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Chapter 1

Introduction

Many of the major developments in fundamental physics of the past century arose
from identifying and overcoming contradictions between existing ideas. For example,
the incompatibility of Maxwell’s equations and Galilean invariance led Einstein to
propose the special theory of relativity. Similarly, the inconsistency of special relativ-
ity with Newtonian gravity led him to develop the general theory of relativity. More
recently, the reconciliation of special relativity with quantum mechanics led to the
development of quantum field theory.

Another issue of the same character is a tension between general relativity and
QFT. Any straightforward attempt to “quantize” general relativity leads to a non-
renormalizable theory. Such a theory needs to be modified at short distances or high
energies. Hence, it seems quite natural, or we can better say that there is a great
belief, that there should exist a more general quantum theory beyond the Standard
Model which integrates also General Relativity into a so called Unified Theory. One
of such theories is String Theory.

A way that string theory does this, is by giving up one of the basic assumptions
of quantum field theory, namely that elementary particles are mathematical points
and allowing one-dimensional extended objects, called strings.

It has been shown in the 70s− 90s, that one basic concept employed in the con-
struction of string theory is Supersymmetry, namely a symmetry relating particles and
fields of integer spin (bosons) and particles and fields of half integer spin (fermions).
Since its discovery, supersymmetry managed to retain continuous interest as a basis
for the construction of unified theories such as for example, supergravities in four
dimension and in D = 10 and D = 11 which are low energy limits of string theory.

But there are also other reasons why an elementary particle physicist wants to
consider supersymmetric theories. One of the main reasons is that quantum behaviour
of supersymmetric theories is much better than that of quantum field theories, due to
cancellations of divergences in fermion and boson loops. In particular, supersymmetry
provides a possibility of protecting the Higgs mass and keeping it at an electro-weak
breaking scale, which would otherwise receive huge quantum corrections (known as
Hierarchy problem)

Other arguments for supersymmetry come from the success of certain simple grand
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6 CHAPTER 1. INTRODUCTION

unified theories (GUTs) in which three running coupling constants of electro-weak and
strong interactions meet at a single point around 1016GeV []. On the contrary, in non-
supersymmetric grand unified theories, the couplings for the U(1), SU(2), and SU(3)
interactions do not unify at the GUT scale, in the simplest models.[].

Other open fundamental issues regard cosmology. Indeed the nature of Dark
Matter and Dark Energy is unclear. One of the hypothesis is that the supersymmetric
partners of the observed particles may be possible constituents of Dark matter.

For these reasons, understanding how supersymmetry is realized in Nature is one
of the most important challenges theoretical high energy physics has to confront with.

To show schematically the basic idea of supersymmetry, let us take an infinitesimal
rigid (or global) supersymmetric transformation

δϵB = ϵ̄F, δϵF = ϵγm∂mB, (1.1)

B and F denote respectively bosonic and fermionic fields, ϵ denotes the spinorial
infinitesimal supersymmetry parameter and ∂m stands for a space-time derivative
while γm are Dirac matrices. The commutator of supersymmetric transformations of
the bosonic (and fermionic) fields is

[δϵ1 , δϵ2 ]B = (ϵ̄1γ
mϵ2)∂mB, (1.2)

where the partial derivative tells us that supersymmetry is related to space-time
translations (Pm = −i∂m). This tells us that supersymmetry is a non-trivial part of
space-time symmetry.

The general motivation for this thesis is the study of main features of supersym-
metric field theories formulated on flat and curved backgrounds, such as on anti De
Sitter spaces. We will study in particular, the application of superspace and superfield
methods to supersymmetric field theories on curved backgrounds, which can simplify
the study of problems related, for example, to the AdS/CFT correspondence and
the possibility of obtaining exact quantum results in supersymmetric quantum field
theories using the so called localization techniques.

To begin with, in chapter 2 we will give a review of four-dimensional space-time
rigid supersymmetric theories following [1],[2]. In particular, we will study properties
of the superPoincaré algebra and its irreducible representations, in order to describe
physical supermultiplets.

Then, we will extend D = 4 bosonic space-time to the N = 1, D = 4 superspace,
which is made of both bosonic and fermionic coordinates. By constructing functions
on this superspace, called superfields, we will build invariant supersymmetric field
theories in a straightforward way. In this framework we will review how to construct
matter and Yang-Mills supersymmetric actions. The discussion remains classical and
renormalisation issues are not discussed here.

In chapter 3 we will consider local supersymmetric theories [6] by making the
supersymmetric parameter depend on space-time coordinates. This leads to super-
symmetric generalization of gravity. We will study the component field formulation
of the minimal supergravity model in D = 4, namely the theory which combines the
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Hilbert-Einstein action associated to the gravitational field of spin 2 with the action
associated to the fermionic Rarita-Schwinger field of spin 3/2. This theory is con-
structed with the use of the vielbein formalism, because only in this framework it
becomes possible to describe the coupling of spinor fields to gravity. The full N = 1
supergravity Lagrangian will be given and we will show the local supersymmetry
transformations that leave this Lagrangian invariant.

The above construction was for the components of the supergravity multiplet. Our
aim will also be to study the description of supergravity and its coupling to matter
fields with the use of superfield methods. In the following chapters, to simplify this
study, we will pass from four to two dimensions in which the superfield construction
of the theory is much simpler, but the main conceptual points remain the same.

In chapter 4 we will consider D = 2 rigid supersymmetric theories [7]. The
importance of 1+1 dimensional theories is also related to the worldsheet description of
string theory and potential applications to the study of AdS2/CFT1 correspondence.

Then, in chapter 5 we will investigate D = 2 supergravity in the framework of
superspace and superfields [8]. We shall give the basics of supergeometry, i.e. a curved
superspace generalization of the notion of differential geometry of curved manifolds.
To simplify the consideration, we will focus on the study of the so called N = (1, 1)-
supersymmetry, whose parameter is a Majorana spinor.

We will follow the work of Howe [9], who imposed some natural ”kinematic”
constraints on the supertorsion (analogous to those adopted in four dimensions [10])
in order to reduce the number of the redundant components of the supervielbein. We
will find that the supervielbein and superconnection are expressed in terms of the
zwei-bein, the Rarita-Schwinger field and one auxiliary scalar field. We then obtain
also the other supergeometry objects, such as supertorsion and supercuvature, as
functions of one scalar and one vector superfield.

In chapter 6 we fix the superbackground to be an AdS2 superspace and compute
explicitly all its supergeometrical objects (supervierbien, superconnection, supertor-
sion and supercurvature). Finally, we will couple the scalar (matter) superfield in-
troduced in chapter 4, to the AdS2 superbackground and construct an appropriate
superfield Lagrangian containing a kinetic and mass term as well as a potential inter-
action term. We then expand the superfield Lagrangian in terms of the component
matter fields and observe an interesting phenomenon that in contrast to the flat space,
in AdS2 a massless scalar field may have either massless fermionic superpartner or a
massive one with the mass inversely proportional to the AdS2 radius. This reflects
the influence of the curvature of the background. Lastly, we derive the supersymmet-
ric transformations for component fields, under which the Lagrangian is invariant.
These transformations form the supergroup Osp(1|2) containing the isometry group
SO(2, 1) of the AdS2 space as a subgroup. In conclusion we summarize the results of
this thesis.
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Chapter 2

Rigid supersymmetry in D = 4
dimensions

2.1 The supersymmetry algebra

Supersymmetry algebra (or superalgebra) is the basic ground on which all the su-
persymmetric invariant theories, both rigid or local ones, are constructed. It can be
considered as an extension of the ordinary bosonic Lie algebras.

In addition to the bosonic generators which constitute the basis of the embodied
Lie algebras, superalgebra consists of extra fermionic generators Qα, called super-
charges, which by definition transform as spinors under the Lorentz group and obey
anti-commutation relations. Anticommutation of the supersymmetry generators is a
characteristic of any superalgebra, which is important for the validity of the Haag-
Lopuszanski-Sohnius theorem [4], which will permit to build supersymmetric theories,
as we will show.

To build some supersymmetry algebra, it will be important to specify the dimen-
sion of the spacetime and what kind of bosonic Lie subalgebra is used as a starting
point. Examples of Lie subalgebra are the Poincaré algebra, the anti de-Sitter algebra
or the conformal algebra.

In different space-time dimensions various types of spinors (e.g. Majorana or
Weyl) can exist or not [5]. Different spinors choices give rise to diverse supersymmetry
algebras.

In this chapter we will fix the dimension to four and the Lie algebra to be the
Poincaré algebra. As regarding notation, in this chapter and throughout, we will
associate the lower latin indices (a, b...m, n...) to vector components, while lower greek
indices (α, β...µ, ν..) to spinorial components.

2.1.1 Two-component formalism

Spinors in our formalism will be defined as those objects who carry the fundamental
representation of SL(2, C), the group of the unimodular 2×2 complex matrices. This
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is usually referred as the two-component Weyl formalism.
Let M ∈ SL(2,C), then M acts on ψ ∈ C2 as

ψα → ψ′
α =Mα

βψβ, (2.1)

where α = β = 1, 2 and ψ is defined as

ψ =

(
ψ1

ψ2

)
= ψα, (2.2)

with ψ1, ψ2 being complex anticommuting Grassmann numbers. This is the left-
handed Weyl spinor representation (1

2
, 0). A distinct representation is provided by

M∗, which is the complex conjugate of the fundamental representation of SL(2, C)

ψ̄α̇ → ψ̄′
α̇ =M∗β̇

α̇ ψ̄β̇, (2.3)

with α̇, β̇ = 1, 2, which is called also right-handed Weyl spinor representation (0, 1
2
).

To distinguish them from left-handed Weyl spinors, right-handed Weyl spinors are
denoted by dotted indices. This two representations are not equivalent, namely no
matrix C exists such thatM = CM∗C−1. We can also define the contravariant spinor
and the dotted contravariant spinor as

ψα = ϵαβψβ, ψ̄α̇ = ϵα̇β̇ψ̄β̇. (2.4)

In what follows will be important to introduce the following tensors ϵαβ and ϵα̇β̇

ϵαβ = ϵα̇β̇ =

(
0 −1
1 0

)
, ϵαβ = ϵα̇β̇ =

(
0 1
−1 0

)
. (2.5)

We can show that these are invariant tensors under SL(2, C). As a tensor, ϵαβ
transforms like

ϵ′αγ =Mα
βMγ

δϵβδ, (2.6)

and due to the following identity

1 = detM = −1

2
Mα

βMγ
δϵβδϵ

αγ, (2.7)

then

ϵ′αγϵ
αγϵαγ = −2ϵαγ, (2.8)

ϵ′αγ = ϵαγ. (2.9)

Spinor contractions

For two anticommuting spinors ψ and χ we have

ψχ ≡ ψαχα = ϵαβψβχα = −ϵαβψαχβ = −ψαχ
α = χαψα = χψ, (2.10)

ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇ = ϵα̇β̇ψ̄

β̇χ̄α̇ = −ϵα̇β̇ψ̄
α̇χ̄β̇ = −ψ̄α̇χ̄α̇ = χ̄α̇ψ̄

α̇ = χ̄ψ̄. (2.11)
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Pauli matrices and properties

Any 2× 2 complex matrices in the SL(2,C) group can be written as a linear combi-
nation of elements of the basis σm = (σ0, σi) = (σ0,−σi), of the σ matrices, or Pauli
matrices, defined as

σ0 = I, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
+i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.12)

which transform under the SL(2, C) group as follows

(σ̄m)α̇β = ϵα̇γ̇ϵβδ(σm)δγ̇, (2.13)

(σm)αβ̇ = ϵδ̇β̇ϵγα(σ̄
m)δ̇γ , (2.14)

and satisfy the following properties

tr(σmσ̄n) = 2ηmn, (2.15)

σm
αβ̇
σ̄γ̇δ
m = 2δδαδ

γ̇

β̇
. (2.16)

2.1.2 The full superPoincaré algebra

In the 1960’s, with the growing awareness of the significance of internal symmetries,
physicists attempted to find a symmetry which would combine in a non-trivial way
the space-time Poincaré group with an internal symmetry group. Such an attempt
however was impossible within the context of a Lie group because of the Coleman-
Mandula theorem.

In 1967, Coleman and Mandula provided the theorem [3] that under certain phys-
ical assumptions regarding the S-matrix describing particle scattering, e.g. finite
number of scattering particles and certain dependence of scattering on energy and
angles, the generators of the symmetry group G of the S-matrix consist only of gen-
erators which correspond to

(a) Poincaré invariance which is the ISO†(3, 1) group characterized by the semi-
direct product of translations and Lorentz rotations, whose generators Pm and
Mmn satisfy the commutation relations

[Pm, Pn] = 0, (2.17)

[Pm,Mbc] = ηmbPc − ηmcPb, (2.18)

[Mab,Mcd] = −ηacMbd + ηbdMac − ηadMbc − ηbcMad, (2.19)

where ηab is the Minkowski space metric

ηab =


+1

−1
−1

−1

 . (2.20)
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(b) Internal global symmetries, related to conserved quantum numbers such as elec-
tric charge, isospin etc. The symmetry generators are Lorentz scalars and gen-
erate the Lie algebra

[Ti, Tj] = ifk
ijTk, (2.21)

where fk
ij are the structure functions.

(c) Discrete symmetries: C, P, and T, and their products.

It is important to note that the space-time and the internal symmetries form the
direct product of the Poincaré group and the internal group. This last condition
however can be circumvented by weakening the assumption of the Coleman-Mandula
theorem that the algebra of the S-matrix symmetries involves only commutators, by
allowing anticommutating generators in the algebra.

This is the way we enter the realm of the graded Lie superalgebras which are
defined as follows

Definition 1 (Graded Lie superalgebra). A graded Lie superalgebra over a field
k consists of a graded vector space E over k, along with a bilinear bracket operation

[−,−] : E
⊗
k

E → E, (2.22)

which satisfies the following axioms

(a) [−,−] respects the gradation of E

[Ei, Ej] ⊆ Ei+j. (2.23)

(b) (Symmetry) If x ∈ Ei and y ∈ Ej then

[x, y] = −(−1)ij[y, x]. (2.24)

(c) (Jacobi identity) If x ∈ Ei, y ∈ Ej, and z ∈ Ek, then

(−1)ik[x, [y, z]] + (−1)ij[y, [z, x]] + (−1)jk[z, [x, y]] = 0. (2.25)

In our case the supersymmetry algebra is taken to be a Z2 graded Lie super-
algebra of order one (i, j = 0, 1). It is a semidirect sum between the following two
subalgebras

L = L0

⊗
L1, (2.26)

where L0 denotes the Poincaré algebra and its generators are called ”even” whereas
L1 = (QI

α, Q̄
I
α̇). The index α = 1, 2 denotes the femionic components of each super-

charge, while I count the number of supercharges needed to build the algebra. L1 is
hence a set of N anticommuting chiral and N antichiral spinor generators, called also
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”odd” generators, which transform in the representations (1
2
, 0)⊕ (0, 1

2
) of the Lorentz

group.

Allowing the anticommuting generators in the symmetry algebra, in 1975 Haag,
Lopuszanśki and Sohnius [4] showed that supersymmetry is the only possible exten-
sion of the Poincaré algebra allowed by S-matrix, by taking into account also the other
”physical” assumptions, as causality, locality, positivity of energy, finiteness of num-
ber of particles, one would not like to relax of the Coleman-Mandula theorem. What
is a particular fundamental feature in supersymmetry is the interplay of spacetime
symmetry with internal symmetry via non-trivial internal symmetry transformation
of QI . Furthermore, there is a non trivial connection between Lorentz generators of
Poincaré algebra and the generators Q and this means that supersymmetry is not an
internal symmetry rather it can be considered as a space-time symmetry.

Definition 2. The full superPoincaré algebra in N = N,D = 4 is then given by
the following relations

[Pm, Pn] = 0, (2.27)

[Mmn,Mrs] = −ηmrMns − ηnsMmr + ηmsMns + ηnsMms, (2.28)

[Mmn, Pr] = −ηrmPn + ηrnPm, (2.29)

[Pm, Q
I
α] = 0, (2.30)

[Pm, Q̄
I
α̇] = 0, (2.31)

[Mmn, Q̄
I
α] = (σmn)

β
αQ

I
β, (2.32)

[Mmn, Q̄
Iα̇] = (σ̄mn)

α̇
β̇
Q̄Iβ̇, (2.33)

{QI
α, Q̄

J
β̇
} = 2σm

αβ̇
Pmδ

IJ , (2.34)

{QI
α, Q

J
β} = ϵαβZ

IJ , ZIJ = −ZJI , (2.35)

{Q̄I
α̇, Q̄

J
β̇
} = ϵα̇β̇(Z

IJ)∗, (2.36)

where the 2-index Pauli matrices σmn are defined as

(σmn)α
β =

1

4
(σm

αγ̇(σ̄
n)γ̇β − (m↔ n)), (σ̄mn)α̇β̇ =

1

4
((σ̄m)α̇γσn

γβ̇ − (m↔ n)).

(2.37)
The relation (2.34)

{QI
α, Q̄

J
β̇
} = 2σm

αβ̇
Pmδ

IJ ,

is expected because of (
1

2
, 0

)
⊕
(
0,

1

2

)
=

(
1

2
,
1

2

)
.

It is worthwhile to note from (2.30) and (2.31) that QI
α and Q̄I

α̇ commute with trans-
lation operators Pm.
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2.1.3 Comments

Central charges

ZIJ generators, called central charges, are antisymmetric objects which commute with
all generators of the algebra and may be associated to a mass of supermultiplets. For
this reason, in the massless irreducible representations they vanish. In addition, they
are always absent in the case of I = 1 and this is called the simple supersymmetry
algebra.

R-symmetry

In general, fermionic generators of the superalgebra commute with the internal genera-
tors except from those associated with a particular symmetry, called ”R-symmetry”,
which in the case of the N-extended superPoincaré algebra is a U(N) group. There-
fore, we have to add also the following commutation relations to (2.27)-(2.36)

[Ti, Tj] = ifk
ijTk, (2.38)

[Pm, Ti] = 0, (2.39)

[Mmn, Ti] = 0, (2.40)

[QI
α, Ti] = tiJ

IQJ
α, (2.41)

where Q’s transform under the fundamental representation of U(N).

