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Introduction

Back in the fifties, soon after the second world war, electronic computing machines draw in-
creasing interest in the scientific community thanks to their capability to solve problems of
unprecedented complexity. In the 1955 milestone article "Studies of non linear problems", E.
Fermi, J. Pasta and S. M. Ulam, studied with the MANIAC I computer in Los Alamos labs the
dynamics of a linear chain of 64 classical anharmonically coupled oscillators. The simulation
highlighted "very little, if any, tendency of equipartition of energy among the degrees of free-
dom". In his memories Ulam recalls the amazement of Fermi when the first results were plotted
and reports Fermi’s belief that future fundamental theories may involve nonlinear operators. In
absence of closed analytical solution the role of computing machines would have been to lead
the physicist where complexity overwhelmed intuition.

In the last fifty years the art of scientific computing grew hand to hand with extraordinary
technological improvements and increasing computational power allowing giant steps in the
comprehension of nature’s complexity. Where a classical Turing machine, like our desktop
PC, is well suited to simulate a classical system, a quantum computer is needed to efficiently
emulate a quantum system. The core of this idea dates back to 1982 when R. Feynman -with
impressive foresight- demonstrated the exponential slowdown of classical boolean algorithms
when addressing collective quantum phenomena. This led D. Deutsch to the idea of Universal
Quantum Computer in 1985 and to the demonstration in 1996 by S. Lloyd that a quantum com-
puter can be programmed to simulate any local quantum system.

Nowadays an universal quantum computer challenging silicon technology has never been built.
While part of the scientific community focus on a bottom-up approach pursuing the search for
new Q-bit and Q-gates schemes and works to link them in a quantum network (Digital Quantum
Computing), another part got interested in Analog Quantum Emulation. This latter approach re-
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lies on simulating the dynamics of a quantum system of interest with another system that is
easier to control and measure. In the last decade various system were successfully implemented
such as trapped atoms and ions, superconducting circuit networks and coupled photonic res-
onators [1]-[2]-[3]-[4].

These systems can emulate some of the most celebrated lattice hamiltonians of manybody quan-
tum physics i.e. Bose-Hubbard [1]-[5] and Heisenberg-Ising ones [6]. In this manuscript we
will focus on Bose-Hubbard like systems modeling interacting bosons on a lattice, where a rich
phenomenology stems from few fundamental "ingredients": confinement, coupling between
sites and on-site interactions. While these requests perfectly fits with ultracold atoms charged in
an optical lattice, both superconducting circuits and photonic systems are intrinsically lossy, em-
ulating a more general model recounting for driving and dissipation. This makes these systems
complementary to trapped ions or cold atom systems by naturally accessing non-equilibrium
physics. Among these photonic systems, cavity polaritons are emerging as a tunable and robust
experimental platform.

Polaritons are bosonic quasiparticles arising from the strong coupling of cavity photons and
quantum well excitons which can be excited in semiconductor based heterostructures consist-
ing of a Fabry-Peròt Cavity formed by two distributed Bragg reflectors and a spacer embedding
a quantum well [7]-[8]. By tuning the energy of a cavity mode in proximity of an optical transi-
tion in the quantum well, these two eigenstates may experience energy exchange cycles trough
repeated emission and absorption processes. Strong coupling is achieved whether the energy
exchange rate exceeds all the losses and the system fundamental excitations can be effectively
written in terms of mixed states we call polaritons inheriting properties of both the matter and
of the light field. The excitonic component provides effective interactions in the form of a Kerr
type χ3 nonlinearity while the photonic component both provides a way to confine polaritons
-if refractive index landscape is engineered- and a probe to measure the system trough its spon-
taneous emission.

Since their first experimental observation in 1992 exciton-polaritons drew great interest in the
scientific community: the polariton states excited in a planar heterostructure can be regarded as
a 2D gas of interacting photons with characteristic values of χ3 much greater than standard non-
linear optical materials. Up to extremely high excitonic densities, polaritons can be treated as
bosons with a very low effective mass∼ 10−5 me− , inheritance of the cavity photon, thus having
large de Broglie wavelength. This allows polaritons to condense [9] and form a macroscopically
coherent states in a range of temperatures between few kelvin degrees ad room temperature [10].
Superfluidity [11], topological excitations [12], vortex nucleation [13], solitons [14]-[15], spin
Hall effect [16]-[17] and coherent condensate propagation were also observed. Thanks to this
rich phenomenology polaritons were given the evocative name of "Quantum Fluids of Light"
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[8]. Moreover many effects analogue to χ3 nonlinear optics have been experimentally observed
in polariton systems such as optical parametric oscillations [18]-[19]-[20]-[21], squeezing [22]-
[23], optical bistability [24] and multistability [25].

Polaritons are intrinsically an out of equilibrium system and all their observables can be mea-
sured trough the spontaneous emission since a one to one correspondence between cavity po-
lariton and free space modes is imposed by energy and momentum conservation thanks to the
in plane traslational symmetry of the system. Therefore the polariton dynamics can be probed
both in real and momentum space and resolved in energy and time by means of optical mea-
surements.

In this manuscript we addressed experimentally the properties of the fundamental building
blocks of an analog simulator on a lattice where the sites are embodied by micropillar structures
where polaritons get completely spatially confined. The aim of this manuscript is to present
gradually all the elements needed to appreciate the two novel results presented hereby:

• We demonstrated that the pillar’s on-site Kerr nonlinearity can be tuned by modifying
the sample temperature, moreover a semi-empirical but comprehensive theoretical model
is presented having the merit of being analytical. This result paves a way to address
the intriguing but elusive physics of unconventional photon blockade [26]-[27] which
dramatically depends on the absolute value of the nonlinearity.

• We report the first experimental observation of a tunneling-induced parametric instability
in the steady state of two coupled micropillars where the interplay of the nonlinearity with
the hopping among the two sites triggers a parametric scattering process which resonantly
creates a signal and idler field. The interference of the pump, signal and idler fields results
in a dynamical self-pulsing of steady state. This preliminary result interestingly suggests
a way to generate squeezing and entangled polariton pairs.

CHAPTER ONE is a general introduction to microcavity polaritons. In the first section the phys-
ical distinction between the weak and strong coupling is discussed and the consequences of
strong coupling on the fundamental excitations of a two-level system are investigated. Exciton-
polaritons are mixed light-matter states: the second and third section discuss in detail their
properties. The fourth section dedicates to the formal description of the polariton states and the
mean field equations describing the polariton dynamics in a planar semiconductor microcavity
are derived.

CHAPTER TWO describes the sample fabrication process involving Molecular Beam Epitaxy,
Electron Beam Litography and an Inductively Coupled Plasma dry etching. A second part is
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devoted to the description of the setup and of the measurement techniques employed in the
experiments.
CHAPTER THREE introduces the reader to the experimental characterization of the polariton
dispersion in a planar cavity, which is the natural starting point to understand the physics of
a confined polariton gas. The second section shows how polariton can be laterally confined in
micron-sized pillar structures. The confinement results in a discretization of the polariton states,
this discrete level structure can be engineered by tuning the pillar section. In the third section
we measure the polariton-polariton interaction constant dependence on the sample temperature.

CHAPTER FOUR is devoted to the rich phenomenology of two coupled pillar structures, which
we call a photonic dimer molecule. Both the linear and nonlinear physics of the dimer is exper-
imentally investigated. We show how this simple system can be mapped to a two-site driven-
dissipative Bose-Hubbard model. We measure two distinct nonlinear phenomena: the Optical
Limiter and Bistable regime. The last section presents the first experimental evidence of a para-
metrical instability resulting from the interplay of the hopping and nonlinear term in the dimer
Hamiltonian.



CHAPTER 1

Light-Matter Coupling

Since it’s dawn modern optics demonstrated itself as unique probe of physical phenomena:
diffraction and interference of a coherent source can be used to build measurement schemes
such as spectrometers and interferometers allowing unprecedented precision. The ever growing
perfection of these techniques culminated few month ago in the first measurements of Gravita-
tional Waves from the LIGO-VIRGO experiment [28].

Tough powerful probes, photons manybody physics itself lacks the richness of many other sys-
tems because photon photon interactions in vacuum are vanishingly small from NIR to UV light
spectrum. Indeed the interaction can be only happen trough virtual lepton pairs excitations ll of
the vacuum field, but the photon energy for visible light is more than five orders of magnitude
smaller than the rest mass of electron-positron pairs (which are the lighter leptons). Therefore
the overlap of the electromagnetic field with virtual ll vacuum excitations is strongly inhibited.
From the Euler-Heisenberg effective Lagrangian the cross-section reads in units of h̄ = c = 1

σ(γγ → γγ)∼ α4s3

m8
l
∼ 10−41(h̄ωγ)

6 barn (1.1)

where α is the fine structure constant, s the squared energy in the center of mass and ml the rest
mass for a given lepton excitation. On the contrary, matter interacts at much higher rates both
with matter and with light. One can then imagine to take advantage of light-matter interactions
to form a mixed state, which may eventually interact with other mixed states trough matter-
matter interactions. Such hybrid states result from the strong coupling of light and matter fields
which can be pictorically seen as a photon "dressing" a matter excitation.
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The essence of strong coupling is energy exchange between a light and matter excitations. How-
ever in most of the experimental situations light matter interaction is not a reversible process
because the optical transitions couple a two level matter system to a continuum of final states.
Once the system has left its initial state the probability of finding it back in its initial state de-
creases exponentially with time as predicted by the Fermi golden rule [29]. This is the so called
Weak Coupling regime where the interaction of matter and light can be described within a per-
turbative approach.

Nevertheless is possible to engineer the free space modes in such a way the emission-absorption
process becomes reversible, in these conditions the Strong Coupling regime may establish. The
prototype system is an atom embedded in a cavity where an optical transition of the atom cou-
ples to one of the modes of the cavity in a quasi-resonant fashion. Indeed in this picture the
cavity photon can be repeatedly emitted and absorbed by the atom and the probability to find
the atom in its initial excited state follows a damped sinusoidal behavior, with a damping time
inversely proportional to the cavity quality factor[30]. The system fundamental excitation os-
cillates between the state |e,0〉, which have the atom in the excited state but no photons, and the
state |g,1〉 consisting of the atom in the ground state plus one cavity photon. These are usually
called Rabi oscillations and have a period inversely proportional to the coupling strength g. In
this picture the interaction cannot be threaten within a perturbative approach and the fundamen-
tal excitations of the system are mixed light matter states.

In 1992 Weisbuch and collaborators [7] achieved the light-matter strong coupling with semi-
conductor based heterostructures. In particular they embedded a semiconductor quantum well
(QW) inside a Fabry-Pérot microcavity, in which one longitudinal optical mode is resonant with
the QW excitonic transition.

In this chapter we will first try to make quantitative the above statements on the different cou-
pling regimes. We will discuss a criterion to discern between strong and weak coupling and we
will study a simple classical toy model which interestingly contains a lot of physics despite its
simplicity: two damped and coupled classical harmonic oscillators (CHOs). Moreover this toy
model is a very good starting point to understand the linear dynamics of two coupled polariton
microcavities (section 1.1). We will then address the formal description of the bare exciton
and cavity photon properties deriving the energy-momentum dispersion relation for these two
systems (respectively section 1.2 and 1.3). Finally we will describe the properties of the polari-
ton states deriving the two-mode dispersion relation and the mean field equations capturing the
polariton dynamics (section 1.4).
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1.1 Weak and Strong Coupling

Two damped coupled harmonic oscillators (CHOs) constitute a simple model where the phe-
nomena related to energy exchange and dissipation can be addressed in an intuitive picture. One
expects two different behaviours whether the energy exchange or the dissipation dominates the
dynamics of the CHOs leading to different coupling regimes. For two CHOs the discerning
elements of weak and strong coupling regimes are three

• the time dynamics of the CHOs shows energy exchange cycles or monotonous exponen-
tial decay

• the linear response steady state spectrum of the CHOs is characterized by a single or
splitted peak resonance

• the eigenfrequencies of the CHOs cross or anti-cross when the bare oscillators detuning
transits zero

from the above traits two different criteria are commonly used to identify the strong coupling
regime. The first one [31] is that the frequency splitting in the linear response spectrum (∝
coupling strength) needs to be higher than the sum of the linewidths (∝ loss rates). This cri-
terion is well suited for classical systems where the transition from weak coupling to strong
coupling regime has a smooth dependence on the CHOs parameters. A second one [32] defines
strong coupling the regime where the energy exchange rate between the two CHOs exceeds the
difference between the loss rates. This criterion is good when describing quantum rather than
classical oscillators because of the criticality of the transition between weak and strong coupling
in open quantum systems. Indeed here the transition is dictated by the convergence radius of
the perturbative series expansion of the coupling term as a function of the complex oscillator
detuning.

To better understand these features we start from the analysis of classical CHOs dynamics and
we move as a second step to the framework of two mode Non-Hermitian Hamiltonian (NHH).
We follow the false line of the pedagogical article by S.R.K. Rodriguez in Ref. [33], which is
rich of further references and strongly suggested for anyone who wants to deepen the knowl-
edge of this argument.

The simple analysis which follows is both interesting to understand the rich physics of strongly
coupled systems in a visual fashion, both sets the fundamental ingredients we will need in the
next chapters to describe coupled confined polariton condensates which can be mapped within
mean approximation in a nonlinear extension of the CHOs formalism. The linear dynamics of
CHOs we address in this chapter is therefore the natural starting point of this work.
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m1	 m2	

x1	 x2	

k1	 k2	κ	
γ1	 γ2	

Figure 1.1: Scheme of the two coupled harmonic oscillators, m1,2 are the oscillator masses, k1,2 and κ

respectively the oscillators and coupling spring Hook’s constant, x1,2 the displacement from equilibrium
positions and γ1,2 the loss rates due to the coupling of the system with the environment

Lets first take the two classical harmonic oscillators depicted in figure 1.1. In absence of an
external driving force the Euler-Lagrange equation of motion are

ẍ1 + γ1ẋ1 +ω
2
1 x1−Ω

2x2 = 0

ẍ2 + γ2ẋ2 +ω
2
2 x2−Ω

2x1 = 0 (1.2)

where ω j =
√

k j/m j, j = 1,2 are the bare oscillators eigenfrequencies and Ω =
√

κ/m∗ is the
coupling rate, m∗ the reduced mass of the coupled system. By canonical separation of these two
second order ordinary differential equations we can derive a first order system which has the
form

q̇ j = A j
i qi i, j = 1, ..,4 (1.3)

where we set q1 = x1, q3 = x2, q2 = ẋ1, q4 = ẋ2. The 4×4 matrix A has the form

A =


0 1 0 0
−ω2

1 −γ1 Ω2 0
0 0 0 1

Ω2 0 −ω2
2 −γ2

 (1.4)

The time evolution of the system can be easily evaluated if the (eventually generalized) eigen-
values and eigenvectors of the matrix A are known. Indeed from the Volterra integral represen-
tation of equation (1.3) for time independent Ai, j coefficients it is easy to show that the solution
of the Cauchy problem (1.3) with initial conditions q(0) = q0 at the time t is given by the flux
Φt(q0) = q0etA. In the simplest case where A ∈ Mn(C), the group of complex valued n× n
squared matrix, has n independent eigenvalues the exponential matrix can be calculated as



Chapter 1 9

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t / γ

E
To
t
/E

0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t / γ

E
To
t
/E

0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t / γ

E
To
t
/E

0

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t / γ

E
To
t
/E

0

0.995 1.000 1.005
0.0

0.2

0.4

0.6

0.8

1.0

ω /ω0

P
To
t(ω

)/
P
R
es

0.995 1.000 1.005
0.0

0.2

0.4

0.6

0.8

1.0

ω /ω0

P
To
t(ω

)/
P
R
es

0.995 1.000 1.005
0.0

0.2

0.4

0.6

0.8

1.0

ω /ω0

P
To
t(ω

)/
P
R
es

0.995 1.000 1.005
0.0

0.2

0.4

0.6

0.8

1.0

ω /ω0

P
To
t(ω

)/
P
R
es

Ω2

ω0 γ
= 0.1 Ω2

ω0 γ
= 0.5 Ω2

ω0 γ
=1 Ω2

ω0 γ
= 5

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	 (h)	

Figure 1.2: (a,b,c,d) shows the evolution of the reduced total energy ETot(t)/ETot(0) as a function of
the reduced time t/γ . We follow the color-code in figure 1.1 to identify oscillator one, which is initially
displaced from its equilibrium and oscillator two. From (a) to (d) we increase the value of the coupling
rate Ω, in the figure inset we report the value Ω2/ω0γ which represents the ratio between the loss rate
and energy exchange rate. The dotted black curve is the time evolution of the total energy for oscillator
one. If we set Ω = 0, in the plot scaled units, this time evolution has the form e−γt . The figures (e)-(h)
correspond to the steady state power spectrum dissipated by the oscillators when an harmonic force with
frequency ω is applied on oscillator one. From (e) to (h) it’s possible to observe a smooth splitting of the
system resonance, signature of the strong coupling regime.

etA = Φ(t)Φ(0)−1 (1.5)

if λ j, j = 1, ..,n are the eigenvalues of A and v j(λi) is the j−th component of the λ j-eigenvector,
then Φ(t)i, j is a matrix which elements are eλitv j(λi). For simplicity we focus on the case where
the oscillators parameters are equal, so that m1 = m2 = m∗ = m, γ1 = γ2 and ω1 = ω2 = ω . The
four eigenvalues of A are

λi =−
1
2

(
γ±
√

γ2−4ω2
0 ±4Ω2

)
(1.6)

The relevant quantity to address the interplay of coupling and damping over time is the total
energy of the two oscillators ETot = T +V where T is the kinetic energy of the oscillator and
V its potential energy. We chose k/m = 1 rad2 s−2 so that ω0 = 1 rad s−1 and γ = 10−3ω0, the
Cauchy initial conditions are q2,3,4

0 = 0 and q1
0 = q0. Within this classical picture some energy

has to be externally fed trough the displacement of the first oscillator in order to look at a non-
trivial time dynamics, this is no longer true in the quantum picture because there is always non
zero energy exchange with the vacuum field.
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In figure 1.2 we plot the total energy evolution over time for four different values of the cou-
pling rate Ω. The definition of strong coupling as we said is somehow related to the interplay
of energy exchange cycles and losses, when the system energy exchange rate exceeds all the
losses we expect in this classical picture a smooth transition to the strong coupling regime.
When Ω2 < ω0γ losses dominates the dynamics, indeed in figure 1.2 (a,b) the dynamics of the
displaced oscillator (in red) is similar to the dynamics of an uncoupled oscillator (Ω = 0), the
energy transfer to the blue oscillator can be regarded as a small perturbative correction on the
uncoupled case. As Ω is increased (fig. 1.2 c,d) multiple cycles of energy exchange appear,
such cycles are the classical analogue of the so called Rabi oscillation.

Let now see how these considerations on the system dynamics can be linked to Novotny’s
criterion which relies on the form of the spectral susceptibility. The evaluation of the steady
state power dissipated spectrum we need to add an armonic driving term Fe−iωt in the equations
of motions. Since we are interested in the steady state we can insert the ansatz x j(t) = x0

je
−iωt

in equation (1.2) which can be proven to be a good solution as soon as t� γ−1. We obtain the
following spectral representation of the driven-dissipative CHOs system(

ω2
1 −ω2− iγ1ω −Ω2

−Ω2 ω2
2 −ω2− iγ2ω

)(
x1

x2

)
=

(
Fe−iωt

0

)
(1.7)

the solutions of this linear system in the form Zi
jx

j = F i can be found by inversion on the matrix
Zi

j, which reads(
x1

x2

)
=

1
det(Z)

(
ω2

2 −ω2− iγ2ω Ω2

Ω2 ω2
1 −ω2− iγ1ω

)(
Fe−iωt

0

)
(1.8)

and det(Z)= (ω2
1−ω2− iγ1ω)(ω2

2−ω2− iγ2ω)−Ω4. From these spectral solutions, the steady
state power dissipated can be calculated as PTot(ω) = ∑Pj(ω), with Pj(ω) = γ jω

2|x j(ω)|2. If
we focus on the simplest case where oscillators parameters are equal the total power dissipated
spectrum has the form

PTot(ω) = γω
2F2 (ω2−ω2

0 )
2 +Ω4 + γ2ω2(

(ω2−ω2
0 )

2 + γ2ω2
)2−2Ω4

(
(ω2−ω2

0 )
2− γ2ω2

)
+Ω8

(1.9)

If Ω is set to zero, the above formula reduces to a Lorentzian shaped peak centered on the
frequency ω0 with a full width half-maximum Γ = γω which is in good approximation equal
to γω0, since ω0� γ . Since the fourier transform of a Lorentian function is proportional to an
exponential function,The quantity ω0γ represents the loss rate. For Ω2 & γω0 equation (1.9)
shows two peaks which maxima have frequency splitting ≈Ω2. Then the inequality
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ξ	=	0.1	 ξ	=	0.5	 ξ	=	1	 ξ	=	5	

ξ	=	5	

(a)	 (b)	 (c)	 (d)	

(e)	 (f)	 (g)	

Figure 1.3: Total power absorbed in steady-state by two coupled harmonic oscillators as a function of
the two bare oscillators eigenmodes δ = ω2−ω1 and of the driving frequency. In the panels (a) to (d)
we show the ARC phenomenon emerging as the strong coupling regime is reached, we label with ξ

the adimensional quantity Ω2/γω0. In panel (e) we set ξ = 5 and a second coherent drive is added on
oscillator two, only the symmetric mode is excited. In panel (f) the second drive is π-dephased and only
the antisymmetric mode is excited close to zero detuning. In panel (g) ξ = 5 and the loss rate of the
second oscillator is increased by a factor three.

2Ω
2 > ω0(γ1 + γ2) (1.10)

is equivalent to the Novotny’s criterion and figure 1.2 (c) represents the transition between weak
and strong coupling. We plot in figure 1.2 (e-h) the steady state power dissipated by the CHOs
as a function of the driving frequency ω , for the same CHOs parameters of the correspective
time dynamics shown in the panels (a-d). The power dissipated shows a progressive splitting of
the single resonance which charaterizes the spectrum in the weak coupling regime. This effect
is often called Rabi splitting and, as we mentioned in the introduction of this section, can be
regarded as one of the three signatures of the strong coupling regime.

We mentioned also a third signature of strong coupling which is related to eigenfrequencies
anticrossing. This simple CHOs model capture also this feature: we plot in figure 1.3 (a-d) the
total power absorbed as a function of the driving frequency ω and of the detuning δ = ω2−ω1

for increasing values of the coupling Ω. As the strong coupling regime is reached (panels c,d)
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we observe the characteristic avoided resonance crossing (ARC), when

|δ |
γ
.

Ω2

ω0γ
(1.11)

the spectrum clearly shows two resonances which repeals each other as zero detuning is crossed.
While for higher values of the detuning the spectrum is essentially dominated by a single res-
onance which corresponds roughly with the driven oscillator eigenfrequency. This happens
because if the detuning becomes large the efficiency of the energy exchange decrease over or-
ders of the linewidth. Avoided resonance crossing is a sufficient but not necessary signature of
strong coupling. The spectral response of the CHOs depends on the match between the driving
force and the eigenmodes of the system. Indeed when only one resonator is driven both the
symmetric and antisymmetric are excited but if a second harmonic drive is added on the second
oscillator with a phase ϕ = 0,π only the symmetric or antisymmetric mode are respectively
excited close to zero detuning. For higher values of the detuning since the resonances repeals
the driving frequency no longer maches any of the system eigenmodes and partial tough weak
excitation of the dark mode happens because of inefficient energy exchange processes.

These features are captured in figure 1.3 (e-f) which shows the total power dissipated spec-
trum as a function of the driving frequency and oscillators detuning in the deep strong coupling
regime with a coherent and π-dephased drive of the second oscillator.In figure 1.3 (g) we show
the absorbed power spectrum with the same parameters of the CHOs in panel (d) but with an
increased loss rate γ2 = 3γ1 = 3 ·10−3ω0 in the undriven oscillator. It is noteworthy that in the
deep strong coupling regime even if just one of the two oscillators has an increased loss rate,
both the eigenfrequencies linewiths are equally broadened. This happens because in the strong
coupling regime the individuality of the two oscillators is lost and thanks to efficient energy
exchange the most lossy oscillator sets the damping rate of both the oscillators. In the weak
coupling regime instead one expects the increased loss on the second oscillator acts as a small
perturbation on the first oscillator dynamics.

As discussed in the introduction of this chapter, our main interest in strong coupling relies
in the possibility of creating mixed light-matter states. This mixing is visual in this classical
picture of CHOs as energy exchange cycles sets in, indeed if we take a time cut of the dynamics
and we measure Etot for the two oscillators, when Ω2� ω0γ ETot,1 ≈ e−γt and ETot,2 ≈ 0 but
with Ω2 � ω0γ , in general, ETot,1 = E1 6= 0 and ETot,2 = E2 6= 0. Therefore the fundamental
excitation of the whole system can be written as a superposition of the two bare oscillator
energies

ETot = E1 +E2 =
(
α(t)2 +β (t)2) (1.12)
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with α2+β 2 = e−γt to recount for the total losses. The coefficients α(t) and β (t) can be seen as
the time dependent amplitudes of the two oscillators. In a quantum picture this can be rephrased
by assuming an eigenfunction of the system with the form

|ψ(t)〉= α(t)|1,0〉+β (t)|0,1〉 (1.13)

where |1,0〉 and |0,1〉 are the fock states corresponding to the fundamental excitations of os-
cillator one and two respectively. If we sample at different times whether the system is in the
state |1,0〉 or |0,1〉, we would find on average with a probability α̃ the fock state |1,0〉 and β̃

the fock state |0,1〉. Where α̃ and β̃ are defined as

α̃
2 =

∫
∞

0

〈ψ(t)|P|1,0〉|ψ(t)〉
〈ψ(t)|ψ(t)〉

dt =
∫

∞

0

α2(t)
e−γt dt

β̃
2 =

∫
∞

0

〈ψ(t)|P|0,1〉|ψ(t)〉
〈ψ(t)|ψ(t)〉

dt =
∫

∞

0

β 2(t)
e−γt dt (1.14)

P|·〉 are the projectors of the two Fock states and we used α2 + β 2 = e−γt . The eigenstate of
the system can be mapped as a point on a Bloch spere with angular coordinates (α(t),β (t))
and a exponentially suppressed radius on timescales order of γ−1. In figure 1.4 we plot these
coefficients as a function of the parameter Ω2/ω0γ , if the coupling Ω equals zero, α̃2 = 1 and
β̃ 2 = 1− α̃2 = 0 and the system lays in the pure Fock state |1,0〉. As Ω increases the two cef-
ficients α̃2 and β̃ 2 tend to the value 1/2 charateristic of a maximally mixed state. Notice that
the coefficients α̃ and β̃ also depend on the detuning δ = ω2−ω1 which was set to zero in our
analysis. We show in figure 1.4 the effect of the detuning following the palette colorcode for the
curves: if the quantity Ω2/ω0γ is fixed the mixing efficiency decrease with the absolute value
of the oscillators detuning. The proposed analogy is an intuitive picture showing that trough
strong coupling of two oscillators the fundamental excitations of the system are mixed states:
the components of a strongly coupled system lose their individuality.

We finally address the problem of mapping the CHOs classical equation of motion in a Non-
Hermitian two-mode Hamiltonian (NHH) and we discuss the origin of the strong coupling
boundary in a quantum picture. The NHH has a complex spectrum which imaginary part is
related to the losses due to energy exchange with the environment, thus constituting one of the
simplest examples of non trivial open quantum system.

We can start by substituting the ansatz x j(t) = x0
je
−iωt in equation (1.2) and then divide the j-th

row by (ω j +ω) obtaining
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Figure 1.4: Average energy stored in oscillator one as a function of the coupling relative strenght Ω2/γω0
for different detuning values. We set ω0 = (ω1 +ω2)/2 = 1 rad s−1 and γ = γ1 = γ2 = 10−3ω0. This
average energy stored in the two oscillators can be seen in the analogy with a two level atom coupled to
a single mode resonator, as the mixing degree of the eigenstates of the system.

(
ω1−ω− iγ1ω

ω1+ω
− Ω2

ω1+ω

− Ω2

ω2+ω
ω2−ω− iγ2ω

ω2+ω

)(
x1

x2

)
=

(
0
0

)
(1.15)

Since the response of the system if γ � ω0 is tightly peaked around ω0 we can assume that in
our region of interest |ω−ω1,2| � ω , then(

ω1−ω− iγ1
2 −Ω2

2ω̃

−Ω2

2ω̃
ω2−ω− iγ2

2

)(
x1

x2

)
=

(
0
0

)
(1.16)

and we defined ω̃ ≈ (ω+ω1,2)/2 as the mean oscillator frequency. The above linear system has
non-trivial solutions if and only if det(H−12ω) = 0. If we define g = −Ω2/(2ω̃) the matrix
H has the form

H =

(
ω1− iγ1

2 g
g ω2− iγ2

2

)
(1.17)

which is in units of h̄ = 1 the two-mode NHH corresponding to the CHOs. The eigenvalues of
the above two mode Hamiltonian are

ω± = ω̃± ∆

2

√
1+
(

2g
∆

)2

(1.18)
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and we defined the quantities ω̃ as the average complex frequency of the bare states and ∆ their
complex detuning

ω̃ =
1
2
(ω1 +ω2)−

i
4
(γ1 + γ2)

∆ = (ω1−ω2)−
i
2
(γ1− γ2) (1.19)

If we now expand in Taylor series the eigenvalues of the NHH around 2g/∆ = 0 we find

ω± = ω̃± ∆

2

(
1+
(

2g
∆

)2

−
(

2g
∆

)4

+ ...

)
(1.20)

however this Taylor expansion converges only inside a disk in the complex plane of radius
|2g/∆|= 1, if g is such to lye outside this disk, the eigenvalues of the system can not be anymore
expressed as a perturbative series of the bare oscillators ones: this non-perturbative regime is
what we call the strong coupling regime. In contrast with the classical picture the transition from
weak to strong coupling in the quantum picture is characterized by a sharp boundary dictated
by the complex polar singularities of the eigenvalues of the NHH (eq. (1.18)) for 2g/∆ = ±i.
While for |2g/∆| < 1 the manifolds describing ω± in the complex detuning plane ∆, are never
crossing each other. This means the oscillators individuality is still present because any analyt-
ical transformation (i.e. time evolution) can map a system prepared in the eigenstate + in the
− one. This is anymore the case when |2g/∆|> 1 because the two eigenvalues manifolds cross
and the system constituents as we already found for the classical CHOs model, completely lose
their individuality.

In the following sections we address the description of the matter and light degrees of freedom
we want to couple: quantum well excitons and cavity photons.



