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Abstract

This thesis explores the application of real-space renormalization group (RG) techniques in
the study of critical phenomena in statistical physics. Critical phenomena are characterized
by diverging length-scales that manifest with the emergence of correlation functions decaying
as power laws both at large spatial and temporal distances and more in general by the
presence of singularities in the free energy in the thermodynamic limit. This implies that a
macroscopic system close to or at criticality cannot be understood in terms of the properties
of its finite subparts. The renormalization group provides a general framework to explain
the emergence of singularities in the thermodynamic limit using an iterative procedure
involving only an analytic recursion equation. Typically, the implementation of RG at
Wilson leads to the so-called proliferation of interactions between degrees of freedom, which
is difficult to handle. Some kind of approximation, such as perturbation theory or brute
force truncation, is used to simplify the analysis and these approximations are justified a
posteriori on the basis of the results obtained. This thesis aims to comprehensively explore
and analyze existing RG methods, including decimation, Migdal-Kadanoff bond moving
approximation, cumulant approximation, and Monte Carlo renormalisation group methods,
in order to gain valuable insights into the critical behavior of various lattice models.
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Chapter 1

Introduction

Critical phenomena are fascinating phenomena that arise in various fields of physics,
including condensed matter physics, statistical mechanics, and quantum field theory. These
phenomena occur near phase transitions, where a system undergoes a dramatic change
in its macroscopic properties, such as magnetization, conductivity, or phase coexistence.
The behavior of a system at criticality is characterized by the emergence of scaling laws,
universal behavior, and diverging correlation lengths. Understanding the underlying mech-
anisms and properties of critical phenomena is of great importance in both theoretical and
experimental physics.

The renormalization group (RG) technique provides a powerful framework for studying
critical phenomena and capturing the universal behavior near phase transitions. Developed
by Kenneth Wilson and others in the 1970s [16], the RG technique allows us to system-
atically coarse-grain a system by integrating out degrees of freedom at different length
scales. Through this process, the RG flow captures the essential physics of the system and
reveals the critical behavior and fixed points that govern the universality classes. The RG
approach has had significant success in explaining and predicting critical phenomena in a
wide range of physical systems.

When Wilson first developed the renormalization-group theory of critical phenomena,
extensive use of techniques borrowed from quantum field theory was made. In the mean-
time, the basic ideas of the renormalization group became quite clear, and attempts were
made to implement the ideas directly without recourse to field theory. Such efforts resulted
in the so-called “real-space renormalization group”. In this approach, calculations are
performed directly in position space, in contradistinction to the field-theoretic ϵ-expansion
in momentum space. The advent of the real-space renormalization group not only rendered
possible a transparent and elegant implementation of the basic ideas of the renormalization
group but also introduced new and effective methods of calculations.

The primary goal of this thesis is to explore different real-space renormalization group
techniques. By applying these methods to lattice models, such as the Ising model and the
Potts model, we aim to analyze their critical behavior, compute critical exponents, and
investigate the scaling properties of these models near the critical point. Furthermore, we
seek to understand their strengths and limitations in capturing the essential physics of
critical phenomena.
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2 CHAPTER 1. INTRODUCTION

This thesis is structured as follows: In Chapter 2, we provide a comprehensive overview
of the renormalization group technique, including its theoretical foundations, phase transi-
tions, critical exponents, and scaling properties. We discuss the concept of universality
and how the RG framework captures the universal behavior near critical points. Chapter 3
focuses on real-space renormalization methods, discussing various techniques, such as deci-
mation, Migdal-Kadanoff bond moving approximation, Niemeijer-van Leeuwen cumulant
approximation, and their application to specific lattice models. In Chapter 4, we delve into
Monte Carlo renormalization group methods, exploring the general theory and discuss the
algorithms behind Monte Carlo simulations, such as the Wolff Cluster algorithm. Finally,
Chapter 5 presents our conclusions and suggests future directions for research.

Through this thesis, we aim to contribute to the understanding of critical phenomena
and the computational techniques used in real-space renormalization group analysis. By
deeply studying these methods, we hope to shed light on the rich physics underlying
phase transitions and provide valuable insights into the behavior of complex systems near
criticality. These topics may have implications for various fields, including condensed
matter physics, statistical mechanics, and quantum field theory, polymer physics. The
versatility and ability to capture emergent phenomena make real-space renormalisation
group methods an invaluable tool for understanding complex systems.



Chapter 2

The Renormalization group

2.1 Phase Transitions and Critical Phenomena

Phase transitions are phenomena in which the physical properties of a material change
abruptly as a result of small changes in temperature, pressure, or other external parameters.
They are a fundamental concept in condensed matter physics, as they describe how mate-
rials can change their properties from solid to liquid, or from magnetic to non-magnetic.
An order parameter is a measure of the degree of order across the boundaries in a phase
transition system.

In magnetic materials such as iron, the magnetism results from the alignment of electron
magnetic moments due to the exchange interaction. In the paramagnetic phase, the
magnetic moments of the atoms in the material are randomly oriented, resulting in a net
magnetic moment of zero. In this phase, there is no long-range order in the orientation
of the magnetic moments, and the material does not exhibit any magnetic properties. In
contrast, in the ferromagnetic phase, the magnetic moments of the atoms become aligned
with each other, resulting in a net magnetic moment that is non-zero. In this phase, there
is long-range order in the orientation of the magnetic moments, and the material exhibits
magnetic properties such as magnetization and magnetic susceptibility. The transition
between the paramagnetic and ferromagnetic phases occurs at a critical temperature called
the Curie temperature Tc. The magnetisation M is an order parameter of the paramagnetic-
ferromagnetic phase transition.

Phase transitions can be classified into two main categories: first-order transitions and
second-order transitions. First-order transitions involve a discontinuity in the order parame-
ter or more generally a discontinuity in one or more partial derivatives of the thermodynamic
potentials. Second-order transitions exhibit a continuous change in the order parameter but
the second derivatives are discontinuous. A typical critical behavior of a magnetic material

Figure 2.1: Phase diagram of the paramagnetic-ferromagnetic transition [4]

3



4 CHAPTER 2. THE RENORMALIZATION GROUP

as a function of magnetic field (H) and temperature (T ) is illustrated in Figure 2.1. The
phase diagram shows a line of discontinuous first-order phase transitions that separates
the ferromagnetic and paramagnetic states. Along this line, the magnetization undergoes
an abrupt reversal. The line of first-order transitions terminates at the critical point
Tc, where the system undergoes a second-order phase transition. Near Tc, a continuous
transition occurs from a paramagnetic state (T > Tc) to a ferromagnetic state (T < Tc).
This second-order transition is characterized by a continuous change in magnetization
without any latent heat.

2.1.1 Critical exponents

The neighborhood of the critical point is characterized by singular behaviors. The critical
exponents are mathematical parameters that describe the behavior of various physical
quantities near the critical point. These exponents describe the power-law behavior of
various thermodynamic quantities, such as the magnetization, specific heat, susceptibility,
and correlation length, and they provide valuable information about the nature of the
phase transition. Let us define the adimensional parameter measuring the distance from
the critical point, t = (T − Tc)/Tc

1. Magnetization (β): The magnetization is a measure of the average spin alignment in
the system.

M =
[

∂F

∂H

]
T

(T < Tc) (2.1)

At the critical point, the magnetization scales with the external magnetic field as a
power law with an exponent β:

M ∼ (−t)β (2.2)

2. Susceptibility (γ, γ′): The susceptibility measures the response of the system to an
external magnetic field.

χ =
[

∂M

∂H

]
H=0

(2.3)

At the critical point, the susceptibility diverges as a power law with the exponents
γ, γ′:

χ ∼ (t)−γ (T > Tc) (2.4)
χ ∼ (−t)−γ′ (T < Tc) (2.5)

3. Specific heat (α, α′): The specific heat measures the energy required to heat the
system up by a small amount.

C = −T
∂2F

∂T 2 (2.6)

At the critical point, the specific heat diverges as a power law with the exponent
α, α′:

C ∼ (t)−α (T > Tc) (2.7)
C ∼ (−t)−α′ (T < Tc) (2.8)

4. Magnetization vs applied field (δ): The critical exponent δ describes how the magne-
tization scales near the critical point as the magnetic field approaches zero H = 0.

|M | ∼ |H|1/δ (T = Tc) (2.9)
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5. Correlation function(η): The correlation function is a measure of how strongly the
spins at two different lattice sites are correlated.

Γ(x) = ⟨s(x)s(0)⟩ − ⟨s(x)⟩ ⟨s(0)⟩ (2.10)

where s(x) is the spin at lattice site at a distance x, and ⟨·⟩ denotes the thermal
average over all possible spin configurations. The critical exponent associated with
the decay of the correlation function is η:

Γ(x) ∼ |x|−(d−2+η) (2.11)

6. Correlation length (ν, ν ′): The correlation length is a measure of how strongly
correlated spins are as a function of distance. When T ̸= Tc,

Γ(x) ∼ exp(−|x|/ξ) |x| −→ ∞ (2.12)

At the critical point, the correlation length diverges as a power law with the exponents
ν, ν ′:

ξ ∼ (τ)−ν (T > Tc) (2.13)
ξ ∼ (−τ)−ν′ (T < Tc) (2.14)

2.1.2 Scaling and Universality

There are a total of nine critical exponents associated with this paramagnetic-ferromagnetic
phase transition, but not all of them are independent. The scaling hypothesis provides
relations among these exponents, reducing the number of independent ones to two. Let’s
explore how this is derived. [14]

During a phase transition, the free energy of the system exhibits singularities. The
free energy density could be decomposed into two distinct parts and written as:

f(t, h) = fr(t, h) + fs(t, h) (2.15)

where t = (T − Tc)/Tc and h = (H − Hc)/kBT . The term fr(t, h) is the ”regular” part of
the free energy density which remains analytic and does not change significantly near the
critical point and fs(t, h) is the ”singular” part of the free energy density which captures
the non-analytic behaviour of the system near the critical point.

According to Widom’s static scaling hypothesis, the singular part of the free energy
density, fs is assumed to be a generalized homogenous function:

fs(λp1t, λp2h) = λfs(t, h) λ ∈ R+ (2.16)

where p1 and p2 are the degrees of homogeneity. The exponents p1 and p2 are not specified
by the scaling hypothesis but all the critical exponents of the system can be expressed in
terms of p1 and p2. Since fs is a generalized homogenous function, it is always possible
to choose λ to remove the dependence on one of the arguments. For instance, choose
λ = h−1/p2 . Then we have,

fs(t, h) = h1/p2fs(h−p1/p2t, 1) (2.17)

and the ratio
∆ ≡ p2

p1
(2.18)

is called the gap exponent.
Let us now explore the consequences of Widom’s assumption on the critical exponents.



