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Chapter 1

Introduction

A decomposition of a graph is a collection of pairwise edge-disjoint subgraphs
such that each edge of the graph is contained in exactly one of the subgraphs.
We are interested in the problem of decomposing a graph into cycles. A finite
graph has such a decomposition if and only if it is Eulerian, i.e. if and only
if each vertex has even degree. The result can be extended to infinite graphs
and is known as Nash-Williams’ cycle-decomposition theorem. The condition
on the degrees has to be changed to a different one (we ask that all finite cuts
are even); they are equivalent to each other in the finite case, see Section 1.3.
In Chapter 2, we give a proof of this theorem.

If the graph does not have a decomposition into cycles, we study a similar
problem: can the graph be covered by cycles? A covering is again a collection
of subgraphs but now an edge may be in more than one of the subgraphs. It has
been conjectured that every 2-edge-connected graph can be covered by cycles so
that each edge is in exactly two cycles. This result, known as the cycle double
cover conjecture, remains an open problem in graph theory and is discussed in
Chapter 3.

In Section 3.2 we discuss the conjecture and prove a weaker result: we show
that every 2-edge-connected graph has a collection of cycles such that each edge
is in at least one and at most 7 cycles in the collection.

Part of this dissertation is based on the study of the article “Nash-Williams’
cycle-decomposition theorem” by C. Thomassen [13]. The results and the proofs
presented in Chapter 2 and Section 3.2 were given in the referenced article.

Some of the original work done for this thesis, with regard to Chapter 2
and Section 3.2, includes the expansion of some proofs, a refinement of the
organization of contents and some readability improvements.

In Section 3.3, we give an elementary proof of the fact that every 4-edge-
connected graph has a cycle double cover. We also show that Hamiltonian
graphs and k-regular, 1-factorable, 2-edge-connected graphs have a cycle double
cover.

Such proof was written by the author of the present thesis; although it
seems to be hard to completely determine its originality, we could not find
any published reference explicitly mentioning this method and applying it to
4-edge-connected graphs, to Hamiltonian graphs and to 1-factorable graphs.

In Section 3.1 we give a brief overview of some properties of a potential
minimal counterexample to the cycle double cover conjecture, presenting results
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by Jaeger [6] and Huck [4].

1.1 Definitions

1.1.1 Graphs, subgraphs

A graph G is an ordered pair G = (V,E) where V is any set and E is a set of
2-element subsets of V . The elements of V are called vertices of G, the elements
of E edges of G.

If G is a graph, we denote by V (G), E(G) its vertex and edge sets, re-
spectively. Given two vertices v, w ∈ V (G), we say that they are neighbors if
{v, w} ∈ E(G); we also say that v, w are the endpoints of the edge {v, w}.

A graph is finite if V (G) ∪ E(G) is a finite set; a graph is infinite if it is
not finite. In other words, an infinite graph may have infinitely many vertices,
infinitely many edges or both.

If v is a vertex in a graph G, the degree of v (in G), denoted by dG(v), or
d(v) if there is no ambiguity, is the cardinality (possibly infinite) of the set of
neighbors of v.

A graph is said to be k-regular if every vertex has degree k. A graph is cubic
if it is 3-regular. A finite graph is even if every vertex has even degree.

Let G,G′ be graphs. We say that G′ is a subgraph of G, and write G′ ⊆ G,
if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

If G′ ⊆ G and G′ contains all the edges of G with both endpoints in V ′ =
V (G′), then G′ is an induced subgraph of G; we write G′ = G[V ′]. Thus if S ⊆ V
is any set of vertices, G[S] denotes the graph on S whose edges are precisely the
edges of G with both endpoints in S.

If A is any set of edges of G, we denote by G−A the subgraph of G consisting
of all edges of G except those in A. We refer to this operation as the removal
of the edges in A from the graph G.

If U is any set of vertices of G, we write G−U for G[V \U ]. In other words,
G−U is obtained from G by deleting all the vertices in U and the edges incident
with them.

Two graphs G,G′, defined on the same vertex set, are said to be edge-disjoint
if E(G) ∩ E(G′) = ∅.

A decomposition of a graph is a collection of pairwise edge-disjoint subgraphs
such that each edge of the graph is contained in exactly one of the subgraphs.

A covering of a graph is a collection of subgraphs such that each edge of the
graph is contained in at least one of the subgraphs. In the case of coverings, the
subgraphs are not necessarily pairwise edge-disjoint.

Given a set V , a multigraph G is an ordered pair G = (E, g) where E is a
set and g is a function:

g : E → {{v, w} : v, w ∈ V, v 6= w}.

E is the set of (multiple) edges of G; if e ∈ E and g(e) = {v, w}, we say that e
is an edge between v and w. As before, v, w are the endpoints of e; given two
vertices, the edge that has those vertices as endpoints may not be determined
uniquely. If g is injective, G is a graph in the sense defined above.

We denote a multiple edge consisting of n edges joining the same two vertices
by n-edge (or single, double, triple edge if n = 1, 2, 3 respectively).
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All the previous notions can be extended to multigraphs. We will not dis-
tinguish between graphs and multigraphs, unless explicitely mentioned, and use
the word graph for both.

1.1.2 Walks, paths, tours, cycles

A walk in G is a finite sequence W = v0e1v1e2v2 . . . ekvk whose terms are
alternately vertices and edges, such that the edges e1, e2, . . . , ek are distinct and
for i ∈ {1, 2, . . . , k}, the ends of ei are vi−1 and vi. We say that W is a walk from
v0 to vk, and call these two vertices the endpoints of W . The other vertices,
v1, v2, . . . , vk−1 are the intermediate vertices of W . The number k is the length
of W .

If the vertices v0, v1, . . . , vk are distinct, W is called a path.

A closed walk, or tour, is a walk with positive length and such that v0 = vk.
A cycle is a closed walk in which there is no repetition of vertices (other than
v0 = vk). In the case of multigraphs, a double edge is considered to be a cycle
of length 2.

We will refer to walks, paths, tours and cycles by the sequence of their
vertices.

a

b

cd

e

f

g h

i

Figure 1.1: efg (green) is a path, aibciha (blue) is a tour, deid (red) is a cycle.

The distance between two vertices in a graph is the length of the shortest
path connecting them. If no such path exists, the distance is conventionally
defined as infinite.

1.1.3 Connectivity, trees

A graph G is connected if for any two vertices v, w of G, there is a path in G
from v to w. A graph is disconnected if it is not connected. In a connected
(possibly infinite) graph, the distance is finite for all pairs of vertices.

A maximal connected subgraph of G is called a component of G.

A graph is k-connected if it contains at least k+1 vertices and after deleting
any k − 1 vertices, the resulting subgraph is connected.

A graph is k-edge-connected if after deleting any k − 1 edges, the resulting
subgraph is connected. In a k-edge-connected graph, every cut contains at least
k edges.
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A bridge is an edge whose removal disconnects the graph. A connected graph
is 2-edge-connected if and only if it does not have any bridge.

A block (or biconnected component) is a maximal 2-connected subgraph.
Different blocks meet at cut vertices, vertices whose removal disconnects the
graph. Bridges and isolated vertices are blocks of the graph.

A connected graph with no odd cut cannot have any bridge and is therefore
2-edge-connected. The converse is false: the graph in Figure 1.2 is 2-edge-
connected but has a cut of size 3.

Figure 1.2: A 2-edge-connected graph with an odd cut.

A tree is a connected graph containing no cycle.
The following statements are all equivalent for a graph G:

1. G is a tree.
2. (Path uniqueness) For any two vertices v, w ∈ V , there exists a unique

path from x to y.
3. (Minimal connected graph) G is connected and deleting any of its edges

results in a disconnected graph.
4. (Maximal graph without cycles) G contains no cycles, and any graph ob-

tained from G by adding an edge contains a cycle.

Moreover, if G is finite, then G is a tree if and only if:

5. (Euler’s formula) G is connected and |V (G)| = |E(G)|+ 1.

A forest is a graph whose components are trees.
If we remove a maximal collection of pairwise edge-disjoint cycles from a

graph, what remains is a forest.
Let G = (V,E) be a graph. A tree of the form T = (V,E′), where E′ ⊆ E,

is called a spanning tree of G. In other words, a spanning tree is a subgraph of
G that is a tree and contains all vertices of G.

Every finite graph has a spanning tree. See Section 1.2 for some results on
spanning trees in general graphs.

1.1.4 Matchings, cuts

A matching is a set of edges in which no two share any vertex.
Let G be a graph and H ⊆ G a subgraph; the boundary of H is the set of

vertices in H having a neighbor outside H.
If we add a collection of edges to G such that the added edges form a match-

ing, then we call that set of edges an external matching.
A matching is said to be perfect if it contains every vertex of the graph.
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A cut is a partition of the vertices of a graph into two sets, which are called
the sides of the cut. A cut-set is the set of all edges having one endpoint in
each side of a cut. We will often refer to cut-sets simply as cuts.

A k-cut is a cut consisting of k edges. A cut is said to be trivial if one of its
sides consists of only one vertex of the graph.