N = 1 superPoincaré algebra

In what follows we will mainly restrict to the consideration of the N = 1 super-
Poincaré algebra in D = 4, with no central charges

[Pm, Qα] = 0, (2.42)

[Pm, Q̄α̇] = 0, (2.43)

[Mmn, Q̄α] = (σmn)
β
αQβ, (2.44)

[Mmn, Q̄
α̇] = (σ̄mn)

α̇
β̇
Q̄β̇, (2.45)

{Qα, Q̄β̇} = 2σm
αβ̇
Pm, (2.46)

{Qα, Qβ} = 0, (2.47)

{Q̄α̇, Q̄β̇} = 0. (2.48)

For N = 1 the R-symmetry group is just U(1). In this case the hermitian matrices
ti are just real numbers and by defining the only U(1) generator as R, one gets

[R,Qα] = −Qα, [R, Q̄α̇] = +Q̄α̇. (2.49)

This implies that supersymmetric partners (which are indeed related by the action of
the Q’s) have different R-charge.
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Finally, we can introduce the concept of superPoincaré group which can be defined
straightforwardly by the exponentiation of the superPoincaré algebra elements

G(x, θ, θ̄, ω) = exp(iamP
m + iϵαQα + iϵ̄β̇Q̄

β̇ +
1

2
iλabMab), (2.50)

where am is the parameter associated to the translational operator, λab is associated
to the Lorentz operator, while ϵα, ϵ̄β̇ are associated to the fermionic generators.
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2.2 Representations of the superPoincaré algebra

In supersymmetry, single-particle states fall into irreducible representations of the
supersymmetry algebra, called supermultiplets. Each supermultiplet contains both
fermionic and bosonic states, which are superpartners of each other.

Any irreducible representation of the supersymmetry algebra is a representation
of the Poincaré algebra, because the Poincaré algebra is a subalgebra of the super-
Poincaré algebra. Thus it follows that in general Poincaré representations will be
reducible. A generic supermultiplet therefore will be a collection of particles of differ-
ent spin related by supercharges Qα.

The irreducible representations of the Poincaré superalgebra are classified by the
eigenvalues of the Casimir operators. Their main property is that they commute
with all generators of the algebra and, by employing the Schur’s lemma, they must
be proportional to the identity if we consider an irreducible representation. By this
property we can label different irreducible representations with different Casimirs
associated to different states, or particles.

We have two such operators in the Poincaré algebra given by

PmP
m, WmW

m, (2.51)

where Pm is the translation operator whileWm is the Pauli-Ljubanski operator defined
as

Wm =
1

2
ϵmnpqP

nMpq. (2.52)

where ϵ0123 = −ϵ0123 = +1. The Pauli-Ljubanski vector satisfies the following com-
mutation relations

[Wm, Pn] = 0, (2.53)

[Wm,Mab] = ηmaWb − ηmbWa, (2.54)

[Wm,Wn] = −ϵmnpqW
pP q. (2.55)

P 2 = m2 operator is related to mass while W 2 is related to spin.

In supersymmetric extensions of the Standard Model, the supersymmetry gener-
ators Q,Q† also commute with the generators of the SU(3) × SU(2) × U(1) gauge
group. Therefore, particles in the same supermultiplet must also be in the same rep-
resentation of the gauge group, and so must have the same electric charges, weak
isospin, and color degrees of freedom.

2.2.1 Properties of superPoincaré representations

Before discussing different types of representations in supersymmetry algebra, we
will present first some their common properties, which we will explicitly show in the
particular N = 1 supersymmetry.
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SuperPoincaré Casimirs

In supersymmetry algebra, P 2 = PmP
m operator is still a Casimir, howeverW 2 is not

a Casimir anymore, because it does not commute with the supersymmetric generators
(Q, Q̄), as it can be seen explicitly by taking the relation

[Wm, Qα] = −Pn(σ
mn)α

βQβ, (2.56)

In the N = 1 superPoincaré algebra we can however define another Casimir operator
by generalizing the spin concept and introducing the following vector field

Bm = Wm − 1

4
Q̄α̇(σ̄m)

α̇βQβ, (2.57)

We introduce also a tensor Cmn defined as follows

Cmn = BmPn −BnPm, (2.58)

and finally we can write the new Casimir of the supersymmetry algebra defined by

C̃2 ≡ CmnC
mn, (2.59)

which is called superspin operator. Its eigenvalue is the same for all the fields in a
given supermultiplet.

The mass degeneracy between bosons and fermions in the same irreducible repre-
sentation is something we do not observe in known particle spectra; this implies that
supersymmetry, if it at all is realized in Nature, must be broken at higher energies
than the order of electro-weak scale.

Positivity of energy

As is known, the Poincaré group has irreducible unitary representations of two types:
positive-energy representations and negative-energy representations. Only the positive-
definite representations are physically admissible whereas those of negative-energy are
discarded.

One remarkable property of supersymmetric theories is that the energy in a unitary
representation of the superPoincaré algebra is always non-negative definite.

In a mathematical language [11], this property may be restated as follows; given
a momentum eigenstate |p⟩, the hermitian operator Pm acts as −i∂m on a given
field, thus on a plane wave ϕ = exp(ip · x), Pm acts as Pm · ϕ = pmϕ. Therefore on
a momentum eigenstate |p⟩, the eigenvalue of Pm is pm. Thus the supersymmetry
algebra becomes

[Qα, Q̄β̇] |p⟩ = 2

(
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)
|p⟩ , (2.60)

where we used (2.34) and p0 denotes the energy of a generic state |ϕ⟩. Recalling that
p0 = p0, we obtain

p0 |p⟩ = 1

4

(
[Q1, Q1

†] + [Q2, Q2
†]
)
|p⟩ . (2.61)
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In other words, the Hamiltonian can be written in the following way

H =
1

4

(
Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2

)
. (2.62)

Its expectation value computed in a certain state |ψ⟩

⟨ψ|H |ψ⟩ = 1

4

(
||Q1 |ψ⟩ ||2 + ||Q†

1 |ψ⟩ ||2 + ||Q2 |ψ⟩ ||2 + ||Q†
2 |ψ⟩ ||2

)
≥ 0. (2.63)

is given by a sum of squares which leads to a positive value unless the state is anni-
hilated by all the supercharges, in which case it is zero.

Degrees of freedom

A supermultiplet contains an equal number of bosonic nB and fermionic nF degrees
of freedom (nB = nF ). To prove this statement we introduce the fermion number
operator

(−1)NF =

{
+1 Bosons,
−1 Fermions,

or equivalently

(−)NF |B⟩ = |B⟩ , (2.64)

(−1)NF |F ⟩ = − |F ⟩ , (2.65)

and then
(−)NFQα = −Qα(−)NF . (2.66)

Multiplying (2.34) with the fermionic number operator and taking the trace we get
the following identity

tr
(
((−)Nf{Qα, Q̄β̇}

)
= tr

(
−Qα(−)Nf Q̄β̇ +Qα(−)Nf Q̄β̇

)
= 0, (2.67)

= 2σm
αβ̇tr((−)NFPm) = 0. (2.68)

For fixed non-zero momentum Pm,

tr(−1)NF = 0, (2.69)

Therefore, any supersymmetry representation contains an equal number of fermionic
and bosonic states.

2.2.2 Massless representations

Irreducible supersymmetric representations will be distinguished in massive and mass-
less supermultiplets. They will possess different values of the mass, but also of the
spin of the fields of the supermultiplet.
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We will first consider massless representations in the general N -extended case and
then reduce to the simpler N = 1. In all massless representations, central charges
vanish, namely ZIJ = 0 and thus all Q’s and all Q̄’s commute among themselves.

To build irreducible massless representations of supersymmetry we will follow the
following strategy. Let us begin by going into a frame where the translation generator
is Pm = (E, 0, 0, E) (E is the energy) because C1 = PmPm = 0. It can also be shown
in [12], that in the N = 1 case the second Casimir C̃2 = CmnC

mn = 0.
We then proceed by considering the relation (2.34) and figuring out the compo-

nents of the matrix form

{QI
α, Q̄

J
β̇} = 2(σm)αβ̇Pmδ

IJ = (2.70)

= 2E(σ0 − σ3)αβ̇δ
IJ =

(
0 0
0 4E

)
αβ̇

δIJ , (2.71)

→ {QI
1, Q̄

J
1̇} = 0, (2.72)

where the product

σmPm =

(
0 0
0 2E

)
. (2.73)

(2.72) implies that both generators QI
1 and Q̄J

1̇ are trivially realized, indeed by
taking a generic state |ϕ⟩, the expectation value of (2.72) on that state gives us

0 = ⟨ϕ| {Q1
I , Q̄1̇

J} |ϕ⟩ = ||Q1
I |ϕ⟩ ||2 + ||Q̄1̇

J |ϕ⟩ ||2 = 0, (2.74)

which is solved by Q1 |ϕ⟩ = Q̄1̇ |ϕ⟩ = 0. The remaining non trivial generators are Q2

and Q̄2̇, namely only N of the original 2N generators.
It is convenient to redefine the non trivial generators as

aI ≡
1√
4E

QI
2, a†I ≡

1√
4E

Q̄I
2̇
, (2.75)

which satisfy the following anticommutation relations

{aI , a†J} = δIJ , {aI , aJ} = 0, {a†I , a
†
J} = 0. (2.76)

(2.75) operators are analogous to the creation and annihilation ladder operators in
the classical harmonic oscillators.

With these operators in hand we may proceed to the next step of the construction
of physical states of the supermultiplet. The starting fundamental state is the Clifford
vacuum, annihilated by all the aIs. It will carry a mass m = 0 with helicity λ0 and
we will denote it in the bracket formalism by |E, λ0⟩ (|λ0⟩, for short). So we impose
that

aI |λ0⟩ = 0. (2.77)

This state can be either bosonic or fermionic and it has not to be confused with
the actual vacuum of the theory. By the Clifford vacuum we can obtain the entire
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N -extended massless supermultiplet by acting on |λ0⟩ with creation operators a†I and
employing the (2.76) relations, as follows

|λ0⟩ , : 1state

a†I |λ0⟩ ≡
∣∣∣∣λ0 + 1

2

⟩
I

, : Nstates

a†Ia
†
J |λ0⟩ ≡ |λ0 + 1⟩IJ , :

1

2
N(N − 1)states

...

a†1a
†
2...a

†
k |λ0⟩ ≡

∣∣∣∣λ0 + k

2

⟩
, :

(
N

k

)
=

N !

k!(N − k)!
states

...

a†1a
†
2...a

†
N |λ0⟩ ≡

∣∣∣∣λ0 + N

2

⟩
, :

(
N

N

)
= 1state

and then the total number of states in the irreducible representation is given by

N∑
k=0

(
N

k

)
= 2N = (2N−1)B + (2N−1)F . (2.78)

The construction of a massless supermultiplet is finished after adding a multiplet
CPT conjugate to the former in order to make the whole multiplet CPT-invariant. If
the supermultiplet is self-conjugate under CPT it is no needed to add anything.

N = 1 Massless supermultiplet

We now consider the simplest case of N = 1, where only one chiral and one antichiral
Weyl spinor generators are added to form the superPoincaré algebra.

Definition 3. Matter (chiral) supermultiplet. We start from the Clifford vacuum of
helicity λ0 = 0. Acting on it with the creation operator a† we obtain the multiplet

λ0 = 0 →
(
0,

1

2

)
⊕CPT

(
−1

2
, 0

)
, (2.79)

where we introduced the CPT conjugate of the multiplet, for the CPT invariance of
the representation. The degrees of freedom of this representation are those of one
Weyl fermion and one complex scalar. In a N = 1 supersymmetric theory this is the
representation where matter sits.

Definition 4. Gauge multiplet (or vector multiplet). We start from the Clifford
vacuum with helicity λ0 =

1
2
.

λ0 =
1

2
→

(
1

2
,+1

)
⊕CPT

(
−1,−1

2

)
. (2.80)

The degrees of freedom are those of one vector and one Weyl fermion. This is the
representation one needs to describe gauge fields in a supersymmetric theory.
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Definition 5. Gravitino multiplet. This multiplet is made of one vector field and one
gravitino field of spin 3

2
as follows

λ0 = 1 →
(
1,+

3

2

)
⊕CPT

(
−3

2
,−1

)
(2.81)

A consistent interaction of this multiplet requires coupling to the supergravity mul-
tiplet, which in N = 1 case consists of a gravitino and a graviton.

Definition 6. Graviton multiplet (supergravity multiplet)

λ0 =
3

2
→

(
+
3

2
,+2

)
⊕CPT

(
−2,−3

2

)
. (2.82)

Massless supermultiplets of N = 2 supersymmetry

Definition 7. Matter multiplet (hypermultiplet) is now bigger in number of states in
comparison to the simplest N = 1 case because we have two pairs of supersymmetry
generators. Starting now with a Clifford vacuum of helicity −1

2
we get

λ0 = −1

2
→

(
−1

2
, 0, 0,

1

2

)
⊕CPT

(
+
1

2
, 0, 0,−1

2

)
, (2.83)

which corresponds to the degrees of freedom of two Weyl fermions and two complex
scalars.

Definition 8. Gauge(vector) multiplet

λ0 = 0 →
(
0,+

1

2
,+

1

2
,+1

)
⊕CPT

(
−1,−1

2
,−1

2
, 0

)
. (2.84)

The degrees of freedom are those of one vector, two Weyl fermions and one complex
scalar. In N = 1 language this is the sum of a vector and a matter multiplet, both
transforming in the same adjoint representation of the gauge group.

Definition 9. Gravitino multiplet

λ0 = −3

2
→

(
−3

2
,−1,−1,−1

2

)
⊕CPT

(
+
1

2
,+1,+1,+

3

2

)
. (2.85)

The degrees of freedom are those of a spin 3/2 particle, two vectors and one Weyl
fermion.

Definition 10. Graviton multiplet

λ0 = −2 →
(
−2,−3

2
,−3

2
,−1

)
⊕CPT

(
+1,+

3

2
,+

3

2
,+2

)
. (2.86)

The degrees of freedom are those of a graviton, two gravitinos and a vector, which is
usually called graviphoton in the supergravity literature.
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In the case of N > 4 it is not possible to avoid gravity since any representation
must have at least one state with helicity 3

2
that requires coupling to gravity. Hence,

theories with N > 4 are all supergravity theories. It is interesting to note that N = 8
supergravity allows only one possible representation with highest helicity 2, and for
higher N one cannot avoid higher spin states, with helicity 5

2
or higher. Therefore,

N = 8 is an upper bound on the number of supersymmetries in D = 4 space-time
which do not involve higher spins.1

If we consider other space-time dimensions we have to remake the statement of
the upper bound indeed in ten space-time dimensions the maximum allowed super-
symmetry is N = 2.

A dimension-independent statement can be made counting the number of single
component supersymmetry generators. The maximum allowed number of generators
for non-gravitational theories is 16 (which is N = 4 in four dimensions) and 32 for
theories with gravity (which is N = 8 in four dimensions).

2.2.3 Massive Representations

We will follow the same logical procedure used in building massless representations,
however we must point out some critical differences between massive and massless
supermultiplets. The most relevant is that states now are massive, so we can choose
the preferred frame to be in the rest frame

Pm = (m, 0, 0, 0). (2.87)

In the massive case we also better refer to the spin concept rather than helicity and
the parameters that label states in a particular representation are denoted by |m, j⟩,
where ”m” denotes mass and ”j” the spin.

Another big difference from the massless case is that the number of non-trivial
generators gets not diminished, indeed there remain the full set of 2N creation and
annihilation operators as can be derived from the anticommutation relations

{QI
α, Q̄

J
β̇} = 2mδαβ̇δ

IJ . (2.88)

We better redefine supersymmetry generators QI
α, Q̄

I
α̇ by introducing the following

operators

a1,2
I ≡ 1√

2m
QI

1,2, a†I1,2 ≡
1√
2m

Q̄1̇,2̇
I , (2.89)

which again this describes an algebra analogous to that of the harmonic algebra with
ladder generators.

The building of massive representations starts by defining a Clifford vacuum state
|Ω⟩, with mass m and spin λ0, annihilated by both the set of aI1 and aI2. Then,
acting on this Clifford vacuum with the creation operators and using the anticommu-
tation relations, we obtain the remaining states of the generic N -extended massive
supermultiplet.

1The higher spin fields are known to have problems to interact with each other and with gravity.
This issue is the subject of the higher spin theory.
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N = 1 Massive supermultiplets

Definition 11. Matter (or chiral) multiplet. We start by assigning to the Clifford
vacuum mass ”m” and spin j = 0 and then we act on this state with all creation
operators

j = 0 →
(
−1

2
, 0, 0′, +1

2

)
.

In this multiplet there is no need to add any CPT conjugate and furthermore we may
see that the second scalar state (0’) has opposite parity with respect to 0, so it’s a
pseudoscalar.

Definition 12. Massive vector multiplet

j =
1

2
→

(
−1, 2×−1

2
, 2× 0, 2×+1

2
, 1

)
. (2.90)

The degrees of freedom are those of one massive vector, one massive Dirac fermion
and one massive scalar and these are the same of those of a massless vector multiplet
plus one massless matter multiplet.

2.3 N = 1 Superspace

Until now we have pointed out the explicit structure of the superPoincaré algebra in
the case N = 1 and D = 4 and how to build massless and massive representations of
this superalgebra.

Here we want to continue the development of tools needed in the construction of
supersymmetry Lagrangians. If we construct supersymmetric actions in the ordinary
Minkowski space-time, the supersymmetry invariance of the theory is not evident. To
prove the invariance one has to take length computations, by explicitly varying the
action under a given supersymmetric transformation that acts on all fields concerned.
However a clever treatment can be followed in order to simplify computations and to
make explicit the supersymmetric nature of the action.

Superspace is the key. It is a ”special” framework, which extends the Minkowski
space-time, and leads to theories where supersymmetry invariance becomes mani-
fest, in the sense that an action made up of functions (superfields) of superspace, is
automatically supersymmetric invariant without any computation.

Superspace and superfields will be our building blocks in order to derive the su-
persymmetric dynamics of fields and their interactions.

