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Abstract

The problem of establishing how di�erent coarse-graining procedures a�ect the law

of generalized detailed balance and the rate of entropy production is addressed in the

context of di�erent models describing systems in stationary states out of equilibrium.

The most microscopic descriptions involve Langevin dynamics, while the coarse-grained

counterparts amount to Markov jump processes. The study has also the aim to validate

and test procedures recently adopted for identifying non-equilibrium in active soft matter

systems. The work will involve both analytical and numerical work.
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Introduction

Let's suppose we are interested in studying the motion of a microscopic particle im-

mersed in a solvent. The most straightforward approach would be to solve the equations of

motion for every molecule in the system. This is a sure way to achieve a correct dynamics

but, apart from the di�culty of �nding a Hamiltonian of the system, it's too computa-

tionally expensive, even for modern computers. The alternative is to take a statistical

approach, that is to describe the dynamics of the molecules of the solvent using only

a few parameters: we then recover the well-known Browian motion, which is expressed

matematically by a stochastic di�erential equation called Langevin equation.

Basically what we have done in this example was to reduce the degrees of freedom of

the system to facilitate its study. This procedure is a case of coarse graining, which stands

at the foundations of Statistical Mechanics. A coarse-grained description of a system is

indeed a premise of every theoretical model, but it's also a powerful tool for simplifying a

system, by discarding irrelevant degrees of freedom to highlight some others. It is also an

inevitable presence in experiments, where some degrees of freedom are inaccessible due to,

e.g., a resolution limit of measurement devices. Even though the coarse-graining plays a

role of fundamental importance in statistical physics, its study has been almost con�ned to

thermal equilibrium, with some development in non-equilibrium only in recent years [1,2].

This thesis tries to follow the recent developments in this �eld, trying to understand the

e�ects of the coarse-graining in particular cases.

In this work we consider systems out of equilibrium, for which unfortunately a general

theory still doesn't exist. These systems exhibit net current �ows between microscopic

states, i.e. the transitions rates between any two microstates are not pairwise balanced.

This feature is called broken detail balance and it's a tell-tale sign of non-equilibrium [3].

There are many areas of application of out of equilibrium physics, and one of the most

important of these is living matter. Indeed the typical characteristic of living systems

is that they are inherently out of equilibrium [4]. For example a constant consumption

and dissipation of energy results in non-equilibrium activity, which lies at the heart of

biological functionality: internal activity enables cells to accurately sense and adapt in

noisy environments, and for instance it is crucial for high-�delity DNA transcription and

for replication [5�7]. In some cases, non-equilibrium processes also enable subcellular
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Introduction

systems to generate forces for internal transport, structural organization and directional

motion [8]. Thus, non-equilibrium is an essential characteristic of biological systems and

so its study is very important.

Current researches carried out in this area try to �nd methods to determine the non-

equilibrium of living matter through non-invasive, microscopic techniques [9�12]. A recent

study [13], conducted on isolated �agella and primary cilia on membranes of living cells,

was based on the observation of the steady-state stochastic dynamics of a few mescoscopic

degrees of freedom using time-lapse microscopy experiments. The non-equilibrium dynam-

ics of these systems manifests itself as circulating probability currents in a phase space of

mesoscopic coordinates, breaking the detail balance condition.

The work done in this thesis �ts into this context. In general the intention is to

determine the e�ects of coarse-graining in non-equilibrium. We will consider basically three

di�erent procedures of coarse-graining: the �rst consists on projecting high-dimensional

dynamics onto a few preferred degrees of freedom, the second on averaging out dynamics at

smaller scales, the third on sampling the time evolution of a system. A question we can ask

ourselves is whether these procedures, applied to a condition of non-equilibrium, in�uence

its characteristic of irreversibility. For example, we will see that speci�c out-of-equilibrium

systems may even e�ectively regain thermodynamic equilibrium at large enough scales, or

may simply overlook hidden dissipation from the discarded degrees of freedom.

The approach we use consists of a theretical study, both numerical and analitical, of a

model that is at the same time simple and signi�cant, in the sense that it can reproduce the

type of results we would see in a typical experiment. More speci�cally, the model consists

in a collection of beads coupled together, and put in a situation of non-equilibrium caused

by thermal gradients and/or active forces. The dynamics of the system is then studied in a

coarse-grained phase space. The description of the system varies from Langevin equations

to Markov jump processes according to the level of wanted resolution. The �nal objective

of the thesis is to provide an exhaustive picture of how a coarse-graining procedure can

in�uence the production of entropy. The solution of this problem can help to establish the

correctness of already existing models of non-equilibrium, as well as assist in the analysis

of experiments.

The plan for the thesis is the following.

Chapter 1 - Basics of the Model The �beads-springs� model used for the rest

of the thesis is here presented. First, the dynamics of the system was described using

both a Langevin and a Fokker-Planck picture. Second, the system was studied from a

thermodynamic point of view. In particular, the entropy production rate, present under

non-equilibrium conditions, is derived in the steady-state using a stochastical thermody-

namics approach. The purpose of these calculations is to give analytical results to be

compared to the numerical ones we �nd after coarse-graining.
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Chapter 2 - Coarse Graining A numerical study based on coarse-graining me-

thods is presented, including all the algorithms and methods that are used for �nding

the results reported in the �nal chapter. Under a �rst coarse-graining the dynamics of

the system goes from a continuos process to a discrete jumps process. Accordingly, the

entropy production rate changes expression and can be calculated under a Markovianity

assumption. The steady state dynamics is summarised in plots useful for �nding if the

system is in equilibrium or not.

Chapter 3 - Results Finally we presented the results obtained from the numerical

simulations explained in the previous chapter. The �rst part deals with the question if it is

possible to determine if a system is in equilibrium by looking at the dynamics of particular

degrees of freedom using the �probability �ux analysis� approach. The second part is more

quantitative, and deals with the problem of approaching the correct entropy production

rate from the analysis of the coarse-grained dynamics.
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Chapter 1

Basics of the Model

We begin this chapter by giving a complete description of the model we will use.

Basically, our choice is motivated by the fact that we wanted a relatively simple system

to study non-equilibrium. For example, in thermodynamics, the heat transfer between

two reservoirs kept at di�erent temperatures is certainly the simplest and probably the

most fundamental out-of-equilibrium phenomenon that one can study. Correspondingly

we carry this concept to a microscopic level, and study a system of two interacting beads

each at a di�erent temperature. Subsequently we increased the complexity of the system

by adding more beads (and heat baths) and including active forces.

Most of the ideas in this thesis are illustrated by using a simple stochastic non-

equilibrium system with two coupled degrees of freedom. It must be noted that this

model doesn't try to mimic any particular natural process. Its strength stands in its sim-

plicity and in the ability to incorporate the essential features for a vast variety of systems.

Nevertheless, it is still possible to verify what we theoretically do with a real experiment.

For example, our model-system was recently made possible in a laboratory where two vis-

cously coupled particles were trapped with Optical Tweezers and were submitted to an

�e�ective temperature� di�erence obtained by randomly displacing the position of one of

the traps [14,15].

In the �rst subsection we describe matematically the dynamics of the system. In the

second subsection we quantify the non-equilibrium by calculating the entropy production

rate. Finally in the third subsection we will add an additional force to describe the active

matter, and in the fourth subsection we brie�y discuss the e�ects of anharmonic forces

between beads.

1.1 The Equations of Motion

We start this section with a system that consists of two microscopic beads allowed to

�uctuate in only one dimension. These beads are connected to each other and to boundary

walls by springs with sti�ness k as depicted in �g. 1.1 and they are immersed in a solvent
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1. Basics of the Model

that acts as a viscous �uid with viscosity η. The system is driven out of equilibrium by

connecting each bead to local heat baths at temperatures T1 and T2 respectively. The relax-

ation to equilibrium is forbidden by some (undetailed) external constraint which prevents

the two thermostats from equilibrating, allowing the system to achieve a nonequilibrium

steady state.

Figure 1.1: Illustration of the model.

To describe the dynamics of the system we have to specify the the forces involved.