A cut is minimal if it contains no other cut as a proper subset.
In a connected graph G, a cut is minimal if and only if its removal produces

exactly two connected components, that is if G[A], G[B] are both connected
(where A,B are the sides of the cut).

B C

A

Figure 1.3: The cut between A and B ∪ C is not minimal.

A subgraph H of a graph G is said to be cut-faithful if every finite minimal
cut in H is a cut in G. A cut-faithful subgraph preserves the edge-connectivity;
see the proof of Theorem 13.

An edge-coloring of a graph is an assignment of colors to the edges of the
graph such that no two adjacent edges have the same color. A graph is said
to be k-edge-colorable if it can be edge-colored with k colors. The chromatic
index of a graph, denoted by χ′(G), is the minimum number of colors required
to edge-color the graph.

1.2 Infinite graphs

A graph G is countable if V (G) ∪ E(G) is a finite or countably infinite set.
A graph is called locally finite [resp. locally countable] if every vertex has

finite [resp. countable] degree.

Theorem 1. Every connected locally countable infinite graph is a countable
graph.

Proof. LetG be a connected locally countable infinite graph, v one of its vertices,
A0 = {v}, A1 the set of vertices adjacent to v, A2 the set of all vertices adjacent
to a vertex of A1, and so on. By assumption A1 is countable. Now A2 is a
countable union of countable sets, hence it is also countable; then also A3, A4

and so on. The union

∞⋃
i=0

Ai is countable and contains every vertex of G (because

it is connected). G can only contain countably many vertices. Finally, since it
is locally countable, G can only contain countably many edges.
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In particular, every component of a locally countable infinite graph is a
countable graph.

A countable graph has only countably many finite edge-sets and hence count-
ably many finite minimal cuts.

Remarks on the Axiom of Choice

In the theory of infinite graphs, some results depend on the Axiom of Choice;
here are some of its equivalent formulations:

1. Axiom of Choice: For every set X of non-empty sets there exists a choice
function on X;

2. Zorn’s lemma: Every non-empty partially ordered set in which every chain
has an upper bound has a maximal element;

3. Well-ordering theorem: Every set can be well-ordered;

4. Every connected graph has a spanning tree (see [10] for a proof of the
equivalence).

The well-ordering theorem appears explicitly in the proof of Theorem 5. In
Section 2.1 we will take a spanning tree of a general graph.

Zorn’s lemma is also used several times in order to obtain maximal elements,
typically maximal collections of paths. The general idea of its use is as follows.

We start with a set of vertices in a graph and consider all sets S of pairwise
edge-disjoint paths having endpoints in these vertices and possibly satisfying
some additional property (e.g. having length 2). The set X of all these sets S is
partially ordered by inclusion. Moreover X has the property required by Zorn’s
lemma: in fact, given a chain (i.e. a totally ordered subset) in X, the union
of the chain is an upper bound to it. Therefore X has a maximal element by
Zorn’s lemma.

Some examples of this are in the proof of Theorem 5 and in the construction
shown in Subsection 2.1.2.

1.3 Preliminaries

1.3.1 Decompositions of walks, even graphs

Walks and tours (as opposed to paths and cycles) may have repetitions of ver-
tices; such repetitions create cycles, which can be removed from the (closed)
walk as follows:

• A tour can be decomposed into pairwise edge-disjoint cycles.
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Figure 1.4: A tour decomposed into cycles.

• A walk w can be decomposed into cycles and a path with the same ends
as w.

Figure 1.5: A walk decomposed into cycles and a path with the same ends.

It is well known that a finite graph is Eulerian if and only if every vertex
has even degree. Given an Eulerian tour of a graph, we can decompose it into
pairwise edge-disjoint cycles. Conversely, if a graph is decomposed into cycles,
then every vertex has necessarily even degree (in fact the degree of a vertex v
equals twice the number of cycles in which v is contained).

We want to show that, for finite graphs, there is an additional condition
which is equivalent to being Eulerian.

Theorem 2. In a finite graph, every vertex has even degree if and only if every
cut is even.

Proof. Given a vertex v, the size of the cut with sides {v} and V \ {v} is even
by assumption and equals the degree of v.

v G− v

Figure 1.6: The degree of v equals the size of the cut between {v} and V \{v}.
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Conversely, suppose that every vertex has even degree and consider a cut
with sides A,B. The numbers

∑
v∈A d(v),

∑
v∈B d(v) are both even because

sums of even numbers.
Let nA [resp. nB ] be the number of edges with both endpoints in A [resp.

in B]. Also let nC be the number of edges in the cut. Then

nC =
∑
v∈A

d(v)− 2nA

=
∑
v∈B

d(v)− 2nB .

In both cases, the expression on the right, hence also nC , is an even number.

Therefore, if G is a finite graph, the following statements are all equivalent:

1. G is even;
2. G is Eulerian;
3. G has a decomposition into cycles;
4. Every cut in G is even.

For infinite graphs, the above conditions may not be equivalent or even make
sense:

1. It is possible to check whether a graph is even only if it is locally finite;
since we will deal with graphs that are generally not locally finite, we are
not going to discuss this condition.

2. Recall that tours, including Eulerian tours, are finite sequence of edges;
therefore no graph with infinitely many edges can have an Eulerian tour.
Notice that there are easy examples of graphs having all vertices of even
degree but with no Eulerian tour, such as the infinite trail pictured in
Figure 1.7.

Figure 1.7: In the infinite trail, every vertex has degree 2.

3. It makes sense to ask whether a general graph has a decomposition into
cycles. This condition appears in Nash-Williams’ cycle decomposition
theorem (Theorem 14).

4. The cuts in a graph may in general be infinite, hence the condition “Every
cut is even” makes sense only if there is at least one finite cut. We need
to change it to “Every finite cut is even”, or equivalently, “There is no
finite odd cut”. Then it becomes equivalent to having a decomposition
into cycles.

If G1, G2 are subgraphs of a graph G, their symmetric difference, denoted by
G14G2, is the subgraph consisting of all edges of G contained in one of G1, G2

but not the other.
In the next Theorem, we show that the symmetric difference of two even

graphs is also an even graph.
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Theorem 3. Let G be a graph, G1, G2 subgraphs of G. Suppose that G1, G2

are even and their union is G. Then G14G2 is an even graph.

Proof. Let v be a vertex of G. We want to show that dG14G2
(v) is even. Let n

be the number of edges having v as an endpoint and belonging to both G1 and
G2. Then

dG14G2
(v) = (dG1

(v)− n) + (dG2
(v)− n) = dG1

(v) + dG2
(v)− 2n.

By assumption, the numbers dG1
(v), dG2

(v) are even, hence also dG14G2
(v) is

even.

1.3.2 Paths in trees

The first two theorems in this Subsection, Theorems 4 and 5, are the finite and
infinite versions, respectively, of the same result: given a set of vertices in a
tree, we want to find a collection of pairwise edge-disjoint paths such that each
vertex is the end of exactly one of them. This can be done as long as we accept
that at most one vertex will not be the end of any path.

Theorem 4. Let T be a finite tree, S a set of vertices in T . Then T has a
collection of pairwise edge-disjoint paths such that each vertex in S, except at
most one, is the end of precisely one of the paths.

Proof. First, suppose that S is a set of 2p vertices. We prove the statement by
induction on the size of T , i.e. the number |E(T )| of edges of T . If T has size
1 and p = 2 or p = 0, the statement is true.

Let v be an arbitrary leaf of T , w its neighbor and e = {v, w} the edge
between v and w.

We will denote by T ′ the graph obtained from T by removing v and e; note
that T ′ is a tree of size strictly smaller than the size of T .

1. If v /∈ S, apply induction to T ′ to find the p required paths.

2. If v, w ∈ S, we choose as one of our paths the edge e. Let S′ = S \ {v, w},
which is a set of cardinality 2p − 2; by applying induction to T ′, S′, we
then find p − 1 paths in G′. These p − 1 paths and the edge e are the p
required paths.

3. Otherwise, that is if v ∈ S but w /∈ S, we apply induction to T ′, S′ =
S \{v}∪{w}; now |S′| = 2p because w /∈ S. Among the p paths obtained,
denote by a the one that has w as endpoint. We add the edge e to a: this
is one of the p required paths. The other p− 1 ones are those found in T ′

(different from a).

If S is a set of odd cardinality, choose an arbitrary element v in S and apply
the result to the now even set S \ {v}.

The infinite version was stated and proven by Thomassen [12]. We give here
a sketch of the proof, see the referenced article for the missing details.

Theorem 5. Let T be a tree and let A be a set of vertices in T . Then T has
a collection of pairwise edge-disjoint paths, each joining two vertices in A such
that each vertex in A, except possibly one, is the end of precisely one of the
paths. If the exceptional vertex in A exists, then it is not the end of any path in
the path-collection.
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Proof. If A is finite, the statement is true by Theorem 4.
Now suppose that A is infinite. If A is countable, we enumerate it; if A is

uncountable, we consider a well-ordering. Recall that the well-ordering theorem
is equivalent to the Axiom of Choice. In order to prove that the statement of the
theorem is true for all elements of A we will make use of the induction principle
or the transfinite induction principle, according to whether we enumerated A or
well-ordered it.

