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Abstract

In industrial settings, safety plays a crucial role to prevent incidents between
man and machines.
This thesis, has been developed, in collaboration with a company, with the
purpose of implementing an aid safety system to decrease the danger of workers
in contact with dangerous machines. The system has to be able to detect persons
based on computer vision techniques applied on a camera feed.
The state of the art approaches for human detection in computer vision are
often based on machine learning and deep learning. However, this algorithms
require a huge computational effort that demands considerable inference times,
depending on the hardware, to produce the results.
Furthermore, the device in which the safety system needs to be implemented is
a wireless control device, hence an embedded system that has limited hardware
capabilities.
For this reasons, this thesis will firstly explore state of the art approaches for
person detection and their impact on an embedded device. The work will
then cover the original development of a deep neural network able to solve this
problem.





Sommario

I sistemi di sicurezza in ambienti industriali hanno un ruolo importante e nec-
essario per prevenire incidenti tra macchinari e lavoratori.
Questo elaborato è stato sviluppato in collaborazione con un’azienda, con lo
scopo di studiare un sistema di sicurezza che mira a prevenire i rischi del lavora-
tore a contatto con pericolosi macchinari. Il sistema in studio, richiede di essere
capace di identificare le persone grazie a tecniche di visione artificiale applicate
su feed di telecamere.
Nello stato dell’arte, gli algoritmi relativi alla funzione di rilevamento persone
si basano principalmente su machine learning e deep learning. Queste tecniche,
tuttavia, richiedono una grande potenza di calcolo che, in base all’hardware
impiegato, implica considerevoli tempi di inferenza per elaborare il risultato.
Inoltre, il dispositivo sul quale è richiesto implementare il sistema di sicurezza
è un radio comando con risorse limitate, ovvero un sistema embedded.
L’elaborato si pone quindi da una parte l’obiettivo di esplorare i sistemi per iden-
tificare persone allo stato dell’arte e di valutare il loro impatto su un dispositivo
embedded, dall’altra si concentra sullo sviluppo originale di una rete neurale
capace di risolvere il problema sopracitato.
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1
Introduction

In industrial settings, it’s mandatory to consider safety.
Safety has many declination and can be applied in different ways depending on
the situation. One is preventing industrial machinery from working if certain
conditions, such as the presence of an human, happen.

The work of this thesis has been developed in collaboration with a company
based in Vicenza, specialized in producing wireless control devices with avail-
able safety functions, as a project for its Research and Development department.
The aim was to develop a computer vision system able to detect persons using
their remote control devices and camera feeds.
There are many existing systems capable of accomplishing this task, however
not all of them are employable on the remote control devices as they have limited
resources and are thus considered as embedded devices.
As the remote control device has really similar characteristics as the Raspberry
Pi 4, this embedded platform, in addition to the older Raspberry Pi 3, is going
to be considered for running the tests.
The main disadvantage of this devices, with respect to other edge platforms
such as the Nvidia Jetson family, is that they are not equipped with a GPU. They
are are thus not capable of performing efficiently the high number of parallel
computations required by modern Convolutional Neural Networks. However it
must be noted, that the main advantage of the Raspberry Pi 3 and 4 with respect
to the Nvidia Jetson is their sustainability. They are indeed more power efficient
and up to 10 times less expensive.
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First of all this thesis is going to give a quick report of the state of the art for
object detection and its declination on embedded devices analyzing studies and
algorithms such as MobileNet, R-CNN and its family, SSD and Lightweight
CNN. This, is going to be covered in chapter 2.

The most important and original parts of the thesis will then be reported:

• Popular algorithms are going to be studied and implemented on the test
devices. This are Yolo, Viola and Jones and the Hog based person de-
tector. Considering some old classic methods (i.e. Viola and Hog) for
person detection, which were developed at a time where computers were
much less powerful, could be a suitable solution for modern-day GPU-less
embedded systems. These algorithms will be compared to YOLO v3, a
representative solution of CNN-based architectures. The computer vision
systems are going to be considered as an aid to other existing safety sys-
tems, for this reason they should be able to give a good detection rate and
analyze a number of frames each second on the embedded platforms. This
is going to be covered in chapter 3.

• After the study of the off-the shelf methods, this thesis is going to report
the implementation of a customized Convolutional Neural Network. This
novel architecture is strongly inspired by the original version of Yolo, it
adopts some techniques and ideas to squeeze it as much as possible in
order to reduce its inference time. As the network will be constructed
from scratch, it will require to develop important components such as the
loss function and the batch generator. This is going to be covered in chapter
4.

• Another solution is then going to be reported based on the custom training
of the more recent Yolo v6, in its nano declination. This is going to be
covered in chapter 5.

Finally chapter 5 will report a summary of the whole thesis and a discussion
over the result obtained as well as the future works.

The code developed and used for the tests, the implementation and the de-
ployment of the algorithms reported in this thesis is available on the Github
page at this link1.

1https://github.com/frapasti/Embedded-Person-detection
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2
Related Work

In this chapter a quick overview of the theory for Computer Vision Systems
based on Machine Learning and Convolutional Neural Network is going to be
given.
This theory, provides the building blocks to understand the techniques and al-
gorithms used through the thesis.

Then, some of the most popular State of the Art algorithms for Object detection
and efficient Convolutional Neural Networks are going to be reported. The State
of the Art gives useful insights on the current condition of the research and on
the available systems that can be adopted for the scope of this thesis.

2.1 Computer Vision

Computer Vision is the collection of all the processes that aim to reproduce
key aspects of human vision starting from 2D images. In this sub-chapter some
of the fundamentals of this field needed to better comprehend this thesis are
reported.

2.1.1 Images

Computer Vision systems start by taking images as inputs, for this reason it
is necessary to study how they are represented.

3



2.1. COMPUTER VISION

An image is a set of pixels in a matrix form, each pixel can be represented in
different ways, the most popular are :

• Unsigned char, assuming values in range [0, 255] hence having 8 bits.

• Int, assuming values in range [0, 655360] hence having 16 bits.

• Float, assuming values in range [0, 1] and having 32 bits.

This representations refers to a pixel in gray-scale level, the number that it
has assigned represents the intensity of the gray-level with 0 being black and
the maximum value being white.

Figure 2.1: Visualization of a RGB pixel versus a gray-scale one

However, images can encode more information, a really important one is color.
In this case, the most popular representation is RGB where each pixel is repre-
sented by three different values that encode the intensity of the red, green and
blue level. The color, in the RGB representation is additive and each color is
called channel.
In figure 2.1 the difference between RGB and gray-scale representation can be
visualized, both representation in this case use channels with a depth of 8 bits
(unsigned char).

Given that images are represented as a set of pixels matrices are their natu-
ral shape and they can be represented with their coordinate system with (0, 0, 0)
being the top left pixel of channel 1 and (𝑚, 𝑛, 2) being the bottom right pixel of
channel 3.

4



CHAPTER 2. RELATED WORK

2.1.2 High Level Image Processing

Given an image different types of operations and algorithms can be applied
to it, they are grouped into :

• Low level image processing; which is concerned in changing pixels based
on their value, the value of their neighbours, statistics of the image such
as histograms, geometric transformations etc.

• Mid level image processing; which uses higher, more abstract level con-
cepts to drive the algorithms and is often employed to highlight details
such as edges or clusters or extract significant features such as corners
and blobs. As an example in figure 2.2 it can be noticed that the popular
Sift feature extractor is able to detect salient key-points as well as their
orientation.

Figure 2.2: Visualization of the popular Sift (Scale Invariant Feature Transform)
features

• High level image processing; it’s concerned with even more abstract con-
cepts present in images such as identifying what is present in an image
(Image Classification) and detecting object as well as identifying them
by giving their coordinates (Object localization). The types of detection
strongly depend on the problem at end

For the scope of this thesis mainly high level concepts are employed hence a
quick overview of some of them is going to be reported.
High level vision research in recent times concentrate itself on Machine learning
and Deep learning with a particular focus on the latter.

Machine learning is a field of Computer Science that investigates how it is

5



2.1. COMPUTER VISION

possible to learn from data producing models capable of making predictions.
The learning framework usually has :

• Input; a dataset of inputs and their targets in case of Supervised learning
or just inputs in case of Unsupervised learning.

• Goal; find a function 𝑓 ∗ that best approximates the unknown function 𝑓 .

The learning process usually optimizes the model parameters based on how
different the output of the model is from the actual target.
In Computer Vision, Machine learning models are applied to domain specific
representation of images. So, the features that best represent the application are
extracted by means of low and mid level image processing algorithm and then
models learn on such transformed data.
The representations that are fed to the model should be easy as learning is
usually not effective when the input space has too many parameters.

Figure 2.3: Machine learning approach to Computer Vision versus the Deep
Learning one

Deep learning is a field of Machine learning based on Neural Networks. It is
composed of multiple level of abstraction of the input data based on layers.
As it can be noticed in figure 2.3, Deep learning offers an end-to-end approach
as the features are learned and adapted from the input data directly from the
network and there’s no need to extract the best ones like in Machine learning.

6



CHAPTER 2. RELATED WORK

Typically Deep learning needs a huge amount of data in order to produce satis-
fying results.

The main problem of Machine and Deep learning is overfitting, that is when
there’s a nearly perfect fitting of the training data with no generalization leading
to high errors on the test data. This typically happens when the model is too
complex.
To avoid overfitting some techniques can be applied :

• Regularization; it can be of multiple types. The most popular one is
dropout that randomly drops units during training, each unit is retained
with a fixed probability

• Pre-processing; it consists in adding variance to the input data like noise
and rotation. This typically leads to better, more robust models.

2.1.3 Deep Learning

As Deep learning is the most used and relevant technique for the scope of
this thesis a quick introduction to some of its elements is going to be reported.

A Deep Neural Network is a composition of several simple functions called
layers.
Each layer is composed of a set of neurons, the inputs of each neuron are some
or all of the outputs of the preceding layer. In figure 2.4 it can be noticed how
the layers are organized and how the outputs of the neurons are connected to
the next layer. Each neuron then computes its output based on an activation
function that has as input a weighted average of the inputs of the neuron plus a
bias.

Several activation functions are used, the most popular ones are :

• Sigmoid function; its outputs are in range [0, 1], it has a smooth output but
saturates and kills gradients leading to poor learning close to 0 or 1.

• Tanh function; its outputs are in range [−1, 1], it’s simply a scaled version
of the sigmoid and thus has the same problems.

7



2.1. COMPUTER VISION

Figure 2.4: Visualization of the architecture of a Deep Neural Network with
several layers and their neurons

• ReLU function; its outputs are in range [0, + inf], its a simpler function
that allows faster training thanks to its non saturating nature and lighter
computation

In figure 2.5 the different functions can be visualized.
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Figure 2.5: Plot comparison of the most popular activation functions for neurons
in Neural Networks

Each neuron then has as parameters the weights applied to the input and the bias
for its outputs. This parameters are usually randomly initialized and learned
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CHAPTER 2. RELATED WORK

during training.

Images are 2 dimensional matrices and the spatial neighborhood between pixels
is important, important features are local, shift and deformation invariant, they
could be present at any position size and position of the image matrix. For this
reason Computer Vision uses Convolutional Neural Networks.
This type of network is composed by Convolutional layers where filters of spec-
ified sized are applied to the image and their weights are learned. So the filters
are applied through the whole image via a convolution leading to a spatially
invariant response.
Local connectivity means that only neighboring nodes are connected so there’s
a lower number of weights to train.
The convolutional layer usually applies a series of filter that lead to multiple
feature maps that are then sub-sampled via special operations called pooling.

Figure 2.6: Visualization of the convolution and pooling operation performed
by a Convolutional Neural Network

Pooling usually chooses between a number of units their maximum or average,
this reduces the resolution of the feature map hence reducing the computational
complexity of the next layers. In figure 2.6 the convolution and pooling operation
can be visualized.

2.2 MobileNet

The work by A. G. Howard, M. Zhu et al. in [7] introduced an efficient class
of models for mobile and embedded vision applications.
Convolutional Neural Networks have been made deeper and deeper with more
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convolutions and filters in order to increase the accuracy of the predictions. This
trend however does not make them more efficient in terms of size and speed
making them un-compatible for embedded applications.

Prior works for embedded applications consisted in shrinking the architectures
but this often led to significantly lower performances in terms of accuracy. Mo-
bile Net instead allows the developer to choose a small network that specifically
matches the resource constraints considering size as well as speed.

Mobile Net is based on Depthwise separable convolutions that factorize a stan-
dard convolution into a depthwise convolution and a pointwise 1𝑥1 one.

Figure 2.7: Visualization of the operations performed by a Depthwise Convolu-
tion

Each channel of the filter of the layer is applied to a single channel of the image
separately, the results are then stacked together with the pointwise convolution.
As it can be visualized in figure 2.7 a 3 channel image and a 3 channel filter.
Both the filter and the image are broken down into separate channels and then
the convolution operations is executed separately for each channel.
Finally the results are stacked together producing the output of the convolution.

