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Sommario

L’attività neurale in natura presenta un andamento stocastico e gioca un ruolo significa-

tivo nel cervello. Tuttavia, la maggior parte degli articoli si limitano alla simulazione di

neuroni stocastici. In questa tesi, proponiamo un nuovo modello stocastico secondo il

formalismo di Hodgkin-Huxley basato su equazioni differenziali stocastiche e moto brow-

niano. Il nuovo modello di equazione differenziale stocastiche riproduce una vasta gamma

di dinamiche in modo più realistico rispetto ai precedenti modelli deterministici. Tale

modello stocastico è stato applicata a una semplice rete neurale che si trova sulla coda

di un gambero chiamato CPR (caudal photoreceptor). Presentiamo una libreria di oper-

atori analogici stocastici utilizzati per il calcolo analogico in tempo reale. Questa libreria

permette di ottenere una implementazione in silicio della rete stocastica CPR che sarà

collegata alle cellule nervose del gambero. L’interazione vivente-artificiali permetterà ai

biologisti di comprendere meglio i fenomeni nervosi.

Abstract

The Neural activity in nature presents a stochastic trend and plays an important role

in the brain. However, most papers are limited simulating stochastic neurons. In this

thesis, we propose a novel stochastic model according to the Hodgkin–Huxley formalism

using stochastic differential equations and Brownian motion. The new stochastic differen-

tial equation model reproduces a large range of dynamics more realistically than previous

deterministic models. Such stochastic model has been applied to simple neural network

that is located on the tail of the crayfish called CPR (caudal photoreceptor). We present
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a library of stochastic analog operators used for the analog real-time computation. This

library allows to obtain a silicon implementation of the CPR stochastic network that will

be connected to the nerve cells of the crayfish. The living-artificial interaction will allow

biologists to better understand the nervous phenomena.
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Introduction

This thesis is part of a wider research on the effects of noise in the nervous system, which

is one of the most interesting topics in neuroscience. In the last decade, biologists and en-

gineers have sought to study complex systems of neural networks, like the nervous system,

through the observation and the analysis of the electro-physiological phenomena. There

are networks which are too complex to analyse, so we reduce to consider smaller networks

with the same electrophysiological phenomena. This helps us to understand the possible

mechanism of signal processing.

In our case, we are going to add noise to a small network to study the stochastic be-

haviour of this network. We will analyse a particular network of interest for the study of

noise for biologists, which is located in the tail of the crayfish and is called CPR (caudal

photoreceptor). In this network, there are two types of neurons that are sensible to the

stimuli of light and mechanical forces. When they are stimulated, they generate a neural

command and act as a switch that turns on the corresponding locomotion network to

produce a movement. In order to study the communication between the neurons of the

crayfish, we have reproduced a network with six neurons and twelve synapses according

to the model proposed in the Hodgkin-Huxley formalism.

This thesis work has been made in collaboration with the National Tsing Hua Univer-

sity in Taiwan and it proposes the hardware implementation of an artificial neural network

that will be connected to the nerve cells of the crayfish. The realisation of this network

will allow biologists to understand the mechanisms of biological living cells and the effects

of the noise in biological neurons.

Recently, thanks to its continuous development and improvement, the Very Large
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Scale Integration (VLSI) technology has been largely applied to communication and other

computational systems since it allows to integrate multiple and complex functions in the

custom integrated circuits (ICs). The efficiency, low power dissipation and high integra-

tion level of CMOS VLSI technology make it an excellent candidate to realise our device.

The combination of the VLSI with the biological structure allows us to build a bio-hybrid

system and to take advantage of both. The study of neural communication will be based

on the interaction between the artificial, mathematically modelled neurons of hybrid bio-

chips and living neurons. The biological neurons are from five to six times slower than

conventional electronic components: an event in a chip occurs in some nanoseconds (10−9

s) while a neural event in a few milliseconds (10−3 s). So, it becomes necessary to design

a real-time chip and operate under the same biological frequencies. One of the major

difficulties in the implementation is the need to solve a real-time equations that makes up

the artificial part. The path we have chosen for the realisation of this task is the design

and use of analogue circuits. This choice implies a costly design (silicon area, number of

pads, power consumption), but it is an interesting alternative to digital computation in

simulation platforms due to its locally analog and parallel nature of the computations.

This thesis moves on the axis of research of Architecture of Silicon Neural Net-

works team at IMS Laboratory of Bordeaux, which designs and develops integrated cir-

cuits for analog and digital neural architecture. The realisation of the stochastic neural

network will rely on the previous work of the team, including a library of analog mathe-

matical operators, according to the Hodgkin-Huxley formalism.

In recent times, engineers, biologists and mathematicians have reached a deeper knowl-

edge of stochastic neurons, but no one realized until now the neuron ICs to test these

discoveries. To meet these requirements, we propose in this thesis to study and model the

noise in the gating variable and consequently we present a new stochastic Hodgkin-Huxley

model, which can reproduce a wide dynamic range, more realistic than previous determin-

istic models. From this stochastic model we have designed the IC, that is optimized for

reproducing the CPR network thanks to tunable parameters.

The objectives of the project can be summarized as follows:

1. Synapse Modeling;
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2. Stochastic neuron modeling;

3. CPR network modeling;

4. Design a configurable, scalable and stochastic VLSI of CPR network.

Our work is divided in 5 chapters that we briefly summarize below.

The first chapter of the thesis will be devoted to a brief introduction to simple con-

cepts of neurophysiology; in particular, we report a schematic description of neurons and

synapses. We will describe the phenomenology of neuronal dynamics, especially the gen-

eration of the action potential in terms of the dynamics of the ionic currents that pass

through the neuronal membrane. Finally, we will discuss the Hodgkin-Huxley model that

we have decided to implement on silicon and its simplified model.

The second chapter will be devoted mainly to the stochastic neuron. We will give a

brief introduction on the basic mathematical concepts used to solve a precise stochastic

differential equation. After that we will model the stochastic noise of a neuron and find

out what are the possible configurations of the equations describing the Hodgkin-Huxley

model. Finally, we will show the simulation results of the chosen implementation.

In the third chapter, we will describe the CPR network and its electro-physiological

phenomena, namely the different types of neurons and synapses that built it. Finally, we

will show all the Matlab simulations of the network.

In the fourth chapter, we will discuss the pioneering work of design of integrated cir-

cuits neural, in particular the model that we will chose to implement in silicon. We will

define in details all the different mathematical operators and their building blocks.

In the fifth chapter, we will describe the implementation of the noise generator, in

particular we will analyse the operation of a single cell and the operation of sixty-four cells

in cascade. We will also propose the Hardware implementation of noise into gating variable.

In conclusion, we will report the main results obtained in this thesis along the prospects

and the possible future applications of these studies.
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Chapter 1

From Biology to Neuron Model

In this chapter we introduce the basic knowledge need to understand the biological model

of neurons that we should deploy across the silicon circuit. In the first part of the chapter,

we describe the physiology of the neuron and synapse; we analyse the electrical activity

emitted during the dynamic phase of the neuron. At the end of the chapter, we define

the mathematical model, that describes the behaviour of biological neuron, and that it is

implemented in our chip.

1.1 The neuron

The neuron is an electrically excitable cell dedicated to the transfer, storage and processing

of information through electrical and chemical signals. Neurons are basic units of neural

Figure 1.1: Cortex neurons of mammals observed by microscope. We can distinguish

neurons with triangular and circular cell bodies: cell b is a classic example of a pyramidal

cell with a triangular body [1]

13



CHAPTER 1. From Biology to Neuron Model

network, as the brain. Each neuron has a specialized task: e.g. sensory neurons respond

to touch, sound, light but no other stimulation. The number of neurons in the brain is

very large, about 100 billion according to recent estimates. The neurons are connected

with one another in really complex networks. In Figure 1.1 is shown schematically a small

Figure 1.2: Structure of a typical neuron [2].

part of a network of neurons.

The neuron is composed of three main parts: soma (or cell body), dendrite and axon (as

Figure 1.2).

The soma, that is the central part of the neuron, contains the nucleus of the cell. Its shape

is variable according to the type of neuron: it can be pyramid-shaped, oval or spherical (of

about 20µm of diameter in the human cortex) and is essentially the information processing

unit.

The dendrites are highly branched extensions of the soma, their extension can reach

millimeters. They allow synaptic connections and their function is to collect signals coming

from other neurons and transmit them to the soma.

The axon is a long protuberance which can extend for tens, hundreds or even tens of

thousands times the diameter of the soma in length. They are projected from the soma

itself. Its function is the transmission of the signal generated from the cell body toward

the dendrites of another neuron. The terminal portion of the axon comes into contact

with dendrites or soma of other cells, forming a particular structure, called ”synapse”.

If you think the neuron as an electronic device, it is possible to say that the dendrites

are the input terminals (”input”), the soma is the unit of information processing, and the

axons are the output terminal (”output”).

Around the just described structure, we find the cell membrane of the neuron which is

14



1.1. The neuron

composed of lipids and proteins. It serves as barrier between intracellular and extracellular

environment and is composed of a lipid bilayer (as in Figure 1.3). In this lipid barrier there

are several protein molecules that pass through the entire thickness of the cell membrane,

bringing into contact the intracellular and extracellular environment. These particular

proteins are called protein channels, channels or membrane ion channels. They allow the

transport of every kind of molecules. Without them the cell membrane can be penetrated

by substances from outside to inside and vice versa through different mechanisms, but

the penetration depends on the degree of solubility in lipids. The inorganic ions, sodium,

potassium, calcium and chlorine, that pass through the membrane are the ionic currents

at the heart of the electrical activity of neurons. When the membrane is not subject to

Figure 1.3: Illustration of the lipid bilayer.

any excitation, the system is at rest, the concentration gradient and the electrical one are

balanced. The value of the membrane potential which has no neat flow of any ionic species

is defined as equilibrium potential of an ionic species. The equilibrium potential of each

ionic species is linked to the intracellular and extracellular concentrations, through the

Nerst’s equation:

Eion =
KT

q
ln

[n]e
[n]i

(1.1)

where Eion is the equilibrium potential of the ion, [n]e and [n]i are respectively the extra-

cellular and intracellular concentration; K ∼ 1, 38 · 10−23 J/K is the constant Boltzmann;

T is the absolute temperature in Kelvin; and q is the electric charge of the ionic species

(in Coulomb). Hence Eion is usually of the order of -65 mV.

15



CHAPTER 1. From Biology to Neuron Model

1.2 The action potential

Ion channels of the cell membrane are permeable to a single ion species. These channels

are voltage dependant; this means that their permeability is linked to the potential differ-

ence between the intracellular and extracellular environment. The permeability of these

proteins selectively gives rise to the action potential, i.e. an electrical phenomenon which

propagates along the axon. The membrane potential is defined as the potential difference

measured at the terminals by two electrodes, one set inside the neuronal cell and the other

set in the surrounding extracellular fluid. The temporal variation of the action potential

develops a neural signal.

The generation of action potentials takes place in 3 main phases, to describe them we

will refer to Figure 1.4:

Figure 1.4: The mechanism of origin of the action potential.

1. Ascending phase (depolarization). The membrane is in its resting state at a

negative potential, around -65mV due to differences in ionic concentrations at the

end of an activity cycle. When stimulation induces membrane depolarization it

16



1.3. The synapse

triggers the rapid opening of the Na+ channels 1.4 (A). The entry of Na+ ions, in

order to depolarize the membrane, continues even after the arrest of stimulation that

only served to exceed the threshold, forcing the membrane from its equilibrium state

1.4 (B).

2. Descending phase (repolarization). There are two factors involved in the repolar-

ization of the membrane, the first one is the spontaneous closure, called the inactiva-

tion of sodium channels and the second one is the delayed opening of K+ channels.

The dependence of the membrane potential induced by the value reached for the

block of the channel sodium makes the action potential decrease 1.4 (C). On the

other hand, thanks to the potential flow rates, the opening of potassium channels

with a certain delay time induces a K+ current which accelerates the phenomenon

1.4 (C’).

3. Transient hyperpolarization phase. The delay in the change of state of the

potassium channels is reflected in their closing and causes hyperpolarization of the

membrane. At the complete closure of these channels there will result a return to the

initial value 1.4 (D). Moreover, for the duration of this phase, that is called Refraetory

period, the action potential can not change because the neuron is ”insensitive” to

stimuli that arrive from the neuron.