For simplicity, suppose that A can be enumerated, with elements v1, v2, . . .
If it exists, we consider a path P1 joining two distinct vertices vi, vj in A

such that T − E(P1) has all vertices of A1 = A \ {vi, vj} contained in only
one component T1. Repeat the argument: if it exists, we consider a path P2

contained in T1 joining two vertices vp, vq in A1 such that all vertices of A2 =
A1 \{vp, vq} are contained in only one component T2 of T1−E(P2). Notice that
P2 is contained in (a component of) T −E(P1), hence it does not have edges in
common with P1.

In this way we obtain a chain of pairings, ordered by inclusion. By Zorn’s
lemma, there exists a maximal pairing of vertices. Let A′ be the set of vertices
in A that do not appear in the maximal pairing; also let T ′ be the component
of T containing the vertices in A′. Notice that T ′ is a tree and is in general one
of possibly many components of the forest obtained by removing from T the
edges of the maximal pairing.

By maximality, T ′, A′ satisfy the following property P: it is not possible to
find a path P ′ in T ′ joining two vertices vi, vj in A′ such that all vertices of
A′ \ {vi, vj} are contained in only one connected component of T ′ − E(P ′). If
A′ has one element, this vertex is the exceptional vertex and we have reached
our conclusion. If A′ is finite, as noted before, the statement is true. So now
suppose that A′ is infinite. We claim that in this case there is a pairing in T ′

between all vertices in A′, i.e. a collection of pairwise edge-disjoint paths in T ′

joining vertices in A′ such that each vertex in A′ is the end of precisely one path
in the collection.

Let i be the smallest index such that vi is in A′; also let P be a path in T ′

from vi to another vertex a of A′ such that no intermediate vertex of P is in
A′ and such that as few components of T ′ −E(P ) as possible contain precisely
one vertex of A′. Notice that the operation of removing the edges of P from T ′

(and in general from a graph) leaves a graph with finitely many components (at
most |E(P )| + 1 components, and exactly |E(P )| + 1 components if the edges
are removed from a tree), since P has finitely many edges.

We add P to the pairing and delete the edges of P from T ′. It is possible to
show that in fact no component T ′ −E(P ) contains precisely one vertex of A′.
Therefore, by property P, every component of T ′ − E(P ) contains either none
or infinitely many vertices of A′.

Consider a component T ′′ of T ′−E(P ) that contains infinitely many vertices
of A′; let A′′ be the set of vertices of A′ contained in T ′′. If T ′′, A′′ have property
P, then we repeat the argument applied previously to T ′, A′. So we can assume
that T ′′, A′′ do not have property P. Now let P ′1 be a path joining two vertices
vp, vq in A′′ such that all vertices of A′′ \ {vp, vq} are contained in only one
component of T ′′ − E(P ′1).

Repeat this argument. If we obtain a pairing of A′′ we are done; otherwise
it is possible to show that, after the deletion of some more paths, we obtain
T ′′′, A′′′ having property P, in which case we repeat the argument previously
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applied to T ′, A′.
Repeat the argument. Since at each step we are pairing at least the vertex

with the lowest index among those previously unpaired, this will give us the
pairing required.

In the next theorem, given a tree, we find a finite number of collections of
paths (in our case 2 collections) such that no vertex of the tree is the endpoint
of more than one path in the same collection. Each collection of paths will
correspond to a matching by replacing each path with a single edge having the
same endpoints as the path, i.e. by ignoring the intermediate vertices of the
path. See Section 2.1 for the details.

Theorem 6. Let T be a tree and v a vertex of T . The edge set of T can be
decomposed into pairwise edge-disjoint paths, and these paths can be divided into
two classes P1,P2 such that each vertex of T is the end of at most one path in
P1 and at most one path in P2. Moreover, v is not the end of any path in P1.

Proof. First, we pair all edges incident with v (except possibly one), creating
paths of length 2 (and possibly one of length 1). These are the blue paths in
Figure 1.8 and belong to P2.

Next, we repeat the argument for each component of T − v; for a generic
neighbor w of v, we pair all edges incident with w (except the edge vw) creating
paths of length 2, and possibly one of length 1. These are the red paths in
Figure 1.8 and belong to P1. Now all edges incident with vertices at distance 1
from v have been covered by paths in either collection.

v

. . .

. . .

. . .

v

. . .

. . .

. . .

v

. . .

. . .

. . .

Figure 1.8: Red paths are in P1, blue paths in P2.

Repeat the argument for all the remaining vertices of T , alternating between
the two colors. P1 [resp. P2] is the collection of all red [resp. blue] paths.

Eventually, every edge of T will be colored and therefore contained in one of
the two collections, since in a connected graph every vertex has finite distance
with any other fixed vertex.

The collections P1,P2 so defined satisfy the conditions of the theorem. In
fact, whenever two paths share an endpoint, they have different colors, no vertex
is the endpoint of more than two paths, and v is not the endpoint of any path
in P1.

Finally, we state here a fundamental result linking edge-connectivity and
pairwise edge-disjoint spanning trees. See [2] (Corollary 3.5.2).
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Theorem 7. If G is a 2k-edge-connected multigraph, then G contains at least
k pairwise edge-disjoint spanning trees.

1.3.3 Finite and countable versions of Nash-Williams’ de-
composition theorem

In the next chapter, we will prove Nash-Williams’ cycle decomposition theorem
(Theorem 14), which gives a characterization for general graphs that have a
decomposition into cycles. We will show that a graph can be decomposed into
cycles if and only if it has no finite odd cut.

One implication is easy. Given a decomposition of a graph into cycles, con-
sider a cut. It may intersect none of these cycles (then it is empty), infinitely
many of them (then it is also infinite) or a number n of them (then it contains
a finite and even number of edges, this number being ≥ 2n). This shows that
any finite cut is necessarily even.

Before studying the general case of Nash-Williams’ decomposition theorem,
we prove the result for countable graphs.

Theorem 8. A countable graph has a collection of pairwise edge-disjoint cycles
containing all the edges of the graph if and only if the graph has no finite odd
cut.

Proof. We have already shown that for finite graphs, the two conditions given
here are equivalent to each other and in fact equivalent to the graph being
Eulerian.

Consider now a countable graph G. If it has countably many vertices but
only finitely many edges, then each of its connected components is a finite graph,
hence we apply the previous argument.

Therefore we can suppose that the graph has countably many edges; we
enumerate them: e1, e2, e3, . . . .

Since the graph G is 2-edge-connected, there is a cycle C containing e1.
Remove the edges of C; we obtain a graph G′. We claim that (each component
of) G′ is again countable and does not contain any finite odd cut. G′ is a
subgraph of G, hence it is countable. Every cut of G contains an even number
of edges contained in C. If the cut is infinite, after the removal of C it becomes
an infinite cut in G′; if it is finite (and even), after the removal it becomes a
finite and again even cut of G′, possibly empty.

Apply the same argument to the edge ei with the lowest index among the
edges that have not been removed.



Chapter 2

Decompositions into cycles

In this chapter we focus on the problem of decomposing a graph into cycles. The
fundamental result is Nash-Williams’ cycle-decomposition theorem (Theorem 14
in Section 2.3), which generalizes Theorem 8 to infinite graphs.

We prove the theorem here following the method given by Thomassen in [13].
Curiously, the proof starts with a covering result, rather than a decomposition
one. We show that every 2-edge-connected graph can be covered with cycles
such that each edge is in at most countably many of them. The proof is detailed
in Section 2.1.

Theorem 9 is then used in the proof of Theorem 11, which is a decomposi-
tion result into connected, countable and cut-faithful subgraphs; this is done in
Section 2.2.

Finally, given a general graph, we can decompose it into countable subgraphs
according to Theorem 11 and decompose each of the subgraphs into cycles by
the countable version of Nash-Williams’ decomposition theorem. This gives a
decomposition of a general graph (with no odd cut) into cycles.

2.1 Cycles covering each edge at most countably
many times

In Subsection 2.1.1 we define (countable) covering cycle collections, or c.c.c. for
short, in Subsection 2.1.2 we show how to pass from a c.c.c. to another of bigger
depth and finally in Subsection 2.1.3 we state and prove Theorem 9.

2.1.1 Countable covering cycle collections

In order to cover a graph with cycles, we use the following technique. We define
a sequence (Cn)n∈N of collections of cycles such that Cn covers all edges that
reach vertices with distance < n from a fixed vertex v (and possibly more edges).
Since we will define an increasing sequence, that is we will have Cn−1 ⊆ Cn, we
can then take the union of all Cn: this is the final collection of cycles covering
the graph.

We introduce the terminology covering cycle collection to describe this ob-
ject; properties (i) and (ii) ensure that all edges not “too far” from v are covered
as we require.

17
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Let G be a 2-edge-connected graph, v a vertex of G, n ≥ 0 a natural number.
A countable covering cycle collection (of depth n) is a collection Cn of cycles
with the following properties:

(i) Every edge of G is in at most finitely many cycles in Cn. The union of all
cycles in Cn is the edge set of an induced subgraph Gn of G.

(ii) Gn contains all vertices of distance < n to v. It may contain vertices
whose distance from v is ≥ n.

