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Introduction

The Airy equation is one of the �rst cases that Stokes studied in
his work [9], as it is a simple case in which one can have a clear
view of the Stokes phenomenon.

Let V be a complex line with complex coordinate z, whose
dual is V∗ with complex coordinate w. In V∗, the Airy equation
Qψ = 0, with Q = ∂2

w − w, has two entire solutions that have an
integral representation given by

ψ(w) =

∫
γ

exp

(
z3

3
− zw

)
dz, (1)

with γ an appropriate integration path.
For large value of |w|, this is asymptotic to a linear combination

of

v± = w−1/4eg±
(
1 +O(w−1)

)
, where g± = ±2

3
w3/2,

that are multivalued functions of the complex variable w.
The integral above is the Fourier-Laplace transform of ef(z),

where f(z) = z3/3.
This transform has a realization at the Weyl algebra level that is
the isomorphism

P 7→ LP,

given by z 7→ −∂w, ∂z 7→ w.
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6 Introduction

This induces an equivalence between holonomic algebraicD-modules
on V and on V∗, that we still denote byM 7→ LM.

So, following the notation in [2], let N = DV∗/DV∗Q be the
DV∗-module associated to the Airy operator Q.
By the observations above, one knows that N has two exponential
factors at ∞, that are g+ and g−.

At the level of Weyl algebra, one has N ' LM, whereM =
DV/DVP is the DV-module associated to P = z2 − ∂z.
The equation Pφ = 0 has the entire solution φ(z) = ef(z), so f is
the only exponential factor ofM.

At level of R-constructible enhanced ind-sheaves, if SolE de-
notes the enhanced solution functor, what we just said is that

SolE(N )|S×R = (Eg+ ⊕ Eg−) |S×R,

in an appropriate sector S, and

SolE(M) = Ez3/3.

Moreover,

SolE(N ) '
(
Ez3/3

)f
,

where f is the enhanced Fourier-Sato transform.
Considering only the case of enhanced sheaves, we will establish

explicit isomorphisms

(Eg+ ⊕ Eg−) |Si×R '
(
Ez3/3

)f
|Si×R,

with Si a sector bounded by two consecutive Stokes lines.

This will allow us to reconstruct the sheaf
(
Ez3/3

)f
.
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The contents of this thesis are both the mathemathical notions
just mentioned and the explicit computation of what we need to
study the Airy equation.

In chapter 1 we construct the category of enhanced sheaves by
adding a real variable to the sheaves of k-vector spaces on M ,
where k is a �eld and M is a good topological space.
First of all we de�ne the functors of convolution in Db(kM×R) in
the new variable t ∈ R, and we prove some properties of these
new functors.
Then we de�ne the category of enhanced sheaves by a quotient of
Db(kM×R) with the subcategory π−1Db(kM), where π : M ×R→
M is the projection. We de�ne also the Grothendieck operations of
this new category, and we prove that they satisfy similar properties
to those of classical sheaves.

Then we talk about ind-sheaves, bordered spaces and enhanced
ind-sheaves. These are the consequent generalizations of enhanced
sheaves, so we decide to mention them even if they are not neces-
sary in the computation of the Airy case.

Finally, we de�ne the R-constructible sheaves, that we will use
in the following.

In chapter 2 we give some basic notions on D-modules and
the de�nition of the enhanced solution functor, since we talked
about them in this introduction, and to recall us that there is
another equivalent way to study the Airy equation, even if we do
not handle it.

The notions instead that will be used in the following is that
of exponential D-modules and exponential enhanced sheaves.
Here in fact we concentrate on the de�nitions of them and in some
of their properties.



8 Introduction

In chapter 3 we �nd the analogues of the classical Fourier-
Laplace transform at the level ofD-modules and enhanced sheaves.
Since originally the Fourier transform was introduced as an inte-
gral transformation with a �xed kernel, �rst of all we de�ne the

integral transformations
D◦ and

∗◦. Then we use them to de�ne
the Fourier-Laplace transform for D-modules and the enhanced
Fourier-Sato transform for enhanced sheaves.

In chapter 4 we study the Airy equation.
In the �rst section we �nd explicitly the integral representation

of the solutions of the Airy equation (1). Then, using Morse
theory, we built the cycles that make this integral converges.

In the following, we explain well the Stokes phenomenon and
we translate the explicit computations we made before at level
of R-constructible enhanced sheaves. We study Eg+ ⊕ Eg−, that
comes from the asymptoticity of the solutions of the Airy equation,
and (Ez3/3)f, that comes from the integral form of the solutions,
reaching to show how to connect them.



Chapter 1

More general sheaves

1.1 Sheaves

Recall that a topological space is good if it is Hausdor�, locally
compact, countable at in�nity and has �nite soft-dimension.

Let M be a good topological space and let k be a �eld. Fol-
lowing the notation used in [7], denote by Db(kM) the bounded
derived category of sheaves of k-vector spaces on M .
For S ⊂ M a locally closed subset, denote by kS the zero exten-
sion to M of the constant sheaf on S with stalk k.
For f : M → N a morphism of good topological spaces, denote by
⊗, f−1, Rf!, RHom, Rf∗ and f ! the six Grothendieck operations
for sheaves.

De�ne the duality functor of Db(kM), by

DMF = RHom(F, ωM),

for F ∈ Db(kM) and ωM := a!
Mk{pt} the dualizing complex, where

aM : M → {pt}.
Note 1.1. If M is a C 0-manifold of dimension dM and orM :=
H−dM (ωM) is the orientation sheaf, we have

ωM ' orM [dM ].

9



10 More general sheaves

1.2 Enhanced sheaves

1.2.1 Convolution

Consider the maps

µ, q1, q2 : M × R× R→M × R

given by q1(x, t1, t2) = (x, t1), q2(x, t1, t2) = (x, t2) and µ(x, t1, t2) =
(x, t1 + t2). The functors of convolution in Db(kM×R) in the vari-
able t ∈ R are de�ned by

F1

∗
⊗ F2 = Rµ!(q

−1
1 F1 ⊗ q−1

2 F2),

RHom∗(F1, F2) = Rq1∗RHom(q−1
2 F1, µ

!F2).
(1.1)

We'll write k{t=0} (resp. k{t≤0}, k{t≥0} ) instead of kM×{0} (resp.
kM×{t∈R : ≤0}, kM×{t∈R : t≥0}).

The convolution product
∗
⊗ makes Db(kM×R) into a commuta-

tive tensor category, with k{t=0} as unit object.

Notice that k{t≥0} is idempotent for
∗
⊗, i.e.

k{t≥0}
∗
⊗ k{t≥0} ' k{t≥0}.

Moreover, also k{t≤0} is idempotent for
∗
⊗, and one has

k{t≥0}
∗
⊗ k{t≤0} ' 0.

Lemma 1.2. Let K ∈ Db(kM×R). The functors of convolution

form an adjoint pair
(
·
∗
⊗K,RHom∗(K, ·)

)
, i.e.

HomDb(kM×R)(K1

∗
⊗K,K2) ' HomDb(kM×R)(K1, RHom∗(K,K2)),

for K1, K2 ∈ Db(kM×R).
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Proof. Let Hom = HomDb(kM×R). One has

Hom(K1

∗
⊗K,K2) = Hom(Rµ!(q

−1
1 K1 ⊗ q−1

2 K,K2))

' Hom(q−1
1 K1 ⊗ q−1

2 K,µ!K2)

' Hom(q−1
1 K1, RHom(q−1

2 K,µ!K2))

' Hom(K1, Rq1∗RHom(q−1
2 K,µ!K2))

= Hom(K1, RHom∗(K,K2)).

Remark 1.3. Since k{t=0} is the unit object for
∗
⊗, by adjunction

one has

RHom∗(k{t=0}, H) ' H, ∀H ∈ Db(kM×R).

Properties of the convolution functors

Note 1.4. Notice that π ◦ µ = π ◦ q1 = π ◦ q2 and that the
following diagrams are Cartesian:

M × R2 q1
//

µ
��

M × R
π
��

M × R π //M

, M × R2 q2
//

µ
��

M × R
π
��

M × R π //M

,

M × R2 q1
//

q2
��

M × R
π
��

M × R π //M

.

This means that one has

π−1Rπ! ' Rµ!q
−1
1 ' Rµ!q

−1
2 ' Rq1!q

−1
2 ,

π!Rπ∗ ' Rq1∗µ
! ' Rq2∗µ

!.

For a proof of these facts one can see for example [7].
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Now we'll use this and some classical adjunctions and equiv-
alences for sheaves, to prove some properties of the convolution
functors in Db(kM×R).

Proposition 1.5. Let K1, K2, K3 ∈ Db(kM×R). One has

(K1

∗
⊗K2)

∗
⊗K3 ' K1

∗
⊗ (K2

∗
⊗K3),

RHom∗(K1

∗
⊗K2, K3) ' RHom∗(K1, RHom∗(K2, K3)).

Proof. Consider

µ′, q′1, q
′
2, q
′
3 : M × R3 →M × R,

where µ′(x, t1, t2, t3) = (x, t1 + t2 + t3) and q′1, q
′
2, q
′
3 are the pro-

jections.

The �rst equivalence follows since both (K1

∗
⊗ K2)

∗
⊗ K3 and

K1

∗
⊗ (K2

∗
⊗K3) are isomorphic to

Rµ′!(q
′−1
1 K1 ⊗ q′−1

2 K2 ⊗ q′−1
3 K3).

Let Hom = HomDb(kM×R) and K ∈ Db(kM×R). One has

Hom(K,RHom∗(K1

∗
⊗K2, K3))

' Hom(K
∗
⊗ (K1

∗
⊗K2), K3)

' Hom((K
∗
⊗K1)

∗
⊗K2, K3), by the �rst isomorphism

' Hom(K
∗
⊗K1, RHom∗(K2, K3))

' Hom(K,RHom∗(K1, RHom∗(K2, K3))).

So we have the second equivalence by Yoneda.
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Proposition 1.6. Let K,K1, K2 ∈ Db(kM×R) and L ∈ Db(kM).
One has

π−1L⊗ (K1

∗
⊗K2) ' (π−1L⊗K1)

∗
⊗K2,

RHom(π−1L,RHom∗(K1, K2)) ' RHom∗(π−1L⊗K1, K2).