1.3 The synapse

The passage of information among neurons in the nervous system occurs through synapses.

Each synapse is composed by two different neurons and the surrounding area, this set is

called the synaptic cleft. It defines two types of neurons: the presynaptic one (upstream

of the synapse) which transmits the action potentials to the next neuron, and the post-

synaptic one (downstream of the synapse) which receives the action potentials from the

previous neuron.

The synapse is the region where the axon of a presynaptic neuron comes into contact with

the dendrite (or soma) of a postsynaptic cell. It also defines the postsynaptic potential

voltage response of the postsynaptic neuron, consequent upon the arrival of the action po-

tential from the presynaptic neuron. We distinguish two main types of synapses: electrical

synapses and chemical ones.

The electrical synapses realize an electrical coupling between two neurons through ion

17



CHAPTER 1. From Biology to Neuron Model

channels that connect the highly specialized presynaptic membrane and the postsynaptic

one. The electrical synapses thus allow a direct current flow between adjacent neurons.

Figure 1.5: Chemical synapse [3].

The chemical synapse (Figure 1.5), the most common in the vertebrate brain, is based

on the following mechanism: the action potential generated by the presynaptic neuron

achieves the end of the axon and locally depolarizes the cell membrane. This is possible

thanks to particular structures located into the axon, called synaptic vesicles, which, under

the action of membrane potential, release into the synaptic cleft special chemicals called

neurotransmitters. As soon as they have reached the postsynaptic side of the synapse, the

neurotransmitters compose with chemoreceptors placed on the postsynaptic membrane,

causing the opening of specific channels through which a ion current flows from the ex-

tracellular fluid to the cell. The entry of these ions in its turn, leads to a variation of

the value of the postsynaptic membrane potential. In short in a chemical synapse first

occurs the transformation of an electrical signal into a chemical one (on the presynaptic

membrane) and then the subsequent transformation on the postsynaptic membrane of a

chemical signal into an electrical one.

As we have seen, during the communication between neurons they release neurotrans-

mitters that bind chemicals receptors. A neurotransmitter can be thought as a key, and a

receptor as a lock: the same type of key can here be used to open different types of locks.

The receptors can be classified generally as excitatory (causing an increase in firing rate),

inhibitory (causing a decrease in firing rate) or modulating (causing long lasting effects, not

18



1.4. The neuronal dynamic

directly related to the frequency of activation). We cite few examples of neurotransmitters:

• excitatory: glutamate (whose recepters are AMPA / kainate);

• inhibitory: GABA and glycine.

The effectiveness of a synapse is strongly involved in the way in which the network

processes the information. The nervous system has the capacity of modifying this operating

efficiency in connections between neurons, of creating new links and deleting some others.

This property allows the nervous system to change its functionality and its structure in

a more or less permanent way, in dependence of the events that affect it, such as, for

example, experience and memory.

1.4 The neuronal dynamic

We have already mentioned that the arrival of an action potential at the presynaptic

neuron causes a change in the membrane potential of the receiving neuron (postsynaptic

potential). This can happen in two ways: excitatory postsynaptic potential and inhibitory

postsynaptic potential, according to whether the effect is either to increase or to decrease

the value of the membrane potential.

These mechanisms vary according to the type of neuron: for example, the neurons of the

cerebral cortex (cortical neurons) have thousands of synaptic contacts (from 103 to 104)

with other neurons in the cortex of which about 85% are excitatory and the rest inhibitory.

The role of synapses is crucial for the functioning of the neural system. To understand

the mechanism of the synapse, we analyze the dynamic neural activity according to the

variation of postsynaptic potential. The postsynaptic potential can be recorded with an

intracellular electrode which measures the potential difference VM (t) between the interior

of the cell and its surroundings. The neural dynamic that is established in response to the

arrival of pulses from presynaptic neurons is described by the following steps:

• Figure 1.6 A: postsynaptic neuron receives impulses from the two presynaptic neu-

rons j = 1,2; VMi(t) and VMrest(t) represent respectively the membrane potential

and the value of the resting potential of the neuron i, and the quantity ε(t − t(f)
1 )

corresponds to the postsynaptic potential generated by the arrival time t
(f)
1 of a pulse

from neuron j = 1.
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CHAPTER 1. From Biology to Neuron Model

• Figure 1.6 B: a pulse coming from the other presynaptic neuron j = 2 at an in-

stant t
(f)
2 , within a sufficiently short time interval. It causes a second postsynaptic

potential which is added to the previous one. In this regime, the response of the

postsynaptic neuron is approximately linear in the sense that the answer is approx-

imately proportional to the input that it receives.

• Figure 1.6 C: when VMi(t) reaches a typical value, θ, called the activation threshold,

the behaviour of the neuron becomes highly non-linear: it can generate an action

potential that has a stereotyped form and therefore it has no link with the stimuli

that has produced it.

Figure 1.6: Possible evolution of the voltage postsynaptic [1].

1.5 The Hodgkin-Huxley formalism

In 1952 Alan Lloyd Hodgkin and Andrew Huxley described a model which explains the

ionic mechanisms underlying the initiation and propagation of action potentials in the

squid giant axon. In 1963 they were awarded with the Nobel Prize in Medicine for this

20



1.5. The Hodgkin-Huxley formalism

work.

We used the Hodgkin-Huxley formalism as a design for our IC. The main advantage of

Figure 1.7: Equivalent electrical circuit of a neuron.

this formalism is that it relies on biophysically realistic parameters and it describes indi-

vidual ionic and synaptic conductances for each neuron in accordance with the dynamics

of ionic channels. As mentioned in the previous section, the electrical activity of a neuron

is the consequence of the diffusion of different ionic species through its membrane. This

behaviour is described by the mathematical model of Hodgkin-Huxley (to which we refer

using the abbreviation HH). The HH formalism provides a set of equations and an equiv-

alent electrical circuit( Figure 1.7).

The time derivative of the potential across the membrane is proportional to the sum

of the currents, according to the following expression:

CM
dVM
dt

= −
∑
I

Ii − ILeak + IS (1.2)

where VM is the membrane potential, CM is the membrane capacitance, Ii denotes the

individual ionic currents of the model, ILeak the leakage current, IS is a stimulation or a

synaptic current. Ii is the current for a given type of channel and its associated equation

is:

Ii = gi ·mp · hq · (VM − Ei) (1.3)

where gi is the maximum conductance; m and h are gating variables, respectively, for

activation and inactivation representing the fraction of available open gates at any given

time and voltage. Ei is the ion-specific reversal potential and p and q are integers. With
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CHAPTER 1. From Biology to Neuron Model

the simplification of the HH model described in the next section we find m by solving

the differential equations 1.4, where τm is the time constant for convergence. It depends

on the membrane voltage and on m∞, which is a sigmoid function of VM ( equation

(1.5)). VOffset,m and VSlope,m are the offset and the slope of the activation sigmoid. The

inactivation parameter h follows identical equations, except for the sign inside the brackets,

which is positive.

τ(VM )
dm

dt
= m∞ −m (1.4)

m∞ =
1

1 + exp
(
−VM−VOffset,m

VSlope,m

) (1.5)

The original equations proposed by HH model describe sodium, potassium and leakage

channels, with p = 3 and q = 1, p = 4 and q = 0, p = 0 and q = 0 respectively, in equation

1.3.

1.6 The simplified HH model

In the original equation of HH model the gating variables are described by the following

equation:
dX

dt
= αX(VM )(1−X)− βX(VM )X (1.6)

where αX(VM ) and βX(VM ) are functions deduced by empirical datas. We implemented

in our chip the HH model with an approximation, that is essentially based on the use of

the fixed time constant in equation (1.4). We chose this approximation in order to reduce

the number of equations implemented in the chip. If we collect the variable X to the right

of the equation (1.6) we obtain the following expression:

X =
α

α+ β
− 1

α+ β

dX

dt
(1.7)

Then to rewrite the equation (1.6) in the form (1.4), we must follow the three steps:

1. Compute αX(VM ) and βX(VM ) from biological patterns over the range VM =[-80,

+50]mV.

2. Identify VOffset,x and VSlope,x in terms of the sigmoid function that is equal to

X∞ = αX(VM )
(αX(VM )+βX(VM ) .

3. τx compute from τx = 1
(αX(VM )+βX(VM )) . The value of VM is chosen empirically and

−70mV is the best value.
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1.7. The neural families

Figure 1.8: .Equilibrium function (a) and time constant (b) for the variables m,n,h in the

HH model. The resting potential is at Vm=0.

The trends of gating variable of the original HH model are shown in Figure 1.8.

1.7 The neural families

The HH formalism is much more complex and precise than simple models. It allows us

to emulate different types of neurons. The types of neurons that have been implemented

so far [4] with this formalism are the following: FS (Fast Spiking), RS (Regulan Spiking),

IB(Intrinsically Bursting) and LTS (Low-Threshold Spiking). Table 1.1 summarizes the

conductances that compose the FS, RS, IB and LTS neurons.

Neuron’s types Conductances

FS ILeak(p = 0, q = 0), IK(p = 3, q = 1), INa(p = 4, q = 0)

RS ILeak(p = 0, q = 0), IK(p = 3, q = 1), INa(p = 4, q = 0), ISlow,K(p = 1, q = 0)

IB ILeak(p = 0, q = 0), IK(p = 3, q = 1), INa(p = 4, q = 0), ICa,L(p = 2, q = 1)

LTS ILeak(p = 0, q = 0), IK(p = 3, q = 1), INa(p = 4, q = 0), ICa,M (p = 2, q = 1)

Table 1.1: Extracted of the conductances of FS, RS, IB and LTS neurons.

This division corresponds to classify cells [5] according to presence or absence of the

three following criteria:

• spike-frequency adaptation;

• burst discharges from depolarizing stimuli;

• burst (or any other type of) discharge following hyperpolarizing inputs (rebound

response).
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CHAPTER 1. From Biology to Neuron Model

Figure 1.9: Membrane voltage software simulation of HH model for (A) FS neuron, (B)

RS neuron, (C) IB neuron and (D) LTS neuron [4] .

.

The first model is FS neuron. This cell is the simplest model; it is formed by the con-

ductances for generating spikes (INa, IK , ILeak). The FS neurons correspond to inhibitory

neurons and respond to depolarizing pulses by producing high frequency trains of action

potentials without adaptation. Thus their frequency is constant during the stimulation

(Figure 1.9 A).

Another common cell class in neocortex is called the RS neuron, which is, in general,

excitatory and most often corresponds to spiny pyramidal-cell morphology. The typical

responses of RS cells to depolarizing current pulses are trains of spikes with adaptation;

in detail we observe a high frequency discharge on the first part of the response and then

the frequency decreases slowly due to the adaptation phenomenon (Figure 1.9 B). The RS

model adds slow potassium current activated (p = 1 and q = 0) by depolarization, more

than the FS model.

Another cell class is the IB neuron, that is represented by a few percent of the recorded

cells in primary sensory cortex. This kind of neuron generates bursts of action potentials

following depolarizing stimuli and then the firing rate decreases immediately. To generate

the bursting behaviour, we extend the previous model of RS cell adding the L-type calcium

current. Even though the membrane voltages are comparable for the switching frequencies
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1.8. Synapse model

behaviour, the effect of the L-type calcium current (p = 2 and q = 1) is to suddenly bring

the neuron from one spiking frequency to another (Figure 1.9 C).

The last cell class is LTS, whose activities are described in a significant fraction of intra-

cellularly cells records in animal association cortex and the recordings obtained from the

LTS neuron are rare. These LTS neurons generate adapting trains of action potentials in

response to depolarizing current injection, similar to the classic ”regular spiking” response

of cortical neurons. In addition, they generate a burst of action potentials in response

to injection of hyperpolarizing current pulses (Figure 1.9 D). We extended the previous

model of the RS cell by adding the T-type (low-threshold) calcium current, its trend is

similar to IB spiking.

1.8 Synapse model

So far we have described only about the neuron model, but to realize our mini artificial

neural network we need to define a model for the synapse. As we have seen at the bio-

logical level, electrical synapses are created by pairs of twisted junction channels, allowing

a flow between the intracellular environments of the two neurons entering into very fast

communications. The conductance of these channels is generally symmetrical and inde-

pendent of the voltage membrane. Therefore, they are modeled by a simple conductance

and they are called ohmic synapses. Recalling the description of electrical synapses and

the transmission of neural action potentials, we underline that in this case it is considered

better an approach based on the network that does not take into account these electrical

synapses.