(iii) If M is an external matching joining vertices in the boundary of Gn, then
Gn ∪M has a collection D of cycles such that every edge in M is in at
least one cycle in D, and every edge of Gn ∪M is in only finitely many
cycles in D.

Since we want to cover a graph with cycles so that each edge of the graph
is contained in at most countably many cycles, we add the “in at most finitely
many cycles” requirement in property (i). Because of this addition, we need also
property (iii), which is more technical and allows us to expand the collections
of cycles in a controlled way.

Property (iii) is stated for external matchings, however it holds for general
matchings.

(iii*) If M is a matching joining vertices in the boundary of Gn, then Gn ∪M
has a collection D of cycles such that every edge in M is in at least one
cycle in D, and every edge of Gn ∪M is in only finitely many cycles in D.

In fact, properties (i) and (iii) together are equivalent to (i) and (iii*). Given
a matching M (of a graph Gn), it can be thought as a union ME ∪MI , where
ME is an external matching and MI is a matching consisting of edges which
were already in Gn. We have that Gn ∪M = Gn ∪ME . Property (iii) applied
to ME gives a collection DE of cycles covering each edge of ME and such that
every edge of Gn ∪ME is in only finitely many cycles in DE . Now Cn ∪ DE is
the collection D required in property (iii*).

A brief remark on the terminology just introduced. According to our defi-
nition, a countable c.c.c. is a collection Cn of cycles in G such that every edge
of G is in at most finitely many cycles in Cn. Based on what we have done so
far, the name “finite c.c.c.” may seem best suited for this object. The name
“countable c.c.c.” was chosen for two reasons:

• Countable c.c.c.’s are used to prove Theorem 9, according to which every
edge of G is covered by countably many cycles; in fact, as noted after the
theorem, an edge that is covered by some cycles in Cn may be covered
by other cycles belonging to Cm, with m > n, and in the final cover of
G (which is the union of all Cn’s) there may be countably many cycles
passing through a fixed edge. Moreover, in order to prove the theorem, it
is not necessary that edges are covered by finitely many cycles in Cn; in
fact, it suffices to ask that every edge of G is in at most countably many
cycles in Cn. See after Theorem 9 for more details.

• In Section 3.2 we will actually define finite c.c.c.’s, which will also be de-
noted by Cn; this object is then used to prove Theorem 19, according to
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which it is possible to cover a 2-edge-connected graph with a collection C
of cycles such that every edge is in at most 7 cycles in C. Countable and
finite c.c.c.’s have similar definitions and are both used to find increas-
ing sequences of collections of cycles, whose union gives a cycle cover of
the whole graph. The sequences are constructed inductively; we devote
Subsection 2.1.2 to show how to pass from a countable c.c.c. Cn−1 to a
countable c.c.c. Cn and Subsection 3.2.2 to show the same for finite c.c.c.’s.
For this reason the two subsections are called “The first construction” and
“The second construction” respectively.

2.1.2 The first construction

Our goal is to define a sequence (Cn)n∈N of collections of cycles. The first step
is easy: we put C0 = ∅ and G0 = {v}.

In the present subsection, we are going to describe how to pass from Cn−1
to Cn. Together with the base step, this inductively defines the sequence. See
the details in the proof of Theorem 9.

Suppose we have defined a c.c.c. Cn−1. We want to construct a c.c.c. Cn
such that Cn−1 ⊆ Cn.

We will denote by H a generic connected component of G− V (Gn−1), as in
Figure 2.1.

Gn−1H1

H2

H3

Figure 2.1: H1, H2, H3 are connected components of G− V (Gn−1).

Step 1: Construction of H-paths and exceptional H-paths

First, we construct two collections of paths, whose elements will be called H-
paths and exceptional H-paths. Each path (in either collection) will start and
end with an edge between Gn−1 and H; their intermediate edges will be in H.
Moreover the H-paths will be pairwise edge-disjoint. Finally, there will be at
most one exceptional H-path for each connected component H of G−V (Gn−1).

In order to find such paths, we will use the assumption that G is 2-edge-
connected.
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Gn−1

H

Figure 2.2: We construct paths starting and ending with edges between Gn−1
and H having all intermediate edges in H.

If a vertex x in H is joined to more than one vertex in Gn−1, then we consider
a maximal collection of pairwise edge-disjoint paths of length 2 having x as mid-
vertex and having their endvertices in Gn−1. The collection may contain some
double edges, which are considered paths of length 2, between H and Gn−1. We
remove these paths from G and add them to the collection of H-paths.

g1 g2 g3 g4 g5

h3

h1 h2

h4 h5 h6 h7
h8

Gn−1

Figure 2.3: We remove the paths g1h4g3, g2h5g4, g2h6g4 and g4h7g5.

Now there can be no multiple edge remaining between H and Gn−1, oth-
erwise the collection would not be maximal. In particular, for each vertex in
H, there is at most one edge connecting it to Gn−1. If there are still edges left
between Gn−1 and H, then we let A denote the ends of these edges in H. Let
T be a spanning tree of H and apply Theorem 5 to T,A.

g1 g2 g3 g4 g5

h3

h1 h2

h4 h5 h6 h7
h8

Gn−1

Figure 2.4: A consists of h3, h4, h5, h6, h8; the spanning tree T is highlighted.
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Theorem 5 gives a collection of pairwise edge-disjoint paths in T , each joining
two vertices in A such that each vertex in A, except possibly one, is the end
of precisely one of these paths. By appending the corresponding edges between
Gn−1 and H, we can extend these paths to (pairwise edge-disjoint) paths that
start and end with an edge between Gn−1 and H. Some of the extended paths
may be cycles; see Figure 2.5. All of the extended paths are removed from G
and added to the collection of H-paths.

g1 g2 g3 g4 g5

h3

h1 h2

h4 h5 h6 h7
h8

Gn−1

Figure 2.5: g1h3h1h4g2 and g3h5h6g3 are H-paths (with g3h5h6g3 being a cycle);
g5h8 is the exceptional H-edge.

Now we describe the case in which Theorem 5 does not pair all vertices in
A; in other words, exactly one vertex in A is not the endpoint of any path in
the collection of paths given by the theorem. This happens for instance when
A is a finite set with odd cardinality.

In this case, exactly one edge between Gn−1 and H is not used to extend
the paths in T and remains not covered by the H-paths described so far. This
edge will be called the exceptional H-edge. We cover it with a path (or cycle)
starting with the exceptional edge, ending with an edge from H to Gn−1 and
having all intermediate edges in T ; this path, which necessarily shares an edge
of the form gihj with an H-path (and possibly some more edges in T with other
H-paths) is added to the collection of exceptional H-paths. See Figure 2.6.

g1 g2 g3 g4 g5

h3

h1 h2

h4 h5 h6 h7
h8

Gn−1

Figure 2.6: The green path g5h8h7h6g3 is added to the collection of exceptional
H-paths.

Now the vertex set of Gn consists of V (Gn−1), the vertices of the H-paths
(for all components H of G−V (Gn−1)), and also the vertices of each exceptional
H-path, if it exists. Therefore Gn satisfies (ii), i.e. it contains all vertices of
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distance < n to v.

Step 2: Arrangement of H-paths and exceptional H-paths into cycles
and paths

We now describe how to extend Cn−1 to Cn.
First, we consider the collection of all H-paths (not exceptional H-paths)

for all components H of G−V (Gn−1). We take a maximal collection of pairwise
edge-disjoint cycles, each of which is the union of H-paths; we add them to Cn
and remove their edges. Then we take a maximal collection of pairwise edge-
disjoint cycles, each consisting of some H-paths and some edges in Gn−1, add
them to Cn and remove the edges contained in the H-paths.

Gn−1

H-paths

Figure 2.7: We remove maximal collections of cycles obtained as unions of H-
paths (and possibly edges in Gn−1).

Consider the remaining H-paths. By ignoring their intermediate vertices, we
can think of each of them as a single edge joining two vertices in the boundary
of Gn−1. In other words, we can think of them as a forest F defined on the
vertices in the boundary of Gn−1.

Apply Theorem 6 to (each component of) F . As a result, we get two collec-
tions P1,P2 of paths in F ; each of them corresponds in G to a walk, since vertex
repetitions may occur. Let P3 be the collection of all exceptional H-paths.

Consider the collection P1, whose elements are paths joining vertices in the
boundary of Gn−1. We think of each of these paths as a single edge, therefore
getting a matching M1. By property (iii*) of Gn−1 applied to M1, we get a
collection of cycles in Gn−1 ∪M1.

We replace each edge in M1 by a union of H-paths and obtain thereby a
collection of closed walks. In each such walks there may be repetition of vertices
but not edges, and so it can be decomposed into pairwise edge-disjoint cycles.
We add these cycles to Cn.

Repeat the argument for P2 and P3.
So far we have enlarged Cn so that it covers all edges in H-paths and excep-

tional H-paths and no edge is in infinitely many cycles in Cn.

Step 3: Making Gn an induced subgraph

We still need to enlarge Cn so that the union of its cycles is an induced subgraph.
We call residual edge any edge joining vertices of Gn and not contained in any
cycle of Cn. Every residual edge joins two vertices of V (Gn) − V (Gn−1). We
need to add enough cycles to Cn so that every residual edge is covered by at
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least one of them; the cycles that we will add may have edges in common with
cycles already in Cn. Again, we will make sure that after the addition of these
new cycles, no edge is in infinitely many cycles of Cn.