6 CHAPTER 2. THE RENORMALIZATION GROUP

Exponent β: Starting with the scaling hypothesis Eq. 2.16 and taking the derivative
with respect to h on both sides

fs(λp1t, λp2h) = λfs(t, h) (2.19)

λp2 ∂fs(λp1t, λp2h)
∂h

= λ
∂fs(t, h)

∂h
(2.20)

λp2Ms(λp1t, λp2h) = λMs(t, h) (2.21)

We know that for h = 0 and t → 0−, Ms(t) ∼ (−t)β. So, setting h = 0, we have

Ms(t, 0) = λp2−1Ms(λp1t, 0) (2.22)

Now, we choose λp1t = −1, to eliminate the dependence on t. This implies λ = (−t)−1/p1

Hence,

Ms(t, 0) = (−t)(1−p2)/p1Ms(−1, 0) (2.23)

and by the definition of β, we have

β = 1 − p2
p1

(2.24)

Exponent δ Consider the relation

λp2Ms(λp1t, λp2h) = λMs(t, h) (2.25)

By setting t = 0 (T = Tc),
M(0, h) = λp2−1M(0, λp2h) (2.26)

Again, following the same property of generalized homogenous functions, we choose λp2h = 1
implying λ = h−1/p2 , and we have

M(0, h) = h(1−p2)/p2M(0, 1) (2.27)

Since Ms ∼ h1/δ as h → 0+,
δ = 1 − p2

p2
(2.28)

Now, expressing p1 and p2 in terms of β and δ, we write the gap exponent ∆

p1 = 1
β(δ + 1) (2.29)

p2 = δ

δ + 1 (2.30)

∆ ≡ p2
p1

= βδ (2.31)

Exponent γ, γ′ To obtain the magnetic susceptibility, we take the second derivative of
the scaling hypothesis relation with respect to h,

λ2p2χT (λp1t, λp2h) = λχT (t, h) (2.32)
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• Case t → 0−: setting h = 0 and λ = (−t)−1/p1 we get

χT (t, 0) = (−t)− 2p2−1
p1 χT (−1, 0) (2.33)

and by the definition of γ′,

χT (t, 0) t→0−
∼ (−t)−γ′

(2.34)

we get
γ′ = 2p2 − 1

p1
= β(δ − 1) (2.35)

• Case t → 0+: setting h = 0 and λ = (t)−1/p1 we get

χT (t, 0) = t
− 2p2−1

p1 χT (1, 0) (2.36)

and by the definition of γ

χT (t, 0) t→0+
∼ t−γ (2.37)

we get
γ = 2p2 − 1

p1
= β(δ − 1) (2.38)

Therefore, we have
γ′ = γ = 2p2 − 1

p1
= β(δ − 1) (2.39)

Exponent α, α′ To determine the specific heat, we take the second derivative of the
Widom’s relation with respect to the temperature t, so that:

λ2p1C(λp1t, λp2h) = λC(t, h) (2.40)

• Case t → 0−: setting h = 0 and λ = (−t)−1/p1 we get

C(t, 0) = (−t)
−
(

2− 1
p1

)
C(−1, 0) (2.41)

and by the definition of α′

C(t, 0) t→0−
∼ (−t)−α′ (2.42)

we get
α′ = 2 − 1

p1
(2.43)

• Case t → 0+: setting h = 0 and λ = (t)−1/p1 we get

C(t, 0) = t
−
(

2− 1
p1

)
C(1, 0)

and by the definition of α

C(t, 0) t→0−
∼ t−α (2.44)

we get
α = 2 − 1

p1
(2.45)
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Critical Exponent Exact Ising in 2D Mean field theory
β 1/8 1/2

γ, γ′ 7/4 1
δ 15 3

α, α′ 0 0
ν, ν ′ 1 1/2

η 1/4 0

Table 2.1: Critical exponents for the Ising model

Therefore,

α′ = α = 2 − 1
p1

(2.46)

If we substitute p1 = 1
β(δ+1) into α = 2 − 1

p1
, we get:

α + β(δ + 1) = 2 (2.47)

This is known as the Griffiths equality.

If we combine the Griffith equality with the relation γ = β(δ − 1), we get the Rush-
brooke’s equality:

α + 2β + γ = 2 (2.48)

The concept of universality is closely related to scaling. It refers to the fact that many
different physical systems, which may have completely different microscopic details, exhibit
the same critical behavior near the critical point. This means that the scaling exponents
are the same for all systems that belong to the same universality class, regardless of the
specific details of the system. Physical systems can be divided into universality classes
according to the dimensionality of space, the number of components of the order parameter,
and the symmetry of the system. For example, the Ising model, which is a simple model of
a ferromagnet, belongs to the same universality class as models of liquid-gas transitions,
superfluid transitions.

The Ising model can be exactly solved only in two dimensions [13], posing analytical
challenges in higher dimensions due to increased complexity. To overcome this, mean field
theory provides a useful approximation approach by considering average field interactions
rather than individual spin interactions. Table 2.1 shows the values for different critical
exponents.

It is important to note that while Widom’s scaling allows us to determine the exact
relations between critical exponents, it does not provide insight into the physical origin of
these scaling laws. Additionally, it does not involve correlation lengths or the exponents ν
and η. The concept of renormalization group offers a framework to explain these phenomena
and provides a deeper understanding of the underlying mechanisms behind the scaling
laws.
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2.2 General Theory of Renormalization Group

Consider a d-dimensional lattice with lattice spacing l and with a spin si = ±1 assigned
on every site. The subscript i labels the N lattice sites. For a subset a of sites, let’s define
sa as the product of spins:

sa =
∏
i∈a

si (2.49)

The most general Hamiltonian for an Ising-like system can be written as [12]:

H (s) =
∑

a

Kasa (2.50)

where Ka are the interaction parameters that characterizes the interaction between spins
on the subset of sites a. Also, the Boltzmann factor −β = −1/kBT has been already
absorbed in the Hamiltonian and the actual interaction parameters are Ja = Ka/kBT .

The interaction parameters Ka can be formally obtained from H (s) using the relation:

Ka = 2−N
∑
{s}

saH (s) (2.51)

This equation recovering the interaction parameters from the Hamiltonian is of importance
and is used in actual numerical calculations. The symbol ∑{s} means a summation over
all the spin configurations, and it is also represented by the trace operation:

Tr ≡
∑
{s}

(2.52)

Let us consider homogeneous Hamiltonians, which are characterized by having the same
coupling constant Kα for all subsets of sites a ∈ α, where α is the class of all subsets of
sites that can be identified by a symmetry operation of the lattice.
This leads to a simplified expression for the Hamiltonian:

H (s) =
∑

a

Kasa =
∑

α

Kα

∑
a∈α

sa (2.53)

In a more intuitive way, this can be expressed as

H (s) = H
∑

i

si + K
∑

<i,j>

sisj + . . . (2.54)

where the symbol < i, j > means that the sites i and j are nearest neighbours.
The familiar form of the Ising Hamiltonian with nearest-neighbour interactions can be now
recognized by identifying :

H (s) = −βH = −βh
∑

i

si − βJ
∑

<i,j>

sisj (2.55)

K1 = H = h/kBT (2.56)
K2 = K = J/kBT (2.57)
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Figure 2.2: Kadanoff’s block-spin transformation: (a) original lattice (b) four spins grouped
into a block (c) new lattice

2.2.1 Block-spin transformation

Now consider a coarse-graining procedure [5] to the lattice system in which a set of
spins are grouped into a block or a cell as shown in Figure 2.2.

Let N ′ denote a set of cells with cell spins s′
i′ = ±1. The index i′ refers to the i′-th cell

of a lattice isomorphic to the original lattice. All quantities pertaining to the cell system
shall be labeled with primes.

We start by writing down the partition function of the original system, in terms of
the coupling constants Ka

ZN (Ka) =
∑
{s}

eH (s) = Tr eH (s) (2.58)

The block-spin transformation reduces the number of degrees of freedom by a factor ld:

N ′ = N

ld
(2.59)

This is accomplished by making a partial trace over the sites degrees of freedom, keeping
the cell degrees of freedom fixed:

eH ′(s′) = Tr′ eH (s) (2.60)
= Tr P (s′, s)eH (s) (2.61)

where Tr′ is the constrained trace, while P (s′, s) is the projection operator, which ”incor-
porates” the constraints and allows us to write an unconstrained trace. The projection
operator is constructed so that the coarse-grained degrees of freedom s′

i′ have the same
range of values as si.

2.2.2 Renormalization Transformation

The Hamiltonian for the cell system H ′(s′) can now be defined by:

eG+H ′(s′) =
∑
{s}

P (s′, s)eH (s) (2.62)
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where the projection operator P (s′, s) is now referred to as a weight factor that depends
on the cell spin configurations {s′} and the site spin configurations {s}.

G is defined by imposing the following condition on the cell spin Hamiltonian H ′(s′):∑
{s′}

H ′(s′) = 0 (2.63)

and G is independent of the cell spin configurations {s′}.

The weight factor P (s′, s) must satisfy the following three conditions:

1. P (s′, s) ≥ 0 ∀s′, s

2. P (s′, s) reflects the symmetries of the system

3. ∑{s′} P (s′, s) = 1

Condition 1: This guarantees that exp[G + H ′(s′)] ≥ 0, so that we can safely identify
H ′(s′) with the effective Hamiltonian for the cell system.

Condition 2: This implies that the cell spin Hamiltonian H ′(s′) has the same symmetries
as the site spin Hamiltonian H (s). We require P (s′, s) such that for subsets a′ of a certain
class α, the cell interaction parameters K ′

a are all equal to a certain value K ′
α. That is,

H ′(s′) can again be written as:

H ′(s′) =
∑

α

K ′
α

∑
a′∈α

s′
a′ (2.64)

Condition 3: This guarantees that

ZN ′(K ′
a) ≡

∑
{s′}

eH ′(s′)+G (2.65)

=
∑
{s′}

∑
{s}

P (s′, s)eH (s) (2.66)

=
∑
{s}

eH (s) · 1 (2.67)

= ZN (Ka) (2.68)

The Eq. 2.62 is called a renormalization transformation. Thus, the partition function
is invariant under a renormalization transformation. This also leads to an important
relationship between the free energy F ′ of the cell system and the free energy F of the site
system.

G + F ′ = ln
∑
{s′}

eG+H ′(s′) = ln
∑
{s′}

∑
{s}

P (s′, s)eH (s)

= ln
∑
{s}

eH (s) = F (2.69)

The three restrictions on P (s′, s) still allow an enormous variety in choice for P (s′, s), each
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leading to a different renormalization transformation. A trivial choice would be to take
P (s′, s) independent of s′, and then we have

P (s′, s) = 2−N ′ (2.70)

In Eq. 2.62, the right-hand side would be independent of s′ and therefore we have:

H ′(s′) = 0 (2.71)
G = F (2.72)

Let us denote the set of coupling constants Ka by [K]. Now consider F ′ and F as functions
of the interaction parameters [K ′] and [K]. In the thermodynamic limit, when no long-range
forces are present, F ′ and F assume the form:

F ′ = N ′f(K ′)
F = Nf(K) (2.73)

with the same function f in both cases of the cell system and the site system. G also
becomes an extensive function G = Ng(K) in the thermodynamic limit with N/N ′ = ld,
where d is the dimensionality of the system.

Substituting these relations into Eq. 2.69,

f(K) = g(K) + l−df(K ′) (2.74)

g(K) is the contribution to the free energy from the degrees of freedom eliminated in the
renormalization step. [2]

2.2.3 Recursive Relation

We could see Eq. 2.62 as a renormalization group transformation Rl [3] from the
interaction parameters Ka = [K] to the renormalized parameters K ′

a = [K ′],

[K ′] ≡ Rl[K] (l > 1) (2.75)

This relation is referred to as recursive relation.

Rl describes how the coupling constants change as the length scale is varied. Rl, in
general, is a very complicated, non-linear transformation. Since l > 1, there is no in-
verse transformation and the set of transformations Rl for different l > 1 form a semi-group:

If we apply two successive transformations Rl1 and Rl2 on two different length scales
l1 and l2,

[K ′] = Rl1 [K] (2.76)
[K ′′] = Rl2 [K ′] (2.77)

= Rl2 ◦ Rl1 [K] (2.78)

and hence we have
Rl1l2 [K] = Rl2 ◦ Rl1 [K] (2.79)

There is no general way to calculate Rl. Many different RG transformations can be con-
structed for a given problem. The above framework captures the essence of the Kadanoff
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block spin transformation, but it differs in that it allows for the generation of new operators
during the RG transformation. While the formalism is exact, it may not be immediately
useful. An important observation is that while the calculation of the transformed coupling
constants [K ′] as functions of the original couplings [K] can be challenging, these functions
are expected to be analytic. This is because the RG transformation integrates over only a
finite number of degrees of freedom. The strength of the RG approach lies in the fact that
approximating the transformed couplings [K ′] is generally easier than directly evaluating
the partition function itself. Nevertheless, to fully eliminate all degrees of freedom in
a thermodynamic system in the thermodynamic limit N −→ ∞, an infinite number of
iterations of the RG transformations is required. It is through this iterative process that
singular behavior can arise, leading to the emergence of critical phenomena.