16

1.2 III-V Semiconductors: Excitons

To better understand the exciton-polaritons physics it is worth to recall briefly some general
properties of semiconductors, which fundamental excitations, electron-hole pairs constitute the
matter degree of freedom we want to strongly couple with a confined light field. We will
focus on zinc-blend type semiconductors which are much more optically active than diamond-
like crystal thanks to their direct bandgap structure. The formal description of a crystal in-
volves the solution of the Shrödinger equation for the Hamiltonian involving N ∼ 1023cm−3

atoms; because of tight atom packing and long range Coulomb interaction, the problem results
in something intractable. However one can start by using Born-Oppenheimer approximation
which relies on the separation of nuclear and electronic dynamics thanks to the enormous differ-
ence between the nuclei and electronic cloud mass entailing completely different characteristic
timescales. The crystal hamiltonian can be separated in three contributions

H = Hion +He−ion +He (1.21)

the first recounts for the interaction between nuclei and core electrons which determines the
form of the effective ion-ion interaction potential. The ground state eigenvector of Hion can
be addressed by mean of a variational principle and encodes the crystalline arrangement of the
atoms. The second term describes the interaction between valence electrons, which occupy the
outer incomplete shells of the electron cloud and the ions when they are displaced from their
equilibrium positions (electron-phonon interactions in a second quantization picture). This term
is responsible for instance of energy relaxation machanisms of excited electrons, and in the fur-
ther considerations will be neglected since constitutes a small perturbation to the total hamil-
tonian. We anyhow stress that in different crystal structures, at low temperatures, this term
may become of crucial importance, indeed in metal componds it is responsible for the quan-
tum phase transition from conductor to superconductor (BCS mechanism). The last term He

describes both the intercation between electrons and ions frozen on their equilibrium positions
and electron electron Coulomb interactions and has the form

He = ∑
i

p2
i

2m0
+

1
2 ∑

i 6= j

e2

4πε0|ri− r j|
−∑

i, j

Q je2

4πε0|Ri− r j|
(1.22)

where pi is the electron momentum operator, e the electron charge, ε0 the vacuum permittivity,
m0 the free electron mass, Q j the absolute ion valence, and (r,R) j are the position operators of
the j-th electron or ion.

In many III-V semiconductor compounds the ground state solution of Hion evidences a zinc-
blende structure, which is by translating along the main diagonal two face centered cubic bra-
vais lattices of the two semiconductor species by one quarter of the cell parameter. The valence
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Figure 1.5: Gallium Arsenide zinc-blende lattice structure (left) and first Brillouin zone in reciprocal
space showing the Γ point and the maximal symmetry directions (right).

electrons arange to form four bonds arranged in a tethraedral covalent bonding structure. We
will focus on Gallium Arsenide (GaAs); since the incomplete outer shell of Ga is 4s24p1 and
the As one is 4s24p3 the valence electrons have p-type charater in their ground state forming
sp3 hybridized covalent bonds. We show in figure 1.6 the zinc-blende bravais cell of GaAs and
its corresponding representation in reciprocal space which geometric center is called Γ point.

Some intersting properties of the eigenstates of the He can be deduced by using a mean field
description of He where each valence electron feels an averaged potential V (r) coming from the
ions and the rest of the electrons. We will not enter in the difficult task of calculating the form
of V (r) which can be addressed by means of variational principles or density functional theory,
we refear to [34]-[35] for the details. The many-body hamiltonian He can be then reduced to
the effective one body Luttinger-Khon hamiltonian

Hµ

ν =
(

p2

2m0
+V (r)

)
1µ

ν +
h̄

4m2
0c2 (εi jk∂ iV (r)p j)(σ k )

µ

ν (1.23)

Hµ

νψν
n,k(r) = En(k)ψ

µ

n,k(r)

where c is the light speed, ψ
µ

n,k(r) is the position representation of the spinorial eigenfunction
with a given momentum k, band index n and spin Sz component labeled by the index µ and
(σ k )

µ

ν are the (µ,ν) entries of the k-th Pauli matrices. While the left part of the hamiltonian is
the standard Shrödinger equation for a massive particle the second term has a relativistic origin
and models the spin-orbit coupling of spin and angular momentum with the electrostatic field
generated by the background. This term is usually a perturbation δEso to the standard hamilto-
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nian which may become important in proximity of points of maximal symmetry as the Γ point
since it’s responsible of a band splitting which depends on electron momentum k, total angular
momentum J and its z-projection Jz. We first neglect this term to simplify our analysis of equa-
tion (1.23) but we discuss its influence in a second moment.

If we neglect Hso the spinorial indexes becomes trivial, and the Shrödinger equation becomes
scalar. Thanks to the bravais cell translational symmetry, the Bloch’s theorem can be applied,
ensuring that the eigenfunctions of the electron can be expanded in a Fourier series of free
electron plane waves enveloped by a periodic function

ψnk(r) = unk(r) eik·r (1.24)

where unk(r) is a function with the same periodicity as the crystal potential and k are the mo-
menta of the free electron plane waves. The k-states results discretized in cubic crystal of side
L, however for typical macroscopic crystal the discretized levels are spaced by ∆k = 2π/L and
thus forms a quasi-continuum of states. The effect of the potential V (r) is to open energy gaps
between the bands n and n+ 1 close to the first brillouin zone edge [35]. The band structure
of GaAs can be calculated for instance with perturbation theory (k · p method). If the Bloch
wavepacket in equation (1.24) is substituted in the Luttinger-Khon hamiltonian with zero spin-
orbit coupling we get

(
p2

2m0
+

h̄2k2

2m0
+

h̄k ·p
m0

+V (r)
)

unk(r) = En(k)unk(r) (1.25)

this equation at the Γ point where |k|= 0 takes the simple form(
p2

2m0
+V (r)

)
un0(r) = En(0)un0(r) (1.26)

once the solutions of this simple equation are known, the solution for small k vectors can be
inferred by standard perturbation theory techniques. A second order expansion gives the fol-
lowing form for the eigenenergies of the system close to the Γ point

En(k) = En(0)+
h̄2k2

2m0
+

h̄2

m2
0

∑
n′ 6=n

|〈un 0|k ·p|un′0〉|2

En 0−En′0
(1.27)

This equation defines the crystal dispersion relation in the so called parabolic which takes the
simplified form

En(k) = En(0)+
h̄2k2

2m∗
(1.28)

where the scalar quantity
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Figure 1.6: Gallium Arsenide bandstructure calculated with a thirty orbital k ·p method from ref [36]
(left panel). Parabolic band approximation close to the Γ point for the conduction band Γ6, the so called
light hole and heavy hole valence bands Γ8 and the split-off band Γ7.

1
m∗

=
1

m0
+

2
m2

0k2 ∑
n′ 6=n

|〈un 0|k ·p|un′0〉|2

En 0−En′0
(1.29)

defines the effective mass of a charge carrier in the n band and can be generalized as [35](
1

m∗

)
i, j

=
1
h̄2

(
∂ 2En(k)
∂ki∂k j

)
(1.30)

We show in figure 1.6 the bandstructure of GaAs calculated with perturbative k ·p methods in-
volving thirty orbitals [36] and the corresponding parabolic band approximation. The following
parameters can be extracted for monocystalline GaAs [37]

T = 300oK T = 4oK
Egap(0) = 1.424 eV Egap(0) = 1.519 eV
Eso(0) =−0.34 eV Eso(0) =−0.34 eV

m∗co = 0.067 m0 m∗co = 0.063 m0

m∗hh = 0.45 m0 m∗co = 0.51 m0

m∗lh = 0.082 m0 m∗co = 0.082 m0

m∗so = 0.154 m0 m∗co = 0.150 m0

Eco−Eh constitutes the fundamental bandgap at the Γ point, the so called heavy hole and light
hole bands are degenerate for zero momentum charge carriers but split because of k-dependent
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spin orbit coupling to the band total angular momentum projections. Hso is also responsible
for the split off band gap Eso and is an energy offset term due to the total angular momentum
absolute value. Indeed the spin orbit coupling hamiltonian takes the four-band effective form
[35]

HKL =− h̄2

2m0

(
(γ1 +

5
2

γ2)k2−2γ2(J2
x k2

x + J2
y k2

y + J2
z k2

z )−2γ3 ∑
m6=n

JmJnknkn

)
(1.31)

where Jx,y,z are the spin 3/2 Pauli matrices and γi are the so called Luttinger parameters which
can be measured by best fitting experimental datas with the model (from [36]):

γ1 = 6.85 γ2 = 2.9 γ3 = 2.1

In combination with magnetization, this type of spin–orbit interaction will distort the elec-
tronic bands depending on the magnetization direction, thereby causing Magnetocrystalline
anisotropy. We refear for this fine splitting phenomena to [35]. Finally we highlight that we
reported positive effective masses for the valence band whereas the parabolic bands depicted
have negative second derivative for zero wavevector (i.e negative effective mass). We adopted
the so called hole picture: since at zero temperature the semiconductor ground state has insulat-
ing charater and the fundamental excitation consists in the promotion of one valence electron to
the conduction band thus creating a vacancy in the valence band which can be effectively seen
as a positively charged particle. The interaction term then changes sign for the holes but this
can be absorbed if the effective mass sign is changed, so that the same effective hamiltonian
describes both electron and vacancies. Therefore in parabolic band approximation negatively
charged particles have positive effective mass in bands with positive curvature and vice-versa.

Let see how we can extract some information on the angular momentum of the different bands
which will be fundamental information to distingush the optically allowed transition. As pointed
before the valence bands posses a p-type bonding character thus inheriting orbital angular mo-
mentum L = 1, while the conduction band originates from s-type valence orbitals thus having
L = 0. The charge carriers (electron and vacancies) in these bands have half-integer spin. From
the composition rule of spin and orbital angolar momentum it is straightforward to show that the
conduction band Γ6 has J = 1/2, the spin orbit coupling for this band is in first approximation
is zero, this reflects on the four-band Luttinger hamiltonian (1.31) which depends only on three
parameters, and the effect of the third component of angular momentum has the only role of
setting the degeneracy of the band. The valence band electrons have L = 1 and S = 1/2, thus
the total angular momentum rule tells us that the band degeneracy is 6 since if we label with
|J,Jz〉 the band states we have |3/2,±3/2〉, |3/2,±1/2〉 which are respectively the heavy and
light hole bands Γ8 and the split-off band |1/2,±1/2〉 labeled in figure 1.6 as Γ7.
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1.2.1 Excitons

The fundamental excitation of a zero temperature crystal consits in the promotion of an electron
to the conduction band with the creation of a valence band vacancy which can be effectively
pictured as a positively charged particle we call hole. Since these two charge carriers have op-
posite sign they feel a mutual attraction due to Coulomb interactions and may eventually form
a bound state called exciton. In the semiconductor morphologies we are considering, electron-
hole interaction is heavily screened by the fermi electron sea, so the net wavefunctions of the
bound state are extended over several unit cells and this states are called Wannier-Mott exci-
tons. A completely different situation for instance emerges in ionic crystals where excitons are
strongly localized.

We can model the exciton as an hydrogen-like atom using the effective mass approximation, the
time independent Schrödinger equation reads(

p2
e

2m∗e
+

p2
h

2m∗h
+

e2

4πε|re− rh|

)
ψ(re,rh) = (E−Egap)ψ(re,rh) (1.32)

where ε is the dielectric permittivity of the material which models the screening effect of the
valence electron sea. We can now pass to the center of mass reference frame: we call the center
of mass position operator R and the relative distance from the center of mass r defined as

(m∗e +m∗h)R = (m∗ere +m∗hrh) (1.33)

r = re− rh

plugging this map in equation (1.32) one gets(
P2

2(m∗e +m∗h)
+

p2

2µeh
+

e2

4πε|r|

)
ψ(R,r) = (E−Egap)ψ(R,r) (1.34)

where P=−ih̄∇R,p=−ih̄∇r and (µeh)
−1 =(m∗e)

−1+(m∗h)
−1. The eigenfunctions of this equa-

tion can be factorized as ψ(R,r) = φ(R)χ(r), where φ(R) corresponds to free particle motion
of mass (m∗e +m∗h) and χ(r) has the form of the well known hydrogen atom orbitals, which
can be expressed as product of generalized Laguerre polynomials Lα

n (r) and spherical armonic
functions Yl,m(θ ,φ). If R is written in cartesian coordinates and r in spherical coordinates the
eigenfunctions have the form

ψn,l,m = (R,r) = eiK·R

√(
2

naB

)3 (n− l−1)!
2n(n+ l)!

e−
ρ

2 ρ
lL2l+1

n−l−1(ρ)Yl,m(θ ,φ) (1.35)

where n is the principal quantum number l eigenvalue of the angular momentum operator L2
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and m the eigenvalue of its third component Lz, ρ = 2r/na0 and aB is the bulk exciton Bohr
radius

aB =
4π h̄2

ε

µehe2 (1.36)

which for Gallium Arsenide at 4oK is aB ≈ 14.2 nm, on this typical exciton sizes the relativistic
corrections, the lamb shift and fine structure of the eigenenergies can be safely neglected, thus

En,l,m(K)≈ En(K) = Egap +
h̄2K2

2(m∗e +m∗h)
− Eb

n2 (1.37)

where h̄K is the exciton center of mass linear momentum and Eb the Rydberg constant for the
exciton. The first two terms recount for the gap and center of mass energy while the second is
the binding energy of the system. The binding constant for GaAs reads

Eb =
µehe2

32π2ε2h̄2 ≈ 4.2 meV (1.38)

The exciton ground state eigenfunction at rest is given by K = 0, (n, l,m) = (1,0,0) and has the
simple form:

ψ0,0,0(r) =

√
2

a3
B

e−
r

aB (1.39)

These equations tells us that excitons are free to move in the crystal, nevetheless we expect in
a non ideal system that excitons interacts with crystal vibrations (phonons), defects or other
excitations resulting in a global dissipative term. We also see that the exciton ground state
energy has it’s own parabolic band located ∆E = Eb under the conduction band. At k = 0
in absence of the valence band mixing term ∝ k · p both the hole and the electron have well
defined total J and third component Jz angular momentum quantum numbers since [H,J]|k=0 =

[H,Jz]|k=0 = 0. The resulting exciton will have well defined (JX ,JX
z ) quantum numbers given

by the angular momentum composition rule with possible values JX
z = 0,1,2:

Jh
z ⊗ Je

z Jhh
z = 3/2 Jhh

z =−3/2 Jlh
z = 1/2 Jhh

z =−1/2

Jz
e = 1/2 JX

z =+2 JX
z =−1 JX

z =+1 JX
z = 0

Jz
e =−1/2 JX

z =+1 JX
z =−2 JX

z = 0 JX
z =−1

moreover the eigenvalues of total angular momentum are and JX
hh = 1,2, this reflects the fact

that the exciton is conformed by two fermions, therefore it’s angular momentum and spin are
integers, for this reason, as soon as the charge carrier gas is diluite (i.e. weak interactions), exci-
tons can be regarded as composite bosons. We will discuss when addressing polariton-polariton
interactions the limits of validity of this assumption.
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We also point out that the theory we are showing mutually looks to exciton creation in an
ideal environment where only one electron is promoted to the conduction band. However when
the charge carrier density is high a vast ensamble of many body effects arise: the energy dis-
tribution changes from the spinless Maxwell-Boltzmann distribution to the Fermi-Dirac one,
electron-hole gas wavefunction must be antisymmetrized due to Pauli principle, screening ef-
fects and spin dependent phenomena may become important. This results in modification of the
bangaps, of the effective masses, of the effective dielectric permittivity of the system resulting
in a decresing binding energy of the exciton eventually leading to dissociation in the high charge
carrier density regime (electron -hole plasma). We refear for the details to the book of Yu and
Cardona [35].

1.2.2 Bulk Optical transitions

The promotion of one electron from the valence band to the conduction band can be achieved
with different strategies, among them by means of optical pump. The description of this process
is a well-known absorption process: the light matter interaction hamiltonian can be deduced by
inserting the minimal coupling ansatz

p→
(

p+
e
c

A
)

(1.40)

in equation (1.26), where A is the vector potential of the incident radiation. If we assume
a weak incident radiation intensity the quadratic terms in the vector potential can be safely
neglected, this is the so called dipolar approximation Hdip ∝ p ·A. The optical transitions in
a semiconductor in dipolar approximation are characterized by two momentum selection rules
[35]

1 -Linear momentum in the emission or absorption process must be conserved kγ = ki+kf

where ki, f are respectively the initial and final state momenta and kγ is the incident photon
momentum. Typically the photon momentum is very small compared to the typical carrier
momenta, this implies that only vertical optical transition are allowed in the band diagram
ki ≈−k f .

2 -Angular momentum in the emission or absorption process must be conserved. This both
impose selection rules depending on polarization of incident radiation and on the (J,Jz)

components of the valence and conduction band.

The selection rules are exact only if k= 0 where the operators J2 and Jz commute with the Khon-
Luttinger hamiltonian, when k 6= 0 the valence band mixing effects allow forbidden transition,
however these contributions close to the Γ point can be regarded as a second order effect. In
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Figure 1.7: Gamma point polarization and relative intensity of the non-zero dipole matrix elements
for the optical promotion of an electron from the valence band to the counduction band (a). Selection
rules for the exciton creation via optical pumping (b), notice that only transitions to JX = 1 excitons are
allowed since JX = 2 are dark states because of total angular momentum conservation and the assumption
of a plane wave excitation.

general the transitions amplitude can be calculated in dipolar approximation by mean of the
Fermi Golden Rule

Pi f =
2π

h̄ ∑
k
|uc,k〈|Hdip|uh,k〉|2δ (Ec(k)−Ev(k)− h̄ω) (1.41)

where uc,k and uh,k are respectively the Bloch wavefunctions of a conduction band electron and
a valence band hole. The calculation of the electric dipole matrix elements is much easier at the
Γ point. The calculation is straightforward (we refear to [35]) and is summarized in figure 1.7-
(a) where the allowed transition probabilities are reported for the free carriers. We denote with
σ± left and right circularly polarized light, and with πz we denote a linearly polarized radiation
along the propagation direction. This last polarization geometry cannot be realized in the case
of a plane wave which is in very good approximation the excitation scheme of our experiments,
we will then neglect this transition. Its remarkable that an electron with Jc

z = 1/2 has three more
times times the possibility of recombining with a Jhh

z = 3/2 heavy hole than with a Jlh
z =−1/2

light hole and this transition are the only one allowed if π photon transitions are neglected.

Excitons can also couple resonantly with light, and this process actually dominates the photolu-
minascence spectrum of a high quality direct gap semiconductor. The same linear and angular
momentum conservation rules valid in case of unbound electron and hole are applicable. This
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ensures that only excitons with center of mass momentum close to zero can couple to light since
KX ≈ kγ = 0. This narrow the optically active excitons to a very narrow momentum space re-
gion at the bottom of the exciton dispersion band. When non radiative processes (i.e. phonon
exciton interactions) are small this narrow radiative region acts as a bottleneck for the exciton
recombination.

Since the crystal ground state has Jz = 0 the conservation of total angular momentum prescribes
JX

z + Jz
γ = 0. For the circular polarized photons Jz

γ = ±1. The other selection rules in dipolar
approximation can be derived in analogy with the hydrogen’s atom ones: from the parity prop-
erties of the vector potential and of the hydrogenic eigenfuctions the dipole matrix overlap is
nonzero only for l = 0,m = 0 states. Therefore only the 1s,2s,3s, ... transitions are optically
active , heavy hole excitons with Jhh

z =±2 and light hole excitons with Jlh
z = 0 are dark states,

and in our experiments we neglect πz transitions. Finally the optical transitions of interest are

Heavy hole excitons Light hole excitons

|J,Jz〉= |1,±1〉 |J,Jz〉= |1,±1〉

We summarize these results in figure 1.7-(b), it is intersting that both σ+ and σ− radiation
excites an admixture of light hole and heavy hole excitons, however the dipole matrix elements
are proportional to |ψn,0,0(R,0)|2 ([35]) and the optical transition probability increase with the
electron-hole wavefunction overlap, being inversely proportional to the third power of Bohr
exciton radius [35], which is diffent for light and heavy holes.

(
Phh

Plh

)
|k=0 ∝

(
alh

B

ahh
B

)3

=

(
m∗hh(m

∗
co +m∗lh)

m∗lh(m
∗
co +m∗hh

)3

≈ 3.9 (1.42)

The creation of a light hole exciton by means of optical σ± pumping is therefore suppressed in
bulk GaAs at 4oK by factor about four.

1.2.3 Quantum Well Excitons

As we pointed in section 1.1 a common strategy to achieve strong coupling between light and
matter is to turn the absorption and emission processes of a photon reversible by embedding
a two level matter degree of freedom in a cavity. In order to obtain this geometry with semi-
conductor excitations is to build a 2D quantum well (QW) which can be inserted in the cavity.
Such kind of stuctures can be obtained confining the excitons in 2D structures resulting from a
thin layer of semiconductor material in between a semiconductor with a wider bandgap. Matter
excitations get trapped along the growt direction when the extension of the bulk wavefunction
of the exciton becomes comparable to the layer thickness. Lower dimensionality heterostruc-
tures like quantum wires and quantum dots can be also embedded, but will not be treated in
this manuscript. We label the layer semiconductor with the letter A sandwitched in between the
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Figure 1.8: Γ point band structure for the quantum well A in between B semiconductor substrate. The
first discretized levels for the confined electron and holes are depicted (a). Selection rules calculated at
the Γ for the confined charge carriers and for the QW exciton creation via optical pumping, respectively
in (b) and (c).

semiconductor B as sketched in figure 1.8-(a). We can again use the Bloch decomposition to
write the wavefunction envelopes as

ψk(r) = ∑
n

eik·ruA
n,k(r) (1.43)

if r belongs to the layer A, and as

ψk(r) = ∑
n

eik·ruB
n,k(r) (1.44)

if r belongs to semiconductor B. One should then impose the continuity of uA and uB and of their
weighted mass derivatives at the AB inteface. The problem is analogous to a particle confined
in a two dimensional square well: the problem can be solved separately for the conduction and
valence bands considering the appropriate effective mass. A straightforward consequence of
confinement in the growt direction ẑ is the quantization of the energy in the ẑ direction leading
to a splitting of every band in different confined states. Indeed the system hamiltonian for a
given valence band has the form

H = Egap +He +Hh +Heh (1.45)

where the different contributions are



Chapter 1 27

He =
p2

e
2m∗e

+Ve(z)

Hh =
p2

h
2m∗h

+Vh(z) (1.46)

Heh =
−e2

4πε(z)|re−rh|

We can consider a simplified system if we assume an infinitely high squared well, so that
ψk(r) = 0 in the B region. The general case for a finite well and can be solved analytically
at least of quadratures by mean of a variational principle, we refear to [38] for the details. If we
set Heh = 0 the hamiltonian eigenfuctions are exactly

En,m(K) = Egap +En,e +Em,h +
h̄2K2

2(m∗e,‖+m∗h,‖)
(1.47)

where En,e and Em,h are respectively the confined electron and hole eigenenergies depending on
the principal quantum numbers n,m

En =
π2h̄2n2

2m∗⊥,e,hL2 , n ∈ N0 (1.48)

where L is the layer depth. The electron-hole interaction term can be calculated if we assume
z� ρ where ρ is the in plane coordinate, which is valid if the A layer depht is such that d� a3D

B .
The problem in this perfect 2D well assumption can be factorized in the inplane and off plane
direction

ψ(re,rh) ∝ ei(k‖·Re+k‖·Rh)χ(ze)χ(zh)φ(r‖) (1.49)

and the solutions the relative reference frame (R‖,r‖) again becomes anologous to the solution
of a 2D hydrogen atom, thus we need to add the 2D binding energy contribution Eb(q) and the
eigenenergies of the system have the form

En,m(K‖) = Egap +En,e +Em,h +
h̄2K2

‖
2(m∗e,‖+m∗h,‖)

−
E2D

b
q2 (1.50)

where h̄K‖ is the in plane momentum of the exciton and E2D
b is the Rydberg constant for the

2D hydrogen-like atom. Out of these approximations the problem is still tractable but the cal-
culations are cumbersome and add nothing to the relevant physics for our purposes. A straigh-
forward implication of equation (1.50) is that even at K = 0 the light and heavy holes bands
are anymore degenerate since the confinement depends on the charge carrier effective mass,
moreover the dispersion is still parabolic close to the Γ point. Another consequence of the con-
finement is that the electron and hole wavefunction ovelap is greatly enhanced thus providing
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an increased optical oscillator strenght respect to bulk excitons. In particular in the perfect 2D
infinite well approximation the exciton Bohr radius is half the bulk one, since the absorption
and emission cross section in bulk is proportional to (a3D

B )−3 and in the QW is proportional
to (a2D

B )−2 the enhancement factor is ε = 4. If we assume a finite quantum well height, the
penetration depth in the B material decrease this value by increasing the a2D

B value, the same
happens if the well depth becomes comparable or bigger than the bulk exciton Bohr radius.
Another practical advantage of working with confined excitons is the possibility of fine tuning
control over the QW gap energy by engineering the well depth following equation (1.48) and
this will be an important feature in order to control the exciton-cavity photon detuning, which
as we showed in section 1.1 is a critical parameter in the strong coupling regime.

The optical selection rules for transitions between heavy or light hole and conduction subbands
are the same as those reported in bulk, with some additional requirements:

1- The planar symmetry of the structure implies in plane linear momentum conservation1 in
emission absorption processes

2- Due to the parity of the confined wavefunctions in each subband, the only single photon
emission or absorption admitted processes are those satisfying (n+m)/2 ∈ N0 where n
and m are the principal quantum numbers respectively to the electron and the hole sub-
band. Its noteworthy that transitions within subbands with n = m are strongly enhanced
due to an increased electron and hole wavefunction overlap.

We schematize the allowed optical transition in figure 1.8-(b,c). An unpolarized plane wave can
excite also in the quantum well both light and heavy hole excitons, however here even at K‖ = 0
the two subbands are splitted in energy, thus allowing to couple selectively only to one of the
two. Heavy excitons show enhanced coupling to radiation respect to light holes :

(
Phh

Plh

)
|k=0 ∝

(
a2D

B,lh

a2D
B,hh

)2

≈ 2.4 (1.51)

their choice is therefore natural in the perspective of achieving the strong coupling between
quantum well excitons and cavity photons. An unpolarized plane wave resonant with the heavy-
hole subband transition creates an admixture of |J,Jz〉 = |1,±1〉 excitations, being the J = 2
states dark as discussed before. Hereafter when refering to excitons we will implicitly assume
we are talking of heavy-hole excitons with J = 1 total angular momentum.

1Formally this can be proven via the Noether theorem, since momentum conservation is associated to trasla-
tional invariance.
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1.3 Cavity Photons

In order to achieve strong coupling between a quantum well exciton and photons the emission
absorption process has to be made reversible and the natural pathway to this goal is to embed the
QW in a cavity. To this aim the first ingredient are mirrors: Distributed Bragg Reflectors (DBR)
are dielectric haterostructures composed of two alternating layers of material with a different
index of refraction. The working principle of such structures can be understood in analogy with
the case of one electron in a periodic potential, but in this case the role of the electron is played
by a photon and the periodic potential enters the Helmoltz equation via the refractive index
modulation: this is why these structures are often referred as photonic crystals. Thanks to the
discrete symmetry of the structure along the growt direction, the Bloch theorem can be used
to expand the tranverse electro-magnetic field. In full analogy with a one dimensional crystal
with a two atom unit cell the dispersion band struture has energy gaps i.e. exists a energy range
in which the electromagnetic wave propagation is forbidden, thus the photonic crystal acts as
a mirror. When building a mirror one is interested both on its reflectivity, both on the spectral
range in which the mirror works. The photonic crystal acts as a mirror within the bandgap
range, which is maximal at normal incidence if the optical thiknesses of the layers are equal
d1n1 = d2n2 and is centered around the frequency [39]

ωB =
n1 +n2

4n1n2

2πc
d1 +d2

(1.52)

where c is the vacuum speed of light, d1,2 are the thicknesses of the two layers and n1,2 the
respective refractive index. Notice that at the frequency ωB corresponds a vacuum wavelength
satisfying the Bragg condition n1d1 = n2d2 = 4λB. The reason why the gap is maximized for
a quarter-wave stack is related to the property that the reflected waves from each layer are all
exactly in phase at the midgap frequency. And the gap-midgap ratio at this Bragg frequency is

∆ω

ωB
=

4
π

sin−1
(
|n1−n2|
n1 +n2

)
(1.53)

the two above equations show that by engineering the layer optical thickness and by matching
materials with sightly different refractive index it is possible to synthetize dielectric mirrors
with easily tunable central frequency and with a wide spectral working range. In this infinite
photonic crystal picture, the states inside the gap are strictly forbidden. As the layer number if
finite the density of states forms anymore a continuum, and some states are allowed with small
probability even in the forbidden region: the heterostructure reflectivity is not perfect. By using
classical electromagnetic theory of continuum media it is possible to show that the reflectivity
at normal incidence of N periods of Bragg matched dielectric pairs has the simple form

R(ωB)∼ 1−4
(

n1

n2

)2N

(1.54)
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If a defect (i.e. a layer with different optical depth) is inserted in a perfect infinite photonic
crystal some localized modes are created, with frequencies inside photonic band gaps. If a
mode has a frequency in the gap, then it must exponentially decay once it enters the crystal.
The multilayer films on both sides of the defect behave like frequency-specific mirrors. If two
such films are oriented parallel to one another, any photon propagating along the growt direction
trapped between them will just bounce back and forth between these two mirrors. And because
the mirrors localize light within a finite region, the cavity modes are quantized into discrete
frequencies. A Fabry-Pérot cavity (FPC) can be set up by facing two DBR enclosing a spacer
with αλ/2 optical thickness, with α ∈N0. We show a schematic of the DBR and FPC in figure
1.9 (b) and (c) respectively.