First we add to Cn a maximal collection of pairwise edge-disjoint cycles
consisting of residual edges. The remaining residual edges form a forest; by
Theorem 6, we decompose it into paths.

Consider one of these paths, say Q, and let x, y be its endpoints; both x, y
are on H-paths (or exceptional H-paths), possibly different. By adding edges
from these H-paths, we can extend Q to a walk Q′ which joins two vertices in
the boundary of Gn−1 and such that the edges of Q′ are outside Gn−1.

x yQ
Gn−1 Gn−1

H-path H-path

Figure 2.8: Q is extended to a path Q′ by taking edges from H-paths.

The walkQ′ has no repetition of edges and can therefore be edge-decomposed
into cycles and a path with the same ends as Q′, which we call Q′′. The paths
Q′′ are not necessarily edge-disjoint; they may share edges in H-paths.

There can be only finitely many paths Q with endpoints on a given H-path
(because paths Q have distinct endpoints and H-paths have only finitely many
vertices).

H-path

Paths Q

Figure 2.9: There are only finitely many paths Q with endpoints on a given
H-path.

Therefore each edge in a fixed H-path is contained in only finitely many
paths Q′′. We make the paths Q′′ pairwise edge-disjoint by replacing each edge
by a multiple edge of finite multiplicity.
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H-path

Paths Q′′

Figure 2.10: Paths Q′′ are now pairwise edge-disjoint.

We form a new graph F ′ whose vertex set is the boundary of Gn−1; two
vertices u, v are neighbors in F ′ if there is a path Q′′ joining u, v. Remove a
maximal collection of pairwise edge-disjoint cycles from F ′; if they correspond
to cycles in G, we add these cycles to Cn. Since we have created multiple edges,
a cycle in F ′ may consist of a double edge; these do not correspond to cycles in
G and will not be added to Cn. The single edges from which these multiple edges
originated are in fact already covered by cycles in Cn. Now we may assume that
F ′ is a forest.

We apply Theorem 6 to F ′ and obtain two collections of paths such that no
two paths in the same collection have a common end. Thus we may think of
these paths (in either collection) as a matching M consisting of external edges
added to the boundary of Gn−1.

Let e be an edge in M ; it corresponds to a path in F ′, which in turn cor-
responds to a walk in G. We can edge-decompose that walk into cycles and a
path Q′′′ in G with the same ends as e. By property (iii) applied to Gn−1,M ,
we find a collection of cycles which contain all paths Q′′′ and hence all paths Q.
We add this collection to Cn and now Gn is an induced graph, thus satisfying
(i).

Now we show that Gn satisfies (iii). Consider a matching M consisting of
external edges whose ends are in the boundary of Gn; let e be one of these edges.
We repeat for e the same argument used previously for paths Q. Use H-paths
to obtain a path with endpoints in Gn−1, replace edges of the H-paths with
multiple edges of finite multiplicity, consider the graph F ′ and apply the same
argument.

This concludes the construction of Cn.

2.1.3 The cycle covering theorem

Theorem 9. Let G be a 2-edge-connected graph. Then G has a collection C of
cycles such that every edge of G is in at least one cycle in C and is in at most
countably many cycles in C.

Proof. Let v be a vertex of G. Our goal is to have a sequence (Cn)n∈N, where
Cn is a c.c.c. (of depth n) and such that Cn−1 ⊆ Cn.

We start by putting C0 = ∅ and G0 = {v}. Given Cn−1, by the construction
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shown in the previous section we can define Cn. Therefore by induction we get
the required sequence (Cn)n∈N.

Now define C = C0 ∪ C1 ∪ · · · =

∞⋃
i=0

Ci, which satisfies the properties of the

theorem.

Recall that in the definition of c.c.c. we asked the following property:

(i) Every edge of G is in at most finitely many cycles in Cn. The union of all
cycles in Cn is the edge set of an induced subgraph Gn of G.

According to Theorem 9, each edge e of G is contained in at most count-
ably many cycles in C. This comes from the fact that e is in at most finitely
many cycles in each collection Cn, and we are taking a countable union of these
collections. In general, e may be contained in countably many cycles in C (and
not finitely many): for instance, each collection Cn may bring new cycles not
contained in Cn−1 and passing through e. This shows that Theorem 9 cannot
be refined, with respect to the proof given here.

Because of this, it would be enough to ask that every edge of G is in at most
countably many cycles in Cn. In other words, property (i) in the definition of
c.c.c. can be replaced with the following condition

(i*) Every edge of G is in at most countably many cycles in Cn. The union of
all cycles in Cn is the edge set of an induced subgraph Gn of G.

The construction shown in Subsection 2.1.2 still works, with minimal ad-
justments: expressions such as “each edge is in only finitely many cycles in Cn”
need to be changed to “each edge is in at most countably many cycles in Cn”.
However, since property (i*) gives less restrictions than property (i), it may
allow for a simplification of the construction in Subsection 2.1.2 and hence of
the proof of Theorem 9.

2.2 Cut-faithful countable subgraphs

In Section 2.2, we show that every graph can be decomposed into connected,
countable and cut-faithful graphs. First, we prove the result for 2-edge-connected
graphs (Theorem 10), then for general graphs (Theorem 11).

Then, we will prove that every k-edge-connected graph has a decomposition
into countable and k-edge-connected subgraphs. This is a crucial step that al-
lows us to restrict the proof of Nash-Williams’ decomposition theorem (Theorem
14) to the countable case, which we already proved.

These results, together with some extensions of theirs to general cardinals,
first appeared in [7]. We will refer in particular to Theorem 11 as Laviolette’s
decomposition theorem.

Laviolette’s proof, given in [7], depends on Nash-Williams’ cycle decompo-
sition theorem. Here we follow the approach used by Thomassen in [13]: first
we prove Laviolette’s results (by using Theorem 9), from which Nash-Williams’
decomposition theorem follows as a corollary.

Theorem 10. Every 2-edge-connected graph has an edge-decomposition into
connected, countable, cut-faithful graphs.
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In the following proof, for p, q ∈ N \ {0}, we will define a decomposition
of G into pairwise edge-disjoint 2-edge-connected countable graphs Gp,q

i , for
i ∈ I(p, q), where I(p, q) is some index set.

Proof. We first describe the case p = q = 1, then p = 1 and q ≥ 1, then for all
pairs (p, q) with p ≥ 1 and q ≥ 1. After having defined all decompositions, we
will define the final one into cut-faithful subgraphs.

Decomposition with p = 1, q = 1.

Let C be a collection of cycles of G such that every edge of G is in at least one
cycle in C and at most countably many cycles; C exists by Theorem 9.

We define a new graph J , whose vertex set is C (i.e. a vertex in J is a cycle
in C); two vertices in J are joined by an edge if the corresponding cycles in C
have at least one edge in common.

In J each vertex has countable degree, hence each component of J is count-
able. Denote by Ji, for i ∈ I(1, 1), the components of J ; then we let G1,1

i be the
union of the cycles in C corresponding to the vertices in Ji, for all i ∈ I(1, 1).

The graphs G1,1
i are pairwise edge-disjoint, 2-edge-connected (because they

are unions of cycles), countable subgraphs of G. In general they are not cut-
faithful.

Since the graph G1,1
i is countable, it has only countably many finite edge-sets

and hence countably many finite minimal cuts; let us denote the finite minimal
cuts by Di

1, D
i
2, . . . , D

i
l , . . . .

Decomposition with p = 1, q = 2.

Consider the cut Di
1. If it is a cut in G, we do nothing. Now suppose that it

is not a cut in G. Since it is a minimal cut in G1,1
i , the graph G1,1

i − Di
1 has

exactly two components; let us denote by A,B the vertex sets relative to the
cut Di

1 and say that Di
1 consists of edges a1b1, a2b2, . . . , anbn, with a1, . . . , an

in A and b1, . . . , bn in B.
Create two new vertices x, y and connect them as follows. There is an edge

between x and each aj , there is an edge between y and each bj , for j ∈ {1, . . . , n};
finally there is a single edge xy. Call the resulting graph G̃1,1

i .

...

an bn

a2 b2

a1 b1

...
...

an bn

a2 b2

a1 b1

x y

Figure 2.11: The graph G̃1,1
i with the two vertices x, y.
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For each i ∈ I(1, 1), we have modified the graph G1,1
i into the graph G̃1,1

i by

operating on only one cut. Since the graphs G1,1
i , for i ∈ I(1, 1), are pairwise

edge-disjoint, we can perform these operations simultaneously. Moreover, the
graphs G̃1,1

i so obtained are also pairwise edge-disjoint.

Let G̃ be the union of all G̃1,1
i , for i ∈ I(1, 1) (just like G was the union of

all G1,1
i ); since Di

1 is not a cut in G, the graph G̃ is 2-edge-connected.

We apply Theorem 9 to G̃ and obtain a collection C̃ of cycles such that every
edge of G̃ is in at least one cycle in C̃ and at most countably many cycles.

