
Università degli Studi di Padova

DIPARTIMENTO DI DI INGEGNERIA DELL’INFORMAZIONE

Corso di Laurea in Ingegneria dell’Automazione

TESI DI LAUREA MAGISTRALE

Applications Oriented Optimal Input
Design: An Analysis of a quadruple water

tank process

Laureando

Antonio Balsemin
Relatore

Prof. Giorgio Picci

Anno Accademico 2012-2013





Abstract

Model predictive control (MPC) has become an increasingly popular control

strategy thanks to its ability to handle multivariable systems and constraints.

This control technique makes use of a model of the system, therefore perfor-

mances are highly dependent on the accuracy of the model chosen. The process

of obtaining the model is often costly, for this reason system identification

for MPC is an important topic. Applications oriented optimal input design

enables optimization of the system identification experiments, leading to a set

of models with the necessary accuracy for the intended application. In this

thesis a method of system identification for MPC applications is simulated

on a multivariable nonlinear system consisting of four interconnected water

tanks. An analysis of the impact of MPC settings, such as active or no active

constraints and different weight settings, is carried out. The initial hypothesis

is that different MPC settings influence the obtained set of models. Simulations

show that the hypothesis is correct and the result give rise to some interesting

interpretations.
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1
Introduction

This master’s thesis project was carried out at the Department of Automatic

Control, Royal Institute of Technology and is based on the research of the

PhD. Students Christian Larsson and Mariette Annergren. The needs to verify

the theoretical results of their research on a concrete and interesting control

problem is the motivation for this project work.

1.1 Main Topics

The main topics of this Master Thesis Project are model predictive control,

system identification, optimal input design and convex optimization.

Model predictive control (MPC) is a particular type of controller which makes

use of an internal model to predict the behaviour of the controlled system,

starting at the current time, over a future prediction horizon. The predicted

behavior depends on the input trajectory that is to be applied over the prediction

horizon. The idea is to select the input that gives the best predicted behavior,

that, at the same time, minimize a function cost. At each step, the whole

input trajectory is computed but only the first element of it is applied to the
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system. At the next step this procedure is repeated, [16]. As we said, the MPC

controller has an internal model, that is used to describe the real system. The

accuracy of the model, affects the control performance of the MPC. Procedures

involving system identification are often used to construct the model.

“System identification deals with the problem of building mathematical models

of dynamical systems based on observed data from the system”, [15]. The

goal is to find a model M that describes the relevant properties of the studied

system S. The main steps of the identification process is to:

• collect data from the system (inputs and outputs),

• define a set of candidate models, choosing a model structure,

• choose a criterion by which candidate models can be assigned using the

data,

• estimate parameter values based on data, structure and criterion,

• validate the model.

The validation step involves various procedures to assess how the model is

related to observed data. If a model does not pass the model validation test,

we must go back and revise the various steps of the procedure.

Optimal input design relates to finding the input signal that assures that

the estimates become as good as possible. The traditional way to obtain an

informative experiment is to minimize the covariance matrix of the estimated

parameter vector. However, in application oriented input design, [12], [8], et

cetera, the focus is shifted towards the application of the estimated model.

Instead of the covariance matrix of the estimated parameter vector, the distance

between nominal performance and performance achieved with the model is

considered.

Convex optimization is a class of mathematical optimization. In this class, the

objective and the constraint functions have to be convex. General optimization

problems can be very difficult to solve or even intractable. Moreover if they are

solvable, they can require very long computation time. Convex optimization

problems, on the other hand, are solvable and the solutions can be found

efficiently and reliably. For these good qualities one should always rewrite an

optimization problem in convex form, whenever possible.
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1.2 Problem formulation

For controllers based on a model of the system, the accuracy of the model is

crucial. Mathematical models can not perfectly describe the systems they are

meant to describe. This discrepancy is called plant-model mismatch. When a

specific application is considered, usually not all system properties have the

same importance. Hence it is crucial that the model used by the controller

captures the system properties important for the intended application. These, in

fact, affect the control performance more evidently. The quality of the estimated

models is affected by the input used in the identification experiment. Optimal

input design is used as a tool, to obtain an input signal that uses as little

resources as possible, while guaranteeing that the performance specifications in

the intended application are met. Thus giving a set of acceptable models. This

problem is formulated as follows [12]

minimize
input

Experimental effort

subject to Performance specifications
(1.1)

Within the framework described, we consider a particular nonlinear system

composed by four interconnected water tanks controlled by MPC. This system

has the ability to change one zero location, from minimum phase to non

minimum phase by simply acting on a physical parameter. An analysis of the

impact of MPC settings, such as active or no active constraints and different

weight settings, is carried out.

1.3 Related Work

The research performed by Prof. Bo Wahlberg [18], and Prof. H̊akan Hjalmars-

son [8], deals with experiment design for system identification (more references

in this field can be found in the references of [18] and [8]). They combine the

criterion, that the model should fulfil in the system identification process, with

the requirements on the system’s behaviour in the control theory problem. In

[8] the cost of complexity is defined as the minimum possible experimental

effort required to obtain a parameter estimate that guarantees the desired

performance in the control application. Furthermore, it was underlined that

the identification experiments should reveal system properties important for
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the application and conceal irrelevant properties.

The identification experiment can be performed in open loop or in closed loop.

Open loop identification is when there is no feedback control of the system

during the identification experiment. Closed loop identification is when there

is feedback control. Methods for optimal input design in system identification

for control with open loop identification have been extensively treated in [8],

[14], [13], [12], [19].

In [19] model based control design methods, such as MPC, where the model is

obtained by means of the prediction error system identification method, are

studied. The accuracy of the model used in this control method is a main

issue, as it is strictly related to degradation in control performance. Control

performance is defined using a cost function that specifies which parameter val-

ues give acceptable performance. The objective is to find a minimum variance

input signal to be used in the system identification experiment, such that the

control performance specification is fulfilled with a given probability when using

the estimated model in the control design. This problem can be reformulated

as a convex optmization problem. Examples with FIR models show that up

to a factor two in input power can be gained when using the optimal input

compared to white noise. Other examples, show that much higher gain can be

obtained in input power.

MPC applications are discussed more in [13], where a water tank process is

considered. A scheme for optimal input design in a MPC context is presented,

the major challenges with the practical implementation are highlighted, and

an algorithm for identification experiments is proposed. It is also pointed

out that there is no good way to consider time domain constraints in the

identification part of the method, but they can be included in the calculation

of the application cost.

Thanks to the work of Mariette Annergren and Christian Larsson a Model

Based Optimal Input Design Toolbox for Matlab (MOOSE) has been developed,

[4]. It simplifies the implementation of optimal input design problems, providing

an extra layer between the user and CVX, a package for specifying and solving

convex programs [7, 6]. At the time of writing, MOOSE only handles open

loop identification.
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1.4 Thesis outline

The thesis is organised in Chapters. In Chapter 2 treats the background.

Chapter 3 focuses on the application oriented optimal input design in an MPC

context. In Chapter 4 the quadruple water tank system is described. In

Chapter 5 are presented the results obtained from the simulations, results are

briefly described. A more detailed analysis and comparisons of the results, are

presented in Chapter 6.
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Background

2.1 Convex Optimization

A convex optimization problem can be written in the following form,

minimize
x

f(x)

subject to gi ≤ 0, i = 1, . . . ,m
(2.1)

where the functions f and g are convex. A particular kind of these problems is

the so called Semi Definite Program (sdp) in which the objective function f is

linear and the inequality constraints gi ≤ 0 are called Linear Matrix Inequalities

(lmi). These problems have the following form

minimize
x

cTx

subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0,
(2.2)

where Fi, G ∈ Sk and Sk is a set of k × k symmetric matrices. In (2.2) it is

possible to include multiple lmi constraints. For example the two constraints,

x1F1 + x2F2 + · · ·+ xnFn +G � 0, x1H1 + x2H2 + · · ·+ xnHn +R � 0,
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can be rewritten in a single lmi constraint as follows

x1

[
F1 0

0 H1

]
+ x2

[
F2 0

0 H2

]
+ · · ·+ xn

[
Fn 0

0 Hn

]
+

[
G 0

0 R

]
� 0.

Convex problems have the important property that if a solution is found, it

is guaranteed to be globally optimal. Convex optimization problems can be

solved reliably and efficiently, using one of the available optimization solvers.

A very extensive reference to deepen the knowledge about convex optimization

is [3].

2.1.1 Optimization software

Prof. Stephen Boyd and Dr. Michael Grant at the Department of Electrical

Engineering, Stanford University, have developed a programming framework

for convex optimization problems called cvx, [7]. It is implemented in the

software Matlab and uses Matlab-syntax.