First, there's the conservative force −∇V due to the potential caused by the springs

V (x1, x2) =
1

2
kx2

1 +
1

2
kx2

2 +
1

2
k (x1 − x2)2 = k

(
x2

1 + x2
2 − x1x2

)
, (1.1)

with xi the displacement of bead i from its equilibrium position. Second, there's the

force caused by the collisions with the solvent: since it's clearly not possible to write

deterministically this contribution it's necessary to use a statistical approach, hence the

forces due to the collisions are treated as a stochastic term. Additionally, we suppose

that the two beads are distant enough to anable us to consider the e�ect of the solvent

independent between the two, and we also suppose them to be larger than the molecules

of the solvent. Under these hypothesis, the force caused by the collisions acting on the

i-th bead can be divided into two contributions: �rst, an average part −ζẋi proportional
to the velocity and with opposite direction, with ζ called drag coe�cient and given, for

a spherical particle of radius R, by the Stokes' law ζ = 6πRη [16]; second, a random

part ξi approximately expressed by a Gaussian white noise: in particular the mean and

autocorrelation are the following:

〈ξi (t)〉 = 0, (1.2)〈
ξi (t) ξj

(
t′
)〉

= 2ζkBTiδ
(
t− t′

)
δij , (1.3)

with kB the Boltzmann constant, δ (t− t′) a Dirac's delta to express independence in time,

δij a Kronecker delta to express independence between beads. The factor in eq. (1.3) is in

agreement with the �uctuation-dissipation theorem [17].

The equations of motion of the system are therefore:ζẋ1 = k (−2x1 + x2) + ξ1

ζẋ2 = k (x1 − 2x2) + ξ2

(1.4)
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1.1. The Equations of Motion

where we have assumed an overdamped regime, i.e. we neglected the inertial part of the

equation, using an approximation typical in biophysical system where the Reynolds number

is low [18]. This stochastic di�erential equation is called overdamped Langevin equation

and stands at the basis of what we will do henceforth. It can be written more compactly

in a matrix notation:

ẋ = Ax+ f , (1.5)

with x = (x1, x2)T , A = k
ζ

(
−2 1

1 −2

)
and f = ζ−1 (ξ1, ξ2)T (the T indicates transposi-

tion).

Another method, equivalent to the Langevin equation, to describe a stochastic system

is to look at the probability distribution ρ (x, t) of �nding the system in con�guration x

at time t. The equation that describes the evolution of ρ (x, t) is called Fokker-Planck

equation, and can be derived from (1.5) resulting in:

∂

∂t
ρ = −∇ · (Axρ−D∇ρ) =: −∇ · j, (1.6)

with j (x, t) a probability density current and D = ζ−1

(
T1 0

0 T2

)
called di�usion matrix

[19].

We can use the Fokker-Plack equation to derive some useful information on the sys-

tem. In particular we were interested in the steady-state dynamics, so in the following we

calculated the steady-state solution ρs (x) for (1.6). We start using as ansatz a Gaussian

distribution:

ρs (x) =
1

2π
√

detC
e−

1
2
x·C−1x, (1.7)

with C a 2× 2 symmetric matrix, and with the coe�cient determined to impose normal-

ization
∫
d2xρs (x) = 1. The covariance matrix C can be found inserting the ansatz into

the Fokker-Planck equation:

0 =
∂

∂t
ρs = −∇ · (Axρs −D∇ρs)

⇒ ∂

∂xi

(
Aijxjρ

s +DijC
−1
jk xkρ

s
)

= 0

⇒ −AijC−1
ik xjxk −DijC

−1
jk C

−1
il xlxk = 0, (1.8)

where we used the Einstein notation for the indexes. Relabelling the indexes, noticing that

the antisymmetric part of AC−1 goes away and remembering that this equation must be
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1. Basics of the Model

valid for every x gives:

−1

2

(
C−1A+AC−1

)
− C−1DC−1 = 0

⇒ AC + CA = −2D. (1.9)

Finally, solving manually the two equations system in (1.9) results in the covariance matrix:

C =
1

12k

(
7T1 + T2 2T1 + 2T2

2T1 + 2T2 T1 + 7T2

)
. (1.10)

The Gaussian form for ρs (x) is due to the linearity of the system and it i preserved

even when we add more beads and springs. If the beads would interact with a general

anharmonic potential the distribution would be di�erent (see following sections). The

probability current density in the steady-state takes the following expression:

js (x) =
(
A+DC−1

)
xρs (x) , (1.11)

and it is possible to see that this �ux forms a vortex around the center x = 0.

From ρs (x) we can �nd all informations on the stationary system. In particular the

average displacementes of the beads is:

〈xi〉 =

∫
d2xρs (x)xi = 0, (1.12)

by symmetry. Instead the autocorrelation is given by:

〈xixj〉 =

∫
d2xρs (x)xixj =

=
1

2π
√

detC

∂

∂yi

∂

∂yj

[∫
d2x exp

(
−1

2
x · C−1x+ y · x

)]
y=0

, (1.13)

and substituting x = z + Cy after some sempli�cations we get:

〈xixj〉 =
1

2π
√

detC

∂

∂yi

∂

∂yj

[∫
d2z exp

(
−1

2
z · C−1z +

1

2
y · Cy

)]
y=0

=

=
∂

∂yi

∂

∂yj

[
exp

(
1

2
y · Cy

)]
y=0

=

= Cij . (1.14)

Given that ρs (x) is a bivariate Gaussian distribution, the �rst two moments we have cal-

culated fully specify it. In the next �gure we represented in a space x1×x2 the distribution

ρs (x) and the two marginal distributions. It's possible to show that these two distributions

are Gaussian even when ρs (x) is asymmetric, i.e. T1 6= T2. This is an interesting feature
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1.1. The Equations of Motion

because it proves that we cannot determine if a system is in equilibrium or not by looking

at the distributions: indeed in our example the system exhibits Gaussian �uctuactions

both in and out of equilibrium. In the next sections we will also prove, using anharmonic

forces, that non-Gaussian �uctuations are possible even in equilibrium.

Figure 1.2: The probability density distribution ρs (x) with its two marginals. Calculated
for T1 = 1 and T2 = 2.

A more complex scenario can be obtained by adding a bead to the system. In this case

the Langevin equation maintains the same form ẋ = Ax+ f but in three dimensions. An

example we used is illustrated in the �gure 1.3 where three beads oscillate in one dimension.
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1. Basics of the Model

Figure 1.3: Three beads in a row.

The matrix A in this con�guration is:

A =
k

ζ

 −2 1 0

1 −2 1

0 1 −2

 . (1.15)

Another possible con�guration is allowing the beads to oscillate in more dimensions. In

�gure 1.4 the three beads can move in a plane, so every bead has two degrees of freedom.

Nevertheless, the same model can be used, and choosing as x = (x1, y1, x2, y2, x3, y3),

where yi is the displacement along the second axis of the ith-bead, we get:

A =
k

4ζ



−9 −
√

3 4 0 1
√

3

−
√

3 −7 0 0
√

3 3

4 0 −9
√

3 1 −
√

3

0 0
√

3 −7 −
√

3 3

1
√

3 1 −
√

3 −2 0√
3 3 −

√
3 3 0 −10


. (1.16)

1.2 Entropy Production

There is obviously an interest to quantify to what extent a system is out of equilibrium.

Such a quanti�cation could, for example, provide insight into how e�ciently molecular

motors are able to work together to drive large-scale motions [11].

Qualitatively we can say that in the absence of coupling between the beads, the average

rate at which each thermal bath injects energy exactly balances with the rate it absorbs

energy due to frictional drag. By coupling the beads, however, there is a net steady-state

rate of heat �ow from the hot reservoir into the system and out to the cold reservoir. Of

course if the reservoirs have the same temperature, the system is in thermal equilibrium.