1.3.1 Transfert matrix method

The reflectivity spectrum R(ω) contains valuable informations on an arbitrary heterostructure
with a finite layer number, we here show a simple iterative method for its calculation. Lets write
a plane wave propagating in a material of refractive index n along the ẑ direction as a sum of a
transmitted and reflected standing waves

E(z) = Ã(z)+ B̃(z) = A(z)e−iβ z +B(z)e+iβ z (1.55)

where A,B ∈ R are the transmitted and reflected wave amplitudes and β = 2πn/λ with λ the
vacuum wavelength of the incident radiation. If the refractive index is omogeneus the propaga-
tion for a length L in the layer modifies only the wavepacket phase, this can be modeled by the
matrix

P(L,ni) =

(
e−iβiL 0

0 eiβiL

)
(1.56)

and β = 2πni/λ . The wavepacket at the depth L can be written in vector form as E(L) =
(Ã(L), B̃(L))T = P(L,ni)(Ã(0), B̃(0))T . Notice that we are assuming a propagation trough a
non dispersive medium: if losses are non negligible they can be taken in account by turning β

in the complex form β = 2π(n1 + in2)/λ , with n2 related to the imaginary part of the dielec-
tric function ℑ[ε] of the medium. When the wavepacket mets a refractive index discontinuity,
one has to require tangetial electric field continuity which, assuming normal incidence on the
interface, is equivalent to the Snell relations

Ãi + B̃i = Ã j + B̃ j (1.57)

−niÃi +niB̃i =−n jÃ j +n jB̃ j



Chapter 1 31

(a)	 (b)	 (c)	

T1,2	 T2,3	P2	Ein	 =			Eout	

Ain	

Bin	

Aout	

Bout	

n1	 n2	 n3	

λ	/	4	

1	 2	 N	

nair	 nair	

n1	 n2	

λ	/	2	

n1	 n2	 n3	

nair	

n4	

Figure 1.9: (a) Transfert matrix method mechanism schematic. (b)-A distributed Bragg reflector. (c)-
Schematic of the Fabry-Pérot cavity formed by two DBRs enclosing a λ/2 spacer, the heterostructure is
grown on top of a substrate.

where ni and n j are the refractive index of the two materials conforming the interface and
Ãi, j, B̃i, j are the relative wavepacket amplitudes. This requirements can be casted in the impe-
dence matrix

T (ni,n j) =

(ni+n j
2nin j

ni−n j
2nin j

ni−n j
2nin j

ni+n j
2nin j

)
(1.58)

which modifies the relative weights at the interface. The propagation of the wavepaket trough a
arbitrary heterostructure can be obtained by ordered multiplication of P and T matrices. If χ is
the matrix resulting from the multiplication of all the P and T factors, the reflectio coefficient
can be calculated as

R(λ ) =
∣∣∣∣naχ11−nsχ22 +nansχ12−naχ21

naχ11 +nsχ22 +nansχ12 +naχ21

∣∣∣∣2 (1.59)

where na and ns are refractive indexes of the two mediums enclosing the heterostructure. The
total tranfert matrix for the DBR and FPC depicted in figure 1.9 (b) and (c), with the shorthand
notation Pi = P(ni,λ/4ni), Ti, j = T (ni,n j) reads

χN
DBR(na,ns,n1,n2) = Ta,2 · [P2T2,1P1T1,2]

N ·T−1
1,2 ·T1,s (1.60)

χN
FPR(na,ns,n1,n2) = χN

DBR(na,n2,n1,n2) ·P
(

αλ

2n2
,n2

)
·χN

DBR(n2,ns,n2,n1) (1.61)

and (na,ns,n1,n2) are respetively the index of refraction of the environment, of the substrate and
of the Bragg matched layers (we assume n2 > n1), α ∈ N sets the n2 spacer optical depth. In
C2N labs AlxGa1−xAs based heterostructures are grown with state of the art optical quality. The
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last ingredient to perform reflectance calculations is therefore to know AlxGa1−xAs refractive
index as a function the relative Al concentration and wavelength. A model for the Sellmeier’s
equation for AlxGa1−xAs alloys was proposed back in 1974 by M.A. Afromowitz [40] and reads

n(E) =

√√√√1+Λ1 +Λ3E2 +
η

π
E4 log

(
E2

f −E2

E2
Γ
−E2

)
(1.62)

E f =
√

2E2
0 −E2

Γ
) (1.63)

η =
πEd

2E3
0(E

2
0 −E2

Γ
)

(1.64)

Λ1 =
η

2π
(E4

f −E4
Γ) (1.65)

Λ2 =
η

π
(E2

f −E2
Γ) (1.66)

where E = h̄ω is the incident photon energy and the parameters (EΓ,E f ,E0) are respectively
the alloy direct bandgap at the Γ point, the dispersion energy and effective oscillator strength
energy and depends on the alloy composition x as

EΓ(x) = 1.424+1.266x+0.26x2

E f (x) = 36.1−2.45x (1.67)

E0(x) = 3.65+0.871x+0.179x2

and are empirical formulae coming from best fit of experimental data. The formula holds within
3% in the range λ = (0.7− 2.0) µm. Typical alloy doublets for the fabrication of DBRs are
(x1,x2) = (0.95,0.10), which have a room temperature refractive index of

Al0.95Ga0.05As Al0.1Ga0.9As

n1 ≈ 3.02 n2 ≈ 3.57

We show in figure 1.10 the room temperature reflectivity plots for a DBR and a FPC as a func-
tion of the incident radiation wavelength λ and of the pair number. We chose the alloy doublet
(x1,x2) = (0.95,0.10), a GaAs substrate xs = 0 and air as environment. With these simulations
is possible to carefully design the Fabry-Pérot cavity in which one wants to embed the QW and
provide valuable information on the coupling efficiency of the structure with incident radiation



Chapter 1 33

700 750 800 850 900 950

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

R
ef
le
ci
vi
ty

Distributed Bragg Reflectors

700 750 800 850 900 950

0.0

0.2

0.4

0.6

0.8

1.0

Wavelength (nm)

R
ef
le
ci
vi
ty

Fabry-Pérot Cavity

Figure 1.10: Reflectivity of a DBR with N = (10,15,25) layer pairs are plotted respectively in orange,
red and violet in panel (a). The central Bragg wavelength is λB = 840 nm, we obtain for the three pair
numbers a λB-reflectivity of (86.8,97.4,99.9)% in good agreement with equation (1.54). In panel (b)
we plot the reflectivity of a λ/2 FPC cavity enclosed within DBRs with N = (10,15,25) pairs. The
reflectivity at the cavity resonant frequency is almost independent of N and equals 32%.

1.3.2 Cavity mode dispersion and linewidth

A Fabry-Pérot cavity created by two DBRs and a spacer can be mapped in the simpler case of
two planar metallic mirrors by introducing the effective cavity length Le f f = Lc +LDBR where
Lc is the optical depth of the spacer and LDBR is the penetration depth of the electromagnetic
field inside the stop band and has the simple form

LDBR =
λ

2
n1n2

ncav(n2−n1)
(1.68)

and ncav is an effective averaged refractive index of refraction for the whole heterostructure.
The condition for constructive interference in a round trip in the cavity the becomes

(
n2

cavω2

c2 − k2
‖

) 1
2

Le f f = απ , α ∈ N (1.69)

where k‖ is the in plane momentum of the photon, orthogonal to the growt ẑ direction, ω the
incident photon frequency and ncav an effective mean refractive incex value for the whole FPC.
At normal incidence k‖ = 0 and the above equation gives the Bragg condition

λα =
2Le f f

ncavα
(1.70)

and the lowest allowed cavity mode corresponds to a Bragg wavelength twice the optical length
of the effective cavity. Usually is convenient to operate the cavity in one of the lowest mode
in order to have a energy separation with neighbouring modes big enough to disregard their
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influence on the optical properties of the cavity. In these conditions the cavity mode dispersion
can be written as

E(k) =
h̄c

ncav
|k|= h̄c

ncav

√
k2
⊥+ k2

‖ (1.71)

and k⊥ = 2πncavλ−1
α , fixed by the Bragg resonant condition. Under the assumption of small in

plane momentum we can Taylor expand this relation around k‖ = 0 to get

E(k)≈ h̄c
ncav

(
k⊥+

k2
‖

2k⊥

)
(1.72)

Its noteworthy that the cavity photon dispersion is non vanishing at k‖ = 0, and depends in a
quadratic rather than linear form on k‖ as one expects for free photons. The k‖ = 0 implicitly
defines an effective rest mass for the cavity photons in the form

m∗ph =
2π h̄
cλα

=
h̄πncav

cLcav
α (1.73)

the straightforward consequence of a rest mass for the photons is the acquisition of a non van-
ishing chemical potential, this allows a cavity photon gas to thermalize and eventually condense
in its ground state in analogy (the system is intrinsically lossy and has a dynamical steady state)
with the Bose Einstein Condensation of an ultracold rare gas. The condensation and thermaliza-
tion of cavity photons was experimentally achieved at room temperature in 2010 by J.Klaers M.
Weitz and collaborators in Bohn. The possibility of observing this transition at room tempera-
ture (where for atomic gases Tc ≈ 100 nK) is due to the very low cavity photon effective mass
which implies an associated de Broglie wavelength much bigger than the atomic case. A typical
effective mass in AlGaAs based heterostructures is m∗ph ∼ ·10−5me where meis the electron rest
mass.

Another important quantity characterizing the FPC is the linewidth of the λα resonance and is
directly connected to the cavity photon average lifetime. At normal incidence and assuming
symmetric DBRs with reflectivity R, the cavity photon linewidth reads

γph =
c

ncav Le f f

1−R
2
√

R
(1.74)

and the cavity quality factor for the FPC is

Q =
π
√

R
1−R

(1.75)

which is the average number of round trips of a photon in the cavity before escaping. For
the typical parameters of FPC fabricated at C2N the linewidth can be as low as (10÷ 20)µeV
corresponding to a lifetime of ∼ (32÷ 60) ps and Q-factors up to 40000. Another relevant



Chapter 1 35

effect of great importance couple the QW exciton to the cavity mode is that the electric field
gets enhanced in the center of λ/2 FPC by a factor of

ξ (ω) =
|F(ω)|2

|F0|2
=

1−R(ω)

(1−R(ω))2 +4
√

R(ω)sin2 (1
2k⊥Lc +ϕr(ω)

) (1.76)

where F0 is the amplitude of the incident electromagnetic field, and ϕr(ω) is the round trip
phase acquired by a photon in the cavity mode. Within half of the stopband this phase has the
linear form

ϕr(ω) =
nsLDBR

c
(ω−ωα) (1.77)

With the above mentioned FPC parameters ξ (ω) can be up to some thousands, meaning the
effective dipolar coupling felt by a QW exciton embedded at the center of the spacer with the
cavity field is huge compared to the one with free space optical modes.
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1.4 Exciton-Polaritons

We want now to see what happens when a QW is embedded in a Fabry-Pérot cavity, the system
is intersting because the fundamental excitations of the QW can absorb and emit photons, if the
exciton absorption line is quasi-resonant with a FPC mode, a cavity photon may be repeatedly
absorbed and re emitted by the QW excitons. If the rate of this process is faster than the losses,
as we have seen in section 1.1, the cavity photon and QW well exciton are in a strong coupling
regime and the fundamental excitations of this hybrid system are quasiparticles we call exciton-
polaritons inheriting properties of both the photonic and excitonic component. We schematize
the system in figure 1.11.

QW	

DBR	

DBR	

e-	

h+	
θ	

kz Υ	
	

k||Υ	
	

Figure 1.11: A quantum well embedded in a cavity is the prototype system to achieve exciton polariton
states. Due to in plane traslational symmetry of the system, the cavity photons can only couple to free
space modes with an equal in plane momentum. Therefore exits a one to one relation between the angle
of emission of a photon and the in plane momentum of the exciton which recombined in the QW.

To model the system we use a second quantization picture along the lines of the inspiring re-
view work by Carusotto and Ciuti "Quantum Fluids of Light" [8], the proposed formalism is
the correct quantum representation of polariton physics, but often a mean-field semiclassical
description is handy, we will first introduce the general framework and in a second time we will
show how to apply the mean field approximation.

In the previous two sections we studied the bare cavity photon and quantum well exciton dis-
persion and we showed within some approximations they both have a parabolic like dispersion,
however the typical heavy-exciton mass is order of the electron mass while the cavity photon
effective mass is order of 10−5me, thus the exciton band curvature is much less than the cavity
photon one and in the range of validity of the parabolic band approximation for Ecav(k‖), the
exciton dispersion appears flat EX(k‖)≈ EX = const.
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As discussed before, both the cavity and the excitons are intrinsically lossy, out of equilibrium
systems. We firstly will assume to work with an idealized heterostructure where the coupling
with the enviroment is zero: the exciton photon system is isolated. As we discussed in section
1.1 such a system is always strongly coupled as soon as the coupling constant is non zero [32].
We will introduce the losses in a second moment, and we will discuss the strong coupling crite-
rion for a exciton-cavity photon two level system and polariton-polariton effective interactions.

1.4.1 Exciton-Polaritons as an isolated system

Within the above mentioned assumptions we can write the bare cavity photon normal-ordered
hamiltonian as

Hcav =
∫ d2k

(2π)2 ∑
σ

h̄ωcav(k)a†
c,σ (k)ac,σ (k) (1.78)

where k is the in plane wave-vector of the cavity photon, a†
c,σ (k) is the creation operator of a

cavity photon with polarization σ and in plane wave-vector k and ac,σ (k) is the correspond-
ing destruction operator. The photon creation and destruction operator satisfy standard Bose-
Einstein equal time commutation rules

[ac,σ (k),a†
c,σ (k

′)]ET = (2π)2
δ (k−k′)δσ ,σ ′ (1.79)

The in plane real space cavity photon fields ΨC,σ (r), Ψ
†
C,σ (r) are defined trough

ΨC,σ (r) =
∫ d2k

(2π)2 ac,σ (k)eik·r (1.80)

and Ψ
†
C,σ (r) is defined by the the hermitian conjugate relation. The bare 2D-exciton hamiltonian

in a similar way reads

Hexc =
∫ d2k

(2π)2 ∑
σ

h̄ωexc(k)a†
X ,σ (k)aX ,σ (k) (1.81)

but now ωexc(k) ≈ ωexc is the 2D exciton dispersion and a†
X ,σ , aX ,σ respectively creates or

destroy an exciton with angular momentum projection σ , recall that only excitons with σ =±1
are optically active for a plane wave excitation in dipole approximation as discussed in section
1.2.3. Provided that the exciton density in the quantum well plane is such that interparticle
distance is larger than their Bohr radius, the exciton creation and destruction operator satisfies
Bose commutation rules. However small corrections can be included trough a density and spin
dependent correction to the pure Bose commuting rule (Combescot CITA). We have now to
recount for the coupling between the cavity field and the excitons, in particular one is interested
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in calculating the leading dipolar interaction strength. In general this issue can be addressed in a
first quantization picture applying the minimal coupling ansatz in the bare exciton hamiltonian
along with the Fermi golden rule and dropping the second order terms in the electromagnetic
field potential. This gives the coupling with free space optical modes, the presence of the cavity
however greatly enhances the electro-magnetic field inside the cavity, in general the coupling
strenght will have the form

g = h̄ΩR ∝ ξ (Q)Pi f (1.82)

the quantity ΩR is often called Rabi frequency, Pi f has the form (1.41) and ξ (Q) is the elctro-
magnetic field enhancement provided by the cavity dependent The bracket can be calculated
once the confined electron and hole wavefunction in the form of equation (1.49) are known.
The calculation can be cumbersome, we refear to [41]-[42] for the details; in case of a single
QW placed at the maximum of the cavity field g reads

g = h̄
(

4πωcav(0)
Le f f

f2D

) 1
2

≈ h̄
(

2cΓ0

ncav Le f f

) 1
2

(1.83)

where Γ0 is the exciton radiative lifetime and f2D is oscillator strength surface density and is
proportional to the square of the 2D exciton Bohr radius. The righ-most relation was extracted
assuming a DBR reflectivity R ∼ 1, for a single quantum well in GaAs based heterostructures
g ≈ 1.7 meV . The coupling also scales with the number of the quantum wells, indeed if NQW

are present in the cavity, NQW −1 linear combinations of the exciton states are dark [8], while
the single bright one is coupled to the cavity with an enhanced coupling constant

g̃ = h̄

√√√√NQW

∑
i
(Ωi

R)
2 ∼

√
NQW g (1.84)

its noteworthy that the presence of the cavity eliminates the quantum well exciton radiative
coupling to free space modes which can only happen via the cavity lossy mode [42]. If the
excitonic (hh-lh) level spacing is much greater than their linewidth (∆E/Γ0 & 15÷20 in GaAs
based 80Å width QW) and the same holds for the cavity mode, we can describe the system
within the so called two level approximation where just one optical mode is coupled to a two
level system reresented by the QW ground state and by the creation of an (heavy hole) exciton.
The system is a syntetic two-level atom embedded in a cavity which light matter interaction can
be described by a Jaynes-Cummings term

HJC =
∫ d2k

(2π)2 ∑
σ

g
[
a†

X ,σ (k)ac,σ (k)+a†
c,σ (k)aX ,σ (k)

]
(1.85)

and g is specified by equation (1.83). The antiresonant terms proportional to a†
X ,σ (k)a

†
c,σ (k)

and aX ,σ (k)ac,σ (k) can be safely neglected since they are associated in an interaction picture to
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fast oscillating terms which have average null contribution to the coupled system dynamics as
soon as 2ΩR = gh̄−1� (ωexc +ωcav) and (ωcav−ωexc)� (ωexc +ωcav). In our samples these
requirements are always matched and a typical 2ΩR/(ωexc +ωcav) is 10−3. We can write now
the total hamiltonian in a matrix form in the Ψσ (k) = (ac,σ (k),aX ,σ (k)) basis as

Hpol = Hcav +Hexc +HJC =
∫ d2k

(2π)2 ∑
σ

Ψ
†
σ (k)Ξ(k)Ψσ (k) (1.86)

where

Ξ(k) =

(
h̄ωcav(k) g

g h̄ωexc(k)

)
(1.87)

The hamiltonian kernel can be diagonalized by means of a unitary transformation

Θ̃ =

(
X(k) C(k)
−C(k) X(k)

)
(1.88)

with the requirement det(Θ̃) = X(k)2 +C(k)2 = 1. The explicit form of the X and C coeffi-
cients can be determined once the eigenvalues of the hamiltonian kernel are known. After some
algebra one gets

ωUP(k) =
ωcav(k)+ωexc(k)

2
+

√
Ω2

R +
1
4
(ωcav(k)−ωexc(k))2 (1.89)

ωLP(k) =
ωcav(k)+ωexc(k)

2
−
√

Ω2
R +

1
4
(ωcav(k)−ωexc(k))2 (1.90)

descibing the so called upper and lower polariton branch dispersions relative to the new diag-
onalized hamiltonian eigenstates. The eigenvectors of the kernel can be expressed in the old
Ψσ (k) = (ac,σ (k),aX ,σ (k)) basis via the Θ̃ matrix: Ψ̃σ (k) = Θ̃ Ψσ (k), since

Ψ
†

Ξ Ψ = Ψ
† [Θ̃−1

Θ̃] Ξ [Θ̃−1
Θ̃] Ψ = Ψ̃

†
Ξ̃ Ψ̃ (1.91)

and Ξ̃ is the diagonal matrix diag(ωUP,ωLP). The new creation and destruction operators can
be defined trough

Ψ̃ =

(
aUP,σ (k)
aLP,σ (k)

)
=

(
X(k)ac,σ (k)−C(k)aX ,σ (k)
C(k)ac,σ (k)+X(k)aX ,σ (k)

)
(1.92)

this tells us that the eigenstates of Hpol can be interpreted as mixed light matter states we call
upper and lower polaritons moreover, since aUP and aLP can be written as linear superposition
of the ac and aX states, the polariton field inherits properties of both the light and matter fields.
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This simple observation is at the very heart of the interest in polaritons and strongly coupled
light matter sytems in general, as we anticipated in the introduction of chapter 1. Indeed if we
move from an idealized picture where only one excitation is present in the system and we look
at a polariton gas, the excitonic component provides an effective polariton-polariton interaction
term and the photonic field provides both a way to confine polaritons trough refractive index
landscape engineering and a probe on the system thanks to the radiative coupling to the envi-
ronment. The first experimental realization of QW exciton-cavity photon strong coupling was
achieved by Weisbuch and collaborators in 1992 [7].

The X(k) and C(k) coefficients can be easily determined imposing det(Θ̃) = 1 and solving the
eigenvector characteristic linear equation system. The result is

X(k)2 =
1
2

1+
ωcav(k)−ωexc(k)√

4Ω2
R +(ωcav(k)−ωexc(k))2

 (1.93)

C(k)2 =
1
2

1− ωcav(k)−ωexc(k)√
4Ω2

R +(ωcav(k)−ωexc(k))2

 (1.94)

these coefficients are often referred as Hopfield coefficients, in honour to J.J. Hopfield pionering
work, dating back to 1958, on the contribution of excitons to the complex dielectric constant of
crystals [43].

We plot in figure 1.12 the upper and lower polariton bands, along with the bare exciton and
photon dispersions and the Hopfield coefficients for the three bare exciton-cavity detuning
δ0 = (ωcav(0)−ωexc(0)) = (+2ΩR,0,−2ΩR). We set in the plot some realistic parameters
for our system: a bare exciton energy of h̄ω0

exc = 1.48 eV , a ΩR = 1.4 meV Rabi oscillation
frequency and ncav ≈ 3.6.

Some intersting properties of polaritons are suggested by the graphs: first we notice that in
this closed quantum system description the polariton dispersion shows a clear anticrossing
phenomenon indeed for negative detunings δ0 < 0, where close to |k| = 0, ωUP ≈ ωexc and
ωLP ≈ ωcav, for larger wave vectors ωUP ≈ ωcav and ωLP ≈ ωexc. This anticrossing phe-
nomenon, as discussed in section 1.1, is one of the three signatures of strong coupling regime.
Close enough to |k| = 0 the polariton bands have parabolic like dispersion: by Taylor expand-
ing up to second order ωUP,LP(k)|k=0 it is possible to calculate the upper and lower polariton
effective masses, which reads

m∗UP =
m∗X m∗ph

X2(0)m∗ph +C2(0)m∗X
≈

m∗ph

C2(0)
(1.95)
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Figure 1.12: Panels (a-c-e) Upper and lower polariton dispersion according to equation (1.89)-(1.90),
dashed curves are the bare QW exciton and cavity photon parabolic dispersions, respectively calculated
for the zero wave vector exciton-photon detuning δ0 = (+2ΩR, 0, −2ΩR). In (b-d-f) we show the
Hopfield coefficients associated to the (a,c,e) plots. interestingly the lower polariton at zero wave vector
is mostly photonic or excitonic depending on the detuning sign, which can be tuned in order to obtain a
specific exciton-photon admixture.
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m∗LP =
m∗X m∗ph

X2(0)m∗X +C2(0)m∗ph
≈

m∗ph

X2(0)
(1.96)

where we used the fact that m∗X/m∗ph ∼ 5 · 104 in the whole region where the cavity dispersion
can be aproximated as parabolic. For typical values of the bare exciton-cavity detuning this
implies m∗LP ∼ (2÷ 20)m∗ph, meaning polariton have a very low effective mass order of 10−4

times the rest mass of the electron.

1.4.2 Exciton-Polaritons as an open quantum system

A quantum description of the pumping and losses processes which describe the coupling be-
tween the cavity and the external environment requires a generalization of the standard hermi-
tian time evolution of the system. Non hermitian terms must be added and the density matrix
master equation has the form [8]

dρ

dt
=

1
ih̄
[H,ρ]+L [ρ] (1.97)

where ρ is the system density matrix, H is a non neccessarily hermitian hamiltonian and L [ρ]

is the density matrix dependend superoperator recounting for all the dissipative processes due
the coupling with the environment. In particular a coherent external field driving the cavity (i.e.
a laser), can be modeled with a non hermitian term

Hpump = ih̄
∫ d2k

(2π)2 ∑
σ

[ησ (k)Ẽσ (k, t)a†
c,σ (k)−η

∗
σ (k)Ẽ

∗
σ (k, t)ac,σ (k)] (1.98)

where Ẽσ (k, t) is the k-space representation of incident field and η∗σ (k) models the incident field
coupling efficiency with the cavity modes and is proportional to the transmission coefficient of
the cavity front mirror. If the temperature of the radiative modes outside the cavity is much
lower than the cavity mode one kBTenv� h̄ωcav and the radiative process is assumed Markovian
(i.e. memoryless) the radiative losses can be modeled by the Lindblad superoperator [8]

L rad[ρ] =
∫ d2k

(2π)2 ∑
σ

γrad
σ (k)

2
(2ac,σ (k)ρa†

c,σ (k)−{nc,σ (k),ρ}ET ) (1.99)

where γrad
σ (k) is the wave-vector and polarization dependent decay rate, which can be calcu-

lated using the Tranfert Matrix Method we reported in section 1.3.1, nc,σ = a†
c,σ ac,σ is the cavity

field number operator and {a,b}ET = ab+ba is the equal time anticommutator. As we already
mentioned the presence of the cavity inhibts a direct coupling of the QW exciton field with
the free space radiative modes. Therefore the radiative decay of the exciton determines trough
equation (1.83) the Rabi coupling but enters the Lindblad superoperator as a second order cor-
rection, still some nonradiative recombination processes due to QW inhomogeneities, defects
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and phonon intractions are present and dominates the exciton linewidth. This dephasing terms
within the RWA can be modeled as [8]

L deph[ρ] =
∫ d2k

(2π)2 ∑
σ

γ
deph
X ,σ (k)

2
(
2nX ,σ (k) ρ nX ,σ (k)−{nX ,σ (k)nX ,σ (k),ρ}ET

)
(1.100)

where γ
deph
X ,σ (k) is the wave-vector and polarization dependent decay rate which can be di-

rectly measured via photoluminescence experiments and nX ,σ is the exciton number-density
operator. Its noticeable that while L rad[ρ] is a bilinear form in the creation and destruction
operators, L deph[ρ] is bilinear in the exciton number-density operator. This "linear" depen-
dence on the field density for radiative processes and "quadratic" dependence on field den-
sity for the nonradiative processes reflects in a respectively Lorentzian or Gaussian eigenmode
lineshape. Indeed if the time dynamics operator U(t) has the Lindblad superoperator as Lie
generator Lie[U(t)] ∝ L , the lineshape of the modes is associated to the fourier transform of
U(t) ∝ exp[L ] and the exponential of a linear form is the generating function of a Lorentzian
distribution while the exponential of a quadratic form is the generating function of a Gaussian
distribution.

For some practical calculation however we can take advantage of the two level NHH model
analogy with two coupled classical harmonic oscillators with a friction term. As suggested in
section 1.1 in a semiclassical picture, the losses can enter the system dynamics as soon as we
allow the system eigenenergies to be complex. We can write in general the lossy cavity photon
and QW exciton dispersion as [42]

ω̃cav(k) = ωcav(k)− iγcav(k) (1.101)

ω̃exc(k) = ωexc(k)− iγexc(k) (1.102)

where γcav(k) and γexc(k) model the (eventually k-dependent) cavity and exciton loss rates. If
we follow the same diagonalization procedure of the previous section, we find the complex
polariton eigenvalues

ω̃UP(k) =
ω̃cav(k)+ ω̃exc(k)

2
+

√
Ω2

R +
1
4

δ̃ 2(k) (1.103)

ω̃LP(k) =
ω̃cav(k)+ ω̃exc(k)

2
−
√

Ω2
R +

1
4

δ̃ 2(k) (1.104)

representing the lossy upper and lower polariton branches, where δ̃ (k) is the cavity-exciton
complex detuning defined by
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δ̃ (k) = ω̃cav(k)− ω̃exc(k) = (ωcav(k)−ωexc(k))− i(γcav(k)− γexc(k)) (1.105)

While in the isolated cavity with no environmental coupling, if ΩR 6= 0 the two polariton bands
were non degenerate, here the right most square root term in equations (1.103)-(1.104) can
be imaginary and the real part of the bands becomes degenerate, in the simpler case where
ℜe[δ̃ ] = 0 this happens if 2ΩR < (γ0

cav−γ0
exc), and the system is said to be in the weak coupling

regime. The upper and lower polariton homogeneous linewidths can be written in the bare
exciton-photon basis as

γUP(k) = X2(k)γexc(k)+C2(k)γcav(k) (1.106)

γLP(k) =C2(k)γexc(k)+X2(k)γcav(k) (1.107)

Usually in GaAs based heterostructures the excitonic linewidth is the dominant one, and typical
polariton lifetimes are order of a dozen picoseconds.

1.4.3 Interactions, Confinement and Mean Field Approximation

Polaritons interact with other polaritons thanks to the excitonic component in their wavefunc-
tion. The description from a microscopic standpoint of the scattering process is quite complex
since involves the complex Coulomb interactions between electron and holes: we refear to [44]-
citeGlazov for the details. However is possible to write an effective hamiltonian modeling the
interactions between excitons without invoking their elementary costituents is possible. This
trick is often referred in many-body physics as bosonization procedure. As soon as the average
transferred wave vector in the scattering events is small when compared to a−1

B the effective
hamiltonian can be cast in the form of a contact interaction

HXX =
∫

d2r ∑
σ ,σ ′

ΓXX
σ ,σ ′

2
Ψ

†
X ,σ (r)Ψ

†
X ,σ ′(r)ΨX ,σ ′(r)ΨX ,σ (r) (1.108)

where (σ ,σ ′) = σ± and are the polarization indexes and PsiX ,σ (r) is the Fourier transform
of the exciton destruction operator. The interaction constant ΓXX can be decomposed in a
parallel spin ΓXX

σ+,σ+
= ΓXX

σ−,σ− = ΓXX
⇒ and antiparallel spin ΓXX

σ+,σ− = ΓXX
σ−,σ+

= ΓXX
� and the

rotational invariance of this interaction potential imposes that total exciton spin is conserved in
the scattering. The two scattering term which originates are often called Pauli scattering terms:
physically ΓXX

⇒ terms correspond to the exchange of an electron or hole between to excitons
where ΓXX

� correspond to the exchange of an electron with a hole between, this process needs to
be mediated by biexcitons2 or by the dark states. From the electric charge sign of the exchanged

2Helium like excitons composed by two electrons and two holes
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particles intuitively one would say that ΓXX
⇒ > 0 is repulsive and ΓXX

� < 0 is attractive. This is
true for ΓXX

⇒ but for ΓXX
� the sign depends on the dominance of the biexciton or dark state

mechanism. Under circularly polarized drive the parallel spin interaction constant reads [8]-
[45]

Γ
XX
⇒ =

6e2a2D
B

ε
(1.109)

where e is the unit charge, a2D
B the exciton Bohr radius and ε is the background dielectric per-

mittivity. And usually ΓXX
⇒ � ΓXX

� and the ratio depends on the pump polarization and detuning
but in some conditions the biexciton creation mechanism may become resonant (biexciton Fes-
hbach resonance) and the inequality can be flipped [8]-[46]-[44]. Other contributions to the
interaction term are for instance

1- Direct coulomb scattering: this term since the exciton is a neutral artificial atom is
trongly suppressed: in absence of external fields applyed on the microcavity the Coulomb
cross section is roughly four orders of magnitude smaller than the Pauli term [45].

2- QW electrostatic energy: is the energy of electric charges of an electron and a hole
forming an exciton in the electrostatic potential formed by other excitons. Indeed if the
electron wave function penetrates into the barriers deeper than the hole wave function, the
population of excitons in a QW creates an inhomogeneous charge density consisting of a
positive sheet at the center of the well and two negative sheets at the edges of the well.
The well acts as a plane capacitor in this case [46].

3- Exciton saturation: the Pauli principle forbids the creation of another exciton at a dis-
tance shorter than the Bohr radius with another exciton with the same spin. This term can
be modeled at the lower order in the exciton density by another quartic hamiltonian with
a positive intercation constant. In general the exciton saturation term is smaller than the
other contributions up to very high densities [45].

In most of the relevant experimental conditions one can restrict to work with the lower polariton
branch, if we write the interaction hamiltonian in the polariton basis, it reads

HLP−LP =
∫ d2k

(2π)2 ∑
σ ,σ ′

ΓLP
σ ,σ ′(k)

2
a†

LP,σ (k)a
†
LP,σ ′(k)aLP,σ ′(k)aLP,σ (k) (1.110)

with

Γ
LP
σ ,σ ′(k)≈ |X(k)|4Γ

XX
⇒ (1.111)

where X(k) is the hopfield coefficient related to the excitonic component in the lower polariton
band.



46

Another intersting question is how is possible to implement spatial and spin-dependent external
potentials. Many strategies were developed in the past years to build scalar (i.e. spin indepen-
dent) potentials, we briefly list some of them:

• Surface Acoustic Waves: originally developed by P. Santos and collaborators in Berlin,
allows to modulate the exciton energy via the spatially patterned strain field produced by
the surface acoustic waves (SAW) propagating in the sample. The SAW also affects the
photonic component by introducing a change in the thickness and refractive index of the
cavity layer. One or two trains of surface acoustic waves can be used to create 1D or 2D
lattices. However the potential modulation is limited by the smallest sound wavelength.