The PhD. Students Mariette Annergren and Christian Larsson developed a

Matlab Toolbox for optimal input design called MOOSE, [4]. MOOSE is a

model based optimal input design toolbox which simplify implementation of

optimization problems found in input design. It provides an extra layer between

the user and a convex optimization environment. For the flexibility and easy

setting up of optimization problems this toolbox was used in this master thesis

project.

2.2 Model predictive control

Model predictive control is a control method which has made a significant

impact on control of industrial processes, especially in the petrochemical

industry. In fact, most petrochemical plants and refineries have implemented

MPC [21]. Due to increased microprocessor speeds, MPC is spreading out into

other application fields. For example, for controlling heating and ventilation

systems in buildings. Main reasons that prompt the use of MPC are the simple

treatment of multivariate processes and the ability to handle constraints on

state variables and signals. Constraints can arise from physical limitations of

the plant (consider for example saturation limits due to actuators), or they
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can be of different nature as desired accuracy in product specifications or

economical effort, et cetera.

At the core of any MPC implementation there is a model of the process that

has to be controlled. Typically the model is a linear, in discrete time model,

and can be written as,

x(t+ 1) = Ax(t) + Bu(t) + v(t),

y(t) = Cx(t) + w(t).
(2.3)

Here x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the controlled input signal,

y(t) ∈ Rp the measured output, and v(t) and w(t) are stationary, zero-mean,

white signals commensurate with x(t) and y(t).

The MPC makes use of a model of the system and the measured data from the

system to predict the system’s future output signals, as a function of future

input signals. The predicted inputs and outputs are used in an objective

function, that penalizes undesired behavior, and it is minimized with respect

to the future input sequence. When an optimal input trajectory is obtained,

just the first element of the sequence is applied to the system. The procedure

is then repeated at the next time step.

A key feature of MPC is that constraints on states, inputs and outputs can easily

be taken into account using constrained optimization methods. The control

input is computed, optimizing an objective function over a future prediction

horizon. The prediction horizon, denoted Ny, defines the number of samples of

the output that are predicted and the control horizon, denoted Nu, defines the

number of samples of the input that are used in the optimization algorithm.

The predicted behaviour of the system, that is ŷ(t + i|t) for i = 1, · · ·Ny,

depends on the assumed input trajectory û(t + i|t) for i = 0, · · · , Nu − 1,

that is used over the control horizon. At time t it is assumed to collect the

measurement y(t) and the input û(t|t) is computed at the same time sample.

Once a future input trajectory has been chosen, only the first element of this it

is applied to the system, that is u(t) = û(t|t). In the next time sample, a new

measurement of the output is collected and the whole cycle of prediction of

output and evaluation of the input trajectory is repeated. The length of the

prediction and control horizons remain the same in each iteration, but they are

shifted one time step ahead. This control technique is often called a receding

horizon strategy.
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Figure 2.1: The receding horizon idea, [1]. In the upper figure at time t an input trajectory
is evaluated (here p correspond to control horizon Nu) but only the first element is applied
in the system as shown in the lower figure. At time t+ 1 a new optimal control is evaluated.

A common choice for the objective function used in MPC is [16]

J(t) =

Ny∑

i=0

‖ ŷ(t+ i|t)− r(t+ i) ‖2
Qy

+
Nu∑

i=0

‖ ∆û(t+ i) ‖2
Qu

(2.4)

where ŷ(t+ i|t) is the predicted output, r(t) is the reference and ∆û(t+ i) =

û(t+ i)− û(t+ i− 1) is the increment of the input at time t. The norm ‖ x ‖A
is equal to

√
xTAx. The weighting matrices Qy and Qu, which are usually

diagonal matrices, are tunable parameters.

The general optimization problem in MPC can be formulated as

minimize
u(t),u(t+1),··· ,u(t+Nu)

J(t)

subject to ŷ(t), ŷ(t+ 1), · · · , ŷ(t+Ny) ∈ Y
u(t), u(t+ 1), · · · , u(t+Nu) ∈ U

(2.5)

where Y and U represent the constraint sets for outputs and inputs respectively.

The MPC problem as presented above can be formulated as a Quadratic Problem

(QP) for which highly reliable and efficient solvers are available. The design

parameters of the MPC are

• the model used in the MPC (matrices A, B and C);

• prediction and control horizon Np and Nu;

• weighting matrices Qy and Qu;
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• constraints on inputs, umin, umax (which are usually given by the system,

e.g. saturations in actuators);

• constraints on outputs, ymin, ymax (which are usually imposed, e.g. by

safety limits).

Most important to ensure good performance of the MPC is to have a model

that describe with high accuracy the important properties of the system that

has to be controlled. Plant-model mismatch can cause constraints violation or

even instability in reference tracking applications. If a nonlinear system has to

be controlled with MPC a linearized model, around an equilibrium point, has

to be provided.

2.3 System identification

System identification is the process of constructing models of dynamic systems

from experimental data. The goal is to find a model M belonging to a given

class of parametric models that describes the relevant properties of the studied

system S. Identification experiments can be performed in open loop or in closed

loop. In open loop identification there is no feedback control of the system

during the identification experiment while in closed loop we have feedback

control during the identification experiment. In this thesis all identification

experiments are performed in open loop.

In the context considered in this thesis, the systems we want to identify are

linear time-invariant, asymptotically stable multivariate systems on the form

S :
x(t+ 1) = Ax(t) + Bu(t) + v(t)

y(t) = Cx(t) + w(t)
(2.6)

with known input u(t) and measured output y(t). The noises v(t) and w(t)

are white, zero-mean stationary processes with covariance matrices Λv and Λw.

They are called process noise and measurement noise, respectively. Different

identification methods are possible for finding the modelM. Such methods can

be parametric or non-parametric and can be performed in both time domain

or frequency domain. In this thesis we consider a parametric time domain
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identification method. The model structure is

M(θ) :
x̂(t+ 1, θ) = A(θ)x̂(t, θ) + B(θ)u(t) + K(θ)e(t)

y(t, θ) = C(θ)x̂(t, θ) + e(t),
(2.7)

where θ ∈ Rn represents the unknown parameter vector to be identified and

e(t) is a zero-mean, white process with covariance matrix Λe. It is assumed

that the model class M(θ) include the true system. That is, there exists a

true parameter vector θ0 such that S =M(θ0). The model structure in (2.7)

is in innovation form. That it is not restrictive since it is always possible to

transform a state space representation to the innovation form. Indeed a model

on the same form as (2.6) can be rewritten in innovation form using spectral

factorization. We must solve the Riccati equation

P (θ) = A(θ)P (θ)AT (θ) + Λv(θ)− [A(θ)P (θ)CT (θ) + S(θ)]

× [C(θ)P (θ)CT (θ) + Λw(θ)]−1[C(θ)P (θ)AT (θ) + ST (θ)].

Where S(θ) = EvwT . The solution P (θ) is a symmetric positive definite matrix.

With P (θ) one can compute the Kalman gain

K(θ) = [A(θ)P (θ)CT (θ) + S(θ)][C(θ)P (θ)C(θ)T + Λw(θ)]−1,

thus obtaining a model of the same form as (2.7). The estimates of θ are found

using the prediction error method [15], this method and the properties of the

resulting estimates are summarized next.

Prediction error method

Given a modelM(θ) belonging to a parametric class of models and a sequence

of input-output data

yN = {y(t); t = 1, 2, ..., N} , uN = {u(t); t = 1, 2, ..., N} ,

this method can be summarized as follows [17],

1. For a general value of θ the one step ahead predictor is constructed. If a

model of the form (2.7) is used, the one step ahead predictor is given by
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[15]

x̂(t+ 1, θ) = A(θ)x̂(t, θ) + B(θ)u(t) + K(θ)(y(t)− ŷ(t, θ)),

ŷ(t, θ) = C(θ)x̂(t, θ).
(2.8)

2. The prediction errors are constructed

εθ(t) = y(t)− ŷ(t, θ), t = 1, 2, ...N.

3. The parameter estimate is found minimizing a cost function represented

for example by

VN(θ) =
1

N

N∑

t=1

εθ(t)
2 (2.9)

minimizing (2.9). The parameter vector estimate is obtained as

θ̂N = argmin
θ

VN(θ) (2.10)

4. The variance of innovation λ = var {e(t)} estimate is obtained evaluating

the (2.9) at the parameter estimate vector θ̂N

λ̂N = VN(θ̂N)

To determine how good this method is, we look at its asymptotic properties.

That is, when the number of samples used in the identification experiment goes

to infinity.

