the section itself, at a distance from

the section of approximately 1.80 m. Their arrangement does not contrast

the deformations of the structure due to both operational forces and thermal

variations.

4.6.2 Overview of damage

Following a series of inspections on the structure in 2011 performed by SM

Ingegneria S.r.l., an overview of the state of deterioration of the bridge was

outlined.

Inspections carried out inside the box girder of the two decks have revealed

damage to the structure related to the phenomena of fatigue. Some of the

major issues on the structure are constituted by [37]:

• Cracks on the outer ribs;

• Cracks on the inner ribs;

• The infiltration of material from the roadway within some stiffeners re-

sulting in a high state of corrosion;

• The top plate was damaged by the milling of the layer of asphalt of the

road.

104

Chapter 4: SIM/AtOMA: User’s Manual

4.6.3 Structural analysis

Model preparation

A finite element model of the structure was developed using the Strand7 soft-

ware (HSH Computing, Padua).

In this study case only one type of solver is used: Natural Frequency Analysis.

The model is three-dimensional type (Figure 4.37).

Figure 4.37: FE model of the bridge.

The side plates of the deck are modeled using plate elements characterized by

a variable thickness over the length of the deck, ranging from 13 mm to 16 mm

(Figure 4.38).

Figure 4.38: Modeling of the side plates of the deck.

The top and the bottom flanges are modeled using plate elements. The thick-

ness of the bottom flange is variable over the length of the bridge. The meshing

105

Chapter 4: SIM/AtOMA: User’s Manual

is more dense in correspondence of the piers (Figure 4.39).

Figure 4.39: Modeling of the top and bottom flanges of the deck.

The ribs are modeled as plate elements. The property is constant along the

length of the deck (Figure 4.40).

Figure 4.40: Modeling of the ribs of the bridge.

The edge beams and the transverse joists are modeled using beam elements

(Figure 4.41).

106

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.41: Modeling of the edge beams and of the transverse joists of

the bridge.

The mechanical properties of the components of the model were initially as-

sumed as the design characteristics of the materials.

Dynamic analysis

The purpose of the Natural frequency analysis is to provide an interpretation of

the structural behaviour of the structure in order to allow an adequate choice

for the placement of the measurement instruments. The structural vibration

modes and the corresponding natural frequencies represent the structural re-

sponse of the structure. The superposition of all the structural modes provides,

in fact, the global dynamic behaviour of the structure.

Following the dynamic analysis of the structure, the results for the first 8

modes of vibration observed by means of the FE model are shown.

Figure 4.42: Mode 1: 2.73 Hz and Mode 2: 5.40 Hz

Figure 4.43: Mode 3: 6.01 Hz and Mode 4: 6.17 Hz

107

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.44: Mode 5: 7.22 Hz and Mode 6: 7.84 Hz

Figure 4.45: Mode 7: 8.31 Hz and Mode 8: 8.72 Hz

4.6.4 Dynamic monitoring

The results of the dynamic FE model made it possible to arrange the installa-

tion of the monitoring system in order to perform the modal testing.

Following test installations made during 2012, the final installation of the mon-

itoring system has been completed July 20, 2012 [38].

Insitutions involved UNIPD

Period of implementation July 2012 - December 2012

Date of activation 20/7/2012

Dynamic System 56 Strain gauges

State of the system Not active

Table 4.1: Details for the measurements on Ponte sul Mincio

The monitoring system is composed of 56 channels and uses a series of strain

gauges as measuring instruments (Figure 4.46). The installation was performed

by EXPIN s.r.l. - ADVANCED STRUCTURAL CONTROL.

Since the strain gauges measure the deformation of a particular object, a con-

version has been necessary in order to use the measurements for a dynamic

analysis using AtOMA.

108

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.46: Schematic summary of the positioning of the instrumentation

Only 15 channels were available to perform the dynamic analysis: channel 20,

21, 24, 28, 29, 32, 36, 37, 40, 44, 45, 48, 52, 53, 56.

4.6.5 Tutorial: identification of the structure using AtOMA

- AutoEFDD

Selection of input data Once AtOMA is launched, the check-box Au-

toEFDD: New input data was selected. Then, in order to choose the folder

where the measurement files were located the Browse button was pressed.

Figure 4.47: AutoEFDD: select input data

The parameters are chosen as displayed in Figure 4.47. Note that not all the

channels available in the files were selected, since channels from 10 to 15 were

excluded from the analysis.

109

Chapter 4: SIM/AtOMA: User’s Manual

The button Start is pressed in order to perform the first step of the FDD

analysis (calculation of the cpsd matrices and singular value decomposition).

A progress bar will appear that allows you to watch the progress of the calcu-

lations (Figure 4.48).

Figure 4.48: Progress bar.

Identification of the structural modes Once the calculation is com-

pleted, it is required to perform the natural frequencies identification. The

parameters are set as displayed in Figure 4.49

Figure 4.49: Natural frequencies identification.

A progress bar will inform you on the development of identification (Figure

4.50).

Figure 4.50: Progress bar.

The mean values of the results of the frequency identification are displayed in

the text field in the Results Panel (Figure 4.51).

110

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.51: Mean values of the natural frequencies.

The development over time of the natural frequencies is displayed by pressing

the Natural Frequencies Trend button (Figure 4.52).

Figure 4.52: Development of natural frequencies.

The auto-spectrum function is displayed by pressing the Singular values &

MAC Figure button. In Figure 4.53 the peaks corresponding to identified

natural frequencies have been highlighted.

Figure 4.53: Singular values & MAC Figure.

111

Chapter 4: SIM/AtOMA: User’s Manual

The results are summarized in Table 4.2. It can be seen that the identification

has been successfully held for almost every measurement file. The low standard

deviation indicates that the frequencies are poorly dispersed.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

fmax 2,173 4,077 4,590 6,177 9,741 11,572

fmin 2,100 4,028 4,517 6,128 9,692 11,523

fmean 2,130 4,064 4,548 6,139 9,719 11,561

std.dev 0,021 0,018 0,029 0,015 0,022 0,016

success% 96,4% 92,7% 98,2% 74,5% 76,4% 87,3%

Table 4.2: Frequency results of the monitoring using AutoEFDD.

Extraction of damping ratio Then, once the identification of the struc-

tural modes is complete, damping ratio parameters must be calculated. First

the parameters (MAC Threshold, Max Correlation and Min Correlation) are

configured as shown in Figure 4.54.

Figure 4.54: Damping ratio calculation.

By pressing the Calculate Damping Ratio button the damping ratio parameters

are extracted and their mean values are displayed in the text field in the Results

panel (Figure 4.56).

112

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.55: Mean values of the damping ratios.

Validation of the results It is possible to launch the validation panel by

pressing the Validate button. From this panel the user is allowed to observe

the results obtained for each file and each structural mode. The tasks available

through this panel are listed in Section 4.3.2.

Figure 4.56: Validation of the damping ratios.

The graphs for the first mode (2,124 Hz) of the file of the 24th July are dis-

played in the following figures.

In Figure 4.57 is displayed the SDoF Auto-Spectral function for the first struc-

tural mode. The selected frequency function shows good characteristics, as it

is well defined and there is no noticeable noise.

113

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.57: SDoF Auto-Spectral function.

In Figure 4.57 the normalized auto-correlation function for the first structural

mode is displayed. The behavior exhibited by the function is that of a typ-

ical structural decay function and does not appear distinctive of a harmonic

excitation.

Figure 4.58: Normalized auto-correlation function.

The logarithmic decrement shown in Figure 4.59 detaches itself, especially in

the initial portion, from a linear trend.

114

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.59: Logarithmic decrement.

Therefore a lower value for the parameters Max Correlation and Min Corre-

lation is chosen: Max Correlation=0,6 and Min Correlation=0.1. Calculation

of the damping ratios is performed again by clicking the Calculate damping ra-

tios button. The normalized auto-correlation function and the corresponding

logarithmic decrement are shown in Figure 4.60.

Figure 4.60: Normalized auto-correlation function and logarithmic decre-

ment with new parameters.

Figure 4.61 displays the correlation between the natural frequencies calculated

using the EFDD analysis in frequency domain and those calculated, again

using EFDD, in time domain. The values thus calculated are practically equal

to each other.

115

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.61: Frequency (F) vs Frequency (T).

Damping ratio results Once the validation is complete, results of the calcu-

lation can be displayed by pressing the buttons Damping vs Frequency (Figure

4.62), Mean damping vs Frequencies, Box plot (Figure 4.63) and Damping vs

time (Figures 4.64, 4.65 and 4.66).

In Figure 4.62 the extracted modal parameters are displayed for all the files.

Mode 1 and 4 are the structural modes that have allowed a better identification

of the damping ratio, although presenting some dispersion in the results.

Figure 4.62: Damping vs frequency figure.

The box-plot description shown in Figure 4.63 is actually useful only for mode

1, 4 and 5 as they are the only modes to possess a sufficient success rate.

116

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.63: Box plot description of damping ratio results.

In Figures 4.64, 4.65, 4.66 are shown the extracted damping ratio values for

each structural mode over time. It is clear that modes 2, 3 and 6 do not have

a sufficient number of results and the correspondent damping ratio can not be

used, at this stage, for model updating operations.

Since the time span for the monitoring was too narrow, it was not possible to

observe any type of seasonal fluctuation of the results.

Figure 4.64: Trend over time of damping ratios for mode 1, 2.

Figure 4.65: Trend over time of damping ratios for mode 3, 4.

117

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.66: Trend over time of damping ratios for mode 5, 6.

It can be seen from Table 4.3 that damping ratio results for this structure are

affected by a high level of uncertainty, which is confirmed by the low success

rate for modes 2, 3, 5, 6 and the high dispersion of the results especially for

mode 4. Therefore it is required to perform a validation of the results using

AutoSSI method.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ζmax 4,747% 3,799% 4,070% 7,111% 3,562% 1,629%

ζmin 1,164% 1,462% 1,901% 0,827% 0,891% 0,920%

ζmean 2,314% 2,152% 3,003% 3,500% 2,069% 1,373%

std.dev 0,864% 0,975% 0,858% 1,608% 0,935% 0,324%

success% 89,1% 9,1% 9,1% 58,2% 20,0% 7,3%

Table 4.3: Damping results of the monitoring using AutoEFDD.

Saving the template If the parameters used to configure the analysis (NFFT,

Channels, MAC threshold for frequency, Frequency sensibility, MAC Thresh-

old for damping, Max and Min Correlation) are considered to be the ones that

provide the best results for the structure, then it is possible to save a Template

file. The template file contains information about the position of the modal

domains of the structure, therefore, subsequent analysis are carried out to con-

firm the presence of a mode of vibration around the modal domain previously

defined.

Figure 4.67: Save template button.

118

Chapter 4: SIM/AtOMA: User’s Manual

To save a template file, press the Save template file button. A dialog requires

the user to specify some details of the analysis. By pressing OK the tem-

plate is automatically saved inside the Template folder of the program. The

name of the template file is automatically defined by the name of the template

set by the user: if the template is called Mincio OK, the file name will be

Template_Mincio_OK.efdd.

Save results To save the results of the analysis, press the Save results but-

ton.

Figure 4.68: Save results button.

If a template file was previously saved, the program automatically saves the

results file inside the Results folder corresponding to the template. Otherwise,

a dialog asks the user to specify the folder where the file will be saved.

Analysis using AutoSSI To perform a SSI analysis, press Browse to select

the folder containing the files and set the channels to use in the analysis. For

the current analysis, the chosen channels are 1,2,3,4,5,6,7,8,9 as shown in

Figure 4.69.

119

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.69: Analysis using SSI.

Then, press Start SSI in order to launch the analysis. Note that AutoSSI

procedure requires requires much more time and processing power higher than

AutoEFDD.

Once the analysis is finished, the user is asked to save the SSI results file.

The results given by AutoSSI procedure are displayed in Tables 4.4 and 4.5.

AutoSSI analysis could not identify the 6th structural mode at 11,56 Hz, prob-

ably due to the calibration of the internal parameters of the model.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

fmax 2,165 4,279 4,710 6,111 9,751

fmin 2,098 4,199 4,310 5,988 9,735

fmean 2,126 4,235 4,553 6,057 9,743

std.dev 0,021 0,027 0,132 0,047 0,011

success% 100,0% 72,7% 90,9% 54,5% 18,2%

Table 4.4: Frequency results of the monitoring using AutoSSI.

120

Chapter 4: SIM/AtOMA: User’s Manual

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

ζmax 3,551% 3,613% 7,329% 4,252% 3,734%

ζmin 1,451% 1,692% 2,464% 2,496% 2,606%

ζmean 2,755% 2,700% 4,590% 3,253% 3,170%

std.dev 0,723% 0,596% 1,474% 0,700% 0,798%

success% 100,0% 72,7% 90,9% 54,5% 18,2%

Table 4.5: Damping results of the monitoring using AutoSSI.

The reason why these results are of interest resides in the possibility to com-

pare them with those extracted by the method AutoEFDD. By pressing the

Validate AutoEFDD results button in the SSI panel, it is possible to compare

the results obtained with the two different procedures. The program asks the

user to select the AutoEFDD and AutoSSI results files to compare. Then Ta-

bles 4.6 and 4.7 are displayed, which contain the results for both AutoEFDD

and AutoSSI, including the relative error between the results.

In Table 4.6 are shown the natural frequencies extracted using the two proce-

dures. The results are very close, except for the mode 6 which is not identified

by the method AutoSSI.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

f(EFDD) 2.128 4.067 4.547 6.146 9.720 11.564

Success%(EFDD) 100% 92.7% 98.2% 90.9% 76.4% 87.3%

f(SSI) 2.126 4.230 4.554 6.057 9.743 -

Success%(SSI) 100% 81.8% 90.9% 54.5% 18.2% -

Error ε 0.1% 3.9% 0.1% 1.5% 0.2% -

Table 4.6: Comparision of the natural frequencies extracted using Au-

toEFDD and AutoSSI.

In Table 4.7 are displayed the damping ratios obtained with the two procedures.

AutoSSI presents a higher success rate than AutoEFDD for modes 2, 3, 5.

The average results show an error ranging from 9% to 44%. These errors are

considerable acceptable, given the structural differences of the models. The

121

Chapter 4: SIM/AtOMA: User’s Manual

order of magnitude of the parameters is in fact confirmed, and these values

could be used for the calibration of a FE model.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ζ(EFDD) 2.236% 2.152% 3.003% 3.545% 2.034% 1.373%

Success%(EFDD) 89.1% 9.1% 9.1% 60.0% 20.0% 7.3%

ζ(SSI) 2.755% 2.700% 4.590% 3.253% 3.170% -

Success%(SSI) 100% 72.7% 90.9% 54.5% 18.2% -

Error ε 20.8% 22.6% 41.8% 8.6% 43.7% -

Table 4.7: Comparision of the damping ratios extracted using AutoEFDD

and AutoSSI.

Overall, it can be said that the identification made by using the AutoEFDD

is validated.

New AutoEFDD analysis using template To start an analysis based on

a previous one, select from the drop-down menu File → New from template.

Then, select the template file previously saved (for example Template_Mincio

_OK.efdd).

In the Input data panel, select the check-box AutoEFDD: New input data

and press Browse to select the folder containing the measurement files, then

press Start. The program will automatically process all the steps of the anal-

ysis, since no user input is required. When the calculation of the damping

ratios is completed, the program saves the results inside the template’s Re-

sults folder (in this case, Results/MincioOk/ and merges the new results file

with the other files in the folder (if any). The merged results file is called

current_sequence.mat and it can be opened using the View results button.

Schedule functions To set up the automatic execution of the template-

driven analysis, select Schedule → New Schedule from the drop-down menu.

The panel shown in figure 4.70 displays a typical configuration of the schedule.

122

Chapter 4: SIM/AtOMA: User’s Manual

Figure 4.70: New Schedule.

In this case, the chosen template is Template_Mincio_OK.efdd, and the

folder is the one in which the program that handles the measurements of the

structure puts new files. Since new files are usually stored at 10:45 and 17:45,

the analysis is programmed to automatically start at 11:00 and 18:30.

Pressing Save, the scheduled task is saved as a configuration file inside the

schedule folder, whose name is sch_Mincio.schedule.

In order to enable the scheduler, select from the drop-down menu Schedule →
Schedule launcher. The user is asked to choose the configuration file, in this

case sch_Mincio.schedule. A dialog displays the next scheduled analysis.

Figure 4.71: Schedule launcher.

Pressing OK, the scheduler is disabled.

When the specified time is reached, the analysis is performed automatically

without user intervention, and once completed, the system gets back waiting

for the next run.

123

Chapter 4: SIM/AtOMA: User’s Manual

Conclusions With the perspective of the program user, an analysis of the

dynamic identification of the bridge over the Mincio was developed, demon-

strating the reliability of the results obtained by the procedure AutoEFDD by

the procedure AutoSSI also available as a ATOMA.

At the current state, it is necessary to rely on other software in to correlate

the modal shapes of the FE model with those identified with modal testing.

For other expected future developments for the program, look at 5.6.

124

Chapter 5

Program code

5.1 Introduction

In this chapter the code that constitutes the program is described. AtOMA

is a program developed using Matlab R© environment. A Graphical User In-

terface (GUI) is composed by various graphical objects, usable by the user.

Each component reacts to the user’s interaction, by triggering the activation

of a corresponding function, which in a graphical interface context, is called

Callback function. Each callback function contains a set of commands aimed

to perform specific tasks.

The first part of the implementation of the AutoEFDD method, consisting

in the identification of the natural frequencies, was implemented by Piovesan

D. in [36]. The SSI method was implemented by Islami K. in [24]. The Au-

toEFDD method was improved by enabling the calculation of the damping

ratio.

In this chapter, initially a detailed description of the code that leads to the

calculation of the damping ratio for the AutoEFDD procedure will be carried

out. Subsequently, the global behaviour of the program will be addressed and

the purpose of the main callback functions will be described.

We will proceed in the conceptual order associated with the use of the program:

1. The functions called by the input selection panel’s objects;

2. The functions called by the identification panel’s objects;

125

Chapter 5: Program code

3. The functions called by the result management panel’s objects;

4. The functions called by the menu elements.

Many application variables used across the entire program are defined using

the setappdata function. The most important ones are defined below, in order

to help the comprehension of the code.

• usingtemplate: if it is set to 1, then a template has been loaded and

thus, the process is template-driven. In this case a user intervention is

partially required.

• scheduleron: if it is set to 1, then a scheduled task is active and the user

intervention is not required.

• FDD_location contains the path for the FDD.mat file used in the anal-

ysis.

• mergetemplate: if it is set to 1, then the process is template-driven and

the results files contained in the default results folder are automatically

merged once the analysis is finished.

• Result_frequency contains the variable of the calculated natural fre-

quencies.

• Result_damping contains the variable of the calculated damping ratios.

5.1.1 Graphical User Interfaces using Matlab R©

What is a GUI? A graphical user interface is a graphical display in one

or more windows containing controls, called components that enable a user to

perform interactive tasks.

GUI components can include menus, tool-bars, push buttons, radio buttons,

list boxes, and sliders. Usually a GUI waits for the user to manipulate a

control, and subsequently responds to each action. Each control can, usually

by means of a particular user interaction, launch a user-written sub-routine,

which is called Callback function.

126

Chapter 5: Program code

This kind of programming is often referred to as event-driven programming,

since it requires specific situations to happen in order to trigger a specific

action.

A GUI is actually a collections of graphical components and functions. Graph-

ical components are designed using a specific tool available for Matlab R© called

GUIDE. Callback functions are actually like normal Matlab functions. What

actually distinguishes GUI programming to command programming is that the

callback execution is asynchronous, that is, it is triggered by events external

to the software. This means that there is no default path for the execution of

the program, and the data must be exchanged between the functions and in-

terface components when they are needed, asynchronously. Data management

is therefore a key point when programming a GUI.

Data management with a GUI The user is often required to change the

status of some objects, i.e. to insert some text or a numerical value inside a

text field, or to select a check-box and so on. This status is usually required to

perform the execution of a Callback. Inside the callback, this particular value

needs to be read. The callback function must invoke a special variable called

handles. The handles variable is an input variable required by default for every

callback function (it might be excluded in case it’s not necessary). Its name

may actually be misleading. A handle has in fact the purpose of providing ac-

cess to properties of an object, while handles variable is precisely a structure

of multiple handles. By invoking the handles variable, the user is able to read

and write the properties of every single component of the interface, by using

get and set function. Each component is in fact defined by a set of properties.

Let’s assume that a text field is called text1 (it means that its property tag

is equal to text1). When a user writes something inside text1, he is, in fact,

changing the status of its String parameter. For callback function, the content

of the text field it is not readily available as a global variable. It can be be

read using handles : MyString=get(handles.text1,’String’); saves the value of

the String property of the component called text1 inside the variableMyString,

that can now be used by the callback function.

It is also possible for a callback to write a new string inside text1 by using the

127

Chapter 5: Program code

set command: set(handles.text1,’String’,’This is my new string’);. What has

been said about the String property of the component is applicable for every

other property.

handles variable can also be used for passing a variable between callbacks. The

command handles.NewVar=content; saves a new variable inside the handles

structure, which can be invoked from another function with the command con-

tent=handles.NewVar; .

It is important, however, to make an observation about the nature of handles.

As it was introduced, variable handles is passed as an input argument for the

callback. This means that what is being used inside the function is actually

only an instance, a photograph of the real structure of handles taken at the

moment in which the callback is invoked. This is important if handles is used

to pass a variable between callbacks, in fact, if a new variable is saved in han-

dles, it is actually stored only inside a copy of handles and will be lost after

the function is finished. Therefore handles must be updated after the change,

using the command guidata.

Another way of storing variables so that they are globally available among

the different callbacks of the program is by using setappdata and getappdata

functions.

Opening functions The opening function is the first callback in every GUI

M-file. It performs tasks that need to be done before the user has access to the

GUI. For example, the opening function of AutoEFDDgui (the main interface)

is used to initialize the application variables usingtemplate and scheduleron to

zero, which respectively determine if a template is used and if the scheduler is

on, and to disable the identification panel which is not yet available for user

interaction.

f unc t i on AutoEFDDgui_OpeningFcn(hObject , eventdata , handles ,

va rarg in)

guidata (hObject , handles) ;

setappdata (0 , ’ us ingtemplate ’ , 0) ;

setappdata (0 , ’ s chedu le ron ’ , 0) ;

s e t (f i n d a l l (handles . u ipanel7 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ o f f ’)

128

Chapter 5: Program code

;

Listing 5.1: Opening function

5.2 Input selection panel

The check-boxes at the top of the panel are used to select the required in-

put panel. Each radio object is characterized by a tag, which identifies the

Callback’s name.

AutoEFDD: New input data this checkbox enables the panel for the

selection of new input data, setting newdatapanel as visible and the other

input panels (ssipanel and existingdatapanel) as not-visible.

AutoEFDD: Existing FDD file, AutoSSI these check-boxes perform the

same operations of the first check-box, relatively to each own panel.

AutoEFDD: new input data panel

Once the AutoEFDD: new input data check-box is pressed, the corresponding

panel becomes visible.

The Browse button allows the selection of the folder containing the measure-

ments files, and ultimately displays it in the text field situated below it.

f unc t i on browsenewfdd_Callback (hObject , eventdata , handles)

folder_name = u i g e t d i r (’ ’ , ’ P lease s e l e c t the f o l d e r with the data

f i l e ’) ;

handles . f i l e L i s t = g e tA l l F i l e s (folder_name , 500) ;

guidata (hObject , handles) ;

s e t (handles . f o l d e r , ’ S t r ing ’ , folder_name) ;

. . .

Listing 5.2: AutoEFDD: Browse button

The Start button begins the FDD procedure.

First the parameters specified by the user (L, fs, NFFT, channels), and the

129

Chapter 5: Program code

path of the directory containing the files, are read using the get function.

Subsequently cpsd and svd matrices are calculated (for more details about this

portion of code, look at [36]).

f unc t i on [handles]= start fdd_Cal lback (hObject , eventdata , handles)

%Reading o f the parameters .

c ana l i=get (handles . channels , ’ S t r ing ’) ;

cana l i_ind=s t r f i n d (cana l i , ’ , ’) ;

v (1)=str2num (c ana l i (1 : canal i_ind (1)−1)) ;

f o r i =2: l ength (canal i_ind)

v (i)=str2num (c ana l i (canal i_ind (i −1)+1: canal i_ind (i)−1)) ;

end

v (i +1)=str2num (c ana l i (canal i_ind (i) +1: l ength (c ana l i))) ;

. . .

Listing 5.3: AutoEFDD: Start FDD button

After the Singular Value Decomposition is performed for all of the measure-

ments files contained in the directory, the objects inside the identification panel

are enabled for user interaction.

Processed data is then saved inside a FDD.mat file.

If the process is driven by a scheduled event (if getappdata(0,’scheduleron’)==1),

the last part of the next block is used to move the files to a subfolder called

archive. If the process is driven by a template, subsequent callbacks (frequencies_Callback,

damping_Callback, saveres_Callback and merge) are launched.

. . .

c l o s e (h) ;

hhh=handles ;

c l e a r handles hObject ;

save FDD;

load (getappdata (0 , ’ FDD_location ’) , ’ FastNameList ’) ;

s e t (f i ndob j (’Tag ’ , ’ i f a s t 0 ’) , ’ S t r ing ’ , FastNameList , ’ Value ’ , 1) ;

i f getappdata (0 , ’ us ingtemplate ’)==1

i f getappdata (0 , ’ s chedu le ron ’)==1 %spostamento f i l e s

a r ch ive =[getappdata (0 , ’ f a s t d i r ’) ’ \ a r ch ive \ ’] ;

i f ~ e x i s t (arch ive , ’ f i l e ’) mkdir (a r ch ive) ; end

f o r i =1: l ength (FastNameList) move f i l e (FastNameList{ i } ,

arch ive , ’ f ’) ; end

130

Chapter 5: Program code

end

handles=frequenc i e s_Cal lback ([] , [] , hhh) ;

handles=damping_Callback ([] , [] , handles) ;

saveres_Cal lback ([] , [] , handles) ;

setappdata (0 , ’ mergetemplate ’ , 1) ;

merge ;

end

Listing 5.4: AutoEFDD: Start FDD button - 2

The Save FDD file button allow the user to copy the FDD.mat file to any

directory.

f unc t i on save fdd f i l e_Ca l lback (hObject , eventdata , handles)

[FileName , PathName] = u i p u t f i l e (’FDD_∗ .mat ’) ;

c o p y f i l e (getappdata (0 , ’ FDD_location ’) , [PathName FileName] , ’ f ’) ;

Listing 5.5: AutoEFDD: Save FDD button

AutoEFDD: Existing FDD file

The Browse button allows the user to select a valid FDD.mat file, created in a

previous analysis. The path of the file is displayed in the text field below the

button.

f unc t i on browsefdd_Callback (hObject , eventdata , handles)

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ .mat ’ , ’ P lease s e l e c t

the FDD. mat f i l e . ’) ;

fdd_name=[PathName FileName] ;

s e t (handles . f d d f i l e , ’ S t r ing ’ , fdd_name) ;

. . .

Listing 5.6: AutoEFDD: Browse existing FDD button

Once the FDD file is selected, by pressing the Load FDD file button, the ap-

plication variable data FDD_location is set by using the setappdata function.

If the analysis is performed on the basis of a template, this button will automat-

ically launch the subsequent callbacks (frequencies_Callback, damping_Callback,

saveres_Callback and merge).

131

Chapter 5: Program code

f unc t i on loadfdd_Callback (hObject , eventdata , handles)

setappdata (0 , ’ FDD_location ’ , get (handles . f d d f i l e , ’ S t r ing ’)) ;

FDD=getappdata (0 , ’ FDD_location ’) ;

. . .

load (getappdata (0 , ’ FDD_location ’) , ’ Fas tL i s t ’) ;

FL=s t r u c t 2 c e l l (Fas tL i s t) ;

s e t (f i ndob j (’Tag ’ , ’ i f a s t 0 ’) , ’ S t r ing ’ ,FL, ’ Value ’ , 1) ;

i f getappdata (0 , ’ us ingtemplate ’)==1

handles=frequenc i e s_Cal lback ([] , [] , handles) ;

handles=damping_Callback ([] , hObject , handles) ;

saveres_Cal lback ([] , [] , handles) ;

setappdata (0 , ’ mergetemplate ’ , 1) ;

merge ;

end

Listing 5.7: AutoEFDD: Load existing FDD button

AutoSSI

The Browse button in the AutoSSI panel leads to the selection of the folder

containing the measurement files. The path of the directory is then displayed

inside the text field below the button.

f unc t i on ss ibrowse_Cal lback (hObject , eventdata , handles)

folder_name = u i g e t d i r (’ ’ , ’ S e l e c t data f o l d e r ’) ;

i f folder_name (1)~=0

s e t (handles . s s i d i r , ’ S t r ing ’ , folder_name) ;

s e t (handles . s s i s t a r t , ’ Enable ’ , ’ on ’) ;

end

Listing 5.8: AutoSSI: Browse button

The Start SSI button reads the path of the directory written inside the text

field and executes the SSI analysis. For more informations about the AutoSSI

procedure, look at [24].