We define a new graph J̃ . The vertex set of J̃ consists of the union of C̃ and
the set of all the graphs G̃1,1

i ; in other words, each cycle in C̃ and the graph

G̃1,1
i , for each i ∈ I(1, 1), are vertices of J̃ . Two vertices in J̃ are connected by

an edge if the corresponding subgraphs of G̃ (two cycles of C̃ or one cycle of C̃
and a graph G̃1,1

i ) have at least one edge in common.

In J̃ each vertex has countable degree, hence again each of its components
is countable. We denote by J̃j , for j ∈ I(1, 2), the connected components of J̃ .

For each j ∈ I(1, 2), let G1,2
j be the union of the subgraphs in G (not G̃)

corresponding to the vertices in J̃j . This defines a new decomposition of G into
pairwise edge-disjoint, 2-edge-connected, countable subgraphs.

The edges of the cut Di
1 are edges of G1,1

i and hence there exists j ∈ I(1, 2)

such that Di
1 is contained in G1,2

j .

If Di
1 is a cut in G, then it is a cut also in G1,2

j . For the remaining indices

i ∈ I(1, 1), those such that Di
1 is not a cut in G, we claim that Di

1 is not a cut
in G1,2

j .

Let i ∈ I(1, 1) be such that Di
1 is not a cut in G; also let Ci be a cycle of C̃

that contains the edge of the form xy contained in G̃1,1
i .

Any graph G1,1
s sharing edges with Ci, for s ∈ I(1, 1), is also in G1,2

j ; more-

over G1,2
j is 2-edge-connected. Therefore Ci can be modified into a cycle in G1,2

j

which contains precisely one edge in Di
1. See Figure 2.12. This implies that Di

1

is not a cut in G1,2
j .

x y

G̃1,1
i

Ci

G1,2
j

Figure 2.12: Ci is modified into a cycle in G1,2
j containing precisely one edge in

Di
1.
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Decompositions with p = 1, q ≥ 3

So far we have considered the cut Di
1. Now consider the cut Di

2, which is also
contained in the same G1,2

j . If Di
2 is a cut in G1,2

j (and hence a minimal cut)
but not a cut in G, we repeat the argument.

In this way we obtain a decomposition of G into pairwise edge-disjoint 2-
edge-connected, countable subgraphs G1,3

k , for k ∈ I(1, 3). Di
2 is contained in

one of these graphs but is not a cut in that graph. Repeat the argument: at step
l, we consider Di

l and obtain a decomposition of G into G1,l+1
k , for k ∈ I(1, l+1).

Decompositions with p ≥ 2, q ≥ 1

Having the decompositions G1,q
i , i ∈ I(1, q), for all q ≥ 1, we define a de-

composition with (p, q) = (2, 1) as follows. Consider an edge e of G; let
i ∈ I(1, 1), j ∈ I(1, 2), k ∈ I(1, 3), . . . , be such that e is contained in the graphs
G1,1

i , G1,2
j , G1,3

k , . . . , respectively. This is an increasing sequence of graphs; we

define their union to be one of the graphs G2,1
r , r ∈ I(2, 1).

p=1

Decomposition G1,1
i , for i ∈ I(1, 1), given by Theorem 9

If Di
1 is not a cut in G, we define a decomposition G1,2

j , for

j ∈ I(1, 2); now Di
1 is not a cut in G1,2

j

If Di
2 is not a cut in G1,2

j , we define a decomposition G1,3
k ,

for k ∈ I(1, 3); now Di
2 is not a cut in G1,3

k

...

p=2

Decomposition G2,1
r , for r ∈ I(2, 1), defined from the de-

compositions G1,q
i , i ∈ I(1, q), for all q ≥ 1

If Er
1 is not a cut in G, we define a decomposition G2,2

s , for
j ∈ I(2, 2); now Er

1 is not a cut in G2,2
s

If Er
2 is not a cut in G2,2

s , we define a decomposition G2,3
t ,

for t ∈ I(2, 3); now Er
2 is not a cut in G2,3

t

...

p=3

Decomposition G3,1
u , for u ∈ I(3, 1), defined from the de-

compositions G2,q
i , i ∈ I(2, q), for all q ≥ 1

...

...
...

Figure 2.13: We define decompositions Gp,q
i for p = 1 and all q ≥ 1, then for

p = 2 and all q ≥ 1, and so on.

Each of Di
1, D

i
2, . . . is contained in some G2,1

r , r ∈ I(2, 1); moreover, for each
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Di
1, D

i
2, . . . , if it is not a cut in G, then it is also not a cut in G2,1

r .
G2,1

r may have new finite minimal cuts; let us denote them by Er
1 , E

r
2 , . . . .

We repeat the argument and obtain decompositions of G into G2,2
s , s ∈ I(2, 2),

then into G2,3
t , t ∈ I(2, 3), and so on.

Having the decompositions G2,q
i , i ∈ I(2, q), for all q ≥ 1, we define the

decomposition G3,1
u , u ∈ I(3, 1), as before.

Repeat the argument for all p ≥ 1. Now we have all decompositions of G
into Gp,q

i , for i ∈ I(p, q), where p, q ∈ N \ {0}.

The final decomposition

We define the final decompositionH of G as follows. Consider an edge e of G; let
i ∈ I(1, 1), r ∈ I(2, 1), u ∈ I(3, 1), . . . be such that e is contained in the graphs
G1,1

i , G2,1
r , G3,1

u , . . . , respectively. This is an increasing sequence of graphs; we
define their union to be one of the elements of the decomposition H.

Let H be a graph in H; then it is a countable, 2-edge-connected subgraph of
G. Since H is the union of an increasing sequence of graphs of the form Gp,1

i ,

any finite set of edges in H is contained in a graph Gp,1
i , for some p ≥ 1.

We want to show that H is cut-faithful. Let D be a finite minimal cut in H;
by definition, this means in particular that H −D is disconnected. We need to
show that D is also a cut in G.

Consider all vertices of D contained in one side of H − D; since there are
finitely many of them, there is a finite connected subgraph of H containing all
of them. Call D′ the set of edges of this subgraph. Analogously, let D′′ be a
finite set of edges connecting all vertices of D contained in the other side of
H −D.

Now D ∪ D′ ∪ D′′ is a finite set of edges in H, hence it is contained in a
subgraph of H of the form Gp,q

i , for some p ≥ 1 (and i ∈ I(p, 1)). Notice that

D is a minimal cut also in Gp,1
i .

Suppose by contradiction that G−D is connected. Then there is a subgraph
Gp+1,1

j of H containing D such that Gp+1,1
j − D is also connected. Therefore

H −D is connected, contradiction. We have that G−D is disconnected, which
implies that D is a cut in G.

Therefore H is a decomposition of G into countable, connected, cut-faithful
subgraphs, as required.

We can easily extend Theorem 10 to general graphs. In fact, any bridge is
a countable, connected and cut-faithful subgraph; after their removal, we apply
Theorem 10 to each component of the resulting graph.

Theorem 11. Every graph has an edge-decomposition into connected, count-
able, cut-faithful graphs.

Proof. A graph has an edge-decomposition into connected, countable, cut-faithful
graphs if and only if each of its connected components does; therefore it suffices
to prove the result for connected graphs.

Consider a connected graph. Each of its bridges will be part of the de-
composition. In fact the graph with two vertices and one edge joining
them is clearly connected and countable; moreover it is cut-faithful if and only
if it is a bridge. By removing all the bridges, the remaining graph consists of
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2-edge-connected components. We can decompose each of them by Theorem
10.

We can prove an additional property of decompositions as in Theorem 11.

Theorem 12. Let G be a graph, H a decomposition of G into connected, count-
able, cut-faithful graphs; also let H be an element of H. Then every finite min-
imal cut of G intersecting H is contained in H.

Proof. Let D be a finite minimal cut in G intersecting H, i.e. H contains at
least one edge of D. Suppose by contradiction that H does not contain all edges
of D. Let D′ be the set of edges in D which are also in H. Then D′ is a cut in
H.

Let D′′ be a minimal cut in H contained in D′. Then D′′ is a proper subset
of D and hence not a cut in G (because D is a minimal cut in G). This implies
that H is not cut-faithful, contradiction.

2.3 Nash-Williams’ cycle-decomposition theorem

As noted at the beginning of Section 2.2, in order to prove Nash-Williams’ de-
composition theorem, we will rely on its countable version, Theorem 8. There-
fore, we need to prove that it is possible to decompose a 2-edge-connected graph
into 2-edge-connected countable subgraphs.

The result, given in a more general form in Theorem 13, depends on Lavio-
lette’s decomposition theorem. In fact, the property of the subgraphs given by
Theorem 11 of being cut-faithful is what makes preserving the edge-connectivity
possible.

Theorem 13. If k is a natural number, and G is a k-edge-connected graph,
then G has an edge-decomposition into countable, k-edge-connected graphs.

Proof. Decompose G into countable, connected, cut-faithful subgraphs accord-
ing to Theorem 11. Let H be one the subgraphs; we want to show that H is
k-edge-connected.

Suppose by contradiction that H is not k-edge-connected. Then it has a
cut, hence also a minimal cut D, which is finite and contains less than k edges.
Since H is cut-faithful, D is a cut in G. Therefore G is not k-edge-connected,
contradiction.