As stated in [15], we assume that the (true) process can be described by a

model M(θ). Under mild assumptions on the data, and model, and the cost

function chosen as in (2.9), then the PEM estimator is consistent, or in other

terms,

lim
N→∞

θ̂N = θ0 w.p.1 (2.11)
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Furthermore the asymptotic distribution is given by [15]

√
N(θ̂N − θ0) ∈ N (0,P) as N →∞, (2.12a)

P =
[
E
{
ψ(t, θ0)Λ−1

e ψT (t, θ0)
}]−1

, (2.12b)

ψ(t, θ0) =
dŷ(t)

dθ

∣∣∣∣
θ=θ0

. (2.12c)

The X 2-distribution can be used to describe the estimates convergence. In

fact, if we consider a variable y ∼ N (µ,Σ) with mean µ ∈ Rm and covariance

matrix Σ ∈ Rm×m positive definite, then it holds that

(y − µ)TΣ−1(y − µ) ∼ X 2(m),

where the number of degrees of freedom of the X 2 distribution, is given by the

dimension of y. An α-level confidence ellipsoid (that we call the identification

ellipsoid) for the estimated parameters is given by [8]

ESI(α) =

{
θ : [θ − θ0]TP−1[θ − θ0] ≤ X

2
α(n)

N

}
. (2.13)

The constant X 2
α(n) is the α-percentile of the X 2 distribution with n degrees

of freedom. This means that if the number of samples N is sufficiently large

the identification ellipsoid will contain θ̂N with probability α. The confidence

ellipsoids will prove to be useful in the optimal input design.

2.4 Identification with a control objective

A controller based on a model of the system will achieve good performance if

the accuracy of the identified model used by the controller (in the important

directions of the parameter space) is high. The concept of important direction

will be clarified in Section 3.3.1. The objective of optimal input design is to

deliver a model that when used in the intended application will give acceptable

performance. To have a measure of degradation of control performance, and

to be able to define acceptable performance in the intended application, an

application cost function is used, see [8]. Since the models considered are

parametrized by the vector θ, the application cost becomes a function of θ. If

an exact mathematical model of the true system was available, that is, if θ0 was
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known, the desired performance would be obtained. However, when the model

does not correspond to the true system, the mismatch can cause a degradation

in the controller performance.

Definition 2.4.1. (Application cost, [12]) If θ ∈ Rn is a parameter vector

corresponding to the model M(θ), and S =M(θ0), the function

Vapp(θ) : Rn → R+, (2.14)

is an application cost if it has the following properties,

Vapp(θ0) = 0, V
′
app(θ0) = 0, V

′′
app(θ0) � 0, (2.15)

The application cost gives a scalar number that shows how much performance

degrades when a parameter vector θ is used, instead of the true parameter

vector θ0 in the intended application. In any application there is a maximal

allowed performance degradation, this gives an upper limit of the application

cost that we can express on the form

Vapp(θ) ≤
1

γ
(2.16)

for some real-valued positive constant γ. This bound gives a set of parameters

that correspond to acceptable application performance.

Definition 2.4.2. (Application set, [12]) If Vapp is an application cost and

γ ∈ R+, the application set is defined as

Θapp(γ) =

{
θ : Vapp(θ) ≤

1

γ

}
. (2.17)

This leads to the idea that the objective of applications oriented system identi-

fication should be to deliver parameter estimates that belong to the application

set.
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2.5 Applications oriented optimal input

design

As stated in [12], the objective of applications oriented optimal input design is

to find an input that with high probability α, results in acceptable parameters θ,

that satisfy condition (2.16), while at the same time minimizing the experimental

effort of the identification experiment. It is possible to formulate this problem

as follows
minimize

input
Experimental effort

subject to P {θ ∈ Θapp(γ)} ≥ α.
(2.18)

Meaning, that the aim of the application optimal input design the experimental

effort is to find the input that minimize an experimental effort, while the esti-

mates are acceptable parameters with high probability α. In the optimal input

design problem it is necessary to quantify the experimental effort. Quantifying

experimental effort is not obvious but some common possibilities are to look at

• experiment length, N,

• input power i.e. var {u},

• input energy i.e. N · var {.u}.

In the rest of the thesis focuses on input power. The objective of the optimization

problem (2.18) is defined as [13]

trace

(
1

2π

∫ π

−π
Φu(ω)dω

)
(2.19)

To see the way the input comes into the system identification problem, as a

design variable, it is useful to have a look at the frequency domain expression

of P−1. By Parseval’s theorem, P−1 is given by the following lemma [12].



2.5 Applications oriented optimal input design 17

Lemma 2.5.1. In open-loop identification, the inverse covariance matrix P−1

in (2.13) is an affine function of the input spectrum Φu given by

P−1 =
1

2π

∫ π

−π
Γ1(ejω)Λ−1

e ⊗ Φu(w)ΓH1 (ejω)dω

+
1

2π

∫ π

−π
Γ2(ejω)Λ−1

e ⊗ Λe(ω)ΓH2 (ejω)dω,

Γ1(ejω) =




vec F 1
u

...

vec F n
u


 , Γ2(ejω) =




vec F 1
e

...

vec F n
e




F i
u = H(q, θ)

∂G(q, θ)

∂θTi

∣∣∣∣
θ=θ0

, i = 1, . . . , n,

F i
e = H(q, θ)

∂H(q, θ)

∂θTi

∣∣∣∣
θ=θ0

, i = 1, . . . , n,

G(q, θ) = C(θ)(qI −A(θ))−1B(θ),

H(q, θ) = C(θ)(qI −A(θ))−1K(θ) + I.

(2.20)

Where θi represent the i-th component of the vector θ. Furthermore vec X is

the row vector with rows of X stacked next to each other.

A proof of this Lemma can be found in [2]. According to Lemma 2.5.1 and

expression (2.20), it turns out that, in open loop identification, P−1 is an affine

function of the input spectrum Φu. Consequently by a linear parametrization

of the input spectrum, input spectrum constraints can be formulated as lmis,

for details see [9].

Approximation of the application set

It is not guaranteed that in the problem formulation (2.18) the application set,

defined by Vapp(θ) and γ, is convex. But it is possible to use an approximate

description of Θapp(γ) instead. Two different possibilities to do it are presented

in [12]:

• ellipsoidal approximation,

• scenario based approach.
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Ellipsoidal approximation

Using a second order Taylor expansion of Vapp(θ), this can be approximated

around θ0. According to Definition (2.4.1), Vapp(θ0) = V
′
app(θ0) = 0, then

Vapp(θ) ≈ Vapp(θ0) + [θ − θ0]T V
′
app(θ0) +

1

2
[θ − θ0]T V

′′
app(θ0) [θ − θ0]

=
1

2
[θ − θ0]T V

′′
app(θ0) [θ − θ0] .

(2.21)

Using expression (2.21) in (2.16), the inequality that defines the allowed perfor-

mance degradation can be approximated by

[θ − θ0]T V
′′
app(θ0) [θ − θ0] ≤ 2

γ
. (2.22)

Meaning, that the application set can be approximated by the ellipsoid

Θapp(γ) ≈ Eapp =

{
θ : [θ − θ0]T V

′′
app(θ0) [θ − θ0] ≤ 2

γ

}
. (2.23)

The approximate application set Eapp is called the application ellipsoid, [12]. In

[12] it is also pointed out that for large values of γ (that is for high performance

demands) the approximation will be better than for small values. An example

of an application ellipsoid is provided in Figure 2.2. In this thesis the ellipsoidal

approximation is used.

Scenario based approach

A different approximation is introduced in [14], in an experiment design context.

The approximation is obtained by randomly selecting parameters from Θapp(γ)

to represent the set. Thus, the approximated application set is simply given

by the selected parameters. The more parameters that are selected, the more

accurate the approximation of Θapp(γ) is. This method will not be explained

more in detail, since in this thesis the ellipsoidal approximation will be used

instead.
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Figure 2.2: When the parameter vector has only two components, the application ellipsoid
can be represented in a 2-D figure (Outer ellipse, represented in blue). The ellipse colored in

black is the identification ellipse. The center of the ellipse is the parameter θ0

Approximate optimization problem

Using the ellipsoidal approximation, the optimization problem (2.18) can be

written as
minimize

Φu

trace
(

1
2π

∫ π
−π Φu(ω)dω

)

subject to ESI ⊆ Eapp

Φu(ω) � 0 for all ω

(2.24)

Where the constraint on the input spectrum in (2.24) is an infinite dimensional

constraint which is possible to rewrite as an lmi constraint using finite dimen-

sional parametrization of input spectrum and the kyp-lemma, see [12] for more

details. The optimization problem (2.24) can be reformulated as a semi-definite

program and solved efficiently, see e.g. [16].
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3
Experiment design for model predictive

control

3.1 Application cost

An application cost is a tool that permits to quantify how good is an estimated

model, if used in a specific application. As seen in Section 2.3 the model

structure of our estimated models is fixed. Hence, evaluating the application

cost for a parameter vector θ, quantifies degradation of performance when that

parameter is used. Furthermore, application cost shows, in which directions, in

the parameter space, the performance is more sensitive to parameters variations.