The results are saved in the same format as the ones obtained from the Au-

toEFDD procedure.

f unc t i on s s i s t a r t_Ca l l back (hObject , eventdata , handles)

132

Chapter 5: Program code

folder_name=get (handles . s s i d i r , ’ S t r ing ’) ;

. . .

c a n a l i=get (handles . channelsSSI , ’ S t r ing ’) ;

cana l i_ind=s t r f i n d (cana l i , ’ , ’) ;

v (1)=str2num (c ana l i (1 : canal i_ind (1)−1)) ;

f o r i =2: l ength (canal i_ind)

v (i)=str2num (c ana l i (canal i_ind (i −1)+1: canal i_ind (i)−1)) ;

end

v (i +1)=str2num (c ana l i (canal i_ind (i) +1: l ength (c ana l i))) ;

S i gna l s = load ([folder_name ’ \ ’ ’Temp. txt ’]) ;

TN_Channel = s i z e (S igna l s , 2) ;

S i gna l s (: , 1) = [] ;

S i gna l s = S i gna l s (: , v) ;

. . .

%SSI

. . .

Result_frequency (i f a s t , :) =[kn appr (1 : 1 2 , 1) ’] ;

Result_damping (i f a s t , :) =[kn (appr (1 : 1 2 , 2) ’) . / 1 0 0] ;

. . .

i f ~ e x i s t (’ . . \ Resu l t s ’ , ’ f i l e ’)

mkdir (’ . . \ Resu l t s ’) ;

end

[f i l e , path] = u i p u t f i l e (’ . . \ Resu l t s \SSI_Result_ ’ , ’ Save SSI Resu l t s

F i l e . ’) ;

f i l e s s i =[path f i l e] ;

save (f i l e s s i , ’ Result_frequency ’ , ’ Result_damping ’) ;

setappdata (0 , ’ CurrentResults ’ , f i l e s s i) ;

v i ew r e s u l t s ;

Listing 5.9: AutoSSI: Start SSI button

5.3 Identification panel

The identification panel serves, exclusively for the AutoEFDD procedure, to

identify natural frequencies and damping ratios.

133

Chapter 5: Program code

5.3.1 Natural frequencies identification panel

The Calculate Natural Frequencies button performs the natural frequencies

identification according to the parameters specified by the user.

For detailed informations about the identification of the natural frequencies,

look at [36].

The beginning of the callback consists in loading the FDD file and reading the

parameters. If the process is driven by a template, the first part is bypassed

because the modal domains are already defined.

f unc t i on [handles] = f requenc i e s_Cal lback (hObject , eventdata ,

handles)

s e t (handles . statusF , ’ S t r ing ’ , ’Wait . . ’ , ’ BackgroundColor ’ , [1 0 0]) ;

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD) ;

gg=2;

templ=getappdata (0 , ’ us ingtemplate ’) ;

i f templ == 0

pp = 1 ;

e l s e

pp = −1;

end

i f pp==1

. . .

Listing 5.10: Calculate natural frequencies button

The parameter N is given by the Frequency sensibility transformed into a

number of frequency points:

N =
NFFT

fs · frequencysensibility
(5.3.1)

i f s s==3

mac = st r2doub l e (get (handles .mac , ’ S t r ing ’)) ;

N = round (NFFT/ f s ∗ s t r2doub l e (get (handles . n , ’ S t r ing ’))

) ;

Listing 5.11: Calculate natural frequencies button - mac and N parameters

134

Chapter 5: Program code

After the modal domains are found [36], the natural frequencies are identified

for each file. If the process is template-driven, then the first part was skipped

and the variables that define the modal domains are loaded from the template.

. . .

c l e a r v a r s −except handles

i f getappdata (0 , ’ us ingtemplate ’)==1

load (getappdata (0 , ’ s a v e f i l e ’)) ;

load (getappdata (0 , ’ i n d i c i ’)) ;

e l s e

load s a v e f i l e

load i n d i c i

end

load (getappdata (0 , ’ FDD_location ’)) ;

. . .

Listing 5.12: Calculate natural frequencies button - template-driven

procedure

The natural frequencies are then calculated and saved in the variable newf2.

The file PERDAMPING.mat contains the data needed for damping ratio cal-

culation.

The frequency results are averaged excluding the outliers and displayed inside

the Results panel in order to provide a quick view of the results.

. . .

save PERDAMPING SS0 Umodi NFFT f s newf2 f1

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD, ’ Result ’) ;

f o r i =1: i f a s t 2

f o r j =1: s i z e (INDICI , 2)

Result (i , j +1)=newf2 (i , j) ;

end

end

Result (~ Result)=nan ;

mode l i s t=f i ndob j (’Tag ’ , ’ mode l i s t ’) ;

f o r i =2: s i z e (Result , 2)

l i stSTR{ i −1}=[’Mode ’ num2str (i −1) ’ : ’ num2str (trimmean (

Result (: , i) , 20) ,4) ’ Hz ’] ;

135

Chapter 5: Program code

end

s e t (model i st , ’ S t r ing ’ , l i stSTR) ;

. . .

Listing 5.13: Calculate natural frequencies button - data saving

The Singular values & MAC figure provides a plot of the Singular Values of

the Cross Power Spectral Density functions of the selected files.

At first, the data are prepared for plotting.

f unc t i on svbutton_Callback (hObject , eventdata , handles)

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD) ;

i f a s t 0 = get (handles . i f a s t 0 , ’ Value ’) ;

i f a s t = st r2doub l e (get (handles . i f a s t , ’ S t r ing ’)) ;

i f a s t = i f a s t 0+i f a s t −1;

fmTOT = ze ro s (f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1)) ,50) ;

appAX = ze ro s (50 ,300 , f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1))) ;

ZZ = appAX;

YY = appAX;

indiciTOT=ze ro s (f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1)) ,50) ;

UUrif (: , :)=Umodi (: , : , i f a s t 0) ;

f o r j=i f a s t 0 +1: i f a s t

f o r i =1:NFFT/2+1

UUrif2=UUrif (i , :) ∗UUrif (i , :) ’ ;

P=(UUrif (i , :) ∗Umodi(i , : , j) ’) . ^ 2 ;

u i=Umodi(i , : , j) ∗Umodi(i , : , j) ’ ;

MACuu(j−i f a s t 0 , i)=P/(UUrif2∗ ui) ;

end

end

STD=std (MACuu) ;

miniSTD=STD(1 : 0 . 4 ∗NFFT) ;

mSTD=sum(miniSTD) /(0 . 4∗NFFT) ;

f o r n=1:NFFT/2+1

MACuuMEDIO(n)=sum(MACuu(: , n) ’) /(i f a s t − i f a s t 0) ;

end

Listing 5.14: Singular Values & MAC Figure Button

136

Chapter 5: Program code

The plotting of the figures is subsequently developed using the subplot function,

which allows to place multiple graphs within the same window.

x=0:NFFT;

y=x−x+st r2doub l e (get (handles .mac , ’ S t r ing ’)) ;

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en te r ’) ;

subplot (2 , 1 , 1) ;

[AX,H1 ,H2]=plotyy (f 1 (1 : 0 . 4 ∗NFFT+1) ,MACuuMEDIO(1 : 0 . 4 ∗NFFT

+1) , f 1 (1 : 0 . 4 ∗NFFT+1) , SS1 (1 : 0 . 4 ∗NFFT+1 , : , i f a s t) , ’ p l o t ’) ; hold

on

. . .

p l o t (x , y , ’−r ’ , ’ l i n ew id th ’ , 1) ;

s e t (get (gca , ’ Xlabe l ’) , ’ S t r ing ’ , ’ Frequency (Hz) ’ , ’ Color ’ , ’

k ’) ;

t i t l e (’ \ f o n t s i z e {12} S ingu la r va lue s − r e f e r e n c e f i l e ’) ;

subplot (2 , 1 , 2) ;

f o r i=i f a s t 0 : i f a s t

[AX,H1 ,H2]=plotyy (f 1 (1 : 0 . 4 ∗NFFT+1) ,MACuuMEDIO(1 : 0 . 4 ∗NFFT

+1) , f 1 (1 : 0 . 4 ∗NFFT+1) , SS1 (1 : 0 . 4 ∗NFFT+1 ,1 , i) , ’ p l o t ’) ; hold on

. . .

end

. . .

p l o t (x , y , ’−r ’ , ’ l i n ew id th ’ , 1) ;

s e t (get (gca , ’ Xlabe l ’) , ’ S t r ing ’ , ’ Frequency (Hz) ’ , ’ Color ’ , ’

k ’) ;

t i t l e (’ \ f o n t s i z e {12} F i r s t s i n gu l a r va lue − a l l f i l e s ’) ;

Listing 5.15: Singular Values & MAC Figure Button - 2

A typical output graph given by Singular Values & MAC Figure is shown in

Figure 5.1

137

Chapter 5: Program code

Figure 5.1: Singular Values.

Natural frequencies trend button shows the trend over time of the natural fre-

quencies calculated for the selected measurements files. The callback frequenzetempo_Callback

calls an external function (plotfreq), by specifying the frequency results (ob-

tained using getappdata function and 0 (it could be, otherwise, the handles of

a graph inside the interface) as parameters.

The function plotfreq is defined as follows:

f unc t i on p l o t f r e q (Result , f r a x e s)

Result0 = Result ;

Result0 (f i nd (i snan (Result0))) = 0 ;

f o r j =1: s i z e (Result , 2)

media (j) = sum(Result0 (: , j)) /sum(s i gn (Result0 (: , j))) ;

end

i f f r a x e s~=0 axes (f r a x e s) ;

e l s e

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ;

end

maxf=max(max(Result (: , 2 : end))) ;

f o r i = 2 : s i z e (Result , 2)

f r=num2str (trimmean (Result (: , i) , 20) ,4) ;

set_legend (i −1) = c e l l s t r ([’Mode ’ num2str (i −1) ’ : Hz ’ f r

]) ;

end

p lo t (Result (: , 1) , Result (: , 2 : end) , ’ l i n e s t y l e ’ , ’ none ’ , ’ LineWidth

’ , 1 . 2 , ’ Marker ’ , ’ . ’ , ’ Markers ize ’ , 5) ;

. . .

Listing 5.16: Natural frequencies development function

A typical output graph given by Natural frequencies trend is shown in Figure

5.2.

138

Chapter 5: Program code

Figure 5.2: Natural frequency trend.

Once the natural frequency identification is done, damping ratios must be com-

puted in order to complete the analysis.

5.3.2 Damping Ratio Calculation

Damping ratio calculation was one of the major purposes of this thesis and was

implemented based on theoretical background introduced in Chapter . As was

previously seen from a theoretical point of view, the calculation of the Damping

Ratio parameter for the Enhanced Frequency Domain Decomposition method

consists in several steps:

1. The SDoF Auto-Spectrum functions are identified.

2. Transform of the "spectral bells" to time domain using Inverse Fourier

Transform.

3. The normalized auto-correlation functions are calculated.

4. For each natural frequency, damping ratio is calculated.

5. The global results table is built.

The damping_ Callback function processes all of these steps.

Other objects provide the necessary tools to view the results and to save them

to file.

The damping_ Callback function is activated when the user presses the button

labeled "Calculate damping ratio" in the main interface (Figure 4.1).

139

Chapter 5: Program code

Figure 5.3: damping_ Callback activation.

Damping Callback Function

User configuration In the following block the parameters specified by the

user via the GUI (MAC Threshold, Max Correlation, Min Correlation) are

read using the get command. The PERDAMPING.mat file, previously stored

in the natural frequencies identification step, contains the following variables:

• NFFT : the FFT length which determines the frequencies at which the

PSD is estimated. It is required to transform the spectral bells to time

domain.

• SS0 : the matrix containing the singular values for each measure set.

• Umodi : the matrix containing the singular vectors for each measure set.

• f1 : the vector of frequencies at which the CPSD is estimated.

• fs : the sampling frequency for the data sets.

• newf2 : the natural frequencies previously calculated for each measure

set.

Search of the position of natural frequencies In the following section

the position of the PSD peaks in the frequency array is found and stored in

140

Chapter 5: Program code

the index array indiceF. This is done for each measure set: size(SS0,3) defines

the number of the considered measure sets.

. . .

f o r i f a s t 3 =1: s i z e (SS0 , 3) ;

Segnale=SS0 (1 : round (i n t e r v a l l o ∗NFFT+1) ,1 , i f a s t 3) ;

ind iceF=ones (last fm , 1) ;

damping=ze ro s (last fm , 1) ;

j =1;

i =1;

whi l e j<=las t fm && i < i n t e r v a l l o ∗NFFT+1

i=i +1;

i f newf2 (i f a s t 3 , j)==0

j=j +1;

e l s e

i f (f 1 (i)>=newf2 (i f a s t 3 , j) && f1 (i −1)<=newf2 (i f a s t 3 , j))

ind iceF (j) = i ;

j=j +1;

end

end

end

Listing 5.17: Search of the position of natural frequencies

Identification of the SDoF Auto Spectral Function - 1 The SDoF

auto spectral function is identified using the MAC criterion. For each struc-

tural mode, the variables rangeL and rangeR are defined as the number of

singular values to the left and right of the peak to include within the SDoF

auto spectral density function.

For each structural mode, a reference singular vector is selected in correspon-

dence to the peak (Urif=Umodi(indiceF(Fj),:,ifast3)).

MAC =
(u1ku1i)

2

u2
1ku

2
1i

(5.3.2)

For each frequency line around the peak the MAC value is calculated, initially

decreasing the frequency of a value at a time to obtain rangeL, subsequently

increasing it to a value at a time from the frequency corresponding to the

peak to determine rangeR. This value is compared with the threshold specified

141

Chapter 5: Program code

by the user (MAC Threshold). As long as the MAC is sufficiently high, the

considered frequency is included in the SDoF auto spectral function and the

rangeL o rangeR variables are updated.

rangemax=100;

rangeL=ze ro s (l ength (ind iceF) ,1) ;

rangeR=ze ro s (l ength (ind iceF) ,1) ;

k=1;

f o r Fj=1: l ength (ind iceF) %Fj i nd i c e de l modo cons id e ra to

i f ind iceF (Fj) ==1|| ind iceF (Fj)==0

rangeR (Fj) =0;

rangeL (Fj) =0;

e l s e

Ur i f=Umodi(ind iceF (Fj) , : , i f a s t 3) ;

i =1;

MAC=1;

whi l e i<rangemax && MAC>=sogliaMAC && i < ind iceF (Fj)

Uint=Umodi(ind iceF (Fj)−i , : , i f a s t 3) ;

MAC=(Ur i f ∗Uint ’) .^2/ ((Uint∗Uint ’) ∗(Ur i f ∗Uri f ’)) ;

i f (MAC < sogliaMAC)

rangeL (Fj)=i −1;

end

i=i +1;

end

i =1;

MAC=1;

whi l e i<rangemax && MAC>=sogliaMAC && i < ind iceF (Fj)

Uint=Umodi(ind iceF (Fj)+i , : , i f a s t 3) ;

MAC=(Ur i f ∗Uint ’) .^2/ ((Uint∗Uint ’) ∗(Ur i f ∗Uri f ’)) ;

i f (MAC < sogliaMAC)

rangeR (Fj)=i −1;

end

i=i +1;

end

Listing 5.18: Identification of the SDoF Auto Spectral Function - 1

This check serves to maintain the bell centered on the natural frequency. If

the left range is too different from the right range, the higher range is reduced.

142

Chapter 5: Program code

At most a 20% difference between the rangeR and rangeL is allowed.

Identification of the SDoF Auto Spectral Function - 2 Once the size

in frequency of each SDoF Spectral Bell is found and stored in rangeL(Fj)

and rangeR(Fj), the SDoF auto spectral functions are calculated in variable

Bell. The first dimension of Bell is the length of the First Singular Value vec-

tor (variable Segnale), whilst the second dimension is the number of vibrating

modes.

Each bell is equal to the variable Signal only within the frequency range spec-

ified by rangeL and rangeR from the natural frequency corresponding to index

Fj, while elsewhere is zero.

FF=newf2 (i f a s t 3 , :) ;

Be l l=ze ro s (l ength (Segnale) , l ength (ind iceF)) ;

f o r Fj=1: l ength (ind iceF)

f o r i =1: l ength (Segnale)

i f i >= ind iceF (Fj)−rangeL (Fj) && i <= ind iceF (Fj)+rangeR (Fj)

Be l l (i , Fj)=Segnale (i) ;

end

end

end

Listing 5.19: Identification of the SDoF Auto Spectral Function - 2

From Frequency to Time Domain Each SDOF Auto spectral density

function is then transformed to time domain using an Inverse Discrete Fourier

transform, through the ifft Matlab function.

ifft is considered in the form ifft(X,n), where X is the previously defined SDoF

Auto Spectral Function, and n is the number of FFT points used in the cpsd

operation: the variable NFFT.

What is obtained is the autocorrelation function of the SDoF system. The

autocorrelation function is then normalized, dividing all of its values by its

biggest value (TBell(1)). Only the first half of the normalized auto-correlation

function is considered because the second half is given by the first part mirrored

with respect to the central point.

143

Chapter 5: Program code

The time domain is defined by variable iT using a time step equal to 1/fs,

where fs is the sampling frequency fs.

iT=(0:1/ f s : 2 00) ;

f o r Fj=1: l a s t fm

TBell = r e a l (i f f t (Be l l (: , Fj) ,NFFT)) ;

TBell0 (: , Fj) = TBell (1 : l ength (TBell) /2) . / TBell (1) ;

MyTBell=TBell0 (: , Fj) ;

Listing 5.20: Transform of the SDoF auto-spectral function to time

domain

Absolute maximum values envelope For each SDoF auto-correlation

function, the maximum and minimum envelopes are found. The maximum

auto-correlation function values are stored in MaxTBell and the correspond-

ing time lags are stored in MaxT, while the minimum auto-correlation function

values are stored in MinTBell and the corresponding time lags are stored in

MinT.

j =1;

MaxTBell (j , Fj)=MyTBell (1) ;

MaxT(j , Fj)=iT (1) ;

j=j +1;

f o r i =2: l ength (MyTBell)−1

i f MyTBell (i)>MyTBell (i −1)&&MyTBell (i)>MyTBell (i +1)

MaxTBell (j , Fj)=MyTBell (i) ;

MaxT(j , Fj)=iT (i) ;

j=j +1;

end

end

j =1;

minTBell (j , Fj)=MyTBell (1) ;

minT(j , Fj)=iT (1) ;

j=j +1;

f o r i =2: l ength (MyTBell)−1

i f MyTBell (i)<MyTBell (i −1)&&MyTBell (i)<MyTBell (i +1)

minTBell (j , Fj)=MyTBell (i) ;

minT(j , Fj)=iT (i) ;

j=j +1;

end

144

Chapter 5: Program code

end

end

Listing 5.21: Absolute maximum values envelope

In the next blocks damping ratios are actually calculated. First the indices that

determine the position in the vectors of the maximum and minimum envelopes

at the minimum and maximum correlation set by the user are identified and

saved in minTlag, maxTlag, minTlagmin, maxTlagmin.

f o r Fj=1: l a s t fm

i f ind iceF (Fj)==1 | | (rangeL (Fj)==0 && rangeR (Fj)==0)

FT(Fj)=NaN;

damping (Fj)=NaN;

damp_std(Fj)=NaN;

e l s e

minTlag (Fj)=f i nd (MaxTBell (: , Fj)< max_corr , 1 , ’ f i r s t ’) ;

maxTlag (Fj)=f i nd (MaxTBell (: , Fj)<min_corr , 1 , ’ f i r s t ’)−1;

minTlagmin (Fj)=f i nd (abs (minTBell (: , Fj))< max_corr , 1 , ’ f i r s t ’) ;

maxTlagmin (Fj)=f i nd (abs (minTBell (: , Fj))<min_corr , 1 , ’ f i r s t ’)

−1;

Listing 5.22: Calculation of indices required to evaluate damping ratio

Then, the frequency estimation in time domain is calculated: Frequency_D =

length(find(diff(MyTBell > 0)̃ = 0)) + 1; is the number of zero-crossing

times in the chosen interval, and FT is calculated by dividing the number of

zero-crossing times for the considered time interval.

minTindex=f i nd (abs (TBell0 (: , Fj))<max_corr , 1 , ’ f i r s t ’) ;

maxTindex=f i nd (abs (TBell0 (: , Fj))>min_corr , 1 , ’ l a s t ’) ;

MyTBell=TBell0 (minTindex : maxTindex , Fj) ;

Frequency_D = length (f i nd (d i f f (MyTBell>0)~=0))+1;

FT(Fj)=Frequency_D/(2∗ (iT (maxTindex)−iT (minTindex))) ;

Listing 5.23: Estimation of the natural frequencies in time domain from

the SDoF free-decay function

145

Chapter 5: Program code

Subsequently the damping ratio is calculated. First k and the logarithmic

decrement are evaluated: the number of both maximum and minimum auto-

correlation function values is required to calculate the parameter k, which is

necessary for the logarithmic decrement δ calculation.

δ =
2

k
ln

(
r0

|rk|

)
(5.3.3)

Then the damping ratio is calculated as:

ζ =
δ√

δ2 + 4π2
(5.3.4)

k=maxTlag (Fj)−minTlag (Fj)+maxTlagmin (Fj)−minTlag (Fj) ;

d e l t a (Fj)=2/k∗ l og (max_corr/abs (min_corr)) ;

damping (Fj)=1/ sq r t (1+(2∗ pi / de l t a (Fj)) ^2) ;

Listing 5.24: Calculation of damping ratio

In the next block, the graph of validation of the logarithmic decrement of the

envelope of the absolute values is developed and saved in the variable RettaRif.

This variable will be invoked within the validation graph.

Rnorm=ze ro s (maxTlag (Fj)−minTlag (Fj) +1 ,1) ;

RettaRi f (1 , Fj)=log (MaxTBell (minTlag (Fj) , Fj)) ;

RettaRi f (maxTlag (Fj)−minTlag (Fj)+1,Fj)=log (MaxTBell (

maxTlag (Fj) , Fj)) ;

Rnorm(1) =0; Rnorm(maxTlag (Fj)−minTlag (Fj)+1)=0;

f o r r r =2:(maxTlag (Fj)−minTlag (Fj))

RettaRi f (rr , Fj)=RettaRi f (1 , Fj)−(RettaRi f (1 , Fj)−RettaRi f (

l ength (Rnorm) , Fj)) /(MaxT(maxTlag (Fj) , Fj)−MaxT(minTlag (Fj) , Fj))

∗(MaxT(minTlag (Fj)+rr −1,Fj)−MaxT(minTlag (Fj) , Fj)) ;

Rnorm(r r)=log (MaxTBell (minTlag (Fj)+rr −1,Fj))−RettaRi f (rr

, Fj) ;

end

end

end

Listing 5.25: Calculation of logarithmic decrement graph

The validation variables are saved inside temporary external files called VAL-

IDAZIONEx where x is corresponding to the index of the file being analysed.

damping vector is stored as a row of the global damping matrix.

146

Chapter 5: Program code

save (f i l ename , ’ Segnale ’ , ’FF ’ , ’FT ’ , ’ damping ’ , ’ ind iceF ’ , ’ f 1 ’ , ’

Be l l ’ , ’ damp_std ’ , ’ minTlag ’ , ’maxTlag ’ , ’MaxT ’ , ’max_corr ’ , ’

min_corr ’ , ’MaxTBell ’ , ’ iT ’ , ’ TBell0 ’ , ’ newf2 ’ , ’ RettaRi f ’) ;

c l e a r RettaRi f ;

d_resu l t s (i f a s t 3 , :)=damping ;

end

Listing 5.26: Saving of validation variables

Once all the files have been processed, global analysis is carried on damping

values. In order to perform a mean of the values excluding outliers, temporary

matrices are built, excluding NaN values which are not accepted by the trim-

mean function. m = trimmean(X, percent) calculates the trimmed mean of

the values in X. For a vector input, m is the mean of X, excluding the highest

and lowest k data values, where k = n · percent
2·100

and where n is the number of

values in X. In this case, k was set to 20%.

A mean value of damping and frequencies is calculated for each structural

mode and stored in the variables d_mean and f_mean.

d_resu l t s0=ze ro s (s i z e (d_resu l t s)) ;

newf20=ze ro s (s i z e (newf2)) ;

f o r i i =1: l a s t fm

i i i =1;

f o r i f a s t 3 =1: s i z e (SS0 , 3) ;

i f ~ i snan (d_resu l t s (i f a s t 3 , i i))

d_resu l t s0 (i i i , i i)=d_resu l t s (i f a s t 3 , i i) ;

newf20 (i i i , i i)=newf2 (i f a s t 3 , i i) ;

i i i= i i i +1;

end

end

indz=f i nd (d_resu l t s0 (: , i i) >0 ,1 , ’ l a s t ’) ;

d_mean(i i)=trimmean (d_resu l t s0 (1 : indz , i i) , 20) ;

f_mean(i i)=trimmean (newf20 (1 : indz , i i) , 20) ;

end

Listing 5.27: Averaging operations

The global results are then finalized by attaching the first column, which com-

prises the dates of the measurements, and saved as an application data using

147

Chapter 5: Program code

the setappdata function.

load (Fdd_loc , ’ Result ’) ;

d_resu l t s2 =[Result d_resu l t s] ;

setappdata (0 , ’ Result_damping ’ , d_resu l t s2) ;

setappdata (0 , ’ d a t e_ f i l e s ’ , Result) ;

Listing 5.28: Results saving

The last block of the callback is composed of interface control commands.

The remaining buttons of the damping panel are enabled.

The Save results button is enabled, so that the user is able to save the global

results.

The Save template button is enabled, so that the user is able to save a template

on the basis of the current analysis.

The damping vs time drop-down menu is populated and the damping results

are displayed, together with natural frequencies, inside the Results panel.

s e t (handles . va l i da t i on , ’ Enable ’ , ’ on ’) ;

s e t (handles . dampingvs frequenc ies , ’ Enable ’ , ’ on ’) ;

s e t (handles . meanvsfrequency , ’ Enable ’ , ’ on ’) ;

s e t (handles . boxplot , ’ Enable ’ , ’ on ’) ;

s e t (handles . saveres , ’ Enable ’ , ’ on ’) ;

strm{1}= ’Damping vs time ’ ;

f o r i =2: s i z e (d_results2 , 2)

strm{ i }=[’Mode ’ num2str (i −1)] ;

s t r l { i −1}=[’Mode ’ num2str (i −1 ,4) ’ : ’ num2str (f_mean(i −1) ,4)

’ Hz , Damping : ’ num2str (d_mean(i −1)∗100) ’%’] ;

end

s e t (handles . model i s t , ’ S t r ing ’ , s t r l) ;

s e t (handles . dmode , ’ S t r ing ’ , strm) ;

s e t (handles . dmode , ’ Enable ’ , ’ on ’) ;

s e t (handles . savetemplate , ’ Enable ’ , ’ on ’) ;

s e t (handles . statusD , ’ S t r ing ’ , ’OK’ , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase3 , ’ BackgroundColor ’ , [1 1 0]) ;

gu idata (gcbo , handles) ;

Listing 5.29: Managements of the graphics components of the interface

148

Chapter 5: Program code

Damping vs frequencies button plots the calculated damping ratios related to

the corresponding natural frequencies. The callback dampingvsfrequencies_Callback

calls an external function, f_vs_d, by specifying the variables newf20, d_results0,

f_mean and d_mean as input parameters. The function f_vs_d is defined

as follows:

f unc t i on f_vs_d (newf2 , d_results , f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

. . .

f o r i =1: s i z e (d_results , 2)

s c a t t e r (newf2 (: , i) , d_resu l t s (: , i) ∗100) ; hold on ;

end

s c a t t e r (f_mean , d_mean.∗100 , ’ MarkerFaceColor ’ , [0 0 0] , ’

MarkerEdgeColor ’ , [0 0 0] , . . .

’ Marker ’ , ’+ ’ , . . .

’ LineWidth ’ , 2) ;

hold o f f ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

Listing 5.30: Damping vs frequencies function

A typical output figure for this function is shown in Figure 5.4.

Figure 5.4: Damping versus Natural Frequency Graph.

Mean damping vs frequencies button plots the averaged damping ratios related

to the corresponding averaged natural frequencies. The callbackmeanvsfrequencies_Callback

calls an external function, f_mean_vs_d_mean, by specifying the variables

f_mean and d_mean as input parameters. The function f_mean_vs_d_mean

is defined as follows:

149

Chapter 5: Program code

f unc t i on f_mean_vs_d_mean(f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

s c a t t e r (f_mean , d_mean.∗100 , ’ MarkerFaceColor ’ , [0 0 0] , ’

MarkerEdgeColor ’ , [0 0 0] , . . .

’ Marker ’ , ’+ ’ , . . .

’ LineWidth ’ , 2) ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

Listing 5.31: Mean damping vs frequencies function

A typical output figure for this function is shown in Figure 5.5.

Figure 5.5: Mean Damping Ratio vs. Mean Natural Frequency Graph.

Box-plot button plots the box-plot representation of the damping ratios of each

mode related to the corresponding averaged natural frequency.The callback

box_plot_Callback calls an external function, box_plot, by specifying the

variables d_results, f_mean and d_mean as input parameters. The function

box_plot is defined as follows:

f unc t i on box_plot (d_results , f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

boxplot (d_resu l t s ∗100 , f_mean , ’ p l o t s t y l e ’ , ’ compact ’ , ’ whisker ’

, 1) ; hold on ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

Listing 5.32: Box-plot function

A typical output figure for this function is shown in Figure 5.6.