Standard convolutions take as input a 𝐷𝐹 ×𝐷𝐹 ×𝑀 feature map and produce as
outputs a 𝐷𝐹 ×𝐷𝐹 ×𝑁 feature map where 𝐷𝐹 is assumed to be a squared spatial

10



CHAPTER 2. RELATED WORK

dimension and the model is supposed not to shrink.
The convolution is is parametrized as a kernel of size 𝐷𝐾 × 𝐷𝐾 ×𝑀 × 𝑁 where
𝐷𝐾 is the spatial dimension of the kernel while 𝑀 and 𝑁 are the size of input
and output channels.
The computational cost is hence:

𝐷𝐾 · 𝐷𝐾 ·𝑀 · 𝑁 · 𝐷𝐹 · 𝐷𝐹

MobileNet uses depthwise separable convolutions that break down the interac-
tion between the number of output channels and the size of the kernel.
First of all a 𝐷𝐾 × 𝐷𝐾 × 𝑀 kernel is applied to each input channel separately,
then the results are combined togheter with the pointwise convolution, a linear
operation.
The computational cost is hence:

𝐷𝐾 · 𝐷𝐾 ·𝑀 · 𝐷𝐹 · 𝐷𝐹 + 𝑀 · 𝑁 · 𝐷𝐹 · 𝐷𝐹

By analyzing the two results a significant reduction of computational cost can
be noticed, indeed:

𝐷𝐾 · 𝐷𝐾 ·𝑀 · 𝐷𝐹 · 𝐷𝐹 + 𝑀 · 𝑁 · 𝐷𝐹 · 𝐷𝐹

𝐷𝐾 · 𝐷𝐾 ·𝑀 · 𝑁 · 𝐷𝐹 · 𝐷𝐹
= 1
𝑁

+ 1
𝐷2
𝐾

In figure 2.8 it can be visualized how a standard convolutional filter is separated

(a) Convolution Filter (b) Depthwise Filter

(c) Pointwise Filter

Figure 2.8: Visualization of the size differences between standard convolutions
(a) and depthwise separable convolutions in (b) and (c)

into a depthwise and pointwise one.
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Furthermore MobileNet introduces two multipliers :

• Width multiplier 𝛼; to thin the network uniformly at each layer reducing
the channels of the filters (𝑀).

• Resolution Multiplier 𝜌; to thin the network uniformly at each layer reduc-
ing the spatial resolutions (𝐷𝐹).

The multipliers can further improve the performances of the network by re-
ducing the computational cost of roughly 𝛼2 and 𝜌2 respectively.

The authors of MobileNet tested a network using depthwise separable convolu-
tions w.r.t one using full convolutions on the ImageNet dataset for classification.

Accuracy Milion Mult./Adds. Milion Params

MobileNet Conv. 71.7% 4866 29.3

MobileNet 70.6 569 4.2

Table 2.1: Comparison of fully convolutional MobileNet versus MobileNet with
depthwise separable convolutions on the ImageNet dataset

As it can be noticed in table 2.2 the drop in accuracy measured by the author is
of only 1% while the number of computations is significantly smaller.

The authors of MobileNet later introduced another architecture, MobileNet v2
in [23].
To further improve the performances of Deep Neural Networks in embedded
devices this new architecture uses, in addition to the previously analyzed depth-
wise separable convolutions, inverted residual and linear bottlenecks.

The scope of a residual block is connecting the beginning and the end of a
convolutional block via a skip connection. Traditional Neural Networks have
layers that feed directly into the next one, residual blocks instead, allow the first
layer of the block to feed also to layers that are some hops away. In this way
fewer layers are used in the initial stages of training as they are skipped while
later they are gradually restored. This allows the network to avoid problems of
Deep Neural Networks such as vanishing gradient that prevents the network to
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effectively learn and degradation with its higher accuracy errors.
The traditional residual blocks typically have a structure that goes through a
wide, narrow, wide number of channels. Inverted residual instead have a nar-
row, wide, narrow number of channels leading to fewer overall parameters.

In [6] the authors introduced further improvements to the network mainly by
using the technique of network search to optimize each layer.
Neural Architecture Search is a technique that automates the process of design-
ing the network architecture leading to models that often outperform the hand
designed ones.

2.3 Viola and Jones

The task of object detection is a challenging problem. There’s a huge number
of pixels to process and the object could be in any position at multiple scales.

The approach of Viola and Jones firstly evaluates features; a feature-based sys-
tem has lot less parameters than all the pixel intensities of the image and should,
in theory, operate faster in detecting objects. The algorithm uses Haar based
features, they are computed using a black and white rectangular filter that is
placed at multiple positions and scales over the original image. The Haar fea-
ture is then calculated as the difference between the sum of the pixels within the
black and the white regions of the rectangle.

Figure 2.9: Types of rectangles used to evaluate the Haar-based features in the
Viola and Jones approach for fast object detection

As it can be noticed in figure 2.9 there are multiple types of rectangles that
can produce interesting results when applied to certain parts of the image. As
an example, rectangle 3 could be applied on bodies or faces with the white
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parts representing the eyes and the black part representing the nose. These
features indeed are sensitive to edges, bars and other simple structures the main
advantage is that they are computationally efficient, they are however very
coarse.
For a fast evaluation of the Haar based features the algorithm uses the integral
image that is defined by:

(2.1)𝑖𝑖(𝑥, 𝑦) =
∑

𝑥0<𝑥,𝑦0<𝑦
𝑖(𝑥0, 𝑦0).

Where 𝑖𝑖(𝑥, 𝑦), the integral image contains at every location the sum of all the
pixels of and 𝑖(𝑥, 𝑦), the original one, above and left of such point. Using
recurrences, it can be computed in just one pass over the original.

Figure 2.10: Visualization of the integral image approach introduced by Viola
and Jones for evaluating rectangular differences of areas of the images

As it can be noticed in figure 2.10 evaluating the Haar features requires a simple
operation, indeed the sum of all the pixels in the area A is contained in the pixel
at location 1, the one over B is 2 − 1 and so on.

Given a feature set for each image and a set of positives and negatives ex-
amples the algorithm can proceed with the machine learning step. Viola and
Jones chose to adopt AdaBoosts, a classification algorithm , to both select a small
number of features and train the classifier. The number of rectangles features
is indeed huge and, although they are easy to compute this causes an efficiency
problem. For this reason the AdaBoosts algorithm selects the single features
that best separates the positive and negative examples by setting a threshold on
it and produces a series of weak learners. The single weak learner is represented
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by :

(2.2)ℎ 𝑗(𝑥) =


1 if 𝑝 𝑗 𝑓𝑗(𝑥) < 𝑝 𝑗𝜃𝑗

0 otherwise

Where 𝑓𝑗 is the feature, 𝑝 𝑗 a parity term and 𝜃𝑗 the threshold selected by the
learner. In general, features selected in early rounds have low error rates.

Finally a cascade of classifiers is built to increase the detection performances
and reduce the computations. The structure is that of a decision tree, a positive
result of the first classifier triggers an evaluation of the second one and so on,
while a negative results rejects the sub-window that is being analyzed. So each
stage of the cascade acts as a filter and the first one that discards a sample pre-
vents all the subsequent classifiers to work dramatically reducing computations.
The first stages should be as fast as possible with a small number of features
while going further in the series they should be trained with an increasing num-
ber of features. In this way the number of false positives decreases with the
number of stages that should be a compromise between the detection rate and
the computational time.

The classifiers are trained with an increasing number of features until the target
decision rate is reached.
This is done by re-weighting training examples after each stage giving an higher
weight to samples wrongly classified in previous stages.

2.4 Hog Detector

The peculiarity of the Histogram Of Gradients (HOG) is that it is able to
provide, from an input image, the number of gradient orientations in localized
portions of such image.

In order to obtain such results the work by Dalal and Triggs goes trough a
series of steps.

First of all it is noticed that, since the feature descriptor has an implicit nor-
malization, image pre-processing can be omitted as it has little to no impact on
the final result.
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The gradient is then computed both horizontally and vertically using the 1D
mask [−1, 0, 1]. Several other masks have been tested in [2] but the simplest one
proved itself to be the best one for the people detection framework.

The next step is the orientation binning. The image is divided into cells of
rectangular or circular shape, each cell produces an histogram of orientations
evenly spaced between 0 − 180◦ or 0 − 360◦ (unsigned or signed orientation re-
spectively). Each pixel within the cell produces a weighted vote based on the
gradient magnitude and phase for one of the bins of orientations of the his-
togram.

Most images change a lot from cell to cell with respect to contrast and illu-
mination, this results in very different gradient strengths. Normalization is
hence essential for good performances.
The cells are grouped in bigger overlapping blocks, the redundancy caused by
having the overlap and hence calculating the contribution of the same pixel more
than once is essential in providing better performances.
The blocks can be either rectangular R-HOG or circular C-HOG.
The block normalization can then be computed using one of the four different
methods tested by Dalal and Triggs. Considering as 𝑣 the unnormalized de-
scriptor vector containg all histograms in a given block, | |𝑣 | |𝑘 its 𝑘 = 1, 2 norm
and 𝜖 a small constant :

• L2 norm 𝑣 = 𝑣√
| |𝑣 | |22+𝜖

.

• L2 norm followed by clipping and normalizing

• L1 norm 𝑣 = 𝑣
| |𝑣 | |1+𝜖

• L1 norm followed by its square root
All the normalization provide much better results than not using them and

they are all similar in performances results with the exception of the simple L1
norm that performs slightly worse.

The HOG feature descriptor can be visualized in image 2.11 where each of the
analyzed cells (in this specific case 8x8) reports the most significant gradient
orientation. The Hog descriptors are then combined in a grid and used in a
conventional SVM classifier giving the final human detection chain.
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Figure 2.11: Visualization of the histogram of oriented gradients on a simple
test image

2.5 R-CNN, Fast R-CNN and Faster R-CNN

In [5] Ross Girshick et al. introduced a new Deep Learning architecture for
object detection to improve the performances achieved with detectors based on
features like Hog and Sift.
Their paper has been the first to show that a CNN based approach leads to far
better performances with respect to the previous feature extraction based ones.

Previous CNN object detection approaches were based on sliding windows
or regression.
R-CNN solves the localization problem using the "recognition using regions"
paradigm. Each image generates 2000 independent region proposal, fixed length
features are then extracted from each region using a CNN and later classified
with a linear SVM. The method is called R-CNN since it combines regions with
a CNN. In figure 2.12 a brief overview of the method is given.

More in detail :

• Selective search; is the algorithm used to extract significant regions in the
image. This method takes as input an image and returns all the patches
that due to similarities such as pixel intensities are most likely to contain
objects.
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Figure 2.12: Overview of the Regions with CNN features approach

• Feature extraction; for each proposed region a 4096 feature vector is ex-
tracted. Each region is resized to a fixed 227𝑥227 shape and then the
features are computed with a network composed of 5 convolutional layers
and 2 fully connected one.

• Linear SVMs; there’s one for each object category. The feature vector are
run through each one of them and, as each of them gives a likelihood score,
the one with the highest one will be responsible for classifying the region.

Furthermore the classified regions are refined using a using a class-specific
bounding-box regressor that adjusts the coordinates of the bounding box.

This approach gave really meaningful results as it was presented but its main
disadvantage was the Selective Search algorithm that bottlenecks the inference
times of the approach. Furthermore, each part of the algorithm needs separate
training making the method difficult to implement and modify.

R. Girshick in [4] introduced Fast R-CNN addressing the training processes
speed as well as the inference time.

Figure 2.13: Overview of the Fast RCNN approach
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The new network, as it can be noticed in figure 2.13, takes as input the entire im-
age and a set of Regions of Interest (RoI) proposal. The image is then processed
with several convolutional and max pooling layer to produce a feature map.
Then for each RoI only the corresponding part of the feature map is pooled. In
this way the convolutions are run only once for all the RoIs. Then a series of fully
connected layers produce the softmax probabilities for the classes and separate
fully connected layers redefine the position o the proposed bounding box.
The author then introduces a multi-task loss that is able to operate on the two
sibling output layers and allows to train the network in a single process making
it more elegant with respect to the previous one.

Fast R-CNN achieves near real-time performances when ignoring the time spent
on the RoIs proposal. In [22] S. Ren et al. introduced Faster R-CNN propos-
ing a novel Region Proposal Network (RPN). This method has the objective of
sharing the computations with Fast R-CNN allowing the whole process to run
in real-time. RPN takes as input an image and outputs a series of RoIs proposal
using a set of convolutional layers that comprehends layers that are used in Fast
R-CNN. Then a small network slides over the feature map of the last shared
convolutional layer ultimately generating the proposal.
The training is then performed in 4 steps.

• First step; RPN is trained

• Second step; Fast R-CNN is trained using the RoIs proposed by RPN

• Third step; at this point the networks don’t yet share the convolutional
layers. Fast R-CNN is initialized to train RPN, the shared convolutional
layers are fixed and only the ones unique to RPN are fine tuned.

• Fourth step; the unique layers of Fast R-CNN are fine tuned.
In figure 2.14 the proposed unique detector can be visualized.

Faster R-CNN achieves 5 fps on a GPU allowing to classify it as a real-time (not
embedded) object detector.

2.6 SSD, Single Shot MultiBox Detector

The work by W. Liu et al. in [15] proposes a single network that does not
re-sample feature maps of pixels based on bounding box hypothesis such as [5],
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Figure 2.14: Overview of the Faster R-CNN unique detector approach

[4] and [22] making it extremely faster while being as efficient as the methods
that do.

The network is a feed-forward and it produces a fixed size of bounding boxes
and scores for the presence of a specific class on those object.
Multiple convolutional feature layers are added at the end of the base network
in order to allow predictions at different sizes.
The output of each feature layer works like a grid each grid cell produces a
prediction with a score and an offset relative to the default bounding box.
In figure 2.15 one of the output feature map can be analyzed. A set of default
boxes is predicted for each location as well of the confidence scores for each
class.

Figure 2.15: Visualization of a 4x4 output feature map of the SSD network

It’s important to note that the predictions are performed by different convolu-
tional layers of the network at different sizes, allowing to achieve scale invariance.
In figure 2.16 it can be noticed that multiple layers are used as output for the
predictions allowing to produce a great number of predictions.
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Figure 2.16: Architecture of the SSD network

At training time the ground truth bounding boxes are associated to the closest
default one. Then all the default bounding boxes with Jaccard overlap with the
ground truth bigger than 0.5 are matched.
This allows the network to predict multiple boxes with high scores rather than
predicting only one.