Modeling chemical synapses is generally based on the pattern established for the voltage-

dependent ion conductances. Reminding what discussed earlier on the operating mecha-

nism of chemical synapses, we have considered the ion current induced in the postsynaptic

cell by neurotransmitters transmitted by the presynaptic neuron; in particular we looked

at the dependence of the activation function in relation to the presynaptic membrane

voltage and secondly at a weighting of the same current on the postsynaptic membrane.

In other words, we can formulate these dependencies of the three following mathematical

expressions:

ISyn = gSyn · r(VMpre) · (VMpost − ESyn) (1.8)
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τ
dr

dt
= r∞(VMpre)− r (1.9)

r∞(VMpre) =
1

1 + exp
(
−VMpre−VOffset,m

VSlope,m

) (1.10)

Where gSyn is the maximum conductance of the synapses and ESyn is the equilibrium

potential of the electrochemical ion species. In equation 1.8, we consider the synaptic

current negative (positive) when it enters (exits) in the post-synaptic cell. Chemical

synapses can be excitatory or inhibitory, this property will be determined by the value

of ESyn. In the case of an excitatory synapse ESyn will be around 0 mV, in the case in

which it is inhibitory of about -100 mV. It is supposed that the voltage membrane of the

postsynaptic neuron is at its resting potential, for example, -65 mV, and it is considered the

case of observing the influence of inhibitory synapses. When presynaptic action potential

will stimulate the synapses, the current calculated using equation (1.8) will be positive. It

will lead to hyperpolarization of the post-synaptic cell. Meanwhile, in case of excitatory

synapses, the induced current depolarizes the postsynaptic neuron. An important feature

of the synapse is the pose that attaches to the post-synaptic signals it receives, that in

equation (1.8) is given by the parameter gSyn. The evolution of the synaptic weight will

result in a change of the parameterized gSyn. In this study of the phenomena learning or

plasticity of the network are not taken into account, infact in our case, gSyn is a constant.
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Chapter 2

Stochastic Neuron Model

As we have explained in the introduction, the noise in the key of many events in the brain

but its role is almost unknown and this has increased the interest for Neuroscience. In

this chapter, we introduce the use of stochastic differential equations (SDE) and Brownian

motion in describing the dynamics of multi-conductance Hodgkin-Huxley model, see [6],

[7], [8]. Namely we analyse where it is better to add the noise in the HH model and the

effects that it produces.

2.1 Noise

Figure 2.1: In vivo recording of a layer of 5 pyramidal cell in rat prefrontal cortex [9].

The stochasticity is one of the key elements in describing information processing in the

brain and may as well play an interesting role in the dynamic behaviour of neurons, see

[10], [11]. For example, the stochastic activity can be observed by the following experiment

on the visual cortex’s neuron: if we move a bar in the visual field of an animal, we can

notice that the activation frequency of the visual cortex changes until the bar goes out of

the visual field. If you try again the same experiment, the neural activity will vary greatly
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because the neurons are affected by the noise. It can also be observed that the neuron has

spontaneous activity even if the screen is blank, see [12].

Many in vivo experiments show noisy behaviour of neurons, as we can see in the Figure

2.1. The neural activity in vivo shows a much more irregular behaviour. With the SDE

in the HH model we try to model the stochastic behaviour of neurons that takes place in

nature. The noise in the brain is generated by intrinsic noise sources that give birth to

stochastic behaviour in the neuronal dynamics (properties of single neurons) and extrinsic

sources that arise from network effects and synaptic transmission. It depends on the level

of activation of neuromodulatory systems and it is correlated with the functional state of

the brain.

2.2 An introduction to stochastic differential equations

In this chapter we recall some fundamental notions of probability theory, such as the

notions of probability space, random variable, random process and Brownian motion.

These concepts allow us to have a minimal background for understanding the resolution

of stochastic differential equation.

2.2.1 Probability space

A probabilistic model is a mathematical description of an uncertain situation. Every

probabilistic model involves an underlying process, called the experiment, that will produce

exactly one out of several possible outcomes. The set of all possible outcomes is called

the sample space of the experiment. A subset of the sample space that is a collection

of possible outcomes, is called an event. To an event we can associate a positive value

between 0 and 1 which represent the likelyhood of the event, 0 will stand for a improbable

event, 1 for a certain one. Think about the throw of a dice, we can say that if the dice is

balanced the probability of the event ”the dice showed 6” is 1
6 . All of these concepts can

be rewritten in a more formal way defining the probability space.

Definition 2.1. A probability space (Ω, F, P ) is a three-tuple, in which the three com-

ponents are :

1. Sample space: A nonempty set Ω called the sample space, which represents all

possible outcomes.
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2.2. An introduction to stochastic differential equations

2. Event space: A collection of F subsets of Ω, called the event space.

3. Probability function: A function, P : F → [0, 1] , that assigns probabilities to

the events in F . This will sometimes be referred to as a probability distribution over

Ω.

The probability function must satisfy several basic axioms:

1. Non-negativity: P (E) ≥ 0 for all E ∈ F .

2. Normalization: P (Ω) = 1.

3. Countable Additivity: P (E ∪D) = P (E) + P (D) if E ∩D = 0, for all E,D ∈ F .

2.2.2 Random variable and random process

In many probabilistic models, the outcomes are numerical, e.g. when they correspond to

instrument reading. In other experiments, the outcomes are not numerical, but they may

be associated with some numerical interest. This is done through the notion of a random

variable.

Definition 2.2. A random variable X, in the probability space (Ω, F, P ), is a function

X : Ω→ Rd such that the inverse image

X−1(A) = {ω ∈ Ω : X(ω) ∈ A} is in F

for all open subsets A of Rd.

In practice, the random variable (function), px = f(Ex) is the function that associates

to each event partition a real number (probability of event). Random variables can be

classified as either discrete (i.e. they may assume any of a specified list of exact values)

or as continuous (i.e. they may assume any numerical value in an interval or collection of

intervals). The mathematical function describing the possible values of a random variable

and their associated probabilities is known as a probability distribution.

There are several basic concepts related to random variables, which are summarized

in the following points:

• A random variable is a real-valued function of the outcome of the experiment.

• A function of a random variable defines another random variable.
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• We can associate with each random variable certain ”average” of interest, such as

the mean and the variance.

• A random variable can be conditioned of independent on an event or on another

random variable.

In probability theory, a stochastic process is a collection of random variables. It is

often used to represent the evolution of some random value, or system, over time. Instead

of describing a process which can only evolve in one way (as in the case, for example, of

solutions of an ordinary differential equation), in a stochastic or random process there is

some indeterminacy: even if the initial condition (or starting point) is known, there are

several (often infinitely many) directions in which the process may evolve.

Definition 2.3. A stochastic process X with state space S is a family X = {Xn}n∈I
or {Xn : n ∈ I} of random variables Xi : Ω → S, where I is an index set, defined on a

common probability space (Ω, F, P ).

2.2.3 Brownian motion

The Brownian motion is a mathematical model used to describe random movements in

atoms or molecules. The Brownian motion, see [13], called also the standard Wiener

process, is one of the most import stochastic process in continuous-time.

Definition 2.4. A stochastic process {Wt}t≥0 is called a standard Wiener process if

it satisfies the following three conditions:

1. W0 = 0;

2. {Wt}t≥0 has independent , i.e. Wt1 , Wt2 −Wt1 , . . . , Wtk −Wtk−1
are independent

random variables for all 0 ≤ t1 < t2 < t3 < · · · < tk < . . . ;

3. for 0 ≤ s < t the random variable given by the increment Wt −Ws ∼ N(0, t − s)

where N(u, σ2) denotes the normal gaussian distribution with expected value µ and

variance σ2.

The Wiener process is a Gaussian process: a stochastic process X is called a Gaussian

process if for any instant t1, ..., tk the vector of random variables (Xt1 , ..., Xtk) follows a

k-dimensional normal distribution. The Wiener process is continuous with zero mean and

variance proportional to the elapsed time: E(Wt) = 0 and V ar(Wt) = t− s.
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2.3. Stochastic differential equations

2.3 Stochastic differential equations

A one-dimensional dynamical system is described by the ordinary differential equation

dx

dt
= g(x, t) (2.1)

where it is assumed that g(·) fulfills conditions such that an unique solution exists,

x(t) = x(t, x0, t0) is a solution satisfying the initial condition x(t0) = x0. Given the initial

condition, we know how the system behaves at all times t, even if we cannot analytically

find a solution. These differential equations do not suffice to correctly and realistically

model all biological systems, thus we need to allow for some randomness in the description.

An ordinary differential equation, to which a noise term is added, is called a stochastic

differential equation.

Definition 2.5. The stochastic differential equation is a differential equation in which

one or more of the terms of the mathematical equation are stochastic processes.

A standard example of stochastic differential equation is a an Ito’s equation for a

diffusion process. It can be written as

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.2)

where Xt is a stochastic process, Wt is a Wiener process, µ(·) and σ(·) are the functions.

To solve such equation on time T we have to integrate, obtaining the following:

X(t) = Xt0 +

∫ T

t0

µ(s,Xs)ds+

∫ T

t0

σ(s,Xs)dW (2.3)

where Xt0 is a constant. The first integral can be ordinarily solved, while the second, where

we have a stochastic process, is called Ito’s integral. In discrete time we can approximate

the Ito’s integral following the classical approach as:∫ T

t0

σ(s)dWs =

n∑
j=1

σ(tj)(W (tj+1)−W (tj)) (2.4)

where (tj)j≥0 is a partition of [t0, T ]. If σ(s,Xs) = σ is constant, then the solution of the

integral (2.13) is∫ t

t0

σ(s)dWs =
n∑
j=1

σ(W (tj+1)−W (tj)) = σ(W (t)−W (t0)) ∼ σN(0, t− t0) (2.5)

Now we want prove that in continuous time the Ito’s integral is distributed like a

normal distribution times, the constant σ.
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The integral
∫ T
t0
σdWt, where T is a fixed ending time, σ is a constant and Wt is a Wiener

process is not a ordinary integral i.e. it cannot be solved using Riemmann or Lebesgue

integration since the paths of Wt, for any t, are not smooth. Hence, in order to solve this

integral, we need to use a different theory, which is Ito’s integral, see [14]. This integral

is defined as a limit in probability of Riemmann sums, since such a limit does not exist

pathwise. If {Πn}t≥0 is a sequence of partitions of the interval [0,T] such that the mesh

of the position Πn is given by n intervals from 0 = t0 < t1 < · · · < tn = T , then the Ito

integral of σ against Wt is a random variable given by:

∫ T

0
σdWt = lim

n→∞

∑
[tj−1,tj ]∈πn

σ(W (tj)−W (tj−1)) (2.6)

One can show that this limit is well defined and converges in probability. In particular,

define Sn := limn→∞
∑

[tj−1,tj ]∈πn σ(W (tj) −W (tj−1)). Since for each choice of times t,s

with 0 ≤ s < t, we have that Wt −Ws is a distributed as a gaussian N(0, t− s), then also

Sn, being the finite sum of gaussian variables( σ is constant), is gaussian. Let us compute

the expected value of Sn and the variance. Since Wt−Ws ∼ N(0, t− s) for 0 ≤ s < t then

E(Sn)=0. To compute the variance we have to calculate:

E

 ∑
[tj−1,tj ]∈πn

σ(W (tj)−W (tj−1))2

 =
∑
i,j=1

E(σ(W (tj)−W (tj−1))σ(W (ti)−W (ti−1)))

(2.7)

where the equality follows applying properties of the expected value. If i < j then

W (tj) − W (tj−1) is independent of W (ti) − W (ti−1) by definition of Wiener process,

then E(σ2(W (tj) −W (tj−1))(W (ti) −W (ti−1))) = E(σ2(W (tj) −W (tj−1)))E((W (ti) −

W (ti−1))) = 0. Hence i=j so the sum in (2.14) is equal to

n∑
j=1

E(σ2(W (tj)−W (tj−1))2)) =
n∑
j=1

σ2E((W (tj)−W (tj−1))2)) =

=

n∑
j=1

σ2(tj − tj−1) =

∫ T

0
σ2dt = σ2 (2.8)

where the equality is true in probability. Hence Sn is distributed like a normal gaus-

sian N(0, σ2) = σN(0, 1). For the central limit theorem in probability we have that

32



2.4. Methods for incorporating noise in HH models

limn→∞ Sn ∼ σN(0, 1). Hence we can conclude that

∫ T

0
σdWt ∼ σN(0, 1) (2.9)

In particular, let us remark that this process is a Markov process [15], hence it is with no

memory, so we can forget about all data before time T when computing its value at time

T+1.