After n iterations of the RG transformations, the system undergoes a coarse-graining
process, resulting in a length scale of ln. At this stage, the system’s behavior is charac-
terized by the coupling constants K

(n)
0 , K

(n)
1 , . . .. As n varies, the system may be thought

of as represented by a point moving in a space whose axes are the coupling constants
K0, K1, . . .. On iterating the RG transformation, a given system represented by its initial
set of coupling constants, traces out a trajectory in coupling constant space. The set of
all such trajectories, generated by different initial sets of coupling constants generates a
renormalisation group flow in coupling constant space. While it is theoretically conceivable
for the representative point’s trajectory to exhibit complex patterns such as limit cycles
or strange attractors, in practice, it is observed that the trajectory tends to converge
towards fixed points. In the following section, we will explore how the scaling behaviour is
associated with the dynamics near a specific type of fixed point.

2.2.4 Fixed points

Suppose that we know the RG transformation Rl[K]. The fixed point of the RG
transformation is a point [K∗] in the coupling constant space satisfying

[K∗] = Rl[K∗] (2.80)

The renormalization transformation can in general have several fixed points, but not every
one of them will have physical significance for critical phenomena. The correlation length
ξ transforms under Rl as

ξ[K ′] = ξ[K]
l

(2.81)

At a fixed point, we have
ξ[K∗] = ξ[K∗]

l
(2.82)

This implies two cases:

ξ[K∗] =
{

0 trivial
∞ critical (2.83)

A fixed point with ξ = ∞ is called critical, while if ξ = 0 it is trivial.

Each fixed point has its own basin of attraction or domain: all points [K] in the coupling
constant space which lie within the basin of attraction of a given fixed point [K∗] flow
towards and ultimately reach the fixed points after an infinite number of iterations of Rl

R
(n)
l [K] n→∞−−−→ [K∗] (2.84)
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An important theorem that follows this is that all points in the basin of attraction of a
critical fixed point have infinite correlation length. The set of points that forms the basin
of attraction of a critical fixed point is also called critical manifold. The critical surface
divides the region of space as shown in Fig 2.3.

Figure 2.3: Schematic diagram of RG flow. The arrow indicates the direction of flow. The
dotted line indicates system with K1/K2

As we will see in the next section, the critical fixed points describe the singular critical
behaviour. The trivial fixed points, on the other hand, describe the bulk phases of the
system. Knowledge of the location and nature of the fixed points of a RG transformation
thus enables the phase diagram to be determined, whilst the behaviour of the RG flows
near a critical fixed point determines the critical exponents.

2.2.5 Linearized transformation around fixed point

Consider the linearized form of the renormalization transformation, i.e., the matrix

∂K ′
α

∂Kβ
= Tαβ (2.85)

If it is linearized at the fixed point, it is denoted by an asterisk(
∂K ′

α

∂Kβ

)
K∗

= T ∗
αβ (2.86)

So, in the neighbourhood of K∗, the transformation can be written as:

K ′
α − K∗

α =
∑

β

T ∗
αβ(Kβ − K∗

α) (2.87)

The eigenvalues of the matrix T ∗
αβ are directly related to the critical exponents. But since

the matrix T ∗
αβ is not symmetric, it is not guaranteed that its eigenvalues will be real.

It is convenient to introduce a type of normal coordinates in which the transformation
takes a simple form. Let T ∗

αβ have eigenvalues λi with the associated left eigenvectors ϕi
α:∑

α

ϕi
αT ∗

αβ = λiϕ
i
β (2.88)
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Then we construct ”normal” coordinates ui as

ui =
∑

α

ϕi
α(Kα − K∗

α) (2.89)

such that the eigenvalue equations are decoupled and ui transform as

u′
i =

∑
α

ϕi
α(K ′

α − K∗
α) = λi

∑
β

ϕi
β(Kβ − K∗

β) = λiui (2.90)

The ui ’s are called Wegner’s scaling fields. There are three cases:

1. λi > 1; ui relevant

2. λi < 1; ui irrelevant

3. λi = 1; ui marginal

The values of the relevant fields increase upon performing a transformation, whereas the
irrelevant fields decrease. The fixed point corresponds to all ui = 0.

The free energy density
f(K) = g(K) + l−df(K ′) (2.91)

in terms of the scaling fields ui can be written as:

f(u1, u2, . . .) = g(u1, u2, . . .) + l−df(λ1u1, λ2u2, . . .) (2.92)

We assume that the scaling fields ui are regular functions of the interaction parameters
Kα and that g(u1, u2, . . .) is a regular function of the scaling fields ui. Thus, if f has a
singular part, it behaves as

fsing(u1, u2, . . .) = l−dfsing(λ1u1, λ2u2, . . .) (2.93)

The connection between the eigenvalues λi of the matrix T ∗
αβ and the critical exponents is

most easily established by asking whether a singular behaviour in powers of ui for the free
energy is compatible with Eq. 2.92. For simplicity, let us start by assuming u2 = u3 = 0.
Assume fsing has a powerlike singularity,

fsing(u1, 0, . . .) = Aua1
1 (2.94)

This leads to
Aua1

1 = l−dA(λ1u1)a1 (2.95)

The exponent a1 then becomes:

a1 = d log l/ log λ1 (2.96)

The exponent a1 is a physical quantity and thus λ1 should vary as a power of l for different
renormalization transformations with different l. Therefore, if we write for the relevant
eigenvalues (which are assumed to be real and positive)

λ1 = ly1 (2.97)

the critical exponent y1 is given by
y1 = d/a1 (2.98)
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Now let us consider two scaling fields u1 and u2 and determine the singular powers |u1|a1

and |u2|a2 allowed by Eq. 2.92. Comparing the exponents on both sides

a1y1 + a2y2 = d (2.99)

For positive ai atleast one of the yi has to be positive. A combination of a relevant scaling
field and an irrelevant one leas to a value of a1 larger than d/y1 and therefore is a less
singular contribution in u1 than the previously found power d/y1. So, for two relevant
scaling fields, the possible functional forms consistent with Eq. 2.91 are

|u1|d/y1f1(u2/|u1|y2/y1) (2.100)
|u2|d/y2f2(u1/|u2|y1/y2) (2.101)

These are solutions of the scaling relation

fsing(ly1u1), ly2u2) = ldfsing(u1, u2) (2.102)

Let us now consider the concrete case where u1 = t is an even scaling field coupled to the
temperature and u2 = h is an odd scaling field coupled to the magnetic field. Then,

fsing(t, h) = |t|d/yT f1(h/|t|∆) (2.103)
= |h|d/yH f2(t/|h|1/∆) (2.104)

where ∆ is the gap exponent
∆ = yH

yT
(2.105)

Using the scaling laws derived in Section 2.1.2, we can determine all the critical exponents

α = 2 − d/yT (2.106)
β = (d − yH)/yT (2.107)
γ = (2yH − d)/yT (2.108)
δ = yH/(d − yH) (2.109)



Chapter 3

Real space renormalization
methods

3.1 Decimation

Consider a one-dimensional (d = 1) Ising model with N spins, denoted as si = ±1.
The spins are arranged in a linear chain with nearest-neighbor interactions governed by
the coupling constant K. Additionally, we assume that there is no external magnetic field
(H = 0) and impose periodic boundary conditions, where the first and last spins are also
coupled. The Hamiltonian of this system is given by:

Figure 3.1: One dimensional Ising chain

H (s) = K(s1s2 + s2s3 + . . . + sN−1sN + sN s1) = K
N∑

i=1
(sisi+1) (3.1)

The basic idea is to find a mapping that reduces the number of degrees of freedom in the
system by a factor of l, while preserving the partition function:

ZN ′=N/l(K ′) = ZN (K) (3.2)

There are several possible mappings, {s} 7→ {s′}, that satisfy this condition. The choice of
transformation is guided by the desire for simplicity in the resulting RG.

When l = 2, one option is to group neighboring spins into pairs and define the renormalized
spin as their average. However, this ”majority rule” introduces ambiguity as the renormal-
ized spin can have three possible values (0, ±1), whereas the original spins are ±1. This
ambiguity can be resolved by assigning one of the two spins, for example s′

i = s2i−1. Such
an RG procedure effectively removes the even-numbered spins (si = s2i) and is commonly
referred to as decimation. [7] So, a coarse graining of l = 2 can be obtained by summing
over the spins positioned at the even sites.

17
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s′1
σ1 s′2

σ2

l = 2

Figure 3.2: Decimated 1-dim Ising chain

Let us relabel the even sites as s2i = σi and odd sites as s2i−1 = s′
i. We can split the

summation over all spin site configurations into two summations over all the even sites
and the odd sites. The partition function can be now written as:

ZN (K) =
∑
{s}

eK
∑N

i=1(sisi+1) (3.3)

=
∑
{s}

N∏
i=1

eK(sisi+1) (3.4)

=
∑
{s′}

∑
{σ}

N/2∏
i=1

eK(s′
iσi)+K(σis

′
i+1) (3.5)

=
∑
{s′}

N/2∏
i=1

eK′(s′
is

′
i+1) (3.6)

= ZN ′(K ′) (3.7)

As each σi contributes in the same way, we can just consider σ1. If we average over all
possible values of σ1:

eK′(s′
1s′

2) =
∑

{σ1=±1}
eK(s′

1σ1)+K(σ1s′
2) (3.8)

= eK(s′
1·1)+K(1·s′

2) + eK(s′
1·(−1))+K((−1)·s′

2) (3.9)

The different possible combinations of (s′
1, s′

2) and the different values of the above expression
are summarized in the Table 3.1

s′
1 s′

2 eK′(s′
1s′

2)

(a) +1 +1 eK′
e2K + e−2K

(b) −1 −1 eK′
e−2K + e2K

(c) +1 −1 e−K′ 2
(d) −1 +1 e−K′ 2

Table 3.1: Different possible combinations of (s′
1, s′

2)

Multiplying the expressions (a)×(b)
2·(c) , we get:

e4K′ =
(

e2K + e−2K

2

)2

= cosh2(2K) (3.10)

and we obtain the RG equation:

K ′ = 1
2 log (cosh(2K)) (3.11)
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By rearranging we have:

e2K′ = cosh(2K) = 2 cosh2(K) − 1 (3.12)

e2K′ − 1 = 2
(
cosh2(K) − 1

)
= 2 sinh2(K) (3.13)

e2K′ + 1 = 2 cosh2(K) (3.14)

Hence,
e2K′ − 1
e2K′ + 1 = tanh

(
K ′) = tanh2(K) (3.15)

Thus, we can rewrite the RG equation as:

K ′ = tanh−1
[
(tanh(K))2

]
(3.16)

Setting y ≡ tanh K,
y′ = y2 (3.17)

The fixed points of the RG equation are then given by

y∗ = y∗2 (3.18)

whose solutions are y∗ = 1 and y∗ = 0.

Let us consider the two cases separately:

• Case y∗ = 1− (K → ∞, T → 0+):

Since tanh K < 1 ∀K ∈ R, starting from any initial point y0 < 1, the recur-
sion relation y′ = y2 makes y smaller every time, moving it towards the fixed point
y∗ = 0

R
(n)
l (y0) n→∞→ 0+ (3.19)

We can thus conclude that K∗ → ∞ is an unstable fixed point.