The overall loss used for training is a weighted sum of the localization loss
and the confidence loss.

The architecture of the network allows to achieve similar scores relative to the
previous architectures used for object detection, this is mostly due to the choice
of using feature maps at different layers to produce detections as well as associ-
ating the ground truth boxes with more than one of the default ones.
Furthermore using an end to end architecture and treating the detection prob-
lem in a regression fashion allows the network to achieve a really high frame
rate, 59 FPS using Titan X and cuDNN v4 with Intel Xeon E5-2667v3@3.20GHz.

2.7 Lightweight CNN

The work by Nikouei et al. in [18] proposes a solution for real-time human
detection in embedded devices.
The work is inspired by the SSD architecture in [15] and depthwise separable
convolutions reported in section 2.2.

The proposed architecture has 26 layers considering depthwise and pointwise
convolutions as separate ones. Only the first layer is a fully convolutional one,
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downsizing takes places only using the strides of the filters.
Training has been performed by using the Mean Squared Error loss:

1
𝑛

𝑛∑
𝑖=1

(𝑦̂ 𝑖 − 𝑦𝑖)2

This type of loss is one of the most popular losses used for regression problems,
hence for problems where there’s no need of a classification and only numbers
have to be predicted.
This architecture allows to achieve an average of 1.76 FPS on a Raspberry Pi 3
with 1 GB of RAM memory with a rather low 6.6% False Positive Rate.

This results give some useful insights on the results that are achieved when
squeezing a network and applying the depthwise separable convolutions.

2.8 Yolo Algorithm

Previous detection systems based on Convolutional Neural Networks re-
purposed standard classifier by deploying them as the backbone of a sliding
window approach at multiple scales or more recently with R-CNN on proposed
regions or Single Shot Detector.
This processes, although they provide good results in terms of accuracy are not
straightforward to implement as each element needs separate training and are
typically not very efficient.

The You Only Look Once approach of Redmon, Divvala, Girshick and Farhadi
offers an alternative solution, object detection is considered as a single regres-
sion problem having as input of the CNN the image matrix and obtaining as
output a series of vectors containing the objects location and the correspondent
class probablities. To do that it performs a series of operations.

The input image is resized to a specific size before passing it to the network,
in the original paper by Redmon et al. it’s 448𝑥448. The image is divided by the
system into an SxS grid, the cell in which an object center falls is in charge of the
detection of such object.
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Figure 2.17: Division of the image into an 𝑆𝑥𝑆with 𝑆 = 4 grid by the Yolo system

An example can be analyzed in figure 2.17. The image has been divided into
a 4𝑥4 grid. In this image two objects are present, a person and a dog, to each
of them a bounding is associated. Assigning to the top left cell the coordinates
(0, 0) then cell (1, 1) is responsible for the detection of the dog and cell 2, 2 for the
person. This is because the center of the bounding boxes, represented in figure
2.17 as yellow dots, fall respectively in such cells.

Each cell is thus associated with a prediction and is represented as a vector,
for example for the framework of detecting only persons and dogs:

𝑣fi =
[
𝑃𝐶 𝐵𝑋 𝐵𝑌 𝐵𝑊 𝐵𝐻 𝐶1 𝐶2

]
Where :

• 𝑃𝐶 is the class probability that an object is present in such cell, if no object
is present it should be equal to zero.

• 𝐵𝑋 , 𝐵𝑌 , 𝐵𝑊 and 𝐵𝐻 are the coordinates of the bounding box associated
with such cell.
𝐵𝑋 and 𝐵𝑌 are the center of the bounding box within the cell in cell coor-
dinates. The cell coordinates are expressed as a matrix having (0, 0) as the
top left corner and (1, 1) as the bottom right one.
So if, for example, the center of the bounding box is exactly as the center
of the cell then 𝐵𝑋 and 𝐵𝑌 will be both equal to 0.5.
𝐵𝑊 and 𝐵𝐻 are the bounding box width and height associated with the
cell represented with respect to the cell dimensions.
So if, for example a cell has dimension of 52𝑥52 pixels and the bounding
box has dimensions 104𝑥78 then 𝐵𝑊 = 2 and 𝐵𝐻 = 1.5.

• 𝐶1 and 𝐶2 represent the classes. For the person 𝐶1 = 1 and 𝐶2 = 0 while
for the dog 𝐶1 = 0 and 𝐶2 = 1.
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However multiple object centers can fall within the same grid, to tackle
this problem smaller cells can be considered and vectors of bigger dimension
representing multiple detection can be associated with each cell.
So if 𝑆 = 7, 𝐵 = 2 representing the number of bounding boxes associated with
each cell each containing the first 5 elements of 𝑣fi and the number of classes is
𝐶 = 20 then the output of the network will be a 𝑆𝑥𝑆𝑥(𝐵𝑥5 + 𝐶) = 7𝑥7𝑥30 tensor.

Figure 2.18: Network architecture of the original Yolo implementation by Red-
mon et al.

In figure 2.18 the original Yolo architecture can be analyzed. The network de-
ploys 24 convolutional layers followed by 2 fully connected layers and outputs
the 7𝑥7𝑥30 tensor previously mentioned.

Furthermore, during training the following loss function is optimized:

𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2∑
𝑖 =1

𝐵∑
𝑗 =0

1
𝑜𝑏 𝑗
𝑖, 𝑗 [(𝑥𝑖 − 𝑥̂ 𝑖)2 + (𝑦𝑖 − 𝑦̂ 𝑖)2]

+ 𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2∑
𝑖 =1

𝐵∑
𝑗 =0

1
𝑜𝑏 𝑗
𝑖, 𝑗 [(

√
𝑤𝑖 −

√
𝑤̂ 𝑖)2 + (

√
ℎ𝑖 −

√
ℎ̂ 𝑖)2] +

𝑆2∑
𝑖 =1

𝐵∑
𝑗 =0

1
𝑜𝑏 𝑗
𝑖, 𝑗 [(𝐶𝑖 − 𝐶̂ 𝑖)2]

+ 𝜆𝑛𝑜𝑜𝑏 𝑗
𝑆2∑
𝑖 =1

𝐵∑
𝑗 =0

1
𝑛𝑜𝑜𝑏 𝑗
𝑖, 𝑗 [(𝐶𝑖 − 𝐶̂ 𝑖)2] +

𝑆2∑
𝑖 =1

1
𝑜𝑏 𝑗
𝑖, 𝑗 [(𝑝𝑖(𝐶) − 𝑝̂ 𝑖(𝑐))2]

(2.3)

Where 𝜆𝑐𝑜𝑜𝑟𝑑 = 5 increases the loss for bounding boxes that contain prediction
and 𝜆𝑛𝑜𝑜𝑏 𝑗 = 0.5 decreases the loss for bounding boxes that don’t contain any
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prediction. This is to avoid an overpower of the cells containing predictions over
the ones that don’t that leads to instability and model divergence.
Furthermore 1𝑖, 𝑗 denotes if the object appears on cell i and j represent the the
number of the bounding box predictor responsible for such detection.

A series of incremental improvements has been made to the Yolo network by the
original authors J. Redmond et al.
In particular Yolo v2 uses higher resolution for training, exploited batch nor-
malization to improve the performances and uses anchor boxes. Anchor boxes
are given in a list of predefined boxes that best match the desired objects, the
predicted box is then scaled with respect to the anchors.
Yolo v3 instead adds an objectiveness score to bounding boxes predictions and
make predictions at three separate levels of granularity to improve performance
on smaller objects.
More recent versions of Yolo have then been pursued by different authors mak-
ing use of new techniques such as losses based on the IoU and adopting state of
the art classification CNNs as a backbone.

2.9 Embedded Person Detection

The advancements in embedded hardware and deep learning architectures
allowed the research to explore the particular task of detecting persons in re-
source constrained devices.
The work by Kim et al. in [10] gives a good overview of person detection on
embedded devices. Indeed it explores some of the most popular CNNs such
as YOLO, SSD and R-CNN. Then it analyzes how well they perform over an in
house proprietary dataset and finally it reports how fast they are when deployed
on the Nvidia Jetson tx2.
All the models where adapted for the task of person detection, trained and tested
over an in house proprietary dataset that considers costumers in stores.

The results reported in table 2.19 show that R-FCN, Faster RCNN and some
of the version of YOLO are the most indicated for their particular application.
However it has to be noted that their proprietary dataset has been annotated
fine tuning the annotations proposed by a version of Faster RCNN and for this
reason the results of this particular network probably gain some advantage over
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the other ones.
Finding a good CNN for an application that deploys an embedded device is
not only a matter of how well they perform in terms of precision, it must also
consider a compromise with the inference speed.

Figure 2.19: Comparison of the Average Precision for person detection of popular
CNNs in the work by Kim et al. in [10]

As it can be noticed in figure 2.20 more efficient versions of the CNNs such as
Tiny Yolo are the faster ones. However YOLO v3-416 and SSD (VGG-500) are
the best trade-off between average precision and throughput.

Figure 2.20: Comparison of the Average Precision versus the throughput FPSs
performed by popular CNNs on the Jetson tx2 in the work by Kim et al. in [10]
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Although the work by kim et al. is similar to the comparison that will be carried
out in chapter 3 of this thesis some key differences must be noted.
Kim et al. adapted all the CNNs by training and testing them over an in house
proprietary dataset. Indeed their work is particularly interested in a in-store
application that is rather different from a work environment. Persons will be
less likely to be occluded and the surroundings will have less variability (work
environments can also be outdoors and are subject to weather conditions while
stores are most likely to be indoor).
Furthermore the device that is used for their tests is a Nvidia Jetsion tx2 that is
more indicated for running the parralel computations required by CNNs. The
devices that are tested in this thesis instead, are the Raspberry Pi 3 and 4 that
without a powerful GPU perform much worse. This is because they are the
closest to the radio-commands developed by the company in which this thesis
has been developed.

2.10 Convolutional Neural Networks on Embedded
Devices

As Convolutional Neural Networks are becoming more efficient and embed-
ded devices more powerful applications that combine both are becoming an
interesting area to resarch.
High level GPUs can deploy with small inference times, high performance deep
learning CNNs. However, this comes with high expenses and power consump-
tion.

The work by A. Suezen et al. in [26] discuss the implementation of a 13 classes
classification CNN on three different single-board computers: NVIDIA Jetson
Nano, NVIDIA Jetson TX2 and Raspberry Pi 4.
Although all the devices can be considered embedded as they have limited re-
sources a key difference must be noted.
The two boards developed by NVIDIA have a CUDA capable GPU, this means
that such GPU is optimized for performing the big parallel computations re-
quired by CNNs.
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Figure 2.21: Benchmarking of the NVIDIA Jetson Nano ,TX2 and the Raspberry
Pi 4

Table 2.21 reports the results based on the same classification network trained
and tested based on 5 different dataset sizes.
Each dataset has been split in 70% training images and 30% testing ones.
The time refers to the time that is needed to classify all the testing images of the
corresponding dataset.

It’s clear that having a device equipped with a GPU as the two NVIDIA gives
a huge advantage in terms of speed. In each dataset indeed, the Pi 4 is outper-
formed by one order of magnitude. The results however show that this comes
with a cost, although faster performances are obtained the two Jetson require
require more power to run, that in a resource constrained environment with
limited energy may not be desirable.
Moreover it must be considered that the Pi 4 is typically 10 times less expensive
than the TX2 and 3 times less than the Nano.

It’s also interesting to notice that the accuracy increases when the training dataset
is bigger.
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3
Comparison of Different Off the Shelf

Person Detectors

In this chapter three approaches to the task of person detection are going to
be analyzed and implemented.
These are Viola and Jones, which makes use of a cascade of classifiers trained
over Haar based features, a linear SVM detector based on the Histogram of
Oriented Gradients features and finally Yolo version 3, a Convolutional Neural
Network for object detection.
The aim is to perform a comparison between some popular off-the shelf person
detectors, without adapting the code too much and implementing the algo-
rithms as the authors originally intended. Major performance metrics such as
precision and recall are going to be compared with a particular interest over the
inference times on the Raspberry Pi 3 and 4, two embedded platforms.
The two devices are going to be used as test platforms through the thesis. They
have been chosen as they are the ones that mimic the best the performances of
the remote control device produced by the company in which this thesis has
been developed.

The Pi 4 is equipped with 8 GB of LPDDR4 RAM and Quad core Cortex-A72
CPU, while the Raspberry Pi 3 that has a quad-core ARM Cortex A53 CPU and
1 GB of LPDDR2 RAM. Hence, while both devices are powerful enough to run
a light OS, the Pi 4 outperforms the Pi 3.
In figure 3.1, the Pi 4 can be visualized. To its right the Pi Camera v2.1 can also
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be observed. The camera will serve as the webcam for all the run-time tests of
the algorithms.

Figure 3.1: The Raspberry Pi 4 (on the right) and the Pi Camera v2.1 (on the left)

The two devices, without a powerful GPU are not indicated for running the big
parallel computations required by Convolutional Neural Networks.
This motivates the choice of the three algorithms to test. Viola and Hog were
indeed developed in a time where powerful GPUs were not yet available. Their
algorithms don’t require as much parallelism as the recent CNNs and are more
indicated for running on the CPUs of the Raspberry Pi 3 and 4.
Yolo instead, has been chosen to represent the state of the art of CNNs for
object detection and to give a meaningful comparison with the selected machine
learning based approaches.