In particular,

π−1L⊗K ' (π−1L⊗ k{t=0})
∗
⊗K,

RHom(π−1L,H) ' RHom∗(π−1L⊗ k{t=0}, K).

Proof. For the �rst equivalence:

(π−1L⊗K1)
∗
⊗K2 = Rµ!(q

−1
1 (π−1L⊗K1)⊗ q−1

2 K2)

' Rµ!(q
−1
1 π−1L⊗ q−1

1 K1 ⊗ q−1
2 K2)

' Rµ!(µ
−1π−1L⊗ q−1

1 K1 ⊗ q−1
2 K2)

' π−1L⊗Rµ!(q
−1
1 K1 ⊗ q−1

2 K2)

= π−1L⊗ (K1

∗
⊗K2).

For the second one:

RHom(π−1L,RHom∗(K1, K2))

= RHom(π−1L,Rq1∗RHom(q−1
2 K1, µ

!K2))

' Rq1∗RHom(q−1
1 π−1L,RHom(q−1

2 K1, µ
!K2))

' Rq1∗RHom(q−1
2 π−1L,RHom(q−1

2 K1, µ
!K2))

' Rq1∗RHom(q−1
2 π−1L⊗ q−1

2 K1, µ
!K2)

' Rq1∗RHom(q−1
2 (π−1L⊗K1), µ

!K2)

= RHom∗(π−1L⊗K1, K2).

The last isomorphisms follows from the �rst ones and Remark
(1.3), with K1 = k{t=0} and K2 = K.
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Proposition 1.7. LetK,K1, K2, K3 ∈ Db(kM×R) and L ∈ Db(kM).
One has

Rπ∗RHom(K1

∗
⊗K2, K3) ' Rπ∗RHom(K1, RHom∗(K2, K3)),

RHom∗(K, π!L) ' π!RHom(Rπ!K,L).

Proof. For the �rst equivalence:

Rπ∗RHom(K1

∗
⊗K2, K3)

= Rπ∗RHom(Rµ!(q
−1
1 K1 ⊗ q−1

2 K2), K3)

' Rπ∗Rµ∗RHom(q−1
1 K1 ⊗ q−1

2 K2, µ
!K3)

' Rπ∗Rq1∗RHom(q−1
1 K1, RHom(q−1

2 K2, µ
!K3))

' Rπ∗RHom(K1, Rq1∗RHom(q−1
2 K2, µ

!K3))

= Rπ∗RHom(K1, RHom∗(K2, K3)).

Instead, for the second one:

RHom∗(K, π!L) = Rq1∗RHom(q−1
2 K,µ!π!L)

' Rq1∗RHom(q−1
2 K, q!

1π
!L)

' RHom(Rq1!q
−1
2 K, π!L)

' RHom(π−1Rπ!K, π
!L)

' π!RHom(Rπ!K,L).

Proposition 1.8. Let K1, K2 ∈ Db(kM×R). One has

Rπ!(K1

∗
⊗K2) ' Rπ!K1 ⊗Rπ!K2,

Rπ∗RHom∗(K1, K2) ' RHom(Rπ!K1, Rπ∗K2).
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Proof. For the �rst equivalence:

Rπ!(K1

∗
⊗K2) = Rπ!Rµ!(q

−1
1 K1 ⊗ q−1

2 K2)

' Rπ!Rq1!(q
−1
1 K1 ⊗ q−1

2 K2)

' Rπ!(K1 ⊗Rq1!q
−1
2 K2)

' Rπ!(K1 ⊗ π−1Rπ!K2)

' Rπ!K1 ⊗Rπ!K2.

Instead, for the second one:

Rπ∗RHom∗(K1, K2) = Rπ∗Rq1∗RHom(q−1
2 K1, µ

!K2)

' Rπ∗Rµ∗RHom(q−1
2 K1, µ

!K2)

' Rπ∗RHom(Rµ!q
−1
2 K1, K2)

' Rπ∗RHom(π−1Rπ!K1, K2)

' RHom(Rπ!K1, Rπ∗K2).

Proposition 1.9. Let L ∈ Db(kM) and H ∈ Db(kM×R). Con-
sider a : M × R → M × R de�ned by a(x, t) = (x,−t). One
has

RHom∗(H, π−1L⊗ k{t=0}) ' Ra∗RHom(H, π!L).

Proof. Consider

M
i0−→M × R δa−→M × R2,

de�ned by i0(x) = (x, 0) and δa(x, t) = (x,−t, t). Then the
following diagram is Cartesian:

M × R δa //

π
��

M × R2

µ
��

M
i0 //M × R

.
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Notice that k{t=0} ' Ri0∗kM . Then:

RHom∗(H, π−1L⊗ k{t=0}) ' RHom∗(H,Ri0∗L)

' Rq1∗RHom(q−1
2 H,µ!Ri0∗L)

' Rq1∗RHom(q−1
2 H,Rδa∗π

!L)

' Rq1∗Rδ
a
∗RHom(δa−1q−1

2 H, π!L).

One can conclude since q1 ◦ δa = a and q2 ◦ δa = idM×R.

1.2.2 Enhanced sheaves

Recall that if P is a full triagulated subcategory of a triangulated
category Q, the quotient category Q/P is de�ned as the localiza-
tion QΣ of Q with respect to the multiplicative system Σ of mor-
phism u �tting into a distinguished triangle X

u−→ Y → Z
+1−→,

with Z ∈ P .

Let π : M × R→M be the projection.
Consider the full subcategories of Db (kM×R)

N± := {K ∈ Db (kM×R) : k{∓t≥0}
∗
⊗K ' 0}

= {K ∈ Db (kM×R) : RHom∗(k{∓t≥0}, K) ' 0},
N := N+ ∩N− = π−1Db(kM).

De�nition 1.10. The categories of enhanced sheaves are de�ned
by

Eb
±(kM) := Db (kM×R) /N∓,
Eb(kM) := Db (kM×R) /N .

Recall that if P is a triangulated subcategory of Q, the right
orthogonal P⊥ and the left orthogonal ⊥P are the full subcate-
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gories of Q de�ned by

P⊥ = {X ∈ Q : HomQ(Y,X) ' 0 ∀Y ∈ P},
⊥P = {X ∈ Q : HomQ(X, Y ) ' 0 ∀Y ∈ P}.

One has

Ẽb
±(kM) := ⊥N∓ = {H : k{±t≥0}

∗
⊗H ∼−→ H},

Ẽb(kM) := ⊥N = {H :
(
k{t≥0} ⊕ k{t≤0}

) ∗
⊗H ∼−→ H}.

The same equalities hold for right orthogonals, replacing
∗
⊗ with

RHom∗.
The quotient functor

Q : Db(kM×R)→ Eb(kM),

has fully faithful left and right adjoints, respectively given by

LE(QF ) = (k{t≥0} ⊕ k{t≤0})
∗
⊗ F ∈ ⊥N ,

RE(QF ) = RHom∗
(
k{t≥0} ⊕ k{t≤0}, F

)
∈ N⊥,

(1.2)

for F ∈ Db(kM×R).
One has ⊥N+ ⊕ ⊥N− ' ⊥N , so there are natural equivalences

Eb
±(kM) ' N∓/N ' ⊥N∓ ' Ẽb

±(kM),

Eb(kM) ' ⊥N ' Eb
+(kM)⊕ Eb

−(kM).
(1.3)

The same equivalences hold when replacing left with right orthog-
onals.

Notice that these results say us that the objects F ∈ Eb
±(kM)

are such that

k{±t≥0}
∗
⊗ F ' F and k{∓t≥0}

∗
⊗ F ' 0,
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and the objects F ∈ Eb(kM) are such that

(k{t≥0} ⊕ k{t≤0})
∗
⊗ F ' F.

(1.3) also shows that the categories of enhanced sheaves de�ned,
are triangulated categories.

Operations on enhanced sheaves

Let f : M → N be a morphism of good topological spaces.

Enhanced sheaves are endowed with the six operations
∗
⊗, RHom∗,

Ef−1, Ef∗, Ef!, Ef !. Here,
∗
⊗ andRHom∗ descend fromDb(kM×R),

and the exterior operations are de�ned by Ef!(QF ) = Q(Rf̃!F ),
Ef−1(QG) = Q(f̃−1G), ..., where we set f̃ = f × idR.

There is a natural embedding

ε : Db(kM)→ Eb
+(kM) ⊂ Eb(kM)

F 7→ k{t≥0} ⊗ π−1F,
(1.4)

that is well de�ned since, by Proposition 1.6 and by the idempo-
tency of k{t≥0}, one has

k{t≥0}
∗
⊗(k{t≥0}⊗π−1F ) ' (k{t≥0}

∗
⊗k{t≥0})⊗π−1F ' k{t≥0}⊗π−1F.

Proposition 1.11. If f : M → N is a morphism of good topolog-
ical spaces, then ε interchanges the operations ⊗, f−1, and Rf!

with
∗
⊗, f̃−1, and Rf̃!, respectively.

Proof. Consider the diagram

M × R π //

f̃
��

M

f
��

N × R π //N.
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This is a Cartesian square, so one has

f−1Rπ! ' Rπ!f̃
−1, π−1Rf! ' Rf̃!π

−1,

Rf̃∗π
! ' π!Rf∗, Rπ∗f̃

! ' f !Rπ∗.

Let F,G ∈ Db(kM).

• By Proposition 1.6, for the product one has

ε(F )
∗
⊗ ε(G) = (k{t≥0} ⊗ π−1F )

∗
⊗ (k{t≥0} ⊗ π−1G)

' (k{t≥0}
∗
⊗ k{t≥0})⊗ π−1F ⊗ π−1G

' k{t≥0} ⊗ π−1(F ⊗G) = ε(F ⊗G).

• Since f̃ doesn't act on t ∈ R, then k{t≥0} ' f̃−1k{t≥0} (de-
noting in the same way kM×{t≥0} and kN×{t≥0}). So,

ε(Rf!F ) = k{t≥0} ⊗ π−1Rf!F

' k{t≥0} ⊗Rf̃!π
−1F ' f̃!(ε(F )), and

ε(f−1F ) = k{t≥0} ⊗ π−1f−1F

' f̃−1k{t≥0} ⊗ f̃−1π−1F ' f̃−1(ε(F )).