150

Chapter 5: Program code

Figure 5.6: Box Plot.

Selecting an entry on the Damping vs time drop-down menu displays the cor-

responding trend over time of the damping ratio for each structural mode.

f unc t i on dmode_Callback (hObject , eventdata , handles)

load DAMPING_RESULTS;

ind=get (hObject , ’ Value ’) ;

i f ind>s i z e (d_results2 , 2) | | ind <= 0

e r r d l g (’ I nd i c e non va l i do . ’) ;

e l s e

i f ind>1

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

p l o t (d_resu l t s2 (: , 1) , d_resu l t s2 (: , ind) .∗100 , ’ l i n e s t y l e

’ , ’ none ’ , ’ LineWidth ’ , 1 . 2 , ’ Marker ’ , ’ . ’ , ’ Markers ize ’ , 5) ; hold on ;

g r id on ;

da t e t i c k (’ x ’ , ’ dd mmm yy ’ , ’ k e ep l im i t s ’ , ’ k e ep t i c k s ’) ;

x l ab e l (’Time ’ , ’ FontSize ’ , 12) ; y l ab e l (’ [%] ’ , ’ FontSize ’

,12) ;

y l ab e l (’Damping Ratio (%) ’ , ’ FontSize ’ ,12) ;

t i t l e ([’ \ f o n t s i z e {14}Damping Ratio Trend , Mode ’

num2str (ind−1)]) ;

end

end

Listing 5.33: Damping ratio developing over time for each mode

A typical output figure for this function is shown in Figure 5.7.

151

Chapter 5: Program code

Figure 5.7: Damping Ratio Trend.

The button Validate simply launches a new interface, which contains tools to

display the intermediate results obtained in the calculation of damping.

Damping Validation interface

The opening function of the interface populates the drop-down menu contain-

ing the dates of the measurements files and executes just before validate_dampingGUI

is made visible. Selecting a date from the drop-down menu leads to the filling

of the menu containing the modal parameters found for each file.

f unc t i on date_Callback (hObject , eventdata , handles)

contents = c e l l s t r (get (hObject , ’ S t r ing ’)) ;

ind=get (hObject , ’ Value ’) ;

handles . f i l e v a l =[’ damping_temp/ va l i d a z i on e ’ num2str (ind) ’ . mat ’] ;

gu idata (hObject , handles) ;

load (handles . f i l e v a l , ’ damping ’ , ’ newf2 ’) ;

f o r i =1: l ength (damping)

STR{ i}= [num2str (i) ’ : Frequency= ’ num2str (newf2 (ind , i)) ’

Hz , Damping= ’ num2str (damping (i) .∗100) ’ %’] ;

end

s e t (handles . mode , ’ S t r ing ’ , STR) ;

. . .

Listing 5.34: Drop-down menu of the measurement dates

The Spectral bell button displays the SDoF auto-spectral function correspond-

ing to the selected mode for the selected file.

f unc t i on spect ra l_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

152

Chapter 5: Program code

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

p l o t1=p lo t (f 1 (1 : l ength (Segnale)) ,20∗ l og10 (Segnale) , f 1 (1 : l ength (

Segnale)) ,20∗ l og10 (Be l l (: , Fj))) ;

. . .

t i t l e (’ \ f o n t s i z e {14} I d e n t i f i c a t i o n o f auto spectrum ’) ;

Listing 5.35: Spectral bell button

A typical output figure for this function is shown in Figure ??.

Figure 5.8: Identification of the autospectrum and of the SDoF Auto-

Spectral Function.

The Logarithmic decrement displays the logarithmic decrement of the absolute

envelope function of the SDoF normalized correlation function corresponding

to the selected mode for the selected file.

f unc t i on logar i tmic_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

s c a t t e r (MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) , l og (MaxTBell (minTlag (Fj) :

maxTlag (Fj) , Fj)) , ’ MarkerEdgeColor ’ , [0 0.498039215803146 0] , ’

Marker ’ , ’+ ’) ; hold on

p lo t (MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) , RettaRi f (1 : (maxTlag (Fj)−
minTlag (Fj)+1) , Fj)) ;

% p lo t (MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) ,

RettaRi f (1 : (maxTlag (Fj)−minTlag (Fj)) , Fj)) ;

153

Chapter 5: Program code

y l ab e l (’ \ f o n t s i z e {12}Log o f Absolute Extreme Values ’) ;

x l ab e l (’ \ f o n t s i z e {12}Time Lag (sec) ’) ;

Listing 5.36: Logarithmic decrement button

A typical output figure for this function is shown in Figure 5.9.

Figure 5.9: Validation of Damping Ratio Estimate: Logarithmic Decre-

ment.

The Frequency (F) vs Frequency (T) displays the comparison between the

natural frequencies calculated in frequency domain and those estimated in

time domain (using EFDD) a for the selected file.

% −−− Executes on button pr e s s in f f .

f unc t i on f f_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . .

s c a t t e r (FF,FT) ;

y l ab e l ({ ’ \ f o n t s i z e {12} Natural f requency est imated in time domain (

Hz) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12} Natural f requency est imated in f requency

domain (Hz) ’ }) ;

Listing 5.37: Frequency (F) vs Frequency (T) button

A typical output figure for this function is shown in Figure 5.10.

154

Chapter 5: Program code

Figure 5.10: Natural frequencies calculated in frequency domain vs natu-

ral frequencies calculated in time domain.

The Normalized auto-correlation function displays the SDoF normalized cor-

relation function corresponding to the selected mode for the selected file.

f unc t i on normalized_Callback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

Rectx=[MaxT(minTlag (Fj) , Fj) MaxT(maxTlag (Fj) , Fj) MaxT(maxTlag (Fj) ,

Fj) MaxT(minTlag (Fj) , Fj) MaxT(minTlag (Fj) , Fj)] ;

Recty=[max_corr max_corr −max_corr −max_corr max_corr] ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

. . . p l o t (Rectx , Recty ,MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) ,MaxTBell (

minTlag (Fj) : maxTlag (Fj) , Fj) , iT (1 : l ength (TBell0)) , TBell0 (1 :

l ength (TBell0) , Fj) , ’ LineWidth ’ ,1 , ’ Color ’ , [1 0 0] , . . .

’ DisplayName ’ , ’ funz ione d i au t o c o r r e l a z i on e normal i zzata ’)

;

x l ab e l ({ ’ \ f o n t s i z e {12}Time Lag [s] ’ }) ;

y l ab e l ({ ’ \ f o n t s i z e {12} Normalized Cor r e l a t i on ’ }) ;

Listing 5.38: Normalized auto-correlation function button

A typical output figure for this function is shown in Figure 5.11.

155

Chapter 5: Program code

Figure 5.11: Normalized Correlation Function of the Singular Value Spec-

tral Bell.

5.4 Management of results and templates.

5.4.1 Result management panel

After an identification task using AutoEFDD is completed, it is possible to

save a template file using the button Save template.

The parameters (NFFT, L, fs, channels, mac, n, mac_damping, max_corr,

min_corr) are saved inside the template file, together with the template’s

name and its description, author, date and image (set through a simple inter-

face defined by savetemplate);

f unc t i on savetemplate_Callback (hObject , eventdata , handles)

. . .

s t=savetemplate ;

wa i t f o r (s t) ;

s e l e c t f i l e n ame=getappdata (0 , ’ tempname ’) ;

d e s c r i p t i o n=getappdata (0 , ’ tempdesc ’) ;

author=getappdata (0 , ’ author ’) ;

image=getappdata (0 , ’ tempimage ’) ;

tempdate=da t e s t r (now , ’dd/mm/yy HH:MM’) ;

templatename=s t r r e p (s e l e c t f i l e n ame , ’ ’ , ’_ ’) ;

i f ~ e x i s t (’ . . \ template ’ , ’ f i l e ’)

mkdir (’ . . \ template ’) ;

end

% templatename=s e l e c t f i l e n ame {1} ;

s e l e c t f o l d e r =[’ . . \ template \ ’ templatename] ;

mkdir (s e l e c t f o l d e r) ;

s a v e f i l e =[s e l e c t f o l d e r ’ \Template_ ’ templatename ’ . mat ’] ;

save (s a v e f i l e , ’ templatetype ’ , ’ tempdate ’ , ’NFFT’ , ’L ’ , ’ f s ’ , ’ channe l s ’

156

Chapter 5: Program code

, ’mac ’ , ’ n ’ , ’mac_damping ’ , ’max_corr ’ , ’ min_corr ’ , ’ templatename ’ , ’

d e s c r i p t i o n ’ , ’ author ’) ;

Listing 5.39: Save template button

The template is initially saved in .mat format. It is then inserted inside a

.zip archive together with the files indici.mat, savefile.mat and the selected

image.

The .zip file is then moved inside the default folder for the templates and its

extension is renamed to .efdd.

c o p y f i l e (’ i n d i c i . mat ’ , [s e l e c t f o l d e r ’ \ i n d i c i . mat ’] , ’ f ’) ;

c o p y f i l e (’ s a v e f i l e . mat ’ , [s e l e c t f o l d e r ’ \ s a v e f i l e . mat ’] , ’ f ’) ;

c o p y f i l e (image , [s e l e c t f o l d e r ’ \tempimage . jpg ’] , ’ f ’) ;

z ip ([’ . . \ template \Template_ ’ templatename ’ . z ip ’] , ’ ∗ ’ , [’ . . \

template \ ’ templatename]) ;

move f i l e ([’ . . \ template \Template_ ’ templatename ’ . z ip ’] , [’ . . \

template \Template_ ’ templatename ’ . e fdd ’] , ’ f ’) ;

. . .

setappdata (0 , ’ templatename ’ , templatename) ;

setappdata (0 , ’ sav ingtemplate ’ , 1) ;

he lpd lg ([’The template f i l e : Template_ ’ templatename ’ . e fdd has

been s u c c e s s f u l l y saved in the template f o l d e r . ’])

Listing 5.40: Save template button - 2

Results panel

Save results The Save results panel saves the variables Result_frequency

and Result_damping to file.

If the process is template-driven, the program does not display any dialog and

automatically saves the results file inside the default directory.

f unc t i on saveres_Cal lback (hObject , eventdata , handles)

Result_frequency=getappdata (0 , ’ Result_frequency ’) ;

Result_damping=getappdata (0 , ’ Result_damping ’) ;

i f getappdata (0 , ’ us ingtemplate ’)==1 | getappdata (0 , ’ sav ingtemplate

’)==1

foldername=[’ . . / Resu l t s / ’ getappdata (0 , ’ templatename ’)] ;

157

Chapter 5: Program code

i f ~ e x i s t (foldername , ’ f i l e ’)

mkdir (fo ldername) ;

end

. . .

templatename=getappdata (0 , ’ templatename ’) ;

setappdata (0 , ’ r e s u l t s f o l d e r ’ , fo ldername) ;

save ([fo ldername ’ /Result_ ’ num2str (i nd i c e) ’ . mat ’] , ’

Result_frequency ’ , ’ Result_damping ’ , ’ templatename ’) ;

e l s e

u i save ({ ’ Result_frequency ’ , ’ Result_damping ’ } , ’ Result_ ’) ;

end

s e t (handles . phase3 , ’ BackgroundColor ’ , [0 1 0]) ;

hh=he lpd lg (’ Resu l t s s u c c e s s f u l l y saved . ’) ;

. . .

Listing 5.41: Save results button

Merge results Merge results button loads an interface used for joining mul-

tiple results files. The callback merge_Callback calls the function merge.

If the process is driven by a template, the files contained in the default results

folder of the template are automatically loaded in the text list.

Otherwise, the user can select one file at a time pressing the Select results file

to merge button. The path of the file will then appear inside the text list

below the button.

The user is able to change the position of a selected file in the list by pressing

Move up and Move down buttons, while Remove button eliminates the file

from the list (it does not delete the actual file).

The core of the merging procedure in merge resides in the merge_Callback

function.

First, a check is performed in order to verify that the files are compatible.

f unc t i on [handles]=merge_Callback (hObject , eventdata , handles)

f i l e s=get (handles . f i l e s , ’ S t r ing ’) ;

l en =0;

dupl=0;

index =1;

d e l e t e dup l i c a t e=get (handles . dup l i ca te , ’ Value ’) ;

f o r i =1: l ength (f i l e s)

158

Chapter 5: Program code

vars=who(’− f i l e ’ , f i l e s { i }) ;

i s ok=ce l l 2mat (s t r f i n d (vars , ’ Result_frequency ’))+ce l l 2mat (

s t r f i n d (vars , ’ Result_damping ’)) ;

i f isempty (i s ok) | | i s ok~=2

e r r o r d l g ([’The f i l e ’ f i l e s { i } ’ i s not a r e s u l t f i l e . ’]) ;

r e turn

end

load (f i l e s { i }) ;

i f i >1

i f s i z e (Result_frequency , 2)~=modi

e r r o r d l g (’The s e l e c t e d r e s u l t f i l e s are not compatible

. D i f f e r e n t number o f modes . ’) ;

r e turn

end

end

modi=s i z e (Result_frequency , 2) ;

Listing 5.42: Merge and save button

Then, the rows of all the results variables are attached in a single variable. If

the first element of a row, which represents the date of measurement, is already

present into the variable, and if the user has checked the box Delete duplicate

entries, then the entire row is removed.

%removal o f dup l i c a t e e n t r i e s

i f i >1 && de l e t e dup l i c a t e==1

s i z eRes=s i z e (Result_frequency , 1) ;

f o r k=1: s i z eRes

i f f i nd (Sequence_f (: , 1)==Result_frequency (s izeRes−k

+1 ,1) ,1 , ’ F i r s t ’)>0

Result_frequency (s izeRes−k+1 , :) = [] ;

Result_damping (s izeRes−k+1 , :) = [] ;

dupl=dupl+1;

end

end

end

%merge

l en=s i z e (Result_frequency , 1)+len ;

Sequence_f (index : len , :)=Result_frequency (1 : s i z e (

Result_frequency , 1) , :) ;

159

Chapter 5: Program code

Sequence_d (index : len , :)=Result_damping (1 : s i z e (Result_frequency

, 1) , :) ;

index=index+s i z e (Result_frequency , 1) ;

c l e a r Result_frequency Result_damping ;

end

Listing 5.43: Merge and save button - 2

If the user has checked the box Sort by date, the variables are sorted in as-

cending order of dates in the first column.

%so r t by date

i f get (handles . sor tdate , ’ Value ’)==1

Sequence_f=sort rows (Sequence_f , 1) ;

Sequence_d=sort rows (Sequence_d , 1) ;

end

Result_frequency=Sequence_f ;

Result_damping=Sequence_d ;

d i a l o g s t r =[num2str (l ength (f i l e s)) ’ r e s u l t s f i l e s merged . ’

num2str (s i z e (Result_frequency , 1)) ’ t o t a l rows . ’] ;

i f d e l e t e dup l i c a t e==1

d i a l o g s t r =[d i a l o g s t r num2str (dupl) ’ dup l i c a t e e n t r i e s de l e t ed

. ’] ;

end

hd=he lpd lg (d i a l o g s t r , ’Merge d e t a i l s ’) ;

Listing 5.44: Merge and save button - 3

Once the sorting is complete, the user is asked to save the merged results file,

and is allowed to view the results. If the process is template-driven, the results

file is automatically saved.

i f getappdata (0 , ’ mergetemplate ’)==1

save ([getappdata (0 , ’ r e s u l t s f o l d e r ’) ’ / current_sequence . mat ’] , ’

Result_frequency ’ , ’ Result_damping ’) ;

setappdata (0 , ’ CurrentRes ’ , [getappdata (0 , ’ r e s u l t s f o l d e r ’) ’ /

current_sequence . mat ’]) ;

e l s e

[FileName , PathName] =u i p u t f i l e ([getappdata (0 , ’ path ’) ’

Sequence_ ’] , ’ Save merged f i l e ’) ;

160

Chapter 5: Program code

save ([PathName FileName] , ’ Result_frequency ’ , ’ Result_damping ’) ;

setappdata (0 , ’ CurrentRes ’ , [PathName FileName]) ;

end

s e t (handles . view , ’ Enable ’ , ’ on ’) ;

setappdata (0 , ’ mergetemplate ’ , 0) ;

pause (3) ;

i f i s hand l e (hd) c l o s e (hd) ; end

Listing 5.45: Merge and save button - 4

View results The button labeled View results leads to the opening of a

graphical interface used to display the results files. The callback viewres_Callback

calls the function viewresults with no input parameters.

Inside the View results interface, Load results file button allows the user to

choose the results file of interest.

The tools available in the View results interface are the same already intro-

duced earlier.

5.5 Menu elements

The menu items can always be called by the user, given that they manage

control operations or operations of global configuration.

File category

New The menu item File→ New provides a clean interface discarding any

changes made earlier.

f unc t i on new_Callback (hObject , eventdata , handles)

button = ques td lg (’Are you sure you want to s t a r t a new p ro j e c t ?

Any unsaved prog r e s s w i l l be l o s t . ’ , ’ t i t l e ’ , ’ Yes ’ , ’No ’ , 2) ;

i f strcmp (button , ’Yes ’)==1

curr=f i ndob j (’Tag ’ , ’ autoefdd ’) ;

c l o s e (curr) ;

AutoEFDDgui ;

setappdata (0 , ’ us ingtemplate ’ , 0) ;

161

Chapter 5: Program code

setappdata (0 , ’ sav ingtemplate ’ , 0) ;

setappdata (0 , ’ s chedu le ron ’ , 0) ;

end

Listing 5.46: ’New’ menu button

New from template The menu item File → Newfromtemplate requires

the user to choose a template file. Once the file is loaded the informations of

the template are displayed into a dialog (the interface loadtemplate), and all

the parameters of the analysis are set in all the fields. The text fields are then

disabled for user editing and the only enabled button is Browse, which is used

for selecting the folder containing the measurements files.

If the process is schedule-driven, the selection of the input data folder is per-

formed automatically without requiring any user intervention.

f unc t i on [handles]= load_Callback (hObject , eventdata , handles)

. . .

i f getappdata (0 , ’ s chedu le ron ’)==1

FileName=getappdata (0 , ’ s ch f i l ename ’) ;

PathName=getappdata (0 , ’ schpathname ’) ;

e l s e

[FileName , PathName] = u i g e t f i l e (’ . . / template /∗ . e fdd ’ , ’ S e l e c t

the template f i l e to use . ’) ;

end

setappdata (0 , ’ us ingtemplate ’ , 1) ;

newfn=’ cur rent . z ip ’ ; tmp=’ . . / tmp/ ’ ;

c o p y f i l e ([PathName FileName] , [tmp newfn] , ’ f ’) ;

unzip ([tmp newfn] , tmp) ;

d e l e t e ([tmp newfn]) ;

templatename=regexprep (FileName , ’ . e fdd ’ , ’ . mat ’) ;

load ([tmp templatename]) ;

i f ~strcmp (templatetype , ’AUTOEFDD’)

e r r o r d l g (’The s e l e c t e d f i l e i s not an AutoEFDD template . ’) ;

r e turn ;

end

. . .

loadtemplate ;

Listing 5.47: ’New from template’ menu button

162

Chapter 5: Program code

Results category

The items contained in the Results menu are:

• View results;

• Merge results.

These two functions are also available in the results panel and have already

been discussed earlier.

Schedule category

The commands available from the schedule category relate to the planning and

execution of monitoring activities over time, using the AutoEFDD procedure.

New schedule New schedule launches a window used to configure a new

scheduled activity.

The Browse button at the right of Select template leads to the choice of a

template file;

The Browse button at the right of Select the folder containing files leads to

the choice of the default input data directory;

Setting a value in the HH andMM fields and pressing the Add button appends

a time of execution of the analysis on the list. The Save button writes to file

the scheduled analysis.

f unc t i on salva_Cal lback (hObject , eventdata , handles)

s ch f i l ename=getappdata (0 , ’ s ch f i l ename ’) ;

schpathname=getappdata (0 , ’ schpathname ’) ;

f a s t d i r=getappdata (0 , ’ f a s t d i r ’) ;

o r a r i=get (handles . alarms , ’ S t r ing ’) ;

nome=get (handles . name , ’ S t r ing ’) ;

. . .

i f ~ e x i s t (’ . . \ schedu le ’ , ’ f i l e ’)

mkdir (’ . . \ schedu le ’) ;

end

f i l ename =[’ . . \ schedu le \sch_ ’ nome ’ . mat ’] ;

163

Chapter 5: Program code

save (f i l ename , ’ s ch f i l ename ’ , ’ schpathname ’ , ’ o r a r i ’ , ’nome ’ , ’ f a s t d i r ’

) ;

move f i l e (f i l ename , [’ . . \ schedu le \sch_ ’ nome ’ . s chedu le ’] , ’ f ’) ;

ww=he lpd lg (’ Schedule s u c c e s s f u l l y c r e a t e . Launch i t with Schedule

Launcher . ’) ;

pause (5) ;

i f i s hand l e (ww) c l o s e (ww) ; end

Listing 5.48: ’New schedule’ menu button

Schedule launcher Schedule launcher enables the execution of scheduled

tasks. By setting setappdata(0,’scheduleron’,1); the process becomes schedule-

driven. This means that no user interaction is required in order to perform

the analysis, since the input folder is already defined in the schedule file. First

the details of the scheduled analysis are read from the schedule file.

f unc t i on schedule launcher_Cal lback (hObject , eventdata , handles)

[FileName , PathName] = u i g e t f i l e (’ . . \ s chedu le \∗ . s chedu le ’ , ’ S e l e c t

the s chedu l e r you want to launch . ’) ;

schname=[PathName FileName] ;

i f ~ e x i s t (’ . . \ tmp\ ’ , ’ f i l e ’) mkdir (’ . . \ tmp\ ’) ; end

n ew f i l e =[’ . . \ tmp\ ’ s t r r e p (FileName , ’ . s chedu le ’ , ’ . mat ’)] ;

c o p y f i l e (schname , newf i l e , ’ f ’) ;

cont inua =1;

whi l e cont inua==1

c l e a r v a r s −except handles cont inua new f i l e ;

load (n ew f i l e) ;

setappdata (0 , ’ s chedu le ron ’ , 1) ;

setappdata (0 , ’ s ch f i l ename ’ , s ch f i l ename) ;

setappdata (0 , ’ schpathname ’ , schpathname) ;

s e t (handles . f o l d e r , ’ S t r ing ’ , f a s t d i r) ;

o r a r i=datenum(ora r i , ’HH:MM’) ;

o r a r i=datenum (0 , 0 , 0 , hour (o r a r i) , minute (o r a r i) , 0) ;

adesso=c lock ;

curr_time=datenum (0 ,0 , 0 , adesso (4) , adesso (5) ,0) ;

f o r i =1: l ength (o r a r i)

i f o r a r i (i)<=curr_time

orar itmp (i)=etime (datevec (o r a r i (i)+datenum (0 , 0 , 1 , 0 , 0 , 0)) ,

datevec (curr_time)) ;

164

Chapter 5: Program code

e l s e

orar itmp (i)=etime (datevec (o r a r i (i)) , datevec (curr_time)) ;

end

end

Listing 5.49: ’Schedule launcher’ menu button

Then, the times of execution are sorted in ascending order with respect to the

present time. The first time the list is the next time at which the analysis will

be launched. The timer function is used in order to set the execution of the

subsequent task in a given time interval.

orar itmp=so r t (orar itmp) ;

pross imo=da t e s t r ((datenum (0 , 0 , 0 , 0 , 0 , orar itmp (1))+curr_time) , ’

HH:MM’) ;

t = timer (’ TimerFcn ’ , ’ setappdata (0 , ’ ’ execute ’ ’ , 1) ; ’ , . . .

’ StartDelay ’ , orar itmp (1) , ’ TasksToExecute ’ , 1) ;

s t a r t (t)

hhh = he lpd lg ([’ Next scheduled ana l y s i s i s s e t at ’ pross imo ’

. ’ char (10) ’Do you want to i n t e r r up t the schedu le ? ’] , ’ Schedule

Launcher ’) ;

whi l e strcmp (get (t , ’ Running ’) , ’ on ’)

pause (10)

i f ~ i shand l e (hhh)

stop (t) ;

d e l e t e (t) ;

setappdata (0 , ’ execute ’ , 0) ;

cont inua =0;

end

end

Listing 5.50: ’Schedule launcher’ menu button - 2

Once the timer has reached the target time, the analysis is launched.

i f i s hand l e (hhh) c l o s e (hhh) ; end

i f getappdata (0 , ’ execute ’)==1

[handles]= load_Callback ([] , [] , handles) ;

[handles]= start fdd_Cal lback ([] , [] , handles) ;

end

d e l e t e (t) ;

165

Chapter 5: Program code

rmappdata (0 , ’ execute ’) ;

end

setappdata (0 , ’ s chedu le ron ’ , 0) ;

Listing 5.51: ’Schedule launcher’ menu button - 3

5.6 Conclusions and future developments

An overview of the Matlab code at the base of the application interface has

been carried out within this chapter.

First the algorithm used for the damping ratio calculation was accurately anal-

ysed. Then all the major callbacks of the interfaces that constitute the program

were considered, especially focusing on the way that data are passed from a

function to another and from graphical objects to functions.

The program has, however, not yet reached a final state and it is expected a

number of improvements and additions for future versions, including:

• Mode shape correlation with those obtained by FE models;

• Log files to trace the operations;

• Optimization of data reading and Fourier transform operations in order

to improve the speed of the analysis;

• Automatic setting of some parameters such as MAC Threshold and Step

in the identification of natural frequencies;

• Automatic Output in the form of printable report, covering graphs and

analysis results;

• Online alarm in case of any significant changes of the parameters of the

structure as a result of exceptional events such as earthquakes;

• Elimination of the environmental effects (temperature, humidity) affect-

ing the results using ARX models;

• Check of the input files in order to determine the validity of the measures.

166

Chapter 6

Application: Ponte Nuovo Del

Popolo, Verona

Shown below is an application of the methods and tools presented in the thesis,

by means of a bridge located in Verona, Ponte Nuovo del Popolo.

First the geometric and mechanical characteristics of the structure will be

described. Then we will introduce the FEM model of the structure, from

which a first evaluation of the dynamic characteristics of the bridge will be

derived. Afterwards it will be explained the process of planning the work

of dynamic identification and the results obtained with the AutoEFDD and

AutoSSI methods will be presented and compared with those provided by the

FEM model and other commercial software, such as Artemis. Finally we will

cover an overview on model updating and the setting of seismic analysis for

the bridge.

6.1 Inventory of information on the bridge

Ponte Nuovo del Popolo bridge, often referred to in abbreviated form as Ponte

Nuovo, is located in the city center of Verona, on the Adige river. It is a

reinforced concrete bridge, three-span arched, with an outer coating made of

stone. The bridge was built just after World War II to replace the previous

bridge, which was inaugurated just six years before, and was destroyed in the

bombing.

167

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.1: Ponte Nuovo del Popolo, Verona.

6.1.1 Geometric and material survey

The geometry of the structure is known based on some original drawings and

measurements performed at the intrados of the bridge in correspondence of

all three spans [8]. The bridge has a total length of 90.5 meters. Regarding

the three spans, the central one has a length greater than the two lateral, in

particular, the central arch has a span of 33.42 meters, while the two lateral

arches have a span of 25.23 meters.

The overall width of the deck is 14.32 meters, the frame supports the roadway

with two lanes, one in each direction, plus two sidewalks on both ends of the

cross section. The sidewalks have a width of 2.55 meters each.

The top of the deck slab in reinforced concrete has a project thickness equal

to 18 cm.

The static scheme consists of seven main beams, placed longitudinally along

the length of the bridge, and eleven of the stiffening crosspieces, which connect

in the transverse direction all the main beams.

There are also transversal joists, smaller in size compared to the crosspieces,

which connect at regular intervals the five central longitudinal beams, that is,

from number 2 to number 6, they form a lattice of crosspieces, which comple-

ments a series of strengthening bars cross .

168

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

The intrados of the bridge presents itself closed by a slab of reinforced concrete

Figure 6.2: General plan of the bridge.

in the piers, in the section between the stack and the two adjacent transverse

stiffening crosspieces, the first towards the middle of the bridge, the second

in the side spans. The above intrados slab has a variable thickness: in corre-

spondence of the stack is equal to 25 cm, while in correspondence of the first

stringers near the pier is equal to 10 cm [8].

169

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Deck slab

The slab of the deck is made of reinforced concrete, with a thickness of project

of 18 cm, is supported by a pattern of beams in lattice, formed by the seven

main longitudinal beams and fractionated in the transverse direction from the

main stiffening crosspieces and joists secondary cross.

Following a series of inspections, has highlighted a mesh of armor composed of

reinforcement rods of a diameter of 16 mm in the direction parallel to the main

longitudinal beams, with bars arranged at regular intervals of 25 cm, while in

the direction parallel to the crosspieces reinforcement bars of a diameter of 10

mm were detected, also arranged at intervals of 25 cm.

Main longitudinal beams

The slab of deck is structurally supported by seven main longitudinal beams

of constant thickness of 40 cm, and height variable in proportion to the dis-

tance from the intermediate support and from the piers of the bridge. The

longitudinal reinforcements are arranged on four layers of variable length in a

way proportional to the size of the bending moment present along the main

beams.

The brackets are made of steel bars of diameter of 16 mm distanced 35 cm

from each other.

Main strengthening bars

The transverse main stiffening elements are characterized by a thickness of 25

cm and a height variable in relation to the height of the main longitudinal

beams.