3.1 Viola and Jones

A first approach to person detection has been developed through the P. Viola
and M. Jones method for rapid detection using a boosted cascade of simple
filters introduced in [27].
The main ideas introduced by their paper were :

• Integral Image; a way of representing images that allows fast feature eval-
uation.
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• AdaBoost; a method that selects a small number of features to build a
classifier.

• Cascade classifier; combines simple classifiers in a cascade structure to
considerably enhance the speed of the detector.

In this section, these methods will be exploited and implemented on OpenCV
running on the Raspberry Pi 3 and 4, the results will be later compared with
other off-the shelf methods described in this chapter.

3.1.1 Viola and Jones Implementation

In this subsection a general explanation of how the code exploits some of the
OpenCV classes in order to detect persons, will be given.
The Viola and Jones approach has been implemented for body detection on the
Raspberry Pi 3 and 4. The devices have been programmed using C++ and some
libraries from OpenCV, the most interesting one for the scope of the application
is the "objdetect.hpp" class.
Viola and Jones has also been implemented in Python on the Google Colab plat-
form in order to perform more testing.

The "CascadeClassifier()" class allows to perform the detection on a gray-scale
image. The classifier, trained on a huge number of data by the OpenCV organi-
zation has been provided to users in the form of an xml file that can be loaded
with a dedicated function.
Two different implementations have been considered, one with just one classifier
"haarcascade_fullbody.xml" and one with two additional classifiers "haarcas-
cade_upperbody.xml" and "haarcascade_lowerbody.xml". Indeed the detector
should detect bodies at different sizes and location in the image and part of
them could also be occluded. For this reason using multiple classifier trained to
detect multiple part of the bodies should lead to better results.

A series of modification have then been applied to the analyzed images. Each
image has been transformed to the gray-scale single channel domain, their his-
togram has been equalized in order to enhance the image and produce more
significant features.

The function "detectMultiscale()" has subsequently been exploited. This func-
tion takes as input the previously elaborated image and produces a template
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class for 2D rectangles containing the top left corner (x and y), width and height
of a rectangle that should contain the detected body.

The code that has been written then proceeds to draw a rectangle in the lo-
cation of the object if something has been detected.

1 String body_cascade_name = ".../haarcascade_fullbody.xml";

2 body_cascade.load(body_cascade_name);

3

4

5 Mat frame_gray;

6 cvtColor(frame, frame_gray , COLOR_BGR2GRAY);

7 equalizeHist(frame_gray ,frame_gray);

8

9 std::vector<Rect> bodies;

10

11 body_cascade.detectMultiScale(frame_gray , bodies);

12

13 for(vector<Rect>::iterator i = bodies.begin(); i != bodies.end();

++i)

14 {

15 Rect &r = *i;

16 rectangle(frame, r.tl(), r.br(), Scalar(0,255,0), 2);

17 }

Code 3.1: Viola and Jones single image and single classifier Person detection

A snippet of the code implementation can be examined in code listing 3.1.

Furthermore a Real Time implementation for the target embedded device has
been developed. The implementation makes use of the GStreamer class in order
to communicate with the Pi Camera v2.1 that has been mounted on the embed-
ded devices. Then each frame produced by the camera is analyzed with the
same classes described before and displayed to the user with its results.
The code for this type of implementation can be found on the Github repository
mentioned in the introduction.

3.2 Hog Based Person Detector

A second approach using the Histogram of Oriented gradients introduced
by Dalal and Triggs in [2] has been considered and implemented. It is based
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on Hog features combined with a linear Support Vector Machine (SVM) and it
presents a valid solution to the problem of person detection. An overview of
the chain to detect objects is given in figure 3.2.

Figure 3.2: Overview of the HOG feature extraction and object detection chain
introduced by Dalal and Triggs

In this section, this method will be exploited and implemented using the
OpenCV library installed on the Raspberry Pi 3 and 4, the results will then
be compared with other off-the shelf methods later in this chapter

3.2.1 Hog detector Implementation

The detection of persons using Hog features has been implemented on the
Raspberry Pi 3 and 4.
A set of libraries from OpenCV has been exploited, in particular "objdetect.hpp".

The Hog descriptor is initialized with default values, the cell size is set to 8x8,
the block size to 16x16 (hence a R-HOG) and the block stride to 8x8.
A linear SVM detector, trained for detecting peoples in images is then set by
passing its coefficients to the "HOGDescriptor" class.
Two Support Vector Machines have been tested, both provided by OpenCV. One
is the default People Detector that has been trained on windows of dimension
64x128, the other one is the Daimler People Detector, trained over 48x96 win-
dows.

The "detectMultiScale" function is then able to perform the detection based on
the HOG features and the linear SVM that has been previously set. In particular
it returns a vector of Rect as in subchapter 3.1.1, containing all the locations of
the identified objects accompanied by their confidence level. The hit threshold
defines the distance between features and the SVM classifying plane, in this
framework it has been set to 0. The window stride that must be a multiple of the
block stride has been set to 8x8. The scale defines the coefficient of the detection
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window increase, its setting is a compromise between performances in terms of
detection rate and number of computations. Finally the group threshold avoids
overlapping rectangles by grouping similar ones.

1 HOGDescriptor hog;

2 hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

3 vector<Rect> bodies;

4

5 hog.detectMultiScale(img, bodies, 0, Size(8,8), Size(), 1.05, 2,

false);

6

7 for(vector<Rect>::iterator i = bodies.begin(); i != bodies.end();

++i)

8 { Rect &r = *i;

9 rectangle(image, r.tl(), r.br(), Scalar(0,255,0), 2);

10 }

Code 3.2: Hog based person detector implementation

Some of the code used for the tests can be seen in code snippet 3.2, as it can be
noticed it is really similar to the Viola and Jones implementation in code snippet
3.1, this is because both methods are derived from the OpenCV "objdetect.hpp"
class.

With some initial testing it has been noticed that the Daimler people detec-
tor performs much worse than the Default one. This is because it uses smaller
windows that lead to more computations and more false positives.
For this reasons in the results analysis only the Default People Detector has been
considered.

Furthermore, as for the Viola and Jones algorithm, a Real Time implementa-
tion for the target embedded device has been developed. The implementation
makes use of the GStreamer class in order to communicate with the Pi Camera
v2.1 that has been mounted on the Raspberry Pi 3 and 4. Then each frame
produced by the camera is analyzed with the same classes described before and
displayed to the user with its results.
The code for this type of implementation can be found again on the Github
repository mentioned in the introduction.
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3.3 Yolo Object Detection

More recently the research for object detection and image classification has
been developed over Convolutional Neural Networks.
The main difference with a Machine Learning based approach is that CNN don’t
use hand crafted features such as Haar for Viola and Jones or Hog, instead they
perform an end to end learning that means that they learn the best feature rep-
resentation that fits the problem.

Convolutional Neural Networks differ from classical Deep Neural Networks
because they consider the input image as a two dimensional matrix where spa-
tial neighborhood is important and interesting features to be learned are local.
For this reason they deploy the concept of local connectivity meaning that for
each pixel there’s a receptive field, only neighboring nodes are connected and the
convolutional filters share the same weights. Using this concept CNN achieve a
spatially invariant response. Furthermore some polling layers are used throught
the network to subsample the image.

In this chapter You Only Look Once, a popular state of the art CNN, first intro-
duced by J. Redmond in [21] is going to be analyzed. It addresses the task of
object detection by using a regression approach.
Its methods will be exploited and implemented on OpenCV running on the
Raspberry Pi 3 and 4, the results will be then compared with other off-the shelf
methods described in this chapter.

3.3.1 Yolo Implementation

The detection of people using Yolo has been implemented using OpenCV on
the Raspberry Pi 3 and 4.
The scope of this subsection has been to perform a straightforward, off the shelf
implementation meaning that the network has not been re-trained and default
config files and weights have been downloaded from the author website 1. No
adaptation concerned only with the task of person detection has been found.
The original implementation is indeed capable of detecting 80 different classes,

1https://pjreddie.com/darknet/yolo
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one of which is person.
Yolo v3 has been chosen as a step by step guide based on the Keras framework
has been found in a github repository 2. This is because Keras is the chosen
framework for developing a custom solution to the problem of this thesis.

The OpenCV "dnn.hpp" library has been exploited, with its methods it allows
to load the configuration files and trained weights into a "Net" class.
The input image then needs to be adapted for the network, for this reason
the "blobFromImage" function converts the image values in format [0, 1] from
[0, 255] and scales them down to a 416𝑥416 tensor.

The image is then passed to the network and the output has to be post pro-
cessed. Only bounding boxes associated with a probability higher than a certain
threshold will be maintained.
Furthermore, non maxima suppression is performed in order to remove over-
lapping boxes.

1 Net net = readNetFromDarknet(modelConfiguration , modelWeights);

2 net.setPreferableBackend(DNN_BACKEND_OPENCV);

3 net.setPreferableTarget(DNN_TARGET_CPU);

4

5 blobFromImage(frame, blob, 1 / 255.0, cv::Size(416, 416), Scalar(0,

0, 0), true, false);

6

7 net.setInput(blob);

8

9 vector<Mat> outs;

10 net.forward(outs, getOutputsNames(net));

11

12 postprocess(frame, outs);

Code 3.3: Yolo object detector implementation

As it can be noticed in code snippet 3.3 the classes of OpenCV easily allow to
load the weights of the network, however the output tensor needs to be post-
processed in order to retrieve the required data.

2https://github.com/qqwweee/keras-yolo3
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In appendix code snippet A.1 the post-processing can be analyzed.
For each cell the bounding boxes are retrieved and only the ones with high con-
fidence score are maintained. The box class label is assigned from the class with
the highest score.
Redundant bounding boxes with lower confidence are hence removed with the
OpenCV "NMSBoxes" function.

3.4 Results

In this section the results of the implementation of the Viola and Jones, Hog
and Yolo person detectors will be analyzed and compared.

Popular metrics in evaluating object detectors such as Precision and Recall are
going to be exploited over the Coco 2017 dataset.
The metrics are going to be discussed in details with a particular interest over
the time performances on the test embedded platforms, the Raspberry Pi 3 and 4.

All the code written to perform this evaluations can be found on the Jupiter Note-
books "Stat_evaluation.ipynb" and "Scale_Stat_Evaluation.ipynb" on the Github
repository mentioned in the introduction.

3.4.1 The Coco 2017 Dataset

The evaluation has been performed over images and ground truth bounding
boxes from the Microsoft COCO 2017 dataset.

Figure 3.3: Number of annotated instances per category for Coco and Pascal
datasets
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COCO is a large-scale dataset, first introduced in [14], addressing three core re-
search problems in scene understanding : detecting non iconic views of objects,
contextual reasoning and precise 2D localization.
In particular, for the scope of this thesis, the non iconic view has been consid-
ered as the main advantage of using COCO over different datasets. Indeed the
analyzed methods are considered over a real world industry setting where per-
sons could be occluded by large objects and may have different poses. Detecting
those persons, in a safety application, is as crucial as detecting the ones non
occluded and in canonical poses.

In figure 3.3 an overview of the number of annotated instances per category
of Coco is given and compared to the popular Pascal VOC dataset, it can be
noticed how the number of instances for every category and in particular for the
"Person" category is far superior.
Coco has several features such as object segmentation and recognition in con-
text, it has more than 330K images (of which more than 200K labeled), 80 object
categories and 1.5 million object instances. In this discussion the object category
"Person" and the Coco feature concerning its bounding boxes are going to be
exploited.
A test dataset with only images, of different size, containing "Person" has been

(a) (b)

Figure 3.4: Some example images and their ground truths of the Coco dataset
regarding the "Person" class, the true bounding boxes are drawn over the images
as green rectangles.
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downloaded from the open source tool Fiftyone. In figure 3.4 some examples
can be visualized.
The download genereates a json file containing all the bounding boxes.
In particular the file contains not only the "Person" bounding boxes but also all
the others that are present in the downloaded image, so some filtering had to be
performed in order to retrieve only the needed data.

Furthermore, images not containing persons have been downloaded with Fifty-
one from Coco and added to the test dataset. This has been done in order to get
a more accurate evaluation.

3.4.2 Performance Metrics

In order to compare the results, it is useful to report the metrics used in this
thesis.
In an object detection task, the object has to be identified and the coordinates of
the bounding box around it have to be compared with the ground truth.

In order to perform this comparison the concept of Intersection over Union
(IoU) is often applied.

Figure 3.5: Graphic visualization of the Intersection over Union

Consider the predicted bounding box and the one corresponding to the ground
truth. Then, as it can be visualized in figure 3.5 the IoU is considered as the area
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in which the bounding boxes overlap and the total area of the union.
Using the IoU as a threshold value, for example 𝐼𝑜𝑈 = 0.5 :

• 𝐼𝑜𝑈 ≥ 0.5, then the predicted bounding box is classified as a True Positive
(TP).

• 𝐼𝑜𝑈 < 0.5, then the predicted bounding box is classified as a False Positive
(FP) hence the prediction is considered wrong.

• If a ground truth box is present in the image and the model failed to detect
it then it is classified as a False Negative (FN).

With this three classes (TP, FP and FN), Precision and Recall can be defined
to measure the performances of a model :

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.1)

Precision gives an indication of how good the model is at predicting the positive
class when the actual outcome is positive, indeed the number of missed predic-
tions (False Negatives) is not considered in the equation.
Recall instead considers how good the model is at predicting the positive class
in general considering also the missed predictions.

Furthermore the F1 score can be considered, giving an armonic mean between
Precision and Recall it’s an indication of how the two values vary in relation
with the other:

(3.2)𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The total number of the three classes over the test dataset will be evaluated con-
sidering an increasing Intersection over Union threshold, then Precision, Recall
and F1 score are going to be computed considering those numbers.