In the case of N = 1, D = 4 a point in superspace is parametrized by 4 bosonic
coordinates (commuting coordinates) and 4 fermionic (anticommuting coordinates)
and it is denoted by

zM = (xm, θα, θ̄α̇), (2.91)

with M the superindex which stands either for bosonic or fermionic indices, and we
introduced a set of constant Grassmann numbers which form a right-handed Weyl
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spinor θα and its complex conjugate left-handed Weyl spinor θ̄α̇. These coordinates
anticommute with everything fermionic and commute with everything bosonic

{θα, θβ} = 0, (2.92)

{θ̄α̇, θ̄β̇} = 0, (2.93)

{θα, θ̄β̇} = 0, (2.94)

θαθβθγ = 0. (2.95)

Therefore we can resume that superspace coordinates obey the following property

zMzN = zNzM(−1)MN . (2.96)

where we follow the rule that M,N are 0 for bosonic coordinates and 1 for fermionic
coordinates.

Supersymmetry transformations on (x, θ, θ̄) read as follows

x′m = Λm
nx

n + am + iθσmϵ̄− iϵσmθ̄, (2.97)

θα = nα
βθβ + ϵα, (2.98)

θ̄α̇ = n̄α̇
β̇ θ̄β̇ + ϵ̄α̇, (2.99)

where ϵα are constant spinorial parameters, Λn
m are Lorentz generators in vectorial

representation while nα
β are Lorentz generators in spinorial representation which are

related by the following formula

Λ−1
m

nσm
αα̇ = nα

βσn
ββ̇n̄α̇

β̇. (2.100)

To complete our development of superspace let us define how derivation and in-
tegration operators act on Grassmann numbers.

Definition 13. Derivation in superspace is defined as

∂α ≡ ∂

∂θα
, ∂̄α̇ ≡ ∂

∂θ̄α̇
, (2.101)

and
∂αθ

β = δβα, ∂̄α̇θ̄
β̇ = δβ̇α̇, ∂αθ̄β̇ = 0, ∂̄α̇θβ = 0. (2.102)

where ϵαβ is defined in (2.5).

Definition 14. Integration instead is defined as∫
dθ = 0,

∫
dθθ = 1, (2.103)

so for a generic function f(θ) = f0 + θf1 we can have the following results∫
dθf(θ) = f1,

∫
dθδ(θ)f(θ) = f0, (2.104)

which means that integration in Grassmann coordinates is equivalent to a derivation.
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If we introduce also

d2θ ≡ 1

2
dθ1dθ2, d2θ̄ ≡ 1

2
dθ̄2̇dθ̄1̇, (2.105)

then we have other properties as∫
d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 1,

∫
d2θd2θ̄ θθθ̄θ̄ = 1, (2.106)∫

d2θ =
1

4
ϵαβ∂α∂β,

∫
d2θ̄ = −1

4
ϵα̇β̇∂̄α̇∂̄β̇. (2.107)

2.4 N = 1 Superfields

Now we introduce supersymmetric objects which live in superspace called superfields.
They are functions of the superspace coordinates and are composed of many ordinary
bosonic fields.

The most general scalar superfield we can write is

Y (x, θ, θ̄) = f(x) + θψ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) (2.108)

+ θσmθ̄vm(x) + θθθ̄λ̄(x) + θ̄θ̄θρ(x) + θθθ̄θ̄d(x),

where we made a taylor-like expansion in θ, θ̄ coordinates and we stopped at the
second order in θ and θ̄ because θαθβθγ = 0.

In what follows, it will be very useful to consider the differential form of the super-
charges Qα, Q̄α̇. So let us first define infinitesimal translations of a scalar superfield
in superspace as

δϵ,ϵ̄Y (x, θ, θ̄) ≡ Y (x+ δx; θ + δθ, θ̄ + δθ̄)− Y (x, θ, θ̄) (2.109)

≡ iϵαQαY + iϵ̄α̇Q̄
α̇Y. (2.110)

and taylor-expand the right-hand side of (2.109) which becomes

δϵ,ϵ̄Y (x, θ, θ̄) = Y (x, θ, θ̄) + i(θσmϵ̄− ϵσmϵ̄)∂mY (x, θ, θ̄)

+ ϵα∂αY (x, θ, θ̄) + ϵ̄α̇∂̄α̇Y (x, θ, θ̄)− Y (x, θ, θ̄)

δϵ,ϵ̄Y (x, θ, θ̄) = [ϵα∂α + ϵ̄α̇∂̄α̇ + i(θσmϵ̄− ϵσmθ̄)∂m]Y (x, θ, θ̄), (2.111)

and thus we get the following expression for the Qα, Q̄α̇ generators in the differential
form

Qα = −i∂α − σm
αβ̇
θ̄β̇∂m, (2.112)

Q̄α̇ = +i∂̄α̇ + θβσm
βα̇∂m. (2.113)

We can introduce also the useful covariant derivatives Dα, D̄α̇ as

Dα = ∂α + iσm
αβ̇
θ̄β̇∂m, (2.114)

D̄α̇ = ∂̄α̇ + iθβσm
βα̇∂m. (2.115)
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These derivatives anticommute with the supersymmetric generators Qα, Q̄α̇ and sat-
isfy the following relations

{Dα, D̄β̇} = 2iσm
αβ̇
∂m = −2σm

αβ̇
Pm, (2.116)

{Dα, Dβ} = 0, (2.117)

{D̄α̇, D̄β̇} = 0, (2.118)

which imply the following
δϵ,ϵ̄(DαY ) = Dα(δϵ,ϵ̄Y ). (2.119)

This means that DαY is a superfield if Y is a superfield.

2.4.1 Fields and irreducible representations of supersymme-
try

In general, superfields correspond to reducible representations of supersymmetry. To
relate a superfield to an irreducible supersymmetry representation we need to impose
on the superfield certain constraints. We will now show what kind of superfield
corresponds to the chiral supermultiplet of (2.79). To start with, let us first relate
the chiral supermultiplet to the corresponding Matter fields multiplet.

In N = 1 case, the starting point is the commutation relation between one anti-
chiral Weyl supercharge and the complex scalar field ϕ(x)

[Q̄α̇, ϕ(x)] = 0. (2.120)

The complex scalar field plays the analogous role of the Clifford vacuum in irreducible
representations. As for the construction of supermultiplets, if we act on this field with
Qα we obtain a new field on the same representation.

The new fermionic field of the Matter representation can be defined as

[Qα, ϕ(x)] ≡ ψα(x) (2.121)

Reacting again with Qα on the ψ spinor we can in principle have a new bosonic field

{Qα, ψβ(x)} = Fαβ(x), (2.122)

{Q̄α̇, ψβ(x)} = Xα̇β(x). (2.123)

It can be shown that Xα̇β is not a new field but just a time derivative of the scalar
field ϕ, but if we apply the Jacobi identity on the (ϕ,Q, Q̄) then we have

{Qα, [Qβ, ϕ]} − {Qβ, [ϕ,Qα]} = 0 → Fαβ + Fβα = 0, (2.124)

where the field Fαβ is obviously antisymmetric (on α↔ β) and this implies that

Fαβ(x) = ϵαβF (x), (2.125)
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where F is a new scalar field.
If we repeat the previous steps acting with Q and Q̄ on this new field, in principle

we can write

[Qα, F ] = λα,

[Q̄α̇, F ] = X̄α̇.

This time, after applying the Jacobi identity, it can be proven that λα is a vanishing
and X̄α̇ is proportional to the spacetime derivative of the field ψ, so no new fields
are added. We have to stop here and the final multiplet of fields is then given by the
following multiplet

(ϕ, ψ, F ). (2.126)

This is also called the Wess-Zumino multiplet and it is the field counterpart of the
chiral multiplet of states. Notice that the equality of the number of fermionic and
bosonic states for a given representation still holds: we are now off-shell, and the
spinor ψα has four degrees of freedom; this is the same number of bosonic degrees
of freedom, two coming from the complex scalar field ϕ and two from the complex
scalar field F. Going on-shell instead, the 4 fermionic degrees of freedom reduce to
just 2 propagating degrees of freedom, due to Dirac equation. The reduction for the
bosonic degrees of freedom, comes out by the fact that on the mass-shell, F field is
an auxiliary field. In conclusion, there remain 2B + 2F on-shell conditions, related
to those of the massless state representation.

This strategy can be generalized in the construction of other kind of field multi-
plets, like for example vector multiplet etc.

2.4.2 Chiral superfields

The chiral superfield can be obtained by imposing on the general superfield expression
(2.108) the following constraint

D̄α̇Φ = 0, (2.127)

while an anti-chiral Φ̄ satisfies
DαΦ̄ = 0. (2.128)

Let us introduce a useful set of coordinates, denoting the so called chiral superspace
parametrized by

ym = xm + iθσmθ̄. (2.129)

Coordinates transform under supersymmetry as

δθα = ϵα, (2.130)

δym = 2iθσmϵ̄. (2.131)

In this reduced superspace the chiral superfield Φ can be expanded in the following
form

Φ(y, θ) = ϕ(y) +
√
2θψ(y)− θθF (y). (2.132)
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Following (2.110) the chiral (or anti-chiral) superfield transforms under supersym-
metric transformations as

δϵ,ϵ̄Φ(y, θ) = (iϵQ+ iϵ̄Q̄)Φ(y, θ). (2.133)

The differential operators Qα, Q̄α̇ in the (ym, θα, θ̄α̇) coordinate system result in

Qα = −i∂α, (2.134)

Q̄α̇ = i∂̄α̇ + 2θασm
αα̇

∂

∂ym
. (2.135)

Plugging these equations in (2.133) one gets

δϵ,ϵ̄Φ(y, θ) =

(
ϵα∂α + 2iθασm

αβ̇
ϵ̄β̇

∂

∂ym

)
Φ(y, θ), (2.136)

=
√
2ϵψ − 2ϵθF + 2iθσmϵ̄

(
∂

∂ym
ϕ+

√
2θ

∂

∂ym
ψ

)
,

=
√
2ϵψ +

√
2θ

(
−
√
2ϵF +

√
2iσmϵ̄

∂

∂ym
ϕ

)
− θθ

(
−i

√
2ϵ̄σ̄m ∂

∂ym
ψ

)
.

The final expression for the supersymmetry variation of the different field components
of the chiral superfield Φ reads

δϕ =
√
2ϵψ, (2.137)

δψα =
√
2i(σmϵ̄)α∂mϕ−

√
2ϵαF, (2.138)

δF = i
√
2∂mψσ

mϵ̄. (2.139)

We can show for consistency that

D̄α̇θβ = D̄α̇y
m = 0, Dαθ̄β̇ = Dαȳ

m = 0. (2.140)

as wanted.
In the chiral basis, the expressions for the covariant derivatives are the following

Dα = ∂α + 2iσm
α ˙beta

θ̄β̇∂m, (2.141)

D̄α̇ = ∂̄α̇. (2.142)

Taylor-expanding (2.132) around xm we get

Φ(x, θ, θ̄) = ϕ(x)+
√
2θψ(x)+iθσmθ̄∂mϕ(x)−θθF (x)−

i√
2
θθ∂mψ(x)σ

mθ̄−1

4
θθθ̄θ̄�ϕ(x),

(2.143)
and analogously for Φ̄(x, θ, θ̄) we have

Φ̄(x, θ, θ̄) = ϕ̄(x)+
√
2θ̄ψ̄(x)−iθσmθ̄∂mϕ̄(x)−θ̄θ̄F̄ (x)+

i√
2
θ̄θ̄θσm∂mψ̄(x)−

1

4
θθθ̄θ̄�ϕ̄(x).

(2.144)
This chiral superfield has the degrees of freedom of the chiral multiplet of fields (2.126)
and on-shell it corresponds to a N = 1 multiplet of states, carrying an irreducible
representation of the N = 1 supersymmetry algebra.
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2.4.3 Real Superfields

Real supermultiplets containing the bosonic vector field can be described by real
superfields, defined by imposing the following constraint

V = V , (2.145)

on the generic superfield (2.108). This constraint leads to the following expression
for V

V (x, θ, θ̄) = C(x) + iθχ(x)− iθ̄χ̄(x) + θσmθ̄vm +
i

2
θθ(M(x) + iN(x))(2.146)

− 1

2
θ̄θ̄(M(x)− iN(x)) + iθθθ̄

(
λ̄(x) +

i

2
σ̄m∂mχ(x)

)
+

− iθ̄θ̄θ

(
λ(x)− i

2
σm∂mχ̄(x)

)
+

1

2
θθθ̄θ̄

(
D(x)− 1

2
∂2C(x)

)
,

with eight fermionic fields (like χ, χ̄, λ, λ̄) and eight bosonic fields (C,M,N,D, vm).
We also would like to introduce the supersymmetric extension of the analogous

gauge transformation of gauge theory in QFT, because it will reduce the number of
the on-shell degrees of freedom of the superfield V to 2F + 2B (those for a massless(
1
2
, 1
)
vector representation of supersymmetry).

It can be shown that under the transformation

V → V + Φ+ Φ̄, (2.147)

where Φ is the chiral superfield (2.132), the vector field vm in V transforms as an
(abelian) gauge field

vm → vm + ∂m(2Im(ϕ)). (2.148)

We note that Φ + Φ̄ is a real superfield. Under (2.147) the component fields of V
transform as

C → C + 2Reϕ, (2.149)

χ → χ− i
√
2ψ, (2.150)

M → M − 2ImF, (2.151)

N → N + 2ReF, (2.152)

D → D, (2.153)

λ → λ, (2.154)

vm → vm + 2∂m(Imϕ). (2.155)

One can see that properly fixing the gauge, namely by choosing field components
of Φ to be

Reϕ = −C
2
, ψ = − i√

2
χ, ReF = −N

2
, ImF =

M

2
, (2.156)



30 CHAPTER 2. RIGID SUPERSYMMETRY IN D = 4 DIMENSIONS

one can gauge away C,M,N, χ. This choice is called the Wess-Zumino gauge, defined
as a gauge where no restrictions are putted on vm, to leave the freedom of ordinary
gauge transformations, in which the real superfield can be written as

VWZ(x, θ, θ̄) = θσmθ̄vm(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) (2.157)

Therefore, taking into account the gauge transformations of vm (2.155), we end-up
with only 4B + 4F degrees of freeedom off-shell. As we shall see, D will turn out to
be an auxiliary field; therefore, by imposing the equations of motion for D, λ and the
vector vm, one will end up with 2B+2F degrees of freedom on-shell, the right number
of a massless vector supermultiplet.

Let us end this section with two important comments. The first comment is that

V 2
WZ =

1

2
θθθ̄θ̄vmv

m, (2.158)

because each term in the expansion of VWZ contains at least one θ, and this implies

V n
WZ = 0 n ≥ 3, (2.159)

Second, we can notice that in the Wess-Zumino gauge, the real superfield is not
automatically supersymmetric, because acting with a supersymmetry transformation
one obtains a new superfield which is not in the WZ gauge. Hence one has to do a
compensating supersymmetric gauge transformation, by choosing certain Φ, to come
back to the WZ gauge.
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2.5 Supersymmetric actions

In this section we will employ the concepts of superfields and superspace in N = 1,
D = 4 superspace, developed in the previous sections, and show how to construct
rigid supersymmetric actions. We will construct in particular the supersymmetric
matter Lagrangian and pure superYang-Mills.

But first we will prove a fundamental property of superspace and superfield for-
malism.

Theorem 2.5.1. Superspace actions are supersymmetric invariant if they are func-
tionals of superfields or their derivatives in superspace.

Let us begin demonstration by noting that the measure is invariant under super-
translations ∫

dθθ =

∫
d(θ + ζ)(θ + ζ) = 1, (2.160)

therefore

δϵ,ϵ̄

∫
d4xd2θd2θ̄Y (x, θ, θ̄) =

∫
d4xd2θd2θ̄δϵ,ϵ̄Y (x, θ, θ̄). (2.161)

Recalling (2.111)

δϵ,ϵ̄Y = ϵα∂αY + ϵ̄α̇∂̄
α̇Y + ∂m[−i(ϵσmθ̄ − θσmϵ̄)Y ],

we see that only its last term is not trivial under integration on d2θd2θ̄, however it
does not contribute to the variation of the action because it is a total space-time
derivative. In other words, the integrand of (2.161), is supersymmetric invariant
under supersymmetry transformations, namely

δϵ,ϵ̄

∫
d4xd2θd2θ̄Y (x, θ, θ̄) = 0. (2.162)

�
Therefore, supersymmetric invariant actions are constructed by integrating in su-

perspace a certain superfield which must have the property that after we integrate
Grassmann coordinates, it gives rise to a real Lagrangian density of dimension four,
transforming as a scalar density under Poincaré transformations like the following
example

S =

∫
d4xd2θd2θ̄A(x, θ, θ̄) =

∫
d4xL(ϕ(x), ψ(x), Am(x), ...). (2.163)

2.5.1 N = 1 Matter actions

To contruct the simplest supersymmetric action (the so called Wess-Zumino model),
let us take the product of a chiral superfield Φ with its complex conjugate anti-chiral
superfield Φ̄

Lkin
matter =

∫
d2θd2θ̄Φ̄Φ. (2.164)

This integral satisfies the following properties
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(a) It is supersymmetric invariant since it is built of superfields in superspace.

(b) It is real because (θ2θ̄2)† = θ2θ̄2 and of course Φ̄Φ is a real term.

(c) It has the right physical dimension ([M]=4) for a renormalizable theory, indeed
ϕ has dimension one in four dimension space-time, then [θ] = −1/2, as can
be deduced by comparing dimensions of ϕ(x) and θψ(x), with ψ of dimension
3
2
. We must have then [dθ] = +1/2 because the differential is equivalent to a

derivative for Grassmann variables. Finally, since [Φ̄Φ] = 2, the θ2θ̄2 component
of ΦΦ̄ has dimension [M]=4.

Lagrangian (2.164) can be expanded in component fields in (x, θ, θ̄) coordinates
as

L =

∫
d2θd2θ̄Φ̄Φ = ∂mϕ̄∂

mϕ+
i

2
(∂mψσ

mψ̄ − ψσm∂mψ̄) + F̄F + ... (2.165)

where dots stand for total derivative terms which do not contribute to the action.
This is the kinetic matter Lagrangian describing the degrees of freedom of a free
massless chiral supermultiplet.

The F, F̄ are auxiliary fields, with no propagating degrees of freedom, as it can be
noticed by the absence of any derivative in F . Integrating them out (their equations
of motion are F = 0, F̄ = 0) one gets supersymmetry which only closes on-shell.