In the central span, the centerline stringer has a height of 1 meter, while the

two adjacent ones have a height of 1.22 meters.

170

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Transversal secondary joists

The static scheme of the bridge presents some small transverse reinforced con-

crete joists, arranged parallel to the main stiffening stringers. From the mea-

surements made, they have a section with a thickness of 20 cm and a height

equal to 32 cm. The above secondary cross joists are spaced with a pitch equal

to 2 meters, except the first joist for each side from the two supports at the

ends of the bridge, which are positioned at 1.85 meters from the support itself.

The secondary joists are clamped with reinforcing steel with a diameter of 10

mm, with a pitch of 25 cm.

6.2 Inspection works

6.2.1 Materials testing

The knowledge of the characteristics of the materials that compose the bridge

is crucial for subsequent analysis. The purpose of the determination of the

mechanical characteristics of the materials was in fact to be able to calibrate a

finite element model of the bridge, in order to perform dynamic identification.

Following a series of inspections on the structure, an experimental investigation

aimed at providing all the real characteristics of the materials was performed.

In order to properly define the characteristics of the constituent materials, such

as steel and concrete, 4 pieces of reinforcing bars were extracted in places where

it would not aggravate the structural situation; 10 samples of concrete circular

with a diameter of 100 mm were also collected. In addition, the sclerometric

tests have been performed on site on the concrete forming the soffit of the

longitudinal beams and stringers[8].

Compressive strength of the concrete

The analysis of the strength of the concrete on site is performed in accordance

with Italian technical regulations, following the directions of the Circular of 2

February 2009, "Istruzioni per l’applicazione delle nuove Norme Tecniche per

171

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

le Costruzioni di cui al D.M. 14 gennaio 2008".

Being the tests carried out on the basis of samples taken from the structure,

the law refer to UNI EN 12504-1, 12390-1, 12390-2, 12390-3.

In the compression tests the specimen is positioned between the two steel plates

of a press, by imposing a constant increase of the compressive stress applied,

until reaching the breaking load of the core sample. The breaking load is not

found in correspondence of the disintegration of the specimen, but instead

it is assumed in correspondence of the stabilization of the load. When the

breaking load is reached, the characteristics cracks which affect the integrity

of the concrete samples are in fact identified.

As a result of laboratory tests on the samples, average values of the compressive

strength of the concrete for the two types of structural elements are determined:

Structural part fck [MPa]

Longitudinal beams 21.9

Stringers 19.1

Table 6.1: Average compressive strength of the concrete

Modulus of elasticity of concrete

The elastic modulus, as defined in the UNI 6556, is the relationship between

the tension σ and the corresponding strain ε measured in the direction of the

stress. For materials, such as concrete, for which the stress-strain diagram is

not linear, it is defined:

• Secant modulus of elasticity between two stresses the one determined by

the slope of the secant to the stress-strain diagram between two consid-

ered stress values.

• Tangent Elastic modulus for a given voltage that determined by the slope

of the tangent of the geometric stress-strain diagram in correspondence

of that tension.

172

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

The samples selected for the determination of the elastic modulus are two core

samples extracted from the longitudinal beams and two core samples extracted

from the stringers.

Since the applied load is known, the applied stress σ(t) and the correspond-

ing deformation εi(t) of the ith extensometer at a generic instant t are first

calculated using the following formulations:

σ(t) =
P (t)
πd2

4

(6.2.1)

ε(t) =
∆li(t)

l
(6.2.2)

The secant modulus of elasticity E (in compression) between the two stress

values which limit each phase of loading-unloading is therefore determines, for

each stabilized cycle, using the formula:

∆σ

∆ε
=
σi − σ0i

εi
(6.2.3)

where:

• ∆σ: Stress Range;

• σi: Maximum stress of the test cycle

• σ0i: Starting stress of the test cycle

• ∆ε: Unit change in length corresponding to this interval measured during

unloading.

For each considered structural element (longitudinal beams and stringers), a

value of the concrete secant modulus of elasticity in compression E is calculated

as the average of the respective samples from the corresponding element. The

values are given in the following table:

Steel tensile strenght

Following the inspection on the structure some reinforcing bars have been

extracted, on which was subsequently performed a tensile test in the laboratory

173

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Structural part Modulus of elasticity E [MPa]

Longitudinal beams 33040

Stringers 32562

Table 6.2: Average concrete secant modulus of elasticity in compression

in order to obtain the elastic modulus and the tensile strength.

From the test is determined by the stress-strain diagram of the material. It is

possible to distinguish certain characteristic traits of the curve:

• A first linear elastic part;

• A short non-linear elastic part;

• A section in which the deformation grows without causing significant

stress increases: this is the part where the yield strength of the steel is

reached;

• A hardening part, in which small increases in stress determine an increase

of the deformation;

• A final section that leads to rupture the specimen, with a clear necking

in the transverse rupture section with subsequent decrease of the stress.

The elastic modulus E characterizes the behaviour of the material, represent-

ing the relationship between stress and strain in the case of uni-axial loading

condition. It is measured in the initial portion of the linear elastic stress-strain

curve and assumes a value equal to:

E =
∆σ

∆ε
= 144065Mpa (6.2.4)

The values of the project tensile strength for each element will be assumed

equal to the mean value of the yielding stress obtained with the tensile tests,

as reported in the following table:

Element fyk [MPa]

Reinforcing bars 360.21

Table 6.3: Project steel tensile strength

174

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

6.2.2 Overview of damage

Following a series of inspections on the structure in June 2011 [8], an overview

of the state of deterioration of the bridge was outlined.

The higher level of damage of the structure is concentrated in correspondence

of the external longitudinal beams, in the direction of the two side faces of

the bridge. Moreover, the beams positioned downstream are, in all the spans,

slightly more damaged than those in the side facing upstream. A localized

state of shear cracking in the central part of the crosspieces was observed,

while the terminal zones are healthy.

6.3 Structural analysis

The purpose of structural analysis is to interpret the characteristics of struc-

tures in order to simulate their response under various situations. Structural

analysis may be divided in two major categories, depending on the way the

structure is loaded, which are static and dynamic structural analysis.

Whether the loading acting on the structure is stationary over time, and its

application point doesn’t change, the structural analysis is considered to be

static. Otherwise, if the loading is variable during the reference period, the

analysis is said to be dynamic.

In the second case the analysis needs to consider inertial forces and therefore

it must be able to describe accurately the mass distribution of the structure.

Finite Elements Method Finite Elements Method (FEM) is a very pop-

ular numerical approach that allows to describe a structure as an assembly of

simple elements, in order to provide an approximated, algebraic, solution to

the differential equations that constitute the continuous real system. A mesh

is built through a discretization of the actual system using simple coded ele-

ments. For each type of elements a set of shape functions is pre-defined. The

solution of the system, in terms of displacements, is calculated in characteris-

tic points of each element and, by means of the shape functions, provides the

solution for each point of the system.

175

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

It is necessary to keep in mind that when modeling a real, constructed struc-

ture, using a FE model, a lot of assumptions and hypothesis are, more or less

explicitly, required. For example, each finite element requires a set of mechan-

ical and geometrical properties, which must be meaningful (Is the material

homogeneous? Is the hypothesis of small deformations acceptable? Is it pos-

sible to operate in conditions of linear elasticity? ...), and the type of element

must be compatible with the behaviour of the considered part of the structure.

The constraint conditions are equivalent to those specified by the preliminary

designs or are they actually different?

These assumptions must be done very carefully since they heavily influence

the reliability of the model of the structure.

6.3.1 Model preparation

A finite element model of the structure was developed using the Strand7 soft-

ware (HSH Computing, Padua).

In this study case only one type of solver is used: Natural Frequency Analysis.

The model is three-dimensional type. The main beams of the deck, the main

cross beams, the secondary cross joists and the piles were modeled using beam

elements, while the slabs of the deck were modeled using plate elements. The

congruence between the upper slab and the lower slab is provided by rigid

links. The two arches are obtained by assigning a variable section to the beam

Figure 6.3: The FEM model of the bridge.

elements, while the thickness variation of the bottom slab in the longitudi-

176

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

nal direction of the bridge was obtained by varying the thickness of the plate

elements.

Figure 6.4: The lattice of deck girders, modelled with beam elements.

Figure 6.5: The rigid links that connect the bottom slab to the top.

The mechanical properties of the components of the model were evaluated

starting from the laboratory tests carried out on the samples extracted from

the bridge itself.

Dynamic analysis The purpose of the Natural frequency analysis is to pro-

vide an interpretation of the structural behaviour of the structure in order to

allow an adequate choice for the placement of the measurement instruments.

The structural vibration modes and the corresponding natural frequencies rep-

resent the structural response of the structure. The superposition of all the

structural modes provides, in fact, the global dynamic behaviour of the struc-

ture.

6.4 Modal testing

The dynamic test is carried out in order to develop a system for dynamic iden-

tification and monitoring for the structure.

177

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

The previously introduced FEM model is considered. The model is necessary

to define the position of the measurement points, by observing the vibration

modes. The configuration of the measurement system of the structure on the

most significant points is then carried out.

Subsequently, the measurements obtained from the structure are processed by

means of methods based on Operational Modal Analysis. Initially a dynamic

identification of the structure is carried out. Then the monitoring operations

are described and the results obtained over a year of measurements are pre-

sented.

A comparison between the results provided by the various methods will indi-

cate the reliability of the results.

Once OMA methods are validated, their results can provide a calibration for

the FEM model. It will also be possible to observe any change in the modal

parameters over time.

Overview of Operational Modal Analysis methods used The meth-

ods of operational modal analysis that have been used to identify the modal

parameters of the structure have been presented previously in the thesis. An

overview of the methods used is given below.

• The OMA method of most interest for this thesis is the Enhanced Fre-

quency Domain Decomposition (EFDD) method, that was implemented

in AtOMA as the AutoEFDD procedure. It provides an automatic

extraction of the modal parameters of the structure, namely natural fre-

quencies and damping ratios, without the need for any spatial configura-

tion or Peak-Picking procedures. EFDD is a frequency domain method

that is based on the Singular Value Decomposition of the Cross Power

Spectral Density function to obtain the natural frequencies, and sub-

sequently performs an Inverse Discrete Fourier transform of the SDoF

Auto Spectral Density functions in order to extract the damping ratios.

• A second approach implemented in AtOMA to perform structural iden-

tification is the Stochastic Subspace Identification (SSI), that was imple-

mented as the AutoSSI procedure. SSI is a time-domain method, which

178

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

considers the columns of the acquired signal as a base of vectors, while

rows allow to obtain a sequence of estimates evaluated using a battery

of Kalman filters. Such matrices, can be determined directly from the

only knowledge of the output signals, without a priori knowledge of the

matrices characterizing the model.

• A peak-picking FDD procedure is also used by means of the commercial

software ARTeMIS. ARTeMIS allows to recognize an estimate of the

mode shapes of the structure, which can be compared to the mode shapes

given by the FE model.

The results given by these different methods are then confronted with each

other.

6.4.1 Structural Identification of the Bridge

Operational modal analysis methods are based on measuring the response of

the structure to environmental excitations, provided by accelerations, at signif-

icant points in the structure. To perform a FDD identification analysis using

ARTeMIS, it is necessary to define multiple measurement setups so that a spa-

tial estimate of the mode shapes can be performed.

In order to obtain a spatially complete and unambiguous description of the

mode shapes, the correct choice of the number and positioning of the measur-

ing instruments is crucial. From a FEM model, based on prior knowledge of

the structure, the dynamic behavior of the bridge is obtained. The dynamic

characteristics obtained from this analysis are not likely to match those of

the actual structure, especially when the structure has undergone degradation

and aging. The choice of measuring points is based on the minimization of

the number of degrees of freedom of the model in order to make the eigen-

value problem associated with it more simple. This method is called Guyan

reduction.

Selection of the measuring points using Guyan Reduction Model

reduction is a key issue for the analysis of mechanical systems. The Par-

179

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

tial Differential Equation which describes the behaviour of the elastic body is

transformed in a second order Ordinary Differential Equation of the form:

Mẍ(t) + Cẋ(t) +Kx(t) = Bu(t) (6.4.1)

where M,C,K are the system matrices Bu(t) is the load vector and x is the

unknown vector with n DoF. Considering a FEM model of an actual civil

structure, n ∈ 105, 6 · 106, which leads to large dimension system matrices

and thus to vast storage and simulation time needs. Especially, since each

measuring instrument is meant to correspond to a degree of freedom of the

structure, it is evident the need to reduce the size n. The general concept of

model reduction is to find a low-dimensional subspace T ∈ Rn×n in order to

approximate the state vector x = TxR + ε [29].

Guyan’s method is the oldest reduction method, and is based on the notion of

master/external and slave/internal DoFs.

Considering an undamped system:

Mẍ(t) +Kx(t) = f (6.4.2)

The m-set of Master DoFs is defined as the set of total DoFs that remain in

the previous equation. Analogously the s-set contains all DoFs that will be

eliminated:

m ∪ s = n, n = DOFtotal, m ∩ s = ∅ (6.4.3)

By partitioning the system matrices into block matrices that depend explicitly

on the m-set or s-set or a combination of them, the following re-ordered system

is obtained:

M̂

(
ẍm

ẍs

)
+ K̂

(
xm

xs

)
=

(
fm

fs

)
(6.4.4)

where:

M̂ =

(
Mmm Mms

Msm Mss

)
, and K̂ =

(
Kmm Kms

Ksm Kss

)
(6.4.5)

The second equation is solved for xs and its is assumed that there is no force

applied on the external DoFs, i.e fs = 0. The transformation matrix for the

static reduction is obtained by omitting the equivalent inertia terms:(
xm

xs

)
=

(
I

−K−1
ss Ksm

)
xm = Tstaticxm (6.4.6)

180

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Guyan reduction is a good approximation for the lower eigenfrequencies re-

spectively eigenvectors.

Applying a Laplace transformation on the undamped system differential equa-

tion, the equivalent system is given:

(−Mω2 +K)X(ω) = B(ω)X(ω) = F (ω) (6.4.7)

which is then re-ordered into the block partitioned master/slave DoFs as de-

fined previously, giving in that way the transformation matrix for the dynamic

reduction:

⇒ Tdynamic =

(
I

−B(ω)−1
ss B(ω)sm

)
(6.4.8)

where:

B(ω)i,j = −Mi,jω
2 +Ki,j, i, j ∈ {s,m} (6.4.9)

So far we have described the application of the Guyan reduction to a complex

FEM model whose objective is to generate a reduced model that retains as

much as possible the characteristics of the original one at low frequencies. In

many ways the criteria for selecting the measurement points in a complex sys-

tem is the same: we want to accurately measure the modes at lower frequency.

So it is reasonable to postulate that the coordinates of a master FEM model

can also be used as acquisition points in the dynamic tests. In any case it is

necessary that the coordinates removed must be well connected in the struc-

ture.

So, we start with a finite element model, which will have many more DoFs

than are actually measurable. Before the automatic procedure of selection is

initiated, all the DoFs that can not be reasonably used as measuring points

are removed, namely the rotational DoFs and the inaccessible points. The au-

tomatic selection is then started, and ends when the reduced model retains a

number of master coordinates equal to the number established for acquisitions.

Once the master DoFs were identified, some accelerometers were positioned

on the bridge in fixed positions for the duration of data acquisition in the site,

and a set of sensors were put from time to time in different positions, in order

to have multiple setups.

The setup cases are shown in the following figures [8].

181

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.6: Setup 1.

Figure 6.7: Setup 2 (left) and setup 3 (right).

Figure 6.8: Setup 4 (left) and setup 5 (right).

Figure 6.9: Setup 6 (left) and setup 7 (right).

182

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.10: Setup 8 (left) and setup 9 (right).

Figure 6.11: Setup 10 (left) and setup 11 (right).

Dynamic analysis: Artemis (FDD) vs. FEM

The close affinity between the results provided by the FEM model and those

provided by FDD (using Artemis) can be observed by comparing the mode

shapes for the first six modes, presented in the images below. In particular,

from both evaluations, experimental and numerical, the first vibration mode

is of bending type in the vertical direction, the second and the third are of

bending type in the longitudinal direction, the mode 4 is torsional and involves

only the central span, while the modes 5 and 6 are always of torsional type,

but involving the two lateral spans. [8].

Figure 6.12: Mode 1.

183

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.13: Mode 2.

Figure 6.14: Mode 3.

Figure 6.15: Mode 4.

184

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.16: Mode 5.

Figure 6.17: Mode 6.

6.5 Dynamic monitoring

The SHM system has been designed and installed on the Ponte Nuovo in

order to monitor its mechanical behaviour. The final aim is the acquisition

of the vibrational characteristics of the monument by means of acceleration

transducers The acquired data are constantly related to the environmental

parameters (temperature and relative humidity).

185

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Insitutions involved UNIPD

Period of implementation May 2012 - active

Date of activation 20/5/2012

Dynamic System
6 Uni-axial Accelerometers

Continuous Dynamic monitoring system

Static System
7 Strain gauges

16 Displacement transducers

State of the system Active

Planned termination line Undefined

Table 6.4: Details for SHM on Ponte Nuovo

The evaluation of the measured quantities, and in particular their changes

over time, allows having useful indications in the definition of the structural

behaviour and in the determination of the presence or occurrence of damage’s

phenomena.

Important information are currently recorded by the monitoring system, in

relation to the dynamic response of the bridge, evaluating the accuracy of the

adopted numerical models on the basis of the actual behaviour, also in case of

possible seismic events.

The installation of the monitoring system was carried out in March 2012. The

preliminary phase before the installation consisted in: (i) design of the system

(hardware - types of sensors and acquisition units); (ii) development of ap-

propriate software in relation to the selected monitoring strategy; (iii) choice

of the system’s layout and the points of structural control according to the

outcomes of reference numerical models, the survey of the damage pattern

and the results of dynamic identification tests of the structure. The system

is composed of six uniaxial accelerometers (transducers acceleration), by six-

teen linear potentiometers (displacement transducers) and from seven sensors

strain gauges for reading the deformations (one of which is to "control" for

the reading of the deformation due to the temperature and humidity) [34]. In

Figure 6.18 is summarized the positioning of all the sensors and the control

unit. The displacement transducers and sensors strain gauges were placed on

all main beams at the center-line of the various spans, which realizes the max-

186

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

imum deformation. The acceleration sensors are installed at the middle of the

bridge as a reference and then in the middle of the side spans, in order to grasp

the global dynamic behavior of the structure and the change of the natural

frequencies during earthquakes or heavy traffic. The installed dynamic moni-

toring system allows the analysis of a large amount of data taking into account

two main aspects: (i) daily extraction of the fundamental modal parameters;

(ii) registration and analysis of possible seismic events.

Significant effort is devoted to the analysis of recorded data. In particular the

research activities are currently focused on the implementation in MATLAB

environment of automatic and semi-automatic procedures for both static and

dynamic data processing, applicable to many types of structural systems. As

it was previously introduced, a monitoring system to observe static parame-

ters (such as crack opening, displacements..) is in fact also installed on the

structure, but it is not considered within this thesis.

The automatic procedure applied to static data elaborates a standard .txt file

acquired by the static system and create automatically a series of graphs, rep-

resenting the variation over time of the monitored parameters and correlating

them with temperature and humidity variations. The algorithm allows also

applying corrections on acquired data in order to remove errors caused by hu-

man interaction or system’s malfunctioning [14], [31].

The program AtOMA allows to perform automatic dynamic monitoring of

the structure without human intervention, by setting scheduled analysis.

Further developments will include automatic damage reporting and online

availability of data on the current state of the structure.

6.5.1 Global results of the monitoring

The automatic procedure applied to dynamic data elaborates the acquisition

files and automatically estimates and extracts modal parameters from mea-

sured vibrations. Four months of measurements were considered, consisting in

855 measurements files.

The damping ratio are affected by a clear uncertainty in the calculation for

187

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.18: Schematic summary of the positioning of the instrumenta-

tion.

188

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

which they fluctuate within a certain range. The average trend, as well as the

standard deviation remains almost constant over time.

The monitoring results are shown in Tables 6.6 and 6.7. These results have

been obtained by excluding the values considered as statistical outliers (using

the same method previously introduced for the box-plot diagram). It is very

important to notice two parameters: the standard deviation and the success

rate.

Considering the natural frequencies in Table 6.6, Modes 1, 2, 4, 5, and 6, ex-

hibit a low standard deviation and a high success rate (the number of tests

completed in total, excluding the outliers) and this indicates a good reliability

for these results. It has been, on the contrary, not always possible to correctly

identify mode 3, which shows a lower (but not insufficient) success rate. This

is probably due to the positioning of the accelerometers.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

fmax 5,029 6,226 6,909 7,788 11,743 12,598

fmin 4,883 5,786 6,543 7,495 11,572 11,865

fmean 4,954 6,090 6,809 7,560 11,700 12,051

std.dev 0,035 0,126 0,098 0,071 0,054 0,174

success% 95% 89% 60% 95% 90% 95%

Table 6.5: Frequency results of the monitoring using AutoEFDD.

These values can be compared to those obtained through the preliminary iden-

tification of the structure using ARTeMIS Extractor :

189

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Mode fmean (Hz) (AutoEFDD) fmean (Hz) (ARTeMIS) Relative error

1 4,954 4,980 0,5%

2 6,090 6,250 2,6%

3 6,809 6,738 1,0%

4 7,560 7,422 1,8%

- - 8,691 -

- - 8,960 -

5 11,700 11,600 0,9%

6 12,051 - -

Table 6.6: Comparision between the frequencies obtained using Au-

toEFDD and ARTeMIS.

The structural modes at 8,691 Hz and at 8,960 Hz have not been identified

by AutoEFDD, probably due to the limited number of channels available for

the monitoring. The identification performed with Artemis took advantage, in

fact, of a much higher number of measuring instruments.

Analogously, for Table 6.7 all calculated damping ratio parameters for the first

6 modes can be considered as structural, since their value is is minor than 10-

20%. Mode 1 and mode 5 and 6 are the ones that exhibit less dispersed value,

having a low standard deviation. Damping ratios calculated for mode 2, 3

and 4 are, on the contrary, more dispersed. The success rate for mode 3 is

around 54%, which is due to the difficulty in identifying the structural mode

(the success rate for the natural frequency identification for mode 3 is 60%).

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ζmax 2,393% 5,974% 4,782% 4,782% 2,519% 2,659%

ζmin 0,577% 0,435% 0,277% 0,349% 0,270% 0,199%

ζmean 1,532% 2,994% 1,816% 2,367% 1,132% 1,123%

std.dev 0,375% 1,252% 1,049% 0,928% 0,470% 0,549%

success% 93% 86% 54% 96% 84% 92%

Table 6.7: Damping results of the monitoring using AutoEFDD.

190

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

The trend of the natural frequencies and damping ratios calculated using the

monitoring tool AtOMA-AutoEFDD is shown in the following figures. In

Figure 6.19 the trend over time of the natural frequencies calculated for Ponte

Nuovo is plotted. The trend of natural frequencies shows an almost constant

behaviour during the months of observation. The lower frequencies show a

greater stability while the higher ones are more dispersed.

191

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.19: Trend over time of the natural frequencies for Ponte Nuovo

(May. 12 - Jun. 13).

192

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.20 shows an overview of the modal parameters calculated during the

whole monitoring. The structural modes with a low dispersion are considered

correctly identified. From this figure it is not possible, however, to understand

whether the dispersion is due to seasonal variations of the structure or if it is

due to a weak structural mode.

Figure 6.20: Damping ratios vs natural frequencies (May. 12 - Jun. 13).

Figure 6.21: Mean values of the modal parameters (May. 12 - Jun. 13).

As previously introduced, the box-plot provides a statistical description of the

distribution of the values. Since a box-plot with a narrow inter-quartile range

(IQR) indicates a low dispersion of the results, modes 1, 4, 5, 6 appear to be

well estimated.

193

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.22: Box-plot of the damping ratios (May. 12 - Jun. 13).

Figures 6.23, 6.24 and 6.25 show the developing over time of the damping ratio

parameter for each structural mode (from mode 1 to mode 6). A seasonal trend

variation is visible for all the structural modes. Modes 1, 2, 3, 4, 6 show, on

average, the highest damping ratio values in the winter period and then settle

again on the previous values, while mode 5 exhibits lower values in the winter

period.

Figure 6.23: Trend over time of damping ratios for mode 1, 2 (May. 12 -

Jun. 13).

Figure 6.24: Trend over time of damping ratios for mode 3, 4 (May. 12 -

Jun. 13).

194

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Figure 6.25: Trend over time of damping ratios for mode 5, 6 (May. 12 -

Jun. 13).

6.5.2 Validation of the results

As previously introduced, the dynamic monitoring test is performed using

AtOMA’s AutoEFDD procedure, which implements an Enhanced Frequency

Decomposition method.

In order to validate the results, another method is used to extract the modal

parameters of the structure: Stochastic Subspace Identification, through the

AtOMA’s AutoSSI procedure. Once the results provided by AutoEFDD are

available, the extracted structural modes are searched inside the results given

by SSI. While high success rates mean that the structural mode is considered

to be valid, low success rates do not automatically imply the invalidity of the

result, since SSI itself is a method that requires a calibration. Moreover, due to

the slowness of the SSI algorithm, it was not possible to carry out the analysis

of all the files of monitoring, therefore only a small sample of the total has

been considered.

The results, for the first 6 structural modes, given by AutoSSI procedure are

displayed in Tables 6.8 and 6.9.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

fmax 5,009 6,315 7,186 8,242 11,866 12,546

fmin 4,908 5,736 6,643 7,281 11,425 11,995

fmean 4,944 6,062 6,938 7,649 11,660 12,229

std.dev 0,027 0,192 0,138 0,352 0,110 0,129

success% 97,1% 65,7% 82,9% 94,3% 71,4% 97,1%

Table 6.8: Frequency results of the monitoring using AutoSSI.

195

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ζmax 2,472% 7,794% 6,415% 4,731% 2,832% 2,992%

ζmin 0,806% 3,124% 2,435% 1,118% 0,658% 1,182%

ζmean 1,542% 4,898% 4,354% 2,486% 1,580% 2,014%

std.dev 0,377% 1,107% 1,146% 0,919% 0,606% 0,497%

success% 100,0% 65,7% 82,9% 94,3% 71,4% 91,4%

Table 6.9: Damping results of the monitoring using AutoSSI.

The validity of the natural frequencies extracted using AutoEFDD is clear for

most of the structural modes: modes 1, 3, 4, 6 exhibit in fact a high success

rate. Modes 2 and 5 were not always identified by SSI, but the validation is

overall positive, since they were correctly identified in more than 65% of the

monitoring files considered.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

f(EFDD) 4,954 6,090 6,809 7,560 11,700 12,051

Success%(EFDD) 95,3% 89,1% 59,9% 95,1% 89,7% 95,3%

f(SSI) 4,944 6,062 6,938 7,649 11,660 12,229

Success%(SSI) 97,1% 65,7% 82,9% 94,3% 71,4% 97,1%

Error ε 0,2% 0,5% 1,9% 1,2% 0,3% 1,5%

Table 6.10: Comparision of the natural frequencies extracted using Au-

toEFDD and AutoSSI.

The parameters of damping ratio calculated with SSI are of the same order

of magnitude as those calculated by the method EFDD. The estimates of

the damping ratio for modes 1, 4, 5 are comparable with those obtained using

EFDD, while those calculated for modes 2, 3 and 6 present much higher values:

these values are probably attributable to the reduced number of files on which

the analysis was performed.

196

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ζ(EFDD) 1,532% 2,994% 1,816% 2,367% 1,132% 1,123%

Success%(EFDD) 92,9% 86,0% 53,7% 96,3% 84,1% 91,6%

ζ(SSI) 1,542% 4,898% 4,354% 2,486% 1,580% 2,014%

Success%(SSI) 100% 65,7% 82,9% 94,3% 71,4% 91,4%

Error ε 0,6% 48,2% 82,3% 4,9% 33,1% 56,8%

Table 6.11: Comparision of the damping ratios extracted using AutoEFDD

and AutoSSI.

In summary, the mean values of the modal parameters calculated using the

two methods are shown in Tables 6.10 and 6.11. For each pair of values of the

relative error was calculated as the ratio of the absolute error and the mean of

the two values.

6.6 Conclusions

In this chapter an application regarding the Ponte Nuovo del Popolo in Verona

was carried out. The purpose of this application was to consider an existing

structure, on which previous dynamic structural identification tasks were per-

formed, in order to observe the validity of the results given by SIM/AtOMA

in comparison to those provided by other methods and commercial software.

Two structural modes previously identified with ARTeMIS using different mon-

itoring setups [8] were not identified by the subsequent monitoring. In order

to correctly identify these two modes it was probably necessary to install other

measuring instruments in the two terminal spans of the bridge.

Furthermore, except for these two structural modes which were not identi-

fied, the results were proven to be reliable and the analysis was extended and

completed over one year of measurements using AutoEFDD and AutoSSI pro-

cedures.

Overall, the validation of the results provided by the AutoEFDD procedure

197

Chapter 6: Application: Ponte Nuovo Del Popolo, Verona

can be considered satisfied, since the results given by the various methods are

consistent to each other. While the natural frequencies identified using Au-

toEFDD and AutoSSI are perfectly corresponding, damping ratios show some

variability between the two methods, but it is however considered to be ac-

ceptable.