Furthermore, as the scope of this thesis is considering an embedded appli-
cation inference times on the Raspberry Pi 3 and 4 are going to be considered
observing how they evolve over decreasing input scales. Precision, Recall and
F1 score are also going to be computed considering a decreasing input image
scale.

3.4.3 Results Based On Different IoU Thresholds

A first evaluation can be performed over the Precision, Recall and F1 score
over different IoU thresholds considering the three models described and im-
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plemented in this chapter.
The Viola and Jones method will consider two implementations, one with only
the full body cascade classifier and one with three classifiers comprehending
also the upper and lower body ones in order to obtain better results.
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Figure 3.6: Comparison of the different Person detector methods described in
this chapter. In (a) the Precision over different IoU is given. In (b) the Recall
over IoU.

As it can be noticed in figure 3.6 (a) the precision of the method based on Yolo
performs better especially when increasing the IoU threshold, while the others
have similar performances. Thus Yolo gives more accurate predictions and is
generally better at producing the correct bounding box.
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In figure 3.6 (b) instead the superior performances of Yolo can be visualized with
the Recall metric. Yolo, when the IoU threshold is not too high misses always
less than 50% of the persons while the other methods have at least 50% worse
performances.
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Figure 3.7: Comparison of the F1 score for the different person detectors ana-
lyzed in this chapter over different IoU thresholds

The F1 scores, as shown in figure 3.7, giving an armonic average of the two
metrics in figure 3.6, confirms that the Yolo detector is the one that performs
better.

Figure 3.8: Visualization of the first two selected feature by AdaBoost in the
Viola and Jones algorithm
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It can be considered that the Yolo off-the shelf implementation used in this
evaluation has been trained with the scope of detecting 80 classes and not only
persons. This means that the network knows how to detect other objects result-
ing in less false positives.
It can also be noticed that the Hog features are more suitable for the detection
of persons with respect to the Haar features used by Viola and Jones even when
three classifiers trained for different body parts are used. This is because the
Haar features are historically employed for the task of face detection and are not
that powerful when they are applied over bodies. Indeed, as it can be noticed
in image 3.8 particular Haar features return interesting results when applied
over parts like eye-nose-eye or eyes-cheeks while for the whole body this type
of results are, in general, not obtained.
The performances of Hog and Viola are arguably not suitable for an aid safety

(a) (b)

(c) (d)

Figure 3.9: Some challenging ground truths of the Coco dataset regarding the
"Person" class, the true bounding boxes are drawn over the images as green
rectangles.

application where it’s important to miss little to no persons, however it needs to
be considered that the Coco dataset used to produce this results classifies per-
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sons in non canonical poses, at multiple scales, in the background of the images
and occluded by one or more objects. For this reason it is very challenging to
achieve an high score over the test dataset.
Some example of uneasy test images can be visualized in figure 3.9. Here the
ground truths obtained by Coco are displayed as green bounding boxes over the
persons present in the images.
It can be noticed that significantly occluded persons are considered like the ones
behind the front glass of a car in figure 3.9 (b). Body parts are also considered
as truths like the arm in the left of figure 3.9 (c). Moreover persons in the far
background are also examined like in figure 3.9 (d).
Figure 3.9 (a) is reported to display a full body picture that is not considered
challenging as the others.

3.4.4 Results Based on Different Input Scales

An additional test has been performed on the target embedded devices.
The inference times were computed for all the models considering an iterative
decreasing size of the input image. The test has been performed with C++ code
that feeds to the classifiers or the Neural Network the same input image over
and over after applying to it a scale factor that decreases its size every time by 0.1
(𝑛𝑒𝑤 𝑠𝑐𝑎𝑙𝑒 = 𝑜𝑙𝑑 𝑠𝑐𝑎𝑙𝑒 − 0.1) with a linear interpolation as the default OpenCV
method.
The input image considered has an original size of 640𝑥480 as for the VGA
standard often used in cameras applied over a work environment. As for this
test only the inference times are meaningful a single random image has been
chosen.

Analyzing the results in figure 3.10 important consideration can be made.
The inference time of Yolo is considerably bigger than the others and does not
decrease with different scales. This is because the input size of the network is
set in Yolo v3 to 416𝑥416, so each image needs to be scaled to that dimension.
Furthermore the inference time of Yolo is really big, indeed the network with
its 52 convolutional layers and 40549216 parameters requires a huge number of
operations to be performed by the CPU.
This type of network indeed provides a guarantee for the detection accuracy
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Figure 3.10: Comparison of inference times of the different models based on the
input size of the image. In (a) the times on the Raspberry Pi 3. In (b) the times
on the Pi 4.

in multiple categories applications. The considered network is indeed able to
detect more than 80 categories while in this application only the "Person" detec-
tions are considered.

The other detectors instead perform better and the inference time linearly de-
creases with a decreasing scale. In particular it can be noticed that the Viola
detector that uses three classifiers and hence infers the same image three times at
every scales increases its inference time more or less by 3 times over the standard
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Viola detector.

Furthermore a significant improvement in performances can be noticed in figure
3.10 (b). This indicates how the better hardware of the Pi 4, even if it’s still an
embedded device, can provide faster computations.

It has been analyzed how decreasing the input size of the image decreases
the inference time in all the detectors but Yolo.
It’s then interesting to evaluate the performance metrics analyzed in sub-chapter
3.4.3 for input images of decreasing sizes.

In order to perform this comparison 300 images of size 640𝑥480 as for the VGA
standard have been downloaded from COCO and Precision, Recall and F1 score
have been evaluated with a decreasing scale with a fixed IoU threshold.

The IoU threshold in the differentiation of TP, FP and FN classifies the correct
and incorrect predictions, the bigger it is the more accurate to the ground truth
the predictions are, but less number of objects are going to be considered as true
positives.
The literature usually sets 𝐼𝑜𝑈 = 0.5, however by looking at figure 3.6 it can be
noticed that too many persons will be missed. In a safety application it’s more
important that the system tells that there’s a person instead of missing it, for this
reason the IoU threshold has been set to an arguably low 𝐼𝑜𝑈 = 0.1. To perform
this evaluation the ground truth bounding boxes had to be scaled down in order
to be compared with the predicted ones.

As it can be noticed in figure 3.11 (b) and further considered in figure 3.12 the
performances for F1 score and Recall decrease for all the methods as expected.
Giving as input images with lower resolution means that more and more fea-
tures are lost and the predictions resent it producing a low number of more
inaccurate predictions.

However the precision increases for all the methods when decreasing the scale.
Precision is indeed a measurement of how good the model is at predicting the
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Figure 3.11: Comparison of the different Person detector methods described in
this chapter. In (a) the Precision over different scales is given. In (b) the Recall
over scales.

positive class without taking into account the number of misses (FN), when the
resolution of the input image is decreased less pixels are taken into account but
they represent more relevant aspects of the image. Structures visible at coarse
spaces are simplification of the strongest elements in the image.
For this reason the models are less likely to produce false positive samples that
are often triggered by small local maxima or minima present in the image at
bigger scales.
Additionally with less pixels in the image the predicted and true bounding boxes
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Figure 3.12: Comparison of F1 scores of the different models based on the input
size of the image

have less variability in terms of their positioning leading again to less overall
false positives.

Furthermore it can be noticed that the Yolo detector maintains its supremacy
over the other feature-based methods as it was previously noticed in figures 3.6
and 3.7. Hence, clearly the performances of Yolo remain the best ones, however
decreasing the input size, as previously stated, does not lead to better perfor-
mances in terms of inference times because every image needs to be resized to a
size of 416𝑥416 before being passed to the CNN.

3.4.5 Results for a Live Application

With the performances analyzed in sub-chapter 3.4.4 in mind a live appli-
cation can be considered for the feature based detectors on the Raspberry Pi 3
and 4. As previously explained Yolo inference times are too high for the target
embedded devices and is thus not considered.
The IoU threshold has been set equal to 𝐼𝑜𝑈 = 0.1 to classify correct and in-
correct predictions in order to miss as little persons as possible with the same
reasoning of sub-chapter 3.4.4. A target performance on a video stream input of
10 fps has been considered.

In order to consider the performances an inference time of 𝑡 = 1
10 ≈ 0.1𝑠𝑒𝑐
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has been set on figure 3.10 and for each detector the corresponding input image
scale has been obtained.
Then, with the scales needed to obtain the desired performances in terms of
fps the corresponding Precision, Recall and F1 score have been obtained from
figures 3.11 and 3.12.

FPS Scale Precision Recall F1 score

Hog detector 10 fps 55% 95% 7% 11%

Viola one cascade 10 fps 50% 72% 2% 3%

Viola three cascades 10 fps 30% 71% 4% 7%

Table 3.1: Comparison of different feature based detectors performances con-
sidering a target performance of 10 Fps and data reported in figures 3.10 (a),
3.11, 3.12 for the Raspberry Pi 3

FPS Scale Precision Recall F1 score

Hog detector 10 fps 75% 87% 16% 26%

Viola one cascade 10 fps 70% 52% 2% 5%

Viola three cascades 10 fps 40% 78% 6% 10%

Table 3.2: Comparison of different feature based detectors performances con-
sidering a target performance of 10 Fps and data reported in figures 3.10 (b),
3.11, 3.12 for the Raspberry Pi 4

As it can be noticed by looking at table 3.1 and 3.2 the more viable option for
a Real-time application is the Hog detector although it does not provide really
good results.
It can indeed be noticed that the performances in term of Recall and F1 score are
very poor, however, as previously stated, the Coco dataset provides a very chal-
lenging test benchmark and results in a real world application would certainly
be more satisfying.

Furthermore, it can be remarked how a better hardware, such as the Rasp-
berry Pi 4, leads to far better results. Requiring a device with better specification
leads to better results and a more deployable solution. However this comes with
more expensive devices that may not be considered in a large scale application.
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To conclude, the results are not satisfying in most cases for a live Person de-
tection application.

The Yolo detector has been proven to lead to far better results in terms of
detection however the Raspberry devices without a GPU are not capable of
performing efficiently the computations required to infer a stream of images
through the network.
For this reason the focus of the thesis will now shift in the custom development
of a light weight version of Yolo for detecting the single class "Person" on an
Embedded Device.
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4
Custom Architectures for Person

Detection

In this chapter some custom architectures based on Convolutional Neural
Networks and Yolo are going to be explored and implemented for the task of
person detection.
The developments will concentrate on finding a light-weight architecture suit-
able for a live application on embedded devices without a GPU.

The performance metrics discussed in the previous chapter are going to be
considered and results of the evaluation are going to be compared with the
off-the shelf methods analyzed in chapter 3.

4.1 Architecture Redesign

The original Yolo architecture was designed to detect with a good accuracy
objects belonging to 20 different categories.
Considering that the application of this thesis requires to detect only a single
class (i.e. "Person") some modifications can be made to the original network to
reduce the number of parameter and computations.

The main things that have been considered are reducing the output size of
the network and removing some of its layers. This reduction is motivated by the
fact that the network does not need to detect 20 different classes hence it should
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not need to perform as many computations.

The original paper considers an input rgb image of 448𝑥448. The output is
encoded as 7𝑥7𝑥30 tensor.
This means that the image is divided into a 7𝑥7 grid and each cell of such grid
outputs a vector of length 30 composed by :

• 2 bounding boxes having the Yolo format as discussed in the previous
chapter

𝐵fi = [𝑃𝐶 𝐵𝑋 𝐵𝑌 𝐵𝑊 𝐵𝐻]
• 20 entries, one for each class.

The scope of this thesis is predicting a single class hence the output has been
encoded as a 7𝑥7𝑥5 tensor where each cell has associated a vector of length 5
that is equal to a single 𝐵fi .
This means that the architecture will predict a single bounding box per cell and
there’s no need of adding to the vector the classes since there’s only one and
each prediction will belong to the "Person" class.

With this considerations in mind many new architectures were designed and
tested following a trial and error approach changing the number of filters, the
number of convolutional layers, the type of pooling and many other parameters.
The three more relevant ones are reported, each one accepts as input an image
of size 448𝑥448𝑥3 where 3 are the channels of the image. These architectures
will allow to make some considerations that will later serve as a basis to make
some improvements to the network ideas.

The first reported architecture is "Yolo Small", it has been designed by shrinking
as much as possible the original Yolo architecture, indeed it has significantly
less layers and a small overall number of filters. This new architecture only
has 6 convolutional layers followed by a fully connected one versus the original
architecture that has 24 convolutional layers followed by 2 fully connected one.

Yolo small reduces the input resolution of the original image via max-pooling
layers and some convolutional ones (with stride 𝑠 = 2) and finally produces the
prediction via a fully connected layer.
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Yolo Small

Layer type Filters/Filter
size

Output shape

Conv2D 8/(3x3) 448x448x8

MaxPooling2D (2x2)s2 224x224x8

Conv2D 16/(3x3) 224x224x16

Conv2D 8/(1x1) 224x224x8

Conv2D 16/(3x3)s2 112x112x16

MaxPooling2D (2x2)s2 56x56x16

Conv2D 32/(3x3) 56x56x32

MaxPooling2D (2x2)s2 28x28x32

Conv2D 64/(3x3)s2 14x14x64

MaxPooling2D (2x2)s2 7x7x64

Reshape - 3136

Dense - 245

Reshape - 7x7x5

Table 4.1: Overview of the Sequential layers adopted by the Yolo Small architec-
ture

Each convolutional layer is followed by batch-normalization that makes train-
ing faster and more stable by re-centering and re-scaling the outputs of the layers.
Furthermore every convolutional layer is followed by the leaky relu activation
function defined as :

(4.1)𝑓 (𝑥) =

𝑥 if 𝑥 > 0

0.1 otherwise

This activation function is the same adopted by the original Yolo algorithm and
it was introduced in order to solve the dying neuron problem where neurons
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that produced large negative values remained stuck at zero. Indeed relu sets
all the negative values to zero while leaky relu partially mantains them with a
small slope.
The last fully connected layer uses a sigmoid activation function, this is because
all of the output values of the 7𝑥7𝑥5 tensor are expected to have values in range
[0, 1] as it will be better explained in the next chapters.