Now we can finally prove Nash-Williams’ cycle decomposition theorem for
general graphs. The result first appeared in [8]; like the rest of this Chapter, we
follow here the approach by Thomassen [13] and derive Nash-William’s theorem
from what we have done so far, in particular from Theorems 8 and 11.

Theorem 14. Every graph with no odd cut has an edge-decomposition into
cycles.

Proof. Let G be a graph with no odd cut. By Theorem 11, we can decompose
G into connected, countable and cut-faithful subgraphs. Let H be one of such
graphs.

We claim that H has no finite odd cut.
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Suppose by contradiction that H has a finite odd cut C. Then the cut-set of
C is the disjoint union of the cut-sets of the finite minimal cuts contained in C
and since C is odd, at least one of them is odd. Now H is cut-faithful, therefore
its finite minimal odd cut is also an odd cut in G, contradiction.

We have shown that H has no finite odd cut. Since it is countable, we can
decompose it into cycles by Theorem 8 (Nash-Williams’ decomposition theorem
for countable graphs).

2.4 Summary of the important results

So far we have proven three important theorems:

CCT Cycle covering theorem (Theorem 9): Let G be a 2-edge-connected graph.
Then G has a collection C of cycles such that every edge of G is in at least
one cycle in C and is in at most countably many cycles in C.

LDT Laviolette’s decomposition theorem (Theorem 11): Every graph has an
edge-decomposition into connected, countable, cut-faithful graphs.

NWDT Nash-Williams’ decomposition theorem (Theorem 14): Every graph with
no odd cut has an edge-decomposition into cycles.

As we have shown, some of them have easier, but indirect, proofs, done by
assuming one of the other theorems:

• Assuming CCT, we proved LDT: this was done in Section 2.2.

• Assuming LDT, we proved NWDT: this was done in Section 2.3.

CCT has an elementary proof assuming LDT.

• Assuming LDT, we show that CCT holds: Given a 2-edge-connected graph,
decompose it into connected, countable, cut-faithful (hence 2-edge-connected)
subgraphs according to LDT. Then apply the countable version of Nash-
Williams’ decomposition theorem (Theorem 8) to each subgraph.

Finally, Laviolette [7] proved LDT assuming NWDT.
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Chapter 3

Coverings with cycles

A cycle double cover of a graph G is a collection of cycles in G such that every
edge of G is contained in exactly two cycles in the collection.

A graph has a cycle double cover if and only if each of its connected compo-
nents has a cycle double cover, so we may suppose that every graph considered
here is connected.

If a graph has a cycle double cover, then it is necessarily 2-edge-connected.
It has been conjectured that this condition is in fact sufficient. The statement
is known as the cycle double cover conjecture, or CDC conjecture for short.

Cycle double cover conjecture. Every 2-edge-connected graph has a cycle
double cover.

The CDC conjecture is an open problem in graph theory. One of the first
published references of the conjecture is a 1973 article by Szekeres [11], although
it was formulated for cubic graphs; in 1979, Seymour [9] stated the conjecture for
all 2-edge-connected graphs. The two formulations are equivalent, see Section
3.1.

In this chapter we present some partial results motivated by the CDC con-
jecture.

In Section 3.1 we discuss the structure of a potential counterexample to the
conjecture.

In Section 3.2 we show that every 2-edge-connected graph has a collection
of cycles covering each edge at most 7 times.

In Section 3.3 we give an elementary proof of the fact that every 4-edge-
connected graph has a cycle double cover. The same technique gives also the
result that Hamiltonian graphs and k-regular, 1-factorable, 2-edge-connected
graphs have a cycle double cover.

3.1 Reduction to snarks

Suppose we are given a 2-edge-connected planar graph, together with an em-
bedding into the plane. For planar graphs there is a well defined notion of
faces.

Since the graph is 2-edge-connected, the boundary of each face, including the
external face, is a cycle. Since every edge belongs to exactly two faces, the set of

33
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the boundaries of all faces is a cycle double cover of the graph. This shows that
the CDC conjecture is true for 2-edge-connected planar graphs. In particular
every potential counterexample to the conjecture must be non-planar.

If there exists a counterexample to the CDC conjecture, then there exists
also a minimal counterexample. The following theorem (see Jaeger [6]) gives
some properties of such minimal counterexample.

Theorem 15. If G is a minimal counterexample to the CDC conjecture, then:

(1) G is simple, 3-connected and cubic;
(2) G has no nontrivial 2-cut or 3-cut;
(3) G is not 3-edge-colorable;
(4) G is not planar.

A snark is a simple, 2-edge-connected cubic graph with chromatic index 4.

A brief remark on the chromatic index χ′(G). By Vizing’s theorem (Theorem
5.3.2 in [2]), every graph satisfies ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, where ∆(G) =
max{d(v) : v ∈ V } is the maximum degree of G. Therefore a cubic graph can
only have chromatic index 3 or 4.

By Theorem 15 (and the previous observation), a minimal counterexample
to the CDC conjecture, if it exists, is a snark. This implies that if the CDC
conjecture is true for snarks, then it is true for all (2-edge-connected) graphs.

The smallest snark is the Petersen graph, which admits a cycle double cover.

Figure 3.1: A cycle double cover of the Petersen graph.

Huck [4], with the aid of a computer search, showed that the girth, i.e. the
length of the smallest cycle, of a potential minimal counterexample to the CDC
conjecture is at least 12.
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3.2 Cycles covering each edge at most finitely
many times

In this Section we are going to show that every 2-edge-connected graph can be
covered with cycles such that each edge is in at most 7 of them.

This is a result by Thomassen [13]; we study here the proof given in the
referenced article.

The result is very similar to Theorem 9 and so is the proof: in fact, we are
going to construct an increasing sequence (Cn)n∈N of collections of cycles such
that Cn covers at least all edges that reach vertices with distance < n from a
fixed vertex v.

In Section 2.1 we used countable cycle covering collections. Here we need to
define a slightly different notion: finite cycle covering collections. Unlike with
countable c.c.c.’s, in the case of finite c.c.c.’s an edge that first appears in some
of the cycles of Cn−1 may be covered by a controlled amount of cycles appearing
in Cn, but then does not belong to any cycle in any collection Ck, for k > n.

As before, we first give the definition of finite c.c.c.’s (Subsection 3.2.1), then
we show how to construct a c.c.c. Cn given a c.c.c. Cn−1 (Subsection 3.2.2) and
finally we give the covering result, Theorem 19 in Subsection 3.2.3.

In the proof we will use the following two results.
First, Jaeger [5] proved that every 2-edge-connected graph can covered with

three even graphs.

Theorem 16. Every finite 2-edge-connected graph is the union of three even
graphs.

We say that a vertex v in a graph is split up into vertices when we perfom
the following operation. v is deleted and replaced by a vertex set Vv; each edge
incident with v is replaced with exactly one edge incident with one vertex in Vv.

Thomassen [12] proved that it is possible to split up the vertices of a count-
able graph while preserving its edge-connectivity.

Theorem 17. Let k be a natural number, and let G be a countably infinite
k-edge-connected graph. Then every vertex of G can be split up into vertices
so that the resulting graph is k-edge-connected, and each block of the resulting
graph is locally finite.

3.2.1 Finite covering cycle collections

Let G be a countable, locally finite, 2-edge-connected graph, v a vertex of G,
n ≥ 0 a natural number. A finite covering cycle collection (of depth n) is a
finite collection Cn of cycles with the following properties:

(i) The union of all cycles in Cn is the edge set of an induced subgraph Gn of
G. Every edge of G is in at most 7 cycles in Cn.

(ii) Gn contains all vertices of distance ≤ n to v.

Given a covering cycle collection Cn−1 (of depth n−1), we want to construct
a c.c.c. Cn of depth n, with the following additional requirements:

(iii) Every cycle in Cn−1 is also in Cn, i.e. Cn−1 ⊆ Cn.
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(iv) Every edge of G joining two vertices of V (Gn) \ V (Gn−1) is in at most 5
cycles in Cn.

(v) For any two vertices x, y in the boundary of Gn such that G − V (Gn)
has a component joined to each of x, y,Gn has a path joining x, y disjoint
from Gn−1. In other words, for each component H of G − V (Gn), there
is a component Q of Gn − V (Gn−1) such that all edges from H to Gn go
to Q.

3.2.2 The second construction

Consider a connected component of G − V (Gn−1), which we denote by H as
before; let S be the set of vertices in Gn−1 joined to H.

By property (v) applied to H,Gn−1 (instead of Gn), we have that all vertices
of S belong to only one connected componentQ ofGn−1−V (Gn−2). By property
(iv) applied to Gn−1, Gn−2 (instead of Gn, Gn−1), every edge of Q is in at most
5 cycles in Cn−1.

We also let U be the set of vertices in H joined to Gn−1.

H1

H2

H3

Gn−2

Gn−1

Q1
Q2

U1

U2

U3

Figure 3.2: Q1, Q2 are connected components of Gn−1−V (Gn−2). By property
(v), all vertices in Si belong to one of the components Qj .