Notice that, since the external operations on enhanced sheaves
are induced by the ones in Db(kM×R), the compatibility with
composition of morphisms and the equivalences between the mor-
phisms that compose a Cartesian square are satis�ed also at level
of enhanced sheaves.

There are also properties that connect the di�erent Grothendieck
operations.
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Proposition 1.12. Let f : M → N be a morphism of good
topological spaces. Let F ∈ Db(kM×R) and G,H ∈ Db(kN×R).
One has

Ef!(Ef
−1(QG)

∗
⊗ (QF )) ' (QG)

∗
⊗ Ef!(QF ),

Ef−1((QG)
∗
⊗ (QH)) ' Ef−1(QG)

∗
⊗ Ef−1(QH),

RHom∗((QG), Ef∗(QF )) ' Ef∗RHom∗(Ef−1(QG), (QF )),

RHom∗(Ef!(QF ), (QG)) ' Ef∗RHom∗((QF ), Ef !(QG)),

Ef !RHom∗((QG), (QH)) ' RHom∗(Ef−1(QG), Ef !(QH)).

Proof. To avoid confusion, denote by q1, q2, µ : M ×R2 →M ×R
the usual operations and by q′1, q

′
2, µ

′ : N × R2 → N × R the
same in N . Let Q be the quotient functor both in M and in N ,
for semplicity. Let f̄ = f × idR × idR.
One has the Cartesian square

M × R2 µ
//

f̄
��

M × R
f̃
��

N × R2 µ′
//N × R.

It remains Cartesian also is we replace µ, µ′ with either q1, q
′
1 or

q2, q
′
2.

Now we use these facts and Note 1.4 to prove the proposition.

(i)

(QG)
∗
⊗ Ef!(QF ) ' Q(Rµ′!(q

′−1
1 G⊗ q′−1

2 Rf̃!F ))

' Q(Rµ′!(q
′−1
1 G⊗Rf̄!q

−1
2 F ))

' Q(Rµ′!Rf̄!(f̄
−1q′

−1
1 G⊗ q−1

2 F ))

' Q(Rf̃!Rµ!(q
−1
1 f̃−1G⊗ q−1

2 F ))

' Ef!(Ef
−1(QG)

∗
⊗ (QF )).
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(ii)

Ef−1((QG)
∗
⊗ (QH)) ' Q(f̃−1Rµ′!(q

′−1
1 G⊗ q′−1

2 H))

' Q(Rµ!f̄
−1(q′

−1
1 G⊗ q′−1

2 H))

' Q(Rµ!(f̄
−1q′

−1
1 G⊗ f̄−1q′

−1
2 H))

' Q(Rµ!(q
−1
1 f̃−1G⊗ q−1

2 f̃−1H))

= Ef−1(QG)
∗
⊗ Ef−1(QH).

(iii)

RHom∗((QG), Ef∗(QF )) ' Q(Rq′1∗RHom(q′
−1
2 G, µ′

!
Rf̃∗F ))

' Q(Rq′1∗RHom(q′
−1
2 G,Rf̄∗µ

!F ))

' Q(Rq′1∗Rf̄∗RHom(f̄−1q′
−1
2 G, µ!F ))

' Q(Rf̃∗Rq1∗RHom(q−1
2 f̃−1G, µ!F ))

' Ef∗RHom∗(Ef−1(QG), (QF )).

(iv)

RHom∗(Ef!(QF ), (QG)) ' Q(Rq′1∗RHom(q′
−1
2 Rf̃!F, µ

′!G))

' Q(Rq′1∗RHom(Rf̄!q
−1
2 F, µ′

!
G))

' Q(Rq′1∗Rf̄∗RHom(q−1
2 F, f̄ !µ′

!
G))

' Q(Rf̃∗Rq1∗RHom(q−1
2 F, µ!f̃ !G))

' Ef∗RHom∗((QF ), Ef !(QG)).
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(v)

Ef !RHom∗((QG), (QH)) ' Q(f̃ !Rq′1∗RHom(q′
−1
2 G, µ′

!
F ))

' Q(Rq1∗f̄
!RHom(q′

−1
2 G, µ′

!
F ))

' Q(Rq1∗RHom(f̄−1q′
−1
2 G, f̄ !µ′

!
F ))

' Q(Rq1∗RHom(q−1
2 f̃−1G, µ!f̃ !F ))

' RHom∗(Ef−1(QG), Ef !(QG)).

1.3 Enhanced ind-sheaves

Let M be a good topological space. The derived category of en-
hanced ind-sheaves on M is de�ned as a quotient of the derived
category of ind-sheaves on the bordered space M × R∞. Let's
mention here these notions even if they are beyond the scope of
this thesis.

References are made to [5] for ind-sheaves, and to [3], [4] and
[6] for bordered spaces and enhanced ind-sheaves.

1.3.1 Ind-sheaves

Let C be a category and C∨ = Fct(Cop,Set) be the category of
contravariant functors from C to the category of sets. Denote
h : C → C ∨ the Yoneda embedding given by X 7→ HomC (∗, X).

We denote by ” lim−→ ” the inductive limit in C ∨, i.e. if I is a
small category and α : I → C is a functor, we set ” lim−→ ”α =
lim−→(h ◦ α). In other words, ” lim−→ ”α is the object of C ∨ de�ned
by:

” lim−→ ”α : C 3 X 7→ lim−→
i∈I

HomC (X,α(i)).



1.3 Enhanced ind-sheaves 23

De�nition 1.13. An object F of C∨ is an ind-object if there exists
a small �ltrant category J and an inductive system F ′ : J → C
such that F ' ” lim−→

J
”F ′.

Denote by Ind(C) the full subcategory of C∨ consisting of ind-
objects in C.

De�nition 1.14. An ind-sheaf is an ind-object in the category
of sheaves with compact support.

Denote by I(kM) = Ind(Modc(kM)) the category of ind-sheaves,
whereModc(kM) is the category of sheaves with compact support.
It is an abelian tensor category with ⊗ as a tensor product and
kM as a unit object.

There is a natural embedding of sheaves into ind-sheaves:

ι : Mod(kM)→ I(kM)

F 7→ ” lim−→
U

”(kU ⊗ F ),

for U running over the relatively compact open subsets ofM . It is
an exact and fully faithful functor and it has an exact left adjoint
α given by

α : I(kM)→Mod(kM)

” lim−→ ”Fi 7→ lim−→Fi.
(1.5)

The functor α has an exact fully faithful left adjoint, denoted β.

Denote byDb(IkM) the bounded derived category of ind-sheaves
and, for a morphism f : M → N of good topological spaces, de-
note by ⊗, RIhom, f−1, Rf∗, Rf!!, f

! the six Grothendieck
operations for ind-sheaves.
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Remark 1.15. In I(kM) there is a sheaf-valued hom-functor

Hom := α ◦ Ihom,

such that Γ(M ;Hom(F,G)) ' HomI(kM )(F,G).

1.3.2 Ind-sheaves on bordered spaces

De�nition 1.16. A bordered space is a pair M∞ = (M, M̌) of a
good topological space M̌ and an open subset M ⊂ M̌ .

A morphism f : M∞ → N∞ is a continuous map f : M → N

such that the �rst projection M̌×Ň → M̌ is proper on the closure
Γ̄f of the graph Γf of f . This assumption is satis�ed in particular
if either M = M̌ or Ň is compact.
Moreover the composition of two morphism is the composition of
the underlying continuous maps.
In this way, we have constructed the category of bordered spaces.

The category of topological spaces embeds into that of bordered
spaces by the identi�cation M = (M,M).

De�nition 1.17. A morphism f : M∞ → N∞ is called semi-
proper, if the second projection Γ̄f → Ň is proper.
f is proper if f : M → N is proper.

De�nition 1.18. A subset S of a bordered space M∞ = (M, M̌)
is a subset of M . We say that S is open (resp. closed, locally
closed) if it is so in M .
We say that S is relatively compact if it is contained in a compact
subset of M̌ .
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The triangulated category of ind-sheaves on M∞ is de�ned by

Db(IkM∞) = Db(Ind(Modc(kM∞))),

where Modc(kM∞) ⊂Mod(kM) is the full subcategory of sheaves
on M whose support is relatively compact in M∞.

There is a natural equivalence of triangulated categories

Db(IkM∞) ' Db(IkM̌)/Db(IkM̌\M).

The quotient functor q : Db(IkM̌) → Db(IkM∞) has a left
adjoint l and a right adjoint r, both fully faithful, given by

l(qF ) = kM ⊗ F, r(qF ) = RIhom(kM , F ).

For f : M∞ → N∞ a morphism of bordered spaces, the six oper-
ations for ind-sheaves on bordered spaces are de�ned by

qF1 ⊗ qF2 = q(F1 ⊗ F2), RIhom(qF1, qF2) = qRIhom(F1, F2),

Rf!!(qF ) = qRq!!(kΓf
⊗ p−1

1 F ), Rf∗(qF ) = qRq∗RIhom(kΓf
, p!

1F ),

f−1(qG) = qRp!!(kΓf
⊗ p−1

2 G), f !(qG) = qRp1∗RIhom(kΓf
, p!

2G),

where p1 : M̌×Ň → M̌ and p2 : M̌×Ň → Ň are the projections.
There is a natural exact embedding

ιM : Db(kM)→ Db(IkM∞)

F 7→ ” lim−→
U

”(kU ⊗ F ),

for U running over the family of relatively compact open subsets
of M∞.

1.3.3 Ind-sheaves with an extra variables

Notation 1.19. Let R̄ := R∪{+∞,−∞} be the two-point com-
pacti�cation of the a�ne line. The bordered line is

R∞ := (R, R̄).
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Note 1.20. Let P = R t {∞} be the real projective line.
R∞ is isomorphic to (R, P ) as a bordered space.

Let M∞ be a bordered space. Consider the morphisms

µ, q1, q2 : M∞ × R∞ × R∞ →M∞ × R∞,

where µ(x, t1, t2) = (x, t1 + t2) and q1, q2 are the natural projec-
tions.

