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Abstract

In this work we address short-term people re-identification, the task of recognizing

a person that has already been observed by the system within a time frame of

minutes or hours, assuming their clothing and general appearance hasn’t changed.

We present a novel approach for performing re-identification using local feature

descriptors from joint locations of the human body without utilizing RGB-D sensors

and related skeletal trackers. To obtain local keypoint coordinates we implemented

a skeletal tracker built on top of a state-of-the-art pose detector whose output is

augmented to work with multiple input cameras. For reidentification purposes, a

single signature is extracted from each detection by combining features descriptors

on keypoints and is then matched with a database to recognize a target person. We

recorded two multi viewpoints dataset in order to build and test this procedure and

obtain useful data.
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Chapter 1

Introduction

Vision is the sense that allows humans to study the surrounding three dimensional

world, to locate and recognize objects and to perceive the changes in the environ-

ment. Artificial vision (Computer Vision) is a computer science discipline that stud-

ies models and methods to allow machines to comprehend and interpret information

contained in bi-dimensional or tri-dimensional pictures or videos. Computer Vision

is a fast growing field thanks to the increase of both availability of high resolution

sensors and computational power of modern computers. Results obtained in this

field are due to intensive research activity in the last decades that, since its origin

in the 80’s, led to an exponential growth of scientific publications in the sector. Ap-

plications of Computer Vision are countless since the camera is a very versatile and

noninvasive tool. Camera versatility is related to the amount of information that

can be found in images, and the increasing capability of extracting only the salient

ones in a specific application. Computer Vision is gaining popularity in industrial

automation, in products quality control, in construction engineering and architec-

ture, in military and aerospace applications. A standard model of Computer Vision

is represented as one or more cameras connected to a computer which automatically

interprets images of a real scene, obtaining useful information for robotic naviga-

tion and automatic detection and manipulation of objects. An inspiring Computer

Vision application for autonomous robotic navigation is the visual odometry, the

process of determining the position and orientation of a robot by analyzing images

acquired during the motion, which has been used in a wide variety of robots, such

1
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as on the Mars Exploration Rovers.

This thesis presents an approach to the short-term people re-identification prob-

lem in a calibrated RGB camera network system. RGB stands for Red Green Blue

and it is a color model used in electronic systems to sense and represent colors. An

RGB camera is a typical camera that can acquire color images. The implemented

system is based on techniques that allows to estimate human poses within pictures

and extract local visual descriptors that are used to effectively identify persons. Both

pose estimation and people re-identification are hard problems that are not com-

pletely solved in the Computer Vision field. More formally, people re-identification

is the capability of associating a new observation of a person to others made in the

past. Distinguishing the different persons that are in the environment is a high-

level capability that is crucial in several fields including service robotics, intelligent

video surveillance systems and smart environments. People re-identification systems

allows the accomplishment of tasks like automatic tracking of different moving ob-

jects or people in a given area, the automatic extraction of a sequence containing a

specific person given a single frame, and others.

State-of-the-art person re-identification methods are mostly based on global

clothings and body appearance since face recognition, that is potentially more ef-

fective, is often unpractical in video surveillance and robotics imagery due to low

resolutions of pictures, the presence of occlusions with objects and self-occlusions

and strong variations of illumination.

1.1 Related Work

The proposed re-identification method addresses two crucial problems in the Com-

puter Vision field: human pose estimation and short term people re-identification

itself. Since both of these problems are still unsolved and lots of research is going on

on these subjects, state-of-the-art related work is presented for both these problems

separately in this section.
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1.1.1 Human pose estimation

Human pose estimation has made significant progress during the last years. Recent

pose estimation methods employ complex appearance models and rely on learning

algorithms to estimate model parameters from the training data.

The most used model for addressing this problem is the Pictorial Structure

representation which was introduced by Fischler and Elschlager [12] in 1973. An

object is modeled by a collection of parts arranged in a deformable configuration.

Each part encodes local visual properties of the object, and the deformable configu-

ration is characterized by spring-like connections between given pairs of parts. The

best match of such model to an image is found by minimizing an energy function

that measures both a match cost for each part and a deformation cost for each pair

of connected parts. This formulation was very simple but had several shortcomings

that limited its use, mainly the fact that the resulting energy minimization was hard

to solve efficiently. These problems were addressed 30 years later by Felzenszwalb

et al [11], who provided an efficient algorithm for the classical energy minimiza-

tion problem when the connections between parts do not form cycles, which is the

case of people models. They also introduced a method for learning these models

automatically from training examples, which learns all the model parameters, in-

cluding the structure of connections between parts. A technique for finding multiple

hypotheses for the location of an object in an image was also presented in [11].

In 2009, Andriluka et al [2] revisited the Pictorial Structure concept and proved

that a generalization of the human model for articulated and complex poses was

possible. They showed that the right selection of components for both appear-

ance and spatial modeling is crucial for general applicability and performance of

the model. The appearance of body parts is modeled using densely sampled shape

context descriptors and discriminatively trained AdaBoost classifiers. Further im-

provements to the models were made by Yang and Ramanan [27] who described

a general, flexible mixture model for capturing contextual co-occurrence relations

between parts, improving standard spring models that encoded spatial relations.

Pictorial structure models became the de facto standard for 2D human pose esti-

mation. In 2013 Sikandar et al [1] addressed the task of articulated 3D human pose
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estimation from multiple calibrated cameras. This task is traditionally tackled using

3D body models and involves complex inference in a high-dimensional space of 3D

body configurations. They proposed an effective method built on the success of 2D

pictorial structure models that allows the formulation of the 3D inference problem

as a joint inference over 2D projections in each of the camera views. This model

has been further updated by Belagiannis et al in 2014 [6] to manage the case of

multiple persons in the same scene. They introduced a discrete state space which

allows fast inference. Pose detection methods are significantly challenged by cases

outside their comfort zone, such as loose clothing and occlusions. From all other

factors, pose complexity has the most profound effect on the pose estimation per-

formance. Current methods perform best on activities with simple tight clothing,

and are challenged by images with complex clothing and background clutter that

are typical for many occupational and outdoor activities [3].

1.1.2 People re-identification

The people re-identification problem is a widely studied area and it can be sub-

divided into two sub-problems: short term and long term re-identification. Since

this work addresses the short term re-identification problem, long term specific tech-

niques are neglected. Short term re-identification is the problem of recognizing a

person that has already been observed by the system within a time frame of min-

utes or hours, assuming their clothing and general appearance hasn’t changed. In

state-of-the-art works, to address the problem in static 2D images, three main char-

acteristics are generally observed (as stated in [19]): color, texture and shape. Color

is the most widely exploited feature for people re-identification. It is usually mea-

sured using local or global histograms on classical color spaces (e.g. RGB, HSV ...).