Gn−1 is finite because it is the subgraph induced by the finite collection Cn−1
of cycles. Therefore there are only finitely many edges between Gn−1 and H.
In particular, U is also a finite set.



3.2. CYCLES COVERING EACH EDGE ATMOST FINITELYMANY TIMES37

H has finitely many bridges

An edge e in H is a bridge precisely when e and some edges between H and
Gn−1 form a cut in G.

Gn−1

H

S

U

Figure 3.3: Red edges are bridges in H.

There exists a finite connected subgraph of H containing all the vertices in
U ; for instance, we can take the union of all the paths connecting pairs of such
vertices. Every bridge in H is necessarily contained in this subgraph. Therefore
there can be only finitely many bridges in H.

Definition of H ′

Since H has finitely many bridges, it also has finitely many maximal 2-edge-
connected subgraphs.

In each maximal 2-edge-connected subgraph of H, we select a finite 2-edge-
connected subgraph which contains:
• all ends of the bridges in H
• and all vertices in U

which are contained in that maximal 2-edge-connected subgraph. Let H ′ be the
union of all these finite subgraphs and of all bridges of H. Then H ′ is a finite
connected subgraph of H; moreover, H,H ′ have the same bridges.

We may assume that H ′ is an induced subgraph. In fact, since it is finite, it
remains finite even after adding the necessary edges.

By Theorem 16, there exists a collection of cycles in H ′ covering all its edges
(except for the bridges) at least once and at most 3 times. We add all these
cycles to Cn.

Construction of the H-paths

We are going to define H-paths and possibly one exceptional H-path, for each
connected component H of G − V (Gn−1), like we did in Section 2.1. All H-
paths (including the exceptional ones) will have their endpoints in S and their
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intermediate vertices in H ′. Moreover, they will cover every bridge of H ′, hence
of H, and all the edges between H and S.

First, remove a maximal collection of paths of length 2 consisting of edges
between S and H ′ adjacent to the same vertex in H ′. The collection may contain
some double edges, which are considered paths of length 2, between S and H ′.
Moreover, there can be no multiple edge remaining between S and H ′, otherwise
the collection would not be maximal. Let U ′ be the set of endpoints in H ′ of
all the remaining edges between S and H ′.

Let T be a spanning tree of H ′ and apply Theorem 4 to T,U ′. We obtain
a collection of pairwise edge-disjoint paths in H ′ such that each vertex in U ′

(except possibly one) is the end of precisely one of such paths. Extend each
path to a path (or possibly a cycle) having both endpoints in S by adding the
corresponding edges between H ′ and S. These extended paths are all pairwise
edge-disjoint H-paths.

If the exceptional vertex exists, there is one exceptional edge between H ′ and
S that has not been covered by the H-paths. Then we find a path in T from the
exceptional vertex to another vertex in U ′. We extend this path by adding the
exceptional edge and the corresponding edge between H ′ and S adjacent to the
other endpoint. The extended path is the exceptional H-path and, if it exists,
it necessarily shares edges with one of the H-paths.

Covering the H-paths

Recall that we denoted by Q the connected component of Gn−1−V (Gn−2) that
contains all vertices in S. Consider all H-paths and exceptional H-paths, for
all components H of G− V (Gn−1) which are joined to Q.

By ignoring their intermediate vertices, each H-path (not the exceptional
H-paths) can be thought as an external edge added to Q. Let Q′ be the graph
obtained from Q by adding the external edges; also let TQ be a spanning tree
of Q.

We claim that by removing edges from TQ, it is possible to transform Q′ into
an even graph Q′′. Apply Theorem 4 to TQ, where S is the set of vertices of odd
degree in Q′; then remove the edges of the paths given by the Theorem. The
remaining edges of Q′ form an even graph Q′′. Decompose Q′′ into pairwise
edge-disjoint cycles; the corresponding cycles in G cover all H-paths and are
added to Cn.

All edges of Gn − V (Gn−1) are covered at most 4 times: they belong to at
most 3 cycles obtained from Theorem 16 and at most one cycle coming from
the decomposition of Q′′.

All edges of Gn−1 − V (Gn−2) are covered at most 6 times: they belong to
at most 5 cycles in Cn−1 by assumption and at most one cycle coming from the
decomposition of Q′′.

Now we cover the exceptional H-paths. Each of them is again thought as
an external edge added to Q. By repeating the argument used for H-paths, we
can find a collection of pairwise edge-disjoint covering the exceptional H-paths.
These cycles are also added to Cn.

Therefore all edges of Gn − V (Gn−1) are covered at most 5 times and all
edges of Gn−1 − V (Gn−2) are covered at most 7 times.
Cn satisfies properties (ii), (iii) and (iv). Since H ′ is induced, Gn is an

induced subgraph as well, hence also property (i) is satisfied.
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We want to show that property (v) holds. Consider a connected component
J of G − V (Gn). All its edges go to only one component H of G − V (Gn−1),
otherwise there would be two (or more) distinct connected components of G−
V (Gn−1) which are connected to each other, contradiction.

Moreover, we claim that all edges between J and Gn go to the subgraph
H ′ relative to that component H, and not to Gn−1. In fact, all edges between
Gn−1 and H (i.e. between the sets S,U) are covered by cycles in Cn, hence they
belong to Gn. Notice that we only covered edges in H ′, therefore every edge in
H but outside H ′ is not in Gn.

We showed that every edge between J and Gn goes to H ′, which is a con-
nected subgraph, hence property (v) holds for Gn.

3.2.3 The covering result

First we prove the result for countable and locally finite graphs, then for general
(2-edge-connected) graphs.

Theorem 18. Let G be a countable, locally finite, 2-edge-connected graph. Then
G has a collection C of cycles such that every edge of G is in at least one cycle
in C and in at most 7 cycles in C.

Proof. Let v be a vertex of G. Our goal is to have a sequence (Cn)n∈N, where
Cn is a finite c.c.c. (of depth n), satisfying all the properties (i) to (v).

We start by putting C0 = ∅ and G0 = {v}. Given Cn−1, by the construction
shown in the previous section we can define Cn. Therefore by induction we get
the required sequence (Cn)n∈N.

Now define C = C0 ∪ C1 ∪ · · · =

∞⋃
i=0

Ci, which satisfies the properties of the

theorem.

The covering result:

Theorem 19. Let G be a 2-edge-connected graph. Then G has a collection C
of cycles such that every edge of G is in at least one cycle in C and in at most
7 cycles in C.

Proof. By Theorem 13 we can decompose G into countable, 2-edge-connected
subgraphs. We will cover each of these subgraphs with cycles. Hence we can
suppose that G is countable (and 2-edge-connected).

We split every vertex of G up into vertices according to Theorem 17; now
each block of the resulting graph is locally finite and the edge-connectivity is
preserved. Apply Theorem 18.

3.2.4 Directed graphs

There is a result analogous to Theorem 19 for directed graphs.

Theorem 20. Let G be a 2-edge-connected graph. Then the edges of G can be
oriented so that the resulting directed graph has a collection of directed cycles
such that each edge is in at least one and finitely many directed cycles in the
collection.

Proof. It follows from Theorem 11 in [12].
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3.3 Graphs with a cycle double cover

In Section 3.3 all graphs are finite.
The proof we are going to present here is elementary and is based on the

following ideas:

• If a graph can be written as the union of two Eulerian subgraphs, then
it has a cycle double cover; the proof of this result, Theorem 21, passes
through the symmetric difference of the two subgraphs.

• Given a spanning tree T of a graph G, it is possible to find an Eulerian
subgraph of G that covers at least every edge not in T . This is done by
finding pairwise edge-disjoint paths in T pairing vertices of odd degree in
G.

• Since we need two Eulerian subgraphs, whose union is the whole graph,
we need to find two edge-disjoint spanning trees; this is possible if the
graph is 4-edge-connected. See Theorem 22.

• A Hamiltonian cycle, which is an Eulerian subgraph, may play the same
role as the spanning tree T . See Theorem 23.

Singularly, each of these ideas is very easy and has been used extensively,
sometimes without the need of putting a reference. It is hard to establish
whether the whole proof is original; in fact, we could not find a published
reference explicitly mentioning this method and applying it to 4-edge-connected
graphs and to Hamiltonian graphs.

First, we state and prove Theorem 21, which gives a sufficient condition for
having a cycle double cover.

Theorem 21. If a graph is the union of two Eulerian subgraphs, then it has a
cycle double cover.

Proof. Let G1, G2 be two Eulerian subgraphs whose union is a graph G. By
Theorem 3, the symmetric difference G14G2 is also an Eulerian subgraph of G.
Together, the subgraphs G1, G2, G14G2 cover each edge of G exactly twice. By
decomposing each of these three subgraphs into pairwise edge-disjoint cycles,
we get a cycle double cover of G.

3.3.1 Every 4-edge-connected graph has a cycle double
cover

Theorem 22. Every 4-edge-connected graph has a cycle double cover.

Proof. Let G be a 4-edge-connected graph. We want to show that G can be
written as the union of two Eulerian subgraphs; then the result follows by
Theorem 21.

Let S be the set of vertices of G with odd degree. By Theorem 7 (with
k = 2), G has 2 edge-disjoint spanning trees, say T1, T2.

By Theorem 4 applied to