In this section we calculate the entropy production rate of the system using a theo-

ry called stochastic thermodynamics [3, 20]. The starting point is the concept that if a

Langevin equation represents the balance of forces on a system, then the Langevin dynam-
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1.2. Entropy Production

Figure 1.4: Three beads in a plane.

ics conserves the energy of the system plus the surrounding heat bath. This is essentially

the �rst law of thermodynamics

d̄W = dE +d̄Q (1.17)

applyied to an individual trajectory. We use as convention that the heat Q is positive

if it's trasferred from the system (the beads) to the environment (the solution), and the

work W is positive if it is applied on the system. The energy of the system E is equal

to the potential energy V (1.1), because we neglected the kinetic energy by assuming an

overdamped motion. Rewriting the Langevin equation we have

0 = −ζẋ+ ξ −∇V (x) . (1.18)

Suppose the system evolves from a con�guration x = (x1, x2) at time t to x + dx =

(x1 + dx1, x2 + dx2) at time t+dt, then multiplying the forces in (1.18) by −dx we get an

energy balance equation:

0 = − (−ζẋ+ ξ) · dx+∇V (x) · dx =: dQ+ dV, (1.19)

where we have identi�ed as dQ the product of − (−ζẋ+ ξ), the force exerted by the system

to the environment, and dx, the displacement of the system. One can write dQ = dQ1+dQ2

with:

dQi = (Ax)i ẋidt, (1.20)

the heat absorbed from the bath at temperature Ti. Here and after the product between ẋ

and a general function of x is evaluated using the Stratonovich rule [3]. In the steady-state
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1. Basics of the Model

limit, it's possible to show that dQ1 = −dQ2, in agreement with the fact that dV = 0.

Having calculated the heat absorbed from each heat bath, we can now calculate the

entropy. It's custumary to divide the total entropy into two contributions. First, the heat

dissipated into the environment should obviously be identi�ed with an increase in entropy

of the medium Sm such that:

dSm :=
1

T1
dQ1 +

1

T2
dQ2. (1.21)

Second, there's the Shannon entropy of the system Ssys de�ned as:

Ssys (x, t) := −kB ln ρ (x (t) , t) , (1.22)

where the probability density function ρ (x (t) , t) is obtained by solving the Fokker-Planck

equation and evaluated along the trajectory x (t).

Then the total entropy production in this time interval is [3, 21]:

dS = dSm + dSsys. (1.23)

We proceed to calculate the production rate of entropy by deriving the previous quantities

with respect to time. From eq. (1.21) and (1.20) the variation of the entropy of the medium

can be written as:
dSm

dt
=
(
D−1Ax

)
· ẋ. (1.24)

Instead the variation of the entropy of the system can be calculated using the Fokker-Planck

equation (1.6):

dSsys

dt
= − kB

ρ (x (t) , t)

(
∂ρ (x (t) , t)

∂t
+ ẋ · ∇ρ (x (t) , t)

)
= − kB

ρ (x (t) , t)

∂ρ (x (t) , t)

∂t
+ ẋ (t) · D

−1j (x (t) , t)

ρ (x (t) , t)
− ẋ (t) ·

(
D−1Ax (t)

)
. (1.25)

By de�ning σ the total entropy production rate in the steady-state:

σ :=

〈
dS

dt

〉
=

〈
dSm

dt

〉
+

〈
dSsys

dt

〉
, (1.26)

we notice that the �rst term in eq. (1.25) vanishes in this limit, and the third term in eq.

(1.25) cancels with eq. (1.24), so:

σ =

〈
ẋ (t) · D

−1j (x (t) , t)

ρ (x (t) , t)

〉
. (1.27)

The previous average is not a normal average of a quantity involving the position x (t),

because it involves also the velocity ẋ. This complication makes the calculation more delica-

te. Indeed, to evaluate the average 〈ẋ|x, t〉 conditioned on the position x the Stratonovich

12



1.2. Entropy Production

discretization is needed:

〈ẋ|x, t〉 = lim
dt→0

〈x (t+ dt)− x (t) |x (t) = x〉+ 〈x (t)− x (t− dt) |x (t) = x〉
2dt

. (1.28)

After some calculations the �nal result is [3]:

〈ẋ|x (t) = x〉 = Ax (t)−D∇ log ρ (x, t) =
j (x, t)

ρ (x, t)
. (1.29)

Any subsequent average over position is now trivial leading to:

〈f (x) ẋ (t)〉 =

〈
f (x)

j (x, t)

ρ (x, t)

〉
=

∫
dxf (x) j (x, t) . (1.30)

So, using the solutions in the steady-state ρs (x) and js (x) we found in the previous

section, we �nd from eq. 1.27 and 1.30:

σ =

∫
dx
js (x) ·D−1js (x)

ρs (x)
, (1.31)

and performing the integration it results:

σ = ζ

∫
dx

1

ρs (x)

∑
i

T−1
i (jsi )

2

= ζ
∑
i

T−1
i

∫
dx

∑
j

(
A+DC−1

)
ij
xj

2

ρs (x)

= ζ
∑
i,j,k

T−1
i

(
A+DC−1

)
ij

(
A+DC−1

)
ik

∫
dxρs (x)xjxk

= ζ
∑
i,j,k

T−1
i

(
A+DC−1

)
ij

(
A+DC−1

)
ik
Cjk, (1.32)

where we have used the expression for D in eq. (1.6) , js in eq. (1.11) and the Gaussian

integration (1.14). Computing the expression above results in:

σ =
k

4ζ

(T1 − T2)2

T1T2
. (1.33)

As expected the total entropy production rate is always ≥ 0, vanishes only when T1 = T2

because the system is in thermodinamical equilibrium, or when k = 0 because there's no

coupling between the beads. In the graph below I reported how σ varies changing one

temperature.
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1. Basics of the Model

Figure 1.5: Entropy production rate σ as a function of T2, for �xed T1 = 1.0, k = 1.0,
ζ = 1.0. The curve is the expression in equation (1.33), the points are the simulated values.

1.3 Active Matter

The non-equilibrium caused by thermal gradients we considered so far does not cover

all possible manifestations of non-equilibrium. Therefore we decided to include a new form

of non-equilibrium caused by active matter. Active matter is composed of large numbers

of active "agents", each of which consumes energy in order to move or to exert mechanical

forces. Due to the energy consumption, these systems are intrinsically out of thermal

equilibrium [4]. We decided to study this e�ect by adding to each bead an active force

fA,i (t) modelled as a zero-average random telegraph process of amplitude f0:

〈fA,i (t)〉 = 0, (1.34)

〈
fA,i (t) fA,j

(
t′
)〉

=
f2

0

4
e−|t−t

′|/τAδij . (1.35)

The characteristic time constant τA can be expressed as τ−1
A = τ−1

on +τ−1
off (in our case with

τon = τoff ), where τon (τoff ) stands as the mean time to switch on (o�) the active motor.

Although this is a simple model for the dynamics of motor-generated forces, it's able to

describe correctly some important properties, for instance the power spectral density of

the position [4, 9].
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1.4. General Coupling

Figure 1.6: The probability density distribution ρs (x) with its two marginals. Calculated
for T1 = T2 = 1 and τA = 1.

1.4 General Coupling

In this section we change for the moment the interaction force between the beads to

show what happens to the dynamics of the two-beads system of �g. 1.1 in presence of

general anharmonic forces. In particular we chose as interacting potential the following:

Ṽ (r) = ε

(
− 1

r2
+

1

r4

)
,
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1. Basics of the Model

with r = x2 − x1 +
√

2 (this value ensures that the force is null at x = 0). The Langevin

equation is therefore: ζẋ1 = −kx1 − dṼ
dr + ξ1

ζẋ2 = −kx2 + dṼ
dr + ξ2

(1.36)

No analytical result can be obtained for the distributions we calculated in the harmonic

case. Nevertheless solving numerically the dynamics in the next �gure we can illustrate a

possible example for T1 = T2. It is possible to show that the two marginal distributions

are not Gaussian, so we proved the assertion we made before, that we cannot conclude

that a system is out of equilibrium if its �uctactions are not Gaussian.

Figura 1.7: The probability density distribution ρs (x) with its two marginals. Calculated
for T1 = T2 = 1.
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Chapter 2

Coarse Graining

In the previous chapter we delineated a model where we were able to study the steady-

state dynamics for the simple case of linear-coupled beads in a non-equilibrium situation.