• Mechanical Stress: developed in the group of D. Snoke, allows to change the exciton
energy by using a tip which pushes on the back side of the sample. The confining mech-
anism is similar to the SAW one, but here the strain is applied by means of pressure.

• Optical Manipulation: this technique was originally proposed by A. Amo and S. Pigeon,
was successfully developed in many groups. A repulsive potential can be achieved by
means of a strong "trap" laser field injecting σ− polaritons with a real space desity profile
reminscent of the laser spot shape, which can interact with σ+ polaritons excited by a
second "pump" laser. The advantage of this technique is the possibility to create potentials
with almost arbitrary shapes down to µm size which can be also modulated on short time
scales.

• Surface Metal Deposition: developed in the group of Y. Yamamoto, introduces a local
change in the dielectric constant of a cavity by depositing a patterned thin metallic layer
on top of the sample. 1D and 2D periodic potentials can be obtained.

• Overgrowth Techniques: this technique was developed by the group of B. Deveaud
and consists in modulating the cavity spacer width by a post-growth selective etching
technique: in correspondence of the spacer width discontinuity an in plane photonic band
gap is created thus laterally confining the polaritons.

• Post-growth Etching Techniques: consists in the deep spatially patterned etching of
the microcavity planar structure structure after the growth process. The etching involves
all the layers forming the top mirror, the cavity layer and the lower mirror down to the
substrate. The huge refractive index mismatch at the air-semiconductor inteface provides
an almost squared confinement potential, with this technique is possible to grow structures
with arbitrary shapes down to micron sized pillars. We will discuss in detail in the next
chapter this technique since is the one used in C2N labs for the sample growt.

In general the interactions can be modeled with an hamiltonian term
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Hext =
∫

d2r ∑
σ ,σ ′

[V cav
σ ,σ ′(r)Ψ

†
c,σ (r)Ψc,σ ′(r)+V exc

σ ,σ ′(r)Ψ
†
X ,σ (r)ΨX ,σ ′(r) ] (1.112)

which can be cast in the lower polariton and higher polariton band basis by means of the unitary
transformation Θ̃.

We are now interested in the derivation of an equation describing the non trivial dynamics of the
polariton gas in the cavity. In particular the interaction terms describing exciton-exciton colli-
sions make the dynamics non trivial and are responsible for a number of nonlinear and quantum
phenomena. If again for simplicity we neglect the lossy lindblad terms, the time evoultion
operator for the coherent fields ΨUP,LP(r, t) can be writtem in the path integral formulation as

U (Ψ
∗
α, f , t f , Ψα,i, ti ) =

∫
D [Ψ∗α(t)]D [Ψα(t)] exp

(
i
h̄

S[Ψ∗α ,Ψα ]

)
(1.113)

where β = (kBT )−1, the indexes i, f label the initial and final states, D [Ψ∗α(t)]D [Ψα(t)] is the
Feynmann path functional measure and the action S has the form

S[Ψ∗α ,Ψα ] =
∫ t f

ti
dt ∑

α

[ ih̄ Ψ
∗
α(t)∂tΨα(t)−HTot(Ψ

∗
α(t),Ψα(t))] (1.114)

In our two level model α = 1,2 and corresponds to the upper and lower polariton states, we
can write the vector forms Ψ = (ΨUP,ΨLP)

T = (Ψ1,Ψ2)
T and Ψ† = (Ψ∗UP,Ψ

∗
LP) = (Ψ∗1,Ψ

∗
2)

remembering that -in absence of spin orbit coupling terms- the upper and lower polariton fields
are C-valued scalar kind. In case of spin dependent terms the definition of Ψ,Ψ† has to be
generalized in terms of spinorial fields. In the exciton basis the total hamiltonian reads HTot =

Hcav +Hexc +HJC +HXX +Hext +Hpump while for the exciton exciton interactions we already
have a real space expression for the pump and free polariton term Hcav +Hexc +HJC = Hpol we
have to find it, this can be easily done by recalling the Fourier conjugation between the k-space
creation and destruction operators and the real space field operators, see (1.80). We restrict
ourself to spinless system i.e. Hso = 0. The pump hamiltonian has a simple form in the polariton
basis if one restricts to k-vectors close to zero and to a quasi resonant pumping (i.e. δ � ΩR):
under these assumptions the coupling η is real valued and constant η∗(k) = η(k)≈ η0, and the
pump hamiltonian reads

Hpump = ih̄
∫

d2r η0[E(r, t)Ψ†
c(r, t)−E∗(r, t)Ψc(r, t)]

= ih̄
∫

d2r η0[E(r, t)Ψ†
i (r, t)Θ̃

1,i−E∗(r, t)Θ̃1,iΨ
i(r, t)]

(1.115)

where E(r, t) is the incident radiation coherent field, Θ̃i, j are the entries of the matrix Θ̃ which
diagonalizes the H0 = Hexc +Hcav +HJC hamiltonian and represent the compact form of the
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relations

ΨX = X0ΨLP−C0ΨUP (1.116)

ΨC =C0ΨLP +X0ΨUP (1.117)

where (X0,C0) are the Hopfield coefficients at |k| = 0, notice that these relations are good as
soon one is restricting the dynamics close to the bottom of the polariton bands. The exciton
interaction term (??) can be written within the same approximations as

HXX =
∫

d2r Γ
XX
⇒ [Ψ†

Λ̃ Ψ ] (1.118)

where

Λ̃(r, t) =

(
C4

0nUP(r, t) 0
0 X4

0 nLP(r, t)

)
(1.119)

and nLP,UP are the number density operators for the upper and lower polariton band. The exter-
nal potential can be put as well in the compact form

Hext =
∫

d2r [Ψ†(r, t)Ṽ (r)Ψ(r, t) ] (1.120)

and Ṽ is the matrix encoding the confinement acting on the upper and lower bands weighted by
the hopfield coefficients

Ṽ (r) =

(
X2

0 Vcav(r)+C2
0Vexc(r) 0

0 C2
0Vcav(r)+X2

0 Vexc(r)

)
(1.121)

To conclude we need to write the real space reperesentation of the free polariton hamiltonian
(1.86), this can be done by finding the real space representation of the kernel (1.87). Close to
zero in plane wavevector the parabolic band approximation can be applied also to the polariton
dispersion and the real space kernel representation is the free particle one

Ξ̃(r) =

h̄ωUP(0)− h̄2
∇2

2m∗UP
0

0 h̄ωLP(0)− h̄2
∇2

2m∗LP

 (1.122)

and equation (1.86) has the real space representation

Hpol = Hcav +Hexc +HJC =
∫

d2r [Ψ†(r)Ξ̃(r)Ψ(r) ] (1.123)

Summing up the terms (1.123)-(1.118)-(1.120)-(1.115) we finally have derived the action.
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The physical meaning of equation (1.113) is that once the Hilbert space vector point Ψi is spec-
ified the probability of finding the state Ψ f at the time t f is proportional to the weighted sum of
all the possible paths in the Hilbert space which connects the two. The second quastion is how
to identify the dominant terms in this sum: for every possible path from the phase space point
Ψi to the point Ψ f the action S[Ψ∗(t),Ψ(t)] takes a well defined R value if the Hamiltonian is
hermitian. This is not our case because of the Hpump term but we will briefly see how to solve
this problem, lets first assume to work with an hermitian hamiltonian. Since the action in the
path integral formulation of the time evolution is multiplied by the imaginary unit, larger action
terms correspond to faster phase oscillations which average to zero faster and faster as the ac-
tion gets larger and larger. This pictorical representation of the time evolution suggests that the
dynamics is dominated by the "trajectories" which have the smaller action: this is the so called
Least Action Principle inherited from classical mechanics.

Mean field approximation3 consists in finding the extremal value of the action (which is always
a minimum for convex hamiltonians) and negleting all the other contributions. This corresponds
in assuming the expectation value of the quantum observables evolves accordingly to the clas-
sical equations of motion. Indeed the extremal value of the action δS[Ψ∗(t),Ψ(t)] is found only
for the "classical" trajectories 〈Ψ(t)〉 satisfying the Euler-Lagrange equations of motion.

The non hermitian pump term seems to be a problem, indeed the larger the terms the quicker
the time evolution operator diverges or decays. However the hamiltonian corresponding to the
pump term (1.115) is linear in the polariton fields Ψ(t) and Ψ†(t), thus when we Taylor expand
the action around the classical polariton field, the only non vanishing term is the first. This
allows, for our purposes, a safe inclusion of the non hermitian pump term in the action.

The mean field equation of motions for the polariton field Ψ(t) are easily derived if we take the
variation of S[Ψ∗(t),Ψ(t)] respect to Ψ† and we set the result equal to zero. In the compact form
we derived for the total action the computation is straightforward and for the lower polariton
component reads

ih̄∂tΨLP(r, t) =
[

h̄ω
0
LP−

h̄2
∇2

2m∗LP
+VLP(r)+gLP|ΨLP(r, t)|2

]
ΨLP(r, t)+ iηLPE inc(r, t) (1.124)

Where VLP(r) =C2
0Vcav(r)+X2

0 Vexc(r) is the confinement potential term, gLP = ΓXX
⇒ X4

0 is the
strenght of the Kerr (χ3-type) nonlinearity induced by polariton polariton contact interactions
and ηLP = η0C0 is the coupling efficiency of an incident coherent field quasi-resonant with the
lower polariton energy ground state h̄ω0

LP and is proportional to the front mirror trasmittance

3Also called saddle point approximation in Field Theory textbooks
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at normal incidence η0. The inclusion of the lossy terms L [ρ] is completely non trivial from
the stand point of the derivation of the above equation from first principles and in self consisten
way: the reason is the Path Integral formulation needs to be extended to model the coupling of
a quantum system with the environment, for the details we refear to [47]. Nevertheless we can
add a dissipative term to equation (1.124) in a euristic but consistent way taking advantage of the
mapping between a calssical damped harmonic oscillator and a non hermitian hamiltonian we
demonstrated in section 1.1. A non null imaginary component in the NHH complex eigenenergy
spectrum turns in a finite eigenenergy linewidth, corresponding to an exponentially damped
probability of finding the system in the initial state as the time passes. This can be mapped in the
friction term of the classical CHOs model, the classical equations of motion for an omogeneus
friction term are in the form

dv
dt

=−γ v (1.125)

But then as long as the mean field approximation holds the quantum observables must obey
the classical Euler-Lagrange equations, in addition we mapped the friction term of the above
equation in section 1.1 to a non hermitian hamiltonian contribution in the quantum picture,
we therefore demonstated that we can recount for the system dissipation by adding a term
∝−iγLPΨLP, thus obtainig

ih̄∂tΨLP =

[
h̄ω

0
LP−

h̄2
∇2

2m∗LP
+VLP

]
ΨLP +gLP|ΨLP|2ΨLP + iηLPE inc− i

γLP

2
ΨLP (1.126)

where γLP =C2
0γcav+X2

0 γexc is the lower polarition homogeneus linewidth and the origin of fac-
tor two in the denominator of the lossy term can be traced back in the NHH mapping proposed
in section 1.1.

The last issue we want to address is how to model the drive if the the pump laser detuning is
larger than the rabi splitting. It can be demonstrated [8] that the equation form is left unaltered
but the coupling efficiency η becomes a functional of the reservoir density nres(r). We call
reservoir the "hot" unbound charge carriers created by a positive detuned pump: these electrons
have too high momentum to form the exciton bound state, however they can relax to the bottom
of the conduction band trough non radiative mechanisms mediated by photons or defects. The
modeling of these processes is highly non trivial and has to be accounted trough a time depen-
dent master equation, which is coupled trough η [nres] to equation . We refear for the details to
[8] since we will not deal in detail trough this manuscript with the mechanisms involving the
reservoir.

This equation is often called Driven Disspative Gross-Pitaevsky Equation and was firstly de-
rived (without the imaginary terms in the right hand part) to describe the dynamics of a diluite
bosonic condensate wavefunction with contact repulsive interactions. The fact that the polari-
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ton dynamics at mean field level is described by this equation is exciting because DD-GPE has
a huge nuber of solution families depending on the different coefficients ratios, some of them
show for instance superfluidity, solitons, vortex formation, topological excitations and much
more. Many of these phenomena were already present in the undriven lossles equation but the
addition of external driving and losses opens the frontiers to the study of the rich out of equi-
librium dynamics of an interacting Bose-Einstein gas, in regimes often unreachable to other
systems. Equation will be fundamental for the modeling of the dynamics of two coupled po-
lariton cavities, which is the main subject of this manuscript.
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CHAPTER 2

Samples and Experimental setup

Before strarting the description of the samples and of the setup, i want to aknowledge the col-
laboration within the group i worked in and the Team of engineers, physicists and chemists
working in the clean room of C2N-Marcoussis. Without their know-how and the continuous
close contact work the realization of such high quality samples would not be possible. In par-
ticular i would like to thank A. Lemaître and E. Galopin for the sample growth, L. Le Gratiet
for the etching mask deposition and imprinting and I. Sagnes for the etching, as all their collab-
orators.

We will first describe which are the main techniques employed in the sample growth and etch-
ing, then we will focus on the particular sample used for all the measurements in this manuscript
characterizing its optical properties with by means of the transfert matrix method proposed in
section 1.3.1. The second part of the chapter will focus on the description of the experimental
setup and measurement techniques.
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2.1 Sample description

Our sample is grown by Molecular beam epitaxy (MBE), a technique originally developed in
the Bell labs by A. Y. Cho and collaborators [48], which is a unique tool to grow layer by layer
a desired heterostructure. The main advantages respect to the other growth protocols is the ex-
treme control and purity which can be achieved, this latter being only limited by the chemical
purity of materials employed in the growth and by the level of vacuum in the reaction cham-
ber. The basic idea of MBE is to create ultra high vacuum in a chamber where the substrate is
hold on a support which can be freely rotated and heated. Ultra-pure elements in form of small
ingots are lodged in Knudsen cell heaters where they can be sublimated, each cell has also a
shutter. The cell temperature has to be controlled with high precision since every temperature
variation may affect the flux of sublimated molecules, and even small chemical overabundances
can be source of defects in the crystal structure. Once a shutter is opened the gaseous element
start to diffuse in the chamber and condense on the substrate wafer, if two or more shutters are
opened the different elements reacts on the wafer to create the desired alloy. Another advantage
of MBE is that the condensation and reaction of the atoms on the substrate is an intrinsically
an out of equilibrium process, this allows the creation of alloys based on elements which are
immiscible in the termodinamic equilibrium gaseous or liquid form. The term Beam means that
evaporated atoms do not interact with each other or vacuum chamber gases until they reach the
wafer, due to the long mean free paths. We schematize the MBE setup in figure 2.1 (a).The re-
action chamber also lodges a high energy electron gun and a phosphorous sceen used to detect
the diffracted electrons from the sample surface, this technique usually called with the acronym
RHEED, allows to probe the growth of the sample layer by layer. In addition a lamp and a fiber
allows the MBE operator to perform in situ fluorescence spectroscopy.

The working principle of the RHEED technique is quite simple: the electron partial waves
generated by the scattering with an ordered structure can positively or destructively interfere,
bright intensity maxima appear in correspondence of the directions satisfying the Laue-Bragg
condition. If the electron gun flux is kept constant, the roghness characterizing non completely
grown layers creates spurious constructive interferences at angles different from the Bragg ones
resulting in a lowering of the Bragg-Laue peak intensity I. If this quantity is recorded over
time one can track from the number of oscillations of I(t) the number of layers already grown,
allowing one to control the layer thickness on orders of some angstroms: since the λ/4 lay-
ers of the DBRs are approximatively (600÷ 700)Å thick this control is fundamental because
every variation in the layer thicknesses may degrade the DBR reflectivity. A better control is
even more important in the growth of the QW because as discussed in section 1.2.3, any thick-
ness fluctuation greatly enhance the decoherence processes, enlarging the excitonic linewidth
and worsening the exciton optical properties, see for instance [41]. The RHEED mechanism is
sketched in figure 2.1 (b).
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Figure 2.1: Typical setup used for the MBE growth technique (a). RHEED working principle (b), typical
MBE growth rates are ν < 1 nm/s. We call ρ the fraction of atoms in the growing layer over the total
atoms of one layer, θB is the Bragg angle.

The presence of the rotation stage on the substrate holder is of great importance indeed, if the
wafer stands still because all Knudsen cell positions cannot be perpendicular to the holder plane
the subimated atom flux have a spatial gradient proportional to the beam angle. This gradient
vanishes as soon as the holder is kept rotating at constant velocity, but can be also employed to
create a wedge in the layer thickness, this fact can be exploited to obtain a spatial dependent
exciton-cavity detuning when growing the GaAs spacer.

Once the full heterostructure is grown on the substrate a polymeric layer is deposited on the
top mirror. The mask can be imprinted by combined use of electron beam litography creating
the negative and a UV lamp which hardens the positive of the desired pattern. The negative
can be lifted by after a bath in a solvent. The sample is washed in a diluite acid to remove
the oxides which can spoil the chemical etching process. The dry etching procedure is rather
complicate but is exentially based on a Inductively Coupled Plasma (ICP) technique, where the
active etchant is a clorine-based gas. The sample is lodged in a high vacuum chamber where the
gas is ionized to plasma thanks to a strong radiofrequency electromagnetic field on the metal
platter located just below the saple holder. Two plates of opposite charge creates a strong electic
field perpendicular to the saple, the ionized electrons have higher kinetic energy and start to be
absorbed by the surface, creating very low damage since they are light paricles, however the
negative surface charge grows and the ions in the plasma start to get accelerated to the surface
where they etch the unprotected surfaces both by sputtering mechanisms and by chemical re-
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Figure 2.2: Growth and etching procedure of the sample. First the AlGaAs-based bottom DBR is epi-
taxially grown on the substrate, the arrows indicate that the sample is kept in rotation to obtain constant
layer thickness on the wafer plane. In a second step the bottom part of the GaAs λ/2 spacer is grown
followed by the InGaAs QW. The third step is to stop the rotation and grow the top part of the spacer
with a thickness spatial gradient. Then the top DBR is grown and the polymeric mask is deposited, an
ion beam hardens part of the mask corresponding to the pattern which is etched by the ICP.

action. To increase the aspect ratio of the etching process, periodic deposition of passivation
layers can be employed, following a so called Bosch step. The technique developed in our lab
by I. Sagnes and collaborators allows to fabricate structures with a section as small as 1µm2

with a height of 10 µm and almost vertical walls, this technique does not impose any restriction
on the shape of the structures, except that their lateral dimension should not be too small (typi-
cally lateral dimension should be larger than 1.0 µm) to avoid non-radiative recombinations on
the side walls of the etched structures, which would strongly degrade the optical properties of
the system. 0D, 1D and patterned 2D structures can be realized with a high degree of freedom
in choosing the desired geometry. We schematize the whole fabrication procedure in figure 2.2.

Polaritons get confined in these structures thanks to their photonic component which is ver-
tically confined by the cavity and laterally confined by the large refractive index mismatch
between vacuum and the semiconductor heterostructure. The excitonic component is instead
free to move in the QW plane since the exciton Bohr radius is much smaller than the typical
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Figure 2.3: (a)-1D wires, the color map on the side is the spatially resolved PL of the polariton conden-
sate flowing in the structure, from [49]. (b)-1D quasicrystal obtained by lateral patterning a wire, this
induces a spatially dependent modulation of the lateral potential. (c)-Diode juction, (d)-Mach-Zender
interferometer. (e)-Micropillar structures which can be regarded as simple artificial atoms thanks to the
polariton level discretization, the diameters range between 6 and 1.5 µm. The diameter tuning can be
used to engineer the energy level structure. (f)-(g) the overlap of two or more pillars results in a coupling
term, the resulting structures mymic real molecules in solid state, here we show respectively an analogue
H2 and benzene molecule. (h)-Honeycomb lattice structure mymicking graphene. (i)-Some intersting 1D
lattices which are very diffucult to reproduce with trapped cold atoms, ions or superconducting circuits.
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later size of the structures built with this technique. The etching is therefore equivalent to an en-
gineering of the external potential acting on polaritons. The engineering the dimensionality of
the structure allows to study 1D propagation of polariton condensates, the fabrication of Mach-
Zender interferometers for coherent polaritons flows and to build syntetic atoms and crystals
by 3D-confining polaritons in micropillar structures. Some representative structures which can
be built with this technique are shown in figure 2.3. The strenght of polariton systems is their
hybrid nature: where the excitonic component provides a local Kerr nonlinearity the photonic
component provides both the confinement but expecially straighforward, non disturbing and
clean probe to the system. For instance a polariton condensate flowing in a wire can be direcly
resolved by mean of its PL, and the valence orbital structure of an artificial molecule (i.e. fig.
2.3 (f)-(g) ) can be also resolved by means of a simple imaging technique. The huge experi-
mental advantage of detecting NIR photons becomes critical when one is interested in studying
the time resolved dynamics of coupled lattices of resonators with a Kerr nonlinearity (fig. 2.3
(h)-(i) ).

Our sample consists of of a λ/2 GaAs spacer ebedding at his center a 80 Å wide InGaAs quan-
tum well, the spacer is included between two AlGaAs based DBRs and all the structure was
grown by molecular beam epitaxy (MBE) on top of a high purity GaAs crystal. The DBR
layers are Al0.1Ga0.9As and Al0.95Ga0.05 alloy doublets forming the 26 and 30 pairs which con-
stitutes the top and bottom mirrors. The Indium-Gallium-Arsenide quantum well composition
was chosen so that the exciton energy lays roughly ∼ 35 meV below the 4K GaAs Γ-point gap
EΓ = 1.519 eV , since also the substrate is monocrystalline GaAs this allows to collect the emis-
sion of the system both in reflection and transmission geometry. This is an enormous advantage
when pumping at high power the system because one avoids all the back reflected light from
the top mirror, allowing much more precise and clean measurements.

We simulated the reflectivity of our sample by means of the Transfer Matrix Method illustrated
in section 1.3.1. We chosed a resonant cavity mode corresponding to the vacuum wavelenghth
λ0 = 840.0 nm, the optical thickness of the two DBR layers are 579 Å and 697 Å respectively for
the lower and higher Aluminium fraction in the AlGaAs alloy. The aproximative GaAs substrate
depth is 0.7 mm. We plot the resulting simulation in figure 2.4. From the simulation we find the
following parameters

λ̃0 = 840.002 nm γcav = 4.9 µeV

the small difference between λ̃0 and the spacer λ0 is amenable to the smooth spatial dependence
of the refractive index in the wavelength as pointed by the Sellmeier’s equation (1.62). The cav-
ity linewidth correspond to a photon lifetime of 133 ps this value of course is overextimated
beacuse we are assuming perfectly smooth interfaces, but the order of magnitude is correct.
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Figure 2.4: (top)-MTM calculation of the sample reflectivity spectrum. The stop band is roughly
176meV wide centered on the cavity resonant energy Ecav ≈ 1476 meV . The fast oscillations in the re-
flectivity outside the stop band are due to the weak Fabry-Perot cavity resonances of the substrate which
has a refractive index a little higher than the DBRs and much higher than the air. Since the optical thick-
ness of the substrate is huge compared to the heterostructure, these beats correspond to very high cavity
modes which correspond to weaker resonances. (bottom)-Zoom around the cavity resonance, the peak
transmittivity is T (λ0 + δλ ) ≈ 0.93 where δλ ≈ 0.002 nm is a small frequency shift of the resonance
provided the refractive index of the DBR layers and of the spacer smootly changes with the wavelength.
We can extract the cavity linewidth, and we find 2γcav = 9.8µeV , corresponding to a radiative lifetime of
133 ps.
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2.2 Setup and Measurement techniques

As we pointed in the previous sections the polariton observables are completely encoded in
the cavity spontaneous emission. Our objective was to be able to image the cavity emission
both in real and momentum space, both spatially and energy resolved. The setup can also be
upgraded to include a streak camera allowing time resolved measurements on timescales of a
few picoseconds, in this manuscript however we only performed CW experiments so we will
omit this part of the setup. We show the setup schematics in figure 2.5.
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Figure 2.5: Setup schematics. Notice the seven flip flop mounts which allow to swhich between different
detection configurations without changing the allignment. This flexibility plays an important role to
ease the measurements since constant allignement on the micrometric structures and different imaging
techniques had to be frequently alternated.
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The SINGLE MODE LASER STAGE, highlighted in blue comprehend a Millennia XS stabilized
Nd : YVO4 laser (1), delivering 10W at 532nm. The laser beam polarization is rotated in ver-
tical direction respect to the table plane by a λ/2 waveplate. The Millennia XS beam pumps
a MSquared SolsTiS single mode Ti:Sapphire cavity (2) which can be tuned in the wavelength
range (640−1100) nm with a precision of 0.1 pm, the nominal linewidth is < 50 kHz, meaning
the linewidth is∼ 104 times smaller than the minimal wavelength tuning step. In the imput port
of the cavity a high quality PBS cleans the spurious polarization components of the Millennia
beam while in the output port a small part of the output T EM00 beam is focused on a multi-
mode fiber leading to a Ångstrom WS-6 high finesse wavelenght meter (3). The Wavemeter and
the cavity are connected to the feedback control MSquared IceCube block which reads down
the WS-6 and actively compensates the cavity to stabilize the output wavelength. Part of the
532 nm pump beam is not down-converted by the single mode cavity active medium and con-
stitute a spurious secondary output beam. Since a typical intensity ratio between the main and
secondary beam is ζ = Ip/Is = 400 a simple prism or a high pass filter is enough to get rid of
this contribution. The tipical beam divergence after the SolsTiS cavity is quite large and must
be compensated with a lens which focal spot lays on the exit mirror of the cavity.

In the NOISE REDUCTION STAGE, highlighted in purple, two flip-flop mirrors allow to divert
the beam on demand and let it pass trough a Thorlabs LCC3112H LCD noise eater (4). The
stabilization of the beam power relies on a simple feedback circuit based on a low bias current
OpAmp which imput voltage is provided by a integrated photodiode, where a small part of the
incident light is collected, a potentiometer fixes a reference bias voltage acting as the OpAmp
ground, the unbalance between the reference voltage and the imput pin is converted in a pro-
portional signal which drives the LCD amplitude modulator. A typical noise reduction factor is
150 between 6 Hz and 200 Hz. The principal noise source in the line is due to the Millenia and
to the dust particles since the total optical path is about 4m. Tipical power fluctuation rms in the
DC to few Hz range is better than 0.3%, with a nearly optimal alligning.

The CONTROL STAGE is responsible for the polarization and power management. Two half
wavelenghth waveplate-PBS couples allow to change the beam power over six orders of mag-
nitude, from 0.5 W to 0.5 µW . To achieve a fine power tuning the λ/2 plates are lodged on
Thorlabs PRM1Z8 DC servo motors (5) which have a 0.03o angular step accuracy, the two
servo motors are controlled by remote. Because of the number of optical elements and dust
the mode profile of the beam may degrade, two lenses (L1-L2) form a telescope. If a pinhole
is located at the focal plane of the telescope the spourious Fourier modes of the beam can be
filtered out, moreover the telescope allows to fine tune the beam collimation. The λ/2 plate W1
can be used to set the beam polarization axis. A Thorlabs M660L4-C4 collimated red LED (6)
along with the flip-flop mirror FlFl1 can be diverted along the beam line allowing to image in
the visible spectrum the sample surface, this is fundamental for the beam aligning procedure, as
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we will briefly see. The beam get divided by a 70 : 30 non polarizing BS, the transmitted beam
impinge on a Thorlabs S145C photodiode (7) which allows to measure the laser power. Finally
the flip-flop lens L3 allows to image the Fourier plane of the excitation objective (8), as we will
explain in the measurement description this allows the k-space imaging of the sample emission
in reflection geometry.

The EXPERIMENT comprehends a Montana C2 closed cycle cryostation (10), where the sample
is lodged, which cools down the sample to 4K. The sample holder can be moved on the xz
plane by a ANPz101eXT12 Attocube piezo stage. Two high working distance-high numerical
aperture objectives (8) and (9) are respectively used to focus the pump beam and to collect the
transmitted luminescence. The excitation objective (8) fixes the optical axis and was mounted
on a three stage positioning system with xy 1.4µm/deg positioners and a 0.35µm/deg precision
along the optical axis z. The collection objective (9) was mounted on a three stage xyz actuator
with double screw pitch precision and on a two axis mount to adjust the tilt of the objective
axis respect to the optical axis fixed by objective (8). The flip-flop mirror (FlFl2) allows to
divert on the line the reflected or transmitted emission of the sample. The flip-flop lens L4
images the Fourier plane of objective (9), while the lens (L5) and (L6) are used to image with
different magnifications the beam on the detectors. The polarizer (P1) allows to do polarization
resolved measurements. The Grasshopper 1394b CCD detector (11) along with the flip-flop
mirror (FlFl3) was mainly used in the allignment procedures, while an Andor CCD camera (13)
was used for the measurements. The Andor CMOS detector is cooled to −40oC by peltier cells
and is able to capture 1024× 1024 pixel images up to 100 f ps with a pixel register of 14 bit.
The Andor CCD is coupled to a Princeton Instruments SP2500A single grating spectrometer
(12) which allows to do energy resoved measurements with a resolution of 30 µeV . To image
the real space the spectrometer slit is opened and the grating is set to the 0-order, so it behaves
as a mirror. We table the imaging element characteristics:

Code Object Industry Specifications

L1 N-BK7 Lens ThorLabs Coated, 2”∅, f = 150mm
L2 N-BK7 Lens ThorLabs Coated, 2”∅, f = 150mm
L3 N-BK7 Lens ThorLabs Coated, 2”∅, f = 300mm
L4 N-BK7 Lens ThorLabs Coated, 2”∅, f = 300mm
L5 N-BK7 Lens ThorLabs Coated, 2”∅, f = 750mm
L6 N-BK7 Lens ThorLabs Coated, 2”∅, f = 300mm
8 Plan Apo. Obj. Mitutoyo Coated, NA = 0.55, WD = 200 mm
9 Plan Apo. Obj. Nikon Coated, NA = 0.55, WD = 220 mm

Let’s see the alignment procedure on the sample and the fundamental measurement protocols.
We will use the term flip when a flip-flop mount element is put in the beam line and flop other-
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wise.

• ALIGNMENT: we start (FlFl1) flop, the laser light shines on the sample. (L3)-(L4)-(L5)-
(FlFl2) are flop, (L6)-(FlFl3) are flip, the reflection of the laser spot is imaged on the
CCD (11). We set the laser spot on focus and we mark the laser spot position on the
screen. Next we flip (FlFl1), now the LED light images the sample surface on the CCD.
By using the piezo actuators one can move the sample until the marked spot on the screen
corresponds to the microstructure one desires to pump. Finally (FlFl1) is flop and the
objective (8) focus is adjusted since the substrate height is different from the top mirror
one.

• PHOTOLUMINESCENCE: the sample is pumped non resonantly around one of the re-
flectivity minima of figure 2.4 around 770 nm in order to achieve optimal coupling with
the QW optical transitions. Many electron are promoted to the conduction band and can
relax non radiatively to populate all the allowed exciton-polariton states. The sample
emission can be imaged both in reflection or transmission geometry depending on (FlFl2)
is respectively flop or flip. If (L3)-(L4)-(FlFl3) are flop we can image the photolumines-
cence (PL) via the lens (L5) or (L6) on the CCD (13). Once the vertical slit is closed
and the grating is tilted, the vertical axis on the CCD is real space and the horizontal axis
resolves the y-slice of real space in energy. If now (L3) or (L4) are flip (depending on
the collection geometry) the emission is imaged in k-space, and the CCD horizontal axis
measures the momentum of the PL. The energy-momentum resolved PL provides a clean
measurement of the polariton dispersion ωLP,UP(k). In order to neglect nonlinear effects
and the reservoir perturbation the pump has to be weak Ppump . 10µW .