• Case y∗ = 0+ (K → 0+, T → ∞):
for all y0 < 1 we have

R
(n)
l (y0) n→∞→ 0+ (3.20)

Hence, K∗ = 0 is a stable fixed point.

As anticipated, the one-dimensional Ising model does not exhibit a critical fixed point
for T ̸= 0 (as depicted by the trajectory flow in Figure 3.3). It is worth noting that the
convergence of the flow towards T = ∞ implies that, on large spatial scales, the system
can be effectively described by a Hamiltonian with a high temperature. Consequently, the
system will always reside in the paramagnetic phase, except when T = 0.

In general, if we scale the lattice spacing by a factor λ, then the recursion relation
reads:

K ′ = tanh−1(tanh K)λ (3.21)
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T = 0
y = 1
K = ∞

T → ∞
y = 0
K = 0+

Paramagnetic point

Figure 3.3: One-dimensional flux of trajectories for Ising model for the recursion relation
tanh(K ′) = tanh2(K).

3.1.1 Proliferation of Interactions

In the previous section, we derived the recursion relations for the Ising model in one
dimension (d = 1), where the determination of the new coupling constants posed no
significant challenges and did not introduce new interactions. However, when we consider
dimensions higher than one (d > 1), the situation becomes more complex. It is observed
that the iteration of the RG transformation introduces increasingly complicated couplings,
giving rise to what is known as the proliferation of interactions. Resolving this issue
requires the use of approximations to simplify the analysis. In the next section, we discuss
two such approximations: Migdal-Kadanoff bond-moving approximation and the Niemeijer
- van Leeuwen cumulant approximation, and make further progress in our study of the
renormalization group.

3.2 Migdal-Kadanoff bond moving approximation

3.2.1 2D Ising Model

Suppose we have an Ising model located on a square lattice. Let us consider an
anisotropic lattice with the vertical bonds Ky and horizontal bonds Kx. We perform the
following alternate sequence of bond-moving and decimation [11][6](refer Fig. 3.4):

1. Move the vertical bonds horizontally by one unit

K ′
y = 2Ky (3.22)

2. Decimate the rows

K ′
x = tanh−1(tanh Kx)2 (3.23)

3. Move the horizontal bonds vertically by one unit

K ′′
x = 2K ′

x = 2 tanh−1(tanh Kx)2 (3.24)

4. Decimate the columns

K ′′
y = tanh−1(tanh K ′

y) = tanh−1(tanh 2Ky)2 (3.25)

The final recursion relations are:

K ′′
x = 2 tanh−1(tanh K)2 = ln cosh(2Kx) (3.26)

K ′′
y = tanh−1(tanh 2K)2 = 1

2 ln cosh(4Ky) (3.27)
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Figure 3.4: Migdal-Kadanoff approximation: (a) original lattice; (b) y-bond moving; (c)
decimation in x-direction; (d) x-bond moving; (e) decimation in y-direction

The fixed points are given by:

K∗
x = ln cosh(2K∗

x) (3.28)

K∗
y = 1

2 ln cosh
(
4K∗

y

)
(3.29)

Case 1: Kx = Ky = K

The fixed point relation Eq. 3.27 becomes:

K∗ = 1
2 ln cosh(4K∗) (3.30)

This is similar to the d = 1 case. Again, we have K = 0 and K = ∞ as fixed points:

• For K ≫ 1 (T → 0): unlike the d = 1 we have

K ′ ≈ 1
2 ln e4K ≈ 2K (3.31)

and hence the low temperature fixed point is also stable.

• For K ≪ 1 (T → ∞): we have

K ′ ≈ 1
2 ln

(
1 + 16K2

)
≈ 8K2 (3.32)
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so the high temperature fixed point is stable as it is in d = 1.

The other fixed point relation Eq. 3.26 becomes:

K∗ = ln cosh(2K∗) (3.33)

e2K∗ = e4K∗ + e−4K∗

2 (3.34)

(3.35)

Let us take x = e2K∗ , and now the equation becomes

x = x2 + x−2

2 (3.36)

Simplifying, we get
x3 − x2 − x − 1 = 0 (3.37)

Solving this cubic equation, gives x = 1.839 and

K∗ = 0.3046 ∼ 0.305 (3.38)

Linearizing Eq. 3.27 near the fixed point gives

lyT = ∂K ′

∂K

∣∣∣∣
K=K∗

= 2 tanh 4K∗ ∼ 1.6786 (3.39)

For l = 2, this implies
yT = 0.75 (3.40)

Case 2: Kx = 2Ky.

The couplings Kx and Ky at the fixed point are related by

K∗
x = 2K∗

y (3.41)

Hence, the values of (K∗
x, K∗

y ) are (0.62, 0.31). Linearizing Eqns. (3.26 - 3.27) near the
fixed points:

(
∂K ′′

x

∂Kx

)
Kx=K∗

x

= 2 tanh 2K∗
x = 2yt (3.42)(

∂K ′′
y

∂Ky

)
Ky=K∗

y

= 2 tanh 4K∗
y = 2 tanh(2K∗

x) = 2yt (3.43)

This also gives yt = 0.75. Note that yt is the same as the one for the symmetric case. Let
us consider the plot in Figure 3.5. We note that all points on the critical surface are critical
with a given choice of Kx/Ky. All these Tc(Kx/Ky) flow to the Ising model fixed point
(same universality class).
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Kx

Ky

Kx = 2Ky

critical
surface

0.31

0.62

Figure 3.5: (Kx, Ky) plane. The critical surface is represented in red, while the line
Kx = 2Ky in black. The intersection point is the critical point K∗ = (0.62, 0.31).

3.2.2 2D Potts Model

The q-state Potts model is a generalization of the Ising model where each spin can take
one of the q states. Each site of the Potts model can take state si = 1, 2, 3 . . . , q. In zero
external field, the Hamiltonian of the Potts model is given by

H (s) = K
∑

<i,j>

δsisj (3.44)

where the Boltzmann constant kB and temperature T are absorbed in the coupling K,
< i, j > denotes the nearest-neighbor pairs and δ is the Kronecker delta. At q = 2, the
Potts model becomes the Ising model.

Although the Potts model is relatively well-studied[1], there are interesting unsolved
questions regarding its phase transition behavior. Specifically, the Potts model exhibits a
first-order phase transition for q values greater than 4, while a second-order phase transition
occurs for q values equal to or less than 4. However, the underlying physical mechanism
responsible for the first-order phase transition at q > 4 remains unclear. To gain insights
into the critical phenomena and phase transition of the Potts model, we employ real-space
renormalization group transformations on the square-lattice q-state Potts model.

In order to apply the Migdal-Kadanoff bond moving approximation, let us start by finding
the recursion relation in d = 1 by a l = 2 decimation process. Similar to the 1D Ising
model, let us relabel the even sites as s2i = σi and odd sites as s2i−1 = s′

i. and so we can
split the summation over all spin site configurations into two summations over all the even
sites and the odd sites. The partition function for the 1D Potts model can be now written
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as:

ZN (K) =
∑
{s}

eK
∑N

i=1 δsi,si+1 (3.45)

=
∑
{s}

N∏
i=1

eKδsi,si+1 (3.46)

=
∑
{s′}

∑
{σ}

N/2∏
i=1

e
K(δs′

i
,σi

)+K(δσi,s′
i+1

)
(3.47)

=
∑
{s′}

N/2∏
i=1

e
K′δs′

i
,s′

i+1 (3.48)

= ZN ′(K ′) (3.49)

As each σi contributes in the same way, we can just consider σ1. If we average over all
possible values of σ1:

e
K′δs′

1,s′
2 =

q∑
{σ1=1}

e
K(δs′

1,σ1
)+K(δσ1,s′

2
) (3.50)

For s′
1 = s′

2,

eK′·(1) = e
K(δs′

1,σ1
)+K(δσ1,s′

2
) (3.51)

= e
K(δ1,σ1 )+K(δ1,s′

2
) + eK(δ2,σ1 )+K(δσ1,2) + . . . (3.52)

+ e
K(δq,σ1 )+K(δq,s′

2
) (3.53)

Out of q terms, the one term matching the value of s′
1 = s′

2 becomes e2K . The other (q − 1)
terms become e0 = 1. So we have

eK′ = q − 1 + e2K s′
1 = s′

2 (3.54)

For s′
1 ̸= s′

2,

e0 = e
K(δs′

1,σ1
)+K(δσ1,s′

2
) (3.55)

= e
K(δ1,σ1 )+K(δ1,s′

2
) + eK(δ2,σ1 )+K(δσ1,2) + . . . (3.56)

+ eK(δq,σ1 )+K(δσ1,q) (3.57)

In this case, out of q terms, the term matching the value of s′
1 = σ1 becomes eK . Similarly

for s′
2 = σ1. The other (q − 2) terms become e0 = 1. So we have

1 = q − 2 + 2eK s′
1 ̸= s′

2 (3.58)

Now, we divide Eq. 3.54 by Eq. 3.58 to get the recursive realtion:

eK′ = q − 1 + e2K

q − 2 + 2eK
(3.59)

To find the fixed points, we set K ′ = K = K∗.

Let us take x = eK∗ . Now the equation we need to solve becomes,

x = q − 1 + x2

q − 2 + 2x
(3.60)
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x2 + (q − 2)x − (q − 1) = 0 (3.61)

The only meaningful solution to this equation is x = 1, resulting in K∗ = 0. Again, we
have K = 0 and K = ∞ as fixed points:

• For K ≪ 1 (T → ∞): we have

K ′ = ln q + 2K + 2K2

q + 2K + K2 ≈ K2

q
≪ K (3.62)

so the fixed point is stable.

• For K ≫ 1 (T → 0): we have

eK′ ≈ 1
2eK (3.63)

K ′ ≈ K − ln 2 < K (3.64)

and hence this fixed point is unstable.

Now let us proceed to d = 2 and apply the Midgal-Kadanoff approximation. Consider a
Potts model on a 2D square lattice. Performing the bond-moving and decimation as in the
Ising model with l = 2, we see that moving bonds strengthens the remaining bonds by a
factor of 2 in the decimated lattice. Therefore, for the case Kx = Ky = K we have

eK′ = q − 1 + e2·2K

q − 2 + 2e2·K (3.65)

As before, to find the fixed points, we set K ′ = K = K∗.

Let us take x = eK∗ . Now the equation we need to solve becomes,

x = q − 1 + x4

q − 2 + 2x2 (3.66)

x3(x − 2) + (q − 2)x − (q − 1) = 0 (3.67)

By considering the stability of the fixed points at zero and infinite coupling,

• For K ≪ 1 (K∗ = 0): we have

K ′ ≈ 4K2

q
≪ K (3.68)

so the fixed point is stable.

• For K ≫ 1 (K∗ → ∞): we have

eK′ ≈ 1
2e2K (3.69)

K ′ ≈ 2K − ln 2 ≫ K (3.70)

which implies that this fixed point is stable unlike d = 1
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As a result, there must be a finite K∗ fixed point, that separates the flows to the other
fixed points.

Let us take q = 3. The fixed point relation becomes:

(x3 − 1)(x − 2) = 0 (3.71)

This has a solution x = 2 and yields a non-trivial fixed point at K∗ = ln 2 ≈ 0.69.

Linearizing near the fixed point,

lyT = ∂K ′

∂K

∣∣∣∣
K=K∗

= 4
[

e4K∗

e4K∗ + 2 − e2K∗

1 + 2e2K∗

]
(3.72)

= 16
9 (3.73)

For l = 2, this implies
yT = 0.83 (3.74)

This can be compared to the exact values, K∗ = 1.005 and yT = 1.2

3.3 Niemeijer–van Leeuwen cumulant approximation

This method [12] is based on a splitting of the spin Hamiltonian into a zeroth part H0
and a small perturbation V

H (s) = H0(s) + V (s) (3.75)

H0 is taken as the set of interactions inside the cells and V is the set of interactions
between the sites of different cells. In other words, in the cumu1ant approximation, the
intracell interactions are treated exactly, while the intercell interactions are treated to low
order in perturbation theory.