The monitoring of the bridge displayed a constant behavior of the natural

frequencies over a complete year, while the damping ratios exhibited some

seasonal change. In fact, for most of the structural modes, the trend of the

evaluated damping ratios exhibits an increment in the winter season and re-

turns to its original values during spring.

198

Chapter 7

Conclusions

Structural identification (St-Id) of constructed systems has become, over the

last few decades, a relevant engineering field. As seen in Chapter 2, St-Id rests

its foundation on the concept that for a mathematical model is a description of

reality, it must be validated on the basis of observations of the physical world.

In this case, the interest of this thesis was focused on the observation of the

dynamic characteristics of existing structures by means of various methods. A

classic method for dynamic identification of a structure lies in modal analysis,

which allows to extract the dynamic parameters of the structure, such as its

natural frequencies, damping ratios, mode shapes, from experimental measure-

ments.

In contrast to the classical experimental modal analysis, which requires the

excitation of the structure by means of particular instruments, another, re-

cently developed, type of analysis has been considered, the operational modal

analysis (OMA). OMA observes the response of the structure subjected to the

"natural" excitations, such as wind, vehicular traffic, seismic micro vibrations

and so on. The advantages that this technique have been presented, among

which the fact that it is no longer necessary to interrupt the functionality of

the structure under examination and this allows the execution of monitoring

operations over time and makes possible a variety of applications, such as

Structural Health Monitoring. Furthermore, this method is the only one that

provides a global dynamic characterization of the real structure: in fact FE

models provide global information of a structure’s model, not of the structure

199

Chapter 7: Conclusions

itself, and static measurements provide real information but of local nature.

The fact that it is not necessary to stimulate the structure with specific de-

vices, makes the application of these methods highly advantageous from an

economic point of view.

Various operational modal analysis methods available were illustrated, focusing

on two methods in particular, Frequency Domain Decomposition and Stochas-

tic Subspace Identification. In the context of this thesis, it was in fact de-

veloped an application that allows the performance of activities of dynamic

identification by means of these two methods. This application is called Struc-

tural Identification and Monitoring / Automatic tool for Operational Modal

Analysis (SIM/AtOMA).

The work done for this thesis consisted in expanding the implementation of

the FDD method, previously started in the context of the Department of Civil,

Construction and Environmental Engineering of Padua (DICEA), in order to

enable the extraction of the damping ratio parameter, and subsequently carry

out the implementation of the two methods (EFDD and SSI) within a pro-

gram with a graphical interface, which can be used for the identification and

automatic monitoring of existing structures.

The mode of operation of this program were presented in Chapters 4, 5 and 6.

In chapter 4, the characteristics of the program were discussed from a user

point of view. The interactions required to perform each task and the outputs

were explained, thus all the parameters, buttons and Figures were documented

in detail.

Furthermore, a tutorial for the user was provided in this chapter, which con-

sisted in the dynamic identification of a bridge over river Mincio, situated in

the municipality of Peschiera sul Garda. First a description of the structure

was provided in order to contextualize the problem. Subsequently the charac-

teristics of the monitoring system were discussed. Then the tasks performed to

extract the modal parameters using the program were described in detail. The

results provided by the two methods (AutoEFDD and AutoSSI) have proven

to be consistent and are therefore considered valid to describe the dynamic

behavior of the structure.

In chapter 5, the program has been explained from the point of view of pro-

200

Chapter 7: Conclusions

gramming code that defines its behavior. All major functions have been de-

scribed, indicating the meaning of the most important steps.

In chapter 6, an application of St-Id carried out using SIM/AtOMA was

presented. The analysis of this bridge was based on a dynamic structural

characterization carried out in the context of previous thesis and was devel-

oped further by means of the tools provided by the program AtOMA. This

has allowed us to further confirm the validity of the methods used, as an op-

eration of dynamic identification had been previously carried out by means of

a commercial software which ARTeMIS. This previous analysis had shown the

correlation between the structure’s actual vibration modes and those exhibited

by the FE model. The results given by AutoEFDD and AutoSSI are consistent

with the previous analysis and have allowed to observe the development of the

modal parameters of the structure for over a year of measurements.

By means of the two applications considered, was therefore demonstrated the

ability of AtOMA to provide accurate results of the actual dynamic behavior

of a structure.

St-Id is, however, a very vast engineering field, whose theoretical basis range

from signal analysis to structural mechanics. A brief overview of the required

theoretical knowledge necessary to define the operations performed in a St-Id

analysis has been provided in Chapter 2.

SIM/AtOMA allows to perform structural dynamic identification of many

types of structures with an easy, user friendly interface, which informs the

user on the intermediate steps of the analysis in order to let him calibrate the

parameters to achieve the best possible results. The results given by the Au-

toEFDD procedure can be validated inside the program itself by using AutoSSI

procedure, which makes it an independent tool for dynamic identification.

At the present time, the on-site installation of the program AtOMA, makes it

possible to carry out operations not only of dynamic identification, but also of

automatic dynamic monitoring. By means of internet connections, real-time

information on the state of the structure are available without the need to

travel to the location or to transfer measurement files, which may have dimen-

sions not suitable for transfer over the network.

However, there is much room for the further developments of the program.

201

Chapter 7: Conclusions

For example, the enabling of the detection of any damage states, identified by

changes in the modal parameters of the structure, will optimize the mainte-

nance and safety of the structure by submitting via e-mail warning in case of

damage. The development of a spatial mode shape recognition will allow to

directly correlate the results of the experimental testing with the mode shapes

given by a FE model, facilitating the process of model updating. The imple-

mentation of ARX methods will allow to eliminate the influence of temperature

and humidity from the results (which was clearly visible in the damping results

obtained in the monitoring of Ponte Nuovo, in Chapter 6).

202

References

[1] Allemang R.J.,Brown D.L., "Experimental modal analysis", Chapter 21.

[2] Andersen P., "Identification of Civil Engineering Structures using Vector

ARMA Model", Ph.D. Thesis. Aalborg University. Denmark, 1997

[3] Andersen P., Brinker R., "Estimation of Modal Parameters and Their

Uncertainties.", Proceeding of the 17th IMAC, 1999

[4] ASCE SEI Committee on Structural Identification of Constructed Sys-

tems "Structural Identification (St-Id) of Constructed Facilities", Amer-

ican Society of Civil Engineers, Structural Engineering Institute, 2011.

[5] Baker B., "How delta-sigma ADCs work", Texas Instruments Incorpo-

rated,Analog Applications Journal, 2011

[6] Bendat J.S., Piersol A.G., "Random Data: Analysis and Measurement

Procedures", Fourth Edition, Wiley Series in Probability and Statistics,

2010

[7] Bilošová A., "Modal Testing", 2011.

[8] Bisson A., "Caratterizzazione strutturale ed identificazione dinamica di

due ponti stradali", 2011.

[9] Brinker R., Andersen P., "Understanding Stochastic Subspace Identifica-

tion", Proceedings of the 24th International Modal Analysis Conference

(IMAC), St. Louis, Missouri, 2006

[10] Brinker R., Andersen P., Jacobsen N.J., "Automated Frequency Do-

main Decomposition for Operational Modal Analysis", Proceedings of

203

References

The 25th International Modal Analysis Conference (IMAC), Orlando,

Florida, 2007

[11] Brinker R., Andersen P., Kirkegaard P.H., Ulfkjaer J.P., "Damage De-

tection in Laboratory Concrete Beams", Proceedings of The 13th Inter-

national Modal Analysis Conference (IMAC), 1995

[12] Brinker R., Ventura C., Andersen P., "Damping Estimation by Fre-

quency Domain Decomposition", Proceedings of the 19th International

Modal Analysis Conference (IMAC), Kissimmee, USA, 2001

[13] Brinker R., Zhang L.M., P. Anderson, "Modal Identification from Am-

bient Response using Frequency Domain Decomposition", Procedures of

the 18th IMAC, San Antonio, TX, USA, 2000

[14] Caldon M., "Un algoritmo per l’analisi automatica dei dati di monitor-

aggi strutturali. Applicazione a tre casi studio", Master Degree Thesis,

University of Padova, 2012

[15] Cauberghe B., "Applied frequency-domain system identification in the

field of experimental and operational modal analysis", PhD Thesis, Vrije

Univeriteit Brussel 2004.

[16] Cooley J.W., Tuckey J.W., "An Algoritm for the Machine Calculation

of Complex Fourier Series", Mathematics of computation 1965.

[17] Cunha A., Caetano E, "Experimental Modal Analysis of Civil Engineer-

ing Structures", Sound and Vibration, June 2006.

[18] Doebling S.W., Farrar C.R., Prime M.B., Shevitz D.W., "Damage Iden-

tification and Health Monitoring of Structural and Mechanical Systems

from Changes in Their Vibration Characteristics: A Literature Review",

Los Alamos National Laboratory, 1996.

[19] Ewins D. J., "Modal Testing - Theory and Practice", Research Studies

Press, 1984.

[20] Gade S., Møller N.B., Herlufsen H., Konstantin-Hansen H., "Frequency

Domain Techniques for Operational Modal Analysis", Brüel & Kjær

204

References

Sound and Vibration Measurements A/S, IMAC-XXIV: Conference &

Exposition on Structural Dynamics - Looking Forward: Technologies for

IMAC, 2006

[21] Hall S.R., "The Effective Management and Use of Structural Health

Data" Proceedings of the 2nd International Workshop on Structural

Health Monitoring, 1999.

[22] He, J., Fu, Z.F., "Modal Analysis" Butterworth-Heinemann, 2001.

[23] Hoon S., Farrar C., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler

B.R., Czarnecki J.J., "A Review of Structural Health Monitoring Liter-

ature: 1996âĂŞ2001" Los Alamos National Laboratory, 2004.

[24] Islami K., "Enhanced system identification and automatic SHM of bridge

structures", Ph.D. Thesis, University of Padua, Italy, 2013.

[25] Jacobsen N.-J., Andersen P., Brinker R., "Using Enhanced Frequency

Domain Decomposition as a Robust Technique to Harmonic Excitation

in Operational Modal Analysis", Proceedings of The 2nd International

Operational Modal Analysis Conference (IOMAC), Copenhagen, Den-

mark, 2007.

[26] Jacobsen N.-J., Andersen P., Brinker R., "Applications of Frequency Do-

main Curve-fitting in the EFDD Technique", Proceedings of the 26th In-

ternational Modal Analysis Conference (IMAC) Orlando, Florida USA,

2008.

[27] James G.H., Lauffer J.P., Nard A.R., "Modal Testing Using Natural

Excitation", Proceeding of the 10th IMAC. San Diego. CA. USA, 1992

[28] Kessler S.S., "Structural Health Monitoring in Composite Materials Us-

ing Lamb Wave Methods", Technology Laboratory for Advanced Compos-

ites Department of Aeronautics and Astronautics Massachusetts Institute

of Technology

[29] Koutsovalisis P., Beitelschmidt M., "Model Reduction of Large Elastic

Systems, A Comparison Study on the Elastic Piston Rod", 12th World

Congress in Mechanism and Machine Science, IFToMM, 2007.

205

References

[30] Ljung L., "System Identification: Theory for the User", Prentice Hall,

1987.

[31] Lorenzoni F., "Integrated methodologies based on structural health mon-

itoring for the protection of cultural heritage buildings", PhD Thesis,

IUAV, 2013.

[32] Masjedian M.H., Keshmiri M., "A Review on Operational Modal Anal-

ysis Researches: Classification of Methods and Applications", IOMAC

2009, 3rd International Operational Modal Analysis Conference, 2009

[33] Moon F.L., Aktan A.E., "Impacts of Epistemic (Bias) Uncertainty on

Structural Identification of Constructed (Civil) Systems", The Shock and

Vibration Digest, Vol. 38, No. 5, 2006

[34] Modena C., Cappellin D., Islami K., Caldon M., "Relazione tecnica

sulle attivitá di monitoraggio strutturale del Ponte Nuovo del Popolo a

Verona, Maggio 2012 - Maggio 2013", Dipartimento di Ingegneria Civile

Edile e Ambintale, Universitá di Padova, 2013

[35] Moore S.M, Lai J.C.S, Shankar K., "ARMAX Modal Parameter Identi-

fication in the Presence of Unmeasured Excitation-l: Theoretical Back-

ground.", University of New South Wales. Canberra. Australia., 2006

[36] Piovesan D., "Dynamic system identification of bridges: development of

automatic algorithms in the frequency domain for continuous monitor-

ing.", Univerisitá degli studi di Padova, 2013.

[37] SM Ingegneria s.r.l, "Ponte sul fiume Mincio a Peschiera, Relazione di

verifica sullo stato di fatto.", Ponte sul fiume Mincio lungo l’autostrada

A4 in Comune di Peschiera del Garda. Rilievo dello stato di danno,

verifiche e proposte di interventi urgenti per l’adeguamento del ponte,

2011.

[38] SM Ingegneria s.r.l, "Relazione interpretativa del monitoraggio delle de-

formazioni dinamiche", Ponte sul fiume Mincio lungo l’autostrada A4 in

Comune di Peschiera del Garda. Rilievo dello stato di danno, verifiche

e proposte di interventi urgenti per l’adeguamento del ponte, 2013.

206

References

[39] Van Overchee P., De Moor B., "Subspace identification for linear systems

- Theory, Implementation, Applications", Kluwer Academic Publishers

1996.

[40] Ventura C.E., Tomas H., "Structural Assessment by Modal Analysis in

Western Canada", Procedures of the IMAC XV, Orlando, Florida 1997.

[41] Zhang L., Brincker R., Andersen P., "An Overview of Operational Modal

Analysis: Major Development and Issues", Proceedings of the 1st Inter-

national Operational Modal Analysis Conference (IOMAC), Copenhagen,

Denmark, 2005

[42] Zhang L.-M, Wang T., Tamura Y., "Frequency-spatial Domain Decom-

position Technique with Application to Operational Modal Analysis of

Civil Engineering Structures", Proceedings of the 1st International Op-

erational Modal Analysis Conference (IOMAC), Copenhagen, Denmark,

2005

207

Appendix A

Complete Matlab code of the

program

A.1 AutoEFDDgui.m

f unc t i on varargout = AutoEFDDgui(vararg in)

gui_Sing leton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @AutoEFDDgui_OpeningFcn , . . .

’ gui_OutputFcn ’ , @AutoEFDDgui_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e AutoEFDDgui i s made v i s i b l e .

208

Appendix A: Complete Matlab code of the program

f unc t i on AutoEFDDgui_OpeningFcn(hObject , eventdata , handles ,

va rarg in)

handles . output = hObject ;

guidata (hObject , handles) ;

setappdata (0 , ’ us ingtemplate ’ , 0) ;

setappdata (0 , ’ s chedu le ron ’ , 0) ;

f unc t i on varargout = AutoEFDDgui_OutputFcn(hObject , eventdata ,

handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in browsenewfdd .

func t i on browsenewfdd_Callback (hObject , eventdata , handles)

folder_name = u i g e t d i r (’ ’ , ’ P lease s e l e c t the f o l d e r with the data

f i l e ’) ;

handles . f i l e L i s t = g e tA l l F i l e s (folder_name , 500) ;

guidata (hObject , handles) ;

s e t (handles . f o l d e r , ’ S t r ing ’ , folder_name) ;

s e t (handles . s t a r t fdd , ’ Enable ’ , ’ on ’) ;

s e t (handles . statusS , ’ V i s i b l e ’ , ’ on ’ , ’ S t r ing ’ , ’<−− ’ , ’ BackgroundColor

’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (handles . phase1 , ’ BackgroundColor ’ , [1 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (handles . phase3 , ’ BackgroundColor ’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

% −−− Executes on button pr e s s in s t a r t f dd .

func t i on [handles]= start fdd_Cal lback (hObject , eventdata , handles)

s e t (handles . statusS , ’ V i s i b l e ’ , ’ on ’ , ’ S t r ing ’ , ’Wait . . ’ , ’

BackgroundColor ’ , [1 0 0]) ;

L=st r2doub l e (get (handles . L , ’ S t r ing ’)) ;

f s=s t r2doub l e (get (handles . f s , ’ S t r ing ’)) ;

NFFT_all=st r2doub l e (get (handles .NFFT, ’ S t r ing ’)) ;

NFFT=NFFT_all (get (handles .NFFT, ’ Value ’)) ;

c l e a r NFFT_all ;

folder_name=get (handles . f o l d e r , ’ S t r ing ’) ;

f i l e L i s t = g e tA l l F i l e s (folder_name , 500) ;

c ana l i=get (handles . channels , ’ S t r ing ’) ;

209

Appendix A: Complete Matlab code of the program

canal i_ind=s t r f i n d (cana l i , ’ , ’) ;

v (1)=str2num (c ana l i (1 : canal i_ind (1)−1)) ;

f o r i =2: l ength (canal i_ind)

v (i)=str2num (c ana l i (canal i_ind (i −1)+1: canal i_ind (i)−1)) ;

end

v (i +1)=str2num (c ana l i (canal i_ind (i) +1: l ength (c ana l i))) ;

%%% Se l e c t only Fast f i l e

j = 1 ;

f o r i= 1 : l ength (f i l e L i s t)

i sFa s t = s t r f i n d (f i l e L i s t (i , 1) , ’_Fas ’) ;

emptyCell = c e l l f u n (@isempty , i sFa s t (1)) ;

i f (emptyCell == 0)

Fas tL i s t (j , 1) = f i l e L i s t (i , 1) ;

j = j +1;

end

end

numf i l e s = j −1; s s

s e t (handles . s tatus1 , ’ S t r ing ’ , [num2str (numf i l e s) ’ dynamic f i l e s

found ’]) ;

h s t r0 =[num2str (numf i l e s) ’ dynamic f i l e s found ’ char (10) ’

Proce s s ing FDD. Please wait . . . ’] ;

FastNameList = Fas tL i s t ;

Fas tL i s t = c e l l 2 s t r u c t (FastList , ’name ’ , numf i l e s) ;

%% Loop over in t h i s Folder

h = waitbar (0 , h s t r0) ;

f o r i f a s t = 1 : s i z e (FastLis t , 1)

waitbar ((i f a s t −1)/ s i z e (FastLis t , 1) ,h , hs t r0) ;

t i c ;

% Look at [3 4]

g i r o=toc ;

Monitoraggi_Mancanti=s i z e (FastLis t , 1)− i f a s t ;

h s t r0 =[’Now proc e s s i ng FDD. ’ da t e s t r (datenum (0 , 0 , 0 , 0 , 0 , g i r o ∗
Monitoraggi_Mancanti) , ’HH:MM: SS ’) ’ l e f t . ’] ;

end

waitbar (1 , h , ’Done . ’) ;

210

Appendix A: Complete Matlab code of the program

i f round (s i z e (FastNameList , 1) /3)>3

s e t i f a s t=round (s i z e (FastNameList , 1) /3) ;

e l s e

s e t i f a s t =3;

end

s e t (f i ndob j (’Tag ’ , ’ i f a s t ’) , ’ S t r ing ’ , num2str (s e t i f a s t)) ;

setappdata (0 , ’ FDD_location ’ , ’FDD. mat ’) ;

s e t (f i n d a l l (handles . u ipanel7 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ on ’) ;

s e t (f i n d a l l (handles . u ipanel5 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ o f f ’)

;

s e t (handles . f r e quenc i e s , ’ Enable ’ , ’ on ’) ;

s e t (handles . statusF , ’ V i s i b l e ’ , ’ on ’ , ’ S t r ing ’ , ’<−− ’ , ’ BackgroundColor

’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (handles . statusD , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . statusS , ’ S t r ing ’ , ’OK’ , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase1 , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [1 1 0]) ;

s e t (f i ndob j (’Tag ’ , ’ s ave r e s ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ savetemplate ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ s a v e f d d f i l e ’) , ’ Enable ’ , ’ on ’) ;

c l o s e (h) ;

hhh=handles ;

c l e a r handles hObject ;

save FDD;

load (getappdata (0 , ’ FDD_location ’) , ’ FastNameList ’) ;

s e t (f i ndob j (’Tag ’ , ’ i f a s t 0 ’) , ’ S t r ing ’ , FastNameList , ’ Value ’ , 1) ;

i f getappdata (0 , ’ us ingtemplate ’)==1

i f getappdata (0 , ’ s chedu le ron ’)==1 %spostamento f i l e s

a r ch ive =[getappdata (0 , ’ f a s t d i r ’) ’ \ a r ch ive \ ’] ;

i f ~ e x i s t (arch ive , ’ f i l e ’) mkdir (a r ch ive) ; end

f o r i =1: l ength (FastNameList) move f i l e (FastNameList{ i } ,

arch ive , ’ f ’) ; end

end

handles=frequenc i e s_Cal lback ([] , [] , hhh) ;

handles=damping_Callback ([] , [] , handles) ;

saveres_Cal lback ([] , [] , handles) ;

setappdata (0 , ’ mergetemplate ’ , 1) ;

211

Appendix A: Complete Matlab code of the program

merge ;

end

% −−− Executes on button pr e s s in browsefdd .

func t i on browsefdd_Callback (hObject , eventdata , handles)

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ .mat ’ , ’ P lease s e l e c t

the FDD. mat f i l e . ’) ;

fdd_name=[PathName FileName] ;

s e t (handles . f d d f i l e , ’ S t r ing ’ , fdd_name) ;

s e t (handles . phase1 , ’ BackgroundColor ’ , [1 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (handles . phase3 , ’ BackgroundColor ’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (f i ndob j (’Tag ’ , ’ s ave r e s ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ savetemplate ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ v a l i d a t i o n ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ dampingvs f requenc ies ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ meanvsfrequency ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ boxplot ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’dmode ’) , ’ Enable ’ , ’ o f f ’) ;

% −−− Executes on button pr e s s in loadfdd .

func t i on loadfdd_Callback (hObject , eventdata , handles)

setappdata (0 , ’ FDD_location ’ , get (handles . f d d f i l e , ’ S t r ing ’)) ;

gu idata (hObject , handles) ;

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD, ’ FastNameList ’) ;

i f s i z e (FastNameList , 1)<6 && getappdata (0 , ’ us ingtemplate ’)~=1

e r r o r d l g (’ Required at l e a s t 6 f i l e s to compute a brand new

ana l y s i s . ’) ;

s e t (handles . statusS , ’ S t r ing ’ , ’<−− ’ , ’ BackgroundColor ’ , [0 . 9 4 1

0 .941 0 . 9 4 1]) ;

r e turn ;

end

i f round (s i z e (FastNameList , 1) /3)>3

s e t i f a s t=round (s i z e (FastNameList , 1) /3) ;

e l s e

s e t i f a s t =3;

end

212

Appendix A: Complete Matlab code of the program

s e t (handles . i f a s t , ’ S t r ing ’ , num2str (s e t i f a s t)) ;

s e t (f i n d a l l (handles . u ipanel7 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ on ’) ;

s e t (f i n d a l l (handles . u ipanel5 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ o f f ’)

;

s e t (handles . f r e quenc i e s , ’ Enable ’ , ’ on ’) ;

s e t (handles . statusF , ’ V i s i b l e ’ , ’ on ’ , ’ S t r ing ’ , ’<−− ’ , ’ BackgroundColor

’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (handles . statusD , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . statusS , ’ S t r ing ’ , ’OK’ , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase1 , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [1 1 0]) ;

s e t (f i ndob j (’Tag ’ , ’ s ave r e s ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ savetemplate ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ s a v e f d d f i l e ’) , ’ Enable ’ , ’ on ’) ;

s e t (handles . frequenzetempo , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . svbutton , ’ Enable ’ , ’ o f f ’) ;

load (getappdata (0 , ’ FDD_location ’) , ’ Fas tL i s t ’) ;

FL=s t r u c t 2 c e l l (Fas tL i s t) ;

s e t (f i ndob j (’Tag ’ , ’ i f a s t 0 ’) , ’ S t r ing ’ ,FL, ’ Value ’ , 1) ;

i f getappdata (0 , ’ us ingtemplate ’)==1

handles=frequenc i e s_Cal lback ([] , [] , handles) ;

handles=damping_Callback ([] , hObject , handles) ;

saveres_Cal lback ([] , [] , handles) ;

setappdata (0 , ’ mergetemplate ’ , 1) ;

merge ;

end

% −−− Executes on button pr e s s in f r e qu en c i e s .

f unc t i on [handles] = f requenc i e s_Cal lback (hObject , eventdata ,

handles)

s e t (handles . statusF , ’ S t r ing ’ , ’Wait . . ’ , ’ BackgroundColor ’ , [1 0 0]) ;

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD) ;

gg=2;

%% Calco lo de l MAC tra matr ice UUrif con un ’ a l t r a UU s c e l t a a

pa r i t à d i NFFT

% Inser imento da t i

213

Appendix A: Complete Matlab code of the program

rad io=get (handles . newre su l t s rad io , ’ Value ’) ;

i f r ad io == 1 pp = 1 ;

e l s e pp = −1;

end

%Look at [3 4] .

c l e a r v a r s −except handles

i f getappdata (0 , ’ us ingtemplate ’)==1

load (getappdata (0 , ’ s a v e f i l e ’)) ; %ca r i c o i l s a v e f i l e de l

template

load (getappdata (0 , ’ i n d i c i ’)) ; %ca r i c o i l f i l e i n d i c i de l

template

e l s e

load s a v e f i l e

load i n d i c i

end

load (getappdata (0 , ’ FDD_location ’)) ;

. . .

Result (~ Result)=nan ;

mode l i s t=f i ndob j (’Tag ’ , ’ mode l i s t ’) ;

f o r i =2: s i z e (Result , 2)

l i stSTR{ i −1}=[’Mode ’ num2str (i −1) ’ : ’ num2str (trimmean (

Result (: , i) , 20) ,4) ’ Hz ’] ;

end

s e t (model i st , ’ S t r ing ’ , l i stSTR) ;

i f getappdata (0 , ’ us ingtemplate ’)~=1

s e t (f i ndob j (’Tag ’ , ’ svbutton ’) , ’ Enable ’ , ’ on ’) ;

end

setappdata (0 , ’ Result_frequency ’ , Result) ;

s e t (f i n d a l l (f i ndob j (’Tag ’ , ’ u ipane l5 ’) , ’−property ’ , ’ enable ’) , ’

enable ’ , ’ on ’) ;

s e t (f i ndob j (’Tag ’ , ’ frequenzetempo ’) , ’ Enable ’ , ’ on ’) ;

s e t (f i ndob j (’Tag ’ , ’ damping ’) , ’ Enable ’ , ’ on ’) ;

s e t (f i ndob j (’Tag ’ , ’ modetext ’) , ’ S t r ing ’ , [num2str (s i z e (Result , 2)−1)

’ s t r u c t u r a l modes found . ’]) ;

214

Appendix A: Complete Matlab code of the program

s e t (f i ndob j (’Tag ’ , ’ s tatusF ’) , ’ S t r ing ’ , ’OK’ , ’ BackgroundColor ’ , [0 1

0]) ;

s e t (f i ndob j (’Tag ’ , ’ statusD ’) , ’ V i s i b l e ’ , ’ on ’ , ’ S t r ing ’ , ’<−− ’ , ’

BackgroundColor ’ , [0 . 9 4 1 0 .941 0 . 9 4 1]) ;

s e t (f i ndob j (’Tag ’ , ’ s ave r e s ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ savetemplate ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ v a l i d a t i o n ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ dampingvs f requenc ies ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ meanvsfrequency ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’ boxplot ’) , ’ Enable ’ , ’ o f f ’) ;

s e t (f i ndob j (’Tag ’ , ’dmode ’) , ’ Enable ’ , ’ o f f ’) ;

% −−− Executes on button pr e s s in radionuovo .

func t i on radionuovo_Callback (hObject , eventdata , handles)

s e t (handles . ex i s t i ngdatapane l , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . newdatapanel , ’ V i s i b l e ’ , ’ on ’) ;

s e t (handles . s s i pane l , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . loadfdd , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . s t a r t fdd , ’ Enable ’ , ’ on ’) ;

s e t (handles . rad io fdd , ’ Value ’ , 0) ;

s e t (handles . radionuovo , ’ Value ’ , 1) ;

s e t (handles . s s i r a d i o , ’ Value ’ , 0) ;

s e t (handles . browsenewfdd , ’ Enable ’ , ’ on ’) ;

s e t (handles . browsefdd , ’ Enable ’ , ’ o f f ’) ;

% −−− Executes on button pr e s s in rad io fdd .

func t i on radiofdd_Cal lback (hObject , eventdata , handles)

s e t (handles . ex i s t i ngdatapane l , ’ V i s i b l e ’ , ’ on ’) ;

s e t (handles . newdatapanel , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . s s i pane l , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . loadfdd , ’ Enable ’ , ’ on ’) ;

s e t (handles . s t a r t fdd , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . radionuovo , ’ Value ’ , 0) ;

s e t (handles . rad io fdd , ’ Value ’ , 1) ;

s e t (handles . s s i r a d i o , ’ Value ’ , 0) ;

s e t (handles . browsenewfdd , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . browsefdd , ’ Enable ’ , ’ on ’) ;

% −−− Executes on button pr e s s in svbutton .