• RESONANT TRANSMISSION: the sample is pumped close to level resonance, and usually
the collection is in transmission geometry to avoid the spurious signal from the top mirror:
(FlFl2)-(FlFl3)-(L4) are flop, we usually flop (L6) and flip (L5) which allows a higher
magnification. The system emission is directly imaged on the Andor CCD and can be
eventually resolved in energy by means of the spectrometer (12). By scanning the laser
frequency at low power one can probe the level structure of a photonic molecule as in fig
2.3-(e)-(f)-(g) by integrating over the spatial coordinates the emission and the molecules
orbitals can be direcly imaged when pumping resonantly on of the energy levels. By
increasing the power one can also study the nonlinear response of these structures, in
particular the possibility to probe the transmission of the sample is critical to this aim,
since the reflected light from the top mirror can eventually be much more intense than the
system emission.
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CHAPTER 3

Planar cavities and Micropillar structures

In the perspective of building complex lattices or networks of coupled microcavities the first
natural question to address is the study and characterization of a planar microcavity, indeed
many of the micropillar properties in the linear regime can be inferred direcly from the dis-
persion relation h̄ωpol(k) of a nearby planar cavity. As we demonstrated in section 1.4 the
detuning of the cavity mode from the exciton line and the rabi splitting completely determines
the Hopfield coefficients (1.94)-(1.93). These coefficients are the key quantities to determine
the polariton-polariton interactions (see (1.111)). An accurate characterization of 2D-cavities
is the starting point for all the measurements we will show hereafter. From the planar cavity
frame we will then characterize some single micropillar structure, hereby studing how the pil-
lar size affects the ground state energy detuning from the 2D cavity one and thus the excitonic
fraction of the confined polaritons. Finally we study the dependence of the effective polariton
Kerr coefficient with the sample temperature: this additional fine control over the nonlinearity
is very intersting and paves the way to study phenomena as the unconventional photon block-
ade in photonic molecules [26]-[27], which depend dramatically on the absolute value of the
interaction constant.
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3.1 Planar Cavities

The sample used in the following experiments is a small part of a initial circular GaAs wafer on
which a planar Fabry-Pérot cavity constituted by two distributed bragg reflectors embedding an
InGaAs quantum well was grown (see section 2.1). The cavity spacer presents a wedge which
allows to change the bare exciton-cavity photon detuning along the wafer. A small rectangle
approximatively 2 cm wide and 0.6 cm high was cleaved from the wafer. A repeated pattern
comprising many different structures was then etched from the planar cavity. By repeating
the pattern along the rectangle one is able to work on the same nominal structures in different
detuning regions. We show in the below figure a schematic of the etched motifs.

1 

3 4 5 

6 

x 

y 

∇δ

2 

SCP 

D-A 

D-B 

SSP 

D-B 
D-A 

SSP 

SCP 

Figure 3.1: (Top left)-on the cleaved rectangular part of the wafer eight groups of four patterns were
etched. Only the six central patterns were in the detuning region of interest. The arrow shows the
direction of detuning gradient ∇δ . (Bottom left)-zoom of the repeated pattern, the side is about 950µm.
The mask includes many different structures, among them planar cavities, wires, laterally patterned
wires, diodes, routers, single pillars, molecules and microstructres gating different wires. We highlight
in different colors the portions of the motif containing the relevant structures to our experiments. (SCP)
includes a 100×100 µm squared 2D cavity and single micropillars with different diameters. (D-A) and
(D-B) includes dimer molecules with different diameter and center to center distance. (SSP) includes a
200×100 µm planar cavity and rectangular single pillars with variable width and 2:1 aspect ratio.
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In figure 3.1 we show a small portion of the retangular sample: on the right of the eight motifs
the exciton-cavity detuning is δ � 0 and δ � 0 on the left, thus the corresponding lower po-
lariton has X2(0) ≈ 1 and X2 ≈ 0. These two oppoiste situation are not very attractive since if
the lower polariton is almost an exciton the optical quality of the emission is worsened due to a
weak overlap with the free space modes (which is mediated by the cavity photon field) and the
eigenmodes are broad since the exciton linewidth γexc� γcav and γLP =C2γcav+X2γexc. On the
other hand the highly photonic polaritons are very good candidates to address the linear proper-
ties of the microstructures due to enhanced emission and narrow linewidths but they are of any
interest when trying to address the nonlinear properties of the system. The motif numbering
(1-6) and the three highlighted regions labels reported in figure 3.1 will be used hereafter very
often to help the reader in the orientation on the sample.

The characterization of the planar cavity polariton is the first step for the ongoing studies. The
measurements of the polariton dispersion provides trough equation (1.90)-(1.89) valuable infor-
mation on the bare exciton and bare cavity photon dispersion and on the Rabi splitting. Once
these three quantities are known, the polariton properties are completely characterized by the
Hopfield coefficients (1.94)-(1.93).

Since we need to perform energy resolved measurements the spectrometer was previously cal-
ibrated by shining the laser trough the substrate and imaging the transmitted light on the spec-
trometer slit (element (12) - figure 2.5). The laser wavelength can be tuned within 0.1± and has
a 50 kHz linewidth which is unresolvable by the adopted 1200 g/mm grating, indeed the spec-
trometer resolution limiting factor was the 10 µm slit minimal width, we can therefore assume
the wavelenght of the laser as an errorless quantity. In figure 3.2-(a) we measured the signal
centroid on the CCD at 1 nm steps, the error on the centroid position is roughly 0.02 pixels.
The data can be fitted with a simple linear regression y = mx+q, the fit is weighted on the pixel
centroid error and provides

m = (59.20±0.04) pix/nm q =−(49125±33)pix

The centroid energy has then the simple form

E(pix) =
hcm

(pix−q)
(3.1)

where h is the Planck constant and c the speed of light. The error associated to this calibration
can be extracted from the covariance matrix of the fit Cov(σm,σq) since the errors on m and q
are completely correlated as

σ
2
E(pix) = (∇(m,q)E(pix))TCov(σm,σq)(∇(m,q)E(pix)) (3.2)
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Figure 3.2: Spectrometer calibration (a). Spectrometer point-spread function (b), the experimental data
are fitted with a Voigt profile, since the model is nonlinear a maximum Likelihood Markov Chain Monte
Carlo (MCMC) approach was adopted.

the calculation is straightforward and one finds that the relative error is almost constant in
the whole pixel range σE/E ≈ 0.0013. Another important information we can extract is the
spectrometer resolution. To address this quantity we projected along the slit direction (i.e. the
real space axis) the CCD image, this provides a one dimesional histogram for every wavelength.
We superimposed some of these histograms by subtracting the centroid postion and the result is
shown in figure 3.2-(b), the FWHM of the peak is the key information to extract the spectrometer
resolution. The lineshape of the peak is the convolution of many effects i.e the slit aperture,
the grating instrinsic resolution and surface defects, dust and charge diffusion on the CCD.
In general some of these effects cause a homogeneous broadening of the line, some other an
inhomogeneus one, so the lineshape can be described by a Voigt profile, which results from
the convolution of a Gaussian and a Lorentzian distribution. One of the possible Voigt profile
representations is

V (x,γ,κ) = κ

∫ ey2

(x− y)2 +a2 dy (3.3)

the fit result is shown in figure 3.2-(b) and provides

γ = (0.35±0.02) pix κ = (1.41±0.05)

and the FWHM of the Voigt profile can be calculated as

2γV = 2α1γ +2
√

α2γ2 +σ2 = (2.07±0.11) pix (3.4)

where α1,2 are constants which can be easily found in literature and σ =
√

log(2) and the spec-
trometer resolution at the central wavelength λ0 = 839 nm is R≈ 24000.
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To measure the polariton dispersion we adopted the strategy firstly proposed by Weisbuch and
collaborators [7], which relies on the conservation of the in plane momentum between the emit-
ted photon and the cavity polariton due to the optical energy-momentum selection rules imposed
by the planar geometry (see section 1.2.3). We imaged the energy and momentum resolved
emission of the rectangular cavities in SSP-(1) to SSP-(6). These cavities are not perfect pla-
nar cavities due to the finite lateral dimensions however the polariton de Broglie wavelenghth is
much smaller than the 200×100 µm sides of the cavity and then their dynamics can be regarded
in good aproximation as free in the in plane direction. We pump the cavity at its geometrical
center nonresonantly, close to one of the reflectivity minima showed in figure 2.4. The pump
power is set low enough to neglect all the polariton-polariton interaction terms adopting the
setup configuration illustrated in section 2.2-(PHOTOLUMINESCENCE) in reflection geometry.
We show the measured polariton dispersion for the cavity SSP-(4) in figure 3.3-(a).

Every CCD frame provides an intensity matrix I(i, j), with i, j = 1, ...,1024. The row pixel can
be turned in a energy value trough equation (3.1). The column pixel can be calibrated using
the definition of numerical aperture of the objective which is imaging the sample NA = nsin(θ)
where n is the refractive index of the medium in which the objective works and θ is the maximal
half-angle of the cone of light that can enter or exit the objective. The tails of the dispersion
must then be cut at an angle

θMAX = sin−1
(

NA
nair

)
≈ 33 deg (3.5)

since the objective (8) (see fig. 2.5) has a nominal NA = 0.55. If the left and right end tails are
zoomed this maximal angle appears as a vertical line outside of which the intensity fades. The
limit of this approach is that one has to trust the nominal value of the numerical aperture, we
solved this problem by averaging the pixel calibration over dozens of different dispersions. A
more accurate calibration can be done by combining a telescope constituted by two well known
lens with equal focal and a slit. From the focal length and the slit aperture an accurate cali-
bration can be done. However this procedure was not necessary to our purposes since a scale
error on the calibration only affects the effective mass of the polariton which was not a relavant
information for our purposes. We end with an intensity matrix I(E(i),θ( j)) and recalling that
k‖ = |k|sin(θ) we found the dispersion relation for the upper and lower polariton branches.

The intensity map recorded by the CCD was then fitted. To this aim a strategy is to convert
the map in a set of points and weights. The first step was to estimate the background IB(i, j)
by covering the laser beam and recording the frame. Once the mean value 〈IB(i, j)〉 and the
standard deviation σ of the background were known, the mean was subtracted to the signal
matrix I(i, j) and all the matrix elements with I(i, j)< 〈IB(i, j)〉+3σ were discarded from the
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Figure 3.3: (a)-Measured polariton dispersion for the SSP-(4) rectangular planar cavity. (b)-Best fit of
the lower and upper polariton branch modeled by equation (1.90)-(1.89) are respectively the red and
purple dotted lines. The orange and yellow dashed lines are the bare exciton and bare cavity photon dis-
persions in parabolic band approximation. Panel (c) is a sketch of the measurement mechanism and panel
(d) are the Hopfield coefficients (1.94)-(1.93) associated to the best fit parameters. The zero momentum
lower polariton exciton fraction is C2(0)≈ 0.05

matrix. The pixel left from this threshold procedure were given a coordinate in the (θ(i),E( j))
plane and a weight proportional to the counts number of the pixel. If we call Ω1 the set of all
the pixel surviving the threshold procedure which belongs to the lower polariton branch and Ω2

the ones belonging to the upper polariton branch, the fit routine task is to minimize the quantity

χ
2 = ∑

(i, j)∈Ω1

[ h̄ωLP( j)−E(i, j) ]2 I(i, j)+ ∑
(i, j)∈Ω2

[ h̄ωUP( j)−E(i, j) ]2 I(i, j) (3.6)

Where h̄ωLP,UP( j) is the upper or lower polariton branch analytical expression (1.90)-(1.89)
evaluated for the wavevector k0 sin(θ( j)) and E(i, j) is the value E(i) corresponding to the an-
gle θ( j). The above equation is nothing more than the χ2 evaluated for Poisson distributed
events E(i, j).
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The function h̄ωLP,UP( j) depends on four parameters (Ecav(0),Eexc(0),ncav,2h̄ΩR) which are
respectively the bare cavity photon and bare exciton eigenenergy at zero momentum, the effec-
tive index of refraction of the cavity and the Rabi splitting. Since the parameter space is huge a
method to reconstruct the χ2 function is to randomly pick the four values in a defined range of
parameters with a uniform sampling distribution. This sampling was realized 106 times.

To estimate the best fit parameter error a good approximation is to fix three parameters and vary
the one left free, since the expected χ2 for N degrees of freedom and Q fitting parameters is
N−Q≈N and the Chi2 variance is 2N, if χ2

∗ is the chi squared for best set of fit parameters and
x∗ the expected value for the free parameter (i.e. χ2(x)|x∗ = χ2

∗ ), then χ2(x) = 2χ2
∗ implicitly

defines the 1σ confidence level. One of the best fit is shown in figure 3.3-(b). We summarize
the fit parameters for all the cavities SSP-(1) to SSP-(6) in table

SSP ncav Ecav (meV ) Eexc (meV ) 2h̄ΩR (meV ) X2(0)
(1) 3.60±0.11 1469.76±0.09 1476.78±0.16 3.30±0.14 0.048±0.004
(2) 3.66±0.08 1471.48±0.22 1472.12±0.18 3.34±0.16 0.41±0.04
(3) 3.58±0.13 1470.10±0.18 1470.48±0.25 3.35±0.16 0.44±0.04
(4) 3.62±0.09 1470.13±0.06 1477.12±0.15 3.34±0.15 0.048±0.005
(5) 3.54±0.12 1469.42±0.04 1481.22±0.22 3.31±0.09 0.019±0.002
(6) 3.65±0.11 1469.96±0.05 1481.02±0.17 3.33±0.10 0.021±0.001

Table 3.1: Best fit parameters for the rectangular planar cavities in group SSP motifs (1) to (6).

The error on the Hopfield coefficient X2(0) was propagated assuming negligible correlation in
the fit parameters, in this semplified picture the error reads:

σ
2
X2 =

δ 4
R
(
σ2

Ec +σ2
Ex
)
+(Ecav−EExc)

2
δ 2

Rσ2
δR

4
(
(Ecav−EExc)2 +δ 2

R
)3 (3.7)

where δR = 2h̄ΩR is the Rabi splitting, and with σ we denote the standard deviation of the
quantity reported as pedex label; notice that C2 = 1−X2 implies that the error on C2 must be
equal to the X2 one. As we anticipated in figure 3.1 the detuning gradient is positive along the
x axis and also has a minor component along the y axis.
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3.2 Micropillars

If we include a 2D confinement term in the driven-dissipative Gross-Pitaevsky equation (1.4.3)
describing the polariton dynamics , the first intuitive consequence is the discretization of the
polariton states. If we look at the steady state of equation (1.4.3) in absence of nonlinearity
(i.e. for a weak pump) and we are interested in the real part of the eigenenergies, the problem
becomes equivalent to the solution of a time independent Shrödinger equation in presence of
an external potential Vext(x,y). The imaginary part of the eigenstates dictates the linewidth of
the corresponding real-valued mode energy, we will address this problem in a second moment.
We will focus on the circular micropillar structures in group (SCP) motif (4): thanks to the
highly photonic lower polariton (C2(0)∼ 0.95) these structures show a narrow linewidth and an
enhanced photoluminescence, allowing very high quality measurements. The time-independent
Shrödinger equation describing the confined polariton steady state reads[

h̄ω 0−
h̄2

∇2

2m∗
+Vext(x,y)

]
ψ(x,y) = Eψ(x,y) (3.8)

where m∗ is the effective mass of the polariton, and h̄ω 0 is the zero-point energy of the polariton
states. As we mentioned in section 1.4.3 the confinement in the structures fabricated in C2N is
provided by the refractive index mismatch between the semiconductor and the vacuum around
the etched structure. Since the refractive index gap is huge, the polaritons get strongly confined
by total internal reflection because of their photonic component; for a circular structure a good
approximation for the potential well Vext is

Vext =

i f (r ≤ R) Vext = 0

i f (r > R) Vext = ∞

(3.9)

where R is the radius of the structure. Thanks to the cylindrical symmetry the eigenfunctions of
the probles can be written as the product of a radial part and of an angular part, it is convenient
to write equation (3.8) in polar coordinates[

h̄ω 0−
h̄2

2m∗

(
1
r

∂

∂ r
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2

)
+Vext(r)

]
u(r)χ(θ) = E u(r)χ(θ) (3.10)

The angular part obeys a free particle hamiltonian and the radial part, in analogy with the well-
know radial problem for the hydrogen atom, can be solved in terms of the Bessel functions
Jm(x), where m is the third component of the angolar momentum. Moreover The eigenenergies
can be written in terms of the Bessel functions zeros Jm(xm,n) = 0, where (n,m) labels the n-th
zero of the m-th order Bessel function [50], as

En,m =
h̄2

2m∗R2 x2
m,n + h̄ω 0 (3.11)
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and n is often called the principal quantum number. We also stress that every eigenstate with
m 6= 0 is doubly degenerate because of the symmetry in ±m of equation (3.11) and every
eigenenergy scales with R−2. This latter property is intersting to our purposes and can be
experimentally tested by measuring the spontaneous photoluminescence (PL) of the circular
micropillars in group (SCP).

We firstly measured the (SCP) squared planar cavity to have a reference dispersion relation
which is useful to understand the single pillar emission properties. The measurement follows
the same experimental and postanalysis procedure explained in the previous section 3.1. From
the fit of the dispersion

SCP ncav Ecav (meV ) Eexc (meV ) 2h̄ΩR (meV ) X2(0)
(4) 3.63±0.08 1471.40±0.09 1477.69±0.19 3.31±0.14 0.054±0.006

The pillar PL was measured in transmission geometry adopting the setup configuration il-
lustrated in section 2.2-(PHOTOLUMINESCENCE), since the in plane wave-vector is ill-
defined for polaritons laterally confined in few micron sized structures, we directly imaged the
real space PL emission on the spectrometer slit. Therefore the CCD rows and columns cor-
respond to energy and space, since we are mainly interested in the ground state of the pillar,
which has a symmetric s-type character, the slit tranverse position was alligned with the pillar
center.

We show in figure 3.4 the PL of six micropillars with different diameters, the colorplot allows
to appreciate both the modes profile and the discretization of the energy levels, it is clear from
the figures that all the modes blueshift as the pillar diameter is decreased. Looking at the eigen-
modes linewidth we observe a progressive broadening as the principal and angular quantum
number increase, this can be related both to the fact that higher excited states are progressively
localized close to the pillar edge experiencing and enhanced overlap with the free space radia-
tive modes and to the fact that as they are blushifted from the bottom of the lower polariton band
their excitonic component becomes higher thus resulting in a line broadening since γexc� γcav

and γLP = C2γcav +X2γexc . To verify quantitatively some of these statements we need to get
informations on the mode shape and centroid. We can project along the spatial direction the
colorplot in the bottom part of panels in figure 3.4 to get the energy resolved spectrum of the
pillar emission which we show in the top part of the figure 3.4 panels. The eigenmodes energy
can be easily retrieved by computing the centroid for the different peaks, but the lineshape and
the linewidth related information requires some caution. Indeed what we are measuring is the
convolution of the point-spread function of the spectrometer with the effective lineshape of the
PL emission. We stress that the PL emission lineshape can be generally different from the true
eigenmode lineshape due to the interaction of polaritons and reservoir, however in the very low
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power pump regime, which we carefully attained in the experiments, these effects are negligible.

As we discussed in section 3.1 the point-spread function of the spectrometer can be modeled
by a Voigt profile which results from the convolution of a Gaussian G (µ,σ) and a Lorentzian
L (µ,γ) distribution

Vsp(µ,σ ,γ) = G (µ,σ)~L (µ,γ) (3.12)

where µ is the expected value, σ the gaussian standard deviation and γ half of the lorentzian
FWHM. Moreover the polariton lineshape results from the convolution of an homogeneus
broadening due to the photonic component and an inhomogeneus term provided by the non-
radiative recombination processes which characterize QW excitons (see section 1.4.2). The
two terms can again be modeled respectively with a Lorentian and a Gaussian profile, and the
polariton lineshape has a Voigt profile character, therefore what we are measuring is

Vtot(µ,σT ,γT ) = Vsp(µ,σs,γs)~Vpol(µ,σp,γp)

= G (µ,σs)~G (µ,σp)~L (µ,γs)~L (µ,γp)

= G (µ,
√

σ2
s +σ2

p)~L (µ,γs + γp)

= Vtot(µ,
√

σ2
s +σ2

p ,γs + γp)

(3.13)

Were we used the properties of the convolution operation and the fact that both the Lorenzian
and Gaussian profiles belong to the Lévy symmetric α-stable distribution with α = 1 and α = 2
respectively and so their convolution is still a Lorentzian (Gaussian) profile. The Lorenzian
profile resulting from the convolution has a FWHM which is the sum of the two convolved
FWHMs whereas the Gaussian has a standard deviation which is the sum in quadrature of the
two. As we know the convolution of the spectrometer and polariton lineshape, we can easily
perform the deconvolution of the two terms once we compute (σT ,γT ) with a Voigt profile fit
of the single modes in the energy resolved spectrum of the pillar structures.

In figure 3.5-(b) we plot the ground state energy as a function of the pillar radius. To compute
the line centroid we fitted the projected spectra of figure 3.4 with a Voigt profile, as moti-
vated by equation (3.13). We computed all the fit on the raw count vs pixel histograms via the
Minuit-Fumili minimization libraries of ROOT, this choice allows to correctly propagate the
spectrometer calibration error over the computed observables. Since the best fit parameters are
often correlated, the error propagation needs to take in account the different covariance matri-
ces. In general if we want to compute the observable f (x1, ...,xN) error, where (x1, ...,xN) are
correlated variables, the leading error term reads
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Figure 3.4: Colorplots: Energy and space resolved emission of six micropillars with a radius included
between 1.0 and 3.2 µm. The projection along the spatial coordinate of the colorplot is shown on top and
highlights the discretization of the polariton modes in the micropillar. These structures can be regarded as
artificial hydrogen-like atoms: from the colorplots one can appreciate the s-type character of the ground
state and the two lobe profile of the first p-type excited state. Some of the excited modes show a small
energy splitting, this happens because if the structure is slightly elliptical a linearly polarized polarized
light which is not orthogonal to one of the major ellipse axis can excite both the modes which have a
small energy difference proportional to the ellipticity of the micropillar’s section, this also breaks the
±m symmetry of the eigenmodes and may result in an effective spin orbit coupling with the TE-TM
energy splitting of the DBRs. However all these features does not influence the ground state because it
is maximally symmetric.
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σ
2
f =

[
∂i f (x1, ...,xN)(Cov(σ1, ...,σN)

i
j ∂

j f (x1, ...,xN)
]
(x1,...,xN)=(x∗1,...,x

∗
N)

(3.14)
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Figure 3.5: (a)-SEM image of the micropillar structures, the orange spots marks the probed structures,
the pillars diameter increases left to right and top to bottom. (b) ground state energy blueshift as a
function of the pillar radius, the solid blue line is a weighted fit in the form prescribed by equation (3.11)
showing good agreement between the theoretical predictions and the experiment. In the right part of
the panel the (SCP)-(4) planar cavity dispersion is plotted, the turquoise shaded area corresponds to the
upper-lower branch gap where the polariton states density should be ideally null. The pillar having R =
1.4 µm had a dark ground state since the mode layed in between the gap. (c)-Deconvolved homogeneus
and and inhomogeneus contributions to the ground state linewidth. (d)-Deconvolved FWHM of the
ground state line as a function of the pillar radius, the corresponding polariton lifetime varies between
16 and 10 picoseconds.

where σ1, ..,σN are the standard deviations associated to the maximum Likelihood point (x∗1, ...,x
∗
N),

and Cov(σ1, ...,σN)
i

j is the covariance matrix of the (x∗1, ...,x
∗
N) parameters and is related to the

Likelihood Hessian matrix.

If the Voigt profile best fit to figure 3.4 spectra is V ∗tot(µ
∗,σ∗T ,γ

∗
T ) and the centroid position

pixel is µ∗, the ground state energy can be computed via equation (3.1), which depends on



Chapter 3 77

the calibration slope m and offset q, which are correlated statistical variables. Since (m,q) are
uncorrelated with µ∗ the covariance matrix will have the block-diagonal form

Cov(σµ∗,σm,σq) =

(
σ2

µ∗ 0
0 Cov(σm,σq)

)
(3.15)

and the computation of the error is straighforward algebra. The result of this analysis is plotted
in figure 3.4-(b). The experimental points can be fitted with the infinite circular well eigenstate
formula (3.11) letting as free parameters m∗ and h̄ω 0 and from the weighted best fit we obtained

m∗ = (3.98±0.06) ·10−5me h̄ω 0 = (1474.39±0.03) meV

The good agreement between experimental data and the infinite well model suggests that the
hypotesis of complete polariton confinement by total internal reflection of the photonic com-
ponent is a fair approximation. This measurement is intersting because it allows a precise and
direct measurement of the polariton effective mass which otherwise has to be inferred from
the effective length Le f f of the Fabry-Pérot cavity and from the effective refractive index ne f f

which are more exotic quantities often carrying a consistent uncertainty.

The linewidth of the ground state can be addressed if the best fit Voigt profile V ∗tot(µ
∗,σ∗T ,γ

∗
T )

is deconvolved from the spectrometer poin spread distribution Vsp(µ,σs,γs). The parameters
σs,γs are known from the previous section, and are correlated trough Covs(σσs,σγs). The same
holds for (σ∗T ,γ

∗
T ) and the deconvolution -as captured by equation (3.13)- corresponds to the

calculation of the quantities

σp =
√

σ2
T −σ2

s (3.16)

γp = γT − γs (3.17)

which have to be converted in pixel trough the relation

f (pix)≈ hc m
q2 pix (3.18)

valid if pix� q; here h is the Plank’s constant and c the speed of light. The composition
of equation (3.18) with (3.16) depends on the four parameters (σT ,σs,m,q) or (γT ,γs,m,q).
Again the covariance matrix has the block-diagonal form diag(σ2

σT
, σ2

σs
, Cov(σm,σq)). The

homogeneus and inhomogeneus contribution γp, σp to the polariton linewidth are plotted in
figure 3.5-(c). The constant inhomogeneus contribution 〈σ〉 ∼ (10.4±0.03)µeV (solid yellow
line) reflects the fact that the QW exciton Bohr radius is much smaller than the pillar size and
thus the confinement does not influence the exciton properties. This is only true if the etching
procedure does not degrade the QW and if the radius of the pillar is greater than ∼ 0.5 µm
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otherwise sidewalls recombination effects start to play a role in the exciton linewidth. The
increasing homogeneus term as the pillar size decreases depends on the increased side to mirror
surface ratio

Γ =
2πRLe f f

πR2 =
2Le f f

R
(3.19)

which reflects in an enhanced polariton coupling with free space modes trough lateral losses.
Finally we can retrieve the confined polariton lifetime by calculating the FWHM of the ground
state lineshape, as discussed in the previous section thi can be done trough equation (3.4) once
σp and γp are known. The error computation again relies on equation (3.14), now the variables
are six (σp,γp,σs,γs,m,q) and are correlated in groups of two. The calculated polariton lifetime
is between 16 and 10 picoseconds, and degrades as R gets smaller as expected.

Finally we calculated with a finite element approach (via Mathematica’s FEM package) the first
ten eigenmodes density profile of the pillar, the results are plotted in figure 3.6. We set all
the simulation parameters to match the best fit estimators m∗ and h̄ω 0 provided by the fit of
(3.11) on the experimental data. Once we have the 2D plot for the mode profiles we can deduce
which shape would be imaged on the CCD by the spectrometer. The computed profiles are in
good agreement with the experimental ones. The simulation is also able to reproduce the first
4 eigenenergies, however the higher modes does not match the experimental data, this has to
do with the fact that the particle mass was fixed in the simulation while the polariton mass runs
with the mode-to-lower polariton detuning.

It’s noteworthy that the calculated mode profiles have close resemblance with the hydrogen
atom electronic orbital density ρn,l,m = |ψH

n,l,m|2: mode (a) and ρ1,0,0, (b)-(c) and ρ2,1,±1, (d)-
(e) and ρ3,2,±1, (f) with ρ2,0,0, (g)-(h) with ρ4,3,±1 and (i)-(l) with ρ3,1,±1. This encourages
the analogy between the pillar structures and hydrogen-like atoms, and paves the way to the
study of more complex molecules, where the single artificial atom level structure can be engi-
neered trough the pillar shape. The great advantage of working with photonic molecules is that
the orbital structure can be directly imaged by means of spatially and energy resolved photo-
luminescence experiments. Recently the coupling of six equal pillar structures arranged in a
hexagon’s vertices allowed to emulate a chiral Benzene-like molecule [51].
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Figure 3.6: (a) to (l): finite element simulation of the first ten eigenmodes density profile (i.e
|ψn,m(r,θ)|2) of a particle in an infinite circular potential well with R = 3.2µm: every eigenmode has n
radial nodes and |m| nodes on a circle. The red dashed line represents the spectrometer slit position: the
energy and space resolved emission reported in the colorplot shows the corresponding mesured mode
profile showing good agreement. Notice that the mode (d) is dark because of the slit position in our
configuration. On top of every simulated mode density profile we report the blueshift respect to the
point-zero energy h̄ω 0: the theoretical predictions are shown as blue lines in the corresponding experi-
mental energy spectrum. The agreement is again pretty good for the first four modes, the modes (b)-(c)
are splitted in the experimental dataset because of the pillar ellipticity and TE-TM splitting, as previously
discussed. Concerning the predicted higher eigenmodes blueshift, the bad agreement whith the exper-
iment can be ascribed to the absence in our simulation of an effective mass drift as the mode detuning
respect to the lower polariton branch increases. Indeed theory predicts an effective polariton mass run-
ning with the Hopfield coefficients which are mode detuning dependent (equations (1.96)-(1.95)) as the
parabolic band approximation conditions are not fulfilled (i.e. for large detunings from h̄ωLP(0)).
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3.3 Temperature and Interactions

In this section we address the possibility of tuning the nonlinearity of pillar structures with
temperature. As discussed in section 1.4.3 polariton polariton interaction in the lower dispersion
band has the form -(1.110)-

Γ
LP
σ ,σ ′(k)≈ |X(k)|4Γ

XX
⇒ (3.20)

and the polariton dynamics in a planar cavity is described by the driven-dissipative Gross-
Pitaevsky equation (DD-GPE) (1.4.3). However in a micropillar structure the in plane wavevec-
tor is anymore a good quantum number and the allowed energy states are discretized: within
some boundaries these properties allows to greatly simplify the equations describing the polari-
ton dynamics . Indeed if the energy level spacing between the ground state and the first excited
state is much bigger than the sum of the two linewidts we can disregard the excited states and
substitute to the polariton wavefunction the single mode ansatz

ΨLP(r, t) =
√

N(t)eiφ(t) (3.21)

and if we are interested in the steady state of the pillar under a coherent driving E(t) = E0eiωt

the above ansatz reduces to

ΨLP(r, t) = ψsseiωt (3.22)

where
√

N = ψss, plugging this ansatz in the DD-GPE, (1.4.3) becomes(
h̄ωGS− h̄ω− i

γGS

2

)
ψss +U |ψss|2ψss +F = 0 (3.23)

which describes a single mode resonator with a nonlinear term U = ΓXX
⇒ X4

GS under a coherent
driving with amplitude F = ηLPE0. The ground state energy blueshift induced by the nonlin-
earity at given pump power is ∝ U |ψss|2 and |ψss|2 ∝ F/γGS, since N = |ψss|2 is the polariton
occupation number in the pillar ground state, the effective Kerr nonlinearity reads

χ
3 =

ΓXX
⇒ X4

GS

S γGS
(3.24)

where S is the ground state mode section and ΓXX
⇒ is the copolarized polariton-polariton Pauli

exchange interaction constant described in section 1.4.3. While S and ΓXX
⇒ are constants, X4

GS

depends on the pillar ground state detuning from the planar cavity lower band at zero mo-
mentum h̄ωLP(0). Indeed for a planar cavity is close enough to a pillar structure, so that the
exciton-cavity photon gradient is negligible, if h̄ωLP(k) = h̄ωGS for k = k∗, then X2

GS = X2
LP(k

∗).
Tuning the pillar ground state detuning from the fundamental planar cavity mode is therefore
equivalent to control the nonlinearity of the pillar structure.
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Figure 3.7: From left to right: Energy and momentum resolved PL of the (SSP)-(4) planar cavity at
4.2 K, Energy and space resolved PL of three neighbouring rectangular pillar structures. Decresing the
pillar size a reflects in a ground state energy blueshift in analogy with the eigenmodes of a particle in
a box En ∝ n2/a2. The pillar ground state detunings from the bottom of the lower polariton band are
respectively ∆E1 ≈ 0.91 meV , ∆E2 ≈ 1.86 meV and ∆E3 ≈ 2.66 meV .