The analysis gives an insight into which parameters, or combination of them,

that are more important to estimate with high accuracy. As stated in [13], by

calculating the difference between the output of the system controlled by an

MPC, based on a model using θ 6= θ0 and one based on θ0, denoted y(t, θ0) and

y(t, θ) respectively, a reasonable application cost for the MPC case is given by

Vapp(θ) =
1

N

N∑

t=1

‖ y(t, θ0)− y(t, θ) ‖2 . (3.1)
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This function has the desired properties defined in Definition 2.4.1. Usually

it is unlikely that one can know the value of θ0 or try MPCs with different

parameter vectors directly on the true system. Hence in [13] an approximate

application cost, Ṽapp, is introduced. The true output of the system, y(t, θ0),

is replaced by the output of a linear model that use an estimated parameter

vector θ̂. This gives,

Ṽapp(θ, θ̂) =
1

N

N∑

t=1

‖ y(t, θ̂, θ̂)− y(t, θ, θ̂) ‖2 . (3.2)

Where the second argument in (3.2) represents the parameter vector of the

model used by the MPC. The third argument is the parameter vector of the

linear model replacing the true system.

As seen in Section 2.4, to define an application set, it is necessary to set an

upper limit of the application cost, that is to choose a value for γ. The choice is

highly application dependent. In [13], for reference tracking application using

an MPC, allowing for a level of 1 % of degradation in the performance, it is

chosen as

γ =
100

V (θ0)
. (3.3)

Where

V (θ0) =
1

N

N∑

t=1

‖ y(t, θ̂, θ̂)− r(t) ‖2 . (3.4)
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Figure 3.1: Level curves of Vapp(θ) and ellipsoidal approximation of Ṽapp(θ, θ̂) centered in
θ0. The offset in the direction of the application ellipsoid, can be explained by the fact that,
to evaluate Ṽapp(θ, θ̂) a linear approximation of the true model is used instead. It is possible

to notice, that the level curves are not ellipses and are not centered in θ0.
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3.2 Identification experiments

In all simulations that will be presented in Chapter 5 the true system is

represented by a nonlinear model. The nonlinear model is linearized around

an equilibrium point and discretized. This gives a model M(θ0), in the same

form as in (2.7). All identification experiments are performed in open loop.

The models identified have a fixed structure, hence a grey box identification is

performed using the IDGREY and PEM commands of MATLAB.

3.2.1 Identification algorithm

A complete application oriented identification method is presented in [13].

Algorithm

Step 0 Obtain an initial estimate of the model parameters using a white noise

input sequence in the first identification experiment.

Step 1 Find the application cost based on simulations of the model with the

parameter estimates.

Step 2 Design the optimal input signal based on the application cost and param-

eter estimates.

Step 3 Find a new estimate of the model parameters using the optimal input

signal in the system identification experiment.

As stated in [13], if a good initial guess of the parameters is available, for

example coming from physical insight of the process, this guess can replace

the initial estimation in Step 0. Furthermore, in [13] it is pointed out that

the algorithm can be iterated. In fact the estimate from Step 3 can be used,

instead of the initial guess, in Step 1 and 2.

The algorithm is also represented in a block diagram in Figure 3.2. The non

linear model is excited by a white Gaussian noise n with low variance, around

an equilibrium point, to find an initial estimate θ̂. This initial estimate is used

by an MPC to control a linear modelM(θ̂) that should represents the linearized

model of the true system. This gives the trajectory y(θ̂, θ̂), see Section 3.1.

Another MPC using a parameter θ 6= θ̂ is then used to control the same linear

model M(θ̂). This gives the trajectory y(θ, θ̂), see Section 3.1. These two
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trajectory are used to evaluate Ṽapp(θ, θ̂). Considering many simulations, for

different values of θ, the hessian matrix Ṽ
′′
app(θ̂, θ̂) can be calculated. Based on

the hessian matrix the optimal input design problem is solved. The resulting

input design is optimal forM(θ̂) but may not be optimal for the true nonlinear

model.

In Chapter 4 this algorithm will be applied to a multivariable process of four

interconnected tanks. In Chapter 5 simulations will be performed, both using

optimal input and white noise input, with different system setups allowing for

comparisons.

MPC(θ̂)

MPC(θ)

M(θ̂)

M(θ̂)

Ṽapp(θ, θ̂)

y(θ̂, θ̂)

y(θ, θ̂)

r

MPC simulation

MOOSE
Ṽ

′′
app(θ̂, θ̂)

SYS IDS
n

y

θ̂

Φo
u

Signal generation
uopt

S

SYS ID

θ̂

MPC(θ̂)

MPC(θ)

M(θ̂)

M(θ̂)

Ṽapp(θ, θ̂)

y(θ̂, θ̂)

y(θ, θ̂)

r

MPC simulation

MOOSE
Ṽ

′′
app(θ̂, θ̂)

SYS IDS
n

y

θ̂

Φo
u

Signal generation
uopt

S

SYS ID

θ̂

Figure 3.2: Identification Algorithm. An initial identification experiment using a white
gaussian noise n gives an initial parameter vector θ̂ (upper figure). In the lower figure Step
1, 2 and 3 of the algorithm are schematically represented. The control performance are
evaluated for different values of θ. This is done simulating a model of the system (M(θ̂))

controlled by an MPC using θ̂ and another MPC using θ. The output trajectories y(θ̂, θ)
and y(θ, θ) are used to evaluate the approximate application cost V

′′

app. This is used by the
toolbox MOOSE to evaluate the optimal input spectrum Φo

u and the with that the optimal
input uopt can be realised. The latter is then used for a new identification experiment giving

a new estimated parameter.



26 Experiment design for model predictive control

3.3 Sensitivity analysis

3.3.1 Important directions

When an estimated parameter vector is used, instead of the true one, the per-

formance degrades. Variations of the estimated parameters from the true ones

cause plant-model mismatch, thus giving worse performance. It is interesting to

notice that not every variation, give the same performance degradation. As seen

in Section 3.1, the application cost can be used, to get in which directions the

performance is more sensitive to parameters’ variations. The analysis is done

considering the application ellipsoid Eapp. As defined in (2.23) the application

ellipsoid is defined by using the hessian of the application cost. When the latter

can not be evaluated (see Section 3.1), Ṽ
′′
app(θ, θ̂) is used instead.

When we consider a two dimensional parameters vector, the application el-

lipsoid can be represented in a 2-D figure as an ellipse. The lengths of the

semi-axes are given by
1√
λi

, where λi are the eigenvalues of Ṽ
′′
app(θ, θ̂). The

directions of the axis are given by the respective eigenvectors. An example of

an application ellipsoid is represented in Figure 3.3. The two arrows represent

the semi-axis of the ellipsoid. From Figure 3.3 one can easily understand, that

just a little variation of the parameters in the direction of the smallest semi-axis

(represented by the red arrow in Figure 3.3), can be tolerated to obtain the

desired performance. While, in the direction of the largest semi-axis, a bigger

variation of the parameters can be tolerated.

Summarizing, looking at the eigenvalues of Ṽ
′′
app(θ, θ̂), one can understand which

combinations of the parameters influence more the performance. Coefficients

of these combinations of parameters are given by the respective eigenvectors.

3.3.2 Area

It is also interesting, to evaluate the volume of the application ellipsoid. This

in the case that θ ∈ R2 corresponds to the area of the ellipse. The general

expression to evaluate the volume of an ellipsoid, is stated for example in [3].

Given an ellipsoid centered in the origin, defined in the following form,

EX =
{
z | zTX−1z ≤ 1

}
, (3.5)
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Figure 3.3: Application ellipsoid Eapp.

where X = XT � 0, that is, X is symmetric and positive definite. The volume

of the ellipsoid is proportional to (detX−1)
1
2 =

1√
λ1 · λ2 · · ·λn

, where n is the

dimension of X.

The area will be used in Chapter 5 to compare application ellipsoids obtained

using different MPC settings.
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4
The quadruple water tanks process

4.1 Process description

The process is composed by four interconnected water tanks, two pumps and

two valves, that divide the water flow in upper and lower tanks. The tanks are

stacked one over each other in couples and numbered as schematically showed

in Figure 4.1. Each tank has a hole at the bottom where water can flow out.