In the event of only thermal gradients and no active forces, we even found an analytical

formula for the entropy production rate σ. This means that knowing the parameters of

the model, we can determine how far the system is from equilibrium by calculating σ.

Considering for the moment a real experiment, if we knew a valid model of the system

and we were able to measure all necessary parameters, we could probably calculate σ using

a (numerical) approach based on stochastic thermodynamics like we did before. However,

this approach is problematic, in the sense that even a good model of the system is always a

�coarse-grained� approximation of the system, raising the question of how trustworthy our

results would be. Besides, any measurement of the system is limited by the �nite resolution

of the instruments. So, we may not observe all the required degrees of freedom. These are

all reasons for introducing a coarse-graining element in our model. The coarse-graining,

in our analysis, is not only a method, but also an object of study. The intention was to

establish coarse-grained procedures useful to analyse data and, at the same, consistent

with stochastic thermodynamics.

We turn the discussion again about how to tackle an experiment. Most of the devel-

oped experimental methods used so far to probe a system for non-equilibrium are called

�invasive�, and are, for instance, performed by perturbing the system and looking at its

response [4]. Such approaches are not ideal for investigating delicate microscopic systems,

because they can alter unexpectedly its dynamics. Ideally, one would like to avoid the

technical and conceptual di�culties of invasive protocols to probe for non-equilibrium be-

haviour. This raised the question if it's possible to measure a system's non-equilibrium

behaviour simply by looking at it [13]. In the previous section we showed that by look-

ing at a single degree of freedom we couldn't distinguish an equilibrium system from

a non-equilibrium one. Recently, though, it was developed a method that indeed uses

conventional video microscopy data to detect broken detailed balance, and therefore non-

equilibrium behaviour [13]. We will start this chapter by rewriting the methods introduced
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2. Coarse Graining

by the authors in this reference, and applying them to our model.

Since the purpose of this thesis is not solving simple analytical problem, but rather

studying methods that can apply to general systems, we must abandon the view we have

developed in the previous chapter. From now on, we have to pretend we don't know the

microscopic details of our system, for instance the temperature of our beads. Indeed,

we have to assume that we have performed a �non-invasive� experiment, i.e. by only

microscopy measurements. The questions we must try to answer are then: is the system

in equilibrium? If not, what is its entropy production rate σ? Naturally, when we have

these answers, we can compare them with the analytical results we already found.

In this thesis we used a total of three di�erent coarse-graining techniques. These are

introduced basically one at each section, and in summary are the following:

1. a discretization of the con�gurational space (for instance x1 × x2), with which we

translate the problem from a continous space to a discrete set of states; this coarse-

graining mimics a �nite resolution of the experimental apparatus; in the end, by

doing a �probability �ux analysis�, it enables to see if the system is in equilibrium

(sect. 2.1);

2. a projection of degrees of freedom, which permits to explore the e�ect of overlooking

parts of the system (sect. 2.2);

3. a sampling of the trajectory, with which we studied the e�ect of memory in the

jumping dynamics (sect. 2.3).

2.1 Subdivision of the Con�gurational Space

In this section we will describe a coarse-grained method which consists of discretiz-

ing the continous degrees of freedom of the system, or in other words by partitioning the

con�gurational space into discrete states. This method was used as a natural approach

toward modeling the kinetics of chaotic systems. For example, it was used for examin-

ing chaotic dynamical systems, with the purpose of studying deterministic chaos through

Markov processes [22]. Another reason for using this discretized representation of phase

space was to be able to obtain informative results on experimental data with limited statis-

tics [23]. More recently it was used to analyse experimental data of some biological system,

in particular a �agellum and cell's cilia [13]. The dynamics of such a system was captured

by conventional video microscopy. To quantify this measured stochastic dynamics, they

parameterized the con�guration of the system by decomposing the shape of the �agellum

into normal modes. In their analysis, the mode amplitudes represented time-dependent

generalized coordinates of the system, and were the equivalent of our beads displacements.

We decided to start following the same approach to coarse-graining that was used in

this research. They used this method to detect non-equilibrium, but without quantifying

the entropy production rate or examining the e�ects of coarse-graining.
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2.1. Subdivision of the Con�gurational Space

In this section, we are going to describe the basis and methodology that can be used to

infer broken detailed balance, which is going to be our main test for non-equilibrium. We

considered for the moment the system with only two beads. The dynamics was described

by the Langevin equation we have written in the previous chapter. The evolutions of

the beads displacements x (t) = (x1 (t) , x2 (t)) were found numerically by integrating this

equation using Euler's algorithm, i.e. by discretizing the time in intervals of duration ∆t:

x1 (t+ ∆t) = x1 (t) + k
ζ (−2x1 (t) + x2 (t)) ∆t+

√
2kBT1∆t

ζ N (0, 1)

x2 (t+ ∆t) = x2 (t) + k
ζ (x1 (t)− 2x2 (t)) ∆t+

√
2kBT2∆t

ζ N (0, 1)
(2.1)

where N (0, 1) is a value sampled from a normal distribution with zero mean and unit

variance. The previous equations are a very good approximation of the dynamics if ∆t is

much smaller than the characteristic time of the system, which in this case is ζ/k. For

the majority of the simulations we have done, we used unit values for the parameters, i.e.

k = 1, ζ = 1 and kB = 1; for the temperatures typical values were T = 1 ÷ 2; for ∆t we

used values 10−3 or smaller. The system of equations (2.1) applies in the absence of active

forces. In the presence of these forces we need to add a term fA,i (t) to the right-hand side

(with i index of the bead), given by the following process:
fA,i (0) = f0

2ζ∆t,

fA,i (t+ ∆t) =

fA,i (t) if ui ≥ ∆t
2τa

−fA,i (t) elsewise

(2.2)

with ui a random number picked uniformly in the interval (0, 1) at each time. Indeed, we

can notice that the previous system results in a telegraphic process with the properties

listed in the previous chapter, so basically a force independent between beads, always with

the same absolute value, that switches between positive and negative sign with character-

istic time τA. We must keep in mind also that we must use a ∆t� τA.

A typical solution to eq. (2.1) is illustrated in �g. 2.1. In the following we are going to

work always in the steady-state limit of the system. To be sure of that, in the simulations

we made the system evolve for a certain time (much longer than τ) before keeping track

of the dynamics.

We already explained in the previous chapter that analysing separately x1 and x2, we

are unable to tell if the system is in equilibrium. Indeed the time evolution in the previous

�gures are similar to what we are expecting from an equilibrium model. Therefore to

gain more information on the system we must keep track of both the degrees of freedom

simultaneously. To do so, we traced a �trajectory� of the system in a con�gurational space

x = (x1, x2), the same one we used before to plot the joint probability distribution. In �g.

2.2 we plotted an illustrative example of trajectory in this space. The trajectory is clearly

a sequence of points x (ti) with times ti = i∆t.
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2. Coarse Graining

Figure 2.1: Time evolutions of the beads' displacement in the steady-state. Temperatures
T1 = 1 and T2 = 2.

Figure 2.2: Illustrative example of trajectory in the con�gurational space. Equation (2.1)
is solved starting at a point at time t0, then at every ∆t the state of the system is updated
and saved in the trajectory.
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2.1. Subdivision of the Con�gurational Space

At this point we introduced the coarse-grained procedure: this con�gurational space

was subdivided into a grid of equally sized, squared cells, each of which represented a dis-

crete state a the system. Such a discrete state encompassed a continuous set of microstates,

each of which belonged to a unique, discrete state. In the following �gure we showed the

new space, which was divided into cells of size ∆x×∆x.

Figura 2.3: Coarse-graining of the con�gurational space. The trajectory is replaced by
jumps between cells (red arrows).