2.4 Methods for incorporating noise in HH models

To model the noise in the channels we use the differential equations of the HH model, seen

in the previous chapter. We try to introduce the fluctuations in that model. There are

mainly two approaches, look at [16] [17] [18] [19], namely:

• Current noise is the simplest method to incorporate noise into the HH equations.

It consists in adding noise in the current term into the equation of membrane voltage,

as shown in the following:

C
dV

dt
= −gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I + σdW (2.10)

where σdW is a Brownian motion. This approach is interesting for its simplicity:

the noise is generated by the current, which in turn is induced by membrane voltage

and consequently by ion channels activity. Nevertheless, this approach is not precise.

It has already been implemented by our research group, and has been included in

the noise current external stimulation [20].

• Gating variable is the most precise and realistic approach to incorporate the

stochasticity into terms of activation and inactivation m, n and h of ionic con-

ductances (gating variables), where each gating variable can be randomly either in

an open or closed state of the functions rate of activation or inactivation processes.

In HH model the configuration of the ion channel is determined by the states of

gating. For example, each sodium channel is composed of four n gating variables, all

of which must be either open or closed because the channel is permeable to sodium

ions. The degree of opening of the channel is determined by the value of the gating

variable which can be between 0 and 1. Moreover, the best place to add noise may

be in the equations that describe the channel configuration, describing exactly what
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happens in nature. The situation just mentioneted is represented by the following

formula:

dX =
X∞ −X

τ
dt+ σdW (2.11)

where σdW is the Brownian motion and the gating variables X=m,h, or n. The addi-

tion of Brownian motion, in this position, models the effects of random openings and

closings of ion channels and the random extrasynaptic inputs ones and contributing

to the very delicate subthreshold-membrane dynamics in neurons.

The integral form of the SDE 2.11 is the following:

X(t) = X0 +

∫ t

0

X∞ −X(s)

τ
ds+

∫ t

0
σdW (2.12)

The Wiener process (Wt)t≥0 has independent increments i.e. for 0 ≤ s < t, the random

variable Wt −Ws is distributed like a normal gaussian N(0, t − s); so, fixed ε ≥ 0 small,

such that t−s = ε, then Ws+ε−Ws is distributed like N(0, ε). For infinitesimal increments

in time, is then clear that dWt can Using the Ito’s integral in the previous section and this

approximation, we can rewrite the SDE as

dX

dt
=
X∞ −X

τ
+ σξt(t) (2.13)

2.5 Results of stochastic model

We use this stochastic Hodgkin-Huxley model, that we are able to simulate in MATLAB

programming environment, to characterize and model our stochastic neuron. Moreover,

during the simulation of the stochastic neuron we have tried to lock in continuous time

using Simulink and VerilogA but we did not have similar results because they don’t have

a stochastic differential equation solver.

From the simulations in Matlab of a stochastic neuron, we have noted that equation (2.13)

does not produce the desired characteristics of a neuron stochastic. For these simulations

we used the FS neuron model in order to simplify and validate our stochastic model. Then,

we introduced a constant factor Cτ in the term of noise that is proportional to the time

constant τ . The stochastic differential equation (2.13) becomes

dX

dt
=
X∞ −X

τ
+ Cτσξt(t) (2.14)
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The values of Cτ for the different gating variables the neuron FS are the following: Cτ,m=3

for m, Cτ,h=50 for h, and Cτ,n=20 for n. In the simulations of stochastic model (described
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Figure 2.2: Frequency versus stimulation current f(i) curves of FS neurons with different

σ: σ = 0(black curve), σ = 0.01(blue curve), σ = 0.02(magenta curve) and σ = 0.03(red

curve).

by equation 2.14) , we observe mainly two events. The first is the normal firing, as shown

in Figure 2.3, that produces the realistic action potential. In Figure 2.3(a), the membrane

voltage oscillations are the dominant effect of the stochastic nature of ion channel, with

spontaneous spiking. In Figures 2.3(c) and 2.3(e), the supra-threshold stimulation currents

result with irregular spiking, occasional missing spikes and membrane voltage oscillations.

The second is the linear f(I) curve with small depolarizing currents curve that is produced

from the normal firing, as shown in Figure 2.2. This linear f(I) curve is obtained by the

superposition of different firing rate, that is in function of the current, and it is modulated

by σ that represents the amplitude of the noise. In Figure 2.2, the HH model is affected by

noise, it has a firing rate with lower frequencies due to random subthreshold oscillations,

occasional spontaneous spikes, and clusters of action potentials.

For CPR neuron the time constants used are: Cτ,m=3 for m, Cτ,h=50 for h, Cτ,n=20

for n, Cτ,o=2500000 for o and Cτ,s=20000 for s. As we can see the constants for the slow

conductances (IslowK and lslowNa) are big: this means that the amplitude of the noise is
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very big compared to the signal, then the membrane voltage that we obtain is too noisy

and the neuron can with difficulty overcome the threshold voltage and obtain a neural

activity. Moreover the conductances that realize the formation of action potential are

leakeage, sodium and postasium, instead the slow conductances have only the function

of adaptation of the action potential: as we can see by Figure 3.9 their effects can be

considered finished after 40s. So to create a stochastic neuron, we have to make the

opening and closing of ion channels noisy that determine the action potential. Then

we add the noise only into the leakeage, sodium and postasium conductances. However

we have a stochastic behaviour of the CPR neuron although we don’t add noise in slow

conductances because the other conductances with noise make the stochastic membrane

voltage that in turn affects the slow conductances. In the table 2.1 we summarize the

values of the constant Cτ to obtain the HN, IN and CPR stochastic neurons.

neuron type conductance type value Cτ

HN m 3

h 50

n 20

IN m 3

h 50

n 20

CPR m 3

h 50

n 20

o 0

s 0

Table 2.1: Constant values (Cτ ) to achieve the HN, IN and CPR stochastic neurons

.

36



2.5. Results of stochastic model

0 100 200 300 400 500 600 700 800
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

V
m

e
m

[m
V

]

time[ms]

(a)

0 100 200 300 400 500 600 700 800
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

V
m

e
m

[m
V

]

time[ms]

(b)

0 100 200 300 400 500 600 700 800
−80

−60

−40

−20

0

20

40

V
m

e
m

[m
V

]

time[ms]

(c)

0 100 200 300 400 500 600 700 800
−80

−60

−40

−20

0

20

40

V
m

e
m

[m
V

]

time[ms]

(d)

0 100 200 300 400 500 600 700 800
−80

−60

−40

−20

0

20

40

V
m

e
m

[m
V

]

time[ms]

(e)

0 100 200 300 400 500 600 700 800
−80

−60

−40

−20

0

20

40

V
m

e
m

[m
V

]

time[ms]

(f)

Figure 2.3: Comparison between the reponses obtained by the deterministic (right panels)

and stochastic models (left panels) in reponse to three different depolarizing current. For

the stochastic trace σ = 0.03. The traces 2.3(a) and 2.3(b) are stimulated with I = 0.008nA.

The traces 2.3(c) and 2.3(d) are stimulated with I = 0.02nA. The traces 2.3(e) and 2.3(f)

are stimulated with I = 0.1nA.
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Chapter 3

Modeling of CPR Network

This network is called CPR due to the name of one of the main neurons that are comprised

in the biological network. The circuit interests us in the switch-like behaviour, which seems

to spike in response to a certain kind of stimuli. From the biological experiments data

we construct a network model that emulates the same physiological behaviour, according

to the HH model. In this chapter, we first introduce the electrophysiological phenomena

of CPR biological network. In the following section, we present as these phenomena are

reproduced in our model. Results of Matlab simulations on the HN, IN and CPR neurons

and synapses that support the correctness of this model are reported.

3.1 Biology CPR Network

(a) (b)

Figure 3.1: (a) A crayfish [20]. (b) The setup of neuron measurement [20].

The crayfish is a kind of small lobsters shown in Figure 3.1 (a). To measure neuron

signals, our colleague from NTHU dissect the crayfish and we pay attention just to the
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abdominal nerve cord (a number of nerves) and then the Ag/AgCl electrode is introduced

to record neural signals, as shown in Figure 3.1 (b).

Figure 3.2: The anatomy of the tail of a crayfish [21].

Figure 3.3: The blue line is the firing-rate curve of the CPR neuron with a 1s (20s∼21s)

stimulus (blue line). The red line shows the wave enhancement phenomenon [20].

The recording method can be either intracellular or extracellular, depending on whether

the electrode is put either inside or outside the neuron. In our experiments, the extra-

cellular recording is used and the amplitude of the measured action potentials is around

1mV. The CPR model is mainly located in the tail of a crayfish as shown in Figure 3.2.

To use a more quantitative method for describing biological phenomena, we analyze the
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Figure 3.4: The afferent-cut phenomenon. The blue point is the firing rate before the

removal of the afferent nerve and the red point is after the removal. The stimulus is a

continuously constant stimuli applied to the CPR neuron and start at 10min [20].

mean firing rate which is defined as the number of action potentials occurring within each

one-second window. The firing rate of CPR neurons exposed to an optical stimulus for one

second is shown in blue line in Figure 3.3. We can see that this curve increases when the

stimulus is applied. To investigate how the two types of sensory neurons (CPR neurons

and hair neurons) interact, we apply stimuli to them simultaneously. In the experiment,

the CPR neuron is stimulated with an optical source (LED) for one second and machines

are used to generate water wave or electrical stimuli to the hair neuron.

Figure 3.5: The inhibition induced by an electrical shock. The CPR neuron stops firing

when a strong stimulus is applied to the HN [20].

The experimental data show that the CPR neurons change the firing rate in opposite
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CHAPTER 3. Modeling of CPR Network

directions when distinct stimulus strength is applied to the hair neurons. If the strength

is weak such as water wave, the firing rate of the CPR neuron will increase as shown

in red line in Figure 3.3. On the other hand, Figure 3.5 shows that the CPR neuron

will stop firing, if the stimuli are strong, such as a direct electrical stimulus. We call the

first phenomenon the wave enhancement and the second one the inhibition induced by

an electrical shock. Now, another phenomenon is observed: if we cut the afferent nerve,

we eliminate the signals from the hair neuron; this increases of the firing rate and seems

to indicate that the hair neuron has an inhibitory effect on the CPR neuron, as shown

in Figure 3.4. The latter phenomenon can be observed in Figure 3.6: if one of the CPR

neurons is excited, it will inhibit accordingly another CPR neuron and vice versa. We call

it mutual inhibition and oscillation.

Figure 3.6: The mutual inhibition and oscillation between the CPR neurons [20].

3.2 CPR network model

To model the physiological behaviour of the tail of the crayfish in our CPR network , that

is proposed by NTHU [20], there are 2 CPR neurons, 2 HN neurons, 2 IN neurons and 12

synapses (S1 S2 S3 S8 S9 S10 are equal to S4 S5 S6 S7 S11 S12), as shown in figure 3.7.

The four electrophysiological phenomena that we saw in the previous section are modeled

in such CPR Network:

42



3.2. CPR network model

• wave enhancement is modeled by the connection between the HN and CPR with

synapse S1 (S2). When a weak stimulus is applied to the HN, the stimulus strength

is not strong enough to make the IN fire. Thus, the firing rate of the CPR neuron

will be increased by the current of the excitatory synapse S1 (S5).

• Induced inhibition is modeled by the chain which is formed by the HN, IN, CPR

and the synapses between them. The IN is excited by the synapse S2 (S6) and fires.