De�nition 1.21. The convolution functors are de�ned as follows:
+
⊗ : Db(IkM∞×R∞)×Db(IkM∞×R∞)→ Db(IkM∞×R∞)

(F1, F2) 7→ Rµ!!(q
−1
1 F1 ⊗ q−1

2 F2),

Ihom+ : Db(IkM∞×R∞)op ×Db(IkM∞×R∞)→ Db(IkM∞×R∞)

(F1, F2) 7→ Rq1∗RIhom(q−1
2 F1, µ

!F2).

The category Db(IkM∞×R∞) has a structure of commutative

tensor category with
+
⊗ as a tensor product and k{t=0} as unit

object.

1.3.4 Enhanced ind-sheaves

Denote by π∞ : M∞×R∞ →M∞ the projection. As we did for en-
hanced sheaves, consider the full subcategories of Db (IkM∞×R∞)

N± := {K ∈ Db (IkM∞×R∞) : k{∓t≥0}
+
⊗K ' 0}

= {K ∈ Db (IkM∞×R∞) : Ihom+(k{∓t≥0}, K) ' 0},
N := N+ ∩N− = π−1

∞ D
b(IkM∞).

De�nition 1.22. The categories of enhanced ind-sheaves are de-
�ned by

Eb
±(IkM∞) := Db (IkM∞×R∞) /N∓,
Eb(IkM∞) := Db (IkM∞×R∞) /N .
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One has

⊥N± = {H : k{∓t≥0}
+
⊗H ∼−→ H},

⊥N = {H :
(
k{t≥0} ⊕ k{t≤0}

) +
⊗H ∼−→ H},

and the same equalities hold for right orthogonals, replacing
+
⊗

with Ihom+.
Denote Q : Db(IkM∞×R∞)→ Eb(IkM) the quotient functor. It

has a left adjoint LE and a right adjoint RE, given by

LE(H) =
(
k{t≥0} ⊕ k{t≤0}

) +
⊗H ∈ ⊥N ,

RE(H) = Ihom+
(
k{t≥0} ⊕ k{t≤0}, H

)
∈ N⊥,

for H ∈ Eb(IkM).
One has ⊥N+ ⊕ ⊥N− ' ⊥N , so there are natural equivalences

Eb
±(IkM∞) ' N∓/N ' ⊥N∓,
Eb(IkM∞) ' ⊥N ' Eb

+(IkM∞)⊕ Eb
−(IkM∞).

The same equivalences hold when replacing left with right orthog-
onals.

The category Eb(IkM) is endowed with an analogue of the

convolution functors, denoted again
+
⊗ and Ihom+. Moreover,

if f : M∞ → N∞ is a morphism of bordered spaces, we have
Ef−1, Ef∗, Ef!!, Ef

! that are induced by f̃ at the level of ind-
sheaves.
Moreover, Eb(IkM) has a natural hom-functor HomE with values
in Db(kM), given by

HomE : Eb(IkM)op × Eb(IkM)→ Db(kM)

(K1, K2) 7→ αRπ∗RIhom(LEK1, L
EK2),
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where α induced by (1.5).
Set

kEM = ” lim−→
a→+∞

”k{t≥a} ∈ Eb(IkM).

The duality functor for enhanced ind-sheaves is de�ned by

DE
M : Eb(IkM)→ Eb(IkM)op

K 7→ Ihom+
(
K,ωEM

)
,

where we set ωEM := kEM ⊗ π−1ωM .



1.4 R-construibility 29

1.4 R-construibility

Proofs of the propositions of this section can be found in [7], Chap-
ter VIII.

1.4.1 Subanalytic sets

Let Z be a subset of X, real analytic manifold.

De�nition 1.23. One says Z is subanalytic at x ∈ X if there
exist an open neighborhood U of x, compact manifolds Y i

j (i =
1, 2, 1 ≤ j ≤ N) and morphisms f ij : Y i

j → X such that:

Z ∩ U = U ∩ ∪Nj=1(f
1
j (Y 1

j ) \ f 2
j (Y 2

j )).

If Z is subanalytic at each x ∈ X, one says Z is subanalytic in
X.

Subanalytic sets inherit the following properties.

Proposition 1.24. (i) Assume Z is subanalytic in X. Then Z̄
and Int(Z) are subanalytic in X. Moreover the connected
components of Z are locally �nite and subanalytic.

(ii) Assume Z1 and Z2 are subanalytic in X. Then Z1∪Z2, Z1 \
Z2, Z1 ∩ Z2 are subanalytic.

(iii) Let f : Y → X be a morphism of manifolds. If Z ⊂ X is
subanalytic in X, then f−1(Z) is subanalytic in Y .
If W ⊂ Y is subanalytic in Y and f is proper on W̄ , then
f(W ) is subanalytic in X.

(iv) Let Z be a closed subanalytic subset of X. Then there exist
a manifold Y and a proper morphism f : Y → X such that
f(Y ) = Z.
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1.4.2 R-constructible sheaves

Let k be a �eld and M be a real analytic manifold.

De�nition 1.25. Let F ∈ Ob(Db(M)).
One says that F is R-constructible if there exists a locally �nite
covering M = ∪i∈IXi by subanalytic subsets such that for all
j ∈ Z and all i ∈ I, both F |Xi

and Hj(F )|Xi
are locally constant

of �nite rank.

Example 1.26. If Z is a locally closed subanalytic subset of M ,
then the sheaf kZ is R-constructible.

Denote by Db
R-c(kM) the full subcategory of Db(kM) whose

objects have R-constructible cohomologies.
This is a triangulated category that is closed under ⊗, RHom and
the duality functor DM .

Proposition 1.27. Let f : M → N be a morphism of real ana-
lytic manifolds.

(i) The functors f−1 and f ! send Db
R-c(kN) to Db

R-c(kM).

(ii) If f is semiproper, then the functors Rf!! and Rf∗ send
Db

R-c(kM) to Db
R-c(kN).

Let P = R ∪ {∞} be the real projective line.
Denote byDb

R-c(kM×R∞) the full subcategory ofDb
R-c(kM×R) whose

objects F are such that Rj!F is R-constructible in M ×P , where
j : M × R → N × R is the embedding. We can also consider
Db

R-c(kM×R∞) as a full subcategory of Db
R-c(kM×P ), since Rj! is

fully faithfull.

De�nition 1.28. The triangulated category Ẽb
R-c(kM) ofR-constructible

enhanced sheaves is the full subcategory of Db
R-c(kM×R∞) whose

objects F satisfy F ' k{t≥0}
∗
⊗ F .
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IfM∞ = (M, M̌) is a bordered space, the category Eb
R-c(IkM∞)

of R-constructible enhanced ind-sheaves is de�ned as the full sub-
category of Eb(IkM∞) whose objects K satisfy the following prop-
erty: for any relatively compact open subset U ⊂ M there exists
F ∈ Ẽb

R-c(kM) such that

π−1kU ⊗K ' kEM
+
⊗QF.

Proposition 1.29. Let f : M → N be a morphism of real ana-
lytic manifolds.

(i) Eb
R-c(IkM) is a triangulated subcategory of Eb(IkM).

(ii) The duality functor DE
M gives an equivalence

Eb
R-c(IkM)op

∼−→ Eb
R-c(IkM),

and there is a canonical isomorphism of functors idEb
R-c(IkM )

∼−→
DE
M ◦DE

M .

(iii) The functors Ef−1 and Ef ! send Eb
R-c(IkN) to Eb

R-c(IkM),
and

DE
M ◦ Ef−1 ' Ef ! ◦DE

M ,

DE
M ◦ Ef ! ' Ef−1 ◦DE

M .

(iv) Assume that f is semi-proper. Then the functors Ef∗ and
Ef!! send E

b
R-c(IkM) to Eb

R-c(IkN), and

DE
N ◦ Ef∗ ' Ef!! ◦DE

M ,

DE
N ◦ Ef!! ' Ef∗ ◦DE

M .

Proposition 1.30. Let K,K ′ ∈ Eb
R-c(IkM). Then both K

+
⊗

K ′ and Ihom+(K,K ′) are R-constructible, and one has isomor-
phisms
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(i) DE
M

(
K

+
⊗K ′

)
' Ihom+(K,DE

MK
′);

(ii) DE
MIhom+(K,K ′) ' K

+
⊗DE

MK
′;

(iii) Ihom+(K,K ′) ' Ihom+(DE
MK

′, DE
MK);

(iv) HomE(K,K ′) ' HomE(DE
MK

′, DE
MK).



Chapter 2

Riemann-Hilbert correspondence

Most of the results of this chapter will not be used in the follow-
ing. Anyway, since these are classical and interesting notions, it
was decided to insert them to have a more complete view of the
treatment.

2.1 D-modules

References for this section are made to [7] and [8].

Let X be a complex manifold with (complex) dimension dX .
Denote by OX and DX the rings of holomorphic functions and
of di�erential operators, respectively. Denote by ΩX the sheaf of
di�erential forms of top degree dX with coe�cients in OX .

Denote by Db(DX) the bounded derived category of left DX-
modules. For f : X → Y a morphism of complex manifolds,

denote by
D
⊗, Df ∗, Df∗ the operations for D-modules.

There is an equivalence of categories

r : Db(DX)
∼−→ Db(DopX )

M 7→Mr = ΩX ⊗LOX
M.

33
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LetM∈ Db(DX). Its dual is

DXM = RHomDX

(
M,DX ⊗OX

Ω⊗−1
X

)
[dX ],

where Ω⊗−1
X := HomOX

(ΩX ,OX) and the shift is chosen so that
DXOX ' OX .

Recall that a DX-module M is locally of �nite type (resp.
presentation) if locally onX, there exists an exact sequenceDnX →
M → 0 (resp. Dn0X → D

n1
X → M → 0), for some n ∈ N (resp.

n0, n1 ∈ N).
A DX-module M is called coherent if it is locally of �nite type
and if, for any open subset U , any sub-DU -module locally of �nite
type is locally of �nite presentation.