The Langevin trajectory was then associated to a sequence of jumps in this grid. Ba-

sically, indicating every cell of the system by the couple of indeces n = (n1, n2) ∈ Z2, the

state of the system x (t) was replaced by n (t) using the cell in which belonged the system

at that time. For example, if x (t) moved inside the same cell for a certain time, n (t)

didn't change during that time. If instead x (t) leaved its cell, typically the new cell was

one at the sides of the starting one. However, in a small fraction of cases, some transitions

could go from one cell to a non-adjacent cell in a single timestep due to the limited time

resolution: for these cases, we performed a linear interpolation of the measured trajectory

to capture all transitions between adjacent cells. So, in our approach we considered only

the possibility of jumping between neighbouring states, i.e., using a graph theory termi-

nology, every vertex of our graph had degree 4. Additionally we assumed that our graph

was ergodic, i.e., every state could be reached by every other state in a �nite time, and the

transition rates were reversible, i.e. if a certain jump was possible then also the reverse

jump was possible.
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2. Coarse Graining

Because the description of the system passed from a continuos to discrete view, the

equations of motion changed as well, from a Langevin equation to a Master equation. The

Master equation is more appropriately the correspondent of the Fokker-Planck equation,

and it was the following:

d

dt
p (n, t) =

∑
n′ 6=n

(
p
(
n′, t

)
w
(
n′;n

)
− p (n, t)w

(
n;n′

))
, (2.3)

where p (n1, n2, t) was the probability of being inside the cell and w (n1, n2;n′1, n
′
2) the

rates of jumping from cell (n1, n2) to cell (n′1, n
′
2). This rates presumed that the dynamics

had a �memoryless� or �Markovian� property: in the following sections we will see that

this hypothesis was not correct, but for the moment we are going to ignore this problem.

Under the Markovianity assumption and steady-state conditions, the system was entirely

describeded by associating at every cell of the space the steady-state solution of eq. (2.3),

which we indicated ps (n1, n2), and the rates w (n1, n2;n′1, n
′
2). Because we considered

only the possibility of jumping to an adjacent cell we had w (n1, n2;n′1, n
′
2) 6= 0 only if

n′1 = n1 ± 1 and n′2 = n2 ± 1.

An analytical determination of ps and w was not possible, so in this context the simu-

lated trajectory came useful. We could indeed calculate these quantities numerically after

having captured a trajectory long enough to have repeatedly spanned over the cells. The

probability ps (n1, n2) was estimated as:

ps (n1, n2) =
t (n1, n2)

ttot
, (2.4)

where t (n1, n2) was the accumulated time spent in the state (n1, n2) and ttot is the total

time of the trajectory simulated. Similarly the rates were estimated as:

w
(
n1, n2;n′1, n

′
2

)
=
N (n1, n2;n′1, n

′
2)

ttot · p (n1, n2)
, (2.5)

with N (n1, n2;n′1, n
′
2) the total number of recorded jumps from (n1, n2) to (n′1, n

′
2). A

useful quantity to consider was the probability �ux j (n1, n2;n′1, n
′
2), which could be de�ned

from the Master equation as:

j
(
n;n′

)
:= −p

(
n′, t

)
w
(
n′;n

)
+ p (n, t)w

(
n;n′

)
. (2.6)

From this quantity we de�ned a vector j (n1, n2), which represented the net �ux of prob-

ability that exited from a cell, in agreement with eq. (2.5):

j (n1, n2) :=
1

ttot

(
N (n1, n2;n1 + 1, n2)−N (n1 + 1, n2;n1, n2)

N (n1, n2;n1, n2 + 1)−N (n1, n2 + 1;n1, n2)

)
, (2.7)

In the following image we illustrated the quantities introduced so far.
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2.1. Subdivision of the Con�gurational Space

Figure 2.4: Illustration of the dynamics near a cell. A cell is indicated by one index for
each dimension, i.e. n = (n1, n2). At every side it has an outward w (n;n′) and inward
w (n′;n) rate. Finally every cell has a �ux vector j attached, which represents the direction
and intensity of the net probability �ux.

With the coarse-graining procedure we have de�ned in the previous pages we developed

a tool to identify non-equilibrium. Indeed using the fact that when a system reaches

thermodynamical equilibrium, not only it becomes stationary in time, but also it requires

that transition rates between any two states to be pairwise balanced, we have:

j
(
n;n′) = 0 ∀n,n′ ⇐⇒ equilibrium.

The previous statement is called detailed balance principle, and its connection to entropy

and non-equilibrium was �rst discovered by Boltzmann [24]. Therefore, to show if the

system was in equilibrium or not, we needed only to calculate j (n) for every cell, using

the expression in (2.7), and see if the �uxes were all zero. For example, in the next �gure

we plotted a ��ux map�, i.e. the �ux vector j (n) at every cell. It's possible to see without

further analysis that the system was out of equilibrium because these �uxes were clearly

present and formed a vortex around the center.
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2. Coarse Graining

Figure 2.5: Example of probability �ux map. For every cell we calculated its �ux j that
we plotted here as an arrow. A non-zero vorticity of the �uxes indicates broken detailed
balance, so this system was out of equilibrium (indeed we used T1 = 1 and T2 = 2).

The discussion we have done so far allows only to discern equilibrium from non-

equilibrium. What remains now is to quantify the non-equilibrium. We are going to

do that in next part of this section, by calculating the total entropy production rate, in

analogy to what we have done in the previous chapter. Now it's not clear if the entropy we

are going to calculate will di�er from the previous quantity, because when we introduced a

coarse-graining we basically gathered di�erent microstates into discrete states, leading to

a loss of information and a change in the amount of disorder of the system. The e�ects of

the coarse-graining procedure are illustrated in chapter 3.

The entropy of the system can be de�ned as anology to the Langevin case:

Ssys (t) := − log p (n (t) , t) , (2.8)

with p (n (t) , t) the solution to the master equation (2.3) applied to a single trajectory n (t).

The entropy of the medium instead can be derived considering the time reversal conterpart

of our trajectory. Let's call γ the trajectory formed by the succession of occupied states

(cells) n0,n1,n2, . . ., and γ the reversed trajectory. Then it's possible to show that the

ratio of the probabilities of the direct trajectory γ and the reversed counterpart γ̄ is [25]:

P (γ)

P (γ̄)
=
∏
i

w (ni;ni+1)

w (ni+1,ni)
. (2.9)

This ratio can be associated to the variation of the entropy of the medium during the

trajectory [3]:

∆Sm = log
P (γ)

P (γ̄)
, (2.10)
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2.2. Projecting Degrees of Freedom

so we can identify an entropy production due to a single transition ni → ni+1 as:

dSm = log
w (ni;ni+1)

w (ni+1,ni)
. (2.11)

The total entropy production was therefore given by the sum of the two term we just found:

∆Stot = ∆Ssys + ∆Sm. (2.12)

In the steady-state the contribution at the total entropy production rate due to the system

is zero, so we have:

σ =
〈
Ṡtot

〉
=
〈
Ṡm
〉

=
∑
n,n′

ps (n)w
(
n,n′) log

w (n,n′)

w (n′,n)
. (2.13)

It's possible to prove that σ can be written also with the following formula:

σ =
∑
n,n′

ps (n)w
(
n,n′) log

ps (n)w (n,n′)

ps (n′)w (n′,n)
. (2.14)

This equation shows clearly that the breaking of detail balance is the cause of the entropy

production. To conclude, in this section we showed how to determine if the system satis�es

detail balance, and so equilibrium, by plotting the probability entropy �uxes. Then with

eq. (2.13) we are able to quantify how far drom equilibrium is the system.

2.2 Projecting Degrees of Freedom

It is important to note that for a system in steady-state dynamics, broken detailed

balance is direct evidence of non-equilibrium, but showing that a system obeys detailed

balance in a subspace of coordinates is insu�cient to prove equilibrium. Indeed, even

for systems out of equilibrium, broken detailed balance is not necessarily apparent at the

supramolecular scale [26]. In this section we worked with a system with more than two

degrees of freedom, and we showed exactly what happens when one or more of these are

ignored.

Let's suppose, without loss of generality, to have a system of three beads in a row,

like the example we showed in chapter one. Then we could perform the same coarse-

graining procedure we have done for the two-dimensional case. The only di�erences are that

the con�gurational space is three-dimensional, the cells are cubic boxes with six adjacent

boxes, etc. Basically the same results we achieved in the previous section are still valid, in

particular the results for the entropy production rate σ (eq. (2.13)) and the fact that the

system is in equilibrium if and only if the three-dimensional probability �uxes are all zero.