This approach was proposed and refined by [21] [17] and more, who worked to reduce

its main flaw: illumination changes tend to make color matching ineffective. This

also happens when the picture is taken from two different cameras whose position

and light conditions are different. Beside this, color based re-identification is simple

and effective. More recent and sophisticated approaches are the following: Cheng et

al [9] built upon the Pictorial Structures framework a re-identification model. Color
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histograms of each detected part are computed independently, that are then concate-

nated and normalized to obtain a single feature vector for each image. Histograms

are extracted in HSV space and weighted to take the different size and relevance

of each part into account. Parameters are then tuned automatically using cross-

validation so that they can be adapted to different visual conditions. Farenzena et

al [10] proposed a model called SDALF that addresses the problem by gathering

color information, spatial disposition of color into stable regions and the presence of

recurrent local motifs with high entropy. The effects of pose variations are minimized

by weighting body parts with respect of the vertical axis of the human body. The

SDALF distance is then obtained by the sum of: histogram distance, Recurrent High

Structured Patches (RHSP) distance and Maximally Stable Color Regions (MSCR)

distance. Each type of feature encodes different information, namely, chromatic in-

formation, structural information through uniformly colored regions, and the nature

of recurrent informative (in an entropy sense) patches. In this way, robustness to

pose, viewpoint and illumination variations is achieved. Texture- and shape-based

approaches usually make use of local features by exploiting descriptors evaluated on

a set of keypoints to generate the signature of a target. Performance are therefore

strongly related to the characteristics of the set of descriptors selected, including the

capability of the keypoint detector to select stable features. Bauml and Stiefelhagen

[4] provided a comparison of different local features detection and extraction algo-

rithms for re-identification. They showed that GLOH and SIFT clearly outperforms

Shape Context (SC) and SURF when applied to local keypoints, while different de-

tectors give similar results. This suggests the need to find a set keypoint locations

where a given features extractor can compute an effective description of a person

appearance. Munaro, Ghidoni et al [19] proposed a novel methodology based on

human pose information. They compared different 2D and 3D feature descriptors

that are applied on precise keypoints obtained from a third party skeletal tracker

(e.g. OpenNI using Microsoft Kinect sensor). Target skeleton is obtained in 3D

space using the tracking framework and is then projected onto the RGB image,

thus acquiring 2D keypoints. This approach proved to be robust to illumination

changes and occlusions and achieved very high performance, overcoming state-of-
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the-art methods in terms of recognition accuracy and efficiency.

1.2 Our approach

The work presented is in thesis is mainly based on Munaro, Ghidoni et al [19]

results and aims to provide a completely automatic method to address the short

term people re-identification problem by local features comparison on skeleton joints

without using RGB-D sensors. In order to obtain local keypoints, we use a 2D pose

estimation algorithm based on Yang and Ramanan [27] on RGB pictures. This

algorithm extracts patches from pictures corresponding to body parts, which are

then reworked to obtain 2D poses candidates. Furthermore the method is generalized

to support multiple cameras and has been developed to diminish the limitations of

both pose detection and people re-identification problems by exploiting information

from multiple points of view. Detection performance is improved in case of occlusions

and false detections thanks to the information coming from multiple viewpoint.

Poses obtained in each camera are then compared in order to obtain a coherent pose

in the 3D space, which is then reprojected into each picture and used as keypoint

for the feature descriptors extraction. A multi-viewpoint signature is obtained by

combining all the descriptors, which is then used for evaluating a comparison with

a model database. Feature matching is not needed because the correspondence

between points is already known and different distance calculation approaches can

be put in place by considering descriptors of the same person from multiple cameras.

To prove the effectiveness of the method, we recorded two dataset, with respectively

two and three calibrated camera viewpoints, upon which the algorithm was built

and tested.



Chapter 2

Human pose estimation

As mentioned in Section 1.2, we addressed the people re-identification problem by

applying a pose detection algorithm on pictures which extracts the keypoints where

features are subsequently computed. Pose estimation is a tough Computer Vision

problem, especially in the case of unfriendly environments. As described in Section

1.1.1, todays state-of-the-art pose detection algorithms are able to extract poses

even in case of cluttered backgrounds and body parts occlusions, even though their

accuracy can be unsatisfactory for certain tasks. We based our pose estimation

phase of the re-identification algorithm on the Yang and Ramanan model [27]. A

free and open source C++ implementation of the model is available on GitHub at

[25] called Parts Based Detector (PBD). We then developed an independent 3D

pose estimator built on PBD that augments its output by adding informations from

multiple cameras, improving accuracy by handling bad detections and enforcing pose

coherency between viewpoints.

2.1 Extracting human poses

Pose detection in 3D space is obtained with different subsequent steps, which can

be summarized as follows:

1. System setup: a preliminary phase that is executed only once per system. In

this phase we provide camera system configuration to the framework in order

to enable operations in three dimensional space references.

7
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2. Obtaining skeleton candidates in 2D space: the classifier is fed with input pic-

tures from each camera to perform the initial body parts detection. Detected

body parts in each camera are then transformed into a human skeleton defined

by joints positions in 2D space. The number of parts is normalized to a 14

joints skeleton (see Figure 2.3).

3. Obtaining skeletons in 3D space and reprojection: detected joints are trian-

gulated from multiple points of view to obtain a representation in 3D space.

Optimization algorithms are used to extract the most promising pose. The

computed pose in 3D space is then projected back into all the viewpoints,

thus re-obtaining a 2D representation which is used for keypoints extraction.

These steps are explained in detail in the next sections.

2.1.1 System setup

We worked on the implementation of a generalized framework that can be used for

any kind of camera setup, given that calibration informations are present. Calibra-

tion parameters are the intrinsics and extrinsic parameters of the system cameras

and are described using the standard OpenCV [7] matrix representation as explained

in [8]. The parameters are needed to solve a general projection problem that can be

summarized in the following form:

x2DH
= P · x3DH

. (2.1)

Where x2DH
is a point on a plane (corresponding to the plane of a camera viewpoint)

in 2D coordinates, P is a 3×4 projection matrix and x3DH
is a point in the 3D space.

The subscriptH (e.g. x2DH
) is used to describe a vector in homogeneous coordinates.

The parameters involved in Equation 2.1 are the following: the camera intrinsics

matrix K, rotation matrix R and translation vector T .
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Intrinsics matrix K

The intrinsics matrix or camera matrix K contains the parameters for the projection

of the points from the 3D world coordinates into the camera coordinates, summarized

by the following simple form:

x2DH
= K · x3D, where K =


fx 0 cx

0 fy cy

0 0 1

 . (2.2)

The matrix holds four different parameters fx, fy, cx, cy in a way that is convenient

for computations. fx and fy represent the camera focal length in pixel units while cx

and cy are the coordinates of the principal point in pixels. These parameters are used

to describe a camera model called pinhole. [8]. The result is a relatively simple model

in which a point p in the physical world, whose coordinates are (X, Y, Z), is projected

onto the screen at some pixel location given by (xscreen, yscreen) in accordance with

the following equations:

xscreen = fx

(
X

Z

)
+ cx , yscreen = fy

(
Y

Z

)
+ cy . (2.3)

Rotation matrix R and translation vector T

Rotation matrix and translation vectors are a description of the pose of each camera

relative to a common world reference. A way of describing a general rigid rotation in

a three-dimensional coordinate system is a square 3×3 matrix. It can be obtained as

a product of basic rotations (rotation about one of the axes of a coordinate system),
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which are the following:

Rx (θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (2.4)

Ry (θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (2.5)

Rz (θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.6)

Thus, R = Rz (θ) , Ry (θ) , Rx (θ), where Rx, Ry, Rz are rotations around x, y, z

axes respectively. It is also possible to obtain R from other rotation formalisms in

three dimensions, like Euler angles, Rodrigues or Quaterion. It is particularly useful

to convert a quaternion Q to a rotation matrix R as many Computer Vision tools

makes use of this formalism (e.g. OpenPTrack [20], see Section 4.1). A rotation

matrix R can be obtained from the quaternion Q = [q1 q2 q3 q4]
T using the formula:

R =


1− 2q22 − 2q23 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) 1− 2q21 − 2q23 2(q2q3 − q1q4)
2(q1q3 − q2q4) 2(q1q4 + q2q3) 1− 2q21 − 2q22

 . (2.7)

The translation vector is how we represent the shift from each camera and

the common world reference. In other words, the translation vector is just the offset

from the origin of the world coordinate system to the origin of the camera coordinate

system. It is represented as a 3×1 vector T :

T = [∆x,∆y,∆z]
T (2.8)

Rotation matrix R and translation vector T are then combined to obtain a 3×4
matrix RT :

RT = [R T ] . (2.9)
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Common coordinates and projection matrix P

We chose to use the camera 1 coordinates system as a system world reference.

Therefore every camera coordinate system is transformed to be referred to camera

1 origin and orientation. To simplify this operation, the RT matrix is transformed

into homogeneous coordinates so that its inverse can be computed.