The zeroth order transformation is defined as:

exp
[
G0 + H ′

0(s′)
]

=
∑
{s}

P (s′, s) exp[H0(s)] (3.76)

The zeroth average <>0 is defined as:

⟨A⟩0 =
∑
{s}

P (s′, s)A(s) exp
[
H0(s) − G0 − H ′

0(s′)
]

(3.77)

The RG transformation equation can be rewritten as

G + H ′(s′) = G0 + H ′
0(s′) + ln ⟨exp V ⟩0 (3.78)

We assume that G0 and H ′
0(s′) can be evaluated and V is considered small as compared

to H0(s).

The cumulant expansion for ⟨exp V ⟩0 is :

ln ⟨exp V ⟩0 = ⟨V ⟩0 + 1
2!
〈
[V − ⟨V ⟩0]2

〉
0

+ 1
3!
〈
[V − ⟨V ⟩0]3

〉
0

+ . . . (3.79)
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Figure 3.6: Two-dimensional triangular lattice

Let us apply this method to an Ising model on a triangular lattice.

Consider a triangular lattice (Fig.3.6) where cell spins have been placed in the center of
three sites. It is noted that the cell spins are again located on a triangular lattice with
l =

√
3. Let σi′ ≡

{
s1

i′ , s2
i′ , s3

i′
}

denotes the set of sites in cell i′. Define the cell spin s′
i′

according to the ”majority rule”:

s′
i′ = sgn(s1

i′ + s2
i′ + s3

i′) (3.80)

The cell spin values can be only ±1. This can be formally expressed by defining the
weight-factor

P (s′, s) =
∏
i′

1
2[1 + s′

i′(s1
i′ + s2

i′ + s3
i′ − s1

i′s2
i′s3

i′)/2] (3.81)

P (s′, s) = 1 when the majority rule is satisfied, and zero otherwise. Each value of cell spin
s′

i′ , arises from 4 different configurations of the three neighboring site spins. Let us label
the 8 different configurations by {α}.

The renormalization transformation can be defined as

eH ′(s′) =
〈
eV
〉

0

∑
{α}

eH ′
0 (s′,α) (3.82)

Let us start with the case of zero external magnetic field h = 0. The zeroth order
Hamiltonian describing the interactions within a cell can be evaluated as

H ′
0 = K

∑
i′

(s1
i′s2

i′ + s2
i′s3

i′ + s3
i′s1

i′) (3.83)

If N ′ is the total number of cells in the system, then∑
{α}

eH0(s′,α) = zN ′ (3.84)

where z is the partition function of one cell, subject to a given value of s′
i′ :

z =
∑
σi′

eK(s1
i′ s

2
i′ +s2

i′ s
3
i′ +s3

i′ s
1
i′ ) (3.85)
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{α} s′
i′ s1

i′ s2
i′ s3

i′ eH0

(1) +1 +1 +1 +1 e3K

(2) +1 −1 +1 +1 e−K

(3) +1 +1 −1 +1 e−K

(4) +1 +1 +1 −1 e−K

(5) −1 −1 −1 −1 e3K

(6) −1 +1 −1 −1 e−K

(7) −1 −1 +1 −1 e−K

(8) −1 −1 −1 +1 e−K

Table 3.2: Different possible configurations of spins within a cell, the cell spin value and
their contribution to eH0

Referring Table 3.2,we find that z is independent of s′
i′ and has the value

z = e3K + 3e−K (3.86)

Now, the renormalization transformation relation becomes:

eH ′(s′) =
〈
eV
〉

0
zN ′ (3.87)

Using the cumulant expression,

H ′(s′) = N ′ ln z + ⟨V ⟩0 + 1
2!
〈
[V − ⟨V ⟩0]2

〉
0

+ O(V 3) (3.88)

The term N ′ ln z, being the partition function for 3 spins, is clearly regular and does not
contribute to singular behaviour.

The interactions between spins in different cells V can be written as

V =
∑
i′ ̸=j′

Vi′j′ (3.89)

and referring to Fig. 3.7, we have

Vi′j′ = K(s2
i′ + s3

i′)s1
j′ (3.90)

The thermal average, thus becomes:〈
Vi′j′

〉
0 = 2K

〈
s3

i′s1
j′

〉
0

(3.91)

Since H0 by definition, does not couple different cells, the average can be factorised,〈
Vi′j′

〉
0 = 2K

〈
s3

i′

〉
0

〈
s1

j′

〉
0

(3.92)

Let us now calculate the various averages.

〈
s3

i′

〉
0

=
∑

{σi′ } eH0(s′,σi′ ) · s3
i′∑

{σi′ } eH0(s′,σi′ ) (3.93)
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Figure 3.7: Two neighbouring cells in a triangular lattice

For s′
i′ = 1, we find that 〈

s3
i′

〉
0

= e3K + e−K

e3K + 3e−K
(3.94)

whereas for s′
i′ = −1, we find that

〈
s3

i′

〉
0

= − e3K + e−K

e3K + 3e−K
(3.95)

Hence combining these together, we can write,
〈
s3

i′

〉
0

= s3
i′

[
e3K + e−K

e3K + 3e−K

]
= a1s3

i′ (3.96)

where we define
a1 = 1

z
(e3K + e−K) (3.97)

Similarly, for s1
j′ , we can write,

〈
s1

j′

〉
0

= s1
j′

[
e3K + e−K

e3K + 3e−K

]
= a1s1

j′ (3.98)

Thus,
⟨V0⟩ = 2a2

1K
∑

<i′j′>

s′
i′s′

j′ (3.99)

In summary, the renormalization transformation, to first order in V is,

H ′(s′) = N ′ ln z + K ′ ∑
<i′,j′>

s′
i′s′

j (3.100)

with the recursion relation

K ′ = 2a2
1K = 2K

(
e3K + e−K

e3K + 3e−K

)2
(3.101)

The fixed points of this relation are:
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• K∗ = 0: If K ≪ 1,
K ′ ≈ 2K(2/4)2 = K/2 < K (3.102)

so this fixed point is stable, and has zero correlation length.

• K∗ = ∞: if K ≫ 1,
K ′ ≈ 2K > K (3.103)

This fixed point is also stable with zero correlation length.

• Since both of the above fixed points are stable, there must be atleast one unstable
fixed point at finite K ′ = K = K∗. From Eq. 3.101, the fixed point satisfies:

1√
2

= e3K + e−K

e3K + 3e−K
(3.104)

This implies √
2e4K∗ +

√
2 = e4K∗ + 3 (3.105)

The value of fixed point is given by,

K∗ = 1
4 ln

(3 −
√

2√
2 − 1

)
≈ 0.3356 (3.106)

and this can be compared to the exactly known value of 0.2747 for the triangular
lattice.

Linearizing the recursion relation around the non-trivial fixed points,

lyT = ∂K ′

∂K

∣∣∣∣
K=K∗

(3.107)

= 2
(

e4K∗ + 1
e4K∗ + 3

)2
+ 32K∗e4K∗ e4K∗ + 1

(e4K∗ + 3)3

]
(3.108)

≈ 1.624 (3.109)

The thermal eigenvalue for l =
√

3

yT ≈ ln(1.624)
ln
(√

3
) ≈ 0.883 (3.110)

This can be compared to the exactly known value of yT = 1 for the 2D Ising model.

Let us now consider the case h ̸= 0. Since the fixed point occurs at h∗ = 0, let us
look at how does a small deviation δh = h − h∗ affects the calculation of H ′. Let the
change in H due to a small external field δh be δH ′. By definition, we have,

eH ′(s′) =
∑
{α}

eH (s′,α) (3.111)

eH ′+δH ′ =
∑
{α}

eH (s′,α)+δH (s′,α) (3.112)

(3.113)
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Subtracting these two equations, and using ex = 1 + x + O(x2),

δH ′(s′) =
∑

{α} eH (s′,α)δH (s′, α)∑
{α} eH (s′,α) (3.114)

Also, by definition, [3]

δH (s′, α) = δh
∑

i

si = δ
∑
i′

∑
σi′

s′
i′ (3.115)

δH ′ = δh′∑
i′

s′
i′ (3.116)

Eq. 3.114 implies that to zeroth order in V

δH ′(s′) =
〈

δ
∑
i′

∑
σi′

s′
i′

〉
0

(3.117)

= δh
∑
i′

〈
s1

i′ + s2
i′ + s3

i′

〉
0

(3.118)

Using Eq. 3.96 〈
s1

i′

〉
0

= s1
i′a1 (3.119)

we get the recursion relation for the magnetic field:

h′ = 3h

(
e3K + e−K

e3K + 3e−K

)
(3.120)

Near the unstable fixed point, we can write:

lyH = ∂h′

∂h

∣∣∣∣
K∗

(3.121)

= 3
(

e4K∗ + 1
e4K∗ + 3

)
= 3√

2
(3.122)

The thermal eigenvalue for l =
√

3

yH =
ln
(
3/

√
2
)

ln
(√

3
) ≈ 1.37 (3.123)

This can be compared to the exact value of yH = 1.875



Chapter 4

Monte Carlo Renormalisation
Group methods

The combination of Monte Carlo simulations and the real space renormalisation group
formalism was first suggested by Ma [9] in 1976. The basic idea of this approach is to
determine the behavior of the Hamiltonian upon renormalization and by following the
‘flow’ towards the fixed point Hamiltonian to study critical exponents. By measuring
effective interaction parameters between coarse grained blocks of spins, one can extract
exponent estimates from this information. Ma’s method involved a direct simulation of
the fixed-point Hamiltonian, from which he calculated matrix elements for the linearized
RG equations. The eigenvalues of these matrices provided estimates of the critical ex-
ponents. Ma applied this method to the two-dimensional Ising model with promising results.

However, Ma’s method had some limitations that prevented its general application to prob-
lems of interest. The direct simulation of the fixed-point Hamiltonian required significant
truncation of the coupling constants and involved scanning a large parameter space for
the fixed point. A very different approach, was proposed by Swendsen [15], proved to be
more effective in finding exponent estimates as it eliminated the need to calculate the
renormalized couplings. In this chapter, we first explore Swendsen’s approach for MCRG,
followed by a brief discussion on the theory of Monte Carlo methods. We then provide a
detailed description of our MCRG implementation and present the simulation results.

4.1 Swendsen’s Approach

The general Hamiltonian for an Ising-like model given by,

H =
∑

a

KaSa (4.1)

where Sa represents combinations of spins σi that are translationally invariant under
periodic conditions.

After a renormalization transformation H(n+1) = RlH
(n) with a scale factor l, the

asymptotic critical properties are determined by the eigenvalues of the linearized RG
transformation matrix, Tαβ, in the vicinity of the fixed-point.

T ∗
αβ = ∂K∗

α
(n+1)

∂K∗
β

(n) (4.2)

32
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In this approach, the elements of the linearized transformation matrix T ∗
αβ are expressed

in terms of expectation values of correlation functions at different levels of renormalization.
These elements can be obtained by solving the chain rule equation:

∂
〈
S

(n)
γ

〉
∂K

(n−1)
β

=
∑

α

∂K
(n)
α

∂K
(n−1)
β

∂
〈
S

(n)
γ

〉
∂K

(n)
α

(4.3)

To compute the derivatives in Eq. 4.3, a Monte Carlo simulation of the system at criticality
is performed to obtain a sequence of configurations. Each configuration undergoes an RG
transformation, and correlation functions are calculated from this sequence of configurations.
The derivatives can then be evaluated using the correlation functions with the following
identities:

∂
〈
S

(n)
γ

〉
∂K

(n−1)
β

=
〈
S(n)

γ S
(n−1)
β

〉
−
〈
S(n)

γ

〉〈
S

(n−1)
β

〉
(4.4)

∂
〈
S

(n)
γ

〉
∂K

(n)
α

=
〈
S(n)

γ S(n)
α

〉
−
〈
S(n)

γ

〉〈
S(n)

α

〉
(4.5)

Solving Eq. 4.3 numerically yields the elements of the matrix Tαβ , and the eigenvalues of
this matrix provide estimates of the critical exponents.