The flow of the two upper tanks goes into the respective lower tank, while

the flow of the two lower tanks goes in a common water container arranged

below the tanks. The pumps are connected in such a way that pump 1 delivers

water to tank 1 and 4, while pump 2 delivers water to tank 2 and 3. The

process has some physical constraints, as described in Table 4.1. The water

level in each tank is measured by pressure sensors at the bottom of the tank.

The sensors are characterized by a conversion constant which is known to be

kc = 0.2 V/cm. The outputs of the process are the pressure sensor signals from

the lower tanks. The inputs of the process are the voltages applied to the two

pumps. Depending on the setting of the two valves one can decide the fraction

of water that will be delivered to the upper tank and to the lower. The valve

setting determines if the process is minimum phase or not.
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Parameter Limit Description
hi,max 25 cm Maximum water level of tank i
hi,min 0 cm Minimum water level of tank i
uj,max 15 V Maximum voltage of pump i
uj,min 0 V Minimum voltage of pump i

Table 4.1: Physical constraints of the quadruple tank process.

Nonlinear model

The process is very well described by a system of nonlinear differential equations.

One can express the variation of the volume V of water in each tank with the

following expression
dV

dt
= qin − qout (4.1)

where qin and qout represent the total inflow and outflow of water respectively.

The outflow of water of each tank can be found, using Torricelli’s principle1

and given the cross sectional area a of the outlet hole of the tank, to be

qout = a
√

2gx, (4.2)

where x is the level of water in the tank and g = 981 cm/s2 is the gravitational

constant.

The inflow of water to the upper tanks, comes from the flow generated from a

pump. For the lower tanks, in addition to the pump flow, there is also the flow

coming from the upper tanks. The outflow q of a pump is proportional to the

applied voltage u, that is q = ku where k is the constant of the pump. The

flow q is then divided into the respective upper and lower tanks, according to

the setting of the valves. Hence flows to upper and lower tanks are given by

qL = γku, qU = (1− γ)ku, γ ∈ [0, 1] (4.3)

where γ represents the setting of the valve that is connected to the pump. In

(4.3) qL denotes the flow to the lower tank and qU is the flow to the upper tank.

The measurement noises are modelled as zero mean white Gaussian noise. The

measurement noises of each output are uncorrelated with each other.

1Torricelli’s law states that the speed, v, of a fluid through a sharp-edged hole at the
bottom of a tank filled to a depth h is the same as the speed that a body would acquire in
falling freely from a height h, [20]
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Figure 4.1: The quadruple water tanks process.

The previous expressions lead to the following system of nonlinear differential

equations

dx1

dt
= −a1

A

√
2gx1(t) +

a3

A

√
2gx3(t) +

γ1k1

A
u1(t),

dx2

dt
= −a2

A

√
2gx2(t) +

a4

A

√
2gx4(t) +

γ2k2

A
u2(t),

dx3

dt
= −a3

A

√
2gx3(t) +

(1− γ2)k2

A
u2(t),

dx4

dt
= −a1

A

√
2gx4(t) +

(1− γ1)k1

A
u1(t),

y1(t) = kcx1(t) + e1(t),

y2(t) = kcx2(t) + e2(t).

(4.4)

In (4.4), xi is the water level in each tank, A is the cross sectional area of the

tanks (assumed to be the same for all tanks). All the physical parameters used

in the dynamic model are summarized in Table 4.2. From the nonlinear model

(4.4) it is possible to obtain the mathematical expressions for the cross sectional
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Parameter Unit Description
ai cm2 Cross sectional area of water outlet hole of tank i
A cm2 Cross sectional area of the four tanks
γi [·] Fraction of water flow of pump i that goes into lower tank
ki cm3/(s·V) Voltage to volumetric pump constant of pump i
kc V/cm Water level to voltage proportionality constant of sensors

Table 4.2: Physical parameters of the quadruple tank process.

areas of the outlet holes. For a stationary working point (x,u) it holds [11],

a1

A

√
2gx1 =

γ1k1

A
u1 +

(1− γ2)k2

A
u2,

a2

A

√
2gx2 =

γ2k2

A
u2 +

(1− γ1)k1

A
u1,

a3

A

√
2gx3 =

(1− γ2)k2

A
u2,

a4

A

√
2gx4 =

(1− γ1)k1

A
u1.

(4.5)

Rewriting expressions (4.5) we can obtain

a1 =
γ1k1u1 + (1− γ2)k2u2√

2gx1

,

a2 =
γ2k2u2 + (1− γ1)k1u1√

2gx2

,

a3 =
(1− γ2)k2u2√

2gx3

,

a4 =
(1− γ1)k1u1√

2gx4

.

(4.6)

Linear model

The MPC needs a discrete time, linear model of the process on the form

(2.3). Therefore, the nonlinear dynamic model (4.4) will be linearized around a

working point x0 and u0 and then discretized.
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Linearization, made using first order Taylor expansion, gives

AC =




−τ1 0 τ3 0

0 −τ2 0 τ4

0 0 −τ3 0

0 0 0 −τ4



, BC =




k1γ1
A

0

0 k2γ2
A

0 k2(1−γ2)
A

k1(1−γ1)
A

0



,

CC =

[
kc 0 0 0

0 kc 0 0

]
,

τi = ai
A

√
g

2x0i

(4.7)

It is useful for the following analysis to also consider an expression of the transfer

matrix of the system. The Laplace transform of (4.7) yields the transfer matrix

of the system,

G(s) = CC(sI − AC)−1BC ,

[
Y1(s)

Y2(s)

]
= G(s)

[
U1(s)

U2(s)

]
,

G(s) =

[
γ1c1

1+sτ1

1−γ2c1
(1+sτ3)(1+sτ1)

(1−γ1)c2
(1+sτ4)(1+sτ2)

γ2c2
1+sτ2

]
,

(4.8)

where ci = τikikc
A

for i = 1, 2.

Discretization, using zero-order hold with a sampling rate of 1 Hz, gives

A = eAC , B =

∫ 1

0

eAC(1−t)BCdt, C = CC . (4.9)

These matrices are used by the MPC to predict system outputs.

4.2 Valves setting and physical interpretation

Systems that are described by a transfer function

G(s) =
N(s)

D(s)

that have zeros in the right half s plane, are called non minimum phase systems.

On the other hand systems that have all zeros in the left half s plane, are
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called minimum phase systems. The quadruple water tanks process permits to

analyse both minimum phase and non minimum phase behaviors, by modifying

the valves setting. Furthermore the relation between valves setting and position

of the system’s zeros has a straightforward physical interpretation.

The definition of zeros of a multivariable system is given by the following

theorem [5].

Theorem 4.2.1. The zero polynomial of G(s) is the greatest common

divisor for the numerators of the maximal minors of G(s), normalized to have

the pole polynomial as denominator. The zeros of the system are the zeros of

the zero polynomial.

Hence the zeros of the transfer matrix in (4.8) are the zeros of the numerator

polynomial of the following [10],

det G(s) =
c1c2

γ1γ2

∏4
i=1(1 + sτi)

×
[
(1 + sτ3)(1 + sτ4)− (1−γ1)(1−γ2)

γ1γ2

]
.

(4.10)

Thus for γ1, γ2 ∈ (0, 1) the transfer matrix G(s) has two finite zeros. One of

these zeros is always in the left half s plane, while the the other one, depending

on values of γ1, γ2, can be in the left or right half plane. Thus, the system can

be minimum phase or non minimum phase depending on the position of the

moving zero. In [10], it is pointed out that the system is non minimum phase

for

0 < γ1 + γ2 < 1,

and it is minimum phase for

1 < γ1 + γ2 < 2.

Expressions for the total flow of water that goes to upper and lower tanks can

be given by

qlower = q1γ1 + q2γ2 qupper = (1− γ1)q1 + (1− γ2)q2. (4.11)

Where q1 = k1 · u1 and q2 = k2 · u2. If we assume that q1 = q2 = q, then the

expressions in (4.11) can be rewritten as follow,

qlower = q(γ1 + γ2) qupper = q [2− (γ1 + γ2)] . (4.12)
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From (4.12) can be seen that (γ1 + γ2) determines if the total flow of water to

the upper tanks, is higher or lower compared to the total flow to the lower tanks.