In other words, if we were able to observe the stochastic motion of all beads in the system,

we could measure the full probability current and extract information about the complete
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2. Coarse Graining

non-equilibrium dynamics of the system. However, we wanted to study what happens by

only tracking two of the three beads in the chain. This analysis tries to describe a typical

experiment where only a small subset of the degrees of freedom can be tracked.

When we completely forget one of the beads, we have only two degrees of freedom and

we recover the situation of the previous section. Moreover, we can repeat the analysis

three times, in each case ignoring a di�erent bead. In the end, we have three di�erent

�ux maps and three di�erent σ's. The �ux maps can all be thought as a projection of

the three-dimensional �uxes onto the planes perpendicular to the direction of the ignored

degree of freedom, so we decided to represent these �uxes in �gures such as the following

example.

Figura 2.6: Projection of the 3-dimensional �uxes into the Cartesian plans. In the plane
x1 × x2 we have the �ux map in the case we don't track x3, etc for the other planes.
Temperatures: T1 = 1, T2 = 2 and T3 = 3.

Let's calculate instead the entropy production rate σi when we ignore the i-bead in
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2.3. Sampling the data

the chain. For example, assuming the elimination of the third bead (the rightmost one),

we can �nd, after integrating x3 from the total Fokker-Planck equation, that the system

is described by a multivariate steady-state probability density ρ̃s (x̃) and probability �ux

j̃
s

(x̃), with x̃ = (x1, x2) given by:

ρ̃s (x̃) =
1

2π
√

det C̃
e−

1
2
x̃·C̃−1x̃,

j̃
s

(x̃) = Ãx̃ρ̃s − D̃∇̃ρ̃s,

with the matrixes given by:

Ã =

(
A11 A12

A21 A22

)
+

(
A13

A23

)(
C31 C32

)( C−1
11 C−1

12

C−1
21 C−1

22

)
, (2.15)

D̃ =
1

ζ

(
T1 0

0 T2

)
, (2.16)

which can be thought as an e�ective interaction matrix Ã ∈ R2×2 and e�ective di�usion

matrix D̃ ∈ R2×2 for the reduced system composed by the �rst two beads. Finally it's

possible to prove the following inequality:

σ − σ3 =

∫
dx
js (x) ·D−1js (x)

ρs (x)
−
∫
dx̃
j̃
s

(x̃) · D̃−1j̃
s

(x̃)

ρ̃s (x̃)
≥ 0,

after expliciting all the integrands [12]. This means that σi ≤ σ (for the general bead)

with σ the entropy production calculated without losing degrees of freedom. This result

is somewhat obvious, because by losing degrees of freedom we lose also information on

the system and so entropy. In the extreme case of keeping track of only one bead, the

entropy production is zero, as we showed that this sub-system alone is undistinguishable

from equilibrium.

In the next chapter we show some interesting cases where by eliminating a bead the

manifestation of the non-equilibrium properties changed drastically.

2.3 Sampling the data

In this section we studied the e�ects of the Markovianity assumption on the Master

equation dynamics. In particular we are going to introduce a coarse-graining method

with the intention to make more valid this memoryless assumption. In the next chapter

we proved in detail that the dynamic is indeed non-Markovian, using two methods: (i)

showing that the time of permanence in a cell is not exponential; (ii) showing that the

jumping rates depend directly from the memory.

First of all, we need to introduce a new set of states and rates that keep track of some
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2. Coarse Graining

Figure 2.7: The blue points are x (ti), the simulated evolution of the system, and the blue
line is the line connecting these points. In red the trajectory using Nt = 2, i.e. by jumping
avery two points.

memory, and we decided to consider only the last cell occupied di�erent from the present

one. Therefore, from now on a state of the system at time t is described by the three

following indeces: n1 and n2 which express the position of the cell at time t, and

α ∈ {”up”, ”down”, ”right”, ”left”} ,

which stands for the position of the previous cell relative to the present one. To better

explain the concepts in this section we illustrated an example in �gure 2.7, plotting in blue

the simulated trajectory of the system. In this example, at point labelled by t0, the state

is given by (n1, n2, α) = (n1, n2, ”right”). The probability of being in the state (n1, n2, α)

is P (n1, n2, α), and it was estimated it by dividing the number of times the trajectory

occupied this state by the total points in the trajectory, as it was done in the previous

analysis. The total probability of a cell is thus

P (n1, n2) =
∑
α

P (n1, n2, α) .

In the example, assuming that previously the trajectory was on the left and in no other

time them trajectory passed again in this cell, we have P (n1, n2, ”right”) = 6/N with

N the total length of the trajectory. Finally, we considered the rate of going from state

(n1, n2, α) to state (n′1, n
′
2, α
′) using the notation w (n1, n2, α, β), where

β ∈ {”up”, ”down”, ”right”, ”left”}

is the possible direction of the jump, e.g. β is the opposite of α′ in this notation. In the

example, using the available points w (n1 + 1, n2, ”left”, ”left”) = 2/ (9 ·∆t).

Now that we have completely de�ned a method that takes into account a memory
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2.3. Sampling the data

e�ect on the dynamic, we can study the e�ect of the memory and how to reduce it. If

the dynamic were Markovian we would have w (n1, n2, α, β) = w (n1, n2, α
′, β) for α 6= α′,

but this was not generally the case. As a way to measure the importance of this e�ect of

memory, we decide to consider the following �gure of merit:

f :=
∑
n1,n2

∑
β

P (n1, n2)
sdα [w (n1, n2, α, β)]

meanα [w (n1, n2, α, β)]
, (2.17)

where sdα and meanα are the standard deviation (the square root of the variance) and

the average of the rates varying the index α. The second factor of f is a measure of how

much di�erent are the rates with respect to the memory. The �rst factor is the probability

of the cell and is introduced to weight more the states that are more important in the

dynamic. For a Markovian process f = 0 because the rates are equal with respect to α

(such that sdα (w) = 0). It's possible to say then that a system with lower f than another

is �more Markovian�. So we can modify our system trying to minimize f , with the e�ect

of reducing the (unwanted) importance of memory.

To do so, we introduce a �coarse-grain on the time� by keeping track of only some posi-

tions along the trajectory. In particular, if we have a trajectory x0,x1,x2, ..., with xn cal-

culated at time tn = n∆t, we can always reduce to a new trajectory that is x0,xNt ,x2Nt , ...,

i.e. using only a subset of points of the initial trajectory. In �gure 2.7 I illustrated the

case with Nt = 2. Clearly, by changing Nt, every quantity described previously can vary.

Indeed, for instance, the rates can change drastically, as its clear by looking at the �gure.

In the next chapter we show the results of entropy and memory-e�ects when the �gure

of merit is minimized. Since the dynamics with the best Nt veri�es more closely the as-

sumption of Markovianity that is needed in the calculations we have done previously, we

expect that the values of σ are closer to what we have calculated analytically. This will

prove that an additional coarse-grain is needed to �nd results compatible with stochastic

thermodynamics.
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Chapter 3

Results

In this �nal chapter we are going to show some signi�cative examples of the methods

we introduced previously. In the �rst section we worked with the Probability Flux Analysis

we described in sections 2.1-2.2. Basically we chose various cases where the e�ect of coarse-

graining was more evident, to show how it a�ects the properties of the system. Depending

on the e�ect we wanted to study, we chose a particular model among those introduced

in chapter 1, �xed the parameters (i.e. the temperatures) and performed the simulation

and coarse-graining procedure of chapter 2. The purpose of this section was to test if

the probability �ux analysis could be a method to probe the system for non-equilibrium

behaviour.

In the section 3.2 we showed the results regarding the property of Markovianity of

the coarse-grained trajectory and the sampling of data procedure we discussed in section

2.3. After a �rst part where we reported the tests to prove the non-Markovianity of the

system, we applied our sampling procedure to some interisting cases. The purpose of this

last section was to test if using this method it is possible to recover a quantitative correct

value of the entropy production rate.