A well know property of QW bare excitons is that their emission peak redshifts with temper-
ature [52]-[53]-[54] and the linewidth increases due to enhanced electron-phonon interactions
[55]-[56]. If the exciton line redshifts the planar cavity exciton-photon detuning δ (T ) decreases
if δ0 < 0, then X2(0) increases (equation (1.93)). If the X4(0) growth rate with T dominates the
exciton line broadening, the pillar nonlinearity increases because of equation (3.24) and vicev-
ersa. However as the planar cavity exciton shifts, as well the excitonic component of the pillar
ground state shifts, and also the index of refraction of the Fabry-Pérot cavity may change with
T therefore affecting also the cavity resonant-modes. The interplay of all these factors is quite
complex and will be the topic of this section.

In order to have a complete characterization of the different phenomena occurring when the
system temperature is modified we will both record the planar cavity dispersion at different
temperatures to keep track of the bare exciton and photon dispersion, both keep detailed infor-
mation of the pillar groundate energy and linewidth. We focused in motif (SSC)-(4) where a
200× 100 µm planar cavity and a set of rectangular micropillars with a fixed 2:1 aspect ratio
and variable sectional area We decided to focus our attention on three different pillars with the
shortest side a measuring (right part in figure 3.7)

a1 = 3.2 µm a2 = 2.2 µm a1 = 1.8 µm
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As we demonstated in the previous section, confined polaritons in a micron-sized cavity have the
lowest linear eigenmodes which can be calculated by means of a time independent Schrödinger
equation for a particle having mass m = m∗LP in presence of an infinite well with the shape of
the pillar section. The rectangular cavity is equivalent to the solution of a particle in a box
eigenmodes

En,m =
h̄2

π2

2m∗LP

(
n2

a2 +
m2

4a2

)
(3.25)

If the pump beam is linearly polarized along the shorter (longer) rectangle side the m 6== 1
(n 6== 1) modes are dark. The ground state energy shifts with a2

i , allowing to study the tem-
perature dynamics for different pillar ground state to lower polariton detunings. In figure 3.7
we show the (SSC)-(4) planar cavity dispersion alongside the three PL emissions, showing the
ground state blueshift with the pillar side dimension, the measured shift is in good agreement
with the predictions calculated using the nominal pillar size within few percent, showing that the
etching technique ensures precise control on the pillar size on orders of some dozen nanometers.

Whereas PL measurements are accurate enough to characterize the polariton bands, a precise
information on the pillar linewidth with few percent relative error demands for resonant trans-
mission experiments, where the transmission function T (ω) of the pillar can be probed with a
spectral accuracy limited only by the single mode laser step ∆λ = 0.1 pm. Since the transmis-
sion T (ω) is proportional to the steady state dissipated power at a given frequency (i.e. the real
part of the transfert function of the pillar), the lineshape of the ground state can be characterized
by transmission experiments. The measurement consisted in recording the real space emission
of the pillar with the CCD at constant intervals of time while the single mode laser frequency
was scanning. When the laser is off resonance with a pillar mode the CCD appears dark, as the
laser get resonant with the pillar ground state a bright real space image of the mode profile is
visible on the CCD, a Region of Interest (ROI) including the mode profile can be defined on the
CCD, and the transmission spectrum T (ω) can be calculated as

T (ωk) ∝ ∑
(i, j)∈ROI

I(i, j,k) (3.26)

where I(i,k,k) is the (i, j)-th pixel intensity in the frame k corresponding to a pump frequency
ωk. We sketch the process in figure 3.8-(c); the real space emission shown in the figure is the
pillar three emission when pumped resonantly on the ground state, a slightly elliptical T EM00

mode profile can be appreciated due to the asymmetry of the cavity quantization axes.

In figure 3.8-(a) we show the planar cavity polariton bands as a function of the temperature, it is
evident a redshift affecting both the bare exciton and cavity photon mode even if the exciton line
shifts at a faster rate. The cavity mode redshifts becuse the refractive index of semiconductor



Chapter 3 83

0 10 20 30

1470

1472

1474

1476

1478

1480

1482

1484

θ (deg)

ℏω
(m
eV

)

0 10 20 30

1470

1472

1474

1476

1478

1480

1482

1484

θ (deg)

ℏω
(m
eV

)

0 10 20 30

1470

1472

1474

1476

1478

1480

1482

1484

θ (deg)

ℏω
(m
eV

)

0 10 20 30

1470

1472

1474

1476

1478

1480

1482

1484

θ (deg)

ℏω
(m
eV

)

0 10 20 30

1470

1472

1474

1476

1478

1480

1482

1484

θ (deg)

ℏω
(m
eV

)

T	=	10	K	 T	=	20	K	 T	=	30	K	 T	=	40	K	 T	=	50	K	

CW	

T (ω) ∝ I(i, j,ω)
(i, j )∈ROI
∑

c	a	

b	

Figure 3.8: (a)-Planar cavity polariton bands as a function of the temperature: both the bare exciton and
cavity photon mode are redshifting, but the exciton at a faster rate. (b)-Pillar three, if h̄ω0

GS is the ground
state energy at 4.2K we plot the normalized transmission spectrum T (ω−ω0

GS)/T (ωGS) from 4 K to 40
K. The lineshape at 4 K is in good approximation symmetric whereas at higher temperature the lower
energy tail progressively grow, this effect can be related to the enhanced scattering processes between
excitons and phonons which can act as dark state and mediate a transition also for off resonant pump
photons.

materials depends on many diffrent factors, among them the fundamental Γ point gap energy
which depends on temperature [54]: if the refractive index changes the cavity mode shifts to
preserve the Bragg relation.

Figure 3.8-(b) shows the resonant transmission spectra for pillar three for eight different temper-
atures between 4 and 40 Kelvin degrees. The pillar ground state energy also redshifts because
the lower polariton states which occupy the mode can be written in the bare exciton-photon basis
trough the Hopfield coefficients (1.94)-(1.93) as demonstrated in section 1.4. One then expects
the pillar ground state experiences a redshift proportional to the weighted sum of the bare cavity
and exciton redshifts for the Hopfield coefficents. Another clear feature is the broadening of the
lineshape: one of the main mechanisms contributing to this effect is electron-phonon interaction
which is greatly enhanced at higher temperatures. The cross section of the process is directly
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proportional to the phonon density of states, which reads

n(h̄ωpn) ∝

(
e

h̄ωpn
kBT −1

)−1

(3.27)

which is the Bose-Einstein distribution since phonons can be described as massless bosons. The
characteristic Debye temperature in semiconductors is order of some meV , then the phonon
density of states is negligible at 4K increasing exponentially for higher temperatures. The
signature of electron-phonon interactions is the low energy tail of the ground state lineshape
which becomes more and more asymmetric as the temperature increases, this happens because
the phonon population can mediate trough scattering processes some transitions from optically
dark states. For every temperature we recorded the linewidth and the ground state transmission
peak position.

Let now describe the different shidts from a euristic but quantitative point of view. The first
phenomenon we want to address is the bare exciton redshift with temperature which essentially
depends on the Γ point energy gap Egbetween the valence and the conduction band. Two main
mechanism may affect Eg, the first one is originated by the temperature-dependent dilatation
of the lattice [52]. This contribution is linear with temperature at high temperatures, whereas
at low temperatures the thermal expansion coefficient is nonlinear with T; correspondingly the
dilatation effect on the energy gap is also nonlinear. A second contribution comes from the
electron-phonon interaction and has to be proportional to the phononic density of states (3.27).
For T < TD where TD is the Debye temperature of a semiconductor, the exciton peak emission
reads [57]-[53]

EX(T ) = EX(0)−
2κpn

e θ/T −1
(3.28)

where θ is a parameter related to the Debye temperature and κpn is the exciton-phonon inter-
action strength. Regarding the cavity resonance redshift, since the eigenmodes are fixed by the
bragg relation

Eα(ncav) =
hc
λα

= α
hcncav

2Le f f
(3.29)

if ncav decreases the cavity mode redhifts. The refractive index of a III-V semiconductor has
a complex dependence in T which usually can be described in terms of a Sellmeier’s equation
which derives from the Taylor series expansion of the dielectric function. However at low
temperatures the two main mechanisms influencing the change in the refractive index are the
termal expansion of the lattice and the energy gap dependence on T , the Penn-Ravidra model
[54] suggest the semi-emiprical relation
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dn
dT

= σ
dEg

dT
≈ σ

d EX(T )
dT

(3.30)

and σ is a coefficient to determine. In first approximation the refractive index changes as

n(T ) = n(0)+
dn
dT

T = n(0)− α

T (cosh(β/T )−1)
(3.31)

obtained by differentiation of equation (3.28), notice that we called the constants α and β even
if an explicit relation with κpn and θ exists because the QW semiconductor is an InGaAs alloy
and the cavity spacer is GaAs so the Debye temperature and phonon-exciton interactions may
be different. Finally we end with two functions modeling the bare exciton and cavity photon
redshift, we will use hereafter the handy notation

fexc(T ) =
2κpn

e θ/T −1
(3.32)

fcav(T ) =
α

T (cosh(β/T )−1)
(3.33)

This is enough to model the pillar lower polariton ground state redshift: from the Hopfield
relation between the polariton basis and the exciton-cavity photon basis we can fairly assume
that the groundtate redshifts as

fGS(T )≈ (C2
e f f −1) fexc(T )−C2

e f f fcav(T ) (3.34)

where C2
e f f is an effective Hopfield photonic coefficient. We use the term effective because in

line of principle C2 also depends on temperature: to get rid in a first order approximation of
this contribution we adopt the coefficient C2

e f f which will lay somewhere in between C2(Tmin)

and C2(Tmax). The last term we need to describe is the ground state linewidth broadening,
the literature about this topic is generous [55]-[56]-[53], the essence is that the homogeneus
linewidth broadens because of the interaction both with acoustic and optical phonons, whereas
the inhomogeneus term broadens because of the exciton enhanced scattering with fully ionized
impurities and depends on the average binding energy of such impurities. A good approximation
for all these contribution has the form

γ(T ) = γ0 +σT +κop(eθ/T −1)−1

≈ γ0 +σT +κop e−
θ

T
(3.35)

valid if θ/T � 1, where γ0 is the temperature independent linewidth, σ and κop are respec-
tively proportional to the acoustic phonon and optical phonon coupling constant and θ has the
meaning of a debye temperature for the optical phonons.
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Figure 3.9: (a)-Bare exciton and cavity photon redshift, the experimental data points were derived from
the planar cavity dispersion fitting procedure described in section 3.1. The orange and light-blue curves
are the weighted best fits of equation (3.32)-(3.33) respectively: the fit reproduces fairly the data. (b)-
Pillar ground state redshift, the data correspond to the calculation of the resonant transmission peak, the
error on the peak position is dominated by a ∼ 10 µeV uncertainty due to the syncronization procedure
of the CCD frame autoclick with the laser scan log. The data of the second (third) pillar are shifted by
0.1 meV (0.2 meV ), to clearly distinguish the three curves. The solid lines are the best fits of equation
(3.34), notice that the only free parameter was C2

e f f , being the other parameters fixed by the two fits of
(3.32)-(3.33) to the bare exciton and cavity photon in panel (a). The data with T > 35K were excluded
from the fit because they were outlayers. (c) Relative detuning from the cavity lower polariton of the
pillar ground state, we subtracted the zero temperature detuning to better appreciate the variations which
are on orders of tens µeV . (d)-ground state linewidth broadening, the solid lines are fits based on (3.35),
as in panel (b) the data with T > 35K were excluded from the fit because they were outlayers.

In figure 3.9 we summarize the experimental results concerning the bare exciton and cavity
redshift (a), the ground state resdshift (b) and the linewidth broadening (d). In panel (a) the
data relative to the exciton and cavity photon energy at zero wavector were extracted from the
joint fit of equation (1.90)-(1.89) with the technique discussed in section 3.1. We fitted the
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experimental data with (3.32)-(3.33) obtaining

κpn = (4.04±0.21) meV θ = (71.4±4.7) K
α = (243±16) meV K β = (133.9±3.7) K

with this parameters the curves shows good agreement with the experimental data. In panel
(b) the centroid of the resonant transmission spectrum (see figure 3.8-(b)) was calculated for
the three pillars. The experimental data were fitted with (3.34), as consistency requirement we
assumed in this operation that fcav(T ) and fexc(T ) were fixed by the above best parameters fit
of panel (a). We find the three effective Hopfield coefficients

C2
e f f ,1 = (0.945±0.004) C2

e f f ,2 = (0.929±0.007) C2
e f f ,3 = (0.916±0.009)

The proposed fitting function interpolates the redshift of the ground state fairly good in the
(0 < T < 35) K range, but the 40 K experimental data seems to be outlayers: this effect seems
to us having nothing to do with artificial systematic errors due to the data analysis, since presents
also in panel (d) for the linewidth broadening. Two possible issues are connected to the imper-
fect termalization of the sample or to some effect which triggers at higher temperatures, being
probably ascribable to impurities or defect center activation. In panel (d) we show the full width
at half maximum (FWHM) of the three pillars as a function of temperature, the data points were
fitted with (3.35)

Pillar γ0 (µeV ) σ (µeV /K) κop (meV ) θ (K)

1 23.7±1.6 0.49±0.05 15.2±3.1 198±30
2 25.4±0.8 1.78±0.20 7.6±0.9 188±15
3 26.5±1.0 6.18±0.34 11.8±1.7 182±9

again the fits fairly reproduce the experimental data in the (0 < T < 35) K range. For high
temperatures the releation between the lineshape FWHM and the radiative lifetime of the cav-
ity becomes ill-defined, indeed the low-energy tail of the resonant transmission spectrum in-
creases with T skewing the peak profile -see figure 3.8-(b)-, without complicating the tractation
of the temperature dependence to include these effects we can just restict the analysis in the
(0 < T < 35) K region. From a practical point of view this is also motivated by the progressive
worsening of the optical quality of the pillar emission due to thermal effects which becomes
critical above (35− 40) K, the high temperature region becomes then unintersting because of
the overwhelming thermal noise which spoils the quality of the measurements.

Finally we plot in panel (c) the relative detuning of the pillar ground state from the cavity lower
polariton: positive values suggests that exists a region (0 < T . 35) K where the ground state
has a smaller redshift respect to the lower polariton, correspondingly the grounstate excitonic
fraction increases faster than the exciton fraction for the bottom of the lower polariton band.
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Finally we propose a model based on equations (3.32)-(3.33)-(3.34) to describe the scaling
law of the excitonic Hopfield coefficient (1.93) with temperature, which is the last ingredient
we need to predict the dependence of pillar effective Kerr nonlinearity (3.24) with T. The first
assumption is that the zero temperature pillar grounstate energy lays in the range of applicability
of the parabolic band approximation to the lower polariton branch, which safely holds for all
the three pillars we are characterizing, as figure 3.7 demonstrates. Therefore we can write

ELP(θ)≈ ELP(0)+ηθ
2 +O(θ 3) (3.36)

where ncavk‖ = k0 sinθ . Within the same approximation if ELP(θ) = EGS for θ = θ∗, then at
a given temperature ηθ 2

∗ = δGS−LP, where δGS−LP > 0 is the detuning of the lower polariton
respect to the pillar ground state, in general

θ
2
∗ (T ) =

1
η

δGS−LP(T ) (3.37)

Now the Hopfield exciton coefficient within parabolic band approximation reads

X2(θ ,T ) = X2
0 (T )+X2

2 (T )θ
2 +O(θ 3) (3.38)

where

X2
0 (T ) =

(EC(T )−EX(T ))+
√

(EC(T )−EX(T ))2 +(2h̄ΩR)2

2
√

(EC(T )−EX(T ))2 +(2h̄ΩR)2
(3.39)

X2
2 (T ) =

(
π h̄2ck0 ΩR

n

)2
1

EC(T )

(
(EC(T )−EX(T ))2 +(2h̄ΩR)

2)− 3
2 (3.40)

where EX(T ) and EC(T ) are respectively the bare exciton and bare cavity photon energy at zero
momentum as a function of T

EX(T ) = EX(0)− fexc(T )

EC(T ) = EC(0)− fcav(T )
(3.41)

and Rs = 2h̄ΩR ≈ 3.3 meV is the Rabi splitting. If we call δ0 = EC(0)−EX(0) ≈ −7.1 meV ,
then (EC(T )−EX(T )) = δ0 +( fexc(T )− fcav(T )), since δ 2

0 ,Rs2� ( fexc(T )− fcav(T )) and Rs
is approximatively constant in the whole temperature range of interest, the expressions (3.39)-
(3.40) can be greatly simplified and written in terms of the functions (3.32)-(3.33) and of the
effective photonic hopfield coefficient C2

e f f by means of a Taylor expansion in powers of Γ(T )=
( fexc(T )− fcav(T )). For instance if we define the parameter
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Λ =
δ0√

δ 2
0 +Rs2

(3.42)

the terms in equation (3.39)-(3.40) reads√
(EC(T )−EX(T ))2 +(2h̄ΩR)2 ≈ δ0

Λ
+ΛΓ(T ) (3.43)

[
(EC(T )−EX(T ))2 +(2h̄ΩR)

2]3/2 ≈
(

δ0

Λ

)3

+
3δ 2

0
Λ

Γ(T ) (3.44)

By substitution and truncation of higher orders is Γ(T ) the two coefficient of the excitonic
Hopfield coefficient (3.38) becomes

X2
0 (T ) =

1
2
+

1
2

δ0 +Γ(T )
δ0/Λ+ΛΓ(T )

+O(Γ2) (3.45)

X2
2 (T ) = χ

[(
δ0

Λ

)3

+
3δ 2

0
ΛΓ(T )

]−1

+O(Γ2) (3.46)

where χ incorporates all the multiplicative constant terms. The last quantity we need to describe
is the pillar grondstate to lower polariton band detuning which reads

δGS−LP(T ) = EGS(T )−ELP(T ) (3.47)

the ground state energy as a function of temperature reads in terms of (3.34)

EGS(T ) = EGS(0)− fGS(T ) (3.48)

then we have the lower polariton band at zero momentum

ELP(T ) =
1
2
(EX(T )+EC(T ))−

1
2

√
(EC(T )−EX(T ))2 +Rs2 (3.49)

and using the same Taylor expansion in terms of Γ(T ), these last term can be simplified and the
pillar grondstate to lower polariton band detuning finally provides

δGS−LP(T ) = δGS−LP(0)+
1
2
(2C2

e f f +Λ−1)Γ(T ) (3.50)

The pillar excitonic hopfield coefficient can be obtained by substitution of the equations (3.37)-
(3.45)-(3.46)-(3.50) in (3.38). The final result is

X2
GS(T ) =

1
2

(
1+

Λ(δ0 +Γ(T ))
δ0 +Λ2Γ(T )

)
+

χΛ3

ηδ 2
0

(
δGSLP(0)+ 1

2(2C2
e f f +Λ−1)Γ(T )

δ0 +3Γ(T )Λ2

)
(3.51)
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Figure 3.10: (a) Pillar ground state polariton excitonic fraction as a function of the sample temperature.
The solid lines are the best fits provided by the model function (3.51). (b)-Temperature dependent factor
in the effective Kerr nonlinearity of the pillar stucture, the errors were derived by simple propagation for
independent variable from the X2

GS(T ) errors, since the experimental uncertainty on the linewidth can be
safely neglected. The solid lines are simply the ratio between the squared fitting function of panel (a)
and the best fits of (3.35).

Once the parameters defining Γ(T ) are fixed as the value of C2
e f f the function is completely

specified. In our case since some of the parameters included in χ and η slightly change with
temperature (it depends on higher orders of Γ(T )), we defined as only free parameter the mul-
tiplicative constant Ω∗ = χ/η .

In figure 3.10-(a) we plot the dependence of the excitonic Hopfield coefficient which we derived
from the experiments along with the best fit of (3.51) for the three pillars. The experimental
errorbars are calculated by propagation of the planar cavity best fit parameter uncertainties as
prescribed by (3.14), notice that the error on the pillar emission peak position can be safely
neglected, being one order of magnitude smaller than the other contributions. We get

Ω∗1 = (7.18±0.17) meV 2 Ω∗2 = (8.89±0.34) meV 2 Ω∗3 = (11.0±0.78) meV 2

the fit again is good within (0 < T < 35)K as inheritance of the fit quality of fGS(T ) above this
range of temperatures. In figure 3.10-(b) we finally get the desired answer to our question:

� Yes, the nonlinearity can be tuned by controlling the sample temperature �

We plotted the temperature dependent part of the effective Kerr nonlinearity (3.24), namely
X4

GS(T )/γ(T ), as a function of temperature: for the first two pillars in the region (0 < T < 25)K
the nonlinearity has a plateau and remains almost constant, whereas for the third pillar the
nonlinearity decreases in a quasi-linear fashion. All the three pillars show a fast drop in the



Chapter 3 91

nonlineartity above 25 K ,this can be ascribed to the exponential term which starts to dominate
the linewidth broadening due to the exciton-optical phonon coupling and the enhanced mobility
of defects. Around 20 K, pillar two suggests that is even possible to enhance the nonlinearity
with temperature, however we stress that the enhancement is within the experimental uncer-
tainty, it is anyhow clear that the dependence of the nonlinearity with temperature depends also
on the pillar ground state to lower cavity polariton detuning -so on the pillar size- and it proba-
bly depends also on the initial bare exciton to cavity-photon detuning demanding for systematic
futher investigations.

We also proposed a semi-empirical but comprehensive model to understand the interplay be-
tween the different contributions to the temperature-dependent effective Kerr nonlinearity in a
pillar structure, which has the advantage to be analytic. In our tractation we calculated the dif-
ferent reshift contributions by fitting our experimental data, but nothing prevents the calculation
of the different coefficients on the basis of microscopic ab initio calculations. Moreover the
model can be easily refined to include second order effects on the diffrent energy shift functions
fexc, fcav and fGS. The ability to define these functions in a general form recounting also for
the pillar size dependence and initial bare exciton-cavity detuning would be a challenging task
turning this semi-empirical model in a predictive tool paving the way to an unprecedented con-
trol over the system nonlinearity.

Even in the case the nonlinearity cannot be enhanced by means of temperature, this results is
intriguing for those who want to address a long lived theoretical prediction for photonic systems
which has still never been experimentally observed with Polariton systems: the Unconventional
Photon Blockade effect [26]-[27]. This effect should take place in coupled photonic resonators
even in presence of a weak nonlinearity U � γ if a precise ratio between U and the coupling is
matched. The smoking gun of a photon blockade effect is a strongly antibunched photon emis-
sion, however the magnitude of this effect abruptly decreases if the matching of nonlinearity
and coupling is not exact. Since temperature can be easily tuned with a 0.01K or better accu-
racy, this reflects in the ability to control the nonlinearity within a part over 103 or better: our
results then strongly encourages the search of this intriguing but elusive effect. These results
will be the subject of a forthcoming publication.



92



CHAPTER 4

Two Coupled Microcavities - Hopping and Nonlinearity

In this chapter we address the linear and nonlinear physics of two coupled polariton micro-
cavities. This system represents the essence of every driven-dissipative Bose-Hubbard inspired
Hamiltonian since it includes all the fundamental ingredients of the model: hopping, on-site
nonlinearity, driving and losses.

When two pillars have a finite overlap, the junction provides an effective tunnel-like coupling
term: in the first section we will see how this coupling constant can be tuned by varying the
center to center distance between the two pillars. In close analogy with a quantum particle in
a double well, the first two eigenstates of the coupled pillars show the so called Bonding and
Antibonding character, we experimentally measure these features and we characterize the linear
response spectrum of the dimer.

The second section is devoted to the study of the nonlinear effects arising in the coupled cavi-
ties. Depending on the pump detuning the sistem behaves as an optical limiter and shows bi and
multistabity. We experiementally test both the optical limiter and the bistable regime, while we
refear to [25] for the multistability. The steady state of the system is described within mean field
approximation by a set of coupled nonlinear equations which can be deduced from the driven-
dissipative Gross-Pitaevsky equation [58], we present the model and compare the simulations
with the experimental results.

The third section presents a novel result: if the stability of the steady state is investigated trough
the Bogoliubov spectrum of the small fluctuations around the stationary solution a power de-
pendent parametric instability can be identified and results in a self pulsing dynamics of the
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steady state. Optical parametric oscillation is a well-known nonlinear phenomenon which was
already demonstrated to happen in planar microcavities [18]-[19]-[59] and in single micropil-
lars [20]-[21]. We report the first experimental observation for two coupled cavities. This result
is intersting in the perspective of generating entangled polariton pairs as result of the parametric
scattering process.

I would like to aknowledge the fruitful collaboration with Said K.R. Rodriguez, a mentor and
a friend who teached me all the measurement techniques i used throughout this manuscript,
shared his know-how and patiently helped me to face the unavoidable experimental issues i
encountered during my internship in C2N. As well i would like to thank Alberto Amo and
Jacqueline Bloch for their constant advice, positive criticism and fundamental contribution to
the design and discussion of the experiments.

The driven dissipative Bose-Hubbard model can be schematized as in figure 4.1, we introduced
in the picture some general notation which will be used hereafter: the coupling strenght J is
proportional to the "hopping" rate to nearest neighbour sites, the on-site nonlinear term U has
the form (3.24), γ is the characteristic lifetime of the microcavity polariton and F(t) is the
coherent laser driving.

J	J	

U	

γ	

F(t)	 F(t)	
γ	

U	

J	

Figure 4.1: Schematic of the Driven Dissipative Bose-Hubbard Model (DDBHM) on a lattice with coor-
dination 4. An analog simulator of the DDBHM Hamiltonian based on coupled polariton microcavities.
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4.1 Coupled Microcavities-linear regime

Imagine to take two circular micropillars as the one described in section 3.2 and let them over-
lap, so that the structure section looks like the black profile in figure 4.2-(b). Let us neglect for
the moment the losses, the driving term and the nonlinearity in the Gross-Pitaevsky equation
(GPE) (1.4.3) which the polariton eigenfunctions obey: this physically means we are looking
at the steady state of a weakly driven coupled pillar structure. The GPE reduces to a time
independent Schrödinger equation[

h̄ω 0−
h̄2

∇2

2m∗
+Vext(x,y)

]
ψ(x,y) = Eψ(x,y) (4.1)

where m∗ is the polariton effective mass in parabolic band approximation. Unlike the single
pillar case Vext(x,y) shows no continuous symmetry therfore ψ(x,y) cannot be factorized and
the eigenfunctions have anymore a closed analytical solution, a finite element method can be
employed for this calculation as we will see later.

We would firstly like to draw a parallel between the coupled pillars and the Bose-Hubbard
model. As demonstrated in section 3.2 the eigenmodes of a pillar blueshift proportionally to
L−2 if L is the lateral dimension of the pillar. If we call CC′ the center-to-center distance of the
two pillars, R the pillar radius and we label with x the coordinate along the dimer axis centered
at CC′/2 from both the pillar centers, the width L of the structure as a function of x reads

L(x) = 2R

√
1−
(
|x|
R
−CC′

2

)2

(4.2)

As long as L(0) < (CC′+ 2R) the effect of confinement along the dimer axis is much weaker
than the lateral one and blueshift reads

∆E(x) =
π2h̄2

2m∗L(x)2 (4.3)

Within this coarse approximation the confinement along the dimer axis can be neglected and we
can marginalize the transverse coordinate which enters the Hamiltonian only trough its effect
on the x-dependent blueshift

Ĥψ(x,y)≈
[

h̄ω 0−
h̄2

∇2

2m∗
+∆E(x)

]
ψ(x) = Eψ(x) (4.4)

The problem reduces to the solution of a one dimensional time-independent Schrödinger equa-
tion where ∆E(x) plays the role of an effective external potential. In figure 4.2-(a) we show the
function ∆E(x) for different CC′ values, notice that the blueshift has a form alonf the dimer axis
which resembles a double well potential.
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Figure 4.2: (a)-Blueshift due to the lateral confinement along the dimer axis calculated with equation
(4.3) for diffrent values of the center to center distance. (b)-Top vision of the coupled pillar section for
CC′/2R = 7/8, the associated local blueshift due to the lateral confinement is sheded in green and we
show the first two eigenfunction calculated for a potential in the form prescibed by equation(4.3), notice
the even-(odd) symmetry of ϕ0-(ϕ1).