Hence, with the assumption that q1 = q2 = q, the system is non minimum

phase if the total flow of water that goes into the upper tanks is higher than

the the total flow that goes into the lower tanks. We can notice that if both

flow ratios γi are big, most of the water flows directly into the lower tanks. If

γi are small, water flows first to the upper tanks and after that into the lower

tanks. In the latter case, pump 1 indirectly fills tank 2 and pump 2 indirectly

fills tank 1. It is intuitively clear that it is easier to control the lower water

levels if the water flows directly into lower tanks.

4.3 Water level control using MPC

An MPC controller is used to control water levels of the two lower tanks (tank

1 and 2 as defined in Figure 4.1). The MPC makes use of the linearized model

of the plant around an equilibrium point (x0, u0), on the form (2.3), to predict

the future outputs of the system, using the following formula

ŷ(t+ k|t) = CAkx(t) +
k−1∑

i=0

Ak−i−1Bu(t+ i). (4.13)

One can see that in the previous formula the complete knowledge of the state

x(t) is needed. When there is no possibility to measure it or if just a part of it

is available for measurement, a state estimator is needed. From the C matrix

expression, see (4.9), can be seen that just two components of the state can be

reconstructed from the outputs. A Kalman filter has to estimate the states not

known.

In Figure 4.2 the diagram block of the system is represented. The cost function

J(t) minimized by the MPC is on the form as in (2.4), v(t) and w(t) are process

and measurement noise respectively.

4.3.1 MPC weights

The weights, that we use to compute the cost function 2.4, are represented

by diagonal matrices with the following form: Qy = qyI and Qu = quI. That

is, both outputs and both inputs have respectively the same weights. The

weights qy and qu have been set manually. Different combinations of the weights
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Figure 4.2: System and controller scheme.

give different response of the system. Thus, in Figure 4.3 we can see that the

response of the system is faster and the input signal variation is sharper, when

an higher weight is given to the outputs compared to the inputs. Figure 4.4,

shows that when using higher weight on inputs instead, the response is slower

but the input signals variation is smoother.

4.3.2 Reference

The reference trajectory consists of steps of 1 cm, around the equilibrium point.

The reference signal is constructed in a suitable way to show if the outputs are

coupled. For this reason when the reference of one output change, the reference

for the other one is kept to the same value. The reference trajectory and the

nominal response of the system, when the model perfectly describe the system

is shown in Figure 4.3.

4.3.3 handling constraints

The inputs in all simulations are constrained to never go below 0.5 V , to ensure

that there is always water in the tubes. If the tubes were drained, an additional

delay would be introduced into the system, that is not captured by the models

used. As has been described in Section 4.2, some values of γ1, γ2 make the

system harder to control. As an example of this in Figure 4.4 a linear model

with γ1 +γ2 = 0.98, is simulated. Figure 4.4 shows that the outputs are coupled

and the constraints on the outputs can still be handled with no problems if the
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Figure 4.3: Nominal response of a linear model, with γ1 + γ2 = 1.23, controlled with a
MPC using exactly the same model. Inputs are constrained to never be below 0.5 V and

over 10 V . Outputs are constrained to be between 14 cm and 16 cm.

inputs are unconstrained. Figure 4.5 shows instead the response of the system

when the inputs are constrained to be between 0.5 V and 10 V .
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Figure 4.4: Nominal response of a linear model, with γ1 + γ2 = 0.98 controlled with a
MPC using exactly the same model. Inputs are unconstrained. Outputs are constrained to

be between 14 cm and 16 cm.
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Figure 4.5: Nominal response of a linear model, with γ1 + γ2 = 0.98, controlled with a
MPC using exactly the same model. Inputs are constrained to never be below 0.5 V and

over 10 V . Outputs are constrained to be between 14 cm and 16 cm.
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5
Simulations

In this Chapter are presented the results of the simulations performed with

the quadruple water tank process described in Section 4.1. The results come

with a brief description leaving for Chapter 6 a more detailed analysis and

comparisons.

Nonlinear model

To perform simulations, we need to choose a model with fixed parameters

that represents the true system. In all the simulations the nonlinear model

(4.4) is considered to be the true system. The physical parameters of the

nonlinear model are described in Table 4.2. In all simulations the set of physical

parameters considered is described in Table 5.1. The estimated models, as

described in Section 3.2, have a fixed structure. The parameter vector θ, consists

of the physical parameters γ1 and γ2. The remaining physical parameters are

the one considered in Table 5.1. The physical parameters can be obtained for

example, with an initial long identification experiment.

The values of the sectional areas of tank’s outlets, are obtained from expressions

(4.6).
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Table 5.1: Physical parameters

Parameter Value
x0 [15, 15, 3, 12] cm
u0 [7.8, 5.25] V
γ1 0.625
γ2 0.625
A 15.52 cm2

ai {0.17, 0.15, 0.11, 0.08} cm2

k1 4.14 cm3/(s·V)
k2 4.14 cm3/(s·V)
kc 1 V/cm

MPC settings

As described in Chapter 2 MPC can be tuned, using weights and constraints. It

is interesting to see, if different MPC settings, affect in some way the sensitivity

analysis described in Chapter 3. Different MPC settings that we can consider

are the following:

• no active constraints. That is, the inputs and outputs do not reach their

maximal and minimal allowed values, during the prediction part of the

optimization problem solved in the MPC (see Section 4.3),

• active constraints. That is, the inputs and outputs actually reach their

maximal and minimal allowed values, during the prediction part of the

optimization problem solved in the MPC,

• large weight on outputs compared to the weight on inputs. That is, the

MPC punishes more variations on outputs, allowing for stronger control

action,

• large weight on inputs compared to the weight on outputs. That is, the

freedom of the action of the MPC is limited. This should increase the

robustness of the MPC.

The MPC settings that are analysed in the sensitivity analysis, are summarized

in Table 5.2. We call these particular settings Scenarios.
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Ny Nu qy qu ymin ymax umin umax
Scenario 1 10 10 1 0.0001 0 cm 25 cm 0.5 V 15 V
Scenario 2 10 10 1 0.0001 14 cm 16 cm 0.5 V 10 V
Scenario 3 10 10 0.1 1 0 cm 25 cm 0.5 V 15 V
Scenario 4 10 10 0.1 1 14 cm 16 cm 0.5 V 10 V

Table 5.2: Scenarios.

Valve settings

As described in Section 4.2 depending on the value of γ1 + γ2, the system is

minimum phase or non-minimum phase. In particular when γ1 + γ2 is close to

1, the system is shifting from minimum phase to non-minimum phase. Thus,

it is interesting to compare the sensitivity analysis when the system is clearly

minimum phase (and clearly non minimum phase), to the sensitivity analysis

when the system is close to shifting between minimum phase and non-minimum

phase. This is performed for each scenario.

Procedure

1. First we choose the value of the true parameter.

2. An initial identification experiment with 1000 samples are performed. The

input used is a Gaussian white noise with covariance matrix Λu = 0.1I.

3. A reference tracking simulation of the initial estimated model is performed.

The parameter used in the MPC is the same used in the model. This

trajectory is then used to define the approximate application cost Ṽapp(θ),

see Section 3.2.

4. The Hessian of the approximate application cost, Ṽ
′′
app(θ̂, θ̂), is evaluated.

5. The Hessian is then used by the toolbox MOOSE to design the optimal

input spectrum that minimizes the input power. With the optimal input

spectrum the optimal input signal u∗ can be realized.

6. 100 identification experiments, using the optimal input u∗, are performed.

For each identification experiment 600 samples are used.
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7. 16 reference tracking simulations of the true system are performed. The

system is controlled by an MPC based on linear models, with param-

eter vectors randomly chosen from the ones obtained in the previous

identification experiments.

8. Step 6 is repeated, using a white Gaussian noise as input instead. The

variance is set to be equal to the one of the optimal input u∗.

9. Step 7 is repeated, using the estimates obtained in step 8.

5.1 Minimum phase setting: γ1 = γ2 = 0.625

With this setting the zeros of the system are s1 = −0.1040, s2 = −0.0160.

The simulation time is set to 400 s . The value of N used to calculate Ṽapp(θ, θ̂)

is equal to the simulation time.

5.1.1 Scenario 1

Reference tracking

Figure 5.1 shows the response of the linear model, with the initial parameter

estimate, controlled by an MPC using the same model. The response is fast and

due to the simulation time, it is difficult to distinguish the output signals from

the respective references. Figure 5.2 shows the input signals used to control

the system. Due to the little input weight, the input signal variations are big.
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Figure 5.1: Scenario 1: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.2: Scenario 1: input signals calculated by the MPC to control the system in the
reference tracking simulation.