215

Appendix A: Complete Matlab code of the program

f unc t i on svbutton_Callback (hObject , eventdata , handles)

FDD=getappdata (0 , ’ FDD_location ’) ;

load (FDD) ;

i f a s t 0 = get (handles . i f a s t 0 , ’ Value ’) ;

i f a s t = st r2doub l e (get (handles . i f a s t , ’ S t r ing ’)) ;

i f a s t = i f a s t 0+i f a s t −1;

fmTOT = ze ro s (f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1)) ,50) ;

appAX = ze ro s (50 ,300 , f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1))) ;

ZZ = appAX;

YY = appAX;

indiciTOT=ze ro s (f l o o r (s i z e (Fas tL i s t) /(i f a s t − i f a s t 0 +1)) ,50) ;

UUrif (: , :)=Umodi (: , : , i f a s t 0) ;

f o r j=i f a s t 0 +1: i f a s t

f o r i =1:NFFT/5+1

UUrif2=UUrif (i , :) ∗UUrif (i , :) ’ ;

P=(UUrif (i , :) ∗Umodi(i , : , j) ’) . ^ 2 ;

u i=Umodi(i , : , j) ∗Umodi(i , : , j) ’ ;

MACuu(j−i f a s t 0 , i)=P/(UUrif2∗ ui) ;

end

end

STD=std (MACuu) ;

miniSTD=STD(1 :NFFT/5) ; % 40Hz : va l o r e s c e l t o per avere una mSTD "

pu l i t a "

mSTD=sum(miniSTD) /(NFFT/5) ;

f o r n=1:NFFT/5+1

MACuuMEDIO(n)=sum(MACuu(: , n) ’) /(i f a s t − i f a s t 0) ;

end

DER=abs (d i f f (MACuuMEDIO(:))) ;

miniDER=DER(1 :NFFT/5) ; % 40Hz : va l o r e s c e l t o per avere una mDER "

pu l i t a "

mDER=sum(miniDER) /(NFFT/5) ;

% Gra f i c i MAC medio e SV

x=0:NFFT;

y=x−x+st r2doub l e (get (handles .mac , ’ S t r ing ’)) ;

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ; % (0 . 4∗ f s) ∗NFFT/ f s = 0 .4∗NFFT

se t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

216

Appendix A: Complete Matlab code of the program

movegui (f i gu r e1 , ’ c en t e r ’) ;

subplot (2 , 1 , 1) ;

[AX,H1 ,H2]=plotyy (f 1 (1 :NFFT/5) ,MACuuMEDIO(1 :NFFT/5) , f 1 (1 :NFFT/5) ,

SS1 (1 :NFFT/5 , : , i f a s t) , ’ p l o t ’) ; hold on

s e t (get (AX(1) , ’ Ylabe l ’) , ’ S t r ing ’ , ’MAC’ , ’ Color ’ , ’ k ’) ; %s c r i t t e y1

s e t (AX(1) , ’YLim ’ , [0 1] , ’YTick ’ , [0 : 0 . 1 : 1] , ’XTick ’ , [0 : 1 : 0 . 4 ∗ f s]) ;

s e t (AX(1) , ’ YColor ’ , ’ b ’) ;

s e t (get (AX(2) , ’ Ylabe l ’) , ’ S t r ing ’ , ’SV(i) ’ , ’ Color ’ , ’ k ’) ; % s c r i t t e

y2

s e t (AX(2) , ’YLim ’ ,[−220 −20] , ’YTick ’ , [−220:20 :−20] , ’XTick ’

, [0 : 1 : 0 . 4 ∗ f s]) ;

p l o t (x , y , ’−r ’ , ’ l i n ew id th ’ , 1) ;

s e t (get (gca , ’ Xlabe l ’) , ’ S t r ing ’ , ’ Frequency (Hz) ’ , ’ Color ’ , ’ k ’) ;

t i t l e (’ \ f o n t s i z e {12} S ingu la r va lue s − r e f e r e n c e f i l e ’) ;

subplot (2 , 1 , 2) ;

f o r i=i f a s t 0 : i f a s t

[AX,H1 ,H2]=plotyy (f 1 (1 :NFFT/5) ,MACuuMEDIO(1 :NFFT/5) , f 1 (1 :NFFT

/5) , SS1 (1 :NFFT/5 ,1 , i) , ’ p l o t ’) ; hold on

s e t (AX(2) , ’YTick ’ , [] , ’XTick ’ , []) ;

s e t (AX(2) , ’YLim ’ ,[−220 −20]) ;

s e t (AX(1) , ’YLim ’ , [0 1]) ;

end

s e t (get (AX(1) , ’ Ylabe l ’) , ’ S t r ing ’ , ’MAC’ , ’ Color ’ , ’ k ’) ; %s c r i t t e y1

s e t (AX(1) , ’YTick ’ , [0 : 0 . 1 : 1] , ’XTick ’ , [0 : 1 : 0 . 4 ∗ f s]) ;

s e t (AX(1) , ’ YColor ’ , ’ b ’) ;

s e t (get (AX(2) , ’ Ylabe l ’) , ’ S t r ing ’ , ’SV1 ’ , ’ Color ’ , ’ k ’) ; % s c r i t t e y2

s e t (AX(2) , ’YTick ’ , [−220:20 :−20]) ;

p l o t (x , y , ’−r ’ , ’ l i n ew id th ’ , 1) ;

s e t (get (gca , ’ Xlabe l ’) , ’ S t r ing ’ , ’ Frequency (Hz) ’ , ’ Color ’ , ’ k ’) ;

t i t l e (’ \ f o n t s i z e {12} F i r s t s i n gu l a r va lue − a l l f i l e s ’) ;

%

−−

f unc t i on [handles]= load_Callback (hObject , eventdata , handles)

i f getappdata (0 , ’ s chedu le ron ’)~=1

button = ques td lg (’Are you sure you want to s t a r t a new

p ro j e c t from template ? Any unsaved prog r e s s w i l l be l o s t . ’ , ’

217

Appendix A: Complete Matlab code of the program

t i t l e ’ , ’ Yes ’ , ’No ’ , 2) ;

i f strcmp (button , ’No ’)==1

return ;

end

end

i f ~ e x i s t (’ . . / template ’ , ’ f i l e ’)

mkdir (’ . . / template ’) ;

end

i f ~ e x i s t (’ . . / tmp ’ , ’ f i l e ’)

mkdir (’ . . / tmp ’) ;

end

i f getappdata (0 , ’ s chedu le ron ’)==1

FileName=getappdata (0 , ’ s ch f i l ename ’) ;

PathName=getappdata (0 , ’ schpathname ’) ;

e l s e

[FileName , PathName] = u i g e t f i l e (’ . . / template /∗ . e fdd ’ , ’ S e l e c t

the template f i l e to use . ’) ;

end

setappdata (0 , ’ us ingtemplate ’ , 1) ;

newfn=’ cur rent . z ip ’ ; tmp=’ . . / tmp/ ’ ;

c o p y f i l e ([PathName FileName] , [tmp newfn] , ’ f ’) ;

unzip ([tmp newfn] , tmp) ;

d e l e t e ([tmp newfn]) ;

templatename=regexprep (FileName , ’ . e fdd ’ , ’ . mat ’) ;

load ([tmp templatename]) ;

i f ~strcmp (templatetype , ’AUTOEFDD’)

e r r o r d l g (’The s e l e c t e d f i l e i s not an AutoEFDD template . ’) ;

r e turn ;

end

setappdata (0 , ’ s a v e f i l e ’ , [tmp ’ s a v e f i l e . mat ’]) ;

setappdata (0 , ’ i n d i c i ’ , [tmp ’ i n d i c i . mat ’]) ;

setappdata (0 , ’ templatename ’ , templatename) ;

s e t (handles . newresu l t s rad io , ’ Value ’ , 0) ;

218

Appendix A: Complete Matlab code of the program

s e t (handles .NFFT, ’ S t r ing ’ ,NFFT, ’ Value ’ , 1 , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . L , ’ S t r ing ’ ,L , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . f s , ’ S t r ing ’ , f s , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . channels , ’ S t r ing ’ , channels , ’ Enable ’ , ’ o f f ’) ;

s e t (handles .mac , ’ S t r ing ’ ,mac , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . n , ’ S t r ing ’ ,n , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . mac_damping , ’ S t r ing ’ ,mac_damping , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . max_corr , ’ S t r ing ’ ,max_corr , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . min_corr , ’ S t r ing ’ , min_corr , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . loadfdd , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . i f a s t , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . i f a s t 0 , ’ Enable ’ , ’ o f f ’) ;

setappdata (0 , ’ author ’ , author) ;

setappdata (0 , ’ tempdate ’ , tempdate) ;

setappdata (0 , ’ d e s c r i p t i o n ’ , d e s c r i p t i o n) ;

loadtemplate ;

%

−−

f unc t i on merge_Callback (hObject , eventdata , handles)

merge ;

% −−− Executes on button pr e s s in frequenzetempo .

func t i on frequenzetempo_Callback (hObject , eventdata , handles)

Result=getappdata (0 , ’ Result_frequency ’) ;

p l o t f r e q (Result , 0) ;

% −−− Executes on button pr e s s in v a l i d a t i o n .

func t i on va l idat ion_Cal lback (hObject , eventdata , handles)

validate_dampingGUI ;

% −−− Executes on button pr e s s in dampingvs f requenc ies .

f unc t i on dampingvsfrequencies_Cal lback (hObject , eventdata , handles

)

load DAMPING_RESULTS;

219

Appendix A: Complete Matlab code of the program

f_vs_d (newf20 , d_results0 , f_mean , d_mean) ; %Plot d e l l e f r equenze

vs i damping r i l e v a t i

% −−− Executes on button pr e s s in damping .

func t i on [handles]=damping_Callback (hObject , eventdata , handles)

load PERDAMPING

se t (handles . statusD , ’ S t r ing ’ , ’Wait . . ’ , ’ BackgroundColor ’ , [1 0 0]) ;

% Sce l t a de i parametr i per l a r i c e r c a de i damping

sogliaMAC = str2num (get (handles . mac_damping , ’ S t r ing ’)) ;

max_corr = str2num (get (handles . max_corr , ’ S t r ing ’)) ;

min_corr = str2num (get (handles . min_corr , ’ S t r ing ’)) ;

Fdd_loc=getappdata (0 , ’ FDD_location ’) ;

i n t e r v a l l o =0.4 ;

l a s t fm=s i z e (newf2 , 2) ;

d_resu l t s=ze ro s (s i z e (newf2 , 1) , s i z e (newf2 , 2)) ;

d_std=ze ro s (s i z e (newf2 , 1) , s i z e (newf2 , 2)) ;

i f e x i s t (’ damping_temp ’ , ’ f i l e ’)

ok=0;

whi l e ok==0

[s tatus , message , messageid]=rmdir (’ damping_temp ’ , ’ s ’) ;

ok=s ta tu s ;

pause (2) ;

end

end

mkdir (’ damping_temp ’) ;

s i z e (SS0 , 3)

f o r i f a s t 3 =1: s i z e (SS0 , 3) ;

Segnale=SS0 (1 : round (i n t e r v a l l o ∗NFFT+1) ,1 , i f a s t 3) ;

ind iceF=ones (last fm , 1) ;

damping=ze ro s (last fm , 1) ;

j =1;

i =1;

whi l e j<=las t fm && i < i n t e r v a l l o ∗NFFT+1

i=i +1;

i f newf2 (i f a s t 3 , j)==0

j=j +1;

220

Appendix A: Complete Matlab code of the program

e l s e

i f (f 1 (i)>=newf2 (i f a s t 3 , j) && f1 (i −1)<=newf2 (i f a s t 3 , j)

)

ind iceF (j) = i ;

j=j +1;

end

end

end

rangemax=100;

rangeL=ze ro s (l ength (ind iceF) ,1) ;

rangeR=ze ro s (l ength (ind iceF) ,1) ;

k=1;

f o r Fj=1: l ength (ind iceF) %Fj i nd i c e de l modo con s id e ra to

i f ind iceF (Fj) ==1|| ind iceF (Fj)==0

rangeR (Fj) =0;

rangeL (Fj) =0;

e l s e

Ur i f=Umodi(ind iceF (Fj) , : , i f a s t 3) ;

i =1;

MAC=1;

whi l e i<rangemax && MAC>=sogliaMAC && i < ind iceF (Fj)

%i i nd i c e d e l l a f r equenza

Uint=Umodi(ind iceF (Fj)−i , : , i f a s t 3) ;

MAC=(Ur i f ∗Uint ’) .^2/ ((Uint∗Uint ’) ∗(Ur i f ∗Uri f ’)) ;

i f (MAC < sogliaMAC)

rangeL (Fj)=i −1;

end

i=i +1;

end

i =1;

MAC=1;

whi l e i<rangemax && MAC>=sogliaMAC && i < ind iceF (Fj)

%i i nd i c e d e l l a f r equenza

Uint=Umodi(ind iceF (Fj)+i , : , i f a s t 3) ;

MAC=(Ur i f ∗Uint ’) .^2/ ((Uint∗Uint ’) ∗(Ur i f ∗Uri f ’)) ;

i f (MAC < sogliaMAC)

rangeR (Fj)=i −1;

221

Appendix A: Complete Matlab code of the program

end

i=i +1;

end

%Devo mantenere l a campana cent ra ta s u l l a f requenza d i

r i sonanza .

maxDrange=0.5 ; %permetto a l massimo un 20% di

d i f f e r e n z a t ra range a sn e de s t ra

i f rangeR (Fj)> rangeL (Fj) ∗(1+maxDrange) ;

rangeR (Fj)=rangeL (Fj) ∗(1+maxDrange) ;

end

i f rangeL (Fj)> rangeR (Fj) ∗(1+maxDrange)

rangeL (Fj)=rangeR (Fj) ∗(1+maxDrange) ;

end

end

end

FF=newf2 (i f a s t 3 , :) ;

% Cost ru i s co l a campana da t ra s f o rmare ne l tempo azzerando

tut to que l l o che s ta attorno a l range

Be l l=ze ro s (l ength (Segnale) , l ength (ind iceF)) ; %c iascuna colonna

co r r i sponde ad un modo

f o r Fj=1: l ength (ind iceF)

f o r i =1: l ength (Segnale)

i f i >= ind iceF (Fj)−rangeL (Fj) && i <= ind iceF (Fj)+

rangeR (Fj)

Be l l (i , Fj)=Segnale (i) ;

end

end

end

%passagg io ne l dominio de l tempo con FFT Inver sa

iT=(0:1/ f s : 2 00) ; %dominio temporale con passo 1/ f s .

f o r Fj=1: l a s t fm

%Ant i t ras formata d e l l e campane

TBell = r e a l (i f f t (Be l l (: , Fj) ,NFFT)) ;

TBell0 (: , Fj) = TBell (1 : l ength (TBell) /2) . / TBell (1) ;

MyTBell=TBell0 (: , Fj) ;

% Cost ru i s co l a curva de i v a l o r i massimi

j =1;

222

Appendix A: Complete Matlab code of the program

MaxTBell (j , Fj)=MyTBell (1) ;

MaxT(j , Fj)=iT (1) ;

j=j +1;

f o r i =2: l ength (MyTBell)−1

i f MyTBell (i)>MyTBell (i −1)&&MyTBell (i)>MyTBell (i +1)

MaxTBell (j , Fj)=MyTBell (i) ;

MaxT(j , Fj)=iT (i) ;

j=j +1;

end

end

% Cost ru i s co l a curva de i v a l o r i minimi

j =1;

minTBell (j , Fj)=MyTBell (1) ;

minT(j , Fj)=iT (1) ;

j=j +1;

f o r i =2: l ength (MyTBell)−1

i f MyTBell (i)<MyTBell (i −1)&&MyTBell (i)<MyTBell (i +1)

minTBell (j , Fj)=MyTBell (i) ;

minT(j , Fj)=iT (i) ;

j=j +1;

end

end

end

N=0.10∗NFFT/ f s ;

RettaRi f =0;

f o r Fj=1: l a s t fm

i f ind iceF (Fj)==1 | | (rangeL (Fj)==0 && rangeR (Fj)==0) | | (

rangeR (Fj)+rangeL (Fj)<N)

FT(Fj)=NaN;

damping (Fj)=NaN;

damp_std(Fj)=NaN;

e l s e

minTlag (Fj)=f i nd (MaxTBell (: , Fj)< max_corr , 1 , ’ f i r s t ’) ;

maxTlag (Fj)=f i nd (MaxTBell (: , Fj)<min_corr , 1 , ’ f i r s t ’)

−1;

223

Appendix A: Complete Matlab code of the program

minTlagmin (Fj)=f i nd (abs (minTBell (: , Fj))< max_corr , 1 , ’

f i r s t ’) ;

maxTlagmin (Fj)=f i nd (abs (minTBell (: , Fj))<min_corr , 1 , ’

f i r s t ’)−1;

i f maxTlag (Fj)<minTlag (Fj) maxTlag (Fj)=minTlag (Fj) ;

end

%stima d e l l e f r equenze

minTindex=f i nd (abs (TBell0 (: , Fj))<max_corr , 1 , ’ f i r s t ’) ;

maxTindex=f i nd (abs (TBell0 (: , Fj))>min_corr , 1 , ’ l a s t ’) ;

MyTBell=TBell0 (minTindex : maxTindex , Fj) ;

%cons ide ro i l s o l o t r a t t o ’ pu l i t o ’

Frequency_D = length (f i nd (d i f f (MyTBell>0)~=0))+1;

%i l numero d i ze ro c r o s s i n g

FT(Fj)=Frequency_D/(2∗ (iT (maxTindex)−iT (minTindex))) ;

%i l v e t t o r e contentente l e f r equenze d i r i sonanza st imata ne l

dominio de l tempo

%stima de l damping

k=maxTlag (Fj)−minTlag (Fj)+maxTlagmin (Fj)−minTlag (Fj) ;

%i l numero d i p i c c h i p o s i t i v i

d e l t a (Fj)=2/k∗ l og (max_corr/abs (min_corr)) ;

damping (Fj)=1/ sq r t (1+(2∗ pi / de l t a (Fj)) ^2) ;

Rnorm=ze ro s (maxTlag (Fj)−minTlag (Fj) +1 ,1) ;

RettaRi f (1 , Fj)=log (MaxTBell (minTlag (Fj) , Fj)) ;

RettaRi f (maxTlag (Fj)−minTlag (Fj)+1,Fj)=log (MaxTBell (

maxTlag (Fj) , Fj)) ;

Rnorm(1) =0; Rnorm(maxTlag (Fj)−minTlag (Fj)+1)=0;

f o r r r =2:(maxTlag (Fj)−minTlag (Fj))

RettaRi f (rr , Fj)=RettaRi f (1 , Fj)−(RettaRi f (1 , Fj)−
RettaRi f (l ength (Rnorm) , Fj)) /(MaxT(maxTlag (Fj) , Fj)−MaxT(minTlag (

Fj) , Fj)) ∗(MaxT(minTlag (Fj)+rr −1,Fj)−MaxT(minTlag (Fj) , Fj)) ;

Rnorm(r r)=log (MaxTBell (minTlag (Fj)+rr −1,Fj))−
RettaRi f (rr , Fj) ;

end

%Se prende tut to (o quas i) i l dominio temporale

probabi lmente è

%dovuto a componente armonica e ignoro i l damping .

Questa parte

224

Appendix A: Complete Matlab code of the program

%va e l im ina ta ne l momento in cu i s i implementa un

c on t r o l l o per

%l e componenti armoniche .

i f l ength (MyTBell) >0.7∗ l ength (TBell0 (: , Fj))

damping (Fj)=NaN;

end

dstd=(sum(Rnorm.^2) / l ength (Rnorm)) ^0 . 8 ;

i f dstd==0

damp_std(Fj)=NaN;

e l s e

damp_std(Fj)=1/dstd ;

end

end

end

f i l ename =[’ damping_temp/ va l i d a z i on e ’ num2str (i f a s t 3) ’ . mat ’] ;

save (f i l ename , ’ Segnale ’ , ’FF ’ , ’FT ’ , ’ damping ’ , ’ ind iceF ’ , ’ f 1 ’ , ’

Be l l ’ , ’ damp_std ’ , ’ minTlag ’ , ’maxTlag ’ , ’MaxT ’ , ’max_corr ’ , ’

min_corr ’ , ’MaxTBell ’ , ’ iT ’ , ’ TBell0 ’ , ’ newf2 ’ , ’ RettaRi f ’) ;

c l e a r RettaRi f ;

d_resu l t s (i f a s t 3 , :)=damping ;

d_std (i f a s t 3 , :)=damp_std ;

end

d_resu l t s0=ze ro s (s i z e (d_resu l t s)) ;

newf20=ze ro s (s i z e (newf2)) ;

f o r i i =1: l a s t fm

i i i =1;

f o r i f a s t 3 =1: s i z e (SS0 , 3) ; %pu l i z i a de i v e t t o r i per usare box

p lo t e trim mean

i f ~i snan (d_resu l t s (i f a s t 3 , i i))

d_resu l t s0 (i i i , i i)=d_resu l t s (i f a s t 3 , i i) ;

newf20 (i i i , i i)=newf2 (i f a s t 3 , i i) ;

i i i= i i i +1;

end

end

225

Appendix A: Complete Matlab code of the program

indz=f i nd (d_resu l t s0 (: , i i) >0 ,1 , ’ l a s t ’) ;

d_mean(i i)=trimmean (d_resu l t s0 (1 : indz , i i) , 20) ;

f_mean(i i)=trimmean (newf20 (1 : indz , i i) , 20) ;

end

load (Fdd_loc , ’ Result ’) ;

d_resu l t s2 =[Result d_resu l t s] ;

save DAMPING_RESULTS d_resu l t s2 d_mean f_mean newf2 d_resu l t s0

newf20

setappdata (0 , ’ Result_damping ’ , d_resu l t s2) ;

setappdata (0 , ’ d a t e_ f i l e s ’ , Result) ;

s e t (handles . va l i da t i on , ’ Enable ’ , ’ on ’) ;

s e t (handles . dampingvs frequenc ies , ’ Enable ’ , ’ on ’) ;

s e t (handles . meanvsfrequency , ’ Enable ’ , ’ on ’) ;

s e t (handles . boxplot , ’ Enable ’ , ’ on ’) ;

s e t (handles . saveres , ’ Enable ’ , ’ on ’) ;

strm{1}= ’Damping vs time ’ ;

f o r i =2: s i z e (d_results2 , 2)

strm{ i }=[’Mode ’ num2str (i −1)] ;

s t r l { i −1}=[’Mode ’ num2str (i −1 ,4) ’ : ’ num2str (f_mean(i −1) ,4)

’ Hz , Damping : ’ num2str (d_mean(i −1)∗100) ’%’] ;

end

s e t (handles . model i s t , ’ S t r ing ’ , s t r l) ;

s e t (handles . dmode , ’ S t r ing ’ , strm) ;

s e t (handles . dmode , ’ Enable ’ , ’ on ’) ;

s e t (handles . savetemplate , ’ Enable ’ , ’ on ’) ;

s e t (handles . statusD , ’ S t r ing ’ , ’OK’ , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase2 , ’ BackgroundColor ’ , [0 1 0]) ;

s e t (handles . phase3 , ’ BackgroundColor ’ , [1 1 0]) ;

gu idata (gcbo , handles) ;

% −−− Executes on button pr e s s in meanvsfrequency .

func t i on meanvsfrequency_Callback (hObject , eventdata , handles)

load DAMPING_RESULTS;

f_mean_vs_d_mean(f_mean , d_mean) ; %Plot de l damping medio vs l a

f requenza media de l modo

% −−− Executes on button pr e s s in boxplot .

f unc t i on boxplot_Callback (hObject , eventdata , handles)

226

Appendix A: Complete Matlab code of the program

load DAMPING_RESULTS;

f_mean_vs_d(d_results0 , f_mean , d_mean) ; %Plot de l damping

r i s p e t t o a l l a f r equenza de l modo

% −−− Executes on button pr e s s in save r e s .

f unc t i on saveres_Cal lback (hObject , eventdata , handles)

Result_frequency=getappdata (0 , ’ Result_frequency ’) ;

Result_damping=getappdata (0 , ’ Result_damping ’) ;

i f getappdata (0 , ’ us ingtemplate ’)==1 | getappdata (0 , ’ sav ingtemplate

’)==1

foldername=[’ . . / Resu l t s / ’ getappdata (0 , ’ templatename ’)] ;

i f ~ e x i s t (foldername , ’ f i l e ’)

mkdir (fo ldername) ;

end

e l enco=g e t a l l f i l e s (foldername , 1) ;

ind=0;

f o r i =1: l ength (e l enco)

elemento=e l enco { i } ;

ind (i)=st r2doub l e (elemento ((f i n d s t r (elemento , ’ Result_ ’)+7)

: (f i n d s t r (elemento , ’ . mat ’)−1))) ;

end

indmax=max(ind) ;

i f indmax>=1

ind i c e=indmax+1;

e l s e

i nd i c e =1;

end

templatename=getappdata (0 , ’ templatename ’) ;

setappdata (0 , ’ r e s u l t s f o l d e r ’ , fo ldername) ;

save ([fo ldername ’ /Result_ ’ num2str (i nd i c e) ’ . mat ’] , ’

Result_frequency ’ , ’ Result_damping ’ , ’ templatename ’) ;

e l s e

u i save ({ ’ Result_frequency ’ , ’ Result_damping ’ } , ’ Result_ ’) ;

end

s e t (handles . phase3 , ’ BackgroundColor ’ , [0 1 0]) ;

hh=he lpd lg (’ Resu l t s s u c c e s s f u l l y saved . ’) ;

pause (3) ;

i f i s hand l e (hh) c l o s e (hh) ; end

227

Appendix A: Complete Matlab code of the program

f unc t i on dmode_Callback (hObject , eventdata , handles)

load DAMPING_RESULTS;

ind=get (hObject , ’ Value ’) ;

i f ind>s i z e (d_results2 , 2) | | ind <= 0

e r r d l g (’ I nd i c e non va l i do . ’) ;

e l s e

i f ind>1

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’

, . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50

20]/2) ;

movegui (f i gu r e1 , ’ c en te r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

p l o t (d_resu l t s2 (: , 1) , d_resu l t s2 (: , ind) .∗100 , ’ l i n e s t y l e ’ , ’

none ’ , ’ LineWidth ’ , 1 . 2 , ’ Marker ’ , ’ . ’ , ’ Markers ize ’ , 5) ; hold on ;

g r id on ;

da t e t i c k (’ x ’ , ’ dd mmm yy ’ , ’ k e ep l im i t s ’ , ’ k e ep t i c k s ’) ;

x l ab e l (’Time ’ , ’ FontSize ’ ,12) ; y l ab e l (’ [%] ’ , ’ FontSize ’ , 12) ;

y l ab e l (’Damping Ratio (%) ’ , ’ FontSize ’ ,12) ;

t i t l e ([’ \ f o n t s i z e {14}Damping Ratio Trend , Mode ’ num2str (

ind−1)]) ;

end

end

% −−− Executes on button pr e s s in v iewres .

f unc t i on viewres_Callback (hObject , eventdata , handles)

v i ew r e s u l t s ;

% −−− Executes on button pr e s s in savetemplate .

f unc t i on savetemplate_Callback (hObject , eventdata , handles)

NFFT=get (handles .NFFT, ’ S t r ing ’) ;

228

Appendix A: Complete Matlab code of the program

NFFT=NFFT{ get (handles .NFFT, ’ Value ’) } ;

L=get (handles . L , ’ S t r ing ’) ;

f s=get (handles . f s , ’ S t r ing ’) ;

channe l s=get (handles . channels , ’ S t r ing ’) ;

mac=get (handles .mac , ’ S t r ing ’) ;

n=get (handles . n , ’ S t r ing ’) ;

mac_damping=get (handles . mac_damping , ’ S t r ing ’) ;

max_corr=get (handles . max_corr , ’ S t r ing ’) ;

min_corr=get (handles . min_corr , ’ S t r ing ’) ;

templatetype=’AUTOEFDD’ ;

s t=savetemplate ;

wa i t f o r (s t) ;

s e l e c t f i l e n ame=getappdata (0 , ’ tempname ’) ;

d e s c r i p t i o n=getappdata (0 , ’ tempdesc ’) ;

author=getappdata (0 , ’ author ’) ;

image=getappdata (0 , ’ tempimage ’) ;

tempdate=da t e s t r (now , ’dd/mm/yy HH:MM’) ;

templatename=s t r r e p (s e l e c t f i l e n ame , ’ ’ , ’_ ’) ;

i f ~ e x i s t (’ . . \ template ’ , ’ f i l e ’)

mkdir (’ . . \ template ’) ;

end

s e l e c t f o l d e r =[’ . . \ template \ ’ templatename] ;

mkdir (s e l e c t f o l d e r) ;

s a v e f i l e =[s e l e c t f o l d e r ’ \Template_ ’ templatename ’ . mat ’] ;

save (s a v e f i l e , ’ templatetype ’ , ’ tempdate ’ , ’NFFT’ , ’L ’ , ’ f s ’ , ’ channe l s ’

, ’mac ’ , ’ n ’ , ’mac_damping ’ , ’max_corr ’ , ’ min_corr ’ , ’ templatename ’ , ’

d e s c r i p t i o n ’ , ’ author ’) ;

c o p y f i l e (’ i n d i c i . mat ’ , [s e l e c t f o l d e r ’ \ i n d i c i . mat ’] , ’ f ’) ;

c o p y f i l e (’ s a v e f i l e . mat ’ , [s e l e c t f o l d e r ’ \ s a v e f i l e . mat ’] , ’ f ’) ;

c o p y f i l e (image , [s e l e c t f o l d e r ’ \tempimage . jpg ’] , ’ f ’) ;

z ip ([’ . . \ template \Template_ ’ templatename ’ . z ip ’] , ’ ∗ ’ , [’ . . \

template \ ’ templatename]) ;

move f i l e ([’ . . \ template \Template_ ’ templatename ’ . z ip ’] , [’ . . \

template \Template_ ’ templatename ’ . e fdd ’] , ’ f ’) ;

229

Appendix A: Complete Matlab code of the program

ok=0;

whi l e ok==0

[ok , message , messageid]=rmdir (s e l e c t f o l d e r , ’ s ’) ;

i f ok==0

pause (2) ;

end

end

setappdata (0 , ’ templatename ’ , templatename) ;

setappdata (0 , ’ sav ingtemplate ’ , 1) ;

he lpd lg ([’The template f i l e : Template_ ’ templatename ’ . e fdd has

been s u c c e s s f u l l y saved in the template f o l d e r . ’])

%

−−

f unc t i on view_Callback (hObject , eventdata , handles)

v i ew r e s u l t s ;

%

−−

f unc t i on new_Callback (hObject , eventdata , handles)

button = ques td lg (’Are you sure you want to s t a r t a new p ro j e c t ?