As soon as the IN fires, there is a current drawn from the CPR neuron through the

inhibitory synapse S3 (S7). Although the synapse S1 (S5) still works and increases

the excitability of the CPR neuron, the weight of the inhibitory synapse S3 (S7)

is larger (in fact the value of the synapse gsyn S3 is bigger than S1), resulting in

the inhibition of the CPR neuron. Thus the IN acts as a switch and modulates the

firing-rate of the CPR neuron under distinct levels of stimulus strength.

• Afferent-cut phenomenon is modeled by the cross-connected synapses, from the left

HN to the right CPR2 and from the right HN to the left CPR1. Although there are

two synapses, one excitatory and one inhibitory S1, S4 (S5, S8), connected to the

same CPR neuron, we can adjust the weight of the inhibitory synapse. In this way

we aim to give it a more relevant contribution in the case of a very weak stimulus

(it can be seen as no stimulus) applied to both HNs. By this one, the CPR neuron

will be slightly inhibited under the condition mentioned above when the afferent one

is intact. If the afferent nerves are removed, the synapses S1, S2, S4 (S5, S6, S8)

will be no more functional and the firing rate will increase, causing the afferent-cut

phenomenon.

• The mutual inhibition and oscillation is modeled by the four synapses S9, S10 (S11,

S12) between the two CPR neurons. The inhibitory synapses have smaller time

constants than the excitatory ones. When a CPR neuron is inhibited, it will fire

again because of the slowly-increasing current of the excitatory synapse. As soon as

it fires, the other CPR neuron is inhibited and repeats the procedure.
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CHAPTER 3. Modeling of CPR Network

Figure 3.7: The CPR network model [20].
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3.2. CPR network model

3.2.1 CPR neuron

The first neuron that we analyze is the CPR neuron one. As we can see from firing rare

which is a bell-shaping curve (as shown in Figure 3.8 b), it is not constant but varies under

the stimulus.
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Figure 3.8: (a) Biological Firing-rate curve of the CPR [20]. (b) Firing rate of the CPR

neuron with Iext = 0.0008nA..
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Figure 3.9: Firing rate of the CPR neuron with Iext=0.01nA(b), Iext=0.1nA(r),

Iext=0.2nA(g), Iext=0.3nA(m) and Iext=0.4nA(c).
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Figure 3.10: Membrane potential of the CPR neuron with stimulation current Iext=0.01nA

This indicates that there is an ion channel slowly injecting currents into the membrane.

In fact, for a very large firing rate, we can note an increasing phase, a decreasing one and

then a settle to a fixed value. Hence, the CPR neuron is modeled as a RS neuron (with a

leakage, a sodium, a potassium and a slow ion channel, as channel modulation) but in this

case we add two slow ion channels. One of them is Islow,Na, which slowly injects currents

to the membrane. The other one, Islow,K , also influences the membrane voltage, but in

delay. In Table 3.1 we can see the composition of the ionic current of the CPR neuron.

The biological parameters of CPR neuron, are summarized in Table 3.2, with them we

ion current ion type gating kinetics

INa Na+ m3h

IK K+ n4

Islow,Na Na+ s

Islow,K K+ o

Table 3.1: Extracted parameters of the composition of the ionic current of the CPR neuron

obtain the firing rate of Figure 3.8 b. In Table 3.1, we can see the composition of the ion

current of CPR neuron. From the composition of the Figure 3.8 we can observe that the

firing rate simulated in MATLAB, it has the same red line pattern of biological recording.
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3.2. CPR network model

To get the current stimulation of our CPR neuron, in MATLAB, the neuron is stimulated

with different values of current. Then the instantaneous frequency of each spike during

50s is calculated for each different values of stimulation current, thus obtaining the graph

in Figure 3.9. We induce a stimulation current of 0.01nA so we get a frequency of 35Hz

at the end of the transient. We are not going to lower frequencies because the stimulation

current is already low and no lower one can be generated due to technological limits. In

Figure 3.10, we can observer that the period of the first spikes of the membrane potential

are great respect those following, according to the firing rate in the Figure 3.8 b.

3.2.2 The HN and IN neurons

The mechanoreceptor hair cells (HN) is a neuron that behaves like a simple FS neuron

and consists of leakage, sodium and potassium channel. In fact, we introduced another FS

neuron in order to model correctly the phenomena of biological networks CPR. The wave

enhancement and the inhibition induced by an electrical shock result from the existence

of the inter-neurons(IN). The IN neuron has the same parameters of the HN neuron (as

shown in Table 3.2). In the Figure 3.11 we can observe the firing-rate of HN and IN

neurons. You can see that we must apply a stimulation current of 0.05nA, if we want a

realistic neuron frequency of about 35Hz.
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Figure 3.11: Firing-rate curve of FS neurons
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HN neuron IN neuron CPR neuron

CM (µF/cm2) 1 1 1

gNa(mS/cm
2) 40 40 40

ENa(mV ) 30 30 30

τm(ms) 0.03 0.03 0.03

Voffset,m(mV ) -40 -40 -37.3

Vslope,m(mV ) 5.5 5.5 5.5

τh(ms) 0.5 0.5 0.5

Voffset,h(mV ) -45 -45 -42

Vslope,h(mV ) 4 4 4

gK(mS/cm2) 35 35 35

EK(mV ) -80 -80 -80

τn(ms) 0.2 0.2 0.2

Voffset,n(mV ) -40 -40 -35

Vslope,n(mV ) 7.5 7.5 7.5

gmS/Leak(cm
2) 0.03 0.03 0.03

ELeak(mV ) -64,9 -64.9 -60

gslowNa(mS/cm
2) 0.04

EslowNa(mV ) 30

τslowNa(ms) 200

Voffset,s(mV ) -37.5

Vslope,s(mV ) 5.5

gslowK(mS/cm2) 1.5

EslowK(mV ) -80

τo(ms) 25000

Voffset,o(mV ) 0

Vslope,o(mV ) 2.5

Table 3.2: Parameters of biological HN, IN and CPR neurons

3.2.3 The synapse in the CPR network

To describe the synapse in the CPR network we use the equations 1.8, 1.9 and 1.10 defined

by the synaptic model of the previous chapter. In this network Esyn is 20mV for excitatory
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3.2. CPR network model

synapses and -80mV for inhibitory synapses and the biological parameters of synapses, are

summarized in Table 3.3.

Syn (1-5) Syn (2-6) Syn (3-7) Syn (4-8) Syn (9-11) Syn (10 -12)

gsyn(mS/cm
2) 0.08 0.12 20 0.02 0.7 0.2

Esyn(mV ) 20 20 -80 -80 -80 20

τsyn(ms) 1 1 1 1 100 1000

Vsyn(mV ) -30 -10 -20 -28 -30 -30

Vsyn(mV ) 1 2 3 15 2 3

Table 3.3: The biological parameters of the synapses

Figure 3.12: A single neuron oscillator

Another of our goals is to find a possible hardware implementation for synapses. From

equation 1.8 it can be seen that it is similar to the equation of the potassium current, except

for the gating variable of the synapse that is power one instead of the potassium one, which

is four. Therefore we decided to implement the equations of synapses in Simulink as those

of the potassium current by changing only the power of the gating variable. To test the

functioning of neural synapses, we use the principle of the oscillator. A neural oscillator

consists of a feedback loop between a couple of neurons, as illustrated in Figure 3.12. This

technique is the first test that is performed to verify that the communication between

neurons is working. If neurons influence each others, in accordance with their inhibiting

or exciting nature, communication works, and so more neurons can be involved in the

network. In this case, to test the synapse we use the only link between the neuron one to

two, with the synapse between the two neurons, as shown in Figure 3.13.

As long as six to twelve synapses have got the same values, it is possible to run the

simulation using six of them, i.e. S1, S2, S3, S8, S9 and S10. We impose a fixed current
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Figure 3.13: Block diagram for testing the synapse

Iextpre = 0.2nA to the presynaptic neuron, instead Iextpost = 0.05nA to the postsynaptic

one. To see if the synapse is excitatory or inhibitory, we perform two tests for each synapse:

through the first we analyze the behaviour of the postsynaptic membrane potential at rest

(stimulated by a current Isynpost = 0nA) and then we consider the postsynaptic membrane

potential with the Isynpost generated from the synapse. If the postsynaptic membrane

voltage increases, it means that the synapse is excitatory; on the contrary, if it decreases

it means that it is inhibitory. As can be seen from the simulations in Simulink, synapses

S1, S2, S11 are excitatory (Figures 3.14, 3.15 and 3.16) while S3, S8, S10 (Figures 3.17,

3.18 and 3.19) are inhibitory. It is very important to note that synaptic current in the

postsynaptic neuron must be subtracted from the equation (1.2), because the direction of

reference is opposite to that of the Figure 1.7.
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Figure 3.14: Excitatory Synapse 1 and 5: the membrane potential increases with the

synaptic contribution.
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Figure 3.15: Excitatory Synapse 2 and 6: the membrane potential increases with the

synaptic contribution.
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Figure 3.16: Inhibitory Synapse 3 and 7: the membrane potential decreases with the

synaptic contribution.
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Figure 3.17: Inhibitory Synapse 4 and 8: the membrane potential decreases with the

synaptic contribution.
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Figure 3.18: Inhibitory Synapse 9 and 10: the membrane potential decreases with the

synaptic contribution
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Figure 3.19: Excitatory Synapse 11 and 12: the membrane potential increases with the

synaptic contribution
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Chapter 4

Design CPR Network

In this chapter, we explain the design methodology of our chips in particular we analyze

the properties of its noise immunity. In the following we describe an analog library of

mathematical operators [23], according to the HH formalism, developed in the previous

Galway chip of the research team, which we readapt to realize the neurons in CPR Network.

4.1 Design principle of conductance based model

Figure 4.1: Design methodology of an integrated neuromimetic circuit [4].

To design our chip, which is called Hysnet, we use the following model for the design

of analog neuromimetic ICs as shown in Figure 4.1.

The computational neuroscientists of the biological measures develop a mathematical

model. Then the electronic engineers from the mathematical model realize the IC. After

this, they simulate the behaviour of the chip to verify that it works properly. Finally

this IC is connected to a biological system to emulate his electrophysiological behaviour
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CHAPTER 4. Design CPR Network

and study its interaction with biological cells. To develop this ASIC (Application Specific

Integrated Circuit) we use the Cadence platform. Cadence is a graphical interface for

unified management of the design flow for digital ICs, analog and mixed, which includes

more than one hundred software tools, and has long been an industry standard.

Between different Cadance tools, our design is useful to use the Verilog-A language,

Figure 4.2: Design process flow diagram

that is a high-level language that uses modules to describe the structure and behaviour of

analog systems and their components. A design flow in Cadence for standard full-custom

analog circuits is shown in Figure 4.2. Hysnet chip has been designed thanks to BiCMOS

0.35 um SiGe technology of austriamicrosystems. BiCMOS technologies are hybrid and

theyintegrate CMOS and BJT on the same semiconductor chip.

For our design, we retained five channel types: leakage, sodium, potassium, slow-sodium

and slow-potassium. By combining those channels, we can model the HN, IN and CPR

neurons described in Chapter 3. Each conductance is obtained by assembling blocks of

mathematical functions according to the block diagram of ionic current generators in
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4.2. From biology to hardware implementation

Figure 4.3. We use the same principle to achieve the synapse, then it is constituted by

the block diagram in Figure 4.4. For the design of synapses first we realized the different

blocks by VerilogA then we replaced once with transistor blocks.

Figure 4.3: Block diagram of the ionic current generator.

Figure 4.4: Block diagram of synapse generator.

We designed the functions in current mode, so that all of the internal variables are

physically represented by currents, in order to make the design of the various easiest

operations. Moreover in all functions the MOS transistors operate above threshold.

4.2 From biology to hardware implementation

In order to increase the noise immunity, we applied a x5 gain factor to the biological

voltages:

VV LSI = 5 · VBio (4.1)

This means that the action potential varies about between -320mV to 250mV.

To obtain this transition from biological to hardware implementation [4] we have to replace
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in the equations of HH model VV LSI , gV LSI and IV LSI :

gV LSI = gBio ·
CV LSI
CBio

(4.2)

IV LSI = IBio · 5
CV LSI
CBio

(4.3)

CV LSI and CBio represent the membrane capacitans of artificial and biological neurons.