Again equation (4.4) has no analytic solutions however, as 4.2-(b) shows, the first two eigen-
functions have almost the same profile but whereas the ground state is even respect to the parity
operator the first exited state is odd. Provided that the energy separation between the grounstate
and the first excited state ∆εGS,1 is much smaller than ∆εGS,2, a two-mode approximation is legit
and allows to neglect the influence of the higher excited states in the system dynamics. Within
this assumption the so-called left and right bosonic operators can be introduced:

ϕL(x) =
1√
2
(ϕ0(x)+ϕ1(x))

ϕR(x) =
1√
2
(ϕ0(x)−ϕ1(x))

(4.5)

Since ϕ0 ≈ ϕ1 for x < 0 and ϕ0 ≈−ϕ1 for x > 0 this means that in this new basis ϕL is almost
null in the right cavity and vice versa: the two-mode bosonic field operator reads

ϕ(x) = aLϕL(x)+aRϕR(x) (4.6)

were aL,aR are the destruction operators acting on the left or on the right side of the well.
Inserting this two-mode approximation in the GPE equation we end with
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H = ∑
i=L,R

εi a†
i ai− JLR a†

LaR− JRL a†
RaL (4.7)

which is the two-site Bose-Hubbard hamiltonian in absence of nonlinear terms (U=0). If the
two cavities are equal εL = εR = ε and JLR = JRL = J and

H = ε(NL +NR)− J (a†
LaR−a†

RaL) (4.8)

this is the second quantization hamiltonian of two coupled harmonic oscillators. Notice that if
ε0 and ε1 are respectively the ground state and the first excited state eigenenergies then

ε−
∆εGS,1

2
= ε0

ε +
∆εGS,1

2
= ε1

(4.9)

The quantity ∆εGS,1/2 is often labeled with the letter J and is proportional to the tunneling rate
between the left and right well. Since Driving, losses and the nonlinear term affects separately
the left and right field amplitudes they can be easily derived by substituting the ralation (4.6)
in the polariton field for the actions (1.118)-(1.120)-(1.115) we derived in section 1.4.3, and by
taking the variations respect to ϕ

†
L(x) and ϕ

†
R(x). The complete mean field equations describing

the polariton field in the two coupled cavities under a coherent drive reads

(
εL− h̄ω− i

γL

2

)
ψL +U |ψL|2ψL− JψR +FL = 0(

εR− h̄ω− i
γR

2

)
ψR +U |ψR|2ψR− JψL +FR = 0

(4.10)

were we used the coherent drive ansatz (3.21) as in section 3.3. Notice that since these equa-
tions were derived within mean field approximation the quantities ψR,L are C numbers and not
scalar field operators and physically correspond to the average polariton field amplitude. So
we showed that the hamiltonian describing the polariton field in coupled microcavities can be
mapped in a driven-dissipative Bose-Hubbard one.

In figure 4.3 we show a finite element simulation of the first ten eigenmodes of the coupled
pillar along with the measured energy resolved PL of the structure. In the finite element simula-
tion if D is the set defining the coupled pillars section, V (x,y) = 0 if (x,y) ∈D and V (x,y) = ∞

otherwise. As already discussed in section 3.2 this is a good approximation thanks to the huge
refractive index mismatch between the semiconductor and air resulting in a step-like effective
potential for the photonic component of the exciton because of total internal reflection.
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Figure 4.3: (a) to (l): Finite element simulation of the first ten eigenmodes of two coupled pillars, the
red line represents the spectrometer slit position respect to the real space image of the dimer molecule
luminescence. Some of the modes -the ones marked with a white cross- appear dark in our experiment
due to the slit position. In the bottom of the panel we plot the experimental energy and space resolved
emission of the coupled pillars: the simulations are in good agreement with the measured mode profiles,
δ = (E−E0) is the detuning respect to the single pillar ground state energy E0. In mode (f) the TE-TM
splitting inherited by the dielectric mirrors can be clearly resolved, while in the other modes is within to
the linewidth, indeed higher modes are more sensitive to these effects in analogy with the fine structure
effects in the atomic orbitals, as discussed in section 3.2.
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The time independent Scrödinger equation (4.1) for this external potential becomes equivalent
to the solution of the Helmoltz equation with the Dirichlet condition ψ(x,y) = 0 if (x,y) ∈ ∂D

and ∂D denotes the boundary of D . We wrote a Mathematica script to numerically calculate
the eigenmodes of the Helmoltz equation above defined: the first ten modes are plotted in figure
4.3-(a) to (l), the pillar diameter was set to R = 2.0 µm and CC′ = 3.3 µm, the finite element
mesh based on a constrained Delaunay triangulation had 103 points. The polariton effective
mass was set to m∗ ∼ 4 ·10−5me extrapolated from the fit of figure 3.4-(b).

Moving in motif (D-B)-(5) we investigated a structure having the same nominal dimensions
of the simulation, the structure PL was measured in transmission geometry adopting the setup
configuration illustrated in section 2.2-(PHOTOLUMINESCENCE). The pump power was
set low enough to neglect all the nonlinear contributions. We report the energy and space re-
solved emission in the bottom part of figure 4.3 along with its projection. The abscissa is the
detuning δ = E−E0 respect to the ground state energy E0 of the single pillar, which lays in be-
tween the ground state and the first excited state. This fact can be understood on the basis of our
analogy between pillars and atoms. Indeed if we take the grounstate orbital 1s of an hydrogen
atom, and we put two of them close to each other the orbital overlap results in a hybridization of
the 1s orbitals and first two eigenstates have a symmetric and antisymmetric wavefunction. The
symmetric "bonding" orbital corresponds to the grounstate and if E0 is the H ion 1s energy, the
bonding energy is EB = E0−∆E if ∆E is the H2 molecule binding energy. On the contrary the
antibonding mode is antisymmetric respect to the H2 molecule center of mass, correspondingly
the electrons wavefunction has a node: this cannot be a bound state since the electron clouds of
the two hydrogen atoms are separated and EAB > E0. If now we look at the equations (4.9) we
can think ϕ0 to be the H2 bonding mode and ϕ1 to the antibonding mode.

This analogy is supported by the experiment: if we look at the first two measured eigenmode
profiles a respectively symmetric and antisymmetric character is evident. This can also be un-
derstood in terms of classical CHOs as discussed in section 1.1: the first two eigenmodes of
the system correspond respectively to the in-phase (symmetric) and π-dephased (antisymmet-
ric) vibration of the two oscillators. The simulated profiles of the higher modes are in good
agreement with the experimental results, the experiment also legitimates the two-mode approx-
imation employed in the derivation of the DDBH Hamiltonian, since γE2 + γE1 � ∆E2,1.

The peak in the PL spectrum corresponding to the third eigenmode is splitted (fig. 4.3), suggest-
ing another important feature characterizing the coupled pillars: due to the absence of rotational
symmetry in the structure the TE and TM modes are anymore degenerate in the coupled pillar
structures as inheritance of the dielectic nature of the DBRs. Back in section 3.2 we pointed as
some pillar structures showed a lifted degeneracy of the energy levels with m 6= 0 ascribable to
the slight ellipticity of the pillar. Here D is symmetric only under reflections along the dimer
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Figure 4.4: (a)-Energy and Polarization resolved measurement of the PL emission, the abscissa is
rescaled by subtracting the ground state energy of a single pillar with nominal radius matching the cou-
pled pillar ones. (b) TE-TM mode splitting as a function of the principal quantum number and of the
center to center spacing, and approximatively linear dependence of the splitting can be inferred for the
lower modes.

axis, thus the TE-TM degeneracy of the energy levels which can be observed in structures with
a rotational symmetry is lost. If the laser is polarized along the dimer axis just one mode among
the TE and TM couples to the coherent pump and the other is dark, this is fundamental in the
resonant transmission experiments in order to work with a proper two level system. On the con-
trary in PL measurements, since the hot electrons created by the blue detuned pump relax and
recombinate before populating all the allowed polariton states, they keep no information on the
pump polarization and both the TE and TM modes can be appreciated. If the fourth eigenmode
shows a splitting (fig. 4.3) also the other modes must be splitted, but we cannot resolve the two
contributions because they are smaller than the linewidth.

In order to resolve the two contribution a polarizer -(P1) in fig. 2.5- was included in the col-
lection line. If θ = 0o denotes the position of the polarizer axis parallel to the dimer axis
we collected the PL spectrum for four diffrent coupled pillars with R = 2.0µm and different
center-to-center spacings both at θ‖ = 0o and θ⊥ = 90o, allowing to detect the separately the
luminescence of the TE and TM modes. We report the measured PL spectra for a dimer with
CC′ = 3.0µm in figure 4.4-(a). The TE-TM splitting can be calculated if the centroid of the
of the θ‖ and θ⊥ peaks is known: we defined δSp(n) = En(θ‖)−En(θ⊥) as a function of the
principal quantum number n. The results is plotted in figure 4.4-(b), a typical value for the TE-
TM splitting is roughly (10÷20)µeV for the ground state and grows linearly with the principal
quantum number. We also notice that the splitting grows as the center-to-center spacing dimin-
ishes affecting the slope of the linear dependence of δSp(n) on the principal quantum number.
This may be understood because for CC′ values close to 2R the overlap with the second pillar
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Figure 4.5: (a)-Simulated value of the coupling streghth 2J = E1−E0 as a function of the center-to-
center distance and of the difference between the radii of the two pillars constituting the dimer ∆R.
(b)-Measured coupling strength 2J as a function of the center-to-center distance CC′; the solid blue line
is the simulation for two coupled pillars with ∆R = 0.04µm and m∗ = 3.74 · 10−5me which is in good
agreement (within 5%) with the polariton effective mass we deduced in section 3.2.

is small and the cylindrical symmetry of the pillar boundary is slightly perturbed but the mag-
nitude of the perturbation increase rapidly with CC′−1.

Tough crude, the assumption adopted in (4.4), allows to comprehend another interesting feature
of coupled pillar cavities. Indeed if we look at figure 4.2-(a) the blueshift ∆E(x) shows a rela-
tive maximum in x = 0 which strongly depends on CC’ and acts as a potential barrier between
the two sites: since the area of the barrier is somehow inversely proportional to the coupling
strength J, this suggests the possibility of changing the coupling constant by tuning the center-
to-center distance of the two pillars [60].

In order to turn this consideration in something quantitative we both addressed the problem
numerically and with a set of measurements. In figure 4.5-(a) we calculated the first two eigen-
values of the Helmholtz equation with the Dirichlet condition ψ(x,y) = 0 ∀(x,y) ∈ ∂D as a
function of CC′ and ∆R, the diffrence between the two pillar’s radii. We studied the dependence
in ∆R because the fabrication process may be imperfect, resulting in an asymmetric pillar size,
notice that for CC′ > R1+R2 the quantity E1−E0 can’t be anymore identified with the coupling
strength 2J but simply represent the diffrence between the ground state energy of the two pillars.
The pillar diameters were R1 = 2 µm and R2 = ∆R+R1, the polariton effective mass was set to
4 · 10−5me. This simulation confirms the qualitative consideration discussed in the above pra-
graph: the coupling strength increses as CC′ becomes smaller, and if ∆R� R the dependence is
quasi-linear in CC′. In figure 4.5-(b) we report the measured coupling strength: a double Voigt
profile was employed to fit the bonding and antiboning mode profiles of some of the (D-B)-(5)
coupled micropillars. The spectra were recorded again by energy resolved measurements of the
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dimers’ photoluminescence; the collection line polarizer angle was set to θ = θ‖. If E0 and E1

were respectively the ground and first excited state peak centroids, the coupling strength was
2J = E1−E0 according to equation (4.9); the data point errors were calculated propagating the
centroid uncertainties as prescribed by equation (3.14). The solid blue line in 4.5-(b) is some-
how a best fit of the simulated 2J(CC′) relation: we calculated 4 ·102 curves for different values
of m∗ and ∆R and we found the one minimizing the χ2. From this postselection

∆R≈ 0.04 µm m∗ ≈ 3.74 ·10−5me

The value of ∆R is compatible with the etching technique resolution and m∗ is within 5% of
the value we extrapolated in section 3.2. The best fit 2J(CC′) curve reproduces quite well the
experiental results down to CC′ ∼ 2 µm however a systematic deviation for lower values of CC′

is evident: the theoretical prediction overestimates the experimental data. This can be under-
stood if we recall that the identification of the coupling strength 2J with E1−E0 is justified
only within the two-level approximation, however for small values of CC′ since ∆E0,1 ∼ ∆E1,2

the higher modes start to play a role and the above identification is anymore good.

The remarkable result of this section is that by tuning the center-to-center distance of two pillars
we can control the coupling strenght between the two cavities. As discussed in section 3.1-3.2-
3.3 we can also control the on-site nonlinearity by etching the pillar structures in a part of the
sample with a higher or lower excitonic fraction, by changing the pillar radius or finely tuning
the sample temperature. Moreover the pillar level structure can be engineered by controlling
the size and aspect ratio of the structure. This complete control over the coupled cavity network
parameters is the essential strength of the exciton-polariton framework.
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4.2 Coupled microcavities-Nonlinear regime

In the sections 1.4.3-3.2-3.3 we already discussed the origin of the polariton Kerr nonlinearity
and we demonstrated how it can be tuned, however any nonlinear effect was up to here investi-
gated: on the contrary we always worked in a low power regime in order to safely neglect the
nonlinear contribution in the driven-dissipative GPE. Indeed working with linear equations in
most of the cases results in a tractable problem with closed analytical solutions, whereas if a
nonlinear term is summed up in the equations many mathematical tools we are used to work
with cease to be exploitable, i.e. the superposition principle, the methods of linear algebra,
many uniqueness theorems. Actually the nonlinearity of Einstein equations is one of the funda-
mental obstacles to the quantization of Gravity.

In this section address some of the exquisitely nonlinear properties of our coupled nonlinear
cavities: the optical limiter phenomenon, and the steady state bistability. In nonlinear phenom-
ena the physics is sometimes counterintuitive, as suggested by Fermi a numeric simulation has
the role of leading the physicist where complexity overwhelms intuition. To this aim let us first
re-write the equations we derived within a two-level mean-field approximation for the polariton
field in the coupled cavities

(
εL− i

γL

2

)
ψL(t)+U |ψL(t)|2ψL(t)− JψR(t)+FL(t) = ih̄∂tψL(t)(

εR− i
γR

2

)
ψR(t)+U |ψR(t)|2ψR(t)− JψL(t)+FR(t) = ih̄∂tψR(t)

(4.11)

Which is the general form of (4.10) without casting the coherent drive ansatz. These equations
are essentially nonlinear-Schrodinger equation describing the time dynamics of the two-mode
field amplitude and was firstly adopted by Milburn and collaborators to describe the physics of
a Josephson junction [61]. A recent work by D. Sarchi et al. [58] demonstrated how this model,
tough simple (ψL,R(t) are C numbers and not scalar fields), is able to reproduce the same results
obtained with the driven-dissipative GPE for the polariton field ψL,R(t,x,y).

In absence of pumping and nonlinearity U = 0 (i.e the pillars are excited by a weak femtosecond
pulse with) the equations have the form of the time dependent Schödinger equation for the
Non Hermitian Hamiltonian (NHH) (1.17) we introduced as quantum mapping of the classical
Coupled Harmonic Oscillators (CHOs) in section 1.1. In analogy with the results of section 1.1
the the eigenvalues of the linear equations are

E+,− =
1
2
(h̄ωR + h̄ωL)−

1
2
(γR + γL)±

1
2

√
[h̄(ωL−ωR)− i(γL− γR)]2 +4J2 (4.12)

The linear coupling J splits the unperturbed levels h̄ωL,R into a pair of mixed eigenmodes
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with energies E+,−, for zero complex detuning (ωL = ωR and γL = γR) the energy splitting
is E+−E− = 2J, and the two corresponding eigenmodes are the symmetric and antisymmetric
modes introduced in the previous section 4.1 within the Bose-Hubbard model. Under a sym-
metric pump (FR = FL) only the symmetric mode ψ− is excited, while for an atisymmetic pump
(FR = −FL) only the antisymmetric ψ+ mode is excited (see for the details section 1.1). To
prepare the system in a superposition of ψ+ and ψ− we can arbitrarily set FL or FR equal to
zero; hereafter FR = 0.

This simple linear analysis is made richer by the presence of nonlinear terms: the effective
Kerr nonlinearity of the micropillars introduces an intensity-dependent shift of the effective en-
ergy levels and can be responsible for dynamical instabilities. The standard definition of the
eigenvalues becomes ill defined for nonlinear systems, therefore the effective eigenmodes ψ+,−

if U 6= 0 can no longer be expected to be the symmetric and the antisymmetric ones, unless
F/γ � UN/γ (i.e the nonlinearity can be regarded as a small perturbation) and we denoted
with NL,R = |ψ|2 the average occupation number of the left or right oscillator.

In the following experiments we are interested in the steady state amplitudes of ψL,R under a
coherent driving with amplitude FL = F and FR = 0. If we plug again the ansatz (3.22) in (4.11),
we find

(
εL− h̄ω− i

γL

2

)
ψL +U |ψL|2ψL− JψR +F = 0(

εR− h̄ω− i
γR

2

)
ψR +U |ψR|2ψR− JψL = 0

(4.13)

which reduces the coupled nonlinear ODEs (4.11) to a system of coupled nonlinear equations
in ψR,L. We are interested on the solutions of these nonlinear equations as a function of the
driving strength F and of the pump detuning δLR = εL− h̄ω . Since we found an average stan-
dard deviation from the nominal size of the coupled pillar structure which is order of some tens
of nm (section 4.1) and both the bare pillar ground state energy and linewidth variation can be
safely neglected on such small scales (section 3.2), we can safely assume εL = εR = h̄ω0 and
γL = γR = γ .

Since we have two equations in two variables, once the detuning δ = h̄(ω0−ω), the pump
intensity F , the coupling strength J, the linewidth γ and the nonlinearity U are specified, the
solutions can be uniquely determined; δ and F can be set externally but the values of J,γ,U
needs to be measured.

Wheras J can be deduced with a simple PL mesurement, the spectrometer resolution does not
allow a precise enough information on γ . The strategy is of course to move to a resonant
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Figure 4.6: (a)-Coupled pillars in motif (D-B)-(5): resonant transmission as a function of the cavity
ground state to pump detuning, the ordinate of the data points is proportional to the sum of NL +NR, the
solid blue line is the best fit of equation (4.14). (b)-Sketch of the measurement; the left cavity is pumped
and the real space emission is recorded for different pump detunings, a quantity proportional to the left
and right populations NL,R can be calculated by integrating the real space emission within the dashed
boundaries.(c)-(d) Imaging of the transmitted intensity for a pump frequency resonant with the ψ+ and
ψ− modes marked with two stars in panel (a). The white dashed lines correspond to the boundaries ∂D
of the dimer section and to the two integration ROI used for the calculation of NL,R.

transmission experiement where our spectral resolution is limited only by the laser wavelength
tuning accuracy ∆λ = 0.1pm. If we weakly pump the system NU ≈ 0 and the algebraic equa-
tion system (4.13) becomes equivalent to the equation modeling the driven dissipative CHOs of
section 1.1. Since the loss rate γ is constant the transmitted intensity has to be proportional to
the steady-state power dissipated spectrum of the two oscillators. Using an analogue of equa-
tion (1.9) to fit the experimental data we can therefore estimate γ and J.

In figure 4.6-(a) we show the resonant transmission NL +NR of a test dimer as a function of the
pump detuning respect h̄ω0. The pump beam power was set lower than a microwatt and the
beam polarization was set parallel to the dimer axis in order to inhibit the polarization splitting
of the modes (see section 4.1). At least of a coefficient NL,R can be calculated by integrating
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the intensity map within the boundaries defined by the two region of interest dashed in the pan-
els (b), (c) and (d). The resonant transmission spectrum shows two marked resonances which
correspond to the bonding and antibonding mode: we report the spatial resolved emission for a
pump frequency resonant with the two peaks in figure 4.6-(c,d). The ground state of the cou-
pled pillars shows a symmetric (bonding) profile and the first excited state shows as expected the
characteristic antisymmetric (antibonding) profile in perfect agreement with the Bose-Hubbard
model assumptions and with the numerical simulation of the previous section i.e. figure 4.3-
(a,b).

We shall comment the height of the two peaks: in section 1.1 we have seen that for F1 = F
and F2 = 0 the steady state power dissipated spectrum (1.9) for two strongly coupled oscillators
shows two peaks with a splitting proportional to the coupling sstrength Ω and equal heights. To
understand the measured asymmetry we have to recall that the coupling of the laser pump with
the ψ+,− modes is proportional to the overlap of the beam intensity profile with the mode pro-
file: its clear looking at 4.6-(c,d) that the overlap of a gaussian beam centered on the left pillar
is enhanced for the antibonding mode. A second artifact depends on the shape of the region of
intrests we used to calculate NL,R which favours the antibonding-like profiles since it cuts the
central region were the bonding mode shows a density maximum while the antibonding mode
is zero due to the odd symmetry of the ψ+ eigenfunction.

To model this effects we have just to allow a finite pump intensity FR coherent with the left
driving on the right pillar which enhances the symmetric mode coupling with the pump. Adding
this new term and assuming ωL =ωR =ω0 and γL = γR the stady state power dissipated spectrum
can be calculated solving the inhomogeneus system of coupled equations (4.13) alike section
1.1, after some trivial algebra one gets

P(δ ,J,γ,FL,FR) =
γ
(
(F2

L +F2
R )(γ

2 +δ 2)δ 2−4FLFRδ 2J2 +(F2
L +F2

R )δ
4)

δ 4(γ2 +δ 2)2 +2δ 2J4(γ2−δ 2)+ J8 (4.14)

where δ = h̄(ω0−ω). We fitted this function to the measured transmission spectrum finally
obtaining for the tested coupled pillar structure obtaining

J = (131.5±0.9) µeV γ = (27.1±1.2)µeV

the best fit is shown as a solid blue line in figure 4.6-(a) and smoothly fits the experimental data
points, this again confirms the liceity of the simple model adopted to describe within mean field
approximation the steady state of two coupled cavities.

The last constant to determine is the nonlinear coefficient U ≈ ΓXX
⇒ X4

GS, ehere ΓXX is specified
by the exciton Bohr radius in the QW (see section 1.4.2) and X2

GS is defined implicitly by the
relation X2(k∗) = X2

GS if k∗ satisfies h̄ωLP(k∗) = h̄ω0 as discussed in section 3.3. Our pillar
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belongs to motif (D-B)-(5) which lays in between the planar cavities in motifs (SSP)-(5) and
(SSP)-(4). We therfore estrapolated the h̄ωLP(k) relation from a linear regression of the bare
exciton to cavity photon detuning gradient measured in section 3.1, we can use the relations
(3.38)-(3.36)-(3.37) derived in section 3.3 within parabolic band approximation to estimate X2

GS.
The nonlinear coeffient results for a dimer with CC′ = 3.4 µm and R = 2 µm

U ∼ 0.03 µeV (4.15)

The relative uncertainty of this value is roughly (15÷ 20)%, which can be derived by propa-
gating for correlated variables the error on X4

GS which depends on the dispersion fit parameters
errors trough (3.14) and correspond to the lower error bound. This purely statistical error is
somehow an optimistic estimate since we considered only the dominat exciton-exciton Pauli
scattering channel and we are neglecting density dependent effect which may play a role in
small pillar structures when the pump intensity becomes high and the occupation number NL,R

of one of the two cavities satisfies (NL,R a2
B & R2) where aB is the 2D exciton bohr radius in

the QW. Anyhow to have a better estimation of U the criticality to solve would be to refine the
detection technique of the polariton dispersion.

We can finally compute the solutions of the set of algebraic coupled nonlinear equation (4.13).
The solutions as a function of δ = h̄(ω0−ω) and F can be computed by means of the continuation-
homotopy numerical methods implemeted in Mathematica. We developed a complete suite to
simulate the nonlinear steady state solution of (4.13), which can be easily extended to more
complex structures (i.e. trimers and exagonal pillar rings). For simplicity we start by fixing
δ ∼ J + γ , so we are pumping the left pillar at an energy two linewidths smaller than the bond-
ing line, and we are interested in calculating the occupation numbers NL,R as a function of the
pump power F . In absence of nonlinearity one would expect to abserve NL,R growing linearly
with F2, since the overlap of the beam line with the tails of the ψ+,− modes does not change
with F . On the contrary in presence of a Kerr-type nonlinearity, since the pump is redshifted
respect both the bonding and antibonding resonances and the effect of the nonlinear term is to
blueshift the energy levels by an amount ∝ U NL,R we expect the overlap of the pump line with
the tails of the ψ+,− resonances to diminish as the onlinear eigenmodes are pushed away by the
nonlinear blueshift. We would expect a sublinear dependence of NL,R in F2, this is often called
an optical limiter since the transmitted intensity saturates as the pump power grows.

We schematize this situation in figure 4.7-(e), in panel (a) we plot the measured total transmis-
sion NTot = NL +NR in units of million of pixel counts (Mcts) as a function of the pump power
incident on the left pillar, δ = J + γ: the expected sublinear behaviour is evident as soon as
P & 0.1 mW . In panel (d) we show the corresponding numerical simulation obtained from the
solutions of the nonlinear equation set (4.13), the same qualitative behavior of the experiemnt



108

	0.1

	1

	10

	100

	0.01 	0.1 	1 	10

N
T
o
t	
(M
c
ts
)

Pump	power	(mW)

U=0.03	µeV

-4 -2 0 2 4
-2

-1

0

1

2

(µm)

(µ
m
)

-4 -2 0 2 4
-2

-1

0

1

2

(µm)
(µ
m
)

a b 

c 

(b) 

(c) 

10 100 1000 104 105
10

50

100

500

1000

5000

104

(F/γ)2

N
To
t

d 

Simulation 

Experiment 

γ	

γ	

Ψ_	

Ψ+	

E_	

E+	
F	hω	

OL 
e 
 

Figure 4.7: (a)-Measured total transmission ∝ NL +NR as a function of the incident pump power, J ≈
131.5 µeV , γ ≈ 27.1 µeV , U ∼ 0.03 µeV and δ = J + γ . (b-c)-Imaging of the transmitted intensity for
the two pump powers marked in panel (a) with two stars, a bonding-like profile can be appreciated in
both the frames, the white dahed lines correspond to the coupled pillars section boundaries. (d)-Numeric
solution of the set of nonlinear equations (4.13), we plot NL +NR as a function of the adimensional
incident power (F/γ)2. (e)-Sketch of the Optical Limiter mechanism.

can be appreciated, notice for low pump powers (F/γ)2 . 102 tthat he nonlinear shift is neg-
ligible and (F/γ)2 = κNTot which is the expected linear response of the system. An absolute
calibration of the experimental NTot and (F/γ) values so the plot reproduces the effective oc-
cupation number of the cavities is possible once all the collection line losses, the back mirror
reflectivity, the pump coupling efficiency and the quantum efficiency of the CCD are known.
However the coupling efficiency depends from structure to structure and is sensitive to the piezo
positioning vibrations, the task becomes then rather difficult: since we are mainly interested in
this section in testing qualitatively the physics of nonlinear coupled cavities the experimen-
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tal plot axis have to be interpreted at least of the proportionality constants (α,β ) defined by
F2 = αPPump and Nexp = βNsim. In figure 4.7-(b,d) we show an imaging of the transmitted
irradiance for two different pump powers, both of them show a bonding-like shape. This is
the straighforward consequence of the strong overlap of the pump line with the boning mode
h̄(ωB−ωPump)≈ γ whereas h̄(ωAB−ωPump)≈ γ+2J� γ and the overlap with the antibonding
mode is strongly inhibited. Notice that while at low power the mode profile is a smooth bonding
mode, for an higer pump power the profile is deformed this tells us that the linear bonding mode
is anymore a good eigemode of the nonlinear Schrödinger equation system (4.11). The fact that
for every value of the pump power, the nonlinear "bonding" mode ψ+ is dominating the pillar
transmission, is equivalent to the statement that the solutions of equation (4.13) in the Optical
Limiter (OL) regime are stable for every pump power. As we are going to discuss this can be
anymore the case for detunings smaller than J, were single mode instabilities and parametric
instabilities can emerge.

The stability of the solutions can be assessed by evaluating the spectrum of small fluctuations
around the stationary solution [58], if

ψL,R(t) =
(√

NL,ReiϕL,R
)

eiωt = ψ
ss
L,Reiωt (4.16)

which is the ansatz form of the steady state solutions of (4.11) under a coherent driving, a small
perturbation has the form

ψL,R(t) =
(
ψ

ss
L,R +δψL,R(t)

)
eiωt (4.17)

the equations of motion can be linearized around the steady state solution by substituting (4.17)
in (4.11) and dropping all the terms O(δψ2), after some algebra one gets

dδψL,R

dt
=
(

δ − i
γ

2

)
δψL,R +2U |ψss

L,R|2δψL,R +U(ψss
L,R)

2
δψ
∗
L,R− JδψR,L (4.18)

where δ = h̄(ω0−ω) and ψ∗ denotes the complex conjugate of ψ . Now one can substitute in
(4.18) the time evolution ansatz

δψL,R(t) = e−
i
h̄ EtUL,R + e

i
h̄ E∗tV ∗L,R (4.19)

expressed as the sum of two counterpropagating waves carrying an excitation energy E with a
fluctuation amplitude UL,R and VL,R. The linearized equations of motion for the fluctuation can
be cast thanks to the time evolution (4.19) in the form of a secular equation

B ·δΨ = EδΨ (4.20)

where δΨ is the vector (UL,VL,UR,VR)
T and the matrix B has the form
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B =



(
δ − i γ

2

)
+2UNL U(ψss

L )2 −J 0

−U(ψss ∗
L )2 −

(
δ + i γ

2

)
−2UNL 0 J

−J 0
(
δ − i γ

2

)
+2UNR U(ψss

R )2

0 J −U(ψss ∗
R )2 −

(
δ + i γ

2

)
−2UNR


(4.21)

The eigenvalues of this Bogolibov matrix encodes all the informations about the spectrum of
the small fluctuation an therefore about the steady state solution stability. If we call Eα with
α = 1, ..,4 the comlex eigenvalues of B, three different scenarios can be spotted

• If the imaginary part satisfies ℑ[Eα ] < 0 ∀α , the normal modes of the fluctuations δΨα

are damped over time, and the solution is STABLE.

• If ∃α so that ℑ[Eα ]≥ 0 and ℜ[Eα ] = 0 a small perturbation gets amplified over time and
the steady state solution is called (Single mode) UNSTABLE.

• If ∃α so that ℑ[Eα ]≥ 0 and ℜ[Eα ] 6= 0 a small perturbation gets amplified over time and
since ℜ[Eα ] 6= 0 the perturbation has a fluctuating behaviour; the steady state solution is
called PARAMETRICALLY UNSTABLE.

In this section we are mainly interested in single mode instabilities of the solutions, butin the
next section we will see how a parametric instability originates a self pulsing dynamics of the
steady state solution. With this information about the solution stability we can finally address
the intersting phenomenon of optical bistabilities in coupled nonlinear cavities.

The intuitive description of the phenomenon is the following: imagine to pump the left pillar at
an energy which is slightly redshifted respect to antibonding mode, as the power is increased
the nonlinear shift of the modes is able to push the "bonding" energy E+ in resonance with
the pump. Correspondingly the initial antibonding-like mode becomes unstable and the system
jumps to the nonlinear "bonding" mode. When the pump power is gradually decreased the sys-
tem stays in the "nonlinear" bonding mode up to a threshold where the mode becomes unstable
and the coupled pillar nonlinear eigenmode jumps back to the antibonding-like one. The oc-
currence of regions of one-mode instability for energies higher than a mode resonance is a well
studied subject in the general literature on instabilities. Concerning nonlinear optical systems, it
has been extensively studied both in the simplest case of single cavities [62] as well as in more
complex cases of coupled optical cavities [63]-[64]. The above described mechanism often re-
sults in the coexistence of two or more stable solution for the same values of the incident pump
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power and detuning, these phenomena are called respectively bistability and multistability. In
the simplest case of bistability an hysteretic cycle appears: as the pump amplitude F increases
from zero, the system moves along the lower branch of stable solutions until its end point is
reached. Only at this point the system jumps on the upper branch. If the pump amplitude is
then decreased, the system keeps moving along the upper branch of stable solution until its end
point is reached, where it jumps back to the lower branch.