To find equations of motion from the action (2.164) we cannot perform directly
the variation with respect to Φ or Φ̄, because these superfields are constrained. To
take into account the chiral condition (2.127) (or the anti-chiral (2.128)), we must
rewrite (2.164) in the equivalent form∫

d2θd2θ̄Φ̄Φ = −1

4

∫
d2θΦ̄D2Φ, (2.166)

by using (2.128) and the relations (2.107) up to total space-time derivative∫
d2θ = −1

4
ϵα̇β̇Dα̇Dβ̇. (2.167)

Now we can vary the action with respect to Φ̄ getting

D2Φ = 0, (2.168)

which gives the right equations of motion of massless fields ϕ, ψ, F

�ϕ = 0, (2.169)

iσm∂mψ = 0, (2.170)

F = 0. (2.171)

We can generalize this matter Lagrangian by introducing a function of Φ and Φ̄
as ∫

d2θd2θ̄K(Φ̄,Φ). (2.172)

The function K(Φ, Φ̄) should satisfy the following properties
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(a) it should be a superfield, to ensure supersymmetry invariance of the integral.

(b) It should be a real and scalar function.

The most general expression of K(Φ, Φ̄) compatible with all these properties is

K(Φ, Φ̄) =
∞∑

m,n=1

cmnΦ̄
mΦn, (2.173)

where the reality condition is ensured by the relation cmn = c∗nm.
All coefficients cmn with either m or n greater than one have negative mass di-

mension, because chiral superfields have mass dimension equal to one. c11 instead
is dimensionless. In general, a contribution like (2.172) will describe a supersym-
metric invariant theory but non-renormalizable. Indeed, the coefficients cmn will be
proportional to a scale parameter Λ as follows

cmn ∼ Λ2−(m+n). (2.174)

The function K(Φ, Φ̄), called Kahler potential, is related to a complex manifold,
called Kahler manifold, whose complex coordinates are the chiral and antichiral su-
perfields Φi, Φ̄j, while the Kahler metric is defined as the second derivative term

gij =
∂2K(Φ, Φ̄)

∂Φi∂Φ̄j̄

. (2.175)

Eq(2.165) is constructed with kinetic-like terms between fields of the chiral super-
multiplet. In order to describe also potential-like terms between component fields, we
will integrate in chiral superspace a generic chiral superfield Σ(Φ)∫

d4yd2θΣ(Φ). (2.176)

Eq.(2.176) is more general than (2.172) in the following sense. Any integral in su-
perspace can be rewritten as an integral in chiral superspace, indeed for any superfield
Y (x, θ, θ̄) we can find a covariant derivative∫

d4xd2θd2θ̄Y =

∫
d4xd2θD̄2Y, (2.177)

due to the relation (2.167). Furthermore D̄2Y is manifestly chiral since D̄3 = 0. The
converse however is not true in general, indeed if we consider the integral∫

d4xd2θΦn, (2.178)

this cannot be converted into an integral in full superspace because there are no
present any covariant derivatives like before.
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The chiral superfield Σ(Φ) will be substituted from the holomorphic superfield
W (Φ), called superpotential, defined by

W (Φ) =
∞∑
n=1

anΦ
n. (2.179)

Potential-like terms are present in the following Lagrangian

Lint =

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄), (2.180)

where the second term is added to ensure reality condition.
To preserve renormalizability, the superpotential should have at most the dimen-

sion [M ] = 3 or equivalently to be at most cubic in Φ.
To obtain the expansion of Lint in component fields we have to make the Taylor-

expansion of the superpotential in powers of θ around Φ|θ=0 = ϕ

W (Φ) = W (ϕ) +
√
2
∂W

∂ϕ
θψ − θθ

(
∂W

∂ψ
F +

1

2

∂2W

∂ϕ∂ϕ
ψψ

)
. (2.181)

Thus the most general chiral matter superfield Lagrangian with kinetic-like and
potential-like terms has the following form

Lmatter =

∫
d2θd2θ̄K(Φ̄,Φ) +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄). (2.182)

For renormalizable theories the Kähler potential is just Φ̄Φ and the superpotential is
at most cubic, so in component fields we have

Lmatter = ∂mϕ̄∂
mϕ+

i

2
(∂mψσ

mψ̄ − ψσm∂mψ̄) + F̄F − ∂W

∂ϕ
F − 1

2

∂2W

∂ϕ∂ϕ
ψψ +

1

2

∂2W̄

∂ϕ̄∂ϕ̄
.

(2.183)
The auxiliary fields F and F̄ can be integrated out by using their equations of

motion

F̄ =
∂W

∂ϕ
, F =

∂W̄

∂ϕ̄
, (2.184)

and the remaining on-shell Lagrangian is

Lon−shell
matter = ∂m(ϕ̄)∂

mϕ+
i

2
(∂mψσ

mψ̄−ψσm∂mψ̄)−|∂W
∂ϕ

|2− 1

2

∂2W

∂ϕ∂ϕ
ψψ+

1

2

∂2W̄

∂ϕ̄∂ϕ̄
.

(2.185)
We can define the scalar potential as

V (ϕ, ϕ̄) = |∂W
∂ϕ

|2 = F̄F. (2.186)
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Lagrangian (2.164) can be generalized by introducing a set of chiral superfields Φi

with i=1,2,...,n as follows

Lmatter =

∫
d2θd2θ̄K(Φ̄i,Φ

i) +

∫
d2θW (Φi) +

∫
d2θ̄W̄ (Φ̄i), (2.187)

and for renormalizable theories we have

K(Φi, Φ̄i) = Φ̄iΦ
i, W (Φi) = aiΦ

i +
1

2
mijΦ

iΦj +
1

3
gijkΦ

iΦjΦk. (2.188)

In this case the scalar potential reads

V (ϕi, ϕ̄i) =
n∑

i=1

|∂W
∂ϕi

|2 = F̄iF
i, (2.189)

where

F̄i =
∂W

∂ϕi
, F i =

∂W̄

∂ϕ̄i

. (2.190)

We also may generalize our formalism by dealing with effective supersymmetry
field theories. We then allow generalizations of Kähler potential and superpotential
and these models are called supersymmetric σ-models. They reveal deep relation be-
tween supersymmetry and geometry because as we mentioned above K(Φ, Φ̄) defines
a metric of a complex manifold parametrized by Φi, Φ̄j̄.

2.5.2 N = 1 SuperYang-Mills in D = 4

Abelian case

Let us now consider a supersymmetric invariant action that describe the dynamics of
a real (vector) superfield, as a generalisation of the known Yang-Mills theory.

We begin from the abelian case. The first step is to define a superfield which
contains the field strength when expanded in θ coordinates to this aim we write

Wα = −1

4
D̄D̄DαV, W̄α̇ = −1

4
DDD̄α̇V, (2.191)

Wα is a chiral superfield due to the property D̄3 = 0 and it is invariant under the
gauge transformation (2.147), indeed

Wα → W ′
α = Wα − 1

4
D̄β̇D̄

β̇Dα(Φ + Φ̄) = Wα +
1

4
D̄β̇D̄β̇DαΦ, (2.192)

= Wα +
1

4
D̄β̇{D̄β̇, Dα}Φ = Wα +

i

2
σm
αβ̇
∂mD̄

β̇Φ = Wα, (2.193)

where we used D̄β̇D̄
β̇ = −D̄β̇D̄β̇ in (2.192) and the condition D̄β̇Φ = 0 in (2.193).
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To expand in component fields (2.191) it is convenient to work in the Wess-Zumino
gauge (2.156), thus the real superfield V in y-coordinates (2.129) is

VWZ(y, θ, θ̄) = θσmθ̄vm(y)+ iθθθ̄λ̄(y)− iθ̄θ̄θλ(y)+
1

2
θθθ̄θ̄(D(y)− i∂mvm(y)), (2.194)

which when expanded in (x, θ, θ̄) components reduces to the expression (2.157). The
computation of covariant derivatives on the real superfield is straightforward and,
helped by the following identity

σnσ̄m − ηmn = 2σmn, (2.195)

we obtained

DαVWZ = σm
αβ̄ θ̄

β̇vm + 2iθαθ̄λ̄− iθ̄θ̄λα + θαθ̄θ̄D + 2i(σmn)βαθβ θ̄θ̄∂mvn + θθθ̄θ̄σm
αβ̇
∂mλ̄

β̇.

(2.196)
By noting that

D̄D̄θθ = −4, (2.197)

we finally obtain the expansion of the Wα superfield

Wα = −iλα + θαD + i(σmnθ)αFmn + θθ(σm∂mλ̄)α. (2.198)

It is invariant under gauge transformations and also contains the Maxwell tensor
Fmn = ∂mvn − ∂nvm among its components. It is also called gaugino superfield be-
cause it is an instance of a chiral superfield which starts with a Weyl fermion, the
superpartner of the vm(x) gauge field. We focus now in the construction of a La-
grangian that is gauge invariant. A first attempt may be the term∫

d2θWαWα. (2.199)

Substituting (2.198) into (2.199) and retaining only θ2 terms we have∫
d2θWαWα = −2iλσm∂mλ̄+D2 − 1

2
(σmn)αβ(σrs)αβFmnFrs, (2.200)

where (σmn)βα = trσmn = 0.
To obtain the familiar Maxwell term in the supersymmetric Yang-Mills action, let

us use the following identity

(σmn)αβ(σrs)αβ =
1

2
(gmrgns − gmsgnr)− i

2
ϵmnrs, (2.201)

(with ϵ0123 = +1) then we have∫
d2θWαWα = −1

2
FmnF

mn − 2iλσm∂mλ̄+D2 +
i

4
ϵmnrsFmnFrs. (2.202)
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and by adding its hermitian conjugate the whole Lagrangian become real, as follows

Lgauge =

∫
d2θWαWα +

∫
d2θ̄W̄ α̇W̄α̇ = −FmnF

mn − 4iλσm∂mλ̄+ 2D2. (2.203)

We used the identity χσmψ̄ = −ψ̄σ̄mχ. Notice that the last term in (2.202) is a
total derivative so (2.202) is actually real modulo a total derivative. This is the
supersymmetric version of the Abelian gauge Lagrangian.

The Lagrangian (2.203) can be re-written as an integral in full superspace∫
d2θWαWα =

∫
d2θd2θ̄DαVWα. (2.204)

Non Abelian case

In the non-abelian case we deal with a non abelian gauge group G and therefore we
must promote the vector superfield to

V = VaT
a a = 1, ..., dimG, (2.205)

where T a are hermitian generators and Va are vector superfields. Moreover, we must
define the finite version of the gauge transformation (2.147) as

eV → eiΛ̄eV e−iΛ, (2.206)

which reduces to (2.147) at first order in the gauge parameter Λ, upon the identifi-
cation of Φ = −iΛ. Therefore the gaugino superfield can be generalized as follows

Wα = −1

4
D̄D̄(e−VDαe

V ), W̄α̇ =
1

4
DD(eV D̄α̇e

−V ), (2.207)

which can be reduced to (2.191) to first order in V. We can show that under the finite
gauge transformations (2.206), Wα transforms convariantly

Wα → W ′
α = −1

4
D̄D̄

[
eiΛe−V e−iΛ̄Dα

(
eiΛ̄eV e−iΛ

)]
, (2.208)

= −1

4
D̄D̄[eiΛe−V ((Dαe

V )e−iΛ + eVDαe
−iΛ)], (2.209)

= −1

4
eiΛD̄D̄(e−VDαe

V )e−iΛ = eiΛWαe
−iΛ. (2.210)

In (2.208) we used the identities D̄α̇e
−iΛ = 0, Dαe

iΛ̄ = 0 and also D̄D̄Dαe
−iΛ = 0

because Λ is a chiral superfield. We have already noted that in the Wess-Zumino gauge
each element of VWZ is first order in θ coordinate and hence we have eV = 1+V + 1

2
V 2

and
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Wα = −1

4
D̄D̄

[(
1− V +

1

2
V 2

)
Dα

(
1 + V +

1

2
V 2

)]
,

= −1

4
D̄D̄DαV − 1

8
D̄D̄DαV

2 +
1

4
D̄D̄V DαV,

= −1

4
D̄D̄DαV − 1

8
D̄D̄V DαV − 1

8
D̄D̄DαV V +

1

4
D̄D̄V DαV,

= −1

4
D̄D̄DαV +

1

8
D̄D̄[V,DαV ].

The second term is new, induced by the non-abelian case, which leads to

1

8
D̄D̄[V,DαV ] =

1

2
(σmnθ)α[vm, vn]−

i

2
θθσm

αβ̇

[
vm, λ̄

β̇
]
. (2.211)

Finally, the non-abelian case of the generalized supersymmetry field strength may be
written as

Wα = −iλ(y) + θαD(y) + i(σmnθ)αFmn + θθ(σmDmλ̄(y))α, (2.212)

where now also the ordinary field strength and covariant derivative acquire non-
Abelian contributions

Fmn = ∂mvn − ∂nvm − i

2
[vm, vn], Dm = ∂m − i

2
[vm, ]. (2.213)

It is convenient to explicite the coupling constant g like

V → 2gV ⇔ vm → 2gvm, λ→ 2gλ, D → 2gD, (2.214)

which implies

Fmn = ∂mvn − ∂nvm − ig[vm, vn], Dm = ∂m − ig[vm, ]. (2.215)

The final result of the non abelian case of the super-YangMills Lagrangian reads

LSYM =
1

32π
Im

(
τ

∫
d2θTrWαWα

)
,

= Tr

[
−1

4
FmnF

mn − iλσmDmλ̄+
1

2
D2

]
+
θYM

32π2
g2TrFmnF̃

mn,

where we introduced the complexified gauge coupling

τ =
θYM

2π
+

4πi

g2
, (2.216)

and the dual field strength

F̃mn =
1

2
ϵmnrsFrs, (2.217)

while the generators are normalized as Tr[TαT β] = δαβ. We now turn to the consid-
eration of supergravity.



Chapter 3

N = 1 Supergravity in D = 4
dimensions

3.1 Introduction

Supergravity theories are the local supersymmetric theories whose parameter depends
on space-time coordinates. A local supersymmetric transformation has the following
schematic form

δϵB = ϵα(x)Fα, (3.1)

δϵFα = γmα
β ϵ̄β(x)∂mB, (3.2)

[δϵ1 , δϵ2 ]B = 2ϵ2γ
mϵ̄1(x)∂mB, (3.3)

[δϵ1, δϵ2]F = 2ϵ2γ
mϵ̄1(x)∂mF. (3.4)

Equations (3.3)-(3.4) tell us that the infinitesimal parameter (2ϵ2γ
mϵ̄1)(x) is associ-

ated to operators which act as local diffeomorphism transformations. Hence any local
supersymmetric theory should be diffeomorphism invariant and thus include gravity.
The simplest gravity theory is the Einstein’s theory of general relativity. Our aim in
this chapter will be the construction of a local supersymmetry generalisation of the
ordinary general relativity.

Supergravities are basically built of a graviton multiplet and, in addition may
also contain other matter multiplets of the underlying rigid supersymmetry algebra.
The graviton multiplet consists of the vielbein em

a(x) describing the graviton and a
number N of vector-spinor fields χi

m
α(x) with i = 1, ...,N , called Rarita-Schwinger

fields or gravitinos, and their lower spin supersymmetric partners. In the basic case
of N = 1 supergravity, in D = 4 space-time dimensions, the graviton multiplet (2.82)
consists entirely of the graviton and only one Majorana spinor gravitino. In all other
cases, both N ≥ 2 in D = 4 dimensions and N ≥ 1 for D ≥ 5, additional fields are
required in the graviton multiplet.

Supergravity theories exist for space-time dimensions D ≤ 11. For D = 4, theories
exist upon N = 8. Beyond these limits conventional local supersymmetry fails to
underlie a consistent interacting theory.
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In this chapter we will consider the minimal N = 1 supergravity in four space-
time dimensions, minimal in the sense that it is the smallest possible supersymmetric
extension of Einstein’s theory of general relativity. We will discuss the form of the
action and supersymmetry transformation rules.

We are interested in considering supergravity theories for several reasons. One is
that supergravities with extended N > 1 supersymmetry may unify gauge interac-
tions with gravity.

Another reason is that many of the ultraviolet divergences expected in a field
theory containing gravity are known to cancel in the maximal N = 8 theory, but it
still has to be proved that it is ultraviolet finite to all orders in perturbation theory.

Finally, 10-dimensional supergravity theories, such as the Type IIA and Type
IIB theories, are related to the superstring theories. Supergravity appears as the
low-energy limit of superstring theory. This means that the dynamics of the massless
modes of the superstring are described by supergravity.

3.2 General Relativity tools

Some geometrical objects, useful in building general relativity, are required to be in-
troduced as a basic blocks of the formalism we will use. The metric of a curved
space-time is denoted by the symmetric tensor gmn that satisfies the following covari-
ant constancy condition

∇lgmn = ∂lgmn − Γr
lngrm − Γr

lmgrn = 0. (3.5)

Given a freely falling coordinate system ξα and any other coordinate system xm, we
can write down, according to the Principle of Equivalence, the equation of motion of
a particle moving freely under the influence of purely gravitational force

0 =
d2xl

dτ 2
+ Γl

mn
dxm

dτ

dxn

dτ
(3.6)

where Γr
lm is called the affine connection, or Christoffel symbol, defined as

Γmn
l =

∂xl

∂ξα
∂2ξα

∂xm∂xn
. (3.7)

where τ is the proper time of the special relativity. ∇m is the covariant derivative
defined by

∇mVn = ∂mVn − Γl
mnVl. (3.8)

Vectors like V m transform as

V ′m =
∂x′m

∂xn
V n. (3.9)

It can be shown in [13] that (3.8) transforms as a tensor under diffeomorphisms
x→ x′(x), namely

∇′
mV

′
n =

∂xs

∂x′m
∂xr

∂x′n
∇sVr. (3.10)
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The Christoffel symbol, alternatively from (3.7), can also be related to the metric
and its derivative, by permuting indices (lmn) in (3.5) and subtracting the resulting
equations

Γl
mn =

1

2
glr(∂mgnr + ∂ngmr − ∂rgmn) +K l

mn. (3.11)

K l
mn is the so-called contorsion, defined in terms of the torsion field T l

mn which in
general is not zero

K l
mn =

1

2
(Tn

l
m + Tm

l
n + T l

mn). (3.12)

General relativity however is based on geometry with zero torsion. In supergravity
theory instead the torsion is nontrivial, as we will see below.