In the out chip, CVLSI = 220 nF and the biological neurons have CBio = CM ·Area with

CM = 1uF/cm2 and Area is the neuron Area. In addition, our system provides that the

parameter values for the command the ionic conductances are transmitted to the ASIC as

a voltage. These parameters are shown in the table 4.1 for HN and IN neurons.

HN neuron IN neuron

gNa(V ) 3.762 3.762

ENa(V ) 2.65 2.65

τm(V ) 3.956 3.956

Voffset,m(V ) 2.3 2.3

Vslope,m(V ) 4.175 4.175

τh(V ) 4.373 4.373

Voffset,h(V ) 2.275 2.275

Vslope,h(V ) 4.4 4.4

gK(V ) 3.917 3.917

EK(V ) 2.1 2.1

τn(V ) 3.433 3.433

Voffset,n(V ) 2.3 2.3

Vslope,n(V ) 3.875 3.875

gLeak(V ) 4.833 4.833

ELeak(V ) 2.796 2.796

Table 4.1: Parameters of Hardware HN and IN neurons

4.3 Elementary circuits for neural analog functions

In this section we present the elementary circuits required for obtaining the analog neural

functions to achieve neurons and synapses depending on the HH model.
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4.3.1 Voltage-current converter

The model’s parameters are applied to the chip in the form of voltages. Since we chose to

use a current mode design, then it becomes necessary to have voltage-current converters

(VCC). The solution with a high linear range uses one operational amplifier, one resistor,

and one MOS transistor, and it is shown in Figure 4.5. The usage of a polysilicon resistance,

unlike resistors implanted in silicon, will present the advantage of being linear over the

range of operating voltage. We then obtain the following linear relationship:

IO = −V cc− V i
RConv

(4.4)

Figure 4.5: Voltage-current converter using 1 op-amp, 1 PMOS transistor and 1 resistor

(Vi is the input and IO is the output)[23].

4.3.2 Current-mode multiplier

The current used in our ASIC design offers simple solutions to make the operations of

addition and subtraction. To perform multiplication or division, you must use more elab-

orate circuits. In our model, the input variables are the activation and inactivation terms

(1.3), and these terms are bounded by 0 and 1, then we can use only a single one-quadrant

multiplier, as shown in Figure 4.6.

This structure uses the translinear principle that says: in a closed loop containing

an even number of translinear elements (TEs) with an equal number of them arranged

clockwise and counter-clockwise, the product of the currents through the clockwise TEs
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Figure 4.6: One-quadrant multiplier in current mode using the NPN transistor with IC1 ·

IC2
= IC3

· IC4
,resulting in IOut = I1 · I2/IBias [23].

equals the product of the currents through the counter-clockwise TEs. By Kirchoff’s

Voltage Law applied to the circuit in Figure 4.6 we can write:

VBE3 + VBE1 − VBE2 − VBE4 = 0 (4.5)

Recalling the simplified equation of the voltage-current relationship of a bipolar transistor:

VBE = UT ln
IC
IS

(4.6)

Substituting VBE in equation 4.5 we obtain:

UT ln
IC1

IS1

+ UT ln
IC3

IS3

= UT ln
IC2

IS2

+ UT ln
IC4

IS4

ln
IC1

IS1

IC3

IS3

= ln
IC2

IS2

IC4

IS4

IC1

IS1

IC3

IS3

=
IC2

IS2

IC4

IS4

(4.7)

Using the same transistors surface, we have:

IS1 = IS2 = IS3 = IS4 (4.8)

58



4.3. Elementary circuits for neural analog functions

Then the equation 4.7 becomes:

IC1 · IC3 = IC2 = IC4 (4.9)

The technology used and the mode of operation of the transistors allow us to simplify

usual IB << IC . Thus, after identifying current IC1 , IC2 , IC3 and IC4 respectively I2,

IBias, I1 and IOUT , we get he following result:

IOUT =
I1 · I2

IBias
(4.10)

4.3.3 Operational transconductance amplifier

Integrated electronic circuits have the disadvantage of having passive components very

large compared to the active components. Often it is preferable to realize the function of a

passive component, with the use of active components. A typical example is the integration

of a high resistance value using a transconductance amplifier, as shown in Figure 4.7. To

Figure 4.7: OTA, with an input VD and an output IOut [23].

emulate the behaviour of resistance, the transconductance amplifier must operate in the

linear region, such as Ohm’s law. Therefore, it is necessary that the MOS differential pair
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M1−M2 has a difference I1− I2 current proportional to the control voltage VD. Applying

the Kirchhoff’s current law to the source of transistors M1-M2, we obtain:

IBias = I1 + I2 (4.11)

Applying the Kirchoff’s Voltage Law to the gates of transistors M1-M2, we have:

VD = VGS1 − VGS2 (4.12)

The simplified equation of the MOS transistor in saturated linking drain current to the

voltage gate is:

Id =
K

2
(VGS − VT )2 (4.13)

where K = µ · Cox ·W/L. This formula 4.30 we can write:

VGS =

√
2 · ID
K

+ VT (4.14)

Assuming that the transistors M1 and M2 are identical and fusing equation (4.12) in

equation 4.14, we obtain:

VD =

√
2 · I1

K
+ VT +

√
2 · I2

K
+ VT

V 2
D =

2 · I1

K
+

2 · I2

K
− 2

√
2 · I1

K

√
2 · I2

K

V 2
D =

2 · IBias
K

− 4

K

√
I1 · I2√

I1 · I2 =
IBias

2
−
KV 2

D

4√
I1(IBias−I1) =

IBias
2
−
KV 2

D

4

I2
1 − I1 · IBias +

(
IBias

2
−
KV 2

D

4

)
= 0 (4.15)

By solving the quadratic equation in I1 we find the following two solutions:
I1 = IBias

2 + IBias
2 · VD

√
K

IBias
− K2·V 2

D
4·IBias

I2 = IBias
2 − IBias

2 · VD
√

K
IBias

− K2·V 2
D

4·IBias

with |VD| <
√

2·IBias
K

(4.16)

Then the output current IOut of the OTA is

IOUT = I1 − I2 = VD ·

√
K

IBias
−
K2 · V 2

D

4 · I2
Bias

= VD
√
K · IBias

√
1−

K · V 2
D

4 · I2
Bias

(4.17)
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To study the linearity of the circuit to ensure that behaves like a resistor, we see equation

4.33 has its tangent to the point VD = 0:

∂IOut
∂VD

∣∣∣∣∣
VD=0

=
√
K · IBias ⇒ tan (IOut)

∣∣∣∣∣
VD=0

= VD ·
√
K · IBias (4.18)

The formula 4.18 allows to calculate the relative error ε

ε =

IOut − VD ∂IOut
∂VD

∣∣∣∣∣
VD=0

VD
∂IOut
∂VD

∣∣∣∣∣
VD=0

⇒ ε =

√
1−

K · V 2
D

4 · IBias
− 1 (4.19)

We fix the constraints relative error of linearity ε = 5% by setting appropriate values for

W and L.

4.3.4 Bipolar differential pair with predistortion stage

For the realization of the sigmoidal function (see the equation (1.5)), in more detail the

term of exponential, we need to obtain the transfer functions of the type ∆I = K ·

∆V/Ii where ∆V and Ii are the input variables. For this transfer function we use a

bipolar differential pair with predistortion stage as shown in Figure 4.8. To simplify the

calculations, we consider the case in which the base currents of the bipolar transistors are

negligible compared to their collector current and then the current transmitter are equal

to the collector currents.

Applying Kirchhoff’s voltage law to the mesh input that is composed of the differential

voltage input VMem and VOffset, the transistors Q1 and Q2 and the resistance R, we

obtain:

Vin = Vmem − VOffset = VBE1 +R · IR − VBE2 (4.20)

The collector currents of the transistors Q1 and Q2 are:
ICQ1

= ISlope +R = ISlope + VR
R

ICQ2
= ISlope −R = ISlope − VR

R

(4.21)

We dimensioned so that IR is very small compared ISlope, also the current collector

varies little and VBE is almost constant in all variations of Vi then we can say that
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Figure 4.8: Bipolar differential pair with predistortion stage, with a differential input

VMen − VOffset and an output ∆I [23].

VIN = VR. The output voltage Bipolar Differential Pair is given by the difference between

the voltage of the diode 1 and 2, we obtain:

VO = VD2 − VD1 = UT ·
ID2

IS
− UT ·

ID1

IS
= UT ·

ID2

ID2

(4.22)

Combining the equations (4.30) and (4.22) we obtain:

VO = −UT · ln
ISlope + VIN

R

ISlope + VIN
R

(4.23)

We can write the last equation as

VO = −UT · lnX with X =
ISlope + VIN

R

ISlope + VIN
R

(4.24)

The difference of the currents in transistors Q1 and Q2 can be written as:

∆I = ICQ2
− ICQ2

=
IBias

2

(
1− tanh VO

2 · UT

)
− IBias

2

(
1 + tanh

VO
2 · UT

)
(4.25)

= −IBias · tanh
VO

2 · UT
(4.26)
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Combining the equation (4.25) and (4.24) we obtain:

∆I = −IBias · tanh
−UT · lnX

2 · UT
(4.27)

∆I = IBias · tanh
lnX

2
= IBias

e
lnX
2 − e−

lnX
2

e
lnX
2 − e−

lnX
2

∆I = IBias

√
X − 1√

X√
X + 1√

X

= IBias
X − 1

X + 1

(4.28)

Substituting X of equation (4.24) to the equation (4.28) we find:

∆I =
IBias
ISlope

· VIN
R

(4.29)

4.4 Library of neural analog operator

In this section we describe the analog blocks that are necessary to implement the ionic

conductances and synapses according to the block diagrams in the Figures 4.3 and 4.4.

These analog blocks are composed of elementary circuits presented in the previous section.

4.4.1 Sigmoid function

The sigmoid block computes the steady state value corresponding to activation or inac-

tivation terms. The Sigmoid function uses a bipolar differential pair with predistortion

stage, that we have previously studied. The difference of the current ∆I in the output

of bipolar differential pair with predistortion stage through the resistors r, and produces

a voltage of the input differential pair composed of transistors Q3 and Q4. Using the

calculations to obtain the equation (4.29), we obtain:


IInact =

ISig

1+exp

(
r·IBias
R·UT

VMem−VOffset
ISlope

)
Iact =

ISig

1+exp

(
− r·IBias

R·UT

VMem−VOffset
ISlope

) (4.30)

where IInact produces inactivation term and Inact produces activation term. This term

activation and inactivation is normalized between 0 and 1 in the biological model, it is in

the circuit bounded between 0 and ISig.
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Figure 4.9: Tunable sigmoid function, with input voltage VMem − VOffset and output

current Iact or IInact to compute the activation or the inactivation term, respectively [23].

Figure 4.10: Circuit diagram of the integrator function. The input and output currents,

respectively Iact and Iinact, are amplified by the current-mode multiplier (CMM). The second

input to the CMM is current delivered by a voltage-controlled current (VCC) source, and

the gain of the CMM is A(Vτ ). The capacitor transfer function is 1/Cs, and the gain of the

OTA is B.

4.4.2 Kinetic function

The Kinetic function realizes a differential equation of the first order 1.4, where m∞ is

obtained by sigmoid function. To design this block we chose to use a closed loop integration
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rather than a differentiator, for the noise immunity. The block diagram of Kinetic function

is showed in Figure 4.10. From the block diagram we obtain the following equations:

C

A(Vτ ) ·B
· s · Iint = Iact − Iint (4.31)

where C
A(Vτ )·B is the time constant, A(Vτ ) is the gain of CMM and B is the gain of

operational transconductance amplifier.

This structure contains two current-mode multipliers (CMM), to regulate the time

constant τ for a voltage Vτ . Since the Kinetic input and output have the same algebraic

sign and for simplicity reasons, we prefer to use a configuration with two one-quadrant

multipliers rather than a single two-quadrant multiplier placed after a subtractor.