RTH =

 R T

0 0 0 1

 . (2.10)

Camera 1 has then its RT set as a 4×4 identity matrix, while the i−th camera RT

is computed as:

RTiH = RT−11H
RTiH . (2.11)

A projection matrix P , which allows to project 3D points into each camera viewpoint

is then computed for each camera. P is a 3×4 matrix obtained as:

Pi = KiRT
−1
i . (2.12)

Where RT−1i is equal to RT−1iH
with the last row removed. The P matrix is handy

as it allows simple projections of a 3D point on each camera of the system by the

simple multiplication in Equation 2.1.

2.2 Obtaining skeleton candidates in 2D space

As mentioned before, 2D pose detection is based on the Yang-Ramanan algorithm

implementation available at [25]. This classifier is initialized using a pre-trained

full body model which is publicly available at [26], which describes human poses

as a combination of 24 constrained patches. The model is trained on a dataset

called PARSE by Navneet Dalal, Mun Wai Lee, Greg Mori and Jiayong Zhang,

which consists of 305 pictures representing humans in complex and articulated poses.

The PARSE dataset is provided with a hand written ground truth for training and

100 of the 305 pictures have been used as a training set for the model, while the



12 CHAPTER 2. HUMAN POSE ESTIMATION

remaining are used for testing. A picture from each camera of the setup is then

given as input to the PBD classifier. Since computing poses on each picture is

computationally very expensive, images are downsampled to a target resolution of

320×240, while maintaining the original image aspect ratio using the formula. This

is done downscaling both height and width of the picture by the same scale factor

fxy, obtained as

fxy = max

{
320

w
,
240

h

}
, (2.13)

where w and h are picture width and height respectively. This often also improves

classification results as less textured background details, which can deceive the detec-

tor, can be extracted from the low resolution image. PBD detects a set of candidate

poses sorted by confidence score, which will be later used to estimate the most co-

herent pose in 3D space. The model described in [27] is defined as follows: let I be

Figure 2.1: Example of detected patches from the classifier in each of the system
camera pictures. Each of the patches is a square of different color, and their dispo-
sition and constraints are described in the PARSE model.

an image, pi = (x, y) for the pixel location of part i and ti for the mixture component

of part i, where i ∈ 1, . . . , K, pi ∈ 1, · · · , L, ti ∈ 1, · · · , T . ti is defined as the type

of part i, and K, L, T are respectively the numbers of different parts, number of

possible pixel locations for a part and number of part types defined in the model.

As an example the type can determine the orientation of a part, but it can also span

semantic classes (e.g. open versus closed hand). To score a configuration of parts,
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a compatibility function for local part types is first defined:

S (t) =
∑
i∈V

btii +
∑
ij∈E

b
ti,tj
ij (2.14)

The parameter btii favors particular type assignment for part i, while the pairwise

parameter bti,tjij favors particular co-occurrences of part types. For example, if part

types correspond to orientations and part i and j are on the same rigid limb, then

b
ti,tj
ij would favor consistent orientation assignments. A K-node relational graph

G = (V,E) edges specifies which parts are constrained to have consistent relations.

The full score associated with a configuration of parts type and positions is:

S (I, p, t) = S (t) +
∑
i∈V

wti
i · φ (I, pi) +

ti,tj∑
ij∈E

·ψ (pi − pj) (2.15)

where ψ (I, pi) is a feature vector (e.g. HOG descriptor) extracted from pixel lo-

cation pi in image I, and ψ (pi − pj) = [dx dx2 dy dy2]
T , where dx = xi − xj

and dy = yi − yj, the relative location of part i with respect to j. This relative

location is defined with respect to the pixel grid and not the orientation of part i.

The extraction of the best model occurrence from I, or inference, corresponds to

maximizing S (x, p, t) over p and t. When G = (V,E) is a tree, this can be done

efficiently with dynamic programming. Let kids(i) be the set of children of part i

in G. The message that part i passes to its parent j is computed by the following

equations:

scorei (ti, pi) = btii + wi
ti
· ψ (I, pi) +

∑
k∈kids(i)

mk ∈ (ti, pi) (2.16)

mi (tj, pj) = max
ti

b
ti,tj
ij + max

pi
score (ti, pi) + w

ti,tj
ij · ψ (pi − pj) (2.17)

Equation 2.16 computes the local score of part i, at all pixel locations pi and for

all possible types ti, by collecting messages from the children of i. Equation 2.17

computes for every location and possible type of part j, the best scoring location

and type of its child part i.
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Figure 2.2: A visualization of the model trained on the Parse dataset. Local tem-
plates are shown on the figure above and the tree structure below, placing parts at
their best-scoring location relative to their parent. This example shows 3 trees, even
though there exists an exponential number of combinations, composing different
part types. [27]

Once messages are passed to the root part (i = 1), scorei (c1, p1) represents the

best scoring configuration for each root position and type. For a more in-depth

explanation of the model inference and training refer to Yang, Ramanan article [27].

Multiple detections in image I are generated by using these root scores by thresh-

olding them and applying non-maximum suppression. Non-maxima suppression is

an algorithm that removes overlapping detections whose score is not maximal, thus

ideally removing multiple detections of a same pose. In this case non-maxima sup-

pression is not applied as multiple pose candidates for each person in the picture

are desired for a further optimization that leverages multi viewpoints informations.

Therefore the PBD classifier outputs a set pose candidates, each of which consists

of a vector of square image patches and a confidence score. Skeleton joints are then

extracted from image patches by computing their center and upscaled to the origi-

nal image coordinates by multiplying the center point vector by the inverse of scale

factor previously used for downsampling.
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Left hipRight hip

Left kneeRight knee

Left foot
Right foot

Right shoulder

Right elbow

Right hand

Left elbow

Left hand

Left shoulder

Figure 2.3: Location and name of the joints estimated by our skeletal tracker.

This operation yields a set of skeleton candidates, each of which is defined as

a vector of two dimensional points and a confidence score which is inherited from

the raw PBD output. Image patches are extracted by PBD in a structured way

and they have a precise ordering, which is determined in the trained model. This

allows to know the correspondence between image patches and skeleton joints. The

tracked joints are shown in figure 2.3. Unfortunately the PBD model is unable to

distinguish between frontal and posterior poses, so legs and arms orders might be

inverted between viewpoints. We proposed a solution to the problem in the 3D pose

estimation phase (see Section 2.3).
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2.3 Obtaining skeletons in 3D space and output re-

projection

Skeleton joints candidates obtained in 2D space from each camera in the system

are then processed to obtain a single skeleton in 3D space. We developed different

methods for merging informations obtained from all cameras to improve final de-

tection: best detections fusion, parts clusters centroids fusion, minimization of 3D

pose reprojection error. All these methods use projection and triangulation as basic

operations.

• Projection: The projection of points from 3D space into the viewpoint of a

single camera of the system. This operation is described in section 2.1.1.

• Triangulation: This operation uses calibration information to estimate the

3D coordinates of a points by observing its position on at least two differ-

ent viewpoints. Triangulation is performed as an algebraic minimization as

described in [24] [14] and is generalized for n−viewpoints. We derive an al-

gebraic constraint where we note that the unit ray of an image observation

can be stretched by depth α to meet the world point X for each of the n

observations.

αixi = PiX ,

for images i = 1, · · · , n. This equation can be effectively rewritten as:

αi = xi
TPiX ,

which can be substituted into our original constraint such that:

xixi
TPiX = PiX ,

0 =
(
Pi − xixiTPi

)
X .

We can then stack this constraint for each observation, leading to the linear
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least squares problem: 
(
P1 − x1x1TP1

)
...(

Pn − xnxnTPn

)
X = 0 .

This system of equations is of the form AX = 0 which can be solved by

extracting the right nullspace of A. The right nullspace of A can be extracted

efficiently by noting that it is equivalent to the nullspace of ATA, which is a

4×4 matrix. We used the implementation of this algorithm from Theia Vision

Library [24].