Another object that defines the geometry of a curved space is the Riemann tensor,
constructed in function of the Christoffel symbols

Rmn
r
s = 2∂[mΓ

r
n]s + 2Γr

[m|lΓ
l
|n], (3.13)

where in the second term A[m|nB|s] =
1
2
(AmnBs−AsnBm). By construction, it can be

proved that the Riemann tensor transforms covariantly as a tensor field.
We can define from it the Ricci tensor, by contracting two indices as follows

Rmn = Rrm
r
n. (3.14)

We can also define the Ricci scalar like

R = gmnRmn. (3.15)

Finally the Einstein-Hilbert action, given in [13] has the following form

IG ≡ − 1

16πG

∫ √
g(x)R(x)d4x, (3.16)

where g(x) denotes the determinant of the metric (g = detgmn).
Varying the action with respect to gmn

δIG =
1

16πG

∫
√
g[Rmn − 1

2
gmnR]δgmnd

4x, (3.17)

we obtain the vacuum Einstein equations

Rmn −
1

2
gmnR = 0. (3.18)

3.3 Vielbein formalism

As we told in the section 3.1, the supergravity multiplet is made also of the gravitino
3
2
spinor-field.
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In order to deal with spinors (like the gravitino) in a curved space, it is necessary
to introduce a more appropriate formalism to formulate supergravity models because
the spinors transform under a representation of the Lorentz group but they behaves
as scalars under diffeomorphisms. We can rewrite all terms in the vielbein formalism
which is based on the idea to search for a locally inertial basis, in which one can apply
the usual Lorentz transformations on spinors.

The vielbein is a matrix em
a which relates different local reference frames. A nat-

ural curved frame in each point of the curved space is associated with the differential
dxm. Using em

a we get a different frame

ea(x) = em
a(x)dxm (3.19)

which is orthogonal in the sense that

em
aen

bgmn = ηab. (3.20)

where ηab = diag(1,−1,−1,−1).
When we change the local coordinates from x to x′(x), the vielbein transforms

according to

e′m
a(x′) =

∂xn

∂x′m
en

a(x), (3.21)

while eq.(3.20) remains invariant under the local Lorentz transformations

e′m
a(x) = em

b(x)Λb
a(x). (3.22)

The fundamental relation between the curved spacetime metric and the vielbein

gmn(x) = em
a(x)en

b(x)ηab, (3.23)

states that the vielbein transforms lower Lorentz indices a, b to lower indices in the
curved coordinates m,n.

The vielbein acts on Lorentz vectors in the following way

Xm = em
aXa, (3.24)

while the inverse vielbein acts on Einstein vectors like

Xa = ea
mXm, (3.25)

and on the contravariant vectors

Xm = Xaea
m, (3.26)

Xa = Xmem
a. (3.27)

Therefore, using the constant γ-matrices we can also define the matrix

γm(x) = em
a(x)γa, (3.28)
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which depend on xm and satisfy the following anticommutations relations

{γm(x), γn(x)} = 2gmn(x). (3.29)

Spinors χα(x) transform as scalars under the general space-time coordinate trans-
formations, and under a spinorial representation R of the local Lorentz group

χ′
α(x) = R(Λ(x))α

βχβ(x). (3.30)

In order to couple spinors to gravity we introduce the Lorentz covariant derivative

Dm ≡ ∂m +
1

2
ωm

abMab, (3.31)

where ωm
ab are a set of objects called the spin connection ω which play the role of

gauge fields of the local Lorentz symmetry. They are antisymmetric in Lorentz indices
a, b, because Mab are the SO(1, 3) antisymmetric generators already introduced in
(2.19). Mab act on vectors and spinors as follows

MabX
c = 2δc[aXb], (3.32)

and

Mabχ =
1

2
γabχ, (3.33)

where γab = γ[aγb] =
1
2
[γa, γb].

The form of the the spin connection is fixed (modulo Lorentz transformations) by
imposing the following covariant constancy condition

Dmen
a − Γl

mnel
a = ∂men

a + ωm
a
ben

b − Γl
mnel

a = 0, (3.34)

which upon the antisymmetrization and using (3.11) takes the form

D[men]
a =

1

2
T a

mn, (3.35)

In the case of vanishing torsion, (3.35) reduce to

D[men]
a = (∂[m +

1

2
ω[m

abMab)en]
a = 0, (3.36)

which leads to

ωm
ab[e] =

1

2
ecm(Ω

abc − Ωbca − Ωcab), (3.37)

where Ωabc = ea
meb

n(∂menc − ∂nemc) are the so called objects of anholonomicity. In
the case of non-trivial torsion the spin connection must be rewrited as

ωm
ab = ωm

ab[e] +Ka
m

b, (3.38)

where Ka
m

b = el
aenbK l

mn, related to (3.12).
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We can rewrite the curvature tensor in terms of the spin connection in the follow-
ing way

Rmn
ab[ω] ≡ 2∂[mωn]

ab + 2ω[m
acωn]c

b, (3.39)

where
Rmn

ab = Rmn
r
ser

aebs, (3.40)

relates the curvature (3.39) with (3.13). In the vielbein formalism the Einstein-Hilbert
action has the following form

LEH [em
a] = −1

4

√
|g|R = −1

4
|e|eamebnRmn

ab, (3.41)

where |e| denotes the determinant of the tetrad (e = det(em
a) =

√
|g|).

3.4 The Palatini action

The action (3.41) leads to the second order equations of motion for em
a. There is

however a possibility of modifying the action in such a way that it produces first
order equations of motion. This action, called Palatini action, will be useful for
finding complete form of the locally supersymmetric action.

In the Palatini action the spin connection ωm
ab is considered to be a priori inde-

pendent of the vielbein and the corresponding Lagrangian has the following form

LP [e, ω] = −1

4
|e|eamebnRmn

ab[ω]. (3.42)

The field equations are derived from this Lagrangian by varying with respect to both
the connection and the vielbein fields:

δLP = −1

2
|e|

(
Rm

a(ω)− 1

2
em

aR(ω)

)
δea

m − 3

2
|e|(Dmen

a)em[aeb
n.erc]δωr

bc. (3.43)

The second term in (3.43) leads to the equations of motion (3.36) which are solved
by (3.37). Upon inserting this solution ω = ω[e] into the first equation, we recover
the ordinary Einstein equations of motion. Therefore the Palatini formulation is
equivalent to the standard second order formulation of general relativity, at least at
the classical level.

The relation which connects the two Lagrangians is

LEH [e] = LP [e, ω]|ω=ω[e]. (3.44)

3.5 The Minimal Supergravity action

To construct the minimal supergravity action, in addition to the gravitation action
we must introduce the kinetic term associated to the gravitino field. This term was
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first constructed by Rarita-Schwinger [14] in 1940’s in the free non gravitational case.
In the gravity background, the Rarita-Schwinger Lagrangian has the following form

LRS =
1

2
ϵmnrsχ̄mγnγ5Drχs. (3.45)

where Dr is the covariant derivative (3.31).
Adding this term to the Palatini Lagrangian (3.42), we have

L0[e, χ, ω] = −1

4
|e|eαmebnRmn

ab[ω] +
1

2
ϵmnrsχ̄mγnγ5Drχs. (3.46)

which is almost the final form of the full Lagrangian.
Now we want to find those local supersymmetry transformations which leave in-

variant the Lagrangian. We first must find the supersymmetric transformations on
the vielbein and the gravitino and then add to the action extra terms which ensure
its supersymmetry invariance. A natural ansatz we can take for the supersymmetric
transformation is the following

δϵem
a = −iϵ̄γaχm,

δϵχ
α
m = Dmϵ

α. (3.47)

Heuristically, they have a desired form because the bosonic vielbein transforms into
its presumed superpartner and because if χm is supposed to play the role of a ”gauge
fields of local supersymmetry” it transforms as Dmϵ. This transformation however is
not yet complete.

As already said above, we have to add to (3.46) extra terms with higher powers in
the fermionic fields Lχ4 , without changing its general form but only properly adapting
the spin connection.

Consider a general variation of (3.46)

δL0 =
δL0

δema
δem

a +
δL0

δχm
α
δχm

α +
δL0

δωn
bc
δωn

bc (3.48)

where δL0/δω leads to

D[men]
a = − i

2
χ̄mγ

aχn, (3.49)

The term in the right hand side in (3.49) is due to the contribution of the Rarita-
Schwinger term. This equation can be solved by the modified spin connection

ω̂m
ab = ω̂m

ab[e, ψ] = ωm
ab[e] +Ka

m
b, (3.50)

with Ka
m

b = −i(χ̄[aγb]χm + 1
2
χ̄aγmχ

b).
As a result, substituting (3.50) into (3.46) we get the Lagrangian

L0[e, χ, ω̂[e]] = −1

4
|e|eαmebnRmn

ab[ω̂[e]] +
1

2
ϵmnrsχ̄mγnγ5D̂rχs, (3.51)
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which is locally supersymmetric invariant under the locally supersymmetric transfor-
mations of the form

δϵem
a = −iϵ̄γaχm,

δϵχm = D̂mϵ, (3.52)

where we considered D̂m = D(ω̂).
This can be checked by direct computations [6]. We have thus reviewed the form

of the component action of N = 1 supergravity in D = 4.
Our aim is to study the description of supergravity and its couplings to matter

fields with the use of superspace methods and the superfield formalism. To simplify
this study, we will pass in the next chapters from four to two dimensions, in which
the superfield construction of the theory is much simpler but the main conceptual
points remain the same.



Chapter 4

Rigid supersymmetry in D = 2
dimensions

The road map followed in the previous two chapters was based on the criterion of
generalizing more and more Lagrangians of supersymmetry theories in D = 4. We
found in the second chapter the general expression for the Wess-Zumino model and
superYang-Mills rigid theories without gravity and then, in the third chapter we
discussed the Lagrangian of N = 1, D = 4 pure supergravity.

But what happens if we couple pure supergravity to matter and/or YM La-
grangians? In D = 4 the resultant theory is a bit complicated so we have chosen
a simpler case where to do computations. We will go to D = 2 space-time dimen-
sions and use the superfield formalism and in chapters 5, 6 we will obtain superfield
Lagrangians describing the coupling of a matter scalar field to N = (1, 1), D = 2
supergravity.

A general motivation in exploring supersymmetric field theories in two space-
time dimensions is related also to superstrings because a string is a one dimensional
object which sweeps a two-dimensional surface (called worldsheet) and its action is
invariant under local D = 2 supersymmetry. In this chapter we will construct rigid
supersymmetries in D = 2 flat superspace by using some results achieved in the
previous chapters. As we will see, the main differences between D = 4 and D = 2 are
related to the properties of spinors.

4.1 Two-dimensional fermions formalism

In D = 2 the flat space-time metric ηmn is defined by the 2× 2 matrix (with m,n =
0, 1)

ηmn =

(
1 0
0 −1

)
. (4.1)

We introduce also the 2 × 2 matrices, denoted γm, which satisfy to the anticom-
mutation property

{γm, γn} = 2ηmn, (4.2)
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where γm are chosen to be

γ0α
β = σ1 =

(
0 1
1 0

)
, γ1α

β = iσ2 =

(
0 1
−1 0

)
, (4.3)

where σi are the Pauli matrices. A Dirac spinor may be written as a two component
complex row vector

ψα =
(
ψ1, ψ2

)
. (4.4)

In D = 2 the Lorentz group corresponds to an abelian SO(1, 1) group and its
algebra is composed by only the single generator M01 and we can represent it in the
spinorial representation as

M01 = −1

4
[γ0, γ1] =

1

2
σ3 =

1

2

(
1 0
0 −1

)
. (4.5)

This form ofM01 implies that each spinorial component of the Dirac spinor transforms
independently under Lorentz transformations, as follows

ψ′
1 = e−

θ
2ψ1, (4.6)

ψ′
2 = e+

θ
2ψ2. (4.7)

We can define operators that project Dirac spinors into independent spinors called
Weyl spinors. The projectors can be expressed by

PR =
1

2
(1 + γ3), (4.8)

PL =
1

2
(1− γ3), (4.9)

where γ3 is defined as

γ3 ≡ −γ0γ1 =
(

1 0
0 −1

)
, (4.10)

with the following properties

(γ3)2 = I, (4.11)

{γa, γ3} = 0, (4.12)

γaγ3 = γbϵb
a. (4.13)

If we apply these operators to the Dirac spinors they lead to the right-handed and
left-handed Weyl spinors respectively

ψ1 ≡ ψR = PRψ, (4.14)

ψ2 ≡ ψL = PLψ. (4.15)

We can introduce also Majorana spinors ψM which are defined by the condition

ψ̄Mα = C−1
αβψ

β, (4.16)
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where the Dirac conjugate ψ̄ is defined as

ψ̄α = ψβ∗gβα =

(
ψ2∗

ψ1∗

)
, gβα =

(
0 1
1 0

)
. (4.17)

and C is the charge conjugation matrix which satisfy the relation

C−1
αβ = C†γδgδαgγβ. (4.18)

Requiring

ψcψ̄c = ψψ̄, (4.19)

ψcγ
aψ̄c = −ψγaψ̄, (4.20)

then we can define the charge conjugation matrix up to an arbitrary number of unit
modulus which we fix to unity,

Cαβ = ϵαβ, C−1
αβ = −ϵαβ (4.21)

where

ϵαβ = ϵαβ =

(
0 1
−1 0

)
. (4.22)

Therefore Majorana spinors satisfy the pseudo-reality condition

ψ∗α = ψβγ3β
α, (4.23)

It has no definite parity because the definition of a Majorana spinor implies the γ3

matrix. The first component is real while the second is purely imaginary

ψ1∗ = ψ1, ψ2∗ = −ψ2. (4.24)

The bilinear combinations between two different Majorana spinors are

ψχ̄ = χψ̄ = ψαχβϵβα = −ψRχL + ψLχR, real (4.25)

ψγ3χ̄ = −χγ3ψ̄ = −ψRχL − ψLχR, real (4.26)

ψγ0χ̄ = −χγ0ψ̄ = ψRχR − ψLχL, imaginary (4.27)

ψγ1χ̄ = −χγ1ψ̄ = ψRχR + ψLχL, imaginary (4.28)

whereas for a single Majorana spinor there is only one non trivial bilinear

θθ̄ = 2θLθR. (4.29)

θγaθ̄ = 0, (4.30)

θγ3θ̄ = 0. (4.31)

In two dimensions, the Weyl and Majorana conditions can be imposed indepen-
dently and simultaneously, because they are not equivalent representations. We note



50 CHAPTER 4. RIGID SUPERSYMMETRY IN D = 2 DIMENSIONS

that Dirac spinors have two complex components, Weyl spinors have one complex
component only, while Majorana spinors have two real components ψ1 and ψ2, and
Majorana-Weyl spinors have a single real component. The possibility of imposing
simultaneously Weyl and Majorana conditions exists in fact in space-time dimensions
2(mod8).

The massless Dirac equation for spinors and the corresponding Lagrangian in
D = 2 are better formulated in the light cone coordinates because as we will show,
they allow to obtain a simple form of the Dirac field equation and its solutions.

The light-cone coordinates are defined as

x+ ≡ 1√
2
(x0 + x1), x− ≡ 1√

2
(x0 − x1), (4.32)

which lead to

xmym = x0y0 − x1y1 = x+y− + x−y+ =
(
x+ x−

)( 0 1
1 0

)(
y+

y−

)
, (4.33)

where the flat metric is then

η =

(
0 1
1 0

)
. (4.34)

Indices are lowered or raised with this metric so that(
x+

x−

)
=

(
0 1
1 0

)(
x+
x−

)
=

(
x−
x+

)
, (4.35)

and hence we can write

x+ =
1√
2
(x0 + x1) = x−, x− =

1√
2
(x0 − x1) = x+. (4.36)

An infinitesimal Lorentz transformation is given by δPm = −θ(M01)mnP
n where

(M01)mn = (η0mδ1n − η1mδ0n) (4.37)

This leads to

δP 0 = −θP 1, → δP+ = −θP+ → P+ = P+e−θ,

δP 1 = −θP 0, → δP− = +θP− → P− = P−e+θ.

and the corresponding transformations of x±. The light-cone derivatives are defined
by

∂+ =
1√
2
(∂0 + ∂1), ∂− =

1√
2
(∂0 − ∂1), (4.38)

which lead to

∂m∂m = 2∂+∂−, ∂+x
+ = ∂−x

− = 1, ∂+x
− = ∂−x

+ = 0. (4.39)
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Therefore the Dirac equation reads

i(γ+∂+ + γ−∂−)ψ = 0, (4.40)

which in matrix form becomes((
0 1
0 0

)
∂+ +

(
0 0
1 0

)
∂−

)
ψ = 0, (4.41)

and by using

γ+ =
1√
2
(γ0 + γ1), γ− =

1√
2
(γ0 − γ1), (4.42)

it has the following solution{
∂+ψ2 = 0 → ψ2 = ψ−(x

−)
∂−ψ1 = 0 → ψ1 = ψ+(x

+)

}
.

This means that ψ1, ψ2 are right and left moving fermions respectively, namely a
function of x+ represents a right-moving wave for which x1 increases for increasing
time x0. A Weyl fermion then is either right-moving or left-moving.

As regarding the bosons we mention the Klein-Gordon equation of motion for
massless bosons

∂m∂mϕ = 2∂+∂−ϕ = 0, (4.43)

whose general solution is
ϕ = ϕ−(x

−) + ϕ+(x
+), (4.44)

hence a free massless scalar field is a superposition of a right-mover ϕ−(x
−) and a

left-mover ϕ+(x
+).