4.4.3 Power raising

This block multiplies and elevates to power the different terms of activation and inacti-

vation, and to achieve it we use the same principle of CMM, namely the translinear loop

principle. We have implemented all possible combinations exponentiation of p and q, ac-

cording to the specification (i. e. mh, m2h, m3h and m4). In the Figure 4.11, it is shown

an example of power raising (m3h). Applying the Kirchhoff’s voltage law to the circuit in

Figure 4.11, we obtain:

VBEQh + VBEQm + VDm1 + VDm2 − VBEQout − VD2 − VD1 − VQ1 = 0 (4.32)

Using transistors with the same surface we obtain:

ICQh · ICQm · IDm1 · IDm2 = ICQout · ID2 · ID1 · ICQ1
(4.33)

Using the same approximation made for CMM namely whereas the collector current

is equal to that of the emitter, we can write that ICQh = IDm1 = IDm2 = Im, ICQh = Ih,

ICQ1
= ID2 = ID1 = IBias and ICQout = IPower. Then considering this approximation, the

equation (4.33) becomes:

IPower =
I3
m · Ih
I3
Bias

(4.34)
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Figure 4.11: Circuit used for power raising, using the translinear loop principle. In that

case, Ipower = I3
m · Ih/I3

Bias[23].

4.4.4 Output multiplier

The last element of our library is the output multiplier, as shown in Figure 4.12. This stage

consists of two mounting discussed earlier: the translinear loop principle and Operational

Transconductance Amplifier. The bias current of the bipolar pair Q11−Q12 is replaced by

IPower · gIon, where Ipower is the output current of the power raising stage and gIon is the

current generated by CMM. The collector current difference, between Q11 and Q12 , can

thus be determined from equation (4.29). This collector current difference is afterwards

multiplied by the ratio of the current mirror M6 and M8, that in this case it is 10. Then

the output current is given by the following expression:

∆I =
10

R · ISlope
· IPower · gIon · (VMem − VIon) (4.35)
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Figure 4.12: Multiplier circuit generating the ionic current IIon, with an input bipolar

differential pair Q1 −Q2 controlled by VMem and VIon and a predistorsion stage Q11 −Q12

biased by IPower · gIon [23].

67



CHAPTER 4. Design CPR Network

68



Chapter 5

Noise Implementation

In this chapter we explain the realization of a white noise with Gaussian distribution which

will be added into variables gating of ion conductance according to equation 2.14. The

white noise is produced by an analog random generator. The generator is composed by 64

cells, where each cell implements a switched-capacitor. The cells are connected as a MASH

cascade in a ring topology. We start by introducing the basic cellular architecture, that

is based by delta-sigma modulation and cascade structures. After we present its analog

VLSI implementation. Finally, we explain the noise implementation into gating variable.

5.1 Noise generator

The easiest way to generate analog noise in VLSI is to amplify existing circuit noise, for

example with such a high-gain comparator; for our application there exists a more pow-

erful method to generate an uniformly distributed random analog value that controls the

sensibility of the physical components and the uncorrelation between the cells neighboring

is implemented in Analog VLSI random generator of Gert Cauwenberghs [24]. This ap-

proach uses noise-shaping properties observed in MASH cascade structures of delta-sigma

modulators [25] as used for stable higher order oversampled A/D conversion [26] [27].

5.1.1 Sigma-delta modulation

The Sigma-delta modulation, that is the basic cell of the noise generator, uses a technique

that effectively reduces the quantization error adding noise prior to the process of quanti-

zation, is called noise shaping. Noise shaping works by inserting the quantization error in

a feedback loop. Any feedback loop works as a filter, so by creating a feedback loop for the
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error itself, the error can be filtered as desired. Then, the output sample of noise shaping

structure is equal to the input sample plus the quantization error on previous sample.

Sigma-delta modulation uses oversampling and integration of the signal prior to quanti-

zation to increase the correlation between samples and decrease the quantization error.

The main components of the first-order sigma-delta modulation are integrator, quantizer

and feedback D/A converter as shown in Figure 5.1. Moreover, the MASH sigma-delta

modulation through low-pass filtering allows to obtain the near-gaussian amplitude profile.

Figure 5.1: Block diagram of sigma-delta modulation.

The input-output characteristic, that you can call nonlinear map fΣ∆(·), of such a

sigma-delta modulator is plotted in Figure 5.2. It is analytically defined by

fΣ∆(x) = x− sign(x)

= x− 1 if x > 0

= x+ 1 if x ≤ 0.

(5.1)

Figure 5.2: The nonlinear map f∆Σ of single delta-sigma modulation [26].
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5.1. Noise generator

5.1.2 Cellular structure

If you connect the sigma-delta modulation, their interactions are defined as

xi(k + 1) = fΣ∆

α+ β
∑
j∈N(i)

xj(k)

 (5.2)

Where N(i) defines a neighborsorhood of cells interacting with cell i including itself, and

fΣ∆(·) is a sigma-delta nonlinear maps that is defined of equation 5.1. The constants α

and β have a value critical to the randomness properties of the sequence xi(k).

The form that expresses the general nearest-neighbor interaction, in equation (5.2), can
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Figure 5.3: Array of 64 MASH random generating cells. Linear cascaded ring topology

implemented on a 2-D grid.

describe cellular networks of various topologies. The simplest case is considered a network

formed by two neighboring cells. With α = 0 and β = 1 we obtain:

xi(k + 1) = fΣ∆ (xi(k) + xi−i(k)) (5.3)

This describes the behaviour of a MASH cascade. The MASH cascade consist of multi-

connected single integration delta-sigma modulation loops. A possible implementation of

this cascade structure of N cell is a ring. In the ring topology the last cell of the chain is

connected to the first cell.

71



CHAPTER 5. Noise Implementation

The linear cascaded ring topologies can be implemented in scalable cellular VLSI ar-

chitectures on 2-D grid shown in Figure 5.3, it is realized by two sets of linear cascade

segments interleaved in opposing directions. The ring structure on 2-D grid is preferable

because of symmetry which provides more uniform random noise properties across the

array and it presents a compact analog VLSI implementation. The independence of the

output signal of the cell xi(k) with the output signal of the cell xi+1(k), of a MASH cascade

structure is established by Theorem [24]:

Theorem 5.1.1. The vector sequence xi(k), i = 1···N, k = 1···∞ obtained from a cascade

of modulators according to equation (5.3) with initial conditions −1 ≤ xi(0) ≤ 1 and

boundary conditions x0(k) drawn from an uniform random distribution, i.e.: pk,l0,0(x|y) ≡

pk0(x) = 1/2, ∀ x, y ∈ [−1, 1]; k 6= l, allows an uniform random distribution with mutually

statistically independent components, i.e.: pk,li,j (x|y) ≡ pk0(x) = 1/2, ∀ x, y ∈ [−1, 1]; where

either k 6= l or i 6= j
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Figure 5.4: MATLAB simulation of time-spice correlogram. Scatter plots of data from

the 64-cell ring, across three neighboring cells and three consecutive time delays.

This theorem allows to say that when we impose an uniform random input to the first
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5.2. Noise generator implementation

element in a MASH cascade, all cells produce an uncorrelated uniform random outputs,

as represented by Figure 5.4.

5.2 Noise generator implementation

The basic delta-sigma modulation cell is implemented for the switched-capacitor architec-

ture, that realizes the function of integration and quantizer, with a one-bit D/A converter

is shown in Figure 5.5.

Q2

C1

-

+

Q1

C2

NSEL

NACC

ACC

SEL

OUTIN

A

I
����� ���

NCOMP COMP

Figure 5.5: Switched-capacitor MASH modulator cell.

5.2.1 Switched capacitor integrator

The main element of this structure is a switched capacitor integrator. The switched-

capacitor integrator uses switches, operational amplifiers and capacity, to realize the func-

tion of integration. This idea has been developed to allow the analog and digital integration

on a chip. In fact, we use for this structure the basic elements of a VLSI integration as

the MOS transistors, and the capacitors. The basic principle of this technique is the re-

placement of a resistor and a switched capacitor, as shown in Figure 5.6.

Given, 2 non-overlapped clocks (Q1 to Q2), each of frequency f = 1/T, the structure con-

sists of 2 switches and the capacity is equivalent to a resistance inversely proportional to

the value of the capacitor and the frequency of the following phases:

• Q1 active, across the capacitor C1 a voltage V1 is applied and then has a charge

equal to QC = C1 · V1;
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• Q2 active, across the capacitor C1 a voltage V2 is applied and then has a charge

equal to QC = C1 · V2.

C1

V1

Q1 Q2

Req

V2V1V2

Figure 5.6: Principle switched capacitor.

The average current is then given of the charge divided by the time (T) in which charge

is transferred from V1 to V2 during τ :

∆QC = C(V1 − V2)τ (5.4)

The quantity of charge transferred between across the resistor V1 and V2 during τ is

∆Q′C =
(V1 − V2)

R
τ (5.5)

The conditions under which the two transfers ∆Q′C = ∆QC are the same is the following:

R =
T

C
=

1

C · f
(5.6)

If we create a low-pass filter, for example, with this methodology, its parameters do

not depend on absolute values of capacity and resistance but depend on the ratio between

two capacitors that can be made very precise. This allows to create filters that would

be impossible with only resistors and capacitors because requirements will be too high

(impossible on a single chip).

Normally, the capacitors used are those made with two plates stacked polysilicon (ca-

pacity poly-poly2). In addition to the desired capacitor (C1), these structures introduce

two parasitic capacity (Cp1 and Cp2) of which especially that associated with the bottom

plate can be very large, about 5 to 20% of capacitor C1 realized. The circuits based on

these capacitors must take account of these parasites devices.

To eliminate the parasitic capacity, between the possible configurations of switched-

capacitors integrator, we use the configuration in Figure 5.7. This configuration is insen-

sitive to parasitic capacity because they are eliminated: Cp4 does not count because it is
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C1

-

+

C 2

A

�����
Cp1 Cp2

Cp3 Cp4

�� ���Q1

Q1

Q2

Q2

Figure 5.7: Switched capacitor integrator insensitive to parasitic capacity.

an output. Cp3 is shorted (via the virtual mass). Cp2 is shorted in both Q1 (via switch) is

in Q2 (via virtual mass). Cp1 has no effect because it is in parallel with C1 and this only

when connected to the input, but when Q2 is high, Cp1 is discharged by the switch and

does not affect the charge stored on C1 is therefore unaffected.

5.2.2 Behaviour of sigma-delta modulation

a b c d

Ta Tb Tc Td

SEL

ACC

Q1

Q2

COMP

Figure 5.8: Timing diagram of Switched-capacitor MASH modulator.

The Sigma-delta modulation is composed by four phases, which are shown in Figure
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5.8. We can see that during the process of the switched-capacitor non inverting integrator

(controlled by signals Q1, Q2, ACC) phases a-b and c-d are the same. If SEL is high

the value stored across capacitor C1 is Vi−1(k) (input voltage), while, if SEL is low, the

value stored across capacitor C1 will be the output voltage of the comparator inverted of

the one-bit D/A converter I. When the COMP signal is high, the amplifier A operates

as a comparator: it compares Vi to zero and it presents the result (Vi’s sign) to the

accumulator’s input by inverting of one-bit the D/A converter. The amplifier works as an

accumulator 1/(1-z) and a quantizer f∆Σ. On the other hand, when the COMP signal is

low, Vi(k) is presented in output.

Following the charge conservation principle, the analysis of the sigma-delta modulation

develops in the following 4 phases (Figure 5.9):
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C 1
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I
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(c)

C 1
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C 2

A

I
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Figure 5.9: Simplified diagram of the 4 phases of operation of Switched-capacitor MASH

modulator.

• Phase a (instant Ta): the voltage across C1 is equal to the input voltage and the

voltage across C2 is equal to the previous output voltage:

Vi−1(k + Ta) = −VC1(k + Ta) (5.7)
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Vi(k + Ta) = VC2(k + Td) (5.8)

Then the charges on the two capacitors will be:

QC1(k − Ta) = −C1Vi−1(k − Ta) (5.9)

QC2(k − Ta) = C2Vi(k − Td) (5.10)

• Phase b (instant Tb): at the heads of C1 there is no voltage, then the charge Q1

must leave C1 moving to C2:

Qc1(k − Tb) = 0 (5.11)

Qc2(k−Tb) = Qc2(k−Ta)−Qc1(k−Ta) = C2Vi(k−Ta) +C1Vi−1(k−Ta) (5.12)

Vi(k − Tb) = Qc2(k − Tb)/C2 = Vi(k − Ta) + C1/C2Vi−1(k − Ta) (5.13)

this phase produces Xi(x) +Xi−1(k).