De�nition 2.1. A DX-moduleM is quasi-good if, for any rela-
tively compact open subset U ⊂ X,M|U is the sum of a �ltrant
family of coherent (OX |U)-submodules.
A DX-module is good if it is quasi-good and coherent.

To a coherent DX-module M we can associate its character-
istic variety char(M), that is a closed conic involutive subset of
the cotangent bundle T ∗X. When dimC(char(M)) ≤ dX ,M is
called holonomic.

Denote by Db
hol(DX) the full subcategory of Db(DX) of objects

with holonomic cohomologies, and by Db
g-hol(DX) the full subcat-

egory of objects with good and holonomic cohomologies. Both are
triangulated categories.

2.1.1 Exponential D-modules

Let D ⊂ X be a complex analytic hypersurface and denote by
OX(∗D) the sheaf of meromorphic functions with poles along D.
It is a holonomic DX-module.
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LetM∈ Db(DX), set

M(∗D) =M
D
⊗OX(∗D).

Set U = X \D. For ϕ ∈ OX(∗D), set

DXeϕ = DX/{P |Peϕ = 0 on U},

EϕU |X = DXeϕ
D
⊗OX(∗D).

Hence DXeϕ is a DX-submodule of EϕU |X .
Note that EϕU |X is a holonomic DX-module which satis�es

EϕU |X ' E
ϕ
U |X(∗D).

Lemma 2.2. For ϕ ∈ OX(∗D) one has(
DXEϕU |X

)
(∗D) ' E−ϕU |X .

2.2 Tempered solutions

De�nition 2.3. The solution functor is

SolX : Db(DX)op → Db(CX)

M 7→ RHomDX
(M,OX).

IfM =
DX
DXP

, with P ∈ DX , then

SolX(M) = RHomDX
(M,OX) = (OX

P−→ OX) ∈ Db(CX).

By the functor β (the left adjoint to α in (1.5)), there is a
natural notion of DX-module in the category of ind-sheaves. We
denote by Db(IDX) the corresponding derived category.

Let U ⊂ X be an open subset of the real analytic manifold X.
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De�nition 2.4. A function ϕ : U → C has polynomial growth at
x0 ∈ X\U if there exist a su�ciently small compact neighborhood
K of x0 and constants C > 0, r ∈ Z>0 such that

|ϕ(x)| ≤ C dist(K \ U, x0)
−r ∀x ∈ K ∩ U,

where dist is an Euclidean distance with respect to a local coor-
dinate system.
A smooth function ϕ ∈ C∞X (U) is tempered at x0 ∈ X \ U if all
of its derivatives have polynomial growth at x0.

For an open subanalytic subset U in X, denote by C∞,tX (U)
the subspace of C∞X (U) consisting of tempered C∞-functions.
The presheaf C∞,tX : U 7→ C∞,tX (U) is an ind-sheaf on X.

The ind-sheaf of tempered holomorphic functions Ot
X is de�ned

as the Dolbeault complex with coe�cients in C∞,tX .
More precisely, denoting by Xc the complex conjugate manifold
to X, and by XR the underlying real analytic manifold, we set:

Ot
X = RHomDXc

(
OXc,C∞,tXR

)
.

De�nition 2.5. De�ne the tempered solution functor by

SoltX : Db (DX)op → Db(ICX)

M 7→ RHomDX
(M,Ot

X).

One has SolX ' α ◦ SoltX .

2.3 Enhanced solutions

Let P = C∪{∞} be the complex projective line and i : X×P →
X × P be the closed embedding.
Denote by τ ∈ P the a�ne coordinate, so that τ ∈ OP(∗∞).
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De�nition 2.6. The enhanced solution functor is given by

SolEX : Db(DX)op → Eb(ICX)

M 7→ i!SoltX×P(M�D EτC|P)[2],

where �D denotes the exterior product for D-modules.

The functorial properties of SolE are summarized in the next
theorem:

Theorem 2.7. Let f : X → Y be a complex analytic map and
dX = dimCX. Let M ∈ Db

g-hol(DX), M1,M2 ∈ Db
hol(DX) and

N ∈ Db
hol(DY ). Assume that suppM is proper over Y . Then one

has

SolEX(Df ∗N ) ' Ef−1SolEY (N ),

SolEY (Df∗M)[dY ] ' Ef!!SolEX(M)[dX ],

SolEX(M1)
+
⊗ SolEX(M2) ' SolEX(M1

D
⊗M2).

Notation 2.8. Let D ⊂ X be a closed complex analytic hyper-
surface and set U = X \D. For ϕ ∈ OX(∗D), we set

Eϕ := k{t+<ϕ(x)≥0} ∈ Ẽb
R-c(kX),

Eϕ := kEM
+
⊗QEϕ ∈ Eb

R-c(IkX),

where Q is the quotient functor and we set for short

{t+ <ϕ(x) ≥ 0} = {(x, t) ∈ X × R|t+ <ϕ(x) ≥ 0}.

Lemma 2.9. Let g : Y → X be a morphism of manifolds and
ϕ ∈ OX(∗D). Then

Eg−1(Eϕ) ' Eϕ◦g.
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Lemma 2.10. Let ϕ, ψ ∈ OX(∗D), then

Eϕ
∗
⊗ Eψ ' Eϕ+ψ.

Proof. Recall that, in (1.1), to de�ne the convolution product
∗
⊗

we used q1, q2, µ : X × R2 → X × R, that do not act on X.
So proving this lemma is equivalent to proving that

k{t≥a}
∗
⊗ k{t≥b} ' k{t≥a+b},

where a = <ϕ(x) and b = <ψ(x), since we can �x x ∈ X.

First of all one has k{t≥a}
∗
⊗ k{t≥b} ' Rµ!kS, where we set

S = {t1 ≥ a, t2 ≥ b} ⊂ R2.
Let T ⊂ S be a hal�ine that starts in (a, b). One has a morphism
kS → kT and Rµ!kT ' k{t≥a+b}.
One can conclude since Rµ!kS ' Rµ!kT , in fact

Rµ!kS\T → Rµ!kS → Rµ!kT
+1−→

is a distinguished triangle and Rµ!kS\T = 0.

Theorem 2.11. Using Notations 2.8, one has

SolEX(EϕU |X) ' Eϕ.
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2.4 Riemann-Hilbert correspondence

Theorem 2.12. The enhanced solution functor induces a fully
faithful functor

SolEX : Db
hol(DX)op → Eb

R-c(ICX).

Morever, there is a functorial way of reconstructingM∈ Db
hol(DX)

from SolEX(M).

Denote by j : U → X the embedding.

Lemma 2.13. Let M ∈ Db
hol(DX) be such that M ' M(∗D).

Assume that X is compact. Then there exists F ∈ Ẽb
R-c(kU) such

that Rj̃!F ∈ Ẽb
R-c(kX) and

SolEX(M) ' kEX
+
⊗QRj̃!F.

Proof. Set S = SolEX(M). SinceM is holonomic, S isR-constructible.
Since X is compact, there exists F ′ ∈ Ẽb

R-c(kX) with S ' kEX
+
⊗

QF ′. SinceM'M(∗D), one has

S ' π−1kU ⊗ S ' kEX
+
⊗Q(π−1kU ⊗ F ′).

Hence F = j̃−1F ′ satis�es the assumptions in the statement.





Chapter 3

Fourier transform

Originally, the Fourier transform was introduced as an integral
transform with kernel associated to e−〈z,w〉, where z is a system of
coordinates in a complex vector space and w a system of coordi-
nates in the dual vector space. Hence, if we want to generalize the
classical de�nition at level of D-modules and of enhanced sheaves,
�rst of all we have to de�ne an analogue of the integral transform.

For this chapter, we use the same notations introduced in [1].

3.1 Integral transforms

Consider a diagram of complex manifolds

S
p

~~

q

  

X Y.

(3.1)

At the level of D-modules, the integral transform with kernel L ∈
Db(DS) is the functor

· D◦ L : Db(DX)→ Db(DY )

M 7→M D◦ L = Dq∗(L
D
⊗Dp∗M).

41
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At the level of enhanced ind-sheaves, the integral transform with
kernel H ∈ Eb(IkS) is the functor

· +◦H : Eb(IkX)→ Eb(IkY )

K 7→ K
+◦H = Eq!!(H

+
⊗ Ep−1K).

By the isomorphisms in Theorem 2.7, one has

Corollary 3.1. Let M ∈ Db
g-hol(DX) and L ∈ Db

g-hol(DS). As-
sume that p−1supp(M) ∩ supp(L) is proper over Y . Set K =
SolEX(M) and H = SolES (L). Then there is a natural isomor-
phism in Eb

R-c(IkY ):

SolEY (M D◦ L) ' K
+◦H[dS − dY ].

Consider now the diagram of real analytic manifolds induced
by (3.1)

S × R
p̃

yy

q̃

%%

X × R Y × R,

where p̃ = p× idR and q̃ = q × idR.
The natural integral transform forR-constructible enhanced sheaves
with kernel L ∈ Ẽb

R-c(kS) is the functor

· ∗◦ L : Ẽb
R-c(kX)→ Ẽb

R-c(kY )

F 7→ F
∗◦ L = Rq̃!(L

∗
⊗ p̃−1F ).

Proposition 3.2. Let M ∈ Db
g-hol(DX), L ∈ Db

g-hol(DS), and
assume that p−1supp(M) ∩ supp(L) is proper over Y . Let F ∈
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Ẽb
R-c(kX), L ∈ Ẽb

R-c(kS), and assume that there are isomorphisms

SolEX(M) ' kEX
+
⊗QF,

SolES (L) ' kES
+
⊗QL.

(3.2)

Then there is a natural isomorphism in Eb
R-c(IkY ):

SolEY (M D◦ L) ' kEY
+
⊗Q(F

∗◦ L)[dS − dY ].

Note that if X and S are compact, then for anyM∈ Db
hol(Dx)

and L ∈ Db
hol(DS) there exist F ∈ Ẽb

R-c(kX) and L ∈ Ẽb
R-c(kS)

satisfying (3.2).

3.2 Fourier-Laplace transform

Let V be a complex vector space with �nite dimension dV, and
let P = ((V ⊕ R) \ {0})/R+ be its projective compacti�cation.
Denote j : V→ P the embedding and H = P \ V.
Recall that the classical Fourier transform interchanges objects in
V with objects in the dual space V∗.