4.2 Rigid superPoincaré algebra in D = 2

N-extended superPoincaré algebra in D = 2 has the following relations

[M01,M01] = 0, (4.45)

[Pr,Mmn] = ηrmPn − ηrnPm, (4.46)

[Pm, P n] = 0, (4.47)

[M01, Qi
α] =

1

2
(γ01Qi)α = +σ3Q

i
α, (4.48)

[Pm, Qi
α] = 0, (4.49)

{Qi
α, Q

j
β} = −2(γmC−1)αβPmδ

ij, (4.50)

= −2[P 0(σ3)αβ − P 1δαβ]δ
ij, (4.51)

with α, β = 1, 2 and i = 1, ..., N . Its relations are almost identical to those of the
supersymmetry algebra in D = 4.
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In light-cone coordinates we have

{Qi
1, Q

j
1} = −2

√
2P−δij = −2

√
2P+δ

ij, (4.52)

{Qi
2, Q

j
2} = +2

√
2P+δij = 2

√
2P−δ

ij, (4.53)

{Qi
1, Q

j
2} = 0. (4.54)

It is transparent the fact that Q1 and Q2 define separately closed algebra because
they are related via their anticommutators to the right and to the left translation
generators respectively and then their numbers need not to be the same. We will
discern them by calling Qi

1 and Qj
2 right and left generators associated to right an

left algebra respectively and hence the following expressions Qi
R ≡ Qi

1, i = 1, ..., p,
and Qj

L ≡ Qj
2, j = 1, ..., q mean that p and q indicate the numbers of right and left

supersymmetries respectively, with the complete number being N = (p, q).
In this section we consider only the two simplest cases, directly relevant to super-

string theories:(1, 0) supersymmetry and (1, 1) supersymmetry, which is analogous to
the four-dimensional N = 1 case.

4.2.1 N = (1, 0) Rigid Supersymmetry in D = 2

The nomenclature N = (1, 0) means that the superPoincaré algebra must be built
by the introduction of only one extra fermionic generator. This generator must be a
right-handed Majorana-Weyl spinor (or left-handed). From (4.52) we obtain

{QR, QR} = −2
√
2P− = −2

√
2P+, (4.55)

and this implies
Q2

R = −
√
2P− = −

√
2P+. (4.56)

In order to write down supersymmetric Lagrangians written in the superfield formal-
ism, we have to introduce the superspace in D = 2 and N = (1, 0). A point in this
superspace has the coordinates

zM = (xm, θL), (4.57)

or in light-cone coordinates
(x+, x−, θL), (4.58)

where θL is a Majorana-Weyl coordinate, with chirality opposite to that of QR in order
to preserve invariance under Lorentz transformations of the superfield ϕ(xm, θL) in
the supersymmetry transformations

δϕ = iϵLQRϕ. (4.59)

θL satisfies to

θ2L = 0, (4.60)

{θL, anyspinor} = 0. (4.61)
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The supersymmetric generator reads

QR = −i
(

∂

∂θL
− i

√
2θL∂+

)
. (4.62)

while the corresponding covariant derivative

DR = − ∂

∂θL
− i

√
2θL∂

−, (4.63)

which anticommutes with the supersymmetry generator

{DR, QR} = 0, (4.64)

In this framework we can introduce a Lorentz scalar superfield

Φ(x, θL) = ϕ(x) + θLψR(x), (4.65)

with a real scalar field ϕ(x) and a right-handed Majorana-Weyl spinor ψR. Further-
more auxiliary fields do not appear.

To construct a free Lagrangian for the superfield Φ, we combine derivativesDR, ∂
+, ∂−

of Φ. Since the Lagrangian must have dimension 2 while θL has dimension −1
2
, the

superfield must have dimension 3
2
. It must also contain two derivatives. In this case,

the θL component is a Lorentz invariant Lagrangian.
Therefore we have

L =

∫
dθL[i∂

+ΦDRΦ],

= +iψR∂+ψR +
√
2(∂+ϕ)(∂−ϕ), (4.66)

where the derivatives are

DRΦ = −ψR − i
√
2θL∂

−ϕ, (4.67)

∂+Φ = ∂+ϕ+ θL∂
+ψR. (4.68)

We can finally find the rigid supersymmetry transformation under which the La-
grangian is invariant. By employing (4.59) we have

δΦ = iϵLQRΦ = ϵLψR − i
√
2ϵLθL∂

−ϕ,

which corresponds to the component transformations

δϕ = ϵLψR, (4.69)

δψR = i
√
2ϵL∂

−ϕ. (4.70)

which satisfy the supersymmetry algebra

[δ1, δ2]ϕ = −2
√
2ϵ2Lϵ

1
L(P

−ϕ).

The theory describes a free, right-handed Weyl-Majorana spinor and a real scalar
field. The supersymmetry transformations do not act on the left-moving part of ϕ,
for which ∂−ϕ = ∂+ϕ = 0, hence (1,0) supersymmetry only affects the right-moving
waves of the superfield.
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4.2.2 N = (1, 1) Rigid Supersymmetry in D = 2

The N = (1, 1) case will be more interesting for us, because we will generalize in
the future chapters the Lagrangian which we construct in this section, to a local
supersymmetry.

In order to build the superPoincaré algebra, we must introduce one more extra
fermionic generator in addition to that of the N = (1, 0) theory, in such a way that
the supersymmetric charges form a Majorana, two-component real spinor (Q)

Q =

(
QR

QL

)
. (4.71)

The superalgebra is given by the anticommutation relations (4.52) and (4.53) where
Q1 = QR, Q2 = QL.

Superspace is more extended than the N = (1, 0) case due to the presence of one
more Grassmann coordinate (θR). Its points hence are parametrized by the following
coordinates

zM = (xm, θR, θL), (4.72)

where the two Grassmann coordinates satisfy the following relations

{θL, θR} = 0, (4.73)

θ2L = θ2R = 0. (4.74)

We are ready to introduce the basic component of superfield formalism, namely the
real scalar superfield Φ(xm, θL, θR) which is given as follows

Φ(x, θL, θR) = ϕ(x) + θψ̄(x)− 1

2
θθ̄F (x), (4.75)

= ϕ(x) + θLψR(x)− θRψL(x) + θRθLF (x), (4.76)

where we used the bilinear combinations for a single Majorana spinor (4.25) and
(4.29).

The fields ϕ(x) and F (x) are two real scalar fields and ψL and ψR are two
Majorana-Weyl spinors, hence there are two bosonic and two fermionic degrees of
freedom.

The realisation of the supersymmetry charges Q on the superfield Φ is obtained
by the supersymmetric transformation

δΦ = iϵQ̄Φ. (4.77)

which in light-cone coordinates are

QR = −i ∂
∂θL

−
√
2θL∂

−,

QL = +i
∂

∂θR
−
√
2θR∂

+,
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and the covariant derivatives satisfy the following properties

DR = +i
∂

∂θL
−

√
2θL∂

−, (4.78)

DL = −i ∂
∂θR

−
√
2θR∂

+, (4.79)

where we can note that

{DL, QL} = {DL, QR} = {DR, QR} = {DR, QL} = 0. (4.80)

The variation of field components of Φ have the following form

δϕ = ϵLψR − ϵRψL = ϵψ̄, (4.81)

δψ = −Fϵ− γm∂mϕϵ, (4.82)

δF = −
√
2iϵL∂

−ψL +
√
2ϵR∂

+ψR (4.83)

We can construct a free Lagrangian for the free Majorana spinor ψ(x), the real
scalar ϕ(x) and the auxiliary real field F (x) as

L =

∫
d2θ[−(DRΦ)(DLΦ)],

= 2(∂+ϕ)(∂−ϕ) + i
√
2ψR∂

+ψR − i
√
2ψL∂

−ψL + F 2,

= (∂mϕ)(∂mϕ) + iψ̄γm∂mψ + F 2. (4.84)

where covariant derivatives have each dimension [M ] = 1
2
, and then the component

θLθR of the superfield Lagrangian which has dimension [M ] = 2, transforms as a total
derivative under supersymmetry. The action is then supersymmetric invariant, with
the right dimension.
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Chapter 5

Superfield Supergravity in curved
D = 2 superspace

5.1 Introduction

In this chapter we will generalize the N = (1, 1) rigid supersymmetry to the local
supersymmetry in the curved superspace.

Our aim will be the derivation of all the geometrical apparatus in curved super-
space, in order to apply it in the following chapter to describe matter superfields in
the AdS2 superbackground. We will develop first the supervielbein and superconnec-
tion Cartan variables, and then the supercurvature and supertorsion objects which
will complete our treatement.

Let us begin by noting that pure supergravity in D = 2 is not dynamical, because
it does not have propagating physical degrees of freedom, like the bosonic D = 2
gravitational theory, whose Einstein-Hilbert action is purely topological (Euler char-
acteristic of the D = 2 topology). Gravity however changes the superspace from flat
to a generic curved superspace and hence it affects the dynamics of matter fields. The
Rarita-Schwinger Lagrangian term written in D = 2 as L = ϵmlψmγ

n∂nψl, is a total
derivative and then it does not contribute to the action.

To generalize ordinary formulae of differential geometry to superspace we will
follow a simple working rule. The rule is that the summation over repeated indices
is always performed from the upper left corner to the lower right one with no indices
in between.

5.2 Supervielbein and Superconnection

To describe curved superspace geometry we have to generalize the concept of vielbein
by the introduction of the corresponding supervielbein EM

A, where M are curved
indices while A are Lorentzian indices. If we define the inverse supervielbein EA

M ,

57
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the following identities hold

EA
MEM

B = δA
B, EM

AEA
N = δM

N . (5.1)

The supervielbein is a superfield containing the vielbein em
a and the gravitino field

χm
α, as we will see below. It is used to perform the transformation of anholonomic

indices (A,B, ...) into holonomic ones (N,M, ...) as

V A = V MEM
A, V M = V AEA

M . (5.2)

We will also introduce the analogue of connection in superspace, called super-
connection ΩMA

B. It takes values in the SO(1, 1) algebra and obey the symmetry
property

ΩMAB + ΩMBA(−1)AB = 0, (5.3)

Since the SO(1, 1) is an abelian symmetry, the Lorentz connection in two dimen-
sions reduces to one vector index superfield ΩM . We can write

ΩMA
B = ΩMLA

B, (5.4)

where LA
B is the matrix of Lorentz rotations defined as

LA
B =

(
ϵa

b 0
0 −1

2
γ3α

β

)
, (5.5)

with the following properties

LAB = −LBA(−1)A, LA
BLB

C =

(
δa

c 0
0 1

4
δα

γ

)
. (5.6)

The connection (5.4) is used to define covariant derivatives of a Lorentz supervector
as follows

∇MV
A = ∂MV

A + ΩMV
BLB

A, (5.7)

∇MVA = ∂MVA − ΩMLA
BVB. (5.8)

The (anti)commutator of the covariant derivatives applied to a Lorentz supervec-
tor defines the supercurvature and supertorsion as

[∇M ,∇N}VA = −RMNA
BVB − TMN

P∇PVA, (5.9)

where RMNA
B is the supercurvature while TMN

P is the supertorsion which in Cartan
variables become

RMNA
B = ∂MΩNA

B − ΩMA
CΩNC

B(−1)N(A+C) − (M ↔ N)(−1)MN , (5.10)

TMN
A = ∂MEN

A + EN
BΩMB

A(−1)M(B+N) − (M ↔ N)(−1)MN . (5.11)



5.3. SUPERGRAVITY CONSTRAINTS AND GAUGE FIXING 59

In terms of the Lorentz connection (5.4) the curvature may be rewritten as follows

RMNA
B = (∂MΩN − ∂NΩM(−1)MN)LA

B ≡ FMNLA
B, (5.12)

where
FMN = ∂MΩN − ∂NΩM(−1)MN . (5.13)

It is useful also to introduce the following derivative for the future computations

DA = EA
M∂M . (5.14)

which acts on the scalar superfields. The most general covariant derivative however
will be

∇A = DA + LB
AEA

MΩM . (5.15)

5.3 Supergravity constraints and gauge fixing

5.3.1 Gauge fixing

We will now analyse the component structure of the supervielbein and superconnec-
tion and show that upon partial Wess-Zumino gauge fixing and imposing constraints
of supertorsion, we will reduce the component content of EM

A and ΩM to that of the
N = (1, 1), D = 2 supergravity multiplet.

Supergravity theories are invariant under bosonic diffeomorphisms ξm(x), local
Lorentz boosts W (0)(x) and local supersymmetry transformations ξµ(x), where all
parameters of the transformations depend only on the bosonic coordinates xm but
these transformations appear as subgroups of the full superspace diffeomorphisms
z′M = ξM(z), which when expanded in θ coordinates become

z′M = ξM(z) = ξ(0)M(x) + θνξ(1)ν
M(x) +

1

2
θθ̄ξ(2)M(x). (5.16)

Note that ξm(x) and ξµ(x) are associated to ξ(0)M(x).
Under the full superspace diffeomorphisms (5.16) the components Eα

M transform
as

E ′
α
M =

∂z′M

∂zN
Eα

N , (5.17)

E ′
α
m = Eα

n∂nξ
m + Eα

ν(ξ(1)ν
m + θνξ

(2)m), (5.18)

E ′
α
µ = Eα

n∂nξ
µ + Eα

ν(ξ(1)ν
µ + θνξ

(2)µ). (5.19)

The large local symmetry contained in (5.16) allows us to gauge away some com-
ponents of the supervielbein by fixing part of the superdiffeomorphisms and leaving
only those corresponding to ξ(0)M(x). Expanding the inverse supervielbein in θ com-
ponents

EA
M = E

(0)
A

M + θνE
(1)
νA

M +
1

2
θθ̄E

(2)
A

M , (5.20)
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we can always fix a gauge using the function ξ(1)ν
M in such a way that

E(0)
α
m = 0, E(0)

α
µ = δα

µ. (5.21)

Furthermore we can use the ξ(2)m and ξ(2)µ to get rid off the antysimmetric parts
of the first order components in θ of EA

M ,

E(1)
να

m = E(1)
αν

m, E(1)
να

µ = E(1)
αν

µ. (5.22)

In an analogous way we may eliminate some components of ΩM using the Lorentz
boost transforms

Ω′
A = S−1

A
B(ΩB −DBW ), (5.23)

where S−1
A
B is the inverse Lorentz transformation matrix corresponding to the boost

parameter

W (z) = W (0)(x) + θνW (1)(x)ν +
1

2
θθ̄W (2)(x). (5.24)

W 0(x) is associated with the conventional Lorentz boost, while W (1) and W (2) can
be freely gauge fixed e.g. by setting

Ω(0)
α = 0, Ω(1)

να = Ω(1)
αν , (5.25)

Therefore the free parameters which remain, namely the ξm, ξµ,W (0), describe
bosonic diffeomorphisms, local supersymmetry transformations and local Lorentz
boosts respectively.

Expanding now the inverse supervielbein and superconnection in θ we have

Ea
m = ea

m + θνfνa
m +

1

2
θθ̄ga

m, (5.26)

Ea
µ = χa

µ + θνfνα
µ +

1

2
θθ̄ga

µ, (5.27)

Eα
m = θνfνα

m +
1

2
θθ̄gα

m, fνα
m = fαν

m, (5.28)

Eα
µ = δα

µ + θνFνα
µ +

1

2
θθ̄gα

µ, fνα
µ = fαν

µ (5.29)

Ωa = ωa + θν ūνα +
1

2
θθ̄vα, (5.30)

Ωα = θνρνα +
1

2
θθ̄vα, ρνα = ραν . (5.31)

Among the fields contained in (5.26)-(5.31) there are the graviton ea
m, the grav-

itino and spin connection ωa but there are many other redundant fields some of which
do not have physical meaning, so we need to get rid off them. The component struc-
ture of the supervielbein EM

A will be given in the next section.
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5.3.2 Supergravity constraints

To reduce still redundant number of component fields of EM
A and ΩM and thus to

express them only in terms of the supergravity multiplet, we may impose constraints
on the supertorsion, in a similar way done by Howe in [9] and used by Ertl in [8]

Tab
c = 0, (5.32)

Tαβ
a = 2i(γaϵ)αβ, (5.33)

Tαβ
γ = 0, (5.34)

where (5.33) can be rewritten as

Tαβ
M = 2i(γaϵ)αβEa

M , (5.35)

which may be contracted with suitable γ-matrices as

Tαβ
M(ϵγ3)βα = 0, (5.36)

Tαβ
M(ϵγa)

βα = −4iEa
M . (5.37)

We can use (5.11) to solve separately eq.(5.36) and (5.37), and referring to [8], we
can find out that

Ea
m = ea

m + i(θγmχ̄a)− θθ̄(λmχ̄a), (5.38)

Ea
µ = χa

µ + i(θγbχ̄a)χb
µ − i

2
A(θγa)

µ − 1

2
ρa(θγ

5)µ (5.39)

+
1

2
θθ̄[iϵmn(∇̃mχnγaγ

5)µ +
i

2
cb(χaγ

b)µ + A(χγa)
µ], (5.40)

Eα
m = i(γmθ̄)α + θθ̄λ̄mα, (5.41)

Eα
µ = δα

µ + i(γbθ̄)αχb
µ − 1

2
θθ̄[λ2δα

µ +
1

2
Aδα

µ +
i

2
cbγ

b
α
µ], (5.42)

Ωa = ωa + (θūa) +
1

2
θθ̄va, (5.43)

Ωα = A(θγ5ϵ)α + iρb(θγ
bϵ)α (5.44)

+
1

2
θθ̄[4ϵmn(∇̃mχ̄n)α + 2cb(γ

5λ̄b)α − 2iA(γ5χ̄)α], (5.45)

where

ρa = −ϵabcb − 4i(λaγ
5χ̄), (5.46)

va = 4ϵmn(∇̃mχ̄n)a + 2cb(γ
5λ̄b)α − 2iA(γ5χ̄)α, (5.47)

χm = χγm + λm. (5.48)

We can put in evidence the fact that we are left with two supermultiplets, the
supergravity multiplet Ξ = {eam, χa

µ, A} and the Lorentz connection supermultiplet
Ωa = {ωa, ua

ν , va}. The supergravity multiplet is the only independent one while the
connection is a function of it.