In all of the implemented methods, correspondence between points of different view-

points is known a priori. For example, let xki be the point corresponding to the head

of the k−th pose detected in the picture of camera i and assume we want to find the

correspondent 3D pose of the k−th candidates set. The point xk3D corresponding to

the head is obtained as x3D = triangulateNView(xk0, x
k
1, · · · , xkn) from Theia Vision

Library [24]. This is allowed by the fact that, as mentioned in section 2.2, PBD

distinguishes the detected parts and stores them in a structured way.

Figure 2.4: Final skeleton projected on each viewpoint picture

A visualizer has also been implemented to show the whole system setup and

the skeletons in 3D space before reprojecting. It is based on the Point Cloud Li-

brary (PCL) [23] visualizer API and it allows to represent 3D world coordinates and

references interactively. An example of detected 3D pose is shown in figure 2.5.
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Figure 2.5: Three dimensional pose and system cameras rendered with the PCL
visualizer. The system origin and references coincides with Camera 1 (Left), while
Camera 2 and 3 (Center and Right) are translated and rotated from it.

Fusion of Best detections

Fusion of best detections is a simple method that exploits the capability of the

PBD classifier of extracting good poses from 2D images. The best detection is

extracted from every viewpoint picture using a non-maxima suppression function

available with the PBD, that removes overlapping detections with non-maximal

score. A 3D pose consistent with all the viewpoints is then obtained by applying

point per point triangulation between the best detections of each camera of the

system. The obtained pose in 3D space is then reprojected onto each viewpoint

picture, thus obtaining 2D keypoints coordinates. This operation is conceptually

equivalent as resolving a linear least square problem to approximate in 3D space the

best observations given by the PBD. The obtained 3D skeleton is then reprojected

into each viewpoints thus getting final joints coordinates.
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Detections

Camera 1

Camera 2

Camera n

...

3D output 2D output

Projection

Triangulation

Figure 2.6: Best detections fusion algorithm DAG. Best detections for each view-
point are marked in red and are projected to 3D space by a triangulation operation.
The obtained 3D model is then reprojected into each camera viewpoint.

Fusion of Parts Clusters Centroids

Fusion of Parts Clusters Centroids is based on the idea that the detection of some

parts of the skeleton is very stable and their location is very similar between all can-

didates in each viewpoints. This is especially true for the skeleton joints: head, neck,

left and right shoulders, left and right hips (see figure 2.3). To exploit this property

of detections, all detection candidates from each viewpoint are merged together by

clustering each joint across all different detections. New joints are therefore obtained

by computing mean coordinates for each different joint. Coordinates for j−th joint

are computed by the formula:

xj, yj =

(∑n
i=0 xji
n

,

∑n
i=0 yji
n

)
. (2.18)

This reduces the amount of candidates to 1 per viewpoint, and the 3D pose prob-

lem can be solved in the same way as in the Fusion of best detections method by
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performing joint per joint triangulation. The obtained pose in 3D space coordinates

is then reprojected onto each viewpoint picture.

Detections

Camera 1

Camera 2

Camera n

...

3D output 2D output

Projection
Triangulation

Mean

2D joints clusters

Figure 2.7: Parts clusters centroids fusion algorithm DAG. An example graph is
shown for k = 3 candidates per viewpoints. The function perform an averaging op-
eration on clusters of joints on the same type. The centroids obtained are projected
to 3D space using n−point triangulation and then reprojected into each one of the
camera viewpoints.

The downside of this method is that articulated poses are difficult to detect

and the position of unstable joints like hands and feet is often wrong.

Minimization of Reprojection Error

Minimization of Reprojection Error algorithm (MRE) exploits the concept that since

detected pose candidates are very likely distributed around the highest quality de-

tection, there must be a n−plet between viewpoints (where n is the number of

different viewpoints) that has a very good 3D representation which implies that

their 2D appearance is also very good.
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Detections

Camera 1

Camera 2

Camera n

...

3D candidates 2D outputs

Projection

minimum 
reprojection

error

n-plets formation 
+

triangulation

3D output

Figure 2.8: Minimization of reprojection error algorithm DAG. Example graph is
shown with number of candidates k = 2, even though we used 5 and 10 in our
tests. The 3D candidate with minimum reprojection error is marked in red and is
chosen as output of the phase. The 3D output is then projected into each camera
viewpoints.

This method attempts to avoid enforcing coherence between 2D poses, in-

stead it finds the candidates set that already fits a 3D model at best. Let C =

{c00, · · · , c1n, · · · , ckn} be a set of candidates for n viewpoints and k candidates per

viewpoint. The function attempts to find a subset of C such that every candidate c

belongs to a different viewpoint and the sum of errors on reprojected joints is mini-

mum. The candidate set is projected to 3D spaces using triangulation operations on

every set of joint types, and the obtained pose is then reprojected to each viewpoint

to estimate error. The operation of finding the best n−plet is performed by a brute

force algorithm within the search space of n−plets whose size is O (kn), where k is

the number of detections candidates per viewpoint. The size of k can be limited,

improving the performance of the algorithm and also the quality, since detections

of lower quality (be the means of PBD confidence score) usually don’t improve the

result. The problem of exponential scaling of this method search space is in any
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case negligible if compared with computational load of the PBD algorithm.



Chapter 3

Re-identification process

The reidentification method proposed is based on the concept presented in [19],

which relies on computing a person signature by concatenating features descriptors

extracted at body joints locations. Notation used in this chapter is also very sim-

ilar to the one in [19]. Skeleton joints obtained using a tracker are very stable if

compared to standard feature keypoints, and the signature obtained from the set of

descriptors extracted on them have shown to be a very good description of a person

appearance. Moreover the keypoint detected in this way are already labeled and

can be compared without the need for a previous matching. This idea has been

extended to a multi viewpoint environment, therefore the person descriptor itself

and the matching process are augmented to keep track of information from multiple

sources. The reidentification system can be logically divided into two steps:

1. Features extraction and Skeleton-based Person Signature (SPS) composition:

a selected type feature is extracted from every joint of the skeleton detected

from each viewpoint of the system. A compact signature is then computed by

aggregating all the obtained descriptors into a single object called Skeleton-

based Person Signature or SPS.

2. Signature matching: the SPS is matched against each person of the database or

training set. Most feature types support a standard distance metric. Neverthe-

less, since SPS is multidimensional and contains more than a single descriptor

for each joint, different matching strategies are possible. We implemented and

23
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tested two different methods of SPS matching, which are described in Section

3.3.1.

3.1 Skeleton-based Person Signature extraction

SPS extraction is handled by computing descriptors on a set of keypoints based on

human joints previously detected. Unlike [19], since SPS is multidimensional, local

descriptors cannot be concatenated into a single vector. They are instead represented

as a two-dimensional vector where each part can have multiple representations or,

more easily, multiple descriptors extracted from different viewpoints.

Camera 1 Camera 2

[1] Head 
24, 0, 182, … 

12, 177, 3, … 

[7] Right arm 
15, 27, 99, … 

36, 177, 0, … 

SPS Descriptor

[14] Right foot 
0, 66, 235, … 

5, 69, 231, … 

[1] Head 
24, 0, 182, … 

12, 177, 3, … · · ·
[7] Right arm 
15, 27, 99, … 

36, 177, 0, … 

[14] Right foot 
0, 66, 235, … 

5, 69, 231, … · · ·

Figure 3.1: Example of multi dimensional Skeleton-based Person Signature creation
from two cameras. Only joints 1 (head), 7 (right arm) and 14 (right foot) are shown.
In the final descriptor, vectors corresponding to each joint are concatenated.

An example of the procedure with two cameras is shown in figure 3.1. In [19],
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a feature tracking indicator I for the i−th joint Ji on the k−th target Tk is:

I (Ji, Tk) =

1 if i− th joint of frame k is tracked

0

. (3.1)

where i ∈ [0, · · · , N − 1] and N is the number of joints considered. The value of I

is automatically provided by Microsoft and OpenNI skeletal trackers for every joint.