• Phase c (instant Tc): the amplifier A compares the C2’s voltage with zero, the

result is inverted and stored in C1:

Vi(k − Tc) = A(Vc2(k − Tb)− 0) (5.14)

Vinverter(k − Tc) = ±1V (5.15)

Then the charges on the two capacitors will be:

Qc2(k − Tc) = Qc2(k − Tb) (5.16)

Qc1(k − Tc) = −C1Vinverter(k − Tc) (5.17)

• Phase d (instant Td): at the heads of C1 there is no voltage, then the charge Q1

must leave C1 moving to C2 and the Vi(k + 1) accumulates in C2:

Qc1(k − Td) = 0 (5.18)
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Qc2(k−Td) = Qc2(k−Tc)−Qc1(k−Tc) = C2Vi(k−Tc)+C1Vinverter(k−Tc) (5.19)

Vi(k − b) = Qc2(k − d)/C2 = Vi(k − c) + C1/C2Vinverter(k − c) (5.20)

during this phase accumulate substrats the sign of the accumulate in phase b, ob-

taining f∆Σ(Xi(x) +Xi−1(k)).

5.2.3 CMOS implementation
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Figure 5.10: CMOS switched-capacitor circuit diagram of MASH modulator cell (MASC-

cell).

The noise generator is composed of 64 MASH Cell, Figure 5.10 shows the transistor-

level circuit of the single MASH cell. For low-power consumption we chose a single power

78



5.2. Noise generator implementation

supply to 3V. In the resource of neurons implemented in this chip, the action potential

period is about 0.02 ms. We use a clock at 400KHz to introduce a number of significant

fluctuations during the action potential. However, the clock signal can be changed because

it is driven from the outside by a FPGA.

The Vm, signal ground level, is fixed to 1.5V and the the D/A levels are Vref−=0.9 V

and Vref+=2.1V thus the signal range is ±0.6V by Vm. The two capacitances, C1 and C2

are 1pF, that corresponds to 3 capacitors of Cmin of 0,333pF in BiCMOS 0.35 um SiGe.

The value of two capacitor is the same because DC gain of switched capacitor integrator

takes the value of one. The amplifier A is implemented as simple common source N-MOS

of M1-M2 transistor, were chosen the size of the transistors (W1/L1 and W2/L2) in order

to have a Av = 20dB. The virtual ground voltage of the amplifier is obtained from circuit

M3-M4, in which the Vm2 is the bias voltage.
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Figure 5.11: CMOS switched-capacitor circuit diagram of MASH modulator cell with an

additional output out2 (MASCcell2).

In the sigma-delta modulation the switches are formed by the parallel of two transistors

N-MOS and P-MOS so that the output switches from Vdd to 0 regardless of the input
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value. The size of the transistors in the switches is chosen as small as possible in order to

have high speed switchings.

From the simulations we have seen that in order to maintain the status value of the output

of the sigma-delta modulation obtained from phase d for the four phase subsequent we

have to add a switch in the output as in Figure 5.11. This switch is controlled by a

clock signal PICK that actives for a short time in phase d and the output signal remains

constant. In Figure 5.12 is shown the new timing diagrams.

To optimize the layout we create two different cells: one with a similar structure to that

a b c d

Ta Tb Tc Td

SEL

ACC

Q1

Q2

COMP

PICK

Figure 5.12: Timing diagram of Switched-capacitor MASH modulator with an additional

output out2.

of the sigma-delta modulation, which we call MASCcell. The second cell is equal to that

of the sigma-delta modulation adding a switch in output out that we call MASCcell2.

The output out of the cell MASCcell2 is connected to the next cell and the output out2

is the output of noise generator. Our CPR network consists of two CPR neurons and of

four FS neurons. If we consider the conductances of all neurons, five for CPR neuron and

three for FS neuron we get twenty two conductance where we add the noise. Given the

uncorrelation between the outputs of noise generator, we generate the twenty-two signals

with a single generator, and we take twenty-two outputs from MASCcell2. The noise

generator is essentially composed of 2 cells that are repeated, then we used semi-custom
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5.2. Noise generator implementation

design. To realize the layout of the generator we follow 2 steps: the first we create the

main 2 cells, by placing the polarization signals on the top, the clock signals at the bottom,

the input at the right and the output at the left of the cell.

Then we place the 2 cells in a matrix eight rows and eight columns, as shown in Figure

5.3, to obtain the particular 2-D structure of the noise generator, and a higher integration

density. All the cells in the odd rows are inverted (in Figure 5.13 the cells inverted have

a star) so that the cell lines have in common the pins with the row above and the one

below. The twenty-two outputs of MASCcell2 together with an output of MASCcell test

are positioned on the left.
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Transistor W(um) L(um)

M1 and M2 20 1

M3 to M8 and M11 to M22 6 1

M9 to M10 3 1

Table 5.1: Summary table of the size of transistors, in the sigma-delta modulation, used

in MASCcell and MASCcell2.

Bias tension (V)

Vm 1.5

Vm2 0.6

Vref+ 2.1

Vref− 0.9

Table 5.2: Bias tension

Clock signal Voltage (V) Delay time (us) Rise time (ns) Fall time (ns)

Q1 0-3 0,4 50 50

Q2 0-3 1.65 50 50

COMP 0-3 2,8 50 50

ACC 0-3 0,3 50 50

SEL 0-3 0,3 50 50

PICK 0-3 4800 50 50

Clock signal Pulse width (ns) Period (us)

Q1 950 2.5

Q2 950 2.5

COMP 1200 5

ACC 1200 2.5

SEL 2.45 5

PICK 0.3 5

Table 5.3: Clock signal
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Figure 5.13: Layout diagram of Array of 64 MASH random generating cells.
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Figure 5.14: Layout of Array of 64 MASH random generating cells.
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5.3 Results

We present the result of the simulation in Cadence of the noise generator of 800us. Figure

5.15 shows the trends of first three outputs of MASCcell2. We can observe that the circuit

needs about 10 cycles (which is about 50us) and the signal is confined between Vref+ and

Vref−. The statistical independence’ s hypothesis is verified by Figure 5.16 with same

method used in the MATLAB simulation represented by Figure 5.5. For this simulation

we did not consider the sample of initialization time.

Figure 5.15: Cadence simulation of the first three cells of Array of 64 MASH random

generating: out2cell1, out2cell2 out2cell3 are the outputs of MASCcell2
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Figure 5.16: CADENCE simulation of time-spice correlogram. Scatter plots of data from

the 64-cell ring, across three neighboring cells and three consecutive time delays.
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5.4 Noise implementation into gating variables

In Chapter 2 we saw that in order to obtain a stochastic neuron, we must add a Gaussian

white noise in the variables of activation or inactivation (gating variable) according to the

equation (2.13). Then the equation of the kinetic function (4.31) becomes:

C · s
A(Vτ ) ·B

IInt = IAct − IInt + Inoise (5.21)

where Inoise is the noise current. In Figure 5.17 we show the new block diagram of Kinetic

faction. To implement equation (5.21) we need a current Inoise, but the output of the

Figure 5.17: Block diagram of Kinetic faction with noise

noise generator we have a voltage, therefore we must make a current-voltage conversion.

According to these considerations, we can define the block diagram of stochastic ionic

current generators as shown in Figure 5.18.

The current-voltage conversion is realized by MOS Operational Transconductance Ampli-

fier as shown in Figure 4.7. The differential pair of M1−M2 is simply used to convert the

noise voltage into the noise current, then the gate of M1 is applied the voltage out2 and

to the gate of M2 is applied to the voltage Vm, that is the reference to the virtual mass of

the noise generator. Another very important aspect of the converter is that it controls the

noise amplitude. This is done by controlling the biasing current (IBias) for the differential

pair that converts noise voltage into the noise current. As we saw in Chapter 2, in par-

ticular in the equation (2.14) the amplitude of the noise varies for each conductance, and

then to determine the value of the amplitude of the voltage clamp, we use the method to
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Figure 5.18: Block diagram of stochastic ionic current generators

analyze the contribution of the noise in the Kinetic function.

The voltage clamp is used by electrophysiologists to measure the ion currents across the

membrane of excitable cells, such as neurons, while holding the membrane voltage at a set

level. The voltage clamp allows to impose a tension in the membrane voltage and mea-

sure the corresponding ionic currents generated by neuron. In MATLAB we simulated

the technique of voltage clamp of a FS neuron according to the equation (2.14), using

a σ = 0.02 and imposing a tension membrane shown in Figure 5.20. In Figure 5.19 are

represented gating variable obtained with this method.

We apply this method to the conductance implemented in Cadence. From simulations

we obtain, for example, for the variable activation of sodium m a variation between 0 and

20uA then we must multiply the amplitude of the noise obtained in MATLAB for 20uA

so the noise will have to have an amplitude of 4uA and then the current polarization that

we must impose on the MOS Operational Transconductance Amplifier will be of ±0.2uA.

This process is applied to all the gating variables of the HN, IN and CPR neurons. In

table 5.4 are summarized noise parameters for designing the conversion voltage current to

be added in the Kinetic block for each gating variable.
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Figure 5.19: MATLAB simulation of gating variables with voltage clamp method: m(a),

h(b) and n(c).
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Figure 5.20: Behaviour of the membrane voltage imposed for the voltage clamp.
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neuron type ion current σ gating kinetics amplitude noise amplitude

in gating kinetics noise current

HN INa 0.02 m ±0.1 ±0.2uA

0.02 h ±0.4 ±0.8uA

IK 0.02 n ±0.2 ±0.4uA

IN INa 0.02 m ±0.1 ±0.2uA

0.02 h ±0.4 ±0.8uA

IK 0.02 n ±0.2 ±0.4uA

CPR INa 0.02 m ±0.1 ±0.2uA

0.02 h ±0.4 ±0.8uA

IK 0.02 n ±0.2 ±0.4uA

IslowK 0.02 o none none

IslowNa 0.02 s none none

Table 5.4: Noise parameters
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Conclusion

Noise in neural network is an important issue to understand the phenomena of learning,

synchronization in network and eventually some kind of neural diseases. In this thesis

we focus on the design of stochastic hardware neural network which will be connected

to biological neural network thanks to the hybrid (artificial-biological) technique. The

collaboration of my team with the National Tsing Hua University in Taiwan allows us to

develop this hybrid technique with crayfish stomatogastric network.

The CPR network is a neuronal network consisting of 6 neurons and 12 synapses.

Some interesting electrophysiological phenomena are modelled and mainly attributed to

the interactions between the two kinds of sensory neurons in this network, i.e, the CPR

neuron and the hair neuron. These phenomena have been rebuilt in Matlab and VerilogA

simulation. The CPR neurons in the crayfish can be modelled as a FS neuron with two

additional ion channels. One injects currents slowly to the membrane and the other one

with a larger time constant leaks current slowly out of the membrane.

We presented in this thesis the Hodgkin-Huxley formalism that is a conductance based

model of neurons. We proposed the stochastic neuron model which adds noise into the

gating variables of ion conductances. We also verified that our new stochastic neuron

model actually succeeds in reproducing the biological neural behaviour. In chapter 4, we

present the library of analog operators based on the Hodgkin-Huxley Formalism to achieve

the HN, IN and CPR neurons. Finally, we presented the schematic and layout of noise

implementation into gating variables that is essentially based on noise generator.

The main part of this thesis is the study and understanding of the noise generator

which allows extending their library of analog operators for computing the Hodgkin-Huxley
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formalism to a library of stochastic analog operators. In detail, we propose the proof of

the solution of SDE (in section 2.3) in continuous time, necessary to obtain the stochastic

model. We also detail the hardware implementation of the noise generator. Finally the

stochastic behaviours observed in biological neurons have been reproduced in hardware

simulations realistically.

6.1 Future work

The noise generator, HN, IN and CPR neurons will be included in the Hysnet chip that

will send to manufacturer in autumn 2012. After the chip manufacturation, our research

team should create a dedicated PCI, for interfacing the IC to the computer. This PCI

board is controlled by an FPGA that allows the sending of command parameters to the

IC. It will be realized with the same method of construction used to make that of the

previous work of the group. The calibration phase will be done in collaboration with

our Taiwanese colleagues. After having calibrated the ASIC, it will be connected to the

biological neural network thanks to National Tsing Hua University setup. The interaction

between the biological network and the hardware network will probably allow biologists

understand better the operation of the noise in a neural network.
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