4.2 Monte Carlo Methods

The basic principle of Monte Carlo methods is to simulate the system’s behavior
by sampling its configuration space according to a given probability distribution. The
fundamental quantity of interest are the expectation values of some quantity, obtained as

⟨A⟩ = 1
Z

∑
{s}

AseH (s) (4.6)

where Z is the partition function. Monte Carlo procedures enable us to approximate this
sum by summing over a representative sample of configurations:

⟨A⟩ ≈ 1
M

M∑
i=1

A(si) (4.7)

The key challenge lies in generating configurations that are weighted according to the
Boltzmann distribution. By employing suitable algorithms, we can explore the configuration
space and generate a diverse set of representative configurations.

4.2.1 Metropolis algorithm

The basic idea is to create a Markov chain of states, i.e., a sequence of states in which
each state only depends on the state immediately preceding it. The algorithm begins with
an initial configuration si with a nonvanishing Boltzmann factor pi, which serves as the
first member of the Markov chain. The next step is to iteratively create trial configurations
sj from the previous state si and decide whether to accept or reject the trial configuration
based on a comparison with the previous state. There is thus a transition probability from
each state si to each state sj , represented by a transition matrix πij . The goal to find a
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transition matrix that yields the equilibrium distribution pj . Evidently, this matrix must
satisfy the condition ∑

i

piπij = pj (4.8)

To determine the transition probabilities between states, the detailed balance condition
is imposed, which ensures the balance of transitions between states , i.e., on average the
number of transitions from a state i to a state j is balanced by the number of transitions
from state j to state i. ∑

i

piπij = pj (4.9)

The matrix elements πij are determined by the product of two factors: the a priori
probability αij of generating a trial configuration sj from a configuration si, and the
acceptance probability Pij of accepting the trial configuration as the new state. The
detailed balance condition can thus be written as

piαijPij = pjαjiPji (4.10)

For the simplest case where, αij is symmetric and the condition reduces to

piPij = pjPji (4.11)

which can be rewritten as
Pij

Pji
= exp{(−β(Ej − Ei))} (4.12)

The acceptance probability is not uniquely defined by this equation. Metropolis et al [10]
proposed the solution

Pij =
{

exp{(−β(Ej − Ei))} if Ej > Ei

1 if Ej ≤ Ei

(4.13)

The trial configuration sj is generated using a trial move, which involves a small displacement
of one particle in a random direction for an assembly of N particles. In the case of the
Ising model, this corresponds to a spin flip (as illustrated in Fig. 4.1). The acceptance
of the trial configuration depends on its energy compared to the original configuration.
If the energy of the trial configuration is lower than the original, it is always accepted.
However, if the energy is higher, it is only accepted with a probability equal to the ratio of
the Boltzmann factor of the new configuration and the Boltzmann factor of the original
configuration.

4.2.2 Critical slowing down

The Metropolis algorithm, which performs local updates by flipping a single spin at
each step, becomes less effective in exploring the configuration space near critical points
due to the presence of long-range correlations. In systems near criticality, the relaxation
time τ of thermodynamic properties increases as a power law of the correlation length ξ,
characterized by the dynamical critical exponent z ≈ 2 [8].

τ ∝ ξz (4.14)

The correlation length itself diverges as a power law of the difference between the tempera-
ture T of the system and the critical temperature Tc ,

ξ ∝ |T − Tc|−ν (4.15)



4.2. MONTE CARLO METHODS 35

Figure 4.1: Demonstration of single flip in Metropolis algorithm

where ν is a positive exponent.

In finite systems, such as a d-dimensional hypercube of volume Ld, the correlation length is
limited by the system size L. Thus, if the temperature approaches Tc , ξ grows according
until it reaches a maximum value ξmax ∝ L, and hence for temperatures sufficiently close
to the critical temperature, we have

τ ∝ Lz (4.16)

We thus encounter a phenomenon called critical slowing down. If a system becomes larger,
the correlation time grows very rapidly and it becomes increasingly difficult to generate
statistically independent configurations. To overcome the problem of critical slowing down,
alternative algorithms and techniques are employed in Monte Carlo simulations. One
approach is to use cluster algorithms such as the Wolff algorithm, which exploit the presence
of clusters of correlated spins to update multiple spins simultaneously, resulting in more
efficient exploration of phase space.

4.2.3 Wolff or Single-Cluster Algorithm

The Wolff algorithm, also known as the single-cluster algorithm, is an efficient approach
to perform Monte Carlo simulations for spin systems. It overcomes the problem of critical
slowing down by updating spins in clusters rather than individually. The procedure for the
Wolff algorithm [17] is as follows:

1. Randomly select a spin i.

2. Add all nearest neighbors j of spin i to the cluster with a probability pij = 1 −
exp(−2βJ), provided that spins i and j are parallel, and the bond between i and j
has not been considered previously.

3. For each spin j successfully added to the cluster, place it on the stack. Once all
neighbors of spin i have been considered for inclusion in the cluster, retrieve a spin
from the stack and, in turn, consider all its neighbors for inclusion in the cluster
according to step (2).

4. Repeat steps (2) and (3) iteratively until the stack is empty.
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5. Once the cluster is complete, invert all spins belonging to the cluster.

A clever trick can be applied to simplify the implementation. In step (2), each added
spin j can be immediately inverted, ensuring that a spin is never added more than once.
Consequently, step (5) of inverting the cluster spins can be eliminated from the procedure.

The Wolff algorithm is rejection-free, meaning that the cluster is always flipped. Un-
like the Metropolis algorithm, the Wolff algorithm does not rely on an acceptance criterion
based on the total energy change resulting from a cluster flip. This makes the Wolff
algorithm highly efficient for simulations near critical points.

Figure 4.2: Demonstration of cluster flip in Wulff-Cluster algorithm

In Figure 4.2, a demonstration of a cluster flip in the Wolff algorithm is illustrated. In
the next section, we discuss how these Monte Carlo methods were utilized to implement
Swenden’s approach for MCRG analysis.

4.3 Implementation and Results

A set of configurations for an Ising square lattice is simulated using the Wolff algorithm
at the critical temperature, and the equilibration of energy and magnetization during the
simulation using the Wolff algorithm is shown in Figure 4.3.

Lattice size 500
Beta 0.45
Equilibration steps 1000
Simulation steps 2000

Table 4.1: Simulation Parameters



4.3. IMPLEMENTATION AND RESULTS 37

Figure 4.3: Equilibration Energy and Magnetisation in Wolff algorithm

The lattice size is chosen to be N × N = 500 × 500, and the simulation parameters
are summarized in Table 4.1. The Kadanoff-block spin transformation is performed on
the simulated configurations, where a block size of b = 2 is selected, and the majority rule
is used to assign spins to each block. The renormalization transformations are carried
out for n = 3 levels, resulting in coarse-grained lattices of sizes 250, 125, and 62. The
coarse-grained lattices obtained from the renormalization process are illustrated in Figure
4.4.
Next, we consider five couplings in the Hamiltonian:

H (s) =
∑

a

KaSa = K1S1 + K2S2 + K3S3 + K4S4 (4.17)

= K1S1 + K2S2 + K3xS3x + K3yS3y + K4S4 (4.18)
= K1

∑
i

si + K2
∑

<i,j>

sisj + K3x

∑
i,j,k

sisjsk + K3y

∑
i,j,k

sisjsk + K4
∑

i,j,k,l

sisjsksl

(4.19)

where we have considered 3 odd couplings with the following spin products:

• S1 - the sum of single-spin interaction

• S3x - the sum of the 3 - spin interaction along the horizontal direction in the lattice .

• S3y - the sum of the 3 - spin interaction along the vertical direction in the lattice .

and 2 even couplings with the spin products:

• S2 - the sum of nearest neighbour interactions

• S4 - the sum of next nearest neighbour interactions

We calculate the spin products and spin correlations for each coupling. These quantities are
utilized to solve a matrix equation, which provides the elements of the linear transformation
matrix at different renormalization levels. Figure 4.5 displays the resulting matrix.



38 CHAPTER 4. MONTE CARLO RENORMALISATION GROUP METHODS

Figure 4.4: Coarse-graining of the simulated lattices

Figure 4.5: Transformation Matrix elements at different renormalisation levels from MCRG

Finally, the eigenvalues of the linear transformation matrix are computed and analyzed
in relation to the critical exponent. The details of the code used are given in the Appendix.

The obtained value of the critical exponent does not converge to the expected theo-
retical value. However, it should be noted that with larger lattice sizes, including a greater
number of couplings, and increased simulations, the accuracy of the critical exponent
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Figure 4.6: Critical Exponent - ν from MCRG

estimation can be significantly improved. Further investigations using these enhancements
may lead to a better convergence towards the true value of the critical exponent.



Chapter 5

Conclusions

In this thesis, we have explored the real-space renormalization group (RG) techniques in
the study of critical phenomena in statistical physics. In real-space renormalization-group
analysis, the problem of an infinite number of interactions is addressed by employing
approximations that retain only a finite number of interactions. These ”truncation” ap-
proximations are justified on the assumption that the renormalized coupling constants
exhibit short-range behavior. While this assumption is supported by successful numeri-
cal calculations, it is important to note that there are equally plausible approximations
that yield poor results. These truncation approximations introduce uncertainty, making
it difficult to assess the reliability of the calculations without comparisons to other methods.

Throughout this thesis, we have explored various RG methods, including decimation,
Migdal-Kadanoff bond moving approximation, Niemeijer-van Leeuwen cumulant approxi-
mation, and Monte Carlo renormalization group methods, to gain insights into the critical
behavior of Ising and Potts models. However, we have encountered limitations with the
decimation procedures in higher dimensions due to the proliferation of interactions. On
the other hand, the Migdal-Kadanoff approximation offers the advantage of applicability
to a broader range of spin systems. Notably, the cumulant approximation has provided
improved estimates compared to the Migdal-Kadanoff approximation, particularly in the
case of the 2D Ising model. These real-space RG methods boast conceptual clarity and
calculational simplicity, and they have demonstrated their capability to achieve good
agreement with known results.

In principle, real-space RG approximations can be enhanced by including additional
coupling constants in the calculations. However, the computational complexity grows
rapidly with the inclusion of more couplings, posing practical challenges. Nevertheless,
Monte Carlo simulations offer an alternative avenue for systematic improvement of all
approximations without incurring significant additional effort. For the most part, the
remaining errors in Monte Carlo simulations are statistical in nature and well understood,
allowing for accurate estimation of their magnitude through analysis of the generated data.
Moreover, efficient sampling algorithms within Monte Carlo methods enable us to tackle
the issue of finite-size effects, a common obstacle when calculating the properties of infinite
systems near the critical temperature.

While this thesis has provided significant insights into the application of real-space renor-
malization group methods, there are several avenues for future research and exploration
in this field. Exploring the critical behavior of complex lattice models, such as the XY

40
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model and Heisenberg model, would deepen our understanding of exotic phases and phase
transitions. Optimization of existing Monte Carlo algorithms through parallel computing
techniques, GPU acceleration, and advanced sampling methods holds the potential to
further improve their efficiency and accuracy. Additionally, incorporating quantum effects
into real-space RG methods, particularly in quantum spin models and interacting quantum
field theories, would open new frontiers for investigating quantum phase transitions and
emergent phenomena.