This is a very effective way to describe self occlusions, which unfortunately cannot

be reproduced on the PBD based skeletal tracker because of its lack of accuracy

if compared to 3D sensors based algorithms. To limit the error by the tracking

inaccuracy of some specific joints, we introduced a vector of weight parameters θ

for each group of descriptors in the SPS that allow to tune the matching algorithm

so that descriptors distance relevance is not equal across all joints. The vector θ is

static and must be defined manually when configuring the descriptor extractor. A

reasonable way to set θ values is: θi = P (D(Ji)), where P (D(Ji)) is probability

that the joint is detected correctly by the skeleton tracker, scaled between 0 and 1.

This value for each joint can be determined experimentally using a training set (see

Section 4.2.1). Vector θ can also be used as a boolean mask to determine which

joints descriptors are to be matched together, allowing to completely exclude some

of them thus increasing method flexibility.

3.2 2D Features

We implemented a generalized local extractor that can be used with 2D features from

different sources and libraries. Beside this, all the descriptors we tested are open

source and available in the OpenCV library [7]. We tested and benchmarked the

performance of the following descriptors: SIFT, SURF, HISTOGRAMS (a histogram

based feature implementation described in Section 3.6). Each descriptor is defined

with its own distance metric, and they are all described in detail in this section.
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3.2.1 SIFT

Scale-Invariant Feature Transform (SIFT) is a keypoint detector and feature de-

scriptor presented by Lowe in 1999 [15]. OpenCV library implements a version of

this algorithm from the Lowe’s 2004 article Distinctive Image Features from Scale-

Invariant Keypoints [16]. The SIFT approach, for image feature generation, takes

an image and transforms it into a “large collection of local feature vectors”. Each

of these feature vectors is invariant to any scaling, rotation or translation of the

image. To help the extraction of these features the SIFT algorithm applies a 4-stage

filtering approach: Scale-space extrema detection, keypoint localization, orientation

assignment, and keypoint descriptor extraction. In this work, only step 4 of the

SIFT algorithm is applied for feature matching because keypoints locations are pro-

vided by the skeletal tracker, while the orientation information is unavailable. To

obtain descriptors, magnitude and orientation of the gradient of points located near

the keypoint of interest. To obtain invariance to rotation, descriptor coordinates

and orientation of gradient are rotated accordingly to the keypoint information. For

this specific purpose, rotation is not applied due to unavailability of the keypoint

rotation information. Magnitude values are then weighted according to a gaussian

function with σ (standard deviation) equal to half of the descriptor window. Sam-

ples are then accumulated into histograms that summarize regions content. Every

histogram bin (see Section 3.2.3) holds the sum of magnitudes of gradients whose

orientation is similar to the one it represents. To avoid sudden shifts and between

histograms orientation, trilinear interpolation is applied to distribute gradients val-

ues to adjacent histograms. Obtained descriptor is a vector containing the values

of orientation histograms (bins heights). Lowe obtained better results with 4x4 his-

tograms, each one with 8 bins. Therefore every descriptor is a 128 elements array

(4 · 4 · 8). To make the descriptor less sensible to illumination changes, the following

operations are applied: the vector is normalized to unit length (invariance to affine

illumination changes); values higher than 0.2 are thresholded and the vector is nor-

malized again (partial invariance to non linear illumination changes). The distance
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Figure 3.2: Gradient magnitude and orientation are computed at each image sample
point in a region around the keypoint location, as shown on the left. These are
weighted by a Gaussian window, indicated by the overlaid circle. These samples are
then accumulated into orientation histograms summarizing the contents, as shown
on the right. [16]

between descriptors is defined as an euclidean distance between vectors:

d(D1, D2) =

∣∣∣∣∣
128∑
i=0

D1i −D2i

∣∣∣∣∣ . (3.2)

3.2.2 SURF

SURF (Speeded Up Robust Features) is a robust local feature detector, first pre-

sented by Herbert Bay et al [5] at the 9th ECCV in 2006. The SURF algorithm, was

created for detecting and creating a descriptor in a more efficient way than SIFT.

It is derived from the SIFT (see Section 3.2.1) which is known to be very robust,

but also quite slow. Detection and description phases are faster on SURF and the

descriptor size is decreased from 128 values to 64.

The first step in the construction of the descriptor is the definition of a square

region centered on the keypoint, which in this case is given by skeleton tracker and

the orientation is 0 as it is unavailable. Region is then subdivided in 4x4 subregions

for each of which the response to Haar-like filters response in correspondence of a

point grid is computed; horizontal response is defined as dx, while vertical is dy.

Each response is weighted with a Gaussian centered on the keypoint and a first

set of features is obtained from weighted responses dx and dy in each subregion. The

sum of absolute value |dx| and |dy| is also saved to keep track of intensity changes
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(a) Detail of a scene showing
the size of the descriptor win-
dow at different scales. [5]

(b) An oriented quadratic grid with 4 × 4
square sub-regions is laid over the interest
point (left). For each square, the wavelet re-
sponses are computed from 5×5 samples. For
each field, we collect the sums dx, |dx|, dy,
and |dy|, computed relatively to the orienta-
tion of the grid (right). [5]

Figure 3.4: The descriptor entries of a sub-region represent the nature of the un-
derlying intensity pattern. Left: In case of a homogeneous region, all values are
relatively low. Middle: In presence of frequencies in x direction, the value of |dx| is
high, but all others remain low. If the intensity is gradually increasing in x direction,
both values

∑
dx and

∑ |dx| are high. [5]

polarity. For each subregion a descriptor is obtained as

v =
(∑

dx,
∑

dy,
∑
|dx| ,

∑
|dy|
)
. (3.3)

The concatenation of these values for each subregion yields a descriptor of length

64. The obtained descriptor is then normalized to obtain invariance to contrast

changes.

There exists an alternative version of the SURF descriptor called SURF-128,

in which informations are doubled in order to be more discriminative. It again uses

the same sums as before, but now splits these values up further. The sums of dx

and |dx| are computed separately for dy < 0 and dy ≥ 0. Similarly, the sums of dy
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and |dy| are split up according to the sign of dx, thereby doubling the number of

features. The descriptor is more distinctive and not much slower to compute, but

slower to match due to its higher dimensionality.

3.2.3 Color Histograms

Histograms are collected counts of data organized into a set of predefined bins.

The concept of data is not restricted to intensity values in an image, but can be

whatever feature useful to describe an image. Color histogram is a representation of

the distribution of colors in an image and can be built for any kind of color space,

although the term is more often used for three-dimensional spaces like RGB or HSV.

Let’s see an example reported in the OpenCV documentation [7]. Imagine that a

Matrix contains information of an image (i.e. intensity in the range 0-255):

Figure 3.5: Example of a grayscale image with intensities of pixels in the range
0-255. OpenCV Library documentation, http://docs.opencv.org/

We want to count this data in an organized way. Since we know that the range

information value for this case is 256 values, we can segment our range into subparts
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called bins like:

[0, 255] = [0, 15] ∪ [16, 31] ∪ · · · ∪ [240, 255] (3.4)

range = bin1 ∪ bin2 ∪ · · · ∪ binn=15 (3.5)

We can keep count of the number of pixels that fall in the range of each bini.

Applying this to the example above we get the result in Figure 3.6 (x-axis represents

the bins and y−axis the number of pixels in each of them).

Figure 3.6: Results of histograms (with size of bin = 15) applied on intensity values
of Figure 3.5. OpenCV Library documentation, http://docs.opencv.org/

Histogram descriptor parameters are:

• dims: The number of parameters of the collected data. In this example, dims

= 1 becase we are only counting the intensity values of each pixel.

• bins: Number of subdivisions in each dim. In this example, bins = 16.

• range: Range of the values to be measured. In this case, range = [0, 255].