De�nition 3.3. LetDb
hol(DV∞) be the full subcategory ofDb

hol(DP)
whose objectsM satisfyM'M(∗H).

The pairing

V× V∗ → C
(z, w) 7→ 〈z, w〉

de�nes a meromorphic function on P × P∗, where P∗ is the pro-
jective compacti�cation of the dual vector space of V, and it has
poles along (P× P∗) \ (V× V∗).
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Let V∞ = (V,P) and V∗∞ = (V∗,P∗). Consider the projections

V∞ × V∗∞

yy %%

V∞ V∗∞.

De�nition 3.4. Set

L = E 〈z,w〉V×V∗|V∞×V∗∞
, La = E−〈w,z〉V∗×V|V∗∞×V∞

.

The Fourier-Laplace transform of N ∈ Db
hol(DV∗∞) is given by

N ∧ = N D◦ La ∈ Db
hol(DV∞).

The inverse Fourier-Laplace transform of M ∈ Db
hol(DV∞) is

given by

M∨ =M D◦ L ∈ Db
hol(DV∗∞).

Theorem 3.5. The Fourier-Laplace transform ∧ and the inverse
Fourier-Laplace transform ∨ are quasi-inverse of each other, and
interchange Db

hol(DV∞) and Db
hol(DV∗∞).

3.3 Enhanced Fourier-Sato transform

De�nition 3.6. De�ne Ẽb
R-c(kV∞) to be the full triangulated sub-

category of Ẽb
R-c(kV) whose objects F satisfy Rj̃!F ∈ Ẽb

R-c(kP).

Consider the projections

V× V∗ × R
q̃

((

p̃

ww

p̄
��

V× R V V∗ × R

.
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De�nition 3.7. Using Notation 2.8, set

L = E〈z,w〉 and La = E−〈w,z〉.

The enhanced Fourier-Sato transform of G ∈ Ẽb
R-c(kV∗∞) is

given by

Gf = G
∗◦ La[dV] ∈ Ẽb

R-c(kV∞).

The enhanced inverse Fourier-Sato transform of F ∈ Ẽb
R-c(kV∞)

is given by

Fg = F
∗◦ L[dV] ∈ Ẽb

R-c(kV∗∞).

Proposition 3.8. The enhanced Fourier-Sato transform f and
the enhanced inverse Fourier-Sato transform g are quasi-inverse
of each other, and they interchange Ẽb

R-c(kV∞) and Ẽb
R-c(kV∗∞),

since p̃ and q̃ are semiproper.

Using the De�nitions 3.7 and let ε as in (1.4).
Denote by u : V× V∗ → V∞ × V∗∞ the embedding.

Lemma 3.9. For F ′ ∈ Db
R-c(kV∞) one has

ε(F ′)f ' Rq̃!(L⊗ p̄−1F ′),

SolEV∞×V∗∞(L) = E〈z,w〉V×V∗|V∞×V∗∞
' kEV∞×V∗∞

+
⊗QRũ!L.

Lemma 3.10. Denote by h : V∗ → V∗∞ the embedding.
LetM∈ Db

hol(DV∞) and F ∈ Ẽb
R-c(kV∞) satisfy

SolEV∞(M) ' kEV∞
+
⊗QRj̃!F. (3.3)

Then, there is an isomorphism

SolEV∗∞(M∧) ' kEV∞
+
⊗QRh̃!F

f[dV].
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An analogous result holds for ∧ and f replaced by ∨ and g,
respectively.
Note that the hypothesis (3.3) is not too restrictive, since for any
M ∈ Db

hol(DV∞) there is an F ∈ Ẽb
R-c(kV∞) satisfying it, by

Lemma 2.13.



Chapter 4

The Stokes phenomenon of the

Airy equation

4.1 The Airy equation

Let z be the coordinate of a complex line V, and w the dual
coordinate on V∗.

The Airy equation on V∗ is

Qψ = 0, where Q = ∂2
w − w. (4.1)

4.1.1 Solution by integral representation

We will �nd solutions of (4.1) in the form

ψ(w) =

∫
γ

f(z)e−zwdz, (4.2)

where f(z) is an unknown function and γ is a path to be deter-
mined.
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Note that integrating by parts, one has:

−
∫
γ

wf(z)e−zwdz =

∫
γ

f(z)
∂e−zw

∂z
dz

=

∫
γ

(
∂ (f(z)e−zw)

∂z
− f ′(z)e−zw

)
dz

= f(z)e−zw|γ −
∫
γ

f ′(z)e−zwdz,

where we set g(z)|γ = g(b)− g(a), with a and b the endpoints of
the path γ.
So, substituting (4.2) in the Airy equation and di�erentiating un-
der the integral sign, we obtain:

ψ′′ − wψ =

∫
γ

z2f(z)e−zwdz −
∫
γ

wf(z)e−zwdz

= f(z)e−zw|γ +

∫
γ

(
z2f(z)− f ′(z)

)
e−zwdz = 0.

First of all, f(z) can be chosen such that

z2f(z)− f ′(z) = 0, i.e. f(z) = ce
z3

3 ,

where c is a constant. For simplicity, let c = 1.
So, we have

ψ(w) =

∫
γ

exp

(
z3

3
− zw

)
dz. (4.3)

It remains to choose γ such that

f(z)e−zw|γ = e
z3

3 −zw|γ = 0.

Clearly this is satis�ed if γ is a closed curve, but this choice gives
the trivial solution of (4.1), ψ(w) = 0.
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So, since e
z3

3 −zw 6= 0 for any value of z, the only other pos-
sible choice of γ is a path that begins and ends in sectors of

z = ∞ for which e
z3

3 −zw → 0 as z → ∞. This is equivalent

to <
(
z3

3 − zw
)
→ 0 as z →∞.

Now, for large z, z
3

3 − zw ≈ z3. So, setting z = |z|eiθ, one has
<(z3) = |z|3 cos(3θ). Then, to have the right convergence, γ has
to begin and end in sectors of |z| =∞ for which

π

6
+

2

3
nπ < θ <

π

2
+

2

3
nπ, n ∈ Z.

There are three of such sectors (modulo 2π) de�ned by the choice
of n = 0, 1, 2: call them ν0, ν1 and ν2 respectively.

Denote by γj the path that begins in νj and ends in νj+1, where
j is thought modulo 3.
Notice that the sum of γ0 + γ1 + γ2 is homologous to zero, hence
the three corresponding solutions sum to zero.
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4.1.2 Morse theory

We now follow [10] for a while to �nd explicitly the integration
cycles.

By an appropriate change of variables, all solutions to (4.1)
have the form

ψ(λ) =

∫
C

exp(I)dx, (4.4)

where I = λ
(
x3

3 − x
)
, and C is the integration cycle correspond-

ing to γ.

Proof. Using �rst of all the rami�cation

r : Cv → Cw

v 7→ w = v2,

and then the isomorphism

Cx × C×v
∼←→ Cz × C×v , de�ned by

{
z = xv

v = v
,

we obtain:

z3

3
− zw =

z3

3
− zv2 =

x3v3

3
− xv3 = v3

(
x3

3
− x
)
.

Finally setting λ = v3, we have exactly the exponent I in (4.4).

Let X be the complex x-plane and u ∈ R, denote Xu the part
of X where the points are such that <(I) < u, �xed λ. Then C
is contained in X \X−T , with T very large (i.e. it is contained in
the coloured region of Figure (4.1)).
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Figure 4.1: X \X−T = {x ∈ X : T + <(I) ≥ 0}

Moreover, it can be seen that, if Cj corresponds to γj for j =
0, 1, 2, they are such that C1 +C2 +C3 is the boundary of an inner
region, so it's zero at level of homology. In other words, they are
linearly dependent.

De�nition 4.1. The critical points of a function are the points
at which all �rst derivatives vanish.
A critical point is non-degenerate if the matrix of second deriva-
tives is invertible at that point.
A Morse function is a real-valued function whose critical points
are non-degenerate.

Let f = f(x) = f(a+ ib) = u(a, b)+ iv(a, b) be a holomorphic
function. By the Cauchy-Riemann equations:{

ua = vb

ub = −va
⇒

{
uaa = vab = −ubb
uab = vbb = −vaa

. (4.5)

Recall that ∂x = 1
2 (∂a − i∂b). Then one has

f ′ =
1

2
((ua + vb) + i(va − ub)) = ua − iub

f ′′ =
1

2
((uaa − ubb) + i(uab + uab)) = uaa − iuab.
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First of all, f ′ = 0 if and only if du = 0. It means that the real
part of an holomorphic function has the same critical points of
the function. Moreover, one has

det(Hess(u)) = uaaubb − u2
ab = −(u2

aa + u2
ab) = −|f ′′|2. (4.6)

So, a point is non-degenerate if 0 6= det(Hess(u)), that is equiv-
alent to f ′′ 6= 0.

Consider h = <(I). Since I is a holomorphic function, h has
the same critical points of I:

∂I
∂x

= λ(x2 − 1) = 0 ⇔ x = ±1.

So there are two critical points p± at x = ±1, and the values of
I and h at them are respectively

I± = ∓2

3
λ, h± = ∓2

3
<(λ).

Moreover,
∂2I
∂x2
|p± = 2λx|p± = ±2λ 6= 0,

so the critical points are non-degenerate.
Then h is a Morse function.

De�nition 4.2. The index of a non-degenerate critical point is
the number of negative eigenvalues of the matrix of second deriva-
tives at that point.
In other words, it's the number of directions in which the consid-
ered Morse function decreases.

If f(x) = f(a+ib) = u(a, b)+iv(a, b) is a holomorphic function
and x0 is a critical point, then it has index 1 by (4.6).
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Moreover, one has

u(x)− u(x0) = <(f(x)− f(x0))

= <
(

1

2
f ′′(x0)(x− x0)

2 + o((x− x0)
2)

)
∼ 1

2
<
(
f ′′(x0)(x− x0)

2
)
,

since we are only interested in a neighborhood of x0.
If f ′′(x0) = reiη and x − x0 = ρeiθ, then the quantity above
is equal to 1

2rρ
2 cos(η + 2θ). When cos(η + 2θ) = ±1, one has

the directions of the positive and negative eigenspace of Hess(u)
respectively. These are given by

θ = θ+ = −η
2

+ kπ, k ∈ Z, or

θ = θ− = −η
2

+
π

2
+ kπ, k ∈ Z.