The bistabile regime of the two coupled nonlinear oscillator is the starting point for our futher
studies on the parametric instabilities, we threfore investigated both numerically and experi-
mentally this phenomenon, while we refear to the recent work of S. Rodriguez et al. for the
regime where multistability occurs[25].

In figure 4.8-(a,b) we show the site resolved transmitted intenisty as a function of the incident
pump power for the same pillar investigated for the optical limiter experiment but with a pump
detuning δ = γ − J as schematized in the inset of panel (a). The measured NL and NR shows
a clear hysteretic cycle due to the bistability occuring when (5 . P . 44)mW . The two points
which are in between the two branches of the cycle in correspondence of the jumps triggered
by the single mode instabilities occurring at P∼ 5 mW and P∼ 44 mW are artifacts due to the
finite exposure time of the CCD (here 0.4 s). Indeed close to the jumps even the smallest power
fluctuation may trigger in between the CCD integration time the transition to the upper or lower
branch. An interesting feature of the driven cavity is that NL starts to grow as NR with P but a
certain point has a relative maximum and then decrease as P is increased forming a dip before
the first threshold is reached, this feature was demonstrated [25] to be ascribable to an inter-
action induced hopping phase ∆φLR(F) = (ϕL−ϕR). Indeed if a polariton hopping back and
forth from the left site acquires a round trip phase equal to π it destructively interferes with the
polaritons injected by the pump. The signature of this effect is an almost complete darkening
of the driven pillar when pump power is such that ∆φLR ≈ π/2.

In figure 4.8 panels (1) to (4) we plot an imaging of the mode profiles corresponding to four
different pump powers along the four branches. Panel (1) corresponds to one of the frames
recorded at low power and shows an antibonding-like character since the pump energy is close
to the linear E− eigenvalue of (4.11). Panel (2) still belongs to the lower branch of the hysteresis
cycle and corresponds to the point were the destructive interference condition ∆φLR ≈ π/2 is
matched, correspondingly the driven pillar becomes dark, the weak residual emission is due to
the scattered light from the pillar sides. Panel (3) corresponds to the coupled pillar emission af-
ter the power exceeds the lower branch threshold, unlike panel (1) and (2) the density profile of
the emission resembles the bonding mode, since a bright emission from cavities overlap region
is clear signature of the symmetric character of the nonlinear ψ+ eigenmode. The emission
plotted in (4) still belongs to the upper branch but for a pump power close to the downward
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Figure 4.8: (a)-(b) Measured NL and NR as a function of the incident pump power on the left pillar, the
pump detuning is δ = γ − J as depicted in the inset of panel (a). The filled circles represents the data
points recorded for an increasing pump power while the hollow diamonds represent the corresponding
backward process; an hysteretic cycle is evident as consequence of the system bistability. (c)-(d) Simu-
lation of the experiment: the blue and red points are stable solution of (4.13), the cyan and orange points
correspond to parametrically unstable solutions and the gray points correspond to single mode instabil-
ities. (e)-Interaction induced hopping phase ∆φLR = (ϕL−ϕR), notice that if ∆φLR = π/2 a polariton
hopping back and forth experience a round trip phase difference of π thus interfering destructively with
the polaritons injected by the pump beam. (f)-(g) Imaginary and real part of the bogoliubov matrix B
eigenvalues. (1-4) Imaging of the transmitted irradince density profiles corresponding to data points
marked with a cross in panels (a),(b). The plots (1) and (2) belongs to the lower branch of the hystereti-
cal cycle and shows an antibonding-like character, while (3) and (4) belongs to the upper branch of the
cycle and shows an bonding-like character. The left site in (2) is dark beacuse of the inteaction induced
interference.



Chapter 4 113

threshold, since the power is pretty low the ψ+ eigenmode profile closely resembles the linear
bonding mode. The overall picture resulting from the panel (1) to (4) supports the euristic in-
terpretation of the bistability mechanism discussed few paragraphs ago.

In figure 4.8-(c,d) we show the corresponding simulations which are in qualitative agreement
with the experimental results. Notice that from a theoretical point of view the hysteretic cycle
is just apparent, indeed if we take the first equation of the set it parametrizes a manifold M

embedded in C2 and the second equation in this picture can be regarded as a constraint folding
M to a complex curve in C2 (since the folding polynomials are analytic, the curve is unique
and analytic itself). Moreover since a parametric curve in (F,δ ) defines a unique point P in C2

once the dring power and detuning are fixed, the bistabilities are the result of the projection of
P into the real parts

√
NL,R.

In figure 4.8-(c,d) the darker colors represents stable solutions, the lighter colors denotes the
parametrical instabilities and the gray dots marks the single mode unstable solutions, the hys-
teretic cycle happens beacuse the lower branch becomes unstable and the only allowed state for
an higher pump power belongs to the upper branch, and the same happens in the downward
threshold, if we follow the solution disregarding the stability of the solution our simulation al-
lows to appreciate the uniqueness and analyticity of the NL,R curve as a function of F .

We shall comment the fact that in the simulation of NL a more pronounced dip appears respect
to the experiment, this happens beacuse of an admixture of diffrent effects: the first is scat-
tered light from the pillar sides which becomes disturbing when a pillar gets dark but the pump
power is high as in figure 4.8 panel (2), another effect depends on the size of the pump gaus-
sian beam spot 2σ ∼ 2µm, which results in a small coherent driving also on the right pillar;
this of course spoils the efficiency of the destructive interference mechanism. Another subtle
effect comes out of the parametrically unstable nature of the solutions close to the dip, as we
mentioned such an instabilities happens if ∃α so that ℑ[Eα ] ≥ 0 and ℜ[Eα ] 6= 0, meaning the
perturbations are amplified and since ℑ[Eα ] ≥ 0 they induce a self pulsing dynamics of the
steady state solution (dynamic equilibrium) [58]. However nothing tells us that the average
population Ndyn = 〈|ψdyn

LR (t)|2〉t in the self pulsing dynamics of the perturbed dynamical stady
state, equals the unperturbed solution Nss = |ψss

LR|2 of (4.13). Since noise is ubiquitous in exper-
iments what we measured in panel (a) is Ndyn, whereas we plot Nss in the simulation of panel
(c). In the 2008 paper by D. Sarchi et al. -[58]-fig. (7,c)- the time dynamics of the left and right
population was obtained by solving the steady state nonlinear Shrödinger equations (4.11) and
by adding a small femtosecond pulse probe triggering the parametric instability: the simulation
supports our experimental observation since NL,dyn > NL,ss.

Panels (f,g) in fig 4.8 show respectively the imaginary and real part of the eigevalues of the
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Bogoliubov matrix (4.21). In the linear regime NL,R → 0 the frequency and damping rates
tends to the linear eigenvalues ones encoded in (4.12) and ℜ[E1,3] = −ℜ[E2,4] = ±J− δ and
ℑ[Eα ] = −γ/2 ∀α . The positive or negative weight of the α = (1,3) or α = (2,4) modes is
determined by the Bogoliubov metric η of B, where η = diag(1,1,−1,−1). As a consequence
of the metric η signatures the ℜ[E1,3] modes are blueshifted as the pump power increases and
vice versa for the ℜ[E2,4], this results in pairwise intersections where ℜ[E2(4)] = ℜ[E1(3)] as the
power increases. Correspondingly the imaginary part of two of the B eigenvalues damping rate
decrease ℑ[E1] = ℑ[E4] < −γ/2 or increase ℑ[E2] = ℑ[E3] > −γ/2, once one of the eigenval-
ues crosses the zero an instability appears which parametric nature depends on the nonm zero
magnitude of the corresponding real part. Notice in panel (f) that the instabilities correspond
to a couple of imaginary eigenvalues which imaginary part bifurcates, this phenomenon in the
language of dynamical systems is often called an Hopf bifurcation.

The last panel we shall comment is 4.8-(e) where the phase difference between the left and right
polariton field is plotted as a function of the pump intensity, this interaction induced hopping
phase was experimentally measured in the 2016 by S. Rodriguez et al. [25]. This tunable phase
has both the merit of explaining in terms of a interference process the driven site darkening,
both paves a way to implement density-dependent artificial gauge fields and nontrivial hopping
phases in bidimensional lattices of coupled microcavities. Indeed a particle acquiring a nonzero
phase φ along a closed-loop trajectory implies the existence of a nonzero vector potential A(q),
since

φi, j =
∫ q j

qi

A(q) ·dq (4.22)

Once this phase can be tuned arbitrarily, topologically non-trivial states can be achieved open-
ing very interesting scenarios in the photonics community. In particular this feature tells us
that a polariton field confined in a network of coupled cavities not only simulates a driven-
dissipative Bose-Hubbard model but also manifests a richer physics as a consequence of these
interaction-induced hopping phases which turns the real valued coupling Ji, j = J of the Bose-
Hubbard model in a driving dependent complex term Ji, j = Jei∆φ(Fi).
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4.3 Tunneling Induced Parametric Instability

When we addressed the stability of the solutions of (4.13) by calculating the spectrum of the
small fluctuations around the steady state, an intersting class of dynamical instabilities emerged.
In the simulations (c)-(d) in figure 4.8 a parametrical instability was predicted to character-
ize the steady state dynamics of the coupled micropillars when driven in a region of detuning
−J < δ < 0 for a power close to the lower branch upward threshold, where the interaction-
induced hopping phase results in a destructive interference process with the pump (fig. 4.8
panel (2)). We used this information to explain a posteriori the measured shallower dip respect
to the simulated data points recalling the results present in the theoretical work of D. Sarchi et
al. [58]. In this section we show the first experimental evidence of the predicted interaction-
induced parametric instability in a photonic molecule.

The parametric scattering process we are looking at depends on the interplay of hopping and
nonlinearities. As already discussed the intuitive effect of the on-site Kerr nonlinearity is to
blueshift the two linear eigenmodes, for a pump detuning −J < δ < J a bistable regime is
observed, however no parametric instability is observed if 0 < δ < J, see for instance figure
4.9-(a,b) where we plot the simulated steady state solutions of NL as a function of the pump
power respectively for a pump detuning δ = 3γ < J and δ =−3γ >−J, this simple observation
is the key to understand the parametric instability phenomenon. Indeed if −J < δ < 0 it will
exist a pump power F0 such that

E+(F0)+E−(F0) = 2h̄ω (4.23)

where E±(F) are the pump power-dependent nonlinear eigenenergies associated to the eigen-
modes Ψ±, vice versa if 0 < δ < J this condition will never be satisfied since the energy level
blueshift but the pump is redshifted respect to the Ψ− mode.

If the relation (4.23) is fulfilled two polaritons injected at the pump frequency ω have a resonant
scattering channel where the final states are a signal field with ES = E−(F0) and an idler field
field with EI =E+(F0). If the losses of the system are taken in account the detuning range where
this parametric process happens is−J+U NR < δ <−γ [58], where the stationary solutions are
stable for small pump amplitudes but become parametrically unstable as soon as the parametric
gain is able to overcome the losses U NR > γ , notice that the NL contribution to the nonlinear
blueshift of the levels can be safely neglected in this analysis since NR�NL in the region where
the parametric process may take place i.e. see 4.8-(c,d).

In figure 4.9-(c) we schematize the parametric instability mechanism. The reason why the losses
have to be included -δ <−γ instead of δ < 0- is that for−γ < δ < 0 the power at which the res-
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Figure 4.9: (a)-NL calculation for a positive detuning δ = 3γ , an hysteresis cycle due to the bistability
can be observed, however only stable (blue dots) and single mode unstable (gray dots) solutions can
be observed since any F satisfies (4.23). (b)-Same of panel (a) but for a negative detuning δ = −3γ ,
parametrically unstable solutions (light blue dots) appears in the region corresponding roughly to the
NL dip induced by the hopping phase interference mechanism. The calculations adopted J, U and γ

matching the previous section calculations. (c)-Schematic of the parametric scattering mechanism.

onant condition E+(F0)+E−(F0) = 2h̄ω is satisfied is such that U NR < γ thus implying the rate
at which the signal and idler fields are created is smaller than the losses and the amplification
of the perturbations is inhibited. On the contrary if the rate of the scattering process exceeds
the losses a strong amplification of fluctuations around the stationary solution eventually results
in a self-pulsing dynamics of the steady state where the system keeps on oscillating for indef-
inite times. These oscillation in the three mode picture of a pump, signal and idler field can
be interpreted as the result of the interference of the three fields since ωP 6= ωS 6= ωI , a similar
description is often encountered in literature when discussing the physics of Optical Parametric
Oscillator (OPO).

An OPO is a well-known device since the 1965 seminal work of J. Giordmaine and B. Miller
[65] and it is now widely used to generate squeezed states and entangled states of light in the
continuous variables regime. The generation of a parametric scattering process was already ob-
served in planar microcavities [19] as Optical Parametric Amplification (OPA) due to bosonic
stimulation [18]-[59], an OPO was also realized with single pillar structures with an engineered
level structure [20]-[21], but was never observed in coupled cavities where the phenomenon
emerges as a natural consequence of the interplay of hopping and nonlinearities and manifests
himself in a self-pulsing dynamical steady state of the pillar.

This tunneling-induced parametric instability of the coupled cavities steady state can be found
also in the region where δ < −J (i.e. the pump is blueshifted both respect to the linear Ψ±

modes ) however δ < −J regime is characterized by complex multistable behaviours of the
solutions thus complicating the interpretation of the observations. Hereafter we focus on the
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−J+U NR < δ <−γ regime and we let the case of parametric instabilities in the multistability
for future investigations. For those who are interested in a global perspective on the stability of
the steady state solutions of the coupled oscillators, we performed a set of simulations where
the plots of fig 4.8-(c,d,e,f,g) were calculated for 130 different detuning values ranging between
δ ≈ 4J and δ ≈−6J in steps of ∆δ = 10 µm; J, U and γ were chosen to match the parameters
derived for the (D-B)-(5) pillar investigated in the previous section. The different panels were
assembled in a video were time runs the detuning from 4J (OL regime) to −6J (Multistable
regime). The below hyperlink allows the download of the simulation

� COUPLED PILLAR STEADY STATE & STABILITY �

The experimental investigation of this process can be done in two ways, the first one involves the
direct imaging of the pillar population resolved in time; such a measurement involves a streak-
camera which allows a 1D imaging with a temporal resolution of few picoseconds (2÷ 4 ps).
The characteristic timescale over which the NL,R dynamics evolves over a full cycle is set by the
beatings periods of the pump, signal and idler fields ωP,S,I � (ωS−ωI) ≈ (J/h̄) which entails
τOPO ∼ 1/∆ω ∼ (h̄/J) ∼ 6 ps for a coupling energy J = 100µeV . These timescales are close
to the temporal resolution of the best commercial streak cameras suggesting that a different
measurement strategy is needed. Indeed the creation of a signal and idler field can be easily
detected from it’s spectral signature: when the pump power is enough to trigger the parametric
process the creation of ΨS,I must manifest as two side peaks in the energy resolved emission of
the coupled pillars. The only limiting factor in this measurement is the spectrometer resolution,
in our case 2γV = ∆E ∼ 60µeV ( e.g. see section 3.1 ), the side peaks can be therefore resolved
if J > 2γV which is safely satisfied by almost all the dimer structures present on the sample.

In the following measurements we moved from motif (D-B)-(5) to motif (D-A)-(4) the reason of
this choice is that most of the parametric processes have an efficiency which strongly depends
on the nonlinear coefficient; for instance the efficiency of an OPO process in multiple planar mi-
crocavities was observed to depend on the eighth power of the Hopfield coefficient [66]. While
the pillars in motif (5) have a very small exciton component, motif (4) offers an enhanced non-
linearity still preserving a good photonic component which ensures small linewidths and good
optical properties of the structure (here X2

GS,4 ≈ 0.16 whereas X2
GS,5 ≈ 0.07). As discussed in

section (1.4.3) the main contribution to exciton exciton interactions corresponds to co polarized
Pauli scattering channel [44]-[46]-[45] where two excitons exchange the electrons or the holes,
however the cross section of this process critically depends on the exchanged momentum q de-
creasing roughly a factor of two at qaB = h̄ [67] i.e. when the inverse of the scattered wave
vector is order of the QW exciton Bohr radius. This suggests that the efficiency of the process
decrease as J is increased. We chose a pillar having

J = (178.4±1.4) µeV γ = (37.5±1.2) µeV U ∼ 0.07 µeV

https://www.dropbox.com/s/fqmdg5c36l3ac5y/BHD_Movie.mov?dl=0
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So that the coupling is roughly three times the spectrometer resolution (minimal to resolve
clearly the eventual side peaks) and the nonlinear coefficient is roughly two times the one of
the pillars in motif 5. We set a pump detuning slightly reshifted respect to the anti-bonding
line δ = γ − J and we recorded the space and energy resolved emission of the coupled pillar
while scanning the power in the resonant transmission configuration. The dimer emission was
imaged so that the 10µm slit was aligned with the dimer axis and the pump linear polarization
was parallel to the slit.

In figure 4.10-(a) to (e) we show five illustrative frames of the energy and spatially resolved
emission, the ordinate corresponds to the position along the dimer axis and the abscissa is the
energy we calculated trough the calibration (3.1). Figure 4.10-(g) reports a calculation of NL

based on the new values of U , J and γ which is useful to understand the y-profiles of the
dimer’s emission (a) to (e) in relation with the bistability experiment of the previous section,
the red (green) arrow denotes the forward (backward) power scan direction. Panel (a) corre-
sponds to P = 0.7mW , here the nonlinear blueshift is still weak and an antibonding-like profile
can be deduced from the emission in analogy with figure 4.8-(1). Notice that the energy of the
emission corresponds to the pump energy h̄ωP ≈ 1476.73 meV . In panel (b) the profile shows
still an antibonding-like profile but a progressive darkening of the left pillar can be observed
according to the interference mechanism discussed in the previous section e.g. fig. 4.8-(2). As
the power is slightly increased from (b) two symmetrically spaced side peaks emerges (panel
c): the parametrical process threshold is reached and the the creation of the signal and idler
modes becomes resonant. We can measure the energy separation respect to the pump line to
find ∆E ≈ J, this is the clear signature of the a parametric scattering process of the pump into
the nonlinear Ψ± modes. Increasing even further the pump power the side peaks are progres-
sively washed out as the resonance condition (4.23) is left, the upward threshold is reached and
the system jumps to the upper branch. In both panel (d) and (e), corresponding to a very high
pump power and a pump power slightly higher than the downward threshold, the bonding-like
profile characteristic of the upper branch can be appreciated, this again is in agreement with the
observations of the previous section. The small dark line cutting around 0.5µm the nonlinear
bonding mode profiles in panel (d)-(e) is caused by a dust particle which deposited during the
measurement on the slit knifes, the bright emission spot close to the center of the dimer (d-e)
is probably originated by a localized point defect in the QW since its emission is localized in
space and slightly blueshifted respect to the QW polariton emission.

The energy and space resolved emission of the pillar was recorded for 110 values of the pump
power, both scanning forward P0→ Pmax and backward Pmax→ P0. Every frame was then pro-
jected along the ordinates, obtaining an intensity profile corresponding to the spectrum of the
dimer emission for every pump power Pi, i = 1, ...,110. In figure 4.10-(f,h) the spectra recorded
at different Pi are meshed in a energy and power resolved emission. In the forward scan map as
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Figure 4.10: (a,b,c,d,e)-Resonant transmission of the dimer resolved in energy and space for differ-
ent pump powers, the ordinates runs along the dimer axis. (a,b,c) Belongs to the lower branch, the
antibonding-like profile of the pump emission can be appreciated, P(a) ≈ 0.8mW , P(b) ≈ 7.0mW and
P(c) = Pres ≈ 8.6mW . (c) shows two side emission lines corresponding to the signal and idler mode. (d,e)
Belongs to the upper branch showing the expected bonding-like profile. (f,h)-Spectral resolved emission
of the dimers as a function of the pump power respectively for the forward and downward scan; the
white dashed lines corresponds to the projection along the ordinates of the spectra (a) to (e), the stars
denotes the upward and downward thresholds. (g)-Calculation of the NL population highlighting the
different (in)stability regions, the gray cross corresponds qualitatively to the position on the upper and
lower branch of the panel (a) to (e). (i)-Cross polarized resonant transmission of the dimer, the orange
side profiles results from the projection along the abscissae of the mode profiles. A clear identification
of the signal with Ψ− and of the idler with Ψ+ can be deduced.
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the power reach the value of P ≈ 7.3mW the parametric process threshold is reached and two
side peaks can be resolved, when increasing the power to P≈ 8.5mW the parametric process be-
comes resonant and is slowly washed out as P > 8.5mW . The upward threshold can be detected
in the spectrum as a small kink in the contour lines and is marked by the red stars. The width of
the power window where the parametric process can be observed is related to the finite linewidth
of the Ψ± modes, allowing the signal+idler scattering process within −γ . 2EP−ES−EI . γ .
In panel (h) the backward scan evidences any side peak, this is consistent with the prediction
of the simulation (g), we mark again the small kink in the emission corresponding to the down-
ward threshold with two green stars. The reason of this small kink in the contour lines when
jumping between on branch and the other is that the inhomogeneus broadening term in the po-
lariton linewidth depends on the surface exciton density in the QW: when the population has a
discontinuity as in the jumps from one branch to the other, the linewidth has a small disconti-
nuity itself. Since the spectra meshed in the color plot are normalized so that the peak height is
1 the contourplots show a kink.

The parametric scattering process efficiency strongly depends on the polarization of the signal
and idler final states once the pump polaritons are assumed to be linearly co-polarized. In partic-
ular the dominant scattering channel is trough final states which have a polarization orthogonal
to the initial states’ one [67]. Since the emission coming from the pump polaritons is almost
completely polarized along the dimer axis we can take advantage of the mainly orthogonal po-
larization of the signal and idler by cross-polarizing the transmitted light along the collection
line. This results in a strong suppression of the pump emission allowing a clean resolution
of the signal and idler mode profiles. In figure 4.10-(i) we show the cross polarized emission
measured corresponding to a pump power matching the resonant condition of the parametric
process. The signal mode profile closely resembles the antibonding one, whereas the idler field
shows a bonding-like profile deformed by the bright emission from the point-like defect in the
QW and by the dust particle deposited on the slit. One can further convince himself that the
signal and idler modes correspond to the nonlinear Ψ− and Ψ+ modes comparing figure 4.10-
(a,e) with 4.10-(i).

In figure 4.11 we report the energy resolved transmission of the dimer for the three different
pump powers which are representative of the three possible steady states characterizing the sys-
tem in the window−J+U NR < δ <−γ: a low power stable solution PL belonging to the lower
branch of the hysteretical cycle, a parametrically unstable solution PRes corresponding to the
resonant condition (4.23), and a high power stable solution PH belonging to the upper branch.
The spectra corresponding to these three classes of solutions are respectively plotted in red, blue
and orange. The experiment was repeated for a pump detuning ranging between δ = −J and
δ = 3γ − J in steps of γ and the results corresponds to the four graphs in the leftmost column
of figure 4.11. From these graphs its clear that the efficiency εS,I of the parametric scattering
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Figure 4.11: (First column)-Energy resolved transmission of the coupled pillars at a low power (red), at
the parametric resonant condition (blue) and high power (orange), the pump detuning is varied between
δ = −J i.e. resonant with the antibonding mode and δ = 3γ − J in steps of γ . (Second column)-
The transmission is filtered with a high quality polaroid with the axis aligned with the pump linear
polarization. (Third column)-The polaroid axis is orthogonal respect to the pump.



122

process depends on δ , in particular it decreases as the detuning is increased toward δ =−γ , the
higher values of efficiency are found for a pump one linewidth redshifted respect to the linear
antibonding mode where εI ≈ 0.42 and εS ≈ 0.17. This can be qualitatively explained recalling
that the scattering rate is proportional to the square of the exciton density in the structure, since
the Pauli exchange interaction is a s-wave scattering channel mediated by a contact interaction
and the exciton density grows as the detuning becomes closer to the antibonding line. This
argument however does not explain why ε has a maximum around δ = γ − J rather than in
δ = −J, the development of a more quantitative model is currently still a work-in progress.
We can also observe that the resonant condition (4.23) is matched at lower pump powers as the
detuning gets closer to δ =−γ this is in perfect agreement with the UN2 proportionality of the
effective nonlinear modes blueshift, for a detuning closer to the linear antibonding line the shift
has to be greater than for a detuning close to the bare cavity eigenfrequency (i.e. δ → 0), thus
for δ →−γ the pump threshold gets lower.

In the second and third column we report the co and cross-polarized spectra corresponding to the
left-most panel of the row. When the emission is polarized along the dimer axis (i.e. parallel to
the pump linear polarization) the three spectra corresponding to the three different pump powers
PL, PRes and PH can be perfectly superimposed: the side peaks for P = PRes are washed out. On
the contrary if the transmission is cross-polarized the central peak corresponding to the pump is
strongly inhibited whereas the side peaks for P = PRes dominates the spectrum. This fact colli-
mates with the theoretical predictions [67]-[45] suggesting that the dominant dipole scattering
matrix element for the s-wave exchange interaction for a linearly co-polarized Jz =±1 excitons
is the one producing two final states with an orthogonal polarization respect to the initial states.
This still does not explain why the relative height of the signal and idler beam is different and
changes with δ . We are now working on a model for the polarization and detuning-dependent
values of εS,I = IS,I/IP based on the calculation of the steady state of a coupled set of rate equa-
tions recounting for all the possible scattering channels between the two pump states, a pump
state and the final state of another scattering and between the products of two scattering pro-
cesses, however the project is still in a preliminary form.

The main result of this section is the experimental evidence of a tunneling induced paramet-
ric instability characterizing the steady state of two coupled nonlinear oscillators. For a pump
detuning −J +U NR < δ < −γ and a pump power satisfying (4.23) the creation of signal and
idler field becomes resonant. This process was detected by means of energy and resolved mea-
surements of the coupled pillars transmission. The imaging of the signal (idler) mode profiles
allowed their identification with Ψ−,(+) and the parametric scattering of two pump polaritons
in a signal and idler one was demonstrated to be highly selective in terms of the final state po-
larization. These results will be the subject of a forthcoming publication.



CHAPTER 5

Summary and Perspectives

In this thesis we presented an experimental study on the properties of 0D confined polaritons in
InGaAs/AlGaAs based heterostructures. The confinement is provided by the abrupt refractive
index mismatch between the air and the semiconductor when a pre existing planar cavity is
etched down to the substrate to form a micron-sized pillar structure. The spectrum of the pillar
structure becomes discrete and the lower polariton ground state energy depends quadratically
on the side of the pillar structure section. Since polaritons are mixed light-matter states, the
excitonic component provides an effective Kerr nonlinearity whereas the photonic component
provides a finite coupling term two pillars have a finite overlap, as we discussed in section 1.4.3-
4.2-4.1. The system is intrinsically lossy due to the radiative coupling to the free space modes
mediated by the photonic component and because of the non-radiative processes inherited from
the excitonic component.

All these ingredients allows to map a N-site network of coupled pillars into a driven dissipa-
tive Bose-Hubbard model. One of the principal advantages of the polariton framework is the
extreme scalability of the pillar network, which geometry can be arbitrarily defined with a pre-
cision in the etching technique of few tens of nanometers. A second advantage is the extreme
flexibility which can be achieved on the parameters characterizing the Bose-Hubbard model:
the site ground state energy, the coupling among the sites and the on-site nonlinearity.

In section 3.2 we have shown that the ground state energy can be finely tuned by controlling the
pillar size, proposing a simple method to measure the effective polariton mass.

In section 3.1 we show how the bare exciton to cavity photon detuning can be used to change
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the excitonic X2 and photonic C2 component of the mixed polariton states, this can be used as a
coarse grain knob to change the interaction constant ∝ X4 at the cost of an increased linewidth.
In section 3.3 a novel result was presented: the sample temperature can be used to finely tune
the effective Kerr nonlinearity in the pillar structures. A simple but comprehensive model was
proposed to explain the interplay of temperature with the excitonic and photonic component of
the confined polaritons. This result is interesting because since it prospects a way to control
with an extraordinary accuracy the nonlinearity of the system, thus encouraging the search for
unconventional photon blockade in photonic systems, a long lived theoretical prediction still
never experimentally observed due to the extreme sensitivity of the phenomenon on the abso-
lute value of the nonlinearity. This results will be the subjects of a forthcoming publication.

In section 4.1 we show how the coupling of two pillars results in the hybridization of the pillar
ground state in analogy with the solutions of a quantum particle in a double well. The first two
eigenmodes of the pillars were directly imaged in resonant transmission and can be identified
with the so-called bonding and antibonding solutions of the double well hamiltonian. Within a
two level approximation the energy splitting between the bonding and the antibonding modes is
twice the coupling constant. We measured the dependence of coupling on the center to center
spacing between the two pillars.

Trough these experiments a complete characterization of two coupled pillars was obtained.
Since two pillars already comprehend all the fundamental ingredients of the driven dissipative
Bose-Hubbard model, this work sets the basis for the design and implementation of an arbitrary
network of coupled cavities.

In the last two sections 4.2-4.3 we investigate the nonlinear phenomena characterizing the
steady state population of the two coupled cavities. When the pump power is swept for dif-
ferent detuning values, an optical limiter regime is observed when the pump is redshifted re-
spect both the linear bonding and antibonding modes of the dimer as a consequence of the
nonlinear blueshift of the coupled pillar eigenmodes induced by the Kerr nonlinearity. When
the pump detuning is in the window −J < δ < J a bistable regime was observed, in particular a
flashy darkening of the driven pillar population can be observed before the bistability threshold
is reached which can be explained in terms of an interference process induced by a interac-
tion dependent hopping phase. This specific result enriches the physics of the coupled cavities
as it can be interpreted as a complex and power-dependent coupling in the driven dissipative
Bose-Hubbard model. A non-trivial phase along a closed loop corresponds to a non-zero vector
potential, this feature opens interesting perspectives on the realization of power-dependent arti-
ficial gauge fields on a network of driven pillars. Moreover when characterizing the stability of
the steady state solutions belonging to the lower branch, a parametrical instability is predicted
and we hereby report the first experimental evidence of the phenomenon. When the pump sat-
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isfies a well defined resonance condition the effective polariton-polariton interactions result in
a parametric scattering process which creates a signal and idler fields with an energy separated
by ±J respect to the pump: the process can be detected from spectral resolved resonant trans-
mission of the dimer emission. Interestingly the interference of the pump, signal and idler field
results in a self-pulsing dynamics of the steady state. The scattering process was demonstrated
to be highly selective in terms of the initial and final states polarization. This tunneling-induced
parametric instability opens interesting perspectives on the generation of squeezed and entan-
gled polariton states. This result will be the subject of a forthcoming publication.

The natural continuation of this work would be to address the steady state of more complex
structures as three coupled pillars, arrays of pillars arranged on a ring or one and two dimen-
sional lattices. In particular we already have some simulations suggesting the possibility of
observing an interaction-induced symmetry breaking when pumping the middle site of three
coupled pillars in a row. In ring topologies we expect to observe artificial gauge fields and some
proposal to break the Lorentz reciprocity are currently being discussed. On the lattice struc-
tures the major challenge would be to implement a single site-resolved pump and detection in
the setup. Moreover some recent theoretical works suggests the possibility of exploring the
physics beyond mean field even for weak single particle nonlinearities, which are currently the
main limiting factor towards quantum simulation with polariton microcavities.
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