The histogram provides a compact summarization of the distribution of data in

an image. The color histogram of an image is relatively invariant with transla-

tion and rotation about the viewing axis, and varies only slowly with the angle

of view. Importantly, translation of an RGB image into the illumination invariant

rg-chromaticity space allows the histogram to operate well in varying light levels

(rg-chromaticity is a two dimensions space obtained from RGB space removing the

intensity information by normalizing r, g, and b values on it) [18].

To compare two histograms H1 and H2, a distance metric d(H1, H2) must be

chosen first. Since histograms can be seen as an estimation of the probability density
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function of the underlying variable, comparison between two histograms is computed

using similarity metrics of discrete probability distributions. OpenCV provides the

following distances for histogram comparisons:

1. Correlation:

d(H1, H2) =

∑
I(H1(I)−H1)(H2(I)−H2)√∑

I(H1(I)−H1)2
∑

I(H2(I)−H2)2
. (3.6)

2. Chi-Square:

d(H1, H2) =
∑
I

(H1)(I)−H2(I))2

H1(I)
. (3.7)

3. Intersection:

d(H1, H2) =
∑
I

min (H1(I), H2(I)) . (3.8)

4. Bhattacharyya distance:

d(H1, H2) =

√
1− 1√

H1H2N2

∑
I

√
H1(I) ·H2(I) . (3.9)

These distances provides very different results when matching histograms, as seen

from measured performance in Section 4.2.2.

3.3 SPS descriptors matching

The objective of the matching algorithm to match a target SPS signature extracted

from a set of pictures with another one stored in the database. Since SPS signatures

are multi-dimensional and each one can contain descriptors obtained from multiple

viewpoints, different matching strategies are possible. We implemented two different

ways of matching SPS descriptors. In both approaches, informations given to the

matcher are: a SPS descriptor of a target to match and a database of SPS descriptors.
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3.3.1 Matching strategies

As mentioned before we implemented two different ways of matching SPS descrip-

tors: Full Skeletons Matching and Skeleton Parts Matching. In both approaches, a

target signature is compared with those extracted from the available database and

matched with the nearest by the means of the specific descriptor distance. Let S

be the comparison set, T be the target person SPS, Di be the i−th model from the

people database, n be the number of viewpoints, k the number of joints of a skeleton

model (which in this case is 14) and θ the weight vector described in Section 3.1.

Skeleton Parts Matching

In Skeleton Parts Matching, all possible combinations of descriptors for a type of

joint between the target signature T and database entry Di in order to find the

minimum distance between them. The i-th entry of the database is matched with

T if the distance is minimum:

d(T,Di) =
k∑

j=0

θj · min
0≤h≤n
0≤m≤n

‖SPSjh(T )− SPSjm(Di)‖ . (3.10)

SPSjm and SPSjh are descriptors contained in the SPS relative to j−th joint and

m−th or h−th viewpoint respectively. To compute a joint type distance, the al-

gorithm extracts all the candidates from SPSj for both target T and the database

entry Di. All possible |Tn|·|Din| candidate couples are checked to find the least

distance, where |Tn| is the number of viewpoints in target model and |Din| is the

number of viewpoints in database model. The final distance is the sum of the dis-

tances of obtained from each different joint. An example is illustrated in Figure 3.7.

Full Skeleton Matching

Full Skeleton Matching compares all the possible combinations of full poses descrip-

tors (set of local descriptors obtained from the same viewpoint) between the target

signature T and database entry Di. This approach is more similar to the original
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Figure 3.7: Skeleton Parts Matching strategy: example of a single joint distance
computation between a target T and a database entry Di. In this example the joint
descriptor is available from 3 different viewpoints both on T and Di. We compare
the distance of each possible couple and output the minimum. In this example, each
model has 3 different representation of the same joint.

work in [19] as it is in fact a comparison between full poses, even though SPS con-

tains more than one in this work. The function to be minimized for matching target

signature T with database entry Di is:

d(T,Di) = min
0≤h≤n
0≤m≤n

k∑
j=0

θj · ‖SPSjh(T )− SPSjm(Di)‖ . (3.11)

Equation 3.11 shows that the difference with Skeleton Parts Matching is that the

minimization is computed on the sum of all joints distances. Therefore h and m are

the indexes of full poses from which all joints are compared. It is also possible to

enforce h to be equal to m, so that only descriptors coming from the same camera

are compared. This method is based on the assumption that at least one camera of

the system should be able to extract a good pose with significant descriptors and
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a limited number of occlusions, if any. Full Skeleton Matching is simpler and more

computationally efficient than Skeleton Parts Matching, even though this advantage

is negligible due to the low amount of comparisons needed.



Chapter 4

Experimental results

To build and measure the performances of proposed algorithms, we recorded two dif-

ferent dataset at the IAS-Lab: one two viewpoints dataset and one three-viewpoints

dataset with 7 people. These datasets are targeted to both multi viewpoint articu-

lated pose estimation and general re-identification. We performed all the testing on

the three-viewpoint dataset as it is contain more articulated and significant poses to

detect and more target people for re-identification. Furthermore, illumination and

environmental conditions between the two datasets are identical.

4.1 Datasets recording

Datasets mentioned before were recorded with the purpose of building the algorithm

upon them and testing. Both datasets are recorded inside IAS-Lab Intelligence Au-

tonomous System Laboratory 1. The system setup is based on Microsoft Kinect

sensors, which are RGB-D sensors composed by a standard 640×480 RGB camera,

a 640×480 30 Hz IR depth camera, a microphone and a motorized tilt. Cameras are

connected to a computer in the two cameras dataset, and to two computers in the

three cameras dataset. The system is based on the widely used Robot Operating

System (ROS) [22] framework that allows to conveniently handle signals from the

kinects and synchronization between cameras. Signals from the kinect are sent as

packets through ROS topics (named buses over which ROS processes can exchange

1http://robotics.dei.unipd.it
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Figure 4.1: Microsoft Kinect sensor illustration

messages2) and, in addition to data, they embed useful information like timestamps

and intrinsic camera parameters. Timestamps are later used for extracting frames

synchronized across different viewpoints from videos, while camera parameters are

used to compose the K matrix described in Section 2.1.1. Extrinsic parameters

of the system are computed using the calibration tool from the OpenPTrack pack-

age [20]. The tool uses a moving chessboard to estimate each camera position in

real time in the world reference, and also computes positions relative to the ground

plane, described as a translation vector T and a quaternion Q. Rotation matrix R

is obtained from the quaternion as described in Section 2.1.1.

The system setup is illustrated in Figure 4.2 and it consists of two computers con-

nected in a dedicated LAN using Gigabit Ethernet. Two computers are needed to

overcome the limitations of USB bus on a single computer if connecting more than

2 Kinect sensors. Computer 1 is then set as master ROS node and Computer 2

connects to it in slave mode through Ethernet. Master node then runs OpenPTrack

to handle all the data and perform the system calibration. When parameters are

obtained, the dataset content itself is registered using rosbag, a set of tools for high

performance recording from and playing back to ROS topics. Saved bag files con-

tain all the ROS topic contents coming from the sensor, so both RGB and Depth

data are saved, even though we only used RGB data in this work. Extracted frames

are then synchronized using a script that matches couples or triplets of pictures ob-

tained from different viewpoints by minimizing timestamp difference, thus obtaining

a dataset of 2 synchronized frames per second.

2http://wiki.ros.org
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Computer 1Computer 2
Gigabit Ethernet

USB3USB3

ROS node slave ROS node master

Camera 1 Camera 2 Camera 3

Figure 4.2: Diagram of hardware setup used to record and calibrate the three view-
points dataset.

4.2 Tests on the Three-Viewpoints Re-identification

dataset

In this section we summarize the results obtained with the proposed techniques on

the recorded datasets. Since the multi view re-identification process involves many

complex steps, a lot of partial results are measured, besides the re-identification it-

self. In particular we want to demonstrate the effectiveness of the proposed skeleton

tracker by showing benefits obtained from the higher number of cameras and dif-

ferent triangulation and reprojection strategies that the multiple viewpoints allows.