Yolo Big

Layer type Filters/Filter
size

Output shape

Conv2D 32/(3x3)s2 224x224x32

MaxPooling2D (2x2)s2 112x112x32

Conv2D /64/(3x3) 112x112x64

MaxPooling2D (2x2)s2 56x56x64

Conv2D 128/(3x3) 56x56x128

Conv2D 64/(1x1) 56x56x64

Conv2D 128/(3x3) 56x56x128

MaxPooling2D (2x2)s2 28x28x128

Conv2D 128/(3x3)s2 14x14x128

MaxPooling2D (2x2)s2 7x7x128

Reshape - 6272

Dense - 245

Reshape - 7x7x5

Table 4.2: Overview of the Sequential layers adopted by the Yolo Big architecture

The second reported architecture is "Yolo Big".
The aim of this architecture is still to produce a light-weight version of Yolo but
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without a dramatical decrease of some of the parameters such as the number of
filters as in Yolo Small.
However the network remains similar as there are still 6 convolutional layers
followed by a fully connected and the same activation functions are used as well
as batch-normalization.

Yolo Big Depthwise

Layer type Filters/Filter
size

Output shape

DW-Conv2D 32/(3x3)s2 224x224x32

MaxPooling2D (2x2)s2 112x112x32

DW-Conv2D /64/(3x3) 112x112x64

MaxPooling2D (2x2)s2 56x56x64

DW-Conv2D 128/(3x3) 56x56x128

DW-Conv2D 64/(1x1) 56x56x64

DW-Conv2D 128/(3x3) 56x56x128

MaxPooling2D (2x2)s2 28x28x128

DW-Conv2D 128/(3x3)s2 14x14x128

MaxPooling2D (2x2)s2 7x7x128

Reshape - 6272

Dense - 245

Reshape - 7x7x5

Table 4.3: Overview of the Sequential layers adopted by the Yolo Big Depthwise
architecture

The last reported architecture is "Yolo Big Depthwise".
It is identical to Yolo Big so with a higher number of filters w.r.t Yolo Small but
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it uses depthwise separable convolutions instead of standard ones. This type of
convolution has been explained in detail in section 2.2 and it aims to reduce the
inference time of the network. The three new architecture will be trained later
in this chapter and their results will be analyzed.

4.2 Loss Function

In order to train the network it’s necessary to perform some modifications
to the loss function. Indeed the original loss adopted by Yolo is no longer
applicable as the output has a different shape and it’s no longer necessary to
consider the loss regarding the classes.
Considering the output encoded as explained in subsection 4.1 the loss function
will change considerably and will assume this form :

𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2∑
𝑖 =1

1
𝑜𝑏 𝑗
𝑖 [(𝑥𝑖 − 𝑥̂ 𝑖)2 + (𝑦𝑖 − 𝑦̂ 𝑖)2] +𝜆𝑐𝑜𝑜𝑟𝑑

𝑆2∑
𝑖 =1

1
𝑜𝑏 𝑗
𝑖 [(

√
𝑤𝑖 −

√
𝑤̂ 𝑖)2 + (

√
ℎ𝑖 −

√
ℎ̂ 𝑖)2]

+ 𝜆𝑛𝑜𝑜𝑏 𝑗
𝑆2∑
𝑖 =1

1
𝑛𝑜𝑜𝑏 𝑗
𝑖 [(𝑝𝑖(𝐶) − 𝑝̂ 𝑖(𝑐))2] +

𝑆2∑
𝑖 =1

1
𝑜𝑏 𝑗
𝑖, 𝑗 [(𝑝𝑖(𝐶) − 𝑝̂ 𝑖(𝑐))2]

(4.2)

Where 𝜆𝑐𝑜𝑜𝑟𝑑 = 5 increases the loss for cells containing objects and 𝜆𝑛𝑜𝑜𝑏 𝑗 = 0.5
decreases the loss for the cells not containing objects.

As it can be noticed in equation 4.2 with respect to the original 2.8 there are
quite a few changes.
Indeed there’s only one box for each cell so there’s no need to consider the inner
sum for each 𝐵fi . Furthermore 1

𝑜𝑏 𝑗
𝑖 was previously computed for all the cells,

containing a ground truth, considering only the bounding box prediction with
the biggest IoU against the ground truth. In 4.2 instead 1

𝑜𝑏 𝑗
𝑖 considers only the

cells with a ground truth different from zero and since there’s only one predic-
tion per cell it directly uses its bounding box to compute the loss.
Furthermore there’s no need to compute the loss of the classes since there’s
only one and the probability of such class will be equal to the probability of the
bounding box.
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Figure 4.1: Flowchart diagram describing the computation of the redesigned
custom loss

In figure 4.1 a flowchart diagram describing how the custom loss is computed
can be visualized.
The code to compute the bounding box has been developed using the Tensor-
flow Keras framework in Python and can be analyzed in appendix code snippet
A.2.

4.3 Batch Generator

A challenge in developing and training the neural network has been the
preparation of the dataset.
In order to get a good result the neural network needs to train on a huge number
of data that, for this thesis, are rgb images and their associated bounding boxes.
Each image however requires a considerable amount of memory, the creation of
a single vector of images containing all the training data is unfeasible since it
will require more than all the available RAM memory to store it.

The training of the neural network works with batches, a collection of sam-
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ples that the network works through before computing the loss and updating
the weights with back propagation.
For this reason it is convenient to develop a batch generator that creates a single
collection of data after each batch iteration during training.

The training is performed for a number of epochs meaning a complete pass
of the training dataset through the algorithm. The batch generator at the begin-
ning and at the end of every epoch generates an array of indices that are shuffled
so that the batches between epochs do not look alike leading to a more robust
network.

After each batch pass a subset of those indices are taken and the data is gener-
ated.
The input and the ground truth however have to be transformed in Yolo format.
Each image has to be scaled down to the required input size of the network
(for all the tested architectures it’s 448𝑥448) and the bounding boxes need to be
transformed to the grid format proposed by Yolo.

The bounding boxes associated with each image are given with respect to the

original image size and in format 𝐵fi =
[
𝐵𝑋 𝐵𝑌 𝐵𝑊 𝐵𝐻

]
where 𝐵𝑋 and 𝐵𝑌

refer to the top left corner.
Each bounding box is then scaled down by the factors 𝑠𝑐𝑎𝑙𝑒𝑤 and 𝑠𝑐𝑎𝑙𝑒ℎ (if for
example the original width is 1792 and the target width is 448 then 𝐵𝑋 will be
multiplied by 𝑠𝑐𝑎𝑙𝑒𝑤 = 448/1792 = 0.25).

The center of each bounding box is then computed and with it the coordi-
nates of the grid cell in which it falls.
Finally the bounding box are transformed into cell notation, meaning that the
center will assume values between (0, 0) and 1, 1 being the top left and bottom
right corner of the cell, while width and height will be considered w.r.t the whole
image 𝑛𝑒𝑤 𝑤𝑖𝑑𝑡ℎ = 𝑤𝑖𝑑𝑡ℎ/𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ.

The newly converted bounding box will then be associated to the corresponding
cell in the output matrix and its probability will be added, since it’s a ground
truth such probability will be equal to 1.
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So the ground truth will contain vectors of type 𝑦fi =
[
𝑃 𝐵𝑋 𝐵𝑌 𝐵𝑊 𝐵𝐻

]
for

cells where there’s a box and empty vectors of 𝑠𝑖𝑧𝑒 = 5 for all the others.
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Figure 4.2: Flowchart diagram describing the generation of the training batches
for the custom network

In figure 4.2 a flowchart description of the general working principles of the
batch generator can be visualized.
The batch generator has been developed using the TensorFlow keras framework,
the data generation discussed in this subchapter can be analyzed in appendix
code snippet A.3.

4.4 Live Implementation

An implementation of the network on the Raspberry Pi with the OpenCV
set of libraries has been developed. The code has been written in C++ since it is
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efficient in terms of inference times.

First of all the network and its weights have to be converted into a format
that can be read by the OpenCV library.
Code snippet 4.1 reports the conversion of the custom trained network called
"yolo_cus" into a protobuf file. This type of file contains the graph definition as
well as the weights of the model.

1 from tensorflow.python.framework.convert_to_constants import

convert_variables_to_constants_v2

2

3 f = tf.function(yolo_cus).get_concrete_function(tf.TensorSpec(

yolo_cus.inputs[0].shape, yolo_cus.inputs[0].dtype))

4 f2 = convert_variables_to_constants_v2(f)

5 graph_def = f2.graph.as_graph_def()

6

7 with tf.io.gfile.GFile(’yolo_cus.pb’, ’wb’) as f:

8 f.write(graph_def.SerializeToString())

Code 4.1: Conversion of a Tensorflow network into a protobuf file for OpenCV

Having obtained the protobuf file, the network weights and the architecture
can be read with the OpenCV "dnn::readNetFromTensorflow" class. The default
container "dnn::Net" will then represent the network and all the other operations
can be performed on it.

The input images have to be converted into a suitable format in order to be
inferred by the network. As reported in code snippet 4.2 they have to be con-
verted into RGB format, then resized to 448𝑥448 and the values of the pixels
scaled by 255 in order to be in range [0, 1].
Finally the transformed input frame can be converted into a blob and inferred,
this is because the network works with batches and accepts inputs with dimen-
sions 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒𝑥448𝑥448𝑥3. The "blobFromImage" class indeed, converts the in-
put frame having dimensions 448𝑥448𝑥3 into a blob of dimension 1𝑥448𝑥448𝑥3.

1 std::vector<cv::Mat> preProcessAndInfer(cv::dnn::Net yolo, cv::Mat

frame)

2 {

3 Mat inImg;

4 cvtColor(frame, inImg, COLOR_BGR2RGB); //convert into rgb format

as used by the network

60



CHAPTER 4. CUSTOM ARCHITECTURES FOR PERSON DETECTION

5 resize(inImg,inImg,Size(448,448)); //resize image to 448x448

format

6 inImg.convertTo(inImg, CV_32F); //convert into float with values

in range [0,1]

7 inImg = inImg/255.0;

8 Mat inNet = blobFromImage(inImg); //Blob to (1x448x448x3)

9 yolo.setInput(inNet);

10 Mat out = yolo.forward(); // out = 1x5x7x7

11 vector<Mat> outs; // outs = 1*(7x7x5)

12 imagesFromBlob(out,outs);

13

14 return outs;

15 }

Code 4.2: Preprocessing and Infer of the input frames for the custom yolo
networks in C++

The obtained output has to be decoded in order to get the bounding boxes
predictions.
As it can be analyzed in code snippet 4.3 two for loops are able to go through
all the output matrix and by analyzing the first value of each cell only bounding
boxes with a probability higher than 80% are mantained.
The proposed boxes are then scaled back to the original frame size and converted
into the rectangle format.

1 std::vector<cv::Rect> decodeNetOut(cv::Mat output)

2 {

3 typedef Vec<float, 5> Vec5f; //Definition of a vector of 5 floats

4 int cell_size = 64; //Cell size (448/7)

5

6 vector<Rect> propBoxes;

7

8 //Go through all the output matrix and mantain only bboxes with

associated

9 //probability higher than 0.8

10 for(int i = 0; i < 7; i++)

11 {

12 for(int j = 0; j < 7; j++)

13 {

14 if(output.at<Vec5f>(i,j)[0] > 0.8)

15 {

16 float x = output.at<Vec5f>(i,j)[1];

17 float y = output.at<Vec5f>(i,j)[2];
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18 float w_cell = output.at<Vec5f>(i,j)[3];

19 float h_cell = output.at<Vec5f>(i,j)[4];

20 double ox = x*cell_size + cell_size*j;

21 double oy = y*cell_size + cell_size*i;

22 double w = w_cell*1280; //Scale back to original

image size

23 double h = h_cell*720;

24 double lx = (ox/scale_w) - w/2;

25 double ly = (oy/scale_h) - h/2;

26 propBoxes.push_back(Rect(static_cast <int>(lx),

static_cast <int>(ly), static_cast <int>(w), static_cast <int>(h)));

27 }

28 }

29 }

30 return propBoxes;

31 }

Code 4.3: Decode the output of the custom yolo networks in C++

All the reported networks (i.e. "Yolo Small", "Yolo Big", "Yolo Big Depthwise")
share the same input and output format. For this reason all the functions defined
to pre-process, infer and decode the output of the networks can be used for each
of them without applying any change.

4.5 First Results

The three proposed architectures (i.e. "Yolo Small", "Yolo Big" and "Yolo Big
Depthwise") have been trained and their performances have been tested in terms
of precision, recall and F1 score.
Furthermore a live application has been developed.
In this section the results concerning the performances of the networks on the
test dataset and on the target embedded devices, will be reported.

4.5.1 Training

Training is a long and computationally expensive process.
Luckily the company in which this project has been developed provided access
to a workstation equipped with a Nvidia Quadro P4000 GPU. This considerably
decreased the amount of time required for training and allowed the trial of more
architectures and datasets. This is because GPUs are much better for running
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neural networks as they are generally better at working with big matrices than
CPUs.

However the training process still requires considerable time depending on
the CNN and the training dataset, this is why the first tests have been performed
on a arguably small size dataset.