In conclusion, the study of critical phenomena using real-space renormalization group
methods is a rich and active research area. Continued exploration and development of
these methods, along with their applications to various lattice models and experimental
systems, hold great potential for advancing our understanding of critical behavior and
emergent phenomena in complex systems.



Appendix

Monte Carlo Renormalization Group calculations for 2D Ising
Model

1 def initialize_ising_lattice (size):
2 ’’’
3 Returns a random Ising spin configuration in a square lattice .
4

5 Parameters :
6 -----------
7 size : int
8 The size of the square lattice
9

10 Returns :
11 --------
12 lattice : numpy. ndarray
13 An array representing the Ising spin configuration .
14 It has shape (size , size) and contains randomly assigned

spins of -1 or 1.
15 ’’’
16

17 return np. random . choice ([-1, 1], size =(size , size))
18

19 def visualize_ising_lattice (lattice , n):
20 ’’’
21 Plots the Ising spin configuration as a square lattice .
22

23 Parameters :
24 -----------
25 lattice : numpy. ndarray
26 Ising spin configuration as a square lattice .
27

28 n : int
29 Renormalization level.
30

31 Returns :
32 --------
33 None
34 This function doesn ’t return any value. It plots the

lattice and displays it.
35

36 ’’’
37

38 size = lattice .shape [0]
39 plt. imshow ( lattice , cmap=’binary ’)
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40 plt. colorbar ()
41 plt.title(f" Lattice size = {size}, n = {n}")
42 plt.show ()
43

44 def energy_ising (state , J):
45 ’’’
46 Calculate the energy of an Ising spin configuration in the

nearest neighbor model.
47

48 Parameters :
49 -----------
50 state : numpy. ndarray
51 Ising spin configuration as a square lattice .
52

53 J : float
54 Interaction strength .
55

56 Returns :
57 --------
58 energy : float
59 The energy of the Ising spin configuration .
60

61 ’’’
62 size = state.shape [0]
63 energy = 0.0
64

65 for i in range(size):
66 for j in range(size):
67 spin = state[i, j]
68 neighbors = [
69 state [(i+1)%size , j], # right neighbor
70 state[i, (j+1)%size], # bottom neighbor
71 state [(i -1)%size , j], # left neighbor
72 state[i, (j -1)%size] # top neighbor
73 ]
74 energy += -J* spin * np.sum( neighbors )
75

76 return energy /2
77

78 def single_flip_ising (state , beta , J):
79 ’’’
80 Perform a single spin flip in the Ising spin configuration

using the Metropolis algorithm .
81

82 Parameters :
83 state ( ndarray ): Ising spin configuration as a square

lattice .
84 beta (float): Inverse temperature .
85

86 Returns :
87 new_state ( ndarray ): Updated Ising spin configuration after

a single spin flip.
88 ’’’
89 size = state.shape [0]
90 i = np. random . randint (size) # choose a spin site with uniform

probability
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91 j = np. random . randint (size)
92

93 old_spin = state[i, j]
94 neighbors = [
95 state [(i+1)%size , j], # right neighbor
96 state[i, (j+1)%size], # bottom neighbor
97 state [(i -1)%size , j], # left neighbor
98 state[i, (j -1)%size] # top neighbor
99 ]

100

101 energy_diff = 2 *J * old_spin * np.sum( neighbors )
102

103

104 # Metropolis
105 if energy_diff <= 0 or np. random .rand () < np.exp(-beta *

energy_diff ):
106 new_state = state.copy ()
107 new_state [i, j] = -old_spin # perform spin flip
108 return new_state
109 return state
110

111 def add(state , beta , starting , cluster ):
112 ’’’
113 Recursively add spins to the cluster based on the Wolff

algorithm .
114

115 Parameters :
116 -----------
117 state : numpy. ndarray
118 Ising spin configuration as a square lattice .
119

120 beta : float
121 Inverse temperature .
122

123 starting : list
124 Coordinates of the starting spin.
125

126 cluster : list
127 List of spins in the cluster .
128

129 Returns :
130 --------
131 cluster : list
132 Updated list of spins in the cluster .
133

134 ’’’
135

136 # get lattice size
137 L = state.shape [0]
138 N = L**2
139

140 # prob to add a spin to the cluster
141 p_add = 1. - np.exp (-2* beta)
142

143 # get indexes of starting spin
144 i, j = starting [0], starting [1]
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145

146 # get neighbors
147 nbr = np.array ([ [(i - 1)%L, j], [(i + 1)%L, j], [i, (j - 1)%L

], [i, (j + 1)%L] ])
148

149 starting_spin = state[i, j]
150

151 # list to store accepted spins
152 new_elements = []
153

154 for n in nbr:
155 # add spin
156 if state[n[0], n[1]] == starting_spin and [n[0], n[1]] not

in cluster \
157 and np. random . uniform (0., 1.) < p_add:
158

159 new_elements . append ([n[0], n[1]])
160

161 # add elements to the cluster
162 cluster += new_elements
163

164 return cluster
165

166 def wolff(state , beta):
167 ’’’
168 Perform a single update step using the Wolff algorithm on an

Ising spin configuration .
169

170 Parameters :
171 -----------
172 state : numpy. ndarray
173 Ising spin configuration as a square lattice .
174

175 beta : float
176 Inverse temperature .
177

178 Returns :
179 --------
180 state : numpy. ndarray
181 Updated Ising spin configuration after applying the Wolff

algorithm .
182

183 ’’’
184 # get lattice size
185 L = state.shape [0]
186 N = L**2
187

188 # get random spin
189 i, j = np. random . randint (L), np. random . randint (L)
190

191 # the random spin is the first element of the cluster
192 cluster = [[i,j]]
193

194 # build the cluster
195 for elem in cluster :
196 cluster = add(state , beta , elem , cluster )
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197

198 # flip the cluster
199 for elem in cluster :
200 state[elem [0], elem [1]] *= -1
201

202 return state
203

204 def Ising(N, beta , eq_steps , sim_steps , J):
205 ’’’
206 Run a Monte Carlo (MC) simulation of a 2D Ising model.
207

208 Parameters :
209 -----------
210 N : int
211 Size of the lattice (N x N).
212

213 beta : float
214 Inverse temperature ( ).
215

216 eq_steps : int
217 Number of equilibration steps.
218

219 sim_steps : int
220 Number of simulation steps.
221

222 J : float
223 Interaction strength .
224

225 Returns :
226 --------
227 sim_results : dict
228 Dictionary with simulation results including the current

state , all states ,
229 energy (E), and magnetization (M) during equilibration and

simulation .
230

231 ’’’
232

233 print(’Start equilibration ... ’)
234

235 curr_state = initialize_ising_lattice (N)
236

237 E_eq = np.zeros( eq_steps )
238 M_eq = np.zeros( eq_steps )
239

240 beta_eq = np.zeros( eq_steps ) + beta
241

242 for i in tqdm(range( eq_steps )):
243 E_eq[i] = energy_ising (curr_state , J)
244 M_eq[i] = np.sum( curr_state )
245 curr_state = wolff(curr_state , beta_eq [i])
246

247 print(’End equilibration ...\n’)
248

249 print(’Start simulation ... ’)
250
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251 all_states = []
252

253 E = np.zeros( sim_steps )
254 M = np.zeros( sim_steps )
255

256 for i in tqdm(range( sim_steps )):
257

258 # Store all the simulated states
259 all_states . append ( curr_state .copy ())
260

261 # Compute energy and magnetisation
262 E[i] = energy_ising (curr_state , J)
263 M[i] = np.sum( curr_state )
264

265 curr_state = wolff(curr_state , beta_eq [ -1])
266

267 print(’End simulation ... ’)
268

269 # Create dictionary of simulation results
270 sim_results = {
271 ’all_states ’: all_states ,
272 ’curr_state ’: curr_state ,
273 ’E_eq ’: E_eq ,
274 ’M_eq ’: M_eq ,
275 ’E’: E,
276 ’M’: M,
277 }
278

279 return sim_results
280

281 N = 20
282 eq_steps = 1000
283 sim_steps = 100
284 J = 1
285 betas = np.array ([0.2 , 1, 100]) # different values of beta
286 col_map = np.array (["navy", "red", "green", " orange "])
287

288 # create plots
289 fig , (ax1 , ax2) = plt. subplots (nrows = 1, ncols = 2, figsize = (20,

8))
290 ax1. set_title (r"E during equilibration (N = {})". format (N),

fontweight = "bold", fontsize = 20)
291 ax2. set_title (r"M during equilibration (N = {})". format (N),

fontweight = "bold", fontsize = 20)
292 ax1. set_xlabel ("Step", fontsize = 18)
293 ax2. set_xlabel ("Step", fontsize = 18)
294 ax1. set_ylabel (" Energy ", fontsize = 18)
295 ax2. set_ylabel (" Magnetization ", fontsize = 18)
296 ax1. tick_params (axis="x",labelsize =18)
297 ax2. tick_params (axis="x",labelsize =18)
298 ax1. tick_params (axis="y",labelsize =18)
299 ax2. tick_params (axis="y",labelsize =18)
300

301 #loop over betas and compute values
302 for i in range(len(betas)):
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303 E_eq , M_eq , E, M, E_mean , M_mean , E_var , M_var = Ising(N, betas
[i], eq_steps , sim_steps , J)

304

305 ax1.plot(E_eq/N**2, label = r"$\beta$ = {}". format (betas[i]), c
= col_map [i])

306 ax2.plot(M_eq/N**2, label = r"$\beta$ = {}". format (betas[i]), c
= col_map [i])

307

308 ax1. legend ( fontsize = 18)
309 ax2. legend ( fontsize = 18)
310 plt.show ()
311

312 # Define system at critical temperature
313 N = 500
314 eq_steps = 1000
315 sim_steps = 2000
316

317 J = 1
318 beta = 0.45
319

320 run_simulations = False
321

322 if run_simulations :
323 # Run Ising simulations for initial ( original - og) lattices
324 sim_results_og = Ising(N, beta , eq_steps , sim_steps , J)
325

326 all_confs_og = np.array( sim_results_og [’all_states ’])
327 all_confs_og .shape
328

329 np.save(’all_spin_config_og .npy ’, all_confs_og )
330

331 else:
332 # Load the file with all spin configurations
333 all_confs_og = np.load(’/ content / all_spin_config_og .npy ’)
334 all_confs_og .shape
335

336 def block_transform (lattice , block_size ):
337 ’’’
338 Transform the lattice by grouping spins into blocks and

assigning a single spin value to each block acording to the
majority rule.