So, the positive and the negative eigenspaces of Hess(u) are

Reiθ± = R (±f ′′(x0))
−1/2

.

In our case, I ′′(p±) = ±2λ. So there is only one negative
eigenspace of Hess(h) for p±, then they both have index 1.

Notice that both the degeneracy and the index of a critical
point are independent from the choice of the local coordinate sys-
tem used. So the above computation makes sense.

De�nition 4.3. u is a perfect Morse function if the di�erence
between the indices of distinct critical points of u are never equal
to ±1.

In general, if u is a Morse function on a manifold X, the rank
of the q-dimensional homology group of X is at most the number
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of the critical points of u with index q. Moreover, these upper
bounds are reached if u is a perfect Morse function.

In our case, it is easily seen that h is a perfect Morse function.
If T is very large, then the �rst homology group of X \X−T has
rank 2 while the others homology groups vanish. This is why the
cycles Ci, i = 1, 2, 3 are linearly dependent.

Morse theory gives also a recipe to construct the generators of
the homology. On any manifold X with real coordinates γi, we
can pick a Riemannian metric gij. The gradient �ow equation is

∂γi

∂t
= −gij ∂u

∂γj
. (4.7)

It's also called downward �ow since u is strictly decreasing along
a �ow, except for a constant solution that sits at a critical point

for every t. Indeed: ∂u
∂t =

∑
i
∂u
∂γi

∂γi

∂t = −
∑

i

(
∂u
∂γi

)2

< 0 .

A non-constant �ow can reach a critical point of u only at t = ±∞,
in fact if at some t, the �ow reaches a critical point, then it has
to be constant, by the �ow equation.

Let p be a non-degenerate critical point of u, consider (4.7)
on (−∞, 0] with the boundary condition that γi(t) approaches p
for t → −∞. If p has index k, the space of solutions Jp is a
k-dimensional manifold, since the only possible directions for the
�ow starting from p are the ones for which u decreases. Since
(4.7) is �rst order in time, a �ow is uniquely determined by its
value at t = 0, so Jp can be thinked as a submanifold of X by the
embedding

Jp −→ X

γi(t) 7→ γi(0)
;

equivalently Jp can be thought as the submanifold ofX consisting
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of points that can be reached at every t by a �ow that start at p
at t = −∞.
Jp de�ne a cycle inH1(X, X−T ; Z) if it's closed, i.e. any sequence
of points in Jp has a subsequence that either converges or tends
to u = −∞. This fails only if there exists a complete �ow line l
(de�ned in R ∪ {±∞} ) which starts at p at t = −∞ and ends
at another critical point q at t = +∞, in fact in this case l ⊂ Jp
and a sequence of points in l can converge to q /∈ Jp.

In our case, we can use the Kahler metric ds2 = |dx|2, so the
�ow equation becomes {

∂x
∂t = −∂Ī

∂x̄
∂x̄
∂t = −∂I

∂x

. (4.8)

=(I) is conserved along every �ow, indeed

∂=(I)

∂t
=

∂

∂t

(
1

2i
(I − Ī)

)
=

1

2i

(
∂I
∂x

∂x

∂t
− ∂Ī
∂x̄

∂x̄

∂t

)
= 0,

by (4.8). Recall that the value of I at the critical points of h is

I± = ∓2

3
λ ⇒ =(I±) = ∓2

3
=(λ).

So =(I+) = =(I−) if and only if the imaginary part of λ is zero,
that is λ is real. Hence, a �ow can connect p+ and p− only if λ
is real. Conversely, if λ ∈ R, the part of the real axis (−1, 1) is a
�ow that connect the two critical points. Since we consider λ 6= 0,
=(λ) = 0 consists of two open rays, called Stokes rays.

In conclusion: away from the Stokes rays, a downward �ow
that starts at one critical point cannot end at the other, instead
it always �ow to h = −∞. Since p± have index 1, we can attach
to them Jp± = J±, that are 1-dimensional manifolds.
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In any case, if λ 6= 0, then I+ 6= I−. So, on a Stokes ray it has
to be <(I+) = h+ 6= h− = <(I−). Indeed, if <(λ) > 0 then
h+ < h−, and if <(λ) < 0 then h− < h+.

Explicitly computation

Since =(I) is conserved along a �ow, then J+ and J− are respec-
tively contained in the graph of

=(I) = =(I±) = ∓2

3
=(λ).

Given p± = ±1, the critical points of I(x) = λ
(
x3

3 − x
)
, set

ξ = x− p± as the local coordinate. Then,

I(x)− I(p±) =
λ

3
ξ2(ξ ± 3).

Set λ = reiη, ξ = ρeiϑ. We saw that our cycles J± are contained
in =(I) = =(I±), that is equivalent to:

0 = =(I(x))−=(I(p±)) = =(I(x)− I(p±))

=
rρ2

3
=
(
ρei(3ϑ+η) ± 3ei(2ϑ+η)

)
=
rρ2

3
(ρ sin(3ϑ+ η)± 3 sin(2ϑ+ η)) .

So,

ρ = ρ(ϑ) = ∓3
sin(2ϑ+ η)

sin(3ϑ+ η)
.

Then its slopes at p± is given by ρ = 0, i.e.

ϑ0 = −η
2

+ h
π

2
, h ∈ Z,
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and slopes at ∞ is given by ρ =∞, i.e.

ϑ∞ = −η
3

+ k
π

3
, k ∈ Z,

unless one has the case 0
0 , i.e.

η = (3h− 2k)π ∃h, k ∈ Z ⇔ η ∈ Zπ.

So we have an explicit parametric computation of the graphs
that contain our cycles, that is given by:

x = p± + ξ = p± + ρ(ϑ)eiϑ, ϑ ∈ [0, 2π[.

These are shown in Figure 4.2.
As we can see, the equations found describe di�erent branches

in the complex x-plane X and we can't take all of them into
account. There are two possible choices: following Witten's argu-
ment as in [10], one can choose the steepest descent curves, i.e.
those along which h decreases. In this way, we can �nd the gen-
erators of the relative homology H1(X,X−T ;Z).
But we make a di�erent choice, since we are interesting in the com-
pact support cohomology, that is described by Borel-Moore cycles.
We will see why in the following section, precisely in (4.11), when
we will talk about enhanced Fourier-Sato transform.

So we choose the steepest ascent curves. In this way if the criti-
cal point belongs to the region t+h(x) ≥ 0, also its corresponding
cycles is contained in it.

Making a choice rather than the other means choosing the
range of the parameter ϑ in the above computation.
Since ϑ∞ = (−η + kπ)/3, k ∈ Z, the range for one of the curve
should be

ϑ ∈ Rk :=

[
−η + kπ

3
,
−η + (k + 1)π

3

]
, �xed k ∈ Z.
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Figure 4.2: The green graph represents =(I) = =(I+) and the blue one
represents =(I) = =(I−); the red points are p± and the gray region is the
one described by t + h(x) ≥ 0 (in this case with t very large). The �ve
di�erent images show what happens to the graphs at the varying of λ, more
precisely as its argument η grows.
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In this way we are sure that we have pick up a whole cycle (from
∞ to ∞) and that it passes through the critical point, in fact
ϑ0 = (−η + kπ)/2 ∈ Rk.

Figure 4.3: The green curves represents the growing of the graph that con-
tains J+, the blue one represents the growing of the graph that contains J−
and the gray one represents h at in�nity.

To choose the right k, let's look at Figure 4.3: we need the
coloured curves to have, near the asymptotes, the same sign as
the gray one, which represents h at in�nity. So for the curve that
pass through p+ we pick k = 2, instead for the one that pass
through p− we pick k = 1.

So �xed ϑ ∈ R2 for the parametric computation of J+ and
ϑ ∈ R1 for J−, we �nally obtain the cycles that we can see in
Figure 4.4.

Here we can clearly notice that when λ approaches the Stokes
rays (the �rst and the last images), J± approaches p∓.
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Figure 4.4: The green cycle is J+ while the blue one is J−. The various
images of this �gure represent what happens when λ varies. The gray region
is the one described by t+ h(x) ≥ 0, with t very large.
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Crossing a Stokes ray

Figure 4.5: Chosen an appropriate orientation for the cycles, this �gure il-
lustrates their behavior in crossing a Stokes ray

As we approach a Stokes ray, denote q and q′ the critical points
with, respectively, larger and smaller value of h. After choosing
an appropriate orientation for the cycles attached to the critical
points, denote them J and J ′.
Since q′ is the critical point with smaller value of h, the downward
trajectories that starts at q′ can only �ow to h = −∞, so even
if J ′ crosses a Stokes ray, nothing happens. Instead, exists a
trajectory that starts at q and �ow down to q′, as depicted in
Figure 4.5(b), so J jumps in crossing a Stokes ray:

J → J ± J ′,

where the sign depends on the orientation of the two cycles and
the direction in which λ crosses it. In other words, the passage is
described by (

J
J ′
)
7→
(

1 ±1
0 1

)(
J
J ′
)
. (4.9)

In (a) and (c) of Figure 4.5, are represented the cycles "before"
and "after" the jump, with a �xed choice of orientation for them.
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So we can see that going from (a) to (c) (passing through (b)) we

have J̃ = J − J ′. Then the transformation matrix is

(
1 −1
0 1

)
.

Viceversa, i.e. crossing the Stokes ray in the opposite direction,

we have J = J̃ + J̃ ′, so
(

1 1
0 1

)
.

4.2 The Stokes phenomenon

The solutions ψ(w) of the Airy equation (4.1) are asymptotic for
large value of |w| to a linear combination of

v± = w−
1
4 exp

(
±2

3
w

3
2

)
, (4.10)

that are multivalued functions of the complex variable w with a
branch point at w = 0.
The Airy function Ai(w) is an entire solution of (4.1). Therefore,
as we go once around the branch point, it will return to its original
value, but v+ and v− will not. Indeed, in the exponential factors
of (4.10), it appears the square root of a complex number. So, we
need to pick up a determination of it in order to make sense to
the de�nition of v±. This choice gives a rami�cation, i.e. if we go
once around the branch point we do not return to the same value,
but if we go around twice, we do.