Indeed the three redesigned networks have been initially trained on a subset
Coco 2017 dataset.
10000 images containing instances of persons have been downloaded as well as
500 images without any for a total of 10500 images of which 1000 have been used
for validation.
The size of this initial dataset allowed to validate the model and to make some
small changes to the architectures without waiting too much to validate them.
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Figure 4.3: Comparison of the custom loss behaviour through training epochs
for the three reported re-designed architectures

During all the trainings the optimizer that has been used is the Adam optimizer,
an optimization algorithm that can be used instead of the traditional stochastic
gradient descent. The main advantage is that it allows to use different learning
rates (the speed at which the neural network trains) during the training. So,
Adam allows to use a bigger learning rate for the first epochs of training and
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gradually reduces it towards the end of training.
The loss has been computed using the custom loss defined in section 4.2.
In figure 4.3 the training losses for the three reported models through the epochs
of training are reported. It can be noticed that all the three losses decrease and
thus the optimizer is working well.
Furthermore it’s interesting to notice that the more parameters a model has
(such as Yolo Big) the faster the loss is initially decreasing. This is because when
more parameters are available the network can better approximate the seeked
out function.
In figure 4.3 the trend of the validation losses can also be observed. Although
all the curves are not diverging and thus the models are not over-fitting, they
seem to have reached a plateau as none of them is decreasing anymore.
This could be because the initial training dataset is not that big and thus is not
more "learnable". Another reason can be imputed to the limited size of the
networks, since they’re really small they aren’t capable of learning the desired
function.

The number of epochs has been initially set to 120 in order to make small
modifications on the networks without having to wait too much for training.
Furthermore, this faster comparison followed by the live application and the
precision, recall and f1 score metrics evaluated in the next sub-sections gave
interesting insights on where to concentrate the research for developing the
network.

4.5.2 Precision, Recall and F1 Score Results

In order to validate the models the performance metrics discussed in sec-
tion 3.4 have been evaluated for increasing IoU thresholds over the same test
dataset. The results reported in figures 4.5 and 4.4 give interesting insights on
the models and where to concentrate the direction of the research. It can be in-
deed noticed that with more parameters the network generally performs better
obtaining higher precisions and more importantly recall and F1 score.

Furthermore it can be noticed that adopting depthwise convolutional layers
leads to circa 5% worse performances w.r.t traditional ones but the performances
remain better than decreasing the number of filters like in Yolo Small.
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Figure 4.4: Comparison of the different redesigned yolo architectures reported
in this chapter with a training of 120 epochs. In (a) the Precision over different
IoU thresholds is given. In (b) the Recall over IoU.

This results give a clear indication that, as expected, the more parameter the
network has, the better it will perform. It’s indeed straightforward to reason that
with more parameters and convolutional layers the network will approximate
better the seeked function. This however increases the inference times that can
become not suitable for an embedded application.
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For this reason a compromise between performances in terms of precision, recall,
f1 score and inference time has to be found.
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Figure 4.5: Comparison of the F1 scores of the different redesigned yolo archi-
tectures reported in this chapter with a training of 120 epochs

4.5.3 Live Application Results

The live application described in section 4.4 has been tested out with the
three architectures reported in the previous sections on the Raspberry Pi 3 and
4.
The scope of this test is to comprehend if the proposed architectures are capa-
ble of running live on the target embedded device as well as providing more
insights on how to improve the architecture design.

As it can be noticed in figure 4.6 the inference time of all three network, in
the less powerful Pi 3, is less than half a second.
Furthermore, as expected, a bigger number of parameters like in Yolo Big con-
siderably increases the inference time. It can also be noticed the significant
advantage of using depthwise separable convolution; indeed Yolo Big Depth-
wise has a bigger precision, recall and f1 score w.r.t Yolo Small while mantaining
a similar or even lower inference time.
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Figure 4.6: Comparison of the inference times of the different redesigned yolo
architectures reported in this chapter on the Raspberry Pi 3

Even if decreasing the number of parameters and convolutions will certainly
decrease the inference time, it will badly effect the performances in terms of
precision, recall and f1 score making the application worse than the off-the shelf
methods Hog and Viola.
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Figure 4.7: Comparison of the inference times of the different redesigned yolo
architectures reported in this chapter on the Raspberry Pi 4

As shown in figure 4.7, the Raspberry Pi 4 is able to considerably reduce the
inference times with respect to the Pi 3.
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5
New Solutions for Person Detection

Having studied the limitations of the off-the shelf algorithms and of the
custom network proposed in chapter 3 and 4, the work proposed in this thesis
will now propose two final solutions for the task of person detection.
The first one tries to improve the custom network by adopting some strategies
like adopting a bigger training dataset over a bigger network.
The second one takes advantage of a nano version of Yolo v6 by training it over
the same dataset.

5.1 Improving the Custom Network

By analyzing the results of the previous chapter in sub-sections 4.5.2 and
4.5.3, it has been proven that the redesigned Yolo network is capable of running
live on the Raspberry Pi 3 and can reach at least 15 fps on the Pi 4. The results
in terms of precision, recall and f1 score are however far from the original Yolo
results reported in sub-section 3.4.3 while they remain similar to the Viola and
Hog machine learning approaches.

In figure 5.1 the Custom Yolo Big architecture has been compared to the original
Yolo and Hog detector; the f1 score has been chosen as the more meaningful
parameter to compare as it gives a weighted average of precision and recall.
The two reported off the shelf methods have been chosen for this comparison
as they give an upper and lower limit of where the desired performances of the

69



5.1. IMPROVING THE CUSTOM NETWORK

0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.1: Comparison of the Custom Yolo F1 score with respect to meaningful
off the shelf algorithms analyzed in 3.4.3

custom network should be.
It’s indeed unrealistic to outperform the original Yolo with its huge number of
convolutional layers and parameters, while it’s desirable to top the Hog based
detector.
It can be noticed in figure 5.1 that this result has been already achieved as Cus-
tom Yolo Big positions itself between the two off the shelf methods, it’s however
interesting to apply some considerations in order to improve this performance.

The previous section highlighted that increasing the number of filters and convo-
lutional layers should lead to better precision, recall and f1 score performances,
as with more parameters the network should be more capable of approximating
the desired function. This will however lead to larger inference times so it’s
important to find a compromise.
With this considerations in mind, some strategies can be employed in order to
improve the network.

5.1.1 Bigger Dataset and more Epochs

In order to improve the results, two main strategies have been first consid-
ered.

First of all the size of the training dataset has been considerably extended adding
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up to more than 60 thousand images. This will allow the network to analyze
and train over more cases and environments containing persons.
The main disadvantage of this strategy is the considerably longer training time
with respect to the previous one. Indeed with the first training dataset each
epoch took more or less 2:00 minutes, on Yolo Big, while with the increased
dataset each epoch now takes more than 13:00 minutes. This means that a train-
ing of 120 epochs will take approximately 26 hours, considerably decreasing
the possibility of changing some of the hyper-parameters in the network and
observing the results after short amounts of times.

The second strategy consists in increasing the number of training epochs, in
this way the network can learn from the dataset for a longer period of time and
approximate better the seeked behaviour.
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Figure 5.2: Comparison of the Custom Yolo F1 score trained for 1000 epochs
on the full dataset and the same network trained over the smaller dataset with
respect to meaningful off the shelf algorithms analyzed in 3.4.3

However, as it can be noticed in figure 5.2 training on a bigger dataset for more
epochs have only increased slightly the performances.
This is because the number of convolutional layers and filters used by the net-
work, limited in order to achieve high fps on a live application for an embedded
device, have evidently met their limit in approximating the desired function.
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5.1.2 Bigger Network

As highlighted in subchapter 5.1.1 the network has met its limit in terms of
improvements.
The performances in terms of precision, recall and f1 score can thus be improved
by increasing the number of filters and adding convolutional layers to the cus-
tom network. This change however will certainly decrease the fps performances
of the live embedded application. It’s thus important to find a balance between
fps and f1 score without adding too many layers to the network.

After some design iteration a final custom network solution has been devel-
oped and can be examined in detail in table 5.1.

Custom Yolo v2

Layer type Filters/Filter
size

Output shape

Conv2D 16/(7x7) 448x448x16

MaxPooling2D (2x2)s2 224x224x16

Conv2D 48/(3x3) 224x224x48

MaxPooling2D (2x2)s2 112x112x48

Conv2D 32/(1x1) 112x112x32

Conv2D 64/(3x3) 112x112x64

Conv2D 32/(1x1) 112x112x32

Conv2D 64/(3x3) 112x112x64

MaxPooling2D (2x2)s2 56x56x64

Conv2D 64/(1x1) 56x56x64

Conv2D 128/(3x3) 56x56x128

Conv2D 64/(1x1) 56x56x64

Continued on next page
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Table 5.1 – continued from previous page

Custom Yolo v2

Layer type Filters/Filter
size

Output shape

Conv2D 128/(3x3) 56x56x128

MaxPooling2D (2x2)s2 28x28x128

Conv2D 128/(1x1) 28x28x128

Conv2D 256/(3x3) 28x28x256

Conv2D 128/(1x1) 28x28x128

Conv2D 256/(3x3) 28x28x256

Conv2D 256/(3x3) 28x28x256

Conv2D 256/(3x3)s2 14x14x256

Conv2D 256/(3x3) 12x12x256

Conv2D 256/(3x3) 10x10x256

Flatten - 25600

Dense - 128

Dense - 256

Dense - 245

Reshape - 7x7x5

Table 5.1: Overview of the Sequential layers adopted by the Custom Yolo v2
network

With respect to previous designs that had only 6 convolutional layers, the
network now has 18 of them, additionally two fully connected layers have been
added.
It can be noticed that the layers at higher resolutions (i.e. the first ones) have a
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smaller number of filters and a bigger kernel. This leads to overall less compu-
tations in the first few layers and allows to increase them at lower resolutions
feature maps.
The last two convolutional layers don’t apply any type of padding and thus
decrease the resolution.

The same design has also been developed by adopting depthwise separable
convolutions instead of the regular ones and will be later referred as "Custom
Yolo v2 DW". The results of this two final designs will be analyzed in the next
sub-chapter.

5.1.3 Improved Results

The two improved networks, Custom Yolo v2 and Custom Yolo v2 DW, have
been trained for 500 epochs on the full dataset containing more than 60000 im-
ages, taking more than 4 days each to complete the training.

As it can be noticed in figure 5.3 the two custom networks have improved with
respect to previous iterations such as figure 4.5. This improvement however
comes with the cost of losing speed in terms of inference times.
Indeed as it can be noticed in figure 5.4 the Yolo Custom v2 is able to provide
only a speed of 2.7 fps while Yolo Custom v2 DW can run at 4.7 fps.

As expected the solution that adopts depthwise separable convolutions per-
forms faster but with worse F1 score.

This result and the whole analysis given through the chapter show that building
a custom CNN is not a straightforward operation.
It’s indeed really complicate to find a good combination of hyperparameters
and convolutional layers that allow to construct a good architecture. Although
inspiration can be taken from state of the art networks, it’s necessary to squeeze
them in order to run them live on an embedded device and it’s time consuming
to find a good balance between speed and detection accuracy. This is mainly
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Figure 5.3: Comparison of the Custom Yolo v2 and Custom Yolo v2 DW F1 score
trained for 500 epochs on the full dataset with respect to meaningful off the shelf
algorithms analyzed in 3.4.3
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Figure 5.4: Comparison of the Custom Yolo v2 and Custom Yolo v2 DW inference
time on the Raspberry Pi 4

because each solution needs to be trained separately taking hours or days before
being able to analyze the results.
This thesis tried to propose a simple and straightforward DNN without too
many complex layers as the more recent state of the art architectures. This how-
ever comes with a decrease in performances that is mainly noticeable in the loss
of accuracy when the IoU threshold increase.
It has been indeed noticed that the custom solution often proposes bounding
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(a) IoU = 30% (b) IoU = 37%

(c) IoU = 41% (d) IoU = 60%

Figure 5.5: Some detections that have a low IoU w.r.t the ground truth, in the
caption of each image the IoU percentage is reported

boxes that are too big, too small or de-centered with respect to the ground truth
while they generally identify the person. This means that when increasing the
IoU threshold most of this quasi-correct bounding boxes will be treated as false
positives considerably decreasing the general performances.
When the IoU threshold is low instead, the performances are much better.
In figure 5.5 some examples of proposed bounding boxes with low IoU thresold
with respect to the ground truth are reported. In the caption of each image it
can be noticed how the proposed bounding boxes that are not tight with respect
to the ground truth produce a low IoU score.
This problem is mainly imputable to the network and its combination of hyper-
parameters as previously explained. However, it can be also considered that
the training dataset, containing positive sample for body parts and group of
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persons, probably confuses the network while it’s learning.

5.2 Yolo v6 Nano, an Alternative Approach

The results of the custom CNN architectures for person detection highlighted
that building a network from scratch is not a straightforward operation.
It’s indeed difficult to find the right combination of convolutional layers and
hyperparameter that can achieve the desired behaviour. The solution that has
been delivered can be considered satisfying but there are other approaches that
can deliver better solutions.

The Yolo network during the years reached its 6th iteration and its authors
created a set of functions that allow to train a customized solution based on a
dataset chosen by the user.
Furthermore Yolo v6 comes in different versions, the most interesting one for
the scope of this thesis is a ligthweight alternative called nano.

5.2.1 Network Design

C. Li et al. in [12] introduced a new version of Yolo, whom it has been given
the name of Yolo v6, framing it as on of the most recent design of the Yolo family.
The object detector, as it can be visualized in figure 5.6, is a single stage detector
and is composed of different parts.