Sensitivity analysis

Figure 5.3 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
16.1822 13.2851

13.2851 13.2237

]
. (5.1)

The corresponding eigenvalues are s1 = 1.3358 and s2 = 28.0701, while v1 =

[0.6668 −0.7452]T and v2 = [−0.7452 −0.6668]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond
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to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
0.6668

−0.7452

]
. (5.2)

The area of Eapp is 0.1633.

Figure 5.3 shows the resulting estimates from the 100 identification experiments,

using the optimal input. The estimates are spread around the true parameter,

following the shape of Eapp and 96% of these estimates lie inside the identification

ellipse. Figure 5.4 shows the reference tracking simulation of the true system,
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Figure 5.3: Scenario 1: results of step 6 of the procedure. 96% of the estimates lie inside
the identification ellipsoid.

see 4.4, controlled with an MPC based on linear models, that use the estimates

represented in Figure 5.3. Figure 5.5 shows the resulting estimates, from 100
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Figure 5.4: Scenario 1: results of step 7 of the procedure.

identification experiments, when a white Gaussian input with the same energy
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of the optimal input is used. In this case only 13% of the estimates lie inside the

ellipse. Figure 5.6 shows the reference tracking simulation of the true system,
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Figure 5.5: Scenario 1: results of step 8 of the procedure. 13% of the estimates lie inside
the identification ellipsoid.

see 4.4, controlled with an MPC based on linear models, that use the estimates

represented in Figure 5.5.
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Figure 5.6: Scenario 1: results of step 9 of the procedure.

Observation 1

This example demonstrate that using the optimal input signal in the identifi-

cation experiments, give an higher percentage of estimates that lie inside the

application ellipsoid, compared to the number of estimates inside the appli-

cation ellipsoid that we obtain when a white Gaussian noise with the same

energy is used.
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5.1.2 Scenario 2
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Figure 5.7: Scenario 2: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.8: Scenario 2: input signals calculated by the MPC to control the system in the
reference tracking simulation.



5.1 Minimum phase setting: γ1 = γ2 = 0.625 49

Sensitivity analysis

Figure 5.9 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
19.6585 16.4728

16.4728 16.3953

]
. (5.3)

The corresponding eigenvalues are s1 = 1.4735 and s2 = 34.5803, while v1 =

[0.6714 −0.7411]T and v2 = [−0.7411 −0.6714]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
0.6714

−0.7411

]
. (5.4)

The area of Eapp is 0.1401.
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Figure 5.9: Scenario 2: results of step 6 of the procedure. 96% of the estimates lie inside
the identification ellipsoid
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Figure 5.10: Scenario 2: results of step 7 of the procedure.

Observation 2

In Figure 5.11 can be noticed that some parameters, identified using the white

Gaussian noise, can make the system instable (we underline that the parameter

used in step 9 of the procedure described, are chosen randomly from all the

estimates obtained in step 8).
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Figure 5.11: Scenario 2: results of step 8 (in the upper figure), and step 9 (in the lower
figure)
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5.1.3 Scenario 3
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Figure 5.12: Scenario 3: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.13: Scenario 3: input signals calculated by the MPC to control the system in the
reference tracking simulation.
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Sensitivity analysis

Figure 5.15 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
15.1718 12.5269

12.5269 12.4377

]
. (5.5)

The corresponding eigenvalues are s1 = 1.2035 and s2 = 26.4060, while v1 =

[0.6677 −0.7445]T and v2 = [−0.7445 −0.6677]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
0.6677

−0.7445

]
. (5.6)

The area of Eapp is 0.1774.
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Figure 5.14: Scenario 3: results of step 6 of the procedure. 92% of the estimates lie inside
the identification ellipsoid
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Figure 5.15: Scenario 3: results of step 7 of the procedure.
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Figure 5.16: Scenario 3: results of step 8 of the procedure. 14% of the estimates lie inside
the identification ellipsoid.
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Figure 5.17: Scenario 3: results of step 9 of the procedure.
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Figure 5.18: Scenario 4: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.19: Scenario 4: input signals calculated by the MPC to control the system in the
reference tracking simulation.

5.1.4 Scenario 4

Sensitivity analysis

Figure 5.21 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
17.0033 14.1985

14.1985 14.0111

]
. (5.7)

The corresponding eigenvalues are s1 = 1.2301 and s2 = 29.7843, while v1 =

[0.6690 −0.7432]T and v2 = [−0.7432 −0.6690]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger
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variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
0.6690

−0.7432

]
. (5.8)

The area of Eapp is 0.1652.
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Figure 5.20: Scenario 4: results of step 6 of the procedure. 96% of the estimates lie inside
the identification ellipsoid
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Figure 5.21: Scenario 4: results of step 7 of the procedure.
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Figure 5.22: Scenario 4: results of step 8 of the procedure. 17% of the estimates lie inside
the identification ellipsoid.
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Figure 5.23: Scenario 4: results of step 9 of the procedure.
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5.2 Minimum phase setting: γ1 = γ2 = 0.505

With this setting the zeros of the system are: s1 = −0.1572, s2 = −0.0012

5.2.1 Scenario 1

Reference tracking

Figure 5.24 shows the response of the linear model, with the initial parameter

estimate, controlled by an MPC using the same model. The response is fast

and outputs follow easily the reference. Figure 5.25 shows the input signals

used to control the system. Due to the little weight used, the inputs are allowed

to vary a lot. From Figure 5.26 we can notice that one of the state reach its

maximal allowed value. In fact Figure 5.26 represent the variation from the

equilibrium point. The fourth state, reach the value of 13 cm, that is it reaches

the maximal value of 25 cm (see Table 4.1).
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Figure 5.24: Scenario 1: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.25: Scenario 1: input signals calculated by the MPC to control the system in the
reference tracking simulation.
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Figure 5.26: Scenario 1: simulation of the water levels in the four tanks. The water level
x4 reaches its maximal allowed value.

Sensitivity analysis

Figure 5.27 shows Eapp and ESI which are overlapped. Calculation of the Hessian

of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
726.5258 725.3857

725.3867 731.5592

]
. (5.9)

The corresponding eigenvalues are s1 = 3.65 and s2 = 1454.4, while v1 =

[−0.7083 0.7059]T and v2 = [0.7059 0.7083]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger
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variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
−0.7083

0.7059

]
. (5.10)

The area of Eapp is 0.0137.
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Figure 5.27: Scenario 1: results of step 6 of the procedure. 11% of the estimates lie inside
the identification ellipsoid.
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Figure 5.28: Scenario 1: results of step 7 of the procedure.
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Figure 5.29: Scenario 1: results of step 8 of the procedure. 1% of the estimates lie inside
the identification ellipsoid.
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Figure 5.30: Scenario 1: results of step 9 of the procedure.

Observation 3

Figure 5.27 shows that when the sum of γ is close to 1 the application ellipsoid

stretch out in the direction of the longer semi-axes more than in the other

cases.

Observation 4: offset in the estimates

Figures 5.27,5.33,5.38 and 5.43 show that the estimates make a blob that is

not centered around the true parameter θ0. It is interesting to notice that this

behavior was already present in the minimum phase case, just not so evident.

See for example figures 5.9, 5.15. This behavior is discussed more in detail in

Chapter 6.
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5.2.2 Scenario 2
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Figure 5.31: Scenario 2: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.32: Scenario 2: input signals calculated by the MPC to control the system in the
reference tracking simulation.

Sensitivity analysis

Figure 5.33 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
762.3064 761.0394

761.0394 767.1592

]
. (5.11)

The corresponding eigenvalues are s1 = 3.68 and s2 = 1525.8, while v1 =

[−0.7082 0.7060]T and v2 = [0.7060 0.7082]T are the respective eigenvectors.
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This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
−0.7082

0.7060

]
. (5.12)

The area of Eapp is 0.0133.
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Figure 5.33: Scenario 2: results of step 6 of the procedure. No estimates lie inside the
identification ellipsoid.
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Figure 5.34: Scenario 2: results of step 7 of the procedure.
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Figure 5.35: Scenario 2: results of step 8 of the procedure. 2% of the estimates lie inside
the identification ellipsoid.

5.2.3 Scenario 3
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Figure 5.36: Scenario 3: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.

Sensitivity analysis

Figure 5.38 shows Eapp and ESI which are overlapped. Calculation of the Hessian

of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
338.3409 335.6563

335.6563 338.5342

]
. (5.13)

The corresponding eigenvalues are s1 = 2.7812 and s2 = 674.09, while v1 =

[−0.7072 0.7070]T and v2 = [0.7070 0.7072]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while
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Figure 5.37: Scenario 3: input signals calculated by the MPC to control the system in the
reference tracking simulation.