62CHAPTER 5. SUPERFIELD SUPERGRAVITY IN CURVEDD = 2 SUPERSPACE

Once obtained the components of the inverse of supervierbein and superconnec-
tion, we can find all the geometrical objects of superspace, namely the supercurvature
and supertorsion, but in doing this we need the supervierbein. Solving the eq(5.1),
the supervierbein is expressed as

Em
a = em

a − 2i(θγaχ̄m) +
1

2
θθ̄Aem

a, (5.49)

Em
α = −χm

α +
i

2
A(θγm)

α +
1

2
ρm(θγ

3)α, (5.50)

Eµ
a = i(θγaϵ)µ, (5.51)

Eµ
α = δµ

α(1− 1

4
θθ̄A). (5.52)

So we finally are able to compute all the components of the supertorsion and super-
curvature which can be compactly expressed using the Bianchi identities for TA and
RA

B (for explicit computations we refer to [8]), in terms of a scalar S and vector
superfield Ta. For the supertorsion we have

Tαβ
γ = 0, (5.53)

Tαβ
a = 2i(γaϵ)αβ, (5.54)

Tαa
β =

i

2
Sγβaα +

1

2
ϵa

bTbγ
3
α
β, (5.55)

Tαa
b = −Taα = 0, (5.56)

Tab
α =

1

2
ϵab(ϵγ

5)αβ∇βS, (5.57)

Tab
c = δa

cTb − δb
cTa. (5.58)

and for the supercurvature we have

Fαβ = 2S(γ5ϵ)αβ + 2iTa(γ
aγ5ϵ)αβ, (5.59)

Fαa = −Faα = i(γaγ
5)α

β∇βS + ϵa
b∇αTb, (5.60)

Fab = ϵab[−
1

2
ϵαβ∇β∇αS + S2 −∇cT

c + TcT
c]. (5.61)

The scalar superfield turns out to be

S = A+ 2ϵmn(θγ5∇̃mχ̄n) + 2i(θχ̄)λ2 − 2iA(θχ̄) (5.62)

− 1

2
θθ̄

[
1

2
R̃− 4iϵmn(χγ5∇̃mχ̄n) + 4i∇̃a(λ

aχ̄) + 4χ2λ2 + A(χaχ̄a) + A2

]
,(5.63)

where R̃ is the scalar curvature for vanishing (bosonic) torsion.
The vector superfield is nothing other than the trace of the supertorsion

Ta = ta + (θτ̄a) +
1

2
θθ̄sa, (5.64)
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and

ta = t̂a − 4i(λaχ̄), (5.65)

(θτ̄a) = 2iϵmn(θγaγ
5∇̃mχ̄n)− iϵa

bcc(θγ
cγ5χ̄b) (5.66)

+ 4χ2(θλ̄a)− A(θχ̄a) + ϵa
b(θūb), (5.67)

sa = −∂aA+ 4ϵmn(∇̃mχnγaγ
5χ̄)− 2ϵa

bcc(λ
cγ5χ̄b) + 2iA(χλ̄a) + ϵa

bvb.(5.68)

5.4 Symmetry transformations

The Wess-Zumino gauge with the supertorsion constraint was useful for fixing almost
all the components of the geometric objects, however several parameters remain free:
the zeroth components of superspace diffeomorphisms ξ(0)M and the zeroth component
of the Lorentz rotation W (0).

Under infinitesimal superdiffeomorphisms parametrized by a vector superfield
ξM(z), and by an infinitesimal Lorentz (super-)boost with parameter W(z), the in-
verse supervierbein and the anholonomic components of the Lorentz superconnection
obey the transformation formulas

δEA
M = ξN∂NEA

M − EA
N∂Nξ

M −WLA
BEB

M , (5.69)

δΩA = ξN∂NΩA −WLA
BΩB − EA

M∂MW. (5.70)

To find the explicit form of the remaining symmetry transformations after the
gauge fixing we decompose

ξm = ζm + θνkν
m +

1

2
θθ̄lm, (5.71)

ξµ = ζµ + θνkν
µ +

1

2
θθ̄lµ, (5.72)

W = ω + θνkν +
1

2
θθ̄l. (5.73)

where ζm(x), ζµ(x), ω(x) are the parameters of the bosonic diffeomorphismss, super-
symmetry transformations and Lorentz boosts, respectively.

In order to mantain the Wess-Zumino gauge conditions (5.21) and (5.25), we must
impose the following conditions

δE(0)
α
m = 0, δE(0)

α
µ = 0, δΩ(0)

α = 0. (5.74)

For the bosonic diffeomorphisms and Lorentz rotations we have that (setting ζµ = 0)

ξm = ζm, (5.75)

ξµ =
1

2
ω(θγ5)µ, (5.76)

W = ω, (5.77)
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and for the local supersymmetry transformations (setting ζm = 0, ω = 0)

ξm = i(θγmζ̄)− θθ̄(ζλ̄m), (5.78)

ξµ = ζµ + i(θγbζ̄)χb
µ +

1

2
θθ̄

[
λ2ζµ +

1

2
cb(ζγ

b)µ
]
, (5.79)

W = −A(θγ5ζ̄ − iρb(θγ
bζ̄)− θθ̄

[
ϵmn(ζ∇̃mξ̄n) + cb(ζγ

5λ̄b − iλ2(ζγ5ξ̄)
]
.(5.80)

The transformation rules for the supergravity multiplet are obtained by consid-
ering the variations δE(0)

a
m, δE(0)

a
µ, δΩ(1)

a under the transformations (5.75)-(5.80).
For the bosonic diffeomorphisms and Lorentz boosts one has the transformations

δea
m = ζn∂nea

m − ea
n∂nζ

m − ωϵa
beb

m, (5.81)

δχa
µ = ζn∂nχa

µ − ωϵa
bχb

µ − 1

2
ω(χaγ

5)µ, (5.82)

δA = ζm∂mA. (5.83)

Under the local supersymmetry, the supergravity supermultiplet transforms as follows

δea
m = 2i(ζγmχ̄a), (5.84)

δχa
µ = −∇̃aζ

µ − 2i(χλ̄a)ζ
µ − 2i(λbχ̄a)(ζγ

b)µ − i

2
A(ζγa)

µ, (5.85)

δA = 2ϵmn(ζγ5∇̃mχ̄n) + 2iλ2(ζχ̄)− 2iA(ζχ̄). (5.86)

We can conclude this chapter by noting that now we are ready to use all the
formalism in order to restrict our study to a specific superbackground. What we will
consider in the next chapter is a supersymmetry field theory of a matter superfield in
the AdS2 superspace.



Chapter 6

Dynamics of a scalar superfield in
AdS2 superspace

6.1 AdS2 bosonic spacetime

In this chapter we will consider the dynamics of a scalar superfield in AdS2 superspace
which is a particular solution of N = (1, 1), D = 2 supergravity. In this specific su-
perspace we will derive all the geometrical objects and construct the matter superfield
Lagrangian. We will expand it in its field components, which describes the dynamics
in AdS2 of the scalar supermultiplet and finally we will also derive its supersymmetric
transformations.

Let us start by imposing some conditions to reduce the generic curved D = 2
superspace to the AdS2 one. The conditions are the following

em
a = em

a|AdS2 , χm
α = 0, A = const. (6.1)

They are the right conditions because we have noted in section 5.1 that supergravity
fields do not propagate in D = 2 space-time. Rarita-Schwinger field must vanish
in order to preserve local Lorentz invariance, while the vielbein is fixed to the AdS2

bosonic space-time. Finally, from (5.86) we get δA = 0 which lead to a constant value
for the auxiliary field.

To have a better insight into the structure of this superspace we first define the
metric of the bosonic AdS2 space. The AdS2 space-time with signature (1,−1) can
be isometrically embedded in the Minkowskian-like manifold R(2,1), whose points are
parametrized by XA = (X0, X0′ , X1) and the spacetime interval is denoted by

ds2 = dXAdX
A = dX0

2 + dX0′
2 − dX1

2, (6.2)

leading thus to the Lorentz metric ηAB = diag(1, 1,−1).
Then, the condition

X0
2 +X0′

2 −X1
2 = r2, (6.3)

restricts the D = 3 space-time onto the embedded manifold in D = 2, called AdS2

manifold and r denotes its radius of curvature.

65
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This manifold is described by two coordinates and its metric could be derived
from that of the R(2,1) space, by rewriting each Xi coordinate as a function of the two
AdS2 coordinates and taking into account the (6.3) condition.

In hyper-spherical coordinates we may write

X0 = r coshθ cosϕ, X0′ = r coshθ sinϕ, X1 = r sinhθ, (6.4)

which satisfies the (6.3) condition and where θ ∈ (−∞,∞), ϕ ∈ [0, 2π].
The interval of the AdS2 space-time now reads

ds2 = r2cosh2θdϕ2 − r2dθ2 = gmndx
mdxn, (6.5)

where xm = (x0, x1) = (ϕ, θ) and gmn is the metric:

gmn =

(
r2cosh2θ 0

0 −r2
)
, gmn =

(
1

r2cosh2θ
0

0 − 1
r2

)
, g ≡ detgmn = −r4cosh2θ.

(6.6)
Therefore we can derive using the definition

gmn = em
aen

bηab, ηab =

(
1 0
0 −1

)
, (6.7)

the zwei-bein

em
a =

(
rcoshθ 0

0 r

)
, ea

m =

(
1

rcoshθ
0

0 1
r

)
. (6.8)

6.1.1 Isometries of AdS2

The AdSD space is a maximally symmetric space-time which is a vacuum solution of
Einstein’s equation with a negative scalar curvature (or negative cosmological con-
stant) corresponding to a negative vacuum energy density (attractive force) and pos-
itive pressure.

It is an analog of the hyperbolic space or a sphere SD, just as the Minkowski space
and De Sitter space are analogous to Euclidean and elliptical spaces.

Symmetries which leave the metric invariant are called isometries.

Definition 15. A metric gmn(x) is said to be form-invariant under a given coordinate
transformation x→ x′, when

g′mn(x
′) = gmn(x

′). (6.9)

AdS2 space-time has SO(2, 1) as the group of isometries generated by the following
relations

[Pm, Pn] = Mmn, (6.10)

[Mmn, Pl] = −ηl[mPn]. (6.11)
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6.2 AdS2 superspace formalism

Using the conditions (6.1) on the supergravity multiplet, we get the components of
the supervielbein and superconnection introduced in (5.38), for the AdS2 case

Em
a = em

a +
1

2
θθ̄Aem

a, (6.12)

Em
α =

i

2
A(θγm)

α +
1

2
ρm(θγ

5)α, (6.13)

Eµ
a = i(θγaϵ)µ, (6.14)

Eµ
α = δµ

α(1− 1

4
θθ̄A). (6.15)

while the inverse supervielbein has the following expression

Ea
m = ea

m, (6.16)

Ea
µ = − i

2
A(θγa)

µ − 1

2
ρa(θγ

5)µ, (6.17)

Eα
m = i(γmθ̄)α, (6.18)

Eα
µ = δα

µ − 1

2
θθ̄[

1

2
Aδα

µ +
i

2
cbγ

b
α
µ] (6.19)

where
cb = ϵb

aωa. (6.20)

The superconnection is expressed by

Ωa = ωa + (θūa +
1

2
θθ̄va), (6.21)

Ωα = A(θγ5ϵ)α + iρb(θγ
bϵ)α. (6.22)

We are now able to compute the anholonomic components of supercurvature and
supertorsion (5.53)-(5.61) in our particular case. To this end, we will only substitute
the expressions of the scalar (5.62) and the vector (5.64) superfields.

The scalar superfield becomes

S = A− 1

4
θθ̄(R̃ + 2A2), (6.23)

while the vector superfield is

ta = t̂a, (6.24)

(θτ̄a) = ϵa
b(θūb), (6.25)

sa = −∂aA+ ϵa
bvb. (6.26)

Finally we note that isometries of the N = (1, 1) AdS2 superspace are given by the
Osp(1|2) group which contains as the bosonic subgroup the group Sp(2) ∼= SO(2, 1).
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Its algebra has the following form

[Pm, Pn] = Mmn, (6.27)

[Mmn, Pl] = −ηl[mPn], (6.28)

{Qα, Qβ} = γaαβPa +
1

2
γ3αβMmnϵ

mn, (6.29)

[Qα, Pm] = (γm)α
βQβ, (6.30)

[Qα,Mmn] = γmnα
βQβ. (6.31)

These relations are useful in obtaining the irreducible representations of the AdS2

superalgebra. We can observe that the P 2 = PmP
m operator is not a Casimir oper-

ator anymore because of the commutation relation (6.42) and therefore P 2 does not
commute with all generators. We thus expect that the component fields of a given
representation have different mass.

We shall now fix the value of the constant A by considering (5.84)-(5.86) in the
AdS2 background

δea
m = 0, (6.32)

δχa
µ = −∇aζ

µ − i

2
A(ζγa)

µ = 0, (6.33)

δA = 0. (6.34)

6.2.1 Computations of ”A” field

We have to find A from the equation (6.33). We will follow the formalism of Ertl’s
work and we refer to its results as basic equations. We recall that in the AdS2

background (6.5) the Rarita-Schwinger field vanishes and this implies that from (6.33)
we obtain

∇aζ
µ +

i

2
A(ζγa)

µ = 0 (6.35)

By applying the derivative once again

∇b∇aζ
µ +

i

2
A∇b(ζγa)

µ = ∇b∇aζ
µ +

i

2
A∇bζ

βγaβ
µ = (6.36)

= ∇b∇aζ
µ +

i

2
A(− i

2
A(ζγbγa)

µ, (6.37)

we get

∇b∇aζ
µ +

1

4
A2(ζγbγa)

µ = 0, (6.38)

and taking the commutator of the above equation we get

[∇b,∇a]ζ
µ +

1

4
A2 (ζ[γb, γa])

µ = 0 (6.39)
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We can rewrite this equation as

eb
mea

neα
µ

(
[∇m,∇n]ζ

α +
1

4
A2 (ζ[γm, γn])

α

)
= 0 (6.40)

and substituting ζα = ϵαβζβ we obtain

eb
mea

neα
µ

(
ϵαβ[∇m,∇n]ζβ +

1

4
A2 (ζ[γm, γn])

α

)
= 0 (6.41)

We recall that the (anti)commutator of covariant derivatives (in (5.9)) is defined as

[∇M ,∇N}VA = −RMNA
BVB − TMN

P∇PVA,

In our case we have

[∇m,∇n]ζβ = −Rmnβ
CζC , (6.42)

where the torsion is considered to vanish recalling the constraints (5.32)-(5.34).
To compute the form of the right-hand side of (6.42) we remember that the cur-

vature may be rewritten as in (5.12)

RMNA
B = (∂MΩN − ∂NΩM(−1)MN)LA

B ≡ FMNLA
B,

where LA
B is given in (5.5) as

LA
B =

(
ϵa

b 0
0 −1

2
γ3α

β

)
,

and FMN is given in (5.13) as FMN = ∂MΩN − ∂NΩM(−1)MN .
Hence, we have

−Rmnβ
γ = −FmnLβ

γ = +
1

2
∂[mωn]γ

3
β
γ, (6.43)

and

Rmn
ab = (∂[mωn])ϵ

ab, (6.44)

we then obtain
1

2
ϵbcRmn

cb = ∂[mωn], where ϵcbϵbc = 2. (6.45)

Substituting this result in (6.43) we get

−Rmnβ
γ =

1

4
ϵbcRmn

cbγ3β
γ. (6.46)

We can now use the curvature of the AdS2 space-time

Rmn
ab = − 1

r2
(em

aen
b − em

ben
a). (6.47)
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Thus (6.42) becomes

[∇m,∇n}ζβ = − 1

4r2
ϵbc(em

cen
b − em

ben
c)γ3β

γζγ, (6.48)

and then in (6.41) we have

eb
mea

neα
µ

(
−ϵαβ 1

4r2
ϵbc(em

cen
b − em

ben
c)γ3β

γζγ +
1

4
A2 (ζ[γm, γn])

α

)
= 0. (6.49)

By readjusting the equation in a simpler form we get

eb
mea

neα
µ

(
− 1

2r2
ϵmn(ζγ

3)α +
1

2
A2ϵmn

(
ζγ3

)α)
= 0, (6.50)

where we used 1
2
(γmγn − γnγm) = ϵmnγ

3.
Thus we obtain, that for consistency

A =
1

r
, (6.51)

and hence, the supersymmetry parameter ζµ(x) satisfies the Killing spinor equation

∇aζ
µ = − i

2r
(ζγa)

µ. (6.52)

6.3 Scalar superfield Lagrangian in AdS2 superspace

We are now ready to consider the dynamics of a scalar superfield Φ in the AdS2. Take
the action

S =
1

2

∫
d2xd2θ(EDαΦDαΦ), (6.53)

which describes the dynamics of the scalar superfield in a generic N = (1, 1), D = 2
supergravity background.

In (6.53) Dα is the covariant derivative defined in (5.14) and E is the superdeter-
minant of EM

A defined in general as

E = sdetEM
A =

det(Em
a − Em

βE−1
β

νEν
a)

detEµ
α

, (6.54)

which in terms of the supergravity supermultiplet (5.49)-(5.52) we have

E = detem
a[1 + 2i(θχ̄+

1

2
θθ̄(2χ2 + λ2 + A)]. (6.55)

For the AdS2 superspace E reduces to

E = e

(
1 +

1

2r
θθ̄

)
. (6.56)
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From this superdeterminant, it follows that the supervolume of the AdS2 superspace
is non-zero and has the following value∫

dx2dθ2E =
1

2r
V olAdS2 . (6.57)

This is in contrast, e.g. to the zero supervolume of the supersphere S3 considered in
[15].