Figure 5.6: Visualization of the Yolo v6 framework

The backbone is responsible of representing features; the design proposed is
re-parametrizable and scalable allowing to propose multiple networks of differ-
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ent size. It produces feature representation at three different scales, in this way
small objects can be detected at bigger scales and big objects at smaller scales.
The neck of the network performs feature integration of the three different scales.
The head is decoupled, at each detection scale two branches are produced, one
regression branch for the bounding boxes and one classification branch for the
classes.
The design of the network is anchor-free allowing to reduce computations in the
post-processing part.

The loss is computed as a multi part loss. The classification loss and the box
regression loss. In particular the box regression loss is computed as an IoU loss
that regresses the four bounds of the box as a whole unit.

Furthermore some other improvements are introduced when training the net-
work. More training epochs are used to obtain better performances and RepOp-
timizer is used to obtain quantization friendly weights. With this strategy the
run time is further optimized without losing much performances.

5.2.2 Training

The training of the network has been performed thanks to the Github repos-
itory1 by the user meituan.
The dataset has been prepared using Roboflow, an online tool that allows to
convert annotations from the COCO json format to the one required by Yolo v6
(txt files, a custom YAML file and organized directories). The dataset used has
10454 images and is the smallest one of the two used through this thesis project.
This is because with the Roboflow free account it’s not been possible to upload
the whole full dataset.

The training has been performed on the Yolo v6 nano architecture, the smallest
one of the v6 family, allowing to obtain faster inference times. Furthermore the
input dimension has been selected as a 416x416 image smaller than the original
640x640 allowing to achieve even faster performances as the resulting network
will be smaller in size.

1https://github.com/meituan/YOLOv6
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The network has been trained for 200 epochs. This is because it had to be
trained on the Google Colab platform that doesn’t allow long sessions.

5.2.3 Final Results

After training, the Yolo v6 nano architecture has been tested over the same
test datest used through the thesis.
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Figure 5.7: F1 score over different IoU thresholds, comparison between Yolo v6
nano, Hog, Yolo v2 custom and Yolo v3

As it can be noticed in figure 5.7 the proposed architecture gives really interest-
ing results. The curve indeed is much similar to the one obtained with Yolo v3
while being approximately 20% worse in performances. Indeed the new archi-
tecture is much smaller and optimized for embedded devices. This however, as
pointed in table 5.2, allows to obtain faster inference times with respect to Yolo
v3 that allow to run the network fast enough on an embedded device such as
the Raspberry Pi 4.
The table however shows that the results are not suitable for an application on
the Raspberry Pi 3, that with its more limited hardware is only capable of ana-
lyzing less than 1 fps.

The result of the Yolo v6 nano show that the state of the art architectures are
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Yolo v3 Yolo v6 nano Yolo Custom v2 Yolo Custom v2 DW

FPS Pi 3 0.07 fps 0.92 fps 1.18 fps 1.8 fps

FPS Pi 4 0.2 fps 2.5 fps 2.7 fps 4.7 fps

Table 5.2: Comparison of the Real Time capability of the different proposed
architectures for the task of Person detection on the Raspberry Pi 3 and the
Raspberry Pi 4

pushing towards being faster. However this solutions can be used in some ap-
plication that require to analyze only some frame of a real time feed and cannot
be yet defined suitable for a real time implementation on an embedded device.
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6
Conclusions

In this chapter the conclusions over the work reported in this thesis are going
to be given.
First a summary and a discussion over the result obtained is going to be given.
Then, a quick overview of the future works that rose as a result of the studies of
this thesis is going to be reported.

6.1 Summary and Discussion

The work of this thesis argued on the possibility of implementing a computer
vision based algorithm able to detect persons in work areas on an embedded
system as an aid to other security systems.
The work has been developed as a Research and Development project of a com-
pany based in Vicenza.
The seeked solution, had to be as good as possible at detecting persons while
being fast enough to run live on devices such as the Raspberry Pi 3 and 4 that,
it’s important to remark, don’t have a GPU that would allow to run modern
CNNs efficiently.

First of all some off-the shelf solutions have been analyzed and implemented.
The traditional machine learning approaches such as Hog and Viola proved
themself to be satisfying in terms of inference times. These two historical so-
lutions were indeed designed for machines that had resources comparable to
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a modern day Raspberry. They showed however to be not suitable in terms of
accuracy as it has found that it’s very low.
Deep learning architectures, such as Yolo, instead, proved to be really accurate
when detecting persons but required too much time to infer a single frame,
making them not suitable for a GPU-less embedded device application.

Having studied the state of the art and understood the limitations of the off-the
shelf architectures, the work of the thesis shifted on implementing a customized
solution.
This solution was strongly inspired by the original Yolo architecture, with many
strategies applied to squeeze the original network as much as possible in order
to achieve a satisfying inference speed. All the strategies employed to design
the network from the bottom up, required to develop functions such as the cus-
tom loss used for training and classes and the batch generator for preparing the
training data.
The development of a custom solution from scratch however, is not straight-
forward. Finding the right combination of hyperparameters and convolutional
layers without increasing them too much in order to not lose too much inference
speed is a long process. This is mainly because each solution needs to be trained
from scratch and this process takes hours or even days depending on the size of
the training dataset and the size of the network.
After some iteration of the architecture two solutions were proposed, one faster
but less accurate and the other one slower but more accurate. The results of this
implementations are suitable as an aid to other security system but cannot be
the only employed system. Indeed the results are not very accurate when the
metric employed is the IoU threshold as the proposed bounding boxes are often
too big or too small with respect to the ground truth.

Having seen the limitations of developing a new architecture from scratch a
new solution has been proposed.
This consisted in using an already developed network, Yolo v6 in its nano dec-
lination.
The Yolo v6 nano architecture has been trained using the same dataset as the
custom architecture and, although it is slightly slower and not suitable for re-
ally limited embedded devices such as the Raspberry Pi 3, it is much better in
accuracy. At its sixth iteration indeed, Yolo v6 with years of development is
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capable of delivering more than satisfying performances for the purpose of this
thesis. Furthermore it showed that the deep neural networks are getting better
and more efficient. This, together with the development of better embedded
devices, will probably allow in the future to have impressive CNN detection
architectures run in real time on edge technologies.

6.2 Future Works

The work reported in this thesis can be further developed in order to achieve
better performances both in detection and inference times in embedded devices.
In particular some possible future studies are here reported :

• Safety with a classification system. Convolutional Neural Networks that
are concerned with classifying images are notably smaller and faster than
the object detection ones. For this reason it is interesting the implemen-
tation of a simple classifier (Person - No Person) on an embedded device.
This system could be an useful aid to safety as it should correctly identify
the presence of a human in the area covered by the camera. However it
won’t give the useful information relative to the location of such person.

• Detection based on centroid. As it has been reported in this thesis, de-
creasing the number of parameters is a useful technique to increase the
inference speed of the networks. It is then interesting to study the imple-
mentation of a CNN for object detection based only on the center of an
object and not giving the additional informations relative to the bounding
boxes.

• Newer algorithms. Research in computer vision for more efficient Convo-
lutional Neural Networks is advancing fast. During the work of this thesis
newer algorithms, such as Yolo v7, came to life. Implementing these state
of the art algorithms and observing their behaviour relative to the problem
of this thesis can be an useful study.
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A
Appendix

A.1 Code Snippets

1 void postprocess(Mat& frame, const vector<Mat>& outs)

2 {

3 vector<int> classIds;

4 vector<float> confidences;

5 vector<Rect> boxes;

6

7 for (size_t i = 0; i < outs.size(); ++i)

8 {

9

10 float* data = (float*)outs[i].data;

11 for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)

12 {

13 Mat scores = outs[i].row(j).colRange(5, outs[i].cols);

14 Point classIdPoint;

15 double confidence;

16

17 minMaxLoc(scores, 0, &confidence , 0, &classIdPoint);

18 if (confidence > confThreshold)

19 {

20 int centerX = (int)(data[0] * frame.cols);

21 int centerY = (int)(data[1] * frame.rows);

22 int width = (int)(data[2] * frame.cols);

23 int height = (int)(data[3] * frame.rows);

24 int left = centerX - width / 2;
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25 int top = centerY - height / 2;

26

27 classIds.push_back(classIdPoint.x);

28 confidences.push_back((float)confidence);

29 boxes.push_back(Rect(left, top, width, height));

30 }

31 }

32 }

33

34 vector<int> indices;

35 NMSBoxes(boxes, confidences , confThreshold , nmsThreshold , indices

);

36

37 }

Code A.1: Yolo detector post processing applied to the output of the network

1 def custom_loss(y_true, y_pred):

2 # y_true (Batch size, 7, 7, 5)

3 # y_pred (Batch size, 7, 7, 5)

4

5 mse = tf.keras.losses.MeanSquaredError(reduction = "sum") #

Define the SUM squared error loss

6 predictions = tf.reshape(y_pred ,(-1,7,7,5)) # The predictions are

a tensor, need some reshaping to manipulate it

7

8 exists_box = tf.expand_dims(y_true[...,0], 3) # A box exists if

the first entry of the cell is equal to 1

9

10 #------------#

11 #| BOX LOSS |#

12 #------------#

13

14 pred_box = exists_box*predictions[...,1:5] #Calculate only loss

for the cells that contain a box

15 target_box = exists_box*y_true[...,1:5] #Target boxes

16

17 epsilon = tf.fill(tf.shape(pred_box[..., 2:4]), 1e-6) #Needed to

avoid divergence of square root derivatives in back propagation

18

19 # width and height are penalyzed using the square root, however

predictions can be negative so multiply by sign in order to obtain

positive

20 # and take absoulte value in the square root
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21 wh_pred = tf.math.sign(pred_box[...,3:5]) * tf.math.sqrt(tf.math.

abs(pred_box[...,3:5] + epsilon))

22 wh_targ = tf.math.sqrt(target_box[...,3:5] + epsilon)

23

24 # Get also centers

25 xy_pred = pred_box[...,1:3]

26 xy_true = target_box[...,1:3]

27

28 # Concatenate the new xy and wh in order to calculate sum squared

root

29 final_pred_box = tf.concat([xy_pred,wh_pred], axis = 3)

30 final_true_box = tf.concat([xy_true,wh_targ], axis = 3)

31 box_loss = mse(tf.reshape(final_pred_box , (-1, tf.shape(

final_pred_box)[-1])),tf.reshape(final_true_box , (-1, tf.shape(

final_true_box)[-1])))

32

33 #---------------#

34 #| OBJECT LOSS |#

35 #---------------#

36

37 # Take only the first entry of each box corresponding to the

probability that there’s an object

38 pred_obj = predictions[...,0:1]

39 true_obj = y_true[...,0:1]

40

41 #Calculate object loss as in the paper

42 object_loss = mse(tf.reshape(exists_box*pred_obj , (-1, )), tf.

reshape(exists_box*true_obj , (-1, )) )

43

44 #------------------#

45 #| NO OBJECT LOSS |#

46 #------------------#

47

48 # Calculate the loss for cells that don’t have objects

49 non_exists_box = 1 - exists_box

50 no_object_loss = mse(tf.reshape(non_exists_box*pred_obj, (-1, )),

tf.reshape(non_exists_box*true_obj, (-1, )))

51

52 #--------------#

53 #| FINAL LOSS |#

54 #--------------#

55

56 # Penalize more the box loss and less the no object loss
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57 total_loss = 5*box_loss + object_loss + 0.5*no_object_loss

58 return total_loss

Code A.2: Yolo custom loss computation for a single class predictor

1 class DataGenerator(tf.keras.utils.Sequence):

2 ’Generates data for Keras’

3

4 def __data_generation(self, indexes):

5 ’Generates data containing batch_size samples’

6 # X : (n_samples , *dim, n_channels)

7 # Initialization

8 X = np.empty((self.batch_size , *self.dim))

9 Y = np.empty((self.batch_size ,self.S,self.S,5))

10

11 batch_num = 0

12 # Generate data

13 for i in indexes:

14 original_img = load_img(self.path_list[i])

15 width, height = original_img.size

16 # load the image with the required size

17 # and calculate scale factors

18 image = load_img(self.path_list[i], target_size=(448,

448))

19 scale_w = 448 / width

20 scale_h = 448 / height

21 image = img_to_array(image)

22 # scale pixel values to [0, 1]

23 image = image.astype(’float32’)

24 image /= 255.0

25 y_img = np.zeros((self.S,self.S,5))

26 for box in self.bboxes_list[i]:

27 xleft = int(box[0] * scale_w)

28 yleft = int(box[1] * scale_h)

29 b_width = int(box[2] * scale_w)

30 b_height = int(box[3] * scale_h)

31 ox = xleft + b_width/2

32 oy = yleft + b_height/2

33 # Calculate the coordinates of the cell in

34 # the grid that contains the center

35 grid_col = trunc(ox/self.cell_size)

36 grid_row = trunc(oy/self.cell_size)

37 # Calculate the coordinates of the center of

38 # the bbox w.r.t the associated cell; (0,0)
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39 # top left and (1,1) bottom right corners of

40 # the cell

41 ox_cell = (ox - (grid_col)*self.cell_size)/self.

cell_size

42 oy_cell = (oy - (grid_row)*self.cell_size)/self.

cell_size

43 # Calculate the width and height of the bbox

44 # in terms of cell size, a bbox of width

45 # 448/S(cell size) will have grid_width = 1

46 grid_width = b_width/self.cell_size

47 grid_heigth = b_height/self.cell_size

48 # Put the results into y; 1 represent the

49 # probability of the class

50 y = [1,ox_cell,oy_cell,grid_width ,grid_heigth]

51 y_img[grid_row][grid_col] = y

52

53 # Store sample

54 X[batch_num ,] = image

55

56 # Store grid

57 Y[batch_num ,] = y_img

58

59 batch_num += 1

60

61 return X, Y

Code A.3: Yolo batch generator for a single class detector
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