This means that the asymptotic behavior of the function is not
the same in the whole complex plane: this is the basic Stokes phe-
nomenon.
In fact, we can see that if the sign of <

(
2
3w

3
2

)
changes, the expo-

nential factors in (4.10) either increase to +∞ or decrease to 0.
So, there is a change of the asymptotic behavior when w crosses
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the lines (called Stokes lines) de�ned by <
(

2
3w

3
2

)
= 0, i.e. when

the argument of w is equal to π
3 + 2nπ, n ∈ Z.

Figure 4.6: In this �gure the dotted line represents α, the argument of w,
and the curve around it is the one de�ned by cos(3

2
α).

Stokes studied his phenomenon in the Airy case in [9]. Here we
�nd Figure 4.6, that gives us a clear view of what we just said.
In fact, the dotted circle represents α = arg(w) and it alone is
supposed to vary (i.e. |w| is �xed). The curve instead is the one
de�ned by cos

(
3
2α
)
, that describes

<
(

2

3
w3/2

)
=

2

3
|w|3/2 cos

(
3

2
α

)
.

So, the rami�cation that we were talking about can be seen fol-
lowing the curve, since it needs two complete revolutions to return
to itself.

Moreover, if we cover the �gure with successive circular sectors
in which we take into account the part outside the curve, then
if we going twice aroud it turns out that the central region was
never considered, the regions bounded by the di�erent branches
of the curve were considered once and the external region twice.
This explains how in the next section we choose to study the sheaf
which is locally constant along this strati�cation.
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4.2.1 Level of R-constructible enhanced sheaves

The idea now is to translate the asymptotic informations given by
(4.10) at level of R-constructible enhanced sheaves.

Let ψ±(w) = ±2
3w

3
2 and denote by α the argument of w.

We want to study Eψ+ ⊕ Eψ−. The stalk of this sheaf changes at
the change of t ∈ R and α = arg(w):

• if exists n ∈ Z such that α + 2nπ ∈ {π,±π
3} (i.e. if we are

on a Stokes line), then <(ψ+) = <(ψ−). So:

(
Eψ+ ⊕ Eψ−

)
(w,t)

=

{
C2 , if t+ <(ψ+) ≥ 0;

0 , otherwise ;

• if α + 2nπ /∈ {π,±π
3},∀n ∈ Z, then <(ψ+) 6= <(ψ−). So:

(i) if π3 + 4
3nπ < α < π+ 4

3nπ, n ∈ Z, then <(ψ+) > <(ψ−)
and we have

(
Eψ+ ⊕ Eψ−

)
(w,t)

=


0 , if t < −<(ψ−);

C , if −<(ψ−) ≤ t < −<(ψ+);

C2 , if t ≥ −<(ψ+);

(ii) if −π
3 + 4

3nπ < α < π
3 + 4

3nπ, n ∈ Z, then <(ψ+) >
<(ψ−) and we have

(
Eψ+ ⊕ Eψ−

)
(w,t)

=


0 , if t < −<(ψ+);

C , if −<(ψ+) ≤ t < −<(ψ−);

C2 , if t ≥ −<(ψ−).

Notice that the rank of
(
Eψ+ ⊕ Eψ−

)
(w,t)

can be seen also by
Figure 4.7, indeed if α = arg(w) is �xed, there are three cases: if



4.2 The Stokes phenomenon 65

Figure 4.7: Graphics of <(ψ+) and <(ψ−)

we are below both the graphics it is zero, if we are between them
it is 1 (i.e. the stalk is C) and if we are above both of them it is
2 (i.e. the stalk is C2).

De�ne t+ := −<(ψ+) and t− := −<(ψ−). When w is �xed,
these are well de�ned real numbers, and notice that the sheaf that
we are considering can be rewritten as

Eψ+ ⊕ Eψ− = C{t≥t+} ⊕ C{t≥t−}.

In this way we can easily see that the rank of
(
Eψ+ ⊕ Eψ−

)
(w,t)

,
if we are not on a Stokes line, change exactly when t = t+ and
t = t−.

4.2.2 The enhanced Fourier-Sato transform

Recall that the classical Fourier-Laplace transform of a function
f : R→ C is given by

f̂(w) =
1

2πi

∫
γ

f(z)e−zwdz,

with γ an appropriate path. So, by (4.3), we see that Ai(w) is
exactly the transform of exp(z3/3).

Recall also that in the previous chapter we de�ned the en-
hanced Fourier-Sato transform as an analogue of the above trans-
form for R-constructible enhanced sheaves.
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In this case we are working with a one-dimensional complex vector
space V with complex coordinate z, and its dual V∗ with complex
coordinate w.
So using the same notations as in De�nition 3.7, for F ∈ Ẽb

R-c(CV∞)
one has

Ff = Rq̃!

(
E−zw

∗
⊗ p̃−1F

)
[1],

where
∗
⊗ denotes the convolution functor, p̃ : V×V∗×R→ V×R

and q̃ : V×V∗×R→ V∗×R denote the projections, and where,
for ψ a meromorphic function, one sets

Eψ = C{t+<(ψ(z))≥0}.

As we just saw, the Airy function is the transform of eϕ(z),
with ϕ(z) = z3/3, so we want to study the enhanced Fourier-Sato
transform of F = Eϕ:

Ff = Rq̃!

(
E−zw

∗
⊗ p̃−1Eϕ

)
[1] ' Rq̃!(E

z3

3 −zw)[1].

In fact, let ϕ̄(z, w) = ϕ(z). By Lemma 2.9, one has p̃−1Eϕ ' Eϕ̄.

Moreover, the convolution E−zw
∗
⊗ Eϕ̄ ' E−zw+ϕ̄ = E−zw+ z3

3 , by
Lemma 2.10.
So, the stalk of Ff at (w, t) ∈ C× R is

(Ff)(w,t) = RΓc

(
q̃−1(w, t); E

z3

3 −zw|q̃−1(w,t)

)
[1]

= RΓc

(
Cz × {w} × {t}; E

z3

3 −zw|Cz×{w}×{t}

)
[1].

(4.11)

Therefore we are interested in the compact support �rst ho-

mology group of the region S = {t+ <
(
z3

3 − zw
)
≥ 0}.

Fixed w ∈ C, at the change of t ∈ R one has S as in Figure 4.8.
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So the homology group that we are studying vanishes in the �rst
case, has rank one in the second case and has rank 2 in the last
one.

Figure 4.8: The region de�ned by t + <
(

z3

3
− zw

)
≥ 0 in the complex z-

plane, �xed w and increasing t.

4.2.3 Conclusions

Recall that if S is a subanalytic subset of the complex vector space
V, its Borel-Moore homology groups are de�ned by

HBM
k (S;C) = HkRΓ(S;ωS),

where k ∈ Z and ωS is the dualizing complex of S.

So, if S = {z : t + <
(
z3

3 − zw
)
≥ 0} as in the previous sections,

by Poincaré duality one has

HBM
1 (S) ' H1

c (S;CS)∗.

This is exactly what we need to compute the homology of (4.11)
of the previous section.

Recall that, using Morse theory, we were able to �nd the cycles
J+ and J−, that pass through the critical points p+ and p− of
I, respectively. Reversing the change of variables used to obtain
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(4.4), we have I = z3

3 − zw and p± = ±w1/2.
J± were constructed to be those along which we have steepest
ascent of h = <(I). Since S is de�ned by t+ h(z) ≥ 0, if p± ∈ S
then also the whole corresponding cycle is contained in the region.
This makes them Borel-Moore cycles, hence they are the genera-
tors of the dual of the compact support homology in (4.11).

The change of its rank is when t = t+ and t = t−. In fact,

p+ = w
1
2 ∈ S, if t ≥ t−, and

p− = −w
1
2 ∈ S, if t ≥ t+.

Suppose now that w is �xed and t+ < t− (the opposite case is
analogous). One has

(a) if t < t+, neither of the cycles are contained in S, so

rank
(
(Ff)(w,t)

)
= rank

((
Eψ+ ⊕ Eψ−

)
(w,t)

)
= 0;

(b) if t+ ≤ t < t−, only J− ⊂ S, so

rank
(
(Ff)(w,t)

)
= rank

((
Eψ+ ⊕ Eψ−

)
(w,t)

)
= 1;

(c) if t ≥ t−, both J+ and J− are contained in S, so

rank
(
(Ff)(w,t)

)
= rank

((
Eψ+ ⊕ Eψ−

)
(w,t)

)
= 2.

Since we can do the same computation that we did before to
�nd explicit parametric equations for J±, we can draw the cycles
in the complex z-plane. In this way we can have a clear view of
what we just described by looking at Figure 4.9. Here is shown
the case t+ < t−, as above, so the three images represent the cases
(a), (b) and (c) respectively.
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Figure 4.9: Here are represented the cycles J+ (the green one) and J− (the
blue one), and their position with respect to the region S (the coloured one).
This is the case when t+ < t−, and the three �gures show what happens
when t is respectively t < t+, t+ ≤ t < t− and t ≥ t−.

Recall that the Stokes lines are de�ned by <
(

2
3w

3/2
)

= 0.
Let li be the Stokes lines cyclically ordered and let Si be the sector
bounded by li−1 and li.
The discussion we have done so far in this chapter leads us to
conclude that

Ff|Si×R '
(
Eψ+ ⊕ Eψ−

)
|Si×R, (4.12)

for every sector Si.
Moreover, one knows that (4.12) extends to Wi = Si ∪ li ∪ Si+1.

We just saw that the homology that de�nes Ff is generated by
the cycles denoted by J±, and recall that in (4.9) we computed
the transformation matrices that describe what happens to our
generator cycles when we cross a Stokes line. In other words,
these transforms explain how to pass from an isomorphism to the
other in Wi ∩Wi+1.

In conclusion, we are sure that we can reconstruct the sheaf
Ff completely from Eψ+ ⊕ Eψ−.
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