339

340 Parameters :
341 -----------
342 lattice : 2 darray
343 Ising spin configuration as a square lattice .
344

345 block_size : int
346 Size of the blocks to group the spins.
347

348 Returns :
349 --------
350 new_lattice : 2 darray
351 Transformed lattice with spins grouped into blocks .
352

353 ’’’
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354 lattice_size = lattice .shape [0]
355 new_lattice_size = lattice_size // block_size
356 new_lattice = np.zeros (( new_lattice_size , new_lattice_size ))
357

358 for i in range( new_lattice_size ):
359 for j in range( new_lattice_size ):
360 block = lattice [i* block_size :(i+1)*block_size , j*

block_size :(j+1)* block_size ]
361 sum_of_spins = np.sum(block)
362 if sum_of_spins > 0:
363 new_lattice [i, j] = 1
364 elif sum_of_spins < 0:
365 new_lattice [i, j] = -1
366 else:
367 # Randomly choose +1 or -1 for the tie - breaker
368 new_lattice [i, j] = random . choice ([-1, 1])
369

370 return new_lattice
371

372 levels = 4
373 b = 2 # block size
374 all_confs_cg = [] # list of all configurations at each coarse

graining (cg) level
375 all_confs_cg = [ all_confs_og .copy ()]
376

377 for i in range( levels ):
378 print(" Coarse Graining Step:", i)
379 current_confs = np.zeros (( all_confs_og .shape [0], all_confs_og .

shape [1]//b**(i+1) , all_confs_og .shape [2]//b**(i+1)), dtype =
np.int8)

380 print(’current_confs shape ’, current_confs .shape)
381 for idx , conf in enumerate ( all_confs_cg [ -1]):
382 current_confs [idx] = block_transform (conf , b)
383 all_confs_cg . append ( current_confs . astype (np.int8))
384

385

386 def calculate_S2 ( lattice ):
387 ’’’
388 Calculates the sum of nearest - neighbour interaction for an

Ising spin configuration .
389

390 Parameters :
391 -----------
392 lattice : 2 darray
393 Ising spin configuration as a square lattice .
394

395 Returns :
396 --------
397 a : float
398 Sum of nearest - neighbour interaction for the given lattice .
399

400 ’’’
401

402 size = lattice .shape [0]
403 a = 0
404
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405 for i in range(size):
406 for j in range(size):
407 # Get the value of the spin at the current lattice site
408 spin = lattice [i, j]
409

410 # Compute the contribution from the nearest neighbor
pairs

411 # Assuming periodic boundary conditions
412 nn_sum = spin * ( lattice [(i+1)%size , j] + lattice [i, (j

+1)%size] +
413 lattice [(i -1)%size , j] + lattice [i, (j

-1)%size ])
414

415 # Add the contribution to the total summation
416 a += nn_sum
417

418 return a/2
419

420 def calculate_S3_x ( lattice ):
421 ’’’
422 Calculates the sum of the 3-spin interaction along the

horizontal direction in the lattice .
423 This is an odd coupling .
424

425 Parameters :
426 -----------
427 lattice : 2 darray
428 Ising configuration as a square lattice .
429

430 Returns :
431 --------
432 a : float
433 Sum of the 3-spin interaction along the horizontal

direction .
434

435 ’’’
436 a = np.pad(lattice , 1, ’wrap ’)[: -2 ,:]
437 a = a[: ,: -2]*a[: ,1: -1]*a[:, 2:]
438 return np.sum(a)
439

440 def calculate_S3_y ( lattice ):
441 ’’’
442 Calculate the sum of the 3-spin interaction along the

vertical direction in the lattice .
443 This is an odd coupling .
444

445 Parameters :
446 -----------
447 lattice : 2 darray
448 Ising configuration as a square lattice .
449

450 Returns :
451 --------
452 a : float
453 Sum of the 3-spin interaction along the vertical

direction .
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454

455 ’’’
456

457 a = np.pad(lattice , 1, ’wrap ’)[: ,: -2]
458 a = a[: -2 ,:]*a[1: -1 ,:]*a[2: ,:]
459 return np.sum(a)
460

461

462 def calculate_spin_products ( states ):
463 ’’’
464 Calculates the following 5 spin products given a set of

Ising configurations .
465

466 (0) -> 1 spin interaction (odd)
467 (1) -> 3 spin horizontal interaction (odd)
468 (2) -> 3 spin vertical interaction (odd)
469 (3) -> nearest neighbors interaction (even)
470 (4) -> next nearest neighbors interaction (even)
471

472 Parameters :
473 -----------
474 states : ndarray
475 Set of Ising configurations represented as a 3D array (

nsim x N x N), where nsim is the number of
configurations .

476

477 Returns :
478 --------
479 spin_products : ndarray
480 Array of spin products of shape (nsim x 5).
481

482 ’’’
483

484 kernel_nnn = np.array ([[1 ,0 ,1] ,
485 [0,0,0],
486 [1 ,0 ,1]])
487

488 nsim = states .shape [0]
489 spin_products = np.zeros ((nsim ,5) ,dtype = np.int64)
490

491 for i in range (1, nsim):
492 spin_products [i][0] = np.sum( states [i])
493 spin_products [i][1] = calculate_S3_x ( states [i])
494 spin_products [i][2] = calculate_S3_y ( states [i])
495 spin_products [i][3] = calculate_S2 ( states [i])
496 spin_products [i][4] = np.sum(conf* convolve2d (conf ,

kernel_nnn , mode = ’same ’, boundary = ’wrap ’))/2
497

498 return spin_products
499

500 spin_products_cg = []
501 for idx , data in enumerate ( all_confs_cg ):
502 print(idx)
503 spin_products_cg . append ( calculate_spin_products (data))
504 print(len( spin_products_cg ), len( spin_products_cg [0]))
505
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506 def calculate_cov (x,y):
507 ’’’
508 Returns the covariance between x and y.
509

510 Parameters :
511 -----------
512 x, y : array -like
513 Arrays representing the variables for which covariance

needs to be calculated .
514

515 Returns :
516 --------
517 cov : float
518 Covariance between x and y.
519 ’’’
520

521 return np.sum ((x - x.mean ())*(y-y.mean ()))/(x.shape [0])
522

523 A_mat_cg = []
524 B_mat_cg = []
525

526 for i in range(len( spin_products_cg ) - 1):
527 A = np.cov( spin_products_cg [i+1].T, bias = False)
528 A_mat_cg . append (A)
529

530 B = np.zeros(A.shape)
531

532 for mu in range(A.shape [0]):
533 for nu in range(A.shape [1]):
534 B[mu , nu] = calculate_cov ( spin_products_cg [i+1][: , mu],

spin_products_cg [i][:, nu])
535

536 B_mat_cg . append (B)
537

538 T_mat_cg = []
539

540 for A, B in zip(A_mat_cg , B_mat_cg ):
541 T_mat_cg . append (np. linalg .inv(A) @ B)
542

543 T_mat_cg = np.array( T_mat_cg )
544 T_mat_cg .shape
545

546 def calculate_even_odd_eigvals ( T_mat_cg ):
547 """
548 Finds the eigenvalues of the linearized RG transformation

for the even and odd couplings .
549

550 Parameters
551 ----------
552 T_mat_cg : Nx5x5 array
553 Linearized RG transformation .
554

555 Returns
556 -------
557 eig_even_cg : Nx2 array
558 Eigenvalues of the even couplings .
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559 eig_odd_cg : Nx3 array
560 Eigenvalues of the odd couplings .
561 """
562 eig_even_cg = []
563 eig_odd_cg = []
564

565 for i, T in enumerate ( T_mat_cg ):
566 eigvals , eigvecs = np. linalg .eig(T)
567

568 ye = []
569 for idx in range (4):
570 ye. append (np. linalg . eigvals (T[3:4+ idx , 3:4+ idx ])

[0])
571

572 eig_even_cg . append (ye)
573

574 yo = []
575 for idx in range (3):
576 yo. append (np. linalg . eigvals (T[:1+ idx , :1+ idx ]) [0])
577 eig_odd_cg . append (yo)
578

579 eig_even_cg = np.array( eig_even_cg )
580 eig_odd_cg = np.array( eig_odd_cg )
581

582 return eig_even_cg , eig_odd_cg
583

584 eig_even_cg , eig_odd_cg = calculate_even_odd_eigvals ( T_mat_cg )
585

586 for i in range( levels ):
587 print(’n=’, i)
588 visualize_ising_lattice ( all_confs_cg [i][-1], i)
589

590 fig , ax = plt. subplots (1, T_mat_cg .shape [0], figsize = (20 ,5))
591

592 vmin = np.min( T_mat_cg )
593 vmax = np.max( T_mat_cg )
594

595 for i in range( T_mat_cg .shape [0]):
596 # center the cmap in zero
597

598 im = ax[i]. imshow ( T_mat_cg [i], cmap = ’RdBu_r ’, norm =
matplotlib . colors . CenteredNorm ())

599 ax[i]. set_title (r’$T_ {\mu \nu }ˆ{( ’ + str(i) + ’, ’ + str(i+1) +
’)}$’, pad = 10, fontsize = 20)

600 plt. colorbar (im , ax = ax[i], fraction = 0.046 , pad = 0.04)
601

602 plt.show ()
603

604 eig_even_cg , eig_odd_cg = calculate_even_odd_eigvals ( T_mat_cg )
605

606 fig , ax = plt. subplots ( figsize = (5 ,5))
607 c = 0
608 for ye_list in eig_even_cg :
609 ax. scatter ([c]* len( ye_list ), [np.log(b)/np.log(np.real(val))

for val in ye_list ],
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610 c = np. arange (len( ye_list )), cmap = plt. get_cmap (’
Blues ’))

611 c += 1
612 ax.plot(np. arange (len( eig_even_cg )), [np.log(b)/np.log(np.real(val)

[ -1]) for val in eig_even_cg ], alpha = 0.5,
613 lw = 3, color = plt. get_cmap (’Blues ’) (0.95) )
614 #ax. set_ylim (0.9 , 1.3)
615 ax. set_xlabel (’RG step ’, fontsize = 17, labelpad = 15)
616 ax. set_xticks ([0 ,1 ,2])
617 ax. set_ylabel (r’$\nu$ ’, fontsize = 17, labelpad = 15)
618 ax. tick_params ( labelsize =15)
619 plt. axhline (1, ls = ’--’, lw = 3, color = ’firebrick ’, zorder = -1,

alpha = 0.3)
620

621 fig , ax = plt. subplots ( figsize = (5 ,5))
622 c = 0
623 for ye_list in eig_odd_cg :
624 ax. scatter ([c]* len( ye_list ), [np.log(np.real(val))/np.log(b)

/(2-np.log(np.real(val))/np.log(b)) for val in ye_list ],
625 c = np. arange (len( ye_list )), cmap = plt. get_cmap (’

Blues ’))
626 c += 1
627 ax.plot(np. arange (len( eig_odd_cg )), [np.log(np.real(val [ -1]))/np.

log(b)/(2-np.log(np.real(val [ -1]))/np.log(b)) for val in
eig_odd_cg ], alpha = 0.5,

628 lw = 3, color = plt. get_cmap (’Blues ’) (0.95) )
629 #ax. set_ylim (0.9 , 1.3)
630 ax. set_xlabel (’RG step ’, fontsize = 17, labelpad = 15)
631 ax. set_xticks ([0 ,1 ,2])
632 ax. set_ylabel (r’$\ delta$ ’, fontsize = 17, labelpad = 15)
633 ax. tick_params ( labelsize =15)
634 plt. axhline (15, ls = ’--’, lw = 3, color = ’firebrick ’, zorder =

-1, alpha = 0.3)
635

636

637

638 fig , ax = plt. subplots ( figsize = (5 ,5))
639 c = 0
640 for ye_list in eig_odd_cg :
641 ax. scatter ([c]* len( ye_list ), [4 - 2*np.log(np.real(val))/np.log

(b) for val in ye_list ],
642 c = np. arange (len( ye_list )), cmap = plt. get_cmap (’

Blues ’))
643 c += 1
644 ax.plot(np. arange (len( eig_odd_cg )), [4 - 2*np.log(np.real(val [ -1]))

/np.log(b) for val in eig_odd_cg ], alpha = 0.5,
645 lw = 3, color = plt. get_cmap (’Blues ’) (0.95) )
646 #ax. set_ylim (0.9 , 1.3)
647 ax. set_xlabel (’RG step ’, fontsize = 17, labelpad = 15)
648 ax. set_xticks ([0 ,1 ,2])
649 ax. set_ylabel (r’$\eta$ ’, fontsize = 17, labelpad = 15)
650 ax. tick_params ( labelsize =15)
651 plt. axhline (0.25 , ls = ’--’, lw = 3, color = ’firebrick ’, zorder =

-1, alpha = 0.3)
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