Any unsaved prog r e s s w i l l be l o s t . ’ , ’ t i t l e ’ , ’ Yes ’ , ’No ’ , 2) ;

i f strcmp (button , ’Yes ’)==1

curr=f i ndob j (’Tag ’ , ’ autoefdd ’) ;

c l o s e (curr) ;

AutoEFDDgui ;

setappdata (0 , ’ us ingtemplate ’ , 0) ;

setappdata (0 , ’ sav ingtemplate ’ , 0) ;

setappdata (0 , ’ s chedu le ron ’ , 0) ;

end

%

−−

f unc t i on exit_Cal lback (hObject , eventdata , handles)

230

Appendix A: Complete Matlab code of the program

% hObject handle to e x i t (s e e GCBO)

% eventdata r e s e rved − to be de f ined in a fu tu r e ve r s i on o f

MATLAB

% handles s t r u c tu r e with handles and user data (s ee GUIDATA)

button = ques td lg (’Are you sure you want to qu i t ? Any unsaved

prog r e s s w i l l be l o s t . ’ , ’ t i t l e ’ , ’ Yes ’ , ’No ’ , 2) ;

i f strcmp (button , ’Yes ’)==1

curr=f i ndob j (’Tag ’ , ’ autoefdd ’) ;

c l o s e (curr) ;

end

% −−− Executes on button pr e s s in s a v e f d d f i l e .

f unc t i on save fdd f i l e_Ca l lback (hObject , eventdata , handles)

[FileName , PathName] = u i p u t f i l e (’FDD_∗ .mat ’) ;

c o p y f i l e (getappdata (0 , ’ FDD_location ’) , [PathName FileName] , ’ f ’) ;

%

−−

f unc t i on aboutmenu_Callback (hObject , eventdata , handles)

about f i g ;

%

−−

f unc t i on newschedule_Callback (hObject , eventdata , handles)

newschedule ;

%

−−

f unc t i on schedule launcher_Cal lback (hObject , eventdata , handles)

[FileName , PathName] = u i g e t f i l e (’ . . \ s chedu le \∗ . s chedu le ’ , ’ S e l e c t

the s chedu l e r you want to launch . ’) ;

schname=[PathName FileName] ;

i f ~ e x i s t (’ . . \ tmp\ ’ , ’ f i l e ’) mkdir (’ . . \ tmp\ ’) ; end

231

Appendix A: Complete Matlab code of the program

new f i l e =[’ . . \ tmp\ ’ s t r r e p (FileName , ’ . s chedu le ’ , ’ . mat ’)] ;

c o p y f i l e (schname , newf i l e , ’ f ’) ;

cont inua =1;

whi l e cont inua==1

c l e a r v a r s −except handles cont inua new f i l e ;

load (n ew f i l e) ;

setappdata (0 , ’ s chedu le ron ’ , 1) ;

setappdata (0 , ’ s ch f i l ename ’ , s ch f i l ename) ;

setappdata (0 , ’ schpathname ’ , schpathname) ;

s e t (handles . f o l d e r , ’ S t r ing ’ , f a s t d i r) ;

o r a r i=datenum(ora r i , ’HH:MM’) ;

o r a r i=datenum (0 , 0 , 0 , hour (o r a r i) , minute (o r a r i) , 0) ;

adesso=c lock ;

curr_time=datenum (0 ,0 , 0 , adesso (4) , adesso (5) ,0) ;

f o r i =1: l ength (o r a r i)

i f o r a r i (i)<=curr_time

orar itmp (i)=etime (datevec (o r a r i (i)+datenum

(0 , 0 , 1 , 0 , 0 , 0)) , datevec (curr_time)) ;

e l s e

orar itmp (i)=etime (datevec (o r a r i (i)) , datevec (curr_time)

) ;

end

end

orar itmp=so r t (orar itmp) ;

pross imo=da t e s t r ((datenum (0 , 0 , 0 , 0 , 0 , orar itmp (1))+curr_time) , ’

HH:MM’) ;

t = timer (’ TimerFcn ’ , ’ setappdata (0 , ’ ’ execute ’ ’ , 1) ; ’ , . . .

’ StartDelay ’ , orar itmp (1) , ’ TasksToExecute ’ , 1) ;

s t a r t (t)

hhh = he lpd lg ([’ Next scheduled ana l y s i s i s s e t at ’ pross imo ’

. ’ char (10) ’Do you want to i n t e r r up t the schedu le ? ’] , ’ Schedule

Launcher ’) ;

whi l e strcmp (get (t , ’ Running ’) , ’ on ’)

pause (10)

i f ~ i shand l e (hhh)

% he lpd lg (’ Scheduler Launcher has been stopped

. ’) ;

s top (t) ;

232

Appendix A: Complete Matlab code of the program

de l e t e (t) ;

setappdata (0 , ’ execute ’ , 0) ;

cont inua =0;

end

end

i f i s hand l e (hhh) c l o s e (hhh) ; end

i f getappdata (0 , ’ execute ’)==1

[handles]= load_Callback ([] , [] , handles) ;

[handles]= start fdd_Cal lback ([] , [] , handles) ;

end

d e l e t e (t) ;

rmappdata (0 , ’ execute ’) ;

end

setappdata (0 , ’ s chedu le ron ’ , 0) ;

% −−− Executes on button pr e s s in s s i r a d i o .

f unc t i on s s i rad io_Cal lback (hObject , eventdata , handles)

s e t (handles . s s i r a d i o , ’ Value ’ , 1) ;

s e t (handles . radionuovo , ’ Value ’ , 0) ;

s e t (handles . rad io fdd , ’ Value ’ , 0) ;

s e t (handles . ex i s t i ngdatapane l , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . newdatapanel , ’ V i s i b l e ’ , ’ o f f ’) ;

s e t (handles . s s i pane l , ’ V i s i b l e ’ , ’ on ’) ;

s e t (handles . s s ibrowse , ’ Enable ’ , ’ on ’) ;

s e t (f i n d a l l (handles . u ipanel7 , ’−property ’ , ’ enable ’) , ’ enable ’ , ’ o f f ’)

;

% −−− Executes on button pr e s s in s s ib rowse .

f unc t i on ss ibrowse_Cal lback (hObject , eventdata , handles)

folder_name = u i g e t d i r (’ ’ , ’ S e l e c t data f o l d e r ’) ;

i f folder_name (1)~=0

s e t (handles . s s i d i r , ’ S t r ing ’ , folder_name) ;

s e t (handles . s s i s t a r t , ’ Enable ’ , ’ on ’) ;

end

233

Appendix A: Complete Matlab code of the program

% −−− Executes on button pr e s s in s s i s t a r t .

f unc t i on s s i s t a r t_Ca l l back (hObject , eventdata , handles)

folder_name=get (handles . s s i d i r , ’ S t r ing ’) ;

%SSI : look at [2 3]

i f s i z e (appr , 1) <12

Result_frequency (i f a s t , 1 : 1 3) =[kn appr (1 : end , 1) ’ z e r o s

(1 ,12− s i z e (appr , 1))] ;

Result_damping (i f a s t , 1 : 1 3) = [kn (appr (1 : end , 2) ’) ./100

z e ro s (1 ,12− s i z e (appr , 1))] ;

e l s e

Result_frequency (i f a s t , 1 : 1 3) =[kn appr (1 : 1 2 , 1) ’] ;

Result_damping (i f a s t , 1 : 1 3) =[kn (appr (1 : 1 2 , 2) ’) . / 1 0 0] ;

end

% Result_damping (i f a s t , 1 : 1 3) =[kn (appr (: , 2) ’) . / 1 0 0] ;

save ss i temp Result_frequency Result_damping ;

% −−− Executes on button pr e s s in s s i v a l i d a t e .

f unc t i on s s i va l i da t e_Ca l l back (hObject , eventdata , handles)

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ .mat ’ , ’ S e l e c t the

FDD r e s u l t s f i l e ’) ;

filenameFDD=[PathName FileName] ;

load (filenameFDD) ;

f o r i =2: s i z e (Result_frequency , 2)

j =1;

fmean=0;

f o r k=1: s i z e (Result_frequency , 1)

i f ~ i snan (Result_frequency (k , i))

fmean (j)=Result_frequency (k , i) ;

j=j +1;

end

end

f r e q (i −1)=trimmean (fmean , 2 0) ;

f_fddsucc (i −1)=length (fmean) / l ength (Result_frequency (: , i)) ;

end

234

Appendix A: Complete Matlab code of the program

f o r i =2: s i z e (Result_damping , 2)

j =1;

dmean=0;

f o r k=1: s i z e (Result_damping , 1)

i f ~ i snan (Result_damping (k , i))

dmean(j)=Result_damping (k , i) ;

j=j +1;

end

end

damp(i −1)=trimmean (dmean , 2 0) ;

d_fddsucc (i −1)=length (dmean) / l ength (Result_damping (: , i)) ;

end

i f l ength (f r e q)>6

f r e q=f r e q (1 : 6) ;

end

i f l ength (damp)>6

damp=damp(1 : 6) ;

end

c l e a r Result_frequency Result_damping ;

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ .mat ’ , ’ S e l e c t the

SSI r e s u l t s f i l e ’) ;

f i l enameSSI =[PathName FileName] ;

load (f i l enameSSI) ;

% f r e q =[4.954 6 .090 6 .809 7 .560 11 .7 1 2 . 0 5 1] ; %Ponte Nuovo

% f r e q =[2.128 4 .067 4 .547 6 .146 9 .72 1 1 . 5 6] ;

va r i a =0.7 ;

fnew=ze ro s (s i z e (Result_frequency)) ;

dnew=ze ro s (s i z e (Result_frequency)) ;

fnew (: , 1)=Result_frequency (: , 1) ;

dnew (: , 1)=Result_frequency (: , 1) ;

f o r i =2: s i z e (Result_frequency , 2)

f o r j =1: s i z e (Result_frequency , 1)

f o r k=1: l ength (f r e q)

i f k==1

var ia0=var i a ;

i f va r i a < (f r e q (k+1)−f r e q (k)) /2

var ia1=var i a ;

e l s e

var i a1=(f r e q (k+1)−f r e q (k)) /2 ;

235

Appendix A: Complete Matlab code of the program

end

e l s e i f k==length (f r e q)

var i a1=var i a ;

i f va r i a < (f r e q (k)−f r e q (k−1)) /2

var ia0=var i a ;

e l s e

var i a0=(f r e q (k)−f r e q (k−1)) /2 ;

end

e l s e

i f va r i a < (f r e q (k)−f r e q (k−1)) /2

var ia0=var i a ;

e l s e

var i a0=(f r e q (k)−f r e q (k−1)) /2 ;

end

i f va r i a < (f r e q (k+1)−f r e q (k)) /2

var ia1=var i a ;

e l s e

var i a1=(f r e q (k+1)−f r e q (k)) /2 ;

end

end

i f Result_frequency (j , i)>f r e q (k)−var ia0 &&

Result_frequency (j , i)<f r e q (k)+var ia1

fnew (j , k+1)=Result_frequency (j , i) ;

dnew(j , k+1)=Result_damping (j , i) ;

break ;

end

end

end

end

c l e a r Result_damping Result_frequency ;

[~ , co l 0]= f i nd (dnew , 1 , ’ l a s t ’) ;

[~ , c o l]= f i nd (fnew , 1 , ’ l a s t ’) ;

Result_damping=dnew (: , 1 : c o l 0) ;

Result_frequency=fnew (: , 1 : c o l) ;

Result_damping (Result_damping==0)=NaN;

Result_frequency (Result_frequency==0)=NaN;

u i save ({ ’ Result_frequency ’ , ’ Result_damping ’ } , ’ CleanResult_ ’) ;

%Val idat i on r e s u l t s

%f r e q

236

Appendix A: Complete Matlab code of the program

f o r i =2: s i z e (Result_frequency , 2)

c o l=Result_frequency (: , i) ;

c o l=co l (~ i snan (c o l)) ;

f_iqr=i q r (c o l) ;

l_ in f=p r c t i l e (co l , 2 5) −1.5∗ f_iqr ;

l_sup=p r c t i l e (co l , 7 5) +1.5∗ f_iqr ;

c o l (co l<l_ in f | co l>l_sup) = [] ;

fmax (i −1)=max(c o l) ;

fmin (i −1)=min (c o l) ;

fmean (i −1)=mean(c o l) ;

f s t d (i −1)=std (c o l) ;

f s u c c e s s (i −1)=length (c o l) / l ength (Result_frequency (: , i)) ;

f e r r o r (i −1)=(abs (fmean (i −1)−f r e q (i −1)) /mean ([f r e q (i −1) fmean (i

−1)])) ;

end

fmean=fmean (1 : l ength (fmax)) ;

%damp

f o r i =2: s i z e (Result_damping , 2)

c o l=Result_damping (: , i) ;

c o l=co l (~ i snan (c o l)) ;

d_iqr=i q r (c o l) ;

l_ in f=p r c t i l e (co l , 2 5) −1.5∗d_iqr ;

l_sup=p r c t i l e (co l , 7 5) +1.5∗d_iqr ;

c o l (co l<l_ in f | co l>l_sup) = [] ;

dmax(i −1)=max(c o l) ;

dmin (i −1)=min (c o l) ;

dmean(i −1)=mean(co l ’) ;

dstd (i −1)=std (c o l) ;

d succe s s (i −1)=length (c o l) / l ength (Result_damping (: , i)) ;

de r ro r (i −1)=(abs (dmean(i −1)−damp(i −1)) /mean ([damp(i −1) dmean(i

−1)])) ;

end

dmean=dmean (1 : l ength (dmax)) ;

f r e s =[[0 1 : l ength (fmax)] ; [0 fmax] ; [0 fmin] ; [0 fmean] ; [0 f s t d] ; [0

f s u c c e s s]] ;

d res =[[0 1 : l ength (dmax)] ; [0 dmax] ; [0 dmin] ; [0 dmean] ; [0 dstd

] ; [0 dsucce s s]] ;

f_ labe l={ ’Mode ’ ’Fmax ’ ’Fmin ’ ’Fmean ’ ’ s td ’ ’ s u c c e s s ra t e ’ } ;

d_label={ ’Mode ’ ’Dmax ’ ’Dmin ’ ’Dmean ’ ’ s td ’ ’ s u c c e s s r a t e ’ } ;

[f i l e path]= u i p u t f i l e (’ Va l idat ion . x l s ’ , ’ Save va l i d a t i o n f i l e ’) ;

237

Appendix A: Complete Matlab code of the program

o f i l e = [path f i l e] ;

x l sw r i t e (o f i l e , f r e s , 1) ;

x l sw r i t e (o f i l e , f_labe l ’ , 1) ;

x l sw r i t e (o f i l e , dres , 2) ;

x l sw r i t e (o f i l e , d_label ’ , 2) ;

f=f i g u r e (’Name ’ , ’AutoEFDD vs AutoSSI v a l i d a t i o n : Natural

Frequenc ie s ’ , . . .

’ Color ’ , [1 1 1]) ;

i f l ength (fmean)<length (f r e q)

fmean=[fmean ze ro s (1 , l ength (f r e q)−l ength (fmean))] ;

f s u c c e s s =[f s u c c e s s z e r o s (1 , l ength (f r e q)−l ength (f s u c c e s s))] ;

f e r r o r =[f e r r o r z e r o s (1 , l ength (f r e q)−l ength (f e r r o r))] ;

end

dat =[1 : l ength (f r e q) ; f r e q ; f_fddsucc .∗100 ; fmean ; f s u c c e s s .∗100 ;

f e r r o r . ∗ 1 0 0] ;

rowname= { ’Mode ’ , ’Fmean(EFDD) ’ , ’ Success Rate (EFDD) ’ , ’Fmean(SSI) ’ , ’

Success r a t e (SSI) ’ , ’ Re l a t i v e e r r o r ’ } ;

t = u i t ab l e (’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , . . .

[0 . 0 5 7 0 .312 0 .894 0 . 4 4 5] , ’Data ’ , dat , . . .

’RowName ’ , rowname , . . .

’ColumnName ’ , []) ;

fd = f i g u r e (’Name ’ , ’AutoEFDD vs AutoSSI v a l i d a t i o n : Damping Rat ios

’ , . . .

’ Color ’ , [1 1 1]) ;

i f l ength (dmean)<length (damp)

dmean=[dmean ze ro s (1 , l ength (damp)−l ength (dmean))] ;

d succe s s =[dsucce s s z e ro s (1 , l ength (damp)−l ength (dsucce s s))] ;

d e r ro r =[de r ro r z e r o s (1 , l ength (damp)−l ength (de r ro r))] ;

end

datd =[1: l ength (damp) ; damp .∗100 ; d_fddsucc .∗100 ; dmean .∗100 ; d succe s s

.∗100 ; de r ro r . ∗ 1 0 0] ;

rowname= { ’Mode ’ , ’Dmean(EFDD) ’ , ’ Success Rate (EFDD) ’ , ’Dmean(SSI) ’ , ’

Success r a t e (SSI) ’ , ’ Re l a t i v e e r r o r ’ } ;

td = u i t ab l e (’ Units ’ , ’ normal ized ’ , ’ Po s i t i on ’ , . . .

[0 . 0 5 7 0 .312 0 .894 0 . 4 4 5] , ’Data ’ , datd , . . .

’RowName ’ , rowname , . . .

’ColumnName ’ , []) ;

238

Appendix A: Complete Matlab code of the program

code/AutoEFDDgui.m

A.2 viewresults.m

f unc t i on varargout = v i ew r e s u l t s (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @viewresults_OpeningFcn , . . .

’ gui_OutputFcn ’ , @viewresults_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e v i ew r e s u l t s i s made v i s i b l e .

f unc t i on viewresults_OpeningFcn (hObject , eventdata , handles ,

va rarg in)

handles . output = hObject ;

% Update handles s t r u c tu r e

guidata (hObject , handles) ;

i f i s s t r (getappdata (0 , ’ CurrentResul ts ’))

s e t (handles . load , ’ V i s i b l e ’ , ’ o f f ’) ;

load_Callback (hObject , eventdata , handles) ;

239

Appendix A: Complete Matlab code of the program

end

% UIWAIT makes v i ew r e s u l t s wait f o r user re sponse (s ee UIRESUME)

% uiwa i t (handles . v iewpanel) ;

% −−− Outputs from th i s func t i on are returned to the command l i n e .

f unc t i on varargout = viewresults_OutputFcn (hObject , eventdata ,

handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in c l o s e .

f unc t i on c lose_Cal lback (hObject , eventdata , handles)

curr=f i ndob j (’Tag ’ , ’ v iewpanel ’) ;

setappdata (0 , ’ CurrentResults ’ , []) ;

c l o s e (curr) ;

% −−− Executes on button pr e s s in load .

func t i on load_Callback (hObject , eventdata , handles)

s e t (handles . trend , ’ Enable ’ , ’ on ’) ;

s e t (handles . e x c e l f , ’ Enable ’ , ’ on ’) ;

s e t (handles . exce ld , ’ Enable ’ , ’ on ’) ;

s e t (handles . dvsf , ’ Enable ’ , ’ on ’) ;

s e t (handles . mdvsf , ’ Enable ’ , ’ on ’) ;

s e t (handles . boxplot , ’ Enable ’ , ’ on ’) ;

s e t (handles . dvst , ’ Enable ’ , ’ on ’) ;

i f i s s t r (getappdata (0 , ’ CurrentResul ts ’))

setappdata (0 , ’ Re su l t sF i l e ’ , getappdata (0 , ’ CurrentResults ’)) ;

e l s e

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ . . / Resu l t s / ’ , ’

Result_ or Sequence_ ’) ;

setappdata (0 , ’ Re su l t sF i l e ’ , [PathName FileName]) ;

end

s e t (handles . s tatus , ’ S t r ing ’ , [’Now viewing : ’ getappdata (0 , ’

Re su l t sF i l e ’)]) ;

load (getappdata (0 , ’ Re su l t sF i l e ’)) ;

f o r i i =2: s i z e (Result_damping , 2)

i i i =1;

240

Appendix A: Complete Matlab code of the program

f o r i f a s t 3 =1: s i z e (Result_damping , 1) ; %pu l i z i a de i v e t t o r i per

usare box p l o t e tr im mean

i f ~i snan (Result_damping (i f a s t 3 , i i))

d_resu l t s0 (i i i , i i)=Result_damping (i f a s t 3 , i i) ;

newf20 (i i i , i i)=Result_frequency (i f a s t 3 , i i) ;

i i i= i i i +1;

end

end

indz=f i nd (d_resu l t s0 (: , i i) >0 ,1 , ’ l a s t ’) ;

d_mean(i i)=trimmean (d_resu l t s0 (1 : indz , i i) , 20) ;

f_mean(i i)=trimmean (newf20 (1 : indz , i i) , 20) ;

end

setappdata (0 , ’ d_resu l t s0 ’ , d_resu l t s0) ;

setappdata (0 , ’d_mean ’ ,d_mean) ;

setappdata (0 , ’ f_mean ’ , f_mean) ;

setappdata (0 , ’ newf20 ’ , newf20) ;

strm{1}= ’Damping r a t i o trend ’ ;

f o r i =2: s i z e (Result_damping , 2)

strm{ i }=[’Mode ’ num2str (i −1)] ;

end

s e t (handles . dvst , ’ S t r ing ’ , strm) ;

% −−− Executes on button pr e s s in exce ld .

f unc t i on exceld_Cal lback (hObject , eventdata , handles)

load (getappdata (0 , ’ Re su l t sF i l e ’)) ;

[FileName , PathName] =u i p u t f i l e (’ ∗ . x l s ’ , ’ Save as ex c e l ’) ;

x l sw r i t e ([PathName FileName] , Result_damping) ;

% −−− Executes on button pr e s s in dvs f .

f unc t i on dvsf_Callback (hObject , eventdata , handles)

f_vs_d (getappdata (0 , ’ newf20 ’) , getappdata (0 , ’ d_resu l t s0 ’) ,

getappdata (0 , ’ f_mean ’) , getappdata (0 , ’d_mean ’)) ; %Plot d e l l e

f r equenze vs i damping r i l e v a t i

% −−− Executes on button pr e s s in mdvsf .

f unc t i on mdvsf_Callback (hObject , eventdata , handles)

241

Appendix A: Complete Matlab code of the program

f_mean_vs_d_mean(getappdata (0 , ’ f_mean ’) , getappdata (0 , ’d_mean ’)) ;

%Plot de l damping medio vs l a f requenza media de l modo

% −−− Executes on button pr e s s in boxplot .

f unc t i on boxplot_Callback (hObject , eventdata , handles)

f_mean_vs_d(getappdata (0 , ’ d_resu l t s0 ’) , getappdata (0 , ’ f_mean ’) ,

getappdata (0 , ’d_mean ’)) ; %Plot de l damping r i s p e t t o a l l a

f r equenza de l modo

% −−− Executes on s e l e c t i o n change in dvst .

f unc t i on dvst_Callback (hObject , eventdata , handles)

ind=get (hObject , ’ Value ’) ;

load (getappdata (0 , ’ Re su l t sF i l e ’)) ;

i f ind>s i z e (Result_damping , 2) | | ind <= 0

e r r d l g (’ Index out o f bounds . ’) ;

e l s e

i f ind>1

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on

’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50

20]/2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

p l o t (Result_damping (: , 1) , Result_damping (: , ind) .∗100 , ’

l i n e s t y l e ’ , ’ none ’ , ’ LineWidth ’ , 1 . 2 , ’ Marker ’ , ’ . ’ , ’ Markers ize ’ , 5) ;

hold on ; g r id on ;

da t e t i c k (’ x ’ , ’ dd mmm yy ’ , ’ k e ep l im i t s ’ , ’ k e ep t i c k s ’) ;

x l ab e l (’Tempo ’ , ’ FontSize ’ ,12) ; y l ab e l (’ [%] ’ , ’ FontSize ’

,12) ;

y l ab e l (’Damping r a t i o (%) ’ , ’ FontSize ’ ,12) ;

242

Appendix A: Complete Matlab code of the program

t i t l e ([’ \ f o n t s i z e {14}Damping r a t i o trend , mode ’

num2str (ind−1)]) ;

end

end

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r op e r t i e s .

f unc t i on dvst_CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

s e t (hObject , ’ BackgroundColor ’ , ’ white ’) ;

end

% −−− Executes on button pr e s s in trend .

func t i on trend_Callback (hObject , eventdata , handles)

load (getappdata (0 , ’ Re su l t sF i l e ’)) ;

p l o t f r e q (Result_frequency , 0) ;

% −−− Executes on button pr e s s in e x c e l f .

f unc t i on exce l f_Cal lback (hObject , eventdata , handles)

load (getappdata (0 , ’ Re su l t sF i l e ’)) ;

[FileName , PathName] =u i p u t f i l e (’ ∗ . x l s ’ , ’ Save as ex c e l ’) ;

x l sw r i t e ([PathName FileName] , Result_frequency) ;

% −−− Executes when user attempts to c l o s e viewpanel .

f unc t i on viewpanel_CloseRequestFcn (hObject , eventdata , handles)

setappdata (0 , ’ CurrentResults ’ , []) ;

d e l e t e (hObject) ;

code/viewresults.m

A.3 aboutfig.m

f unc t i on varargout = about f i g (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

243

Appendix A: Complete Matlab code of the program

gui_Sing leton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @aboutfig_OpeningFcn , . . .

’ gui_OutputFcn ’ , @aboutfig_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e about f i g i s made v i s i b l e .

f unc t i on aboutfig_OpeningFcn (hObject , eventdata , handles , vararg in

)

handles . output = hObject ;

[X, map] = imread (’ unipd . jpeg ’) ;

ax1=f i ndob j (’Tag ’ , ’ unipd ’) ;

axes (ax1) ;

image (X) ;

colormap (map) ;

ax i s o f f % Remove ax i s t i c k s and numbers

ax i s image

s e t (ax1 , ’Tag ’ , ’ unipd ’) ;

gu idata (hObject , handles) ;

% −−− Outputs from th i s func t i on are returned to the command l i n e .

f unc t i on varargout = aboutfig_OutputFcn (hObject , eventdata ,

handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in pushbutton1 .

func t i on pushbutton1_Callback (hObject , eventdata , handles)

244

Appendix A: Complete Matlab code of the program

c l o s e (f i ndob j (’Tag ’ , ’ about f i gu r e ’)) ;

code/aboutfig.m

A.4 validatedampingGUI.m

f unc t i on varargout = validate_dampingGUI (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ ,

@validate_dampingGUI_OpeningFcn , . . .

’ gui_OutputFcn ’ ,

@validate_dampingGUI_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e validate_dampingGUI i s made v i s i b l e .

f unc t i on validate_dampingGUI_OpeningFcn (hObject , eventdata ,

handles , vara rg in)

handles . output = hObject ;

guidata (hObject , handles) ;

Result=getappdata (0 , ’ d a t e_ f i l e s ’) ;

s e t (handles . date , ’ S t r ing ’ , d a t e s t r (Result)) ;

% −−− Outputs from th i s func t i on are returned to the command l i n e .