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
−0.7072

0.7070

]
. (5.14)

The area of Eapp is 0.0231.
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Figure 5.38: Scenario 3: results of step 6 of the procedure. 22% of the estimates lie inside
the identification ellipsoid.
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Figure 5.39: Scenario 3: results of step 7 of the procedure.
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Figure 5.40: Scenario 3, check of theory - u∗.

5.2.4 Scenario 4

Sensitivity analysis

Figure 5.43 shows Eapp and ESI . Calculation of the Hessian of Ṽapp(θ, θ̂) gives,

Ṽ
′′
app(θ̂, θ̂) =

[
640.14 638.5481

638.5481 642.8231

]
. (5.15)

The corresponding eigenvalues are s1 = 2.932 and s2 = 1280, while v1 =

[−0.7078 0.7064]T and v2 = [0.7064 0.7078]T are the respective eigenvectors.

This gives that the longest semi-axis correspond to the eigenvector v1, while

the smallest one correspond to the eigenvector v2. This means that a bigger

variation of the parameters is tolerated in the direction of v1, that correspond
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Figure 5.41: Scenario 4: reference tracking simulation. x1 and x2 represents the output
signals. The dashed lines r1 and r2 the reference signals of x1 and x2 respectively.
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Figure 5.42: Scenario 4: input signals calculated by the MPC to control the system in the
reference tracking simulation.

to the straight line,

[
θ1

θ2

]
=

[
θ1

0

θ2
0

]
+ δ

[
−0.7078

0.7064

]
. (5.16)

The area of Eapp is 0.0163.
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Figure 5.43: Scenario 4: results of step 6 of the procedure. No estimates lie inside the
identification ellipsoid.
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Figure 5.44: Scenario 4: results of step 8 of the procedure. No estimates lie inside the
identification ellipsoid.

5.3 Non minimum phase case: γ1 = γ2 = 0.25

With this setting the zeros of the system are: s1 = −0.4449, s2 = 0.2047. For

this case we do not show any figures of the results because could be repetitive

and not much interesting. All the results of this setting are used instead to

make comparisons in Chapter 6.

5.3.1 Observation

For this setting, the reference tracking was quite hard when the constraints on

inputs were applied. So for this setting Scenario 2 and 4 are simulated with

only output constraints.
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Discussion

The numerical results obtained from the simulations presented in Chapter 5

are summarized in Table 6.1,6.2,6.3. From the analysis of the obtained results

it is possible to make the following observations:

1. The area of the application ellipsoid is smaller when γ1 +γ2 ≈ 1. Meaning

that this setting is actually harder to control, in the sense that the

requirements on the model are much higher. See for example Figure 6.2.

2. The eigenvalue s2 becomes very high when γ1 + γ2 ≈ 1, namely, the

semi-axis in the direction of v2 becomes very small. That is, Eapp becomes

much narrower in the direction of v2. This means that performance

degrades mostly when estimated parameters vary in that direction.

3. The area of the application ellipsoid is bigger when we use higher weights

on inputs compared to outputs. Meaning that this setting results in a

larger number of models that meet the performance specifications. Thus,

the robustness of the controller is higher.

4. The longer semi-axis corresponds to the direction of the eigenvector v1,
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while the smallest one corresponds to the eigenvector v2. This means that

a bigger variation of the estimates in the direction of the eigenvector v1

is tolerated.

5. Parameter variations in the direction of v2 give the higher degradation

of performance. From Table 6.2 we can see that, when γ1 + γ2 ≈ 1, that

direction is defined by the line y = x+ (γ1 + γ2).

6. The area of the application ellipsoid is usually smaller when we analyse

scenarios with active constraints compared to the area obtained with

scenarios with no active constraints. See for example Figure 6.3.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Area 0.1633 0.1401 0.1774 0.1652
s1 1.358 1.4735 1.2035 1.2301
s2 28.07 34.58 26.406 29.7843

v1

[
0.668
−0.7452

] [
0.6714
−0.7411

] [
0.6677
−0.7432

] [
0.669
−0.7432

]

v2

[
−0.7452
−0.668

] [
−0.7411
−0.6714

] [
−0.7432
−0.6677

] [
−0.7432
−0.669

]

Table 6.1: γ1 = γ2 = 0.625

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Area 0.0137 0.0133 0.0231 0.0163
s1 3.650 3.6800 2.7812 2.932
s2 1454.4 1525.8 674.09 1280

v1

[
0.7083
−0.7059

] [
0.7082
−0.7060

] [
0.7072
−0.7070

] [
0.7078
−0.7064

]

v2

[
−0.7059
−0.7083

] [
−0.7060
−0.7082

] [
−0.7070
−0.7072

] [
−0.7064
−0.7078

]

Table 6.2: γ1 = γ2 = 0.505
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
Area 0.2671 0.2823 0.3439 0.2042
s1 1.1121 1.0867 0.7953 1.0556
s2 12.6086 11.5450 10.6335 22.7166

v1

[
0.6733
−0.7394

] [
0.6704
−0.7420

] [
0.6821
−0.7312

] [
0.5871
−0.8095

]

v2

[
−0.7394
−0.6733

] [
−0.7420
−0.6704

] [
−0.7312
−0.6821

] [
−0.8095
−0.5871

]

Table 6.3: γ1 = γ2 = 0.25

6.1 Estimates offset

In Chapter 5 we observed that the estimates obtained from the identification

experiments are not spread out around the true parameter value (see figures

5.27,5.33,5.38 and 5.43). This behavior might be explained by the fact that

the true system is nonlinear and the estimated models are linear instead. The

PEM method assures that the estimates will converge to the true parameter

if the true system is linear. To verify this idea, we identified the nonlinear

system using 6000 samples using the corresponding optimal input. The results

are shown in Figure 6.1. Figure 6.1 shows that even increasing the number

of samples in the identification experiment the estimates do not converge to

the true parameter for the nonlinear system. It is possible to notice instead,

that the estimates are more clearly centered around a different parameter value.

This enforces the idea that the true parameter for the linear model differs from

the true one of the nonlinear system.
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Figure 6.1: Comparison that show the estimates offset when 600 samples (left figure) and
when 6000 samples (right figure) are used in the system identification experiment.
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Figure 6.2: Comparison of the application ellipses obtained for different values of the true
parameter vector. The application ellipse becomes very small when γ1 + γ2 ≈ 1. The rects
represent the straight line y = −x+ (γ1 + γ2) for the respective value of γ1, γ2. The rects

help to see the orientation of the ellipse in the parameter space.
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Figure 6.3: Comparison between the application ellipse obtained from scenario 1 (inner
ellipse) and the application ellipse obtained from scenario 3 (outer ellipse). With scenario 3
(higher weight on inputs), the ellipse’s area is bigger. The center of the ellipses is the true

parameter vector.
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7
Conclusions and future work

In this chapter we make some remarks of the obtained results and suggest some

ideas for future work.

The main objective of this master thesis work was to investigate if MPC settings

affect the shape and the important directions of the application ellipsoid Eapp.

The quadruple water tank process has the characteristic property of changing

the position of one zero, to be minimum phase or non minimum phase, using the

physical parameters γ1, γ2 (see Section 4.2). Hence, MPC tuning parameters

and constraints are used to define four scenarios. Simulations are carried out

for every scenario considering the system to be minimum phase, non minimum

phase and close to shifting from minimum phase to non minimum phase. The

latter case corresponds to when one system’s zero is close to the origin, that

is γ1 + γ2 ≈ 1. This situation was really hard to control so constraints on

input were not imposed. Obtained results are summarized with the following

remarks:

• Different MPC settings affect the area of the application ellipsoid. When

we consider higher weights on inputs the area of Eapp becomes bigger. This

means that limiting the freedom of the controller requires less accurate

models. Active constraints increase controller’s performance demand and
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reduce the robustness of the controller resulting in a smaller application

ellipsoid’s area.

• Different positions of the system’s zero have a strong influence on Eapp.

The closer the zero is to the origin, the narrower becomes the Eapp in the

smaller semi-axis direction. The position of the system’s zero depends on

the value assumed by γ1 + γ2.

Future work

This master thesis project does not represent a complete solution and further

researches are recommended in the following areas:

• The number of parameters: our analysis takes only two parameters, γ1

and γ2, into account. In this case Eapp has only 2 dimensions and it can

be graphically represented. Furthermore, the two parameters we consider

have a straightforward physical interpretation. For the future work we

suggest to take into consideration all the parameters of the nonlinear

model of the water tanks.

• Application cost: in this work we consider performance degradation in

reference tracking applications. Another possibility is to focus on the

disturbance rejection. A different application cost for this application

should be defined.

• Real plant: we suggest to verify the obtained results of the simulations

on the real water tank process.
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