6.3.1 Lagrangian expansion in component fields

We recall that the expression for the scalar superfield was furnished in (4.75). We
can compute the covariant derivative applied on it

DαΦ =

[
i(γmθ̄)α∂m + (δα

µ − 1

2
θθ̄(

1

2r
δα

µ +
i

2
cbγ

b
α
µ))∂µ

](
ϕ(x) + θψ̄(x) +

1

2
θθ̄F (x)

)
,(6.58)

DαΦ = i(γmθ̄)α
[
∂m(ϕ+ θψ̄)

]
+ ψα + θαF − 1

2
θθ̄

(
1

2r
ψα +

i

2
cbγ

b
α
µψµ

)
, (6.59)

DαΦ = −i(θγn)α[∂nϕ+ ∂n(θψ̄)] + ψα + θαF − 1

2
θθ̄[

1

2r
ψα +

i

2
cbγ

bαµψµ]. (6.60)

By multiplying (6.59) with (6.60) we obtain

DαΦDαΦ =

[
i(γmθ̄)α∂m(ϕ+ θψ̄) + ψα + θαF − 1

2
θθ̄

(
1

2r
ψα +

i

2
cbγ

b
α
µψµ

)]
(6.61)

×
[
−i(θγn)α[∂nϕ+ ∂n(θψ̄)] + ψα + θαF − 1

2
θθ̄

(
1

2r
ψα +

i

2
cbγ

bαµψµ

)]
(6.62)

(6.63)

= (γmθ̄)α(θγ
n)α(∂mϕ)(∂nϕ) + i(γmθ̄)α∂m(θψ̄)ψ

α + i(γmθ̄)α(∂mϕ)θ
αF +(6.64)

+ ψα(−i(θγn)α∂n(θψ̄))− ψψ̄ +
1

4r
θθ̄ψψ̄ − ψα

1

2
θθ̄(

i

2
cbγ

bαµψµ) + (6.65)

+ θαF (−i(θγn)α∂nϕ)− θ2F 2 +
1

2
θ2(

1

2r
ψψ̄)− 1

2
θθ̄(

i

2
cbγ

b
α
µψµ)ψ

α (6.66)

where i(γmθ̄)α(∂mϕ)θ
αF and θαF (−i(θγn)α∂nϕ) vanish because of the relation

θγmθ̄ = 0. (6.67)

The remaining terms are

DαΦDαΦ = −(γmθ̄)α(θγ
n)α(∂mϕ)(∂nϕ)− 2i(ψγmθ)∂m(θψ̄)− θ2F 2 + (6.68)

+
i

2
θθ̄ψαcbγ

b
α
µψµ +

1

2r
θθ̄ψψ̄ − ψψ̄. (6.69)
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We now have

−2i(ψγmθ)∂m(θψ̄) = +iθθ̄ψγm(∂mψ), (6.70)

+
i

2
θθ̄ψαcbγ

b
α
µψµ = +

i

2
θθ̄ψαϵb

cωcγ
b
α
µψµ = +

i

2
θθ̄ψαγcα

βγ3β
µωcψµ,(6.71)

(γmθ̄)α(γ
nθ)α(∂mϕ)(∂nϕ) = −θθ̄(∂mϕ)(∂mϕ), (6.72)

Recall that the covariant derivative on fermions is

Dmψ = (∂m +
1

2
γ3ωm)ψ. (6.73)

We can therefore write the Lagrangian components

L =
1

2

∫
d2θE[−θθ̄(∂mϕ)(∂mϕ) + iθθ̄ψγm(Dmψ̄)− θθ̄F 2 +

1

2r
θθ̄ψψ̄ (6.74)

−ψψ̄]. (6.75)

Hence, using (6.56), we will have

L =
1

2
e[−(∂mϕ)(∂

mϕ) + iψγm(Dmψ̄)− F 2]. (6.76)

The equations of motion are given as

�ϕ = 0, (6.77)

iγm(Dmψ) = 0, (6.78)

F = 0. (6.79)

where � = Dm∂
m.

Actually, we encounter an ambiguity in the definition of the mass for the fermion
field. Even if the Dirac equation is massless, i.e. the ”Dirac” mass of the fermion is
zero

Dmγ
mψ = 0, (6.80)

one may find that the ”Klein-Gordon” mass of this fermion is not zero. Indeed, acting
on the Dirac equation by the Dirac operator again we have

Dnγ
nDmγ

mψ = DmD
mψ + γnmDnDmψ = +c/r2ψ = 0, (6.81)

where in the passage (6.81) we used γnγm = 1
2
{γn, γm} + γmn, and c is a certain

constant (to be computed) which is fixed by the AdS2 curvature. So we see that
the ”Klein-Gordon” mass of the fermion is non-zero, while that of the scalar is zero.
So, it is more strict to speak about the fact that in the absence of the mass term in
the Lagrangian the ”Dirac” mass of the fermion and the ”Klein-Gordon” mass of the
scalar are zero.
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6.3.2 Massive Lagrangian term

We see that the Lagrangian (6.76) provides us with the kinetic terms for the massless
fields ϕ and ψ propagating in AdS2. We can make these fields massive by adding the
following Lagrangian

L =
1

2

∫
d2θE(MΦΦ), (6.82)

where M is an arbitrary mass parameter. Expanding this Lagrangian in components

L =
1

2

∫
d2θEM(ϕ(x) + θψ̄(x) +

1

2
θθ̄F (x))(ϕ(x) + θψ̄(x) +

1

2
θθ̄F (x)),(6.83)

=
1

2

∫
d2θEM(θθ̄ϕF + θαψαθ

βψβ + ϕϕ), (6.84)

=
1

2

∫
d2θEM(θθ̄ϕF − θαθβψαψβ + ϕϕ), (6.85)

=
1

2

∫
d2θEM(θθ̄ϕF +

1

2
θθ̄ϵαβψαψβ + ϕϕ), (6.86)

=
1

2

∫
d2θEM(θθ̄ϕF − 1

2
θθ̄ψψ̄ + ϕϕ), (6.87)

=
1

2

∫
d2θM(θθ̄ϕF − 1

2
θθ̄ψψ̄ +

1

2r
θθ̄ϕϕ), (6.88)

we arrive at

L =
1

2
M(ϕF − 1

2
ψψ̄ +

1

2r
ϕϕ). (6.89)

Thus, the full off-shell Lagrangian will be

L =
1

2
e[−(∂mϕ)(∂

mϕ) + iψγm(Dmψ̄)− F 2 +M(ϕF − 1

2
ψψ̄ +

1

2r
ϕϕ)]. (6.90)

We can get rid off the auxiliary field F (x) in the Lagrangian, by solving its equations
of motion

F =
1

2
Mϕ(x). (6.91)

Substituting this solution in (6.90) we get

L =
1

2
e[−(∂mϕ)(∂

mϕ) + iψγm(Dmψ̄)−
1

4
M2ϕ2(x) +

1

2
M2ϕ2(x) (6.92)

−1

2
Mψψ̄ +

1

2r
Mϕ2], (6.93)

=
1

2
e[−(∂mϕ)(∂

mϕ) + iψγm(Dmψ̄) +
1

2
M2ϕ2 − 1

2
Mψψ̄], (6.94)

where

M2 =
M

2

(
M

2
+

1

r

)
. (6.95)
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The equations of motion are the following

ϕ : M2ϕ+�ϕ = 0. (6.96)

For the spinor field the equation of motion is

iγm(Dmψ̄)−
M

2
ψ = 0. (6.97)

We can conclude that in AdS2 background, scalar superfield Lagrangians lead to
supermultiplets of a scalar and spinorial fields which may have different mass. In the
case of the kinetic Lagrangian only, scalar and spinorial fields have vanishing mass.
When we add the massive Lagrangian instead, in general the two fields will have
different masses. One particular case is when we take the mass of the fermion to be
M
2
= −1

r
which lead to a vanishing mass of the scalar field.

6.3.3 Scalar superfield self-interaction

To the above Lagrangians describing the propagation of the massless and (partially)
massive scalar superfields in the AdS2 superspace one can add the potential term∫

dx2dθ2EV (Φ), (6.98)

which describes a general self-interaction of the superfield Φ.

6.3.4 Supersymmetry transformations

Now we wish to find the AdS2 supersymmetry transformations which leave the whole
Lagrangian (6.90) invariant.

We will derive these transformations from the variation of a scalar superfield

δΦ = ξm∂mΦ + ξµ∂µΦ, (6.99)

where its parameters are given in the general case in (5.78)-(5.79), but in AdS2 space-
time we have

ξm = i(θγmζ̄), (6.100)

ξµ = ζµ +
1

2
θθ̄[

i

2
cb(ζγ

b)µ]. (6.101)

Hence we can expand the variation of the scalar superfield

δΦ = iθαγmα
βζβ∂m(ϕ+ θψ̄) + (ζµ +

1

2
θ2[

i

2
cb(ζγ

b)µ])(ψµ + θµF ). (6.102)
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And we have the following transformations of the component fields

δϕ = ζµψµ, (6.103)

δψα = i(γmζ̄)∂mϕ+ ζαF, (6.104)

δF = iζγm(∂mψ +
1

2
γ3ωmψ) = iζγmDmψ, (6.105)

where in (6.105) we used the identity

γaγ3 = ϵb
aγb. (6.106)

Variation of the massive term

We will prove explicitly in what follows that the above transformations leave invariant
the massive Lagrangian term. This will allow to cross-check the correctness of the
coefficients in the component Lagrangian derived from the superfield

Let us begin by varying (6.89)

δL =
1

r
ϕδϕ+ δϕF + ϕδF − ψδψ = 0, (6.107)

we get

δL =
1

r
ϕ(ζµψµ) + ζµψµF + ϕiζγm(∂mψ +

1

2
γ3ωmψ)− ψ(i(γmζ̄)∂mϕ+ ζαF ),(6.108)

=
1

r
ϕ(ζψ) + ζψF︸︷︷︸

1

+iϕζγm∂mψ +
i

2
ϕζγmγ3ωmψ − iψγmζ̄∂mϕ− ψζF︸︷︷︸

1

.(6.109)

Terms underbraced with 1 cancel themselves. Let us now finish computations

−iψγmζ̄∂mϕ = +iζγmψ̄∂mϕ = −i∂mζγmψ̄ϕ− iζγm∂mψ̄ϕ, (6.110)

=
−1

2r
ζγmγ

mψ̄ϕ+
i

2
ωmζγ

3γmψ̄ϕ− iζγm∂mψ̄ϕ,(6.111)

= −1

r
ζψ̄ϕ− i

2
ζγmγ3ψ̄ωmϕ− iζγm∂mψ̄ϕ, (6.112)

which cancels all remaining terms. In (6.111) we used the Killing spinor equations

∇aζ
µ = − i

2r
(ζγa)

µ. (6.113)

while in (6.112) the identity γmγ
m = 2. Thus all elements vanish and the invariance

of the Lagrangian under local supersymmetric transformations is proved.
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Chapter 7

Conclusions

In the second chapter we have reviewed the N = 1, D = 4 superPoincaré algebra and
its representations. We have introduced the superspace formalism in four dimensions
and discussed the main properties of the chiral and real superfields. Then, we used
them for constructing rigid supersymmetric theories of matter and pure SYM fields
in four dimensions.

In the third chapter we reviewed pure N = 1 supergravity theory in four dimen-
sions. This theory is based on the supergravity multiplet composed of a graviton
and a spinor-vector field called gravitino. The only framework where gravity-spinor
coupling becomes possible is the vierbein formalism which introduces a local Lorentz
frame at any point in the curved background and thus allows one to deal with the
fermionic fields transforming under spinorial representations of the Lorentz group.

In chapter four we passed to the two dimensional space-time where gravitational
theories considerably simplify. We settled our formalism of superspace and superfields
and also the formalism of the two components spinors in two dimensions. Then, for
a reference example of supersymmetric Lagrangian, we constructed rigid supersym-
metries of type N = (1, 0) and N = (1, 1).

The N = (1, 1) supersymmetry was generalized in the fifth chapter to be the
local supersymmetry underlying a supergravity theory in two dimensions. In these
dimensions pure gravity does not describe propagating particles of spin 2. This also
implies that supergravity does not have dynamical physical degrees of freedom on the
mass shell. But off-the mass shell supergravity has a non-trivial supergeometry and
is invariant under a group of local superdiffeomorphisms. All geometrical apparatus
of Riemann geomtry was generalized to curved superspace by introducing the super-
vielbein, superconnection, supertorsion and supercurvature.. The method followed
to reach this purpose was to impose some constraints on the supertorsion (Howe [9])
and fix the Wess-Zumino gauge to sweep away the redundant fields and leaving only
the supergravity multiplet. In the end of the chapter local supersymmetry transfor-
mations of the supergravity multiplet were obtained.

In the chapter six we focused on the particular AdS2 superspace by requiring that
the Rarita-Schwinger spinor-vector vanishes and the vielbein is fixed to the Anti De-
Sitter vielbein. From the requirement of self-consistency of the supersymmetric trans-
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formations, we derived the value of the auxiliary field which was related to the inverse
of the radius of the AdS2 superspace. We then constructed a kinetic Lagrangian for a
scalar superfield in this AdS2 superspace and we found that its expression is similar
to the rigid supersymmetric N = (1, 1) case but with the AdS2 vielbein used to define
the integration measure and contract the vector indices. Adding another (massive)
term to the Lagrangian we obtained its field components, and we found that the scalar
and spinor fields do not have the same mass. This result would be expected from the
structure of the AdS2 isometry superalgebra, in which the translational generator Pm

does not commute with the Qα (in contrast to the flat case), therefore PmP
m is not

a Casimir of the AdS2 superalgebra. The mass relations were

M2 =
M

2

(
M

2
+

1

r

)
. (7.1)

where M is the spinorial mass, while M is the scalar mass and it can be seen that the
scalar mass depends on the inverse radius of AdS2 spacetime. If we chooseM = −2

r
we

obtain a vanishing scalar mass and a non-vanishing spinorial mass. As a final exercise
we found the supersymmetric transformations which leave the full Lagrangian invari-
ant and cross-checked the result by checking the invariance of the Lagrangian under
these transformations. Our expectations for future work is to addressed problems
of the AdS2/CFT1 correspondence and string problems in general. The superspace
formalism used in this thesis can be reused in higher dimensions, where geometrical
objects become more complex but the ideas remain the same.

The results of the thesis, i.e. the construction of the Lagrangians for matter fields
in AdS2 provides the basis for further studying of these theories and in particular
their quantum properties, which include the calculation of correlation functions etc.

For further developments of the results of this thesis, we can mention the study
of supersymmetric theories on the direct product of spaces AdS2 × S2, i.e. AdS2

and the two-sphere, or their Euclidean counterparts, on S2 × S2, with the purpose
of studying AdS2/CFT1 correspondence and other dualities with the use of the so
called localization technique which allows one to compute e.g. partition functions in
these theories explicitly without resorting to perturbative methods.



Chapter 8

Appendix-Conventions

8.1 The Lorentz and Poincaré groups

In this chapter we will recollect some crucial conventions, used abroad in the text,
but we will also give a more complete picture to some arguments left apart. We will
follow the so called ”West Coast” conventions on the construction of the metric of
the Minkowski space-time, namely

ηmn =


+1

−1
−1

−1

 , (8.1)

therefore the spacetime interval is defined as

ds2 = +(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = dxmηmndx
m, (8.2)

which is an invariant relativistic observable. Opposite signs choices in the metric
would lead to differences in sign of some objects.

Minkowski space-time is described by translations which form the group M4,
mathematically expressed as the coset group

M4 =
ISO(3, 1)

SO(3, 1)
. (8.3)

A point on this space-time is denoted by

(xm) = (x0, x1, x2, x3), (8.4)

where x0 = t and x1, x2, x3are the space components of the four-vector xm.
The spacetime transformations that leave all the relativistic observables invariant

are the Lorentz transformations defined by

xm′ = Λm
nx

n. (8.5)
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They form a Lie group (Lorentz Group) constrained by the following constraint

ΛTηΛ = η, (8.6)

required by the invariance of the spacetime interval between two events.
We can express the full Lorentz group by

O(1, 3) = (Λ ∈ GL(4, R)|ΛTηΛ = η). (8.7)

We will refer especially to the so called proper orthocronous Lorentz subgroup which
preserves both orientation and the direction of time, and is denoted by SO†(1, 3),which
is expressed as

L↑
+ = {Λ ∈ O(1, 3)|detΛ = +1,Λ0

0 ≥ +1}. (8.8)

There is a larger class of transformations in the Minkowski space-time M4 which
leave invariant physical quantities. This class constitutes the so called Poincaré group
defined as the semidirect product between the Lorentz and translation transformations

ISO†(1, 3) = SO†(1, 3)nR1,3. (8.9)

where translations are explicitly given by

xm → x′m = xm + am, (8.10)

and am is a constant four-vector. Putting together translations and Lorentz transfor-
mations one get the following general transformations

xm → x′m = Λm
nx

n + am. (8.11)

Two Poincaré transformations compose as

(Λ2, a2) ◦ (Λ1, a1) = (Λ2Λ1,Λ2a1 + a2). (8.12)

8.1.1 Lorentz and Poincaré algebra

Lie algebras are vector spaces obtained from Lie groups by Taylor-expanding around
the identity element. For the SO†(1, 3) group it is convenient to determine represen-
tations of the algebra before than those of the group. Then one can find the group
representations by exponentiation.

The Lorentz algebra is derived by linearizing the condition (8.6) around the iden-
tity

Λa
b = δab + ωa

b, (8.13)

we have

ηmn = Λr
mΛ

s
nηrs = (δrm + ωr

m)(δ
s
n + ωs

n)ηrs = ηmn + ηmsω
s
n + ηnsω

s
m + ... (8.14)
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where dots stand for higher orders in ω and then the Lorentz algebra can be defined
as

so(1, 3) = {ω ∈ gl(4, R)|ηω = −(ηω)T , trω = 0}, (8.15)

where ω are represented in the fundamental representations by antisymmetric 4 × 4
matrices which have six independent components hence they have dimension
dim(so(1, 3)) = 6.

This implies that there are 6 generators (Ji, Ki) with i = 1, 2, 3, satisfying the
following non covariant relations

[Ji, Jj] = iϵijkJk, (8.16)

[Ji, Kj] = iϵijkKk, (8.17)

[Ki, Kj] = −iϵijkJk. (8.18)

The Poincaré group elements near the identity can be written as

g(Λ, a) = I− i

2
ωρσM

ρσ + iaµP
µ, (8.19)

where ωρσ = −ωσρ.
Poincaré algebra is given by the following set of commutators in covariant form

[Mµν ,Mρσ] = −i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ) (8.20)

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ) (8.21)

[Pµ, Pν ] = 0 (8.22)

In order to construct representations of the Lorentz algebra it is useful to introduce
complex linear combinations of Ji and Ki

J±
i =

1

2
(Ji ± iKi). (8.23)

We can rewrite the algebra (8.16)-(8.18) as

[J±
i , J

±
j ] = iϵijkJ

±
k , [J±

i , J
∓
j ] = 0. (8.24)

From this relations we show that the complex Lorentz algebra is equivalent to
two su(2)C or equivalently to two sl(2, C) algebras. Hence at the level of complex
algebras we have:

so(1, 3)C ≃ su(2)C ⊕ su(2)C (8.25)

where the Lorentz algebra so(1, 3) is a real form of so(1, 3)C .
Representations of Lorents group can be given in function of those of SU(2) thanks

to the isomorphism (SO(1, 3) ≃ SU(2)⊗SU(2)
Z2

) which are labelled by spins, so we have
to work with spinors.
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