3.1 Probability Flux Analysis

In the last chapter we already showed what we called a ��ux map�, i.e. a plot of

the con�gurational space (x1 × x2 for a two-beads system) divided in cells with an arrow,

representing the �ux of probability exiting from the cell, attached to each one. We made

the claim that it was possible, from looking at the plot, to decide if the system was in

equilibrium or not. In principle we can say that if there are non-zero �uxes, the system

breaks detail balance and so it is out of equilibrium. Vice versa, if all the �uxes are zero

the system is in equilibrium. In this section we put this claim to the test.

More precisely the expression �non-zero� must be used carefully. Indeed, the �nite

length of experimental or computer-simulated trajectories limits the accuracy with which

we can estimate �uxes in con�gurational space. This is because a short trajectory does not

31



3. Results

travel across the cells enough times to generate a good statistics of jumps from which we can

calculate the �uxes. Therefore, it is important to determine if the estimated currents are

statistically signicant from zero. The method we use consists in repeating the simulation

more times in order to have a large set of di�erent and independent trajectories. Let's call

ji (n) = (j1,i (n) , j2,i (n)) the vector �ux calculated from the i-th generated trajectory for

cell n. Then from this set of values one can study the statistics of the �uxes: we decide

to use as global �ux j̄ (n) the average of the set, and as a test to measure the discrepancy

from zero the value: √(
mean (j1,i)

sd (j1,i)

)2

+

(
mean (j2,i)

sd (j2,i)

)2

, (3.1)

also called compatibility with zero [27]. The compatibility measures how many �sigmas�

of di�erence there are between the average of a set and zero. If the compatibility has a low

value, i.e. less than 2, we can conclude that the set of �uxes is not statistically di�erent

from zero. To conclude, we make a �ux map using for each cell an arrow with length j̄ (n)

and with a color that indicates its compatibility.

We start our analysis using the simplest model of two beads with no active forces,

and we expect to see �uxes statistically di�erent from zero only when T1 6= T2. Some

parameters of the system are not important in this analysis so we decided to �x them

throughout all the simulations to the following values: k = 1, ζ = 1, kB = 1. The timestep

of the simulation was typically ∆t = 10−3÷−4 and the total length of the trajectory was

109÷10∆t. The timestep value was chosen with the intention of making the average jump

smaller than the width of the cell ∆x ∼ 0.1.

Figura 3.1: Two beads with no active force and T1 = T2. Grid size ∆x = 0.4. The color of
the arrows represents the compatibility (eq. (3.1)).
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The trajectory length instead was chosen long enough as to provide a good statistic. In

the two plots here we illustrate two exemplary cases: in the �rst (�g. 3.1) the temperatures

are T1 = T2 = 1, in the second (�g. 3.2) T1 = 1 and T2 = 2. We can clearly notice how the

plots prove the assertion we made before: in the case of equilibrium the �uxes are nearly

zero, and are also pointing at random directions, reinforcing the idea that there is no net

�ow of probability; in the case of non-equilibrium all the �uxes are signi�cantly di�erent

from zero, and they make a pattern in the con�gurational space. As shown in the legend

of the �gures, the absolute value of the �uxes in the �rst case was smaller (by nearly an

order of magnitude) than the second case. The particular value of the equilibrium case

is connected to the trajectory length, in particular when the trajectory increases the �ux

diminishes, because the statistic improves and we approach the correct value of zero �uxes.

Figura 3.2: Two beads with no active force and T1 = 1, T2 = 2. Grid size ∆x = 0.4. The
color of the arrows represents the compatibility (eq. (3.1)).

We reported below two additional cases regarding the two-beads system. In the �rst

(�g. 3.3) we modi�ed the spring constants and drag friction coe�cients to obtain an

asymmetric system. From a simulation with T1 = T2 it results an equilibrium �ux map,

therefore proving that the result obtained before was not a conclusion of symmetry, and

that this method works also for asymmetric systems. In the next case (�g. 3.4) we used a

symmetric system with the two beads at the same temperature but adding an active force

to both. The result shows that an active force is a source of non-equilibrium behaviour.

The breaking of detailed balance in this case does not arise from energy exchange between

the beads, but rather from how stochastic motor forces induce position correlations.
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3. Results

Figura 3.3: Asymmetric two beads system with no active force T1 = T2 = 1. The spring
constants were in order from left to right 2, 1 and 1, and the drag coe�cients ζ1 = 1 and
ζ2 = 2. Grid size ∆x = 0.4. The color of the arrows represents the compatibility (eq.
(3.1)).

Figura 3.4: Two beads with active force (f0 = 10 and τA = 10) to both beads and
T1 = T2 = 1. Grid size ∆x = 0.4. The color of the arrows represents the compatibility
(eq. (3.1)).
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In this last part of the section we reported some results related to the system with

three beads and the projection in the con�gurational space. Technically the simulation

and analysis of a three-dimensional (or more) system is the same as a two-dimensional

one, and the same conclusions as before can be obtained. Anyhow, as already explained

in the previous chapter, in this thesis we tried to study the e�ect of neglecting degrees of

freedom (DoF) by keeping track of only a subset of these. We performed this analysis by

projecting the three-dimensional �uxes into a plane perpendicular to the DoF eliminated.

The three possible choices of these planes can all be represented in the same plot as shown

in the previous chapter (�g. 2.6). Therefore from these plots it is possible to determine if

a particular DoF is essential to spot a non-equilibrium behaviour or not.

Figura 3.5: Three beads in a line system. No active forces and T1 = T2 = T3 = 1. Grid
size ∆x = 0.5. The color of the arrows represents the compatibility (eq. (3.1)).

We decide to use as �rst system the three beads on a line with no active forces (�g. 1.3).

The irrelevant physical parameters were put to the same values as the two-bead system,
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so the important values are only the three temperatures. If these have all the same value,

then the system is clearly in equilibrium, and, accordingly, all the three planes show no

signi�cant �uxes (�g 3.5). Instead, if one bead has a di�erent temperature from the other

two, then there are two possible cases depending on whether the bead is one at the ends

of the chain (�g. 3.6) or the one in the middle (�g. 3.7).

Figura 3.6: Three beads in a line system. No active forces and T1 = T2 = 1 and T3 = 2.
Grid size ∆x = 0.5. The color of the arrows represents the compatibility (eq. (3.1)).
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3.1. Probability Flux Analysis

Figura 3.7: Three beads in a line system. No active forces and T1 = T3 = 1 and T2 = 2.
Grid size ∆x = 0.5. The color of the arrows represents the compatibility (eq. (3.1))

In the �rst case (�g. 3.6) the �ux map shows that the system's non-equilibrium beha-

viour is noticeable from each plane: even by looking only at the 1st and 2nd beads, which

are at the same temperature, we can conclude that the system is out of equilibrium. In

the second case the di�erent bead is the one in the center (the 2nd): the system is out of

equilibrium but that is evident only by looking at planes x1 × x2 and x2 × x3. Indeed the

plot shows that the �uxes computed by tracking only the beads at the extremities aren't

statistically di�erent from zero, and moreover have random directions. This behaviour is

caused by the symmetry of the system and it does not appear in presence of asymmetries.

Nevertheless this is not a case that we can overlook, and therefore we have to conclude

that when we have not traced all the DoF a �ux map that shows an equilibrium bahaviour

can possibly conceal a non-equilibrium system. Instead, it is obvious that if the �ux map

shows a non-equilibrium behaviour, then the only possible conclusion is that the system is

truly out of equilibrium.

37



3. Results

In the next �gures we reported more cases, these times removing the thermal gradient

(T1 = T2 = T3) and adding active forces to some beads. Figure 3.8 and 3.9 are the

equivalents respectively of �g. 3.6 and 3.7. They show that the analyses and conclusions

we have reached so far using a thermal gradient as source of non-equilibrium are generally

the same as when we use active forces, therefore indicating that our approach to the study

of non-equilibrium is suitable to very general systems. In �gure 3.10 we used instead an

asymmetric system, showing that the reason we couldn't detect non-equilibrium in the

previous case was indeed due to the particular symmetry.