To achieve these measures, we manually marked ground truth joints on a subset of

picture of the dataset, which shows the average effectiveness of the various skeleton

tracking strategies. Performance is then evaluated by measuring the error between

the pose extracted by the skeleton tracker and a manually marked pose. Let Ji be

the i−th joint coordinates as extracted by the tracker and Gi be the same joint
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manually marked in the ground truth, we defined the error e to be:

e =
k∑

j=0

‖Ji −Gi‖ . (4.1)

Where k is the number of joints, which is equal to 14 in the proposed skeleton model,

and the obtained measure is in pixels. Therefore e is the sum of euclidean distances

in pixel between the predicted pose and the ground truth pose. For the evaluation of

the re-identification process, we compute the Cumulative Matching Characteristics

(CMC) Curve, which is a widely used metric for measuring classification task per-

formances and it is also used in [19]. CMC contains at the i−th position, the mean

probability that a target is classified correctly within the first i responses given by

the classifier. In this case, if a person is to be re-identified, CMC at position i holds

the normalized number of time that its name appear at least within i responses from

the re-identification algorithm. Typical useful parameters related to this metric are

the Normalized Area Under Curve (nAUC), which is the integral function of the

CMC, and the Rank-1 recognition rate.

nAUC =
∑
i

Ranki
|Samples| . (4.2)

Rank-1 is trivially the first number in CMC and it corresponds to correct classifica-

tions, as the correct output is the first provided by the classifier.

4.2.1 Pose estimation performance

Improving classifier results by merging informations from multiple viewpoints is

nontrivial. As a matter of fact, having more information also means having more

potential erroneous data and noise. Enforcing coherence between poses detected by

different camera systems necessarily means that if the output of the 2D pose detector

on some camera is significantly wrong, that output can affect good results coming

from another camera as well. This behavior has been observed in some rare cases

by comparing the skeletal tracker outputs with ground truth. We also measured a

parameter called Reprojection Error, which is the metric used by the MRE method
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(see Section 2.3) to choose the best set of candidate poses for reprojection. In

Figures 4.3 and 4.4 we show accuracy values collected on two image sequences in

which MRE algorithm performs very differently. The data contained in both figures

is computed as follows: pose detection is performed on every picture of the sequence

using both PBD single camera skeleton detection and MRE on 3 cameras. Obtained

poses on all pictures are then compared with ground truth and the total pose error

is computed as the sum of euclidean distances between joints of the detected pose

and the ground truth pose. Error for the MRE method is plotted in the graph with

a blue line and error for single camera PBD detection is plotted in the graph with a

red line on y-axis. The green line represents instead the reprojection error estimated

by the MRE method. The case in Figure 4.3 represents an image sequence where the

Reprojection Minimization algorithm is effective and is able to significantly reduce

Camera 1 Camera 2 Camera 3

Figure 4.3: Total error per pose obtained with MRE method on a 10 images sequence
per camera (30 images in total). This plot illustrates a case where MRE algorithm
significantly improves the quality of the pose detection if compared to PBD. The plot
is subdivided into three sequences: the first 11 pictures are obtained from camera
1, pictures n. 11-21 are obtained from camera 2 and pictures n. 21-31 are obtained
from camera 3.
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the mean error made by the classifier on each pose. In this case, PBD detections

from the three independent cameras are quite inaccurate but the MRE algorithm is

able to find better triplets of 2D poses by considering all detection candidates.

In this case, the output set of poses is significantly improved in almost all the

pictures of the sequence and it can be seen by looking at the difference between

the blue and the red line in Figure 4.3. On the other hand, the opposite can also

happen, as shown in Figure 4.4, where detection from the cameras are generally

good but the MRE algorithm is deceived by triplets that better fits its reprojection

error metric and are chosen even if they are erroneous. This behavior is hardly

predictable even though the reprojection accuracy can be estimated by observing

reprojection error value. It can be seen experimentally that this error is related to

the quality of results obtained from triangulation and reprojection and can be used

in real time to evaluate whether or not the method is effective.

Camera 1 Camera 2 Camera 3

Figure 4.4: Total error per pose obtained with MRE method on a 10 images sequence
per camera. This plot illustrate a case where MRE algorithm reduces the quality of
the pose detection if compared to PBD. The plot is subdivided into three sequences:
the first 11 pictures are obtained from camera 1, pictures n. 11-21 are obtained from
camera 2 and pictures n. 21-31 are obtained from camera 3.
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Algorithms average case performance are computed by comparing results ob-

tained from the implemented methods Minimization of Reprojection Error and Fu-

sion of Parts Clusters Centroids with PBD detections on single cameras. Fusion of

Best Detections method performance are not reported in this section as its effec-

tiveness is exactly the same as PBD, even if final results can be slightly different

due to minor changes introduced by triangulation and reprojection. Results were

computed by comparing detections of the pose estimators with ground truth and

measuring the sum of errors for each body joint on a 100 pictures sequence. The

obtained vector is then normalized to the number of joint elements added to the

sum, thus computing mean error per joint whose values is shown in Figure 4.5 for

each of the skeletal trackers. PBD, Parts Clusters Centroids and MRE detections

are illustrated by red, green and blue bars respectively. Collected data shows that

MRE is outperforming Fusion of Parts Clusters Centroids detections method and

improving the quality of the PBD detections by a good margin. Results shown

Figure 4.5: Mean detection error in pixels aggregated by different joint types. The
graph shows results obtained with MRE and Parts Clusters Centroids skeletal track-
ers, compared with best detections on single cameras.
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Figure 4.6: Mean detection rate per joint type group. A detection is considered
correct if its keypoint is placed within 30 pixels of the ground truth corresponding
point (euclidean distance).

in Figure 4.5 also clearly show that some joint types are more stable than others,

having significantly lower mean error. In particular, most stable joints are: Head, L.

and R. shoulder, L. and R. hips. We then aggregated joints of the same body area

(e.g. L. and R. hands, L. and R. feet) and performed a more meaningful test to show

implications that these inaccuracies can have on re-identification. We estimated that

if a keypoint is detected farther than 30 pixels from its correct position, it can be

hardly considered useful for re-identification purposes, as the extracted descriptor

will not correspond to the desired joint. The SPS matching algorithm has to make

up for these imprecisions, as the wrong descriptor will ideally not match any model of

the database. Therefore to improve the SPS matching results, we measure detection

rate for each of the joint groups and used these results (shown in Figure 4.6) to

configure θ weights vector. By lowering the mean error per joints, results shows

that MRE is also greatly improving the detection rate of each joints if compared to



4.2. TESTS ON THE THREE-VIEWPOINTS RE-IDENTIFICATION DATASET43

PBD, thus directly enhancing the consequent re-identification phase performance.

Figure 4.7 illustrates some example cases where MRE algorithm greatly improves the

performance of detections. PBD has obvious difficulties with cases of self occluded

body parts, as in (a) and (c), where it can completely miss detection as confidence

score attributed to candidates is unreliable in these cases, since the choice of final

pose is mostly a guess. Among its candidates, however, very high quality detections

can be found and extracted leveraging information from other viewpoints, as MRE

manages to do in (b) and (d). Even in cases of more frontal views as in (e), (g)

and (i), PBD detection can be often inaccurate and its best detection can be worse

than some of its candidates: arms and legs are often positioned incorrectly and body

orientation is inconsistent across different viewpoints. MRE manages to solve these

problems in many cases as seen in (f), (h), (j).