245

Appendix A: Complete Matlab code of the program

f unc t i on varargout = validate_dampingGUI_OutputFcn (hObject ,

eventdata , handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in c l o s e .

f unc t i on c lose_Cal lback (hObject , eventdata , handles)

v a l i d a t e=f i ndob j (’Tag ’ , ’ v a l i d a t e ’) ;

c l o s e (v a l i d a t e) ;

% −−− Executes on s e l e c t i o n change in date .

f unc t i on date_Callback (hObject , eventdata , handles)

contents = c e l l s t r (get (hObject , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (hObject , ’ Value ’) } ;

i s s e l e c t e d=s t r f i n d (contents , s e l e c t e d) ;

i =1;

whi l e i<=length (i s s e l e c t e d)

i f c e l l 2mat (i s s e l e c t e d (i))==1

ind=i ;

i=length (i s s e l e c t e d)+1;

e l s e

i=i +1;

end

end

handles . f i l e v a l =[’ damping_temp/ va l i d a z i on e ’ num2str (ind) ’ . mat ’] ;

gu idata (hObject , handles) ;

load (handles . f i l e v a l , ’ damping ’ , ’ newf2 ’) ;

f o r i =1: l ength (damping)

STR{ i}= [num2str (i) ’ : Frequency= ’ num2str (newf2 (ind , i)) ’

Hz , Damping= ’ num2str (damping (i) .∗100) ’ %’] ;

end

s e t (handles . mode , ’ S t r ing ’ , STR) ;

s e t (handles . mode , ’ Enable ’ , ’ on ’) ;

s e t (handles . s p e c t r a l , ’ Enable ’ , ’ on ’) ;

s e t (handles . normalized , ’ Enable ’ , ’ on ’) ;

s e t (handles . l oga r i tm i c , ’ Enable ’ , ’ on ’) ;

s e t (handles . f f , ’ Enable ’ , ’ on ’) ;

246

Appendix A: Complete Matlab code of the program

% −−− Executes on button pr e s s in s p e c t r a l .

f unc t i on spect ra l_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ;

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

p l o t1=p lo t (f 1 (1 : l ength (Segnale)) ,20∗ l og10 (Segnale) , f 1 (1 : l ength (

Segnale)) ,20∗ l og10 (Be l l (: , Fj))) ;

s e t (p lo t1 (2) , ’ Color ’ , [1 0 0]) ;

x l ab e l (’ Frequency [Hz] ’ , ’ FontSize ’ ,12) ;

y l ab e l (’SV1 [dB] ’ , ’ FontSize ’ ,12) ;

t i t l e (’ \ f o n t s i z e {14} I d e n t i f i c a t i o n o f auto spectrum ’) ;

% −−− Executes on button pr e s s in l o g a r i tm i c .

f unc t i on logar i tmic_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

t i t l e (’ \ f o n t s i z e {14} Va l idat i on o f Damping Ratio Estimate ’) ;

247

Appendix A: Complete Matlab code of the program

s c a t t e r (MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) , l og (MaxTBell (minTlag (Fj) :

maxTlag (Fj) , Fj)) , ’ MarkerEdgeColor ’ , [0 0.498039215803146 0] , ’

Marker ’ , ’+ ’) ; hold on

p lo t (MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) , RettaRi f (1 : (maxTlag (Fj)−
minTlag (Fj)+1) , Fj)) ;

y l ab e l (’ \ f o n t s i z e {12}Log o f Absolute Extremu Value ’) ;

x l ab e l (’ \ f o n t s i z e {12}Time Lag (sec) ’) ;

% −−− Executes on button pr e s s in f f .

f unc t i on f f_Cal lback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

Fj=index ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645 0.834549878345499

0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

t i t l e ({ ’ \ f o n t s i z e {14}Frequency (F) vs Frequency (T) ’ }) ;

s c a t t e r (FF,FT) ;

y l ab e l ({ ’ \ f o n t s i z e {12} Natural f requency est imated in time domain (

Hz) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12} Natural f requency est imated in f requency

domain (Hz) ’ }) ;

% −−− Executes on button pr e s s in normal ized .

f unc t i on normalized_Callback (hObject , eventdata , handles)

load (handles . f i l e v a l) ;

contents = c e l l s t r (get (handles . mode , ’ S t r ing ’)) ;

s e l e c t e d=contents { get (handles . mode , ’ Value ’) } ;

index=str2num (s e l e c t e d (1 : (s t r f i n d (s e l e c t ed , ’ : ’)−1))) ;

248

Appendix A: Complete Matlab code of the program

Fj=index ;

Rectx=[MaxT(minTlag (Fj) , Fj) MaxT(maxTlag (Fj) , Fj) MaxT(maxTlag (Fj) ,

Fj) MaxT(minTlag (Fj) , Fj) MaxT(minTlag (Fj) , Fj)] ;

Recty=[max_corr max_corr −max_corr −max_corr max_corr] ;

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

t i t l e (’ \ f o n t s i z e {14} Normalized Cor r e l a t i on Function o f

S ingu la r Value Spec t r a l Be l l ’) ;

p l o t (Rectx , Recty ,MaxT(minTlag (Fj) : maxTlag (Fj) , Fj) ,MaxTBell (

minTlag (Fj) : maxTlag (Fj) , Fj) , iT (1 : l ength (TBell0)) , TBell0 (1 :

l ength (TBell0) , Fj) , ’ LineWidth ’ ,1 , ’ Color ’ , [1 0 0] , . . .

’ DisplayName ’ , ’ funz ione d i au t o c o r r e l a z i on e normal i zzata ’)

;

x l ab e l ({ ’ \ f o n t s i z e {12}Time Lag [s] ’ }) ;

y l ab e l ({ ’ \ f o n t s i z e {12} Normalized Cor r e l a t i on ’ }) ;

code/validatedampingGUI.m

A.5 fmeanvsd.m

f unc t i on f_mean_vs_d (d_results , f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

249

Appendix A: Complete Matlab code of the program

t i t l e ({ ’ \ f o n t s i z e {14}Box p lo t : Damping Ratio vs . Mean Natural

Frequency ’ }) ;

d_resu l t s (d_resu l t s==0) = nan ;

boxplot (d_resu l t s ∗100 , f_mean , ’ p l o t s t y l e ’ , ’ compact ’ , ’ whisker ’ , 1) ;

hold on ;

s e t (axes1 , ’ yl im ’ , [0 , 1 0]) ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

code/fmeanvsd.m

A.6 fmeanvsdmean.m

f unc t i on f_mean_vs_d_mean(f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

t i t l e ({ ’ \ f o n t s i z e {14}Mean Damping Ratio vs . Mean Natural Frequency

’ }) ;

s c a t t e r (f_mean , d_mean.∗100 , ’ MarkerFaceColor ’ , [0 0 0] , ’

MarkerEdgeColor ’ , [0 0 0] , . . .

’ Marker ’ , ’+ ’ , . . .

’ LineWidth ’ , 2) ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

code/fmeanvsdmean.m

A.7 fvsd.m

250

Appendix A: Complete Matlab code of the program

f unc t i on f_vs_d (newf2 , d_results , f_mean , d_mean)

f i g u r e 1 = f i g u r e (’ Color ’ , [1 1 1]) ;

% Create axes

axes1 = axes (’ Parent ’ , f i gu r e1 , ’YGrid ’ , ’ on ’ , ’XGrid ’ , ’ on ’ , . . .

’ Po s i t i on ’ , [0 .110705596107056 0.186544342507645

0.834549878345499 0 .685015290519878]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en t e r ’) ;

box (axes1 , ’ on ’) ;

hold (axes1 , ’ a l l ’) ;

t i t l e ({ ’ \ f o n t s i z e {14}Damping vs . Natural Frequency ’ }) ;

f o r i =1: s i z e (d_results , 2)

s c a t t e r (newf2 (: , i) , d_resu l t s (: , i) ∗100) ; hold on ;

end

s c a t t e r (f_mean , d_mean.∗100 , ’ MarkerFaceColor ’ , [0 0 0] , ’

MarkerEdgeColor ’ , [0 0 0] , . . .

’ Marker ’ , ’+ ’ , . . .

’ LineWidth ’ , 2) ;

hold o f f ;

y l ab e l ({ ’ \ f o n t s i z e {12}Damping (%) ’ }) ;

x l ab e l ({ ’ \ f o n t s i z e {12}Frequency (Hz) ’ }) ;

code/fvsd.m

A.8 loadtemplate.m

f unc t i on varargout = loadtemplate (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @loadtemplate_OpeningFcn , . . .

’ gui_OutputFcn ’ , @loadtemplate_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

251

Appendix A: Complete Matlab code of the program

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% −−− Executes j u s t be f o r e loadtemplate i s made v i s i b l e .

f unc t i on loadtemplate_OpeningFcn (hObject , eventdata , handles ,

va rarg in)

handles . output = hObject ;

guidata (hObject , handles) ;

s e t (handles . author , ’ S t r ing ’ , [’ Author : ’ getappdata (0 , ’ author ’)]) ;

s e t (handles . date , ’ S t r ing ’ , [’ Date : ’ getappdata (0 , ’ tempdate ’)]) ;

s e t (handles . d e s c r i p t i on , ’ S t r ing ’ , [’ De s c r ip t i on : ’ getappdata (0 , ’

d e s c r i p t i o n ’)]) ;

[X, map] = imread (’ . . / tmp/tempimage . jpg ’) ;

ax1=f i ndob j (’Tag ’ , ’ image ’) ;

axes (ax1) ;

image (X) ;

colormap (map) ;

ax i s o f f % Remove ax i s t i c k s and numbers

ax i s image

s e t (ax1 , ’Tag ’ , ’ image ’) ;

pause (10) ;

c l o s e (f i ndob j (’Tag ’ , ’ loadtemp ’)) ;

% −−− Executes on button pr e s s in pushbutton1 .

func t i on pushbutton1_Callback (hObject , eventdata , handles)

c l o s e (f i ndob j (’Tag ’ , ’ loadtemp ’)) ;

code/loadtemplate.m

252

Appendix A: Complete Matlab code of the program

A.9 merge.m

f unc t i on varargout = merge (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @merge_OpeningFcn , . . .

’ gui_OutputFcn ’ , @merge_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e merge i s made v i s i b l e .

f unc t i on merge_OpeningFcn (hObject , eventdata , handles , vara rg in)

% Choose d e f au l t command l i n e output f o r merge

handles . output = hObject ;

guidata (hObject , handles) ;

% Update handles s t r u c tu r e

setappdata (0 , ’ path ’ , ’ ’) ;

i f getappdata (0 , ’ mergetemplate ’)==1

s e t (handles . so r tdate , ’ Value ’ , 1) ;

s e t (handles . s o r tu s e r , ’ Value ’ , 0) ;

s e t (handles . f i l e s , ’ S t r ing ’ , g e t a l l f i l e s (getappdata (0 , ’

r e s u l t s f o l d e r ’) , 1)) ;

[handles]=merge_Callback (hObject , eventdata , handles) ;

end

253

Appendix A: Complete Matlab code of the program

% −−− Outputs from th i s func t i on are returned to the command l i n e .

f unc t i on varargout = merge_OutputFcn (hObject , eventdata , handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in pushbutton1 .

func t i on pushbutton1_Callback (hObject , eventdata , handles)

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ .mat ’ , ’ Result_? o

Sequence_? ’ , getappdata (0 , ’ path ’)) ;

setappdata (0 , ’ path ’ ,PathName) ;

res_name=[PathName FileName] ;

i f FileName~=0

F i l e s=get (handles . f i l e s , ’ S t r ing ’) ;

F i l e s { l ength (F i l e s)+1}=res_name ;

s e t (handles . f i l e s , ’ Value ’ , l ength (F i l e s)) ;

s e t (handles . f i l e s , ’ S t r ing ’ , F i l e s) ;

i f (l ength (F i l e s)>0)

s e t (handles . remove , ’ Enable ’ , ’ on ’) ;

s e t (handles . moveup , ’ Enable ’ , ’ on ’) ;

s e t (handles . movedown , ’ Enable ’ , ’ on ’) ;

s e t (handles . merge , ’ Enable ’ , ’ on ’) ;

end

end

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r op e r t i e s .

f unc t i on f i l e s_CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

s e t (hObject , ’ BackgroundColor ’ , ’ white ’) ;

end

% −−− Executes on button pr e s s in remove .

func t i on remove_Callback (hObject , eventdata , handles)

254

Appendix A: Complete Matlab code of the program

content=get (handles . f i l e s , ’ S t r ing ’) ;

ind=get (handles . f i l e s , ’ Value ’) ;

content (ind) = [] ;

s e t (handles . f i l e s , ’ Value ’ , l ength (content)) ;

s e t (handles . f i l e s , ’ S t r ing ’ , content) ;

i f (l ength (content)==0)

s e t (handles . remove , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . moveup , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . movedown , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . merge , ’ Enable ’ , ’ o f f ’) ;

end

% −−− Executes on button pr e s s in moveup .

func t i on moveup_Callback (hObject , eventdata , handles)

content=get (handles . f i l e s , ’ S t r ing ’) ;

ind=get (handles . f i l e s , ’ Value ’) ;

i f ind>1

tmp=content { ind−1};

content { ind−1}=content { ind } ;

content { ind}=tmp ;

s e t (handles . f i l e s , ’ S t r ing ’ , content) ;

s e t (handles . f i l e s , ’ Value ’ , ind−1) ;

end

% −−− Executes on button pr e s s in movedown .

func t i on movedown_Callback (hObject , eventdata , handles)

content=get (handles . f i l e s , ’ S t r ing ’) ;

ind=get (handles . f i l e s , ’ Value ’) ;

i f ind<length (content)

tmp=content { ind +1};

content { ind+1}=content { ind } ;

content { ind}=tmp ;

s e t (handles . f i l e s , ’ S t r ing ’ , content) ;

s e t (handles . f i l e s , ’ Value ’ , ind+1) ;

end

% −−− Executes on button pr e s s in merge .

f unc t i on [handles]=merge_Callback (hObject , eventdata , handles)

255

Appendix A: Complete Matlab code of the program

f i l e s=get (handles . f i l e s , ’ S t r ing ’) ;

l en =0;

dupl=0;

index =1;

d e l e t e dup l i c a t e=get (handles . dup l i ca te , ’ Value ’) ;

f o r i =1: l ength (f i l e s)

%se i f i l e s non contengono l e v a r i a b i l i Result_frequency e

Result_damping non sono f i l e s d i r i s u l t a t i

vars=who(’− f i l e ’ , f i l e s { i }) ;

i s ok=ce l l 2mat (s t r f i n d (vars , ’ Result_frequency ’))+ce l l 2mat (

s t r f i n d (vars , ’ Result_damping ’)) ;

i f isempty (i s ok) | | i s ok~=2

e r r o r d l g ([’The f i l e ’ f i l e s { i } ’ i s not a r e s u l t f i l e . ’]) ;

r e turn

end

load (f i l e s { i }) ;

%se i f i l e s presentano un numero d iv e r s o d i modi non possono

e s s e r e u n i t i .

i f i >1

i f s i z e (Result_frequency , 2)~=modi

e r r o r d l g (’The s e l e c t e d r e s u l t f i l e s are not compatible

. D i f f e r e n t number o f modes . ’) ;

r e turn

end

end

modi=s i z e (Result_frequency , 2) ;

%r imoz ione dup l i c a t i

i f i >1 && de l e t e dup l i c a t e==1

s i z eRes=s i z e (Result_frequency , 1) ;

f o r k=1: s i z eRes

i f f i nd (Sequence_f (: , 1)==Result_frequency (s izeRes−k

+1 ,1) ,1 , ’ F i r s t ’)>0

Result_frequency (s izeRes−k+1 , :) = [] ;

Result_damping (s izeRes−k+1 , :) = [] ;

dupl=dupl+1;

end

end

256

Appendix A: Complete Matlab code of the program

end

%merge

l en=s i z e (Result_frequency , 1)+len ;

Sequence_f (index : len , :)=Result_frequency (1 : s i z e (

Result_frequency , 1) , :) ;

Sequence_d (index : len , :)=Result_damping (1 : s i z e (Result_frequency

, 1) , :) ;

index=index+s i z e (Result_frequency , 1) ;

c l e a r Result_frequency Result_damping ;

end

%ordinamento per data

i f get (handles . sor tdate , ’ Value ’)==1

Sequence_f=sort rows (Sequence_f , 1) ;

Sequence_d=sort rows (Sequence_d , 1) ;

end

Result_frequency=Sequence_f ;

Result_damping=Sequence_d ;

d i a l o g s t r =[num2str (l ength (f i l e s)) ’ r e s u l t s f i l e s merged . ’

num2str (s i z e (Result_frequency , 1)) ’ t o t a l rows . ’] ;

i f d e l e t e dup l i c a t e==1

d i a l o g s t r =[d i a l o g s t r num2str (dupl) ’ dup l i c a t e e n t r i e s de l e t ed

. ’] ;

end

hd=he lpd lg (d i a l o g s t r , ’Merge d e t a i l s ’) ;

i f getappdata (0 , ’ mergetemplate ’)==1

save ([getappdata (0 , ’ r e s u l t s f o l d e r ’) ’ / current_sequence . mat ’] , ’

Result_frequency ’ , ’ Result_damping ’) ;

setappdata (0 , ’ CurrentRes ’ , [getappdata (0 , ’ r e s u l t s f o l d e r ’) ’ /

current_sequence . mat ’]) ;

e l s e

[FileName , PathName] =u i p u t f i l e ([getappdata (0 , ’ path ’) ’

Sequence_ ’] , ’ Save merged f i l e ’) ;

save ([PathName FileName] , ’ Result_frequency ’ , ’ Result_damping ’) ;

setappdata (0 , ’ CurrentRes ’ , [PathName FileName]) ;

end

s e t (handles . view , ’ Enable ’ , ’ on ’) ;

257

Appendix A: Complete Matlab code of the program

setappdata (0 , ’ mergetemplate ’ , 0) ;

pause (3) ;

i f i s hand l e (hd) c l o s e (hd) ; end

% −−− Executes on button pr e s s in c l o s e .

f unc t i on c lose_Cal lback (hObject , eventdata , handles)

curr=f i ndob j (’Tag ’ , ’ mergepanel ’) ;

d e l e t e (curr) ;

% −−− Executes on button pr e s s in so r tda t e .

f unc t i on sortdate_Cal lback (hObject , eventdata , handles)

s e t (handles . s o r tu s e r , ’ Value ’ , 0) ;

% −−− Executes on button pr e s s in view .

func t i on view_Callback (hObject , eventdata , handles)

setappdata (0 , ’ CurrentResults ’ , getappdata (0 , ’ CurrentRes ’)) ;

v i ew r e s u l t s ;

code/merge.m

A.10 newschedule.m

f unc t i on varargout = newschedule (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @newschedule_OpeningFcn , . . .

’ gui_OutputFcn ’ , @newschedule_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

258

Appendix A: Complete Matlab code of the program

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e newschedule i s made v i s i b l e .

f unc t i on newschedule_OpeningFcn (hObject , eventdata , handles ,

va rarg in)

handles . output = hObject ;

% Update handles s t r u c tu r e

guidata (hObject , handles) ;

% −−− Outputs from th i s func t i on are returned to the command l i n e .

f unc t i on varargout = newschedule_OutputFcn (hObject , eventdata ,

handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in browse .

f unc t i on browse_Callback (hObject , eventdata , handles)

[FileName , PathName] = u i g e t f i l e (’ . . \ template \∗ . e fdd ’ , ’ S e l e c t the

template ’) ;

setappdata (0 , ’ s ch f i l ename ’ , FileName) ;

setappdata (0 , ’ schpathname ’ ,PathName) ;

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r op e r t i e s .

f unc t i on mm_CreateFcn(hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

s e t (hObject , ’ BackgroundColor ’ , ’ white ’) ;

end

% −−− Executes on button pr e s s in addalarm .

259

Appendix A: Complete Matlab code of the program

f unc t i on addalarm_Callback (hObject , eventdata , handles)

when=datenum (0 ,0 , 0 , s t r2doub l e (get (handles . hh , ’ S t r ing ’)) , s t r2doub l e

(get (handles .mm, ’ S t r ing ’)) , 0) ;

oranuova=da t e s t r (when , ’HH:MM’) ;

i f oranuova~=0

ore=get (handles . alarms , ’ S t r ing ’) ;

ore { l ength (ore)+1}=oranuova ;

s e t (handles . alarms , ’ Value ’ , l ength (ore)) ;

s e t (handles . alarms , ’ S t r ing ’ , ore) ;

i f (l ength (ore)>0)

s e t (handles . sa lva , ’ Enable ’ , ’ on ’) ;

s e t (handles . de l e t e , ’ Enable ’ , ’ on ’) ;

end

end

% −−− Executes during ob j e c t c r ea t i on , a f t e r s e t t i n g a l l

p r op e r t i e s .

f unc t i on alarms_CreateFcn (hObject , eventdata , handles)

i f i s p c && i s e qua l (get (hObject , ’ BackgroundColor ’) , get (0 , ’

de fau l tUicontro lBackgroundColor ’))

s e t (hObject , ’ BackgroundColor ’ , ’ white ’) ;

end

% −−− Executes on button pr e s s in sa lva .

f unc t i on salva_Cal lback (hObject , eventdata , handles)

s ch f i l ename=getappdata (0 , ’ s ch f i l ename ’) ;

schpathname=getappdata (0 , ’ schpathname ’) ;

f a s t d i r=getappdata (0 , ’ f a s t d i r ’) ;

o r a r i=get (handles . alarms , ’ S t r ing ’) ;

nome=get (handles . name , ’ S t r ing ’) ;

i f isempty (nome)

e r r o r d l g (’ P lease s e t a name f o r the schedu le . ’) ;

r e turn ;

end

i f isempty (s ch f i l ename)

e r r o r d l g (’ P lease s e l e c t a template f i l e . ’) ;

r e turn ;

260

Appendix A: Complete Matlab code of the program

end

i f isempty (f a s t d i r)

e r r o r d l g (’ P lease s e l e c t the d e f au l t f o l d e r in which

a c c e l e r a t i o n data are s to r ed . ’) ;

r e turn ;

end

i f ~ e x i s t (’ . . \ schedu le ’ , ’ f i l e ’)

mkdir (’ . . \ schedu le ’) ;

end

f i l ename =[’ . . \ schedu le \sch_ ’ nome ’ . mat ’] ;

save (f i l ename , ’ s ch f i l ename ’ , ’ schpathname ’ , ’ o r a r i ’ , ’nome ’ , ’ f a s t d i r ’

) ;

move f i l e (f i l ename , [’ . . \ schedu le \sch_ ’ nome ’ . s chedu le ’] , ’ f ’) ;

ww=he lpd lg (’ Schedule s u c c e s s f u l l y c r e a t e . Launch i t with Schedule

Launcher . ’) ;

pause (5) ;

i f i s hand l e (ww) c l o s e (ww) ; end

% −−− Executes on button pr e s s in d e l e t e .

f unc t i on de lete_Cal lback (hObject , eventdata , handles)

content=get (handles . alarms , ’ S t r ing ’) ;

ind=get (handles . alarms , ’ Value ’) ;

content (ind) = [] ;

s e t (handles . alarms , ’ Value ’ , l ength (content)) ;

s e t (handles . alarms , ’ S t r ing ’ , content) ;

i f (l ength (content)==0)

s e t (handles . sa lva , ’ Enable ’ , ’ o f f ’) ;

s e t (handles . de l e t e , ’ Enable ’ , ’ o f f ’) ;

end

% −−− Executes on button pr e s s in browsef .

f unc t i on browsef_Callback (hObject , eventdata , handles)

folder_name = u i g e t d i r (’ . . / ’ , ’ S e l e c t the f o l d e r in which new data

w i l l be s to r ed . ’) ;

setappdata (0 , ’ f a s t d i r ’ , folder_name) ;

code/newschedule.m

261

Appendix A: Complete Matlab code of the program

A.11 plotfreq.m

f unc t i on p l o t f r e q (Result , f r a x e s)

Result0 = Result ;

Result0 (f i nd (i snan (Result0))) = 0 ;

f o r j =1: s i z e (Result , 2)

media (j) = sum(Result0 (: , j)) /sum(s i gn (Result0 (: , j))) ;

end

i f f r a x e s~=0

axes (f r a x e s) ;

e l s e

f i g u r e 1=f i g u r e (’ Color ’ , [1 1 1]) ;

s e t (f i gu r e1 , ’ Units ’ , ’ c en t imete r s ’ , ’ Po s i t i on ’ , [0 0 50 20] /2) ;

movegui (f i gu r e1 , ’ c en te r ’) ;

end

maxf=max(max(Result (: , 2 : end))) ;

f o r i = 2 : s i z e (Result , 2)

% a = num2str (media (i)) ;

f r=num2str (trimmean (Result (: , i) , 20) ,4) ;

set_legend (i −1) = c e l l s t r ([’Mode ’ num2str (i −1) ’ : Hz ’ f r]) ;

end

p lo t (Result (: , 1) , Result (: , 2 : end) , ’ l i n e s t y l e ’ , ’ none ’ , ’ LineWidth ’

, 1 . 2 , ’ Marker ’ , ’ . ’ , ’ Markers ize ’ , 5) ; hold on ; g r id on ;

s e t (gca , ’ FontSize ’ ,10 , ’YTick ’ , [0 : 2 : maxf+2] , ’YLim ’ , [0 maxf+2]) ;

i f f r a x e s==0

s e t (gca , ’ Po s i t i on ’ , [0 . 1 3 0.105714285714286 0.633513513513514

0 .811428571428571]) ;

l egend (set_legend , ’ Po s i t i on ’ , [0 .809909909909913

0.0714285714285714 0.167567567567568 0 .879706566220238]) ;

e l s e

s e t (gca , ’Tag ’ , ’ f r equenze ’) ;

end

da t e t i c k (’ x ’ , ’mmm yy ’ , ’ k e ep l im i t s ’ , ’ k e ep t i c k s ’) ;

262

Appendix A: Complete Matlab code of the program

x l ab e l (’Time ’ , ’ FontSize ’ , 12) ; y l ab e l (’ [Hz] ’ , ’ FontSize ’ ,12) ;

y l ab e l (’ Natural f r e qu en c i e s (Hz) ’ , ’ FontSize ’ ,12) ;

t i t l e ([’ \ f o n t s i z e {14} Natural f r e qu en c i e s trend ’]) ;

code/plotfreq.m

A.12 savetemplate.m

f unc t i on varargout = savetemplate (vararg in)

% Begin i n i t i a l i z a t i o n code − DO NOT EDIT

gui_Singleton = 1 ;

gui_State = s t r u c t (’gui_Name ’ , mfilename , . . .

’ gu i_Sing leton ’ , gui_Singleton , . . .

’ gui_OpeningFcn ’ , @savetemplate_OpeningFcn , . . .

’ gui_OutputFcn ’ , @savetemplate_OutputFcn , . . .

’ gui_LayoutFcn ’ , [] , . . .

’ gui_Callback ’ , []) ;

i f narg in && i s cha r (vararg in {1})

gui_State . gui_Callback = s t r 2 f unc (vararg in {1}) ;

end

i f nargout

[varargout {1 : nargout }] = gui_mainfcn (gui_State , vara rg in { : }) ;

e l s e

gui_mainfcn (gui_State , vara rg in { : }) ;

end

% End i n i t i a l i z a t i o n code − DO NOT EDIT

% −−− Executes j u s t be f o r e savetemplate i s made v i s i b l e .

f unc t i on savetemplate_OpeningFcn (hObject , eventdata , handles ,

va rarg in)

handles . output = hObject ;

% Update handles s t r u c tu r e

guidata (hObject , handles) ;

263

Appendix A: Complete Matlab code of the program

% −−− Outputs from th i s func t i on are returned to the command l i n e .

f unc t i on varargout = savetemplate_OutputFcn (hObject , eventdata ,

handles)

varargout {1} = handles . output ;

% −−− Executes on button pr e s s in image .

f unc t i on image_Callback (hObject , eventdata , handles)

[FileName , PathName , F i l t e r I ndex] = u i g e t f i l e (’ ∗ . jpg ’ , ’ S e l e c t

template image ’) ;

setappdata (0 , ’ tempimage ’ , [PathName FileName]) ;

% −−− Executes on button pr e s s in pushbutton2 .

func t i on pushbutton2_Callback (hObject , eventdata , handles)

setappdata (0 , ’ tempname ’ , get (handles . name , ’ S t r ing ’)) ;

setappdata (0 , ’ tempdesc ’ , get (handles . desc , ’ S t r ing ’)) ;

setappdata (0 , ’ author ’ , get (handles . author , ’ S t r ing ’)) ;

c l o s e (f i ndob j (’Tag ’ , ’ savetemp ’)) ;

code/savetemplate.m

264

Ringraziamenti

Les jeux sont faits! Dopo piú di duecento pagine scritte in inglese (sperando

di non aver sfigurato piú del dovuto), questa pagina di ringraziamenti é per

me, e probabilmente anche per chi legge, un benvenuto ritorno alla mia lingua

madre.

Questa tesi ha impegnato in modo predominante gli ultimi sette mesi della mia

vita ed in parte ha rappresentato per me una sfida, dato che la maggior parte

dei temi toccati era per me nuova. Voglio quindi ringraziare in primo luogo

i miei due correlatori, Kleidi e Mauro, che mi hanno aiutato attivamente in

tutto questo tempo.

La tesi rappresenta, comunque, il termine di un percorso molto piú ampio che

ho iniziato ormai parecchi anni fa, grazie al quale ho avuto modo di conoscere

e apprezzare molte persone. Voglio approfittare di questo spazio per ricordarne

un po’, Marco, Laura, Carlo, Alberto e Alessandro che sono stati i migliori

compagni di gruppo che potessi volere, Antonio e Massimo e Francesco, con

cui ho condiviso la disperazione soprattutto dei primi esami. Vorrei nominare

tutti ma un foglio non basterebbe.

Voglio ringraziare Elisa e i miei amici, in particolare Dario, Tommaso, Sara,

e mia sorella Veronica, che hanno avuto un’enorme pazienza con me in questi

mesi di tesi, e mi hanno ricordato di tanto in tanto che esiste una vita al di-

fuori dello studio / lavoro.

Soprattutto, voglio ringraziare i miei genitori, Tiziana e Stefano, per avermi

dato l’opportunitá di arrivare a questo punto e per avermi sostenuto, non senza

sacrifici, moralmente e materialmente in tutti questi anni.

265