Figura 3.8: Three beads in a line system. T1 = T2 = T3 = 1 and active force (f0 = 10 and
τA = 10) on the 1st bead. Grid size ∆x = 0.5. Same �ux scale on all planes. The color of
the arrows represents the compatibility (eq. (3.1)).
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3.1. Probability Flux Analysis

Figura 3.9: Three beads in a line system. T1 = T2 = T3 = 1 and active force (f0 = 5 and
τA = 1) on the 2nd bead. Grid size ∆x = 0.5. Flux scale of plane x1×x3 is 5× the others.
The color of the arrows represents the compatibility (eq. (3.1))
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Figura 3.10: Asymmetric three beads in a line system. Three di�erent drag coe�cients:
ζ1 = 0.5, ζ2 = 1 and ζ3 = 2. T1 = T2 = T3 = 1 and active force (f0 = 5 and τA = 10) on
the 2nd bead. Grid size ∆x = 0.5. Same �ux scale on all planes. The color of the arrows
represents the compatibility (eq. (3.1)).

3.2 Entropy and Markovianity

In this section we are going to show the results regarding the entropy production

rate and the coarse-graining method that consists on sampling the data. It is possible

to notice that without this method the entropy production rate σ calculated from the

discretized trajectory is di�erent from the theoretical one σth calculated using stochastic

thermodynamics. Our claim is that the error stands in the assumption of Markovianity

used to calculate σ, and in the �rst part of this section we are going to prove that the jumps'

dynamic is indeed non-Markovian. Next, we will use the sampling method described in

section 2.3 to increase the level of Markovianity, and we will �nd that this procedure
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3.2. Entropy and Markovianity

increases the accuracy of σ as well.

To prove that the jumps' dynamic is non-Markovian we use two methods:

1. by simply looking at the rates w (n1, n2, α, β) we can notice that there is a dependence

on the index α which represents the previous cell occupied: this is a direct evidence

of a memory property; this is the reason why the values of the �gure of merit f

reported in the following part are greater than zero;

2. by looking at the time of permanence t in a cell: in the Markov case it should have

an exponential distribution ∝ exp (−t/τ), whereas in our case we �nd a di�erent

distribution for short times; in the next �gure we reported an example.

Figura 3.11: Distribution of the time permanence in a cell (notice the log-scale in the
y-axis).

We now apply the sampling method to the case of two beads at di�erent temperatures and

no active forces. We can choose for example the case of T1 = 1 and T2 = 2, and all the

other parameters set as 1. The theoretical entropy production rate is given from eq. (1.33)

and is σth = k
4ζ

(T1−T2)2

T1T2
= 0.125. Changing the sampling parameter Nt (the number of

∆t-jumps to skip) we obtaine di�erent trajectories from which we can calculate the Figure

of Merit f (eq. (2.17) ) and the σ (eq. (2.14)). The numerical results are reported in the

tables below. These values are also represented in the near �gures, where on the horizontal

axis there is Nt, on the left vertical axis the �gure of merit f , and on the right vertical axis

the entropy production rate σ. The horizontal dotted line is the true value of the entropy

production rate σth. The vertical line has a Nt-value which correspond to the minumum

of f .
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Nt f σ

1 4.794 0.0173

20 1.728 0.0622

30 1.382 0.0752

40 1.186 0.0860

50 1.077 0.0955

60 1.022 0.1040

70 1.000 0.1116

75 0.996 0.1153

80 0.997 0.1187

85 1.000 0.1220

90 1.005 0.1252

100 1.021 0.1313

110 1.041 0.1372

Figure 3.12: Temperatures T1 = 1 and T2 = 2. Intervals ∆t = 10−4 and ∆x = 0.2.

Nt f σ

10 1.186 0.1001

15 1.020 0.1189

17 1.000 0.1254

19 0.993 0.1317

20 0.993 0.1346

25 1.016 0.1484

30 1.056 0.1606

40 1.152 0.1817

Figure 3.13: Temperatures T1 = 1 and T2 = 2. Intervals ∆t = 10−4 and ∆x = 0.1.
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Nt f σ

1 1.842 0.0194

2 1.257 0.0268

3 1.029 0.0325

4 0.950 0.0372

5 0.942 0.0413

6 0.968 0.0450

7 1.008 0.0484

Figure 3.14: Temperatures T1 = 2 and T2 = 3. Intervals ∆t = 10−3 and ∆x = 0.2.

From the examples shown it is possible to notice that generally the σ computed from the

jumps' trajectory di�er signi�cantly from the correct value. In particular for small jumps

σ is lower than σth, and increases monotonically increasing Nt. The �gure of merit instead

shows an absolute minimum at a particular Nt. This represents the best value we can use

to minimize the memory e�ects of the dynamics. The important conclusion we can deduce

from these examples is that using this Nt, the σ computed from the simulation is very close

from σth. This is the proof that a good part of the discrepancy of the entropy production

rate is due to non-Markovian e�ects, indeed by reducing these e�ects (by minimizing f)

the value of σ approaches the correct value.

In the previous calculations we always used a small values for ∆x (0.2 for �g. 3.12

and 3.14, 0.1 for �g. 3.13), such that the coarse-graining of the con�gurational space

was not �drastic�. We can ask ourselves what happens if we increase ∆x: naturally

we expect a greater discrepancy between the countinous trajectory and the discretized

one. In particular, since a cell will gather more microstates and eliminate dynamics at

increasingly larger scales, we expect that the entropy production rate will be smaller than

the theoretical one. This is indeed the case, as it is possible to notice from the example

reported in �g. 3.15, where using ∆x = 0.8 the computed entropy was σ = 0.0745,

compared to σth = 0.125. This argument shows the importance of the resolution of an

instrument in the measurement of the non-equilibrium properties of a system.
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Nt f σ

90 1.070 0.0713

100 1.057 0.0732

110 1.054 0.0745

120 1.061 0.0755

130 1.074 0.0766

Figure 3.15: Temperatures T1 = 1 and T2 = 2. Intervals ∆t = 10−3 and ∆x = 0.8.
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In this thesis we have discussed the problem of establishing how di�erent coarse-graining

procedures a�ect the dynamics of a non-equilibrium system. In particular we worked with

numerical simulations of models with few degrees of freedom in order to be able to compare

simulations with analytical results. We presume however that the general results found in

this thesis are also valid for more generic and realistic systems.

The �rst question we tried to answer was if it is possible to determine if a system is out

of equilibrium by only �looking� at it, as we were trying to simulate a �non-invasive� expe-

riment. It was easily proved that recording just one degree of freedom is not su�cient to

draw conclusions, because even out of equilibrium the time series of random displacements

were individually still indistinguishable from those found in equilibrium dynamics. In

particular, displacements can maintain a Gaussian distribution even in a non-equilibrium

situation. Instead, by looking at multiple degrees of freedom it is possible, in the majority

of cases, to test for violations of detailed balance using the probability �ux analysis, as it

was done in ref. [13]. However, we found that in some cases, when there was a particular

simmetry and we neglected some degree of freedom, this method infers equilibrium even

when there is not. These results, if carried out in further research, could be useful in shed-

ding light on the contingent e�ects of discarding degrees of freedom, which can be thought

as a coarse-graining method present in most models and experiments.

The �nal result we obtained concerns a more quantitative characterization of non-

equilibrium. We tried to quantify how much a system is out of equilibrium by means of

the entropy production rate, a quantity easily calculated from the microscopic physical

parameters. However, we were interested in a method to calculate this quantity by only

monitoring the con�gurations of the system, like in a microscopy experiment, i.e. without

knowing the parameters of the model. An expression was found only in the assumption of

Markovian dynamics, which though con�icts with the discretization of the space in cells. A

solution that solves this problem was found by adding an additional coarse-graining that

samples the time series. At the end, it was possible to �nd an estimate of the entropy

production rate comparable with the true value. This proves that our analysis can be used

to �nd quantitative results regarding non-equilibrium in an experiment where the only

accessible quantities are the trajectories of the degrees of freedom.
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