(a) (b)

(c) (d)



44 CHAPTER 4. EXPERIMENTAL RESULTS

(e) (f)

(g) (h)

(i) (j)

Figure 4.7: Comparison of skeletons where MRE algorithm effectively improves
detection results. Pictures on the left are obtained from a single camera using a
skeleton derived directly from PBD detection, skeletons on the right are obtained
using MRE algorithm from three cameras. PBD detections suffers badly from self
occlusions as seen in (a) and (c) and are then improved by MRE which leverage
information from multiple viewpoints in (b) and (d). (e), (g) and (i) show cases
of typical detection inaccuracies from PBD which is often misplacing limbs even in
frontal poses. In many cases these detections can be improved by MRE as seen in
(f),(h) and (j).
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4.2.2 Re-identification performance

To test the effectiveness of the re-identification algorithm, we tested the procedure on

the whole dataset which has a total of 468 pictures. We compared results obtained

with different features extractors: SIFT, SURF and Histograms with Correlation,

Intersection and Bhattacharyya distances. Initial tests were performed with SIFT

and SURF feature extractors, as they are known to provide best performance in

some state-of-the-art works including [19]. Results on the proposed dataset were

however much worse than expected and re-identification failed most of the time.

Further analysis on this problem brought to the conclusion that the low resolution

of the images combined with a typically small keypoint size, which has to fit inside

the body shape, could be the cause of it. An example is illustrated in Figure 4.8

where the content of a typical keypoint is magnified. Besides the color, information

contained in it is very few as the sensor is unable to capture clothing texture and

folds. Figure 4.9 shows a derivative edge detection filter applied on keypoints, which

is an approximation of the type of filters applied by SIFT and SURF algorithms.

Figure 4.8: Information contained within a typical keypoint on which re-
identification is based. Magnified keypoint shows that low resolution images fails to
provide significant texture information for features extraction.
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Figure 4.9: Sample keypoints extracted from body (left and center) are shown to-
gether with an typical SIFT keypoint of similar size automatically detected from
the background (right). On the lower row, a derivative filter is applied to highlight
the amount of information the feature extractor is able to gather from keypoints.
Keypoints on the left and center are the same as in Figure 4.8.

It can be seen that a typical SIFT automatically detected keypoint of the same

size, which was detected from a shelf in the background and is shown on the right

circle, contains many points with a much higher color gradient amplitude. To over-

come this, considering that the dataset does have a very stable illumination across

different viewpoints, a custom histograms based features were tested. Tests were

carried out on different color spaces: HSV, rg-chromaticity and RGB. Nevertheless,

as histograms performance on RGB color space showed better performance on this

datasets, final results are measured on RGB space only.

The descriptors matching phase was tested with both presented strategies:

Skeleton Parts Matching and Full skeleton matching (see Section 3.3.1). Descrip-

tors weights vector θ is set according to detection rate of the Minimization of Re-

projection Error method measured with tests on pose estimation, as illustrated in

Table 4.1. MRE is used as skeletal tracker for both Skeleton Parts Matching and

Full Skeleton Matching strategies, thus detected keypoints locations are exactly the

same between the two tests. To compute results we compared the classifier scores
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Body joint Normalized
MRE detection rate

Head (Head and neck) 0.9
Upper torso (L. and R. shoulders) 0.93
Arms (L. and R. arms) 0.69
Hands 0.36
Lower torso 0.81
Legs 0.71
Feet 0.57

Table 4.1: List of detection rates of MRE algorithm on joints groups. These results
are equivalent to those in Figure 4.6 for MRE and are used as θ weights by the
matching algorithm on the performed tests.

for each person in the database with ground truth, thus obtaining CMC curves in

Figures 4.10 4.11. Results for Skeleton Parts Matching, illustrated in Figure 4.10

shows that Histograms performs better then SIFT and SURF in this case. His-

togram comparison with Correlation distance achieves an excellent 83.6% Rank-1

rate, while others Histograms distances yield significantly lower detection rates yet

still acceptable for the task. Results obtained with Full Skeleton Matching (Figure

4.11) are very similar to those obtained with Skeleton Parts Matching. The best

performing descriptors are Histograms which clearly outperform SIFT and SURF

in this case as well. Again, the Correlation distance for Histogram comparisons is

giving the best results with 83.9% Rank-1 detection rate, which is slightly better

than the obtained result with Skeleton Parts Matching. For easier comparison of

different methods, we computed the nAUC value for each of the CMC curves on

both tests. Results are summarized in Table 4.2. Final results shows that Full

Skeleton Matching strategy obtains slightly better performance than Skeleton Parts

Matching, by having a slightly greater nAUC and Rank-1 values for almost each de-

scriptor types. Overall results are exceptionally positive since they take into account

possible skeleton tracking inaccuracies but are still comparable with state-of-the-art

reference work for local descriptors-based re-identification [19].
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Figure 4.10: CMC curve computed by performing re-identification on the whole
dataset using Skeleton Parts Matching method.

Re-identification method Rank-1 [%] nAUC

SPM-HIST-CORRELATION 83.7 0.888

SPM-HIST-INTERSECTION 47.7 0.780

SPM-HIST-BHATTACHARYYA 64.3 0.798

SPM-SIFT 25.1 0.588

SPM-SURF 24.3 0.600

FSM-HIST-CORRELATION 83.9 0.890

FSM-HIST-INTERSECTION 60.0 0.800

FSM-HIST-BHATTACHARYYA 64.7 0.816

FSM-SIFT 25.2 0.589

FSM-SURF 24.4 0.601

Table 4.2: Re-identification algorithms performance summary table. FSM suffix
means Full Skeleton Matching and SPM means Skeleton Parts Matching, which are
the two matching strategies proposed and tested.
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Figure 4.11: CMC curve computed by performing re-identification on the whole
dataset using Full Skeleton Matching parts matching method.
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Chapter 5

Conclusions

In this thesis we presented a novel approach for performing re-identification using

local feature descriptors from joint locations of the human body without utilizing

RGB-D sensors and related skeletal trackers. To obtain local keypoints coordinates

we implemented a human pose detector built on top of a Parts Based Detector

detector and augmented its output to work with multiple input cameras. For rei-

dentification purposes, a Person Based Signature is extracted from each detection

by gathering features descriptors from multiple viewpoints and structuring in a sin-

gle signature called Skeleton-based Person Signature. Re-identification results are

achieved by comparing training hand selected models signatures with target signa-

tures acquired automatically from the dataset. To obtain data useful for building

and testing the algorithm, we recorded two multi camera datasets using a system

based on the ROS framework, composed of three Microsoft’s Kinect sensors and two

computers.

We tested the approach on the Three Viewpoints Dataset we recorded and

proved that we can improve pose detection performances leveraging informations

from multiple viewpoints and obtain generally better skeletons in 2D images. We

then evaluated the quality of the re-identification approach when based on such

skeletons. Re-identification tests were performed by comparing many different 2D

features extractors, upon which Histogram descriptors compared with Correlation

distance has shown to give better results. These results can possibly have been

affected by the low resolution of used Kinect sensors, but provide a good example

51
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of a typical video surveillance use case environment. Although the results presented

here have demonstrated the effectiveness of the multi viewpoint approach, it could

be further developed in a number of ways:

• Reworking of the skeleton tracker: the detector speed could be improved lever-

aging multithreading architectures and GPUs, thus obtaining near real time

performances. Detection could also be mixed with tracking in a real time

use, adding time consistency constraint between subsequent detections, which

could dramatically improve accuracy.

• Enhancing features in 3D space: theoretically, if the skeleton tracker could

provide higher accuracy detections, features could be extracted from keypoints

in a smarter way. For example it would be possible to estimate occluded

parts and remove them from signature matching. It would be also possible to

determine persons orientation in 3D space and therefore to obtain a real space

and orientation aware descriptor on a 3D model.
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Nomenclature

CMC Cumulative Matching Characteristic Curve

DAG Directed Acyclic Graph

FSM Full Skeleton Matching

HSV Hue Saturation Value (color model)

IR Infrared

MRE Minimization of Reprojection Error

PBD Parts Based Detector

PCL Point Cloud Library

RGB Red Green Blue (color model)

RGB-D Red Green Blue + Depth

SIFT Scale-Invariant Feature Transform

SPM Skeleton Parts Matching

SPS Skeleton-based Person Signature

SURF Speeded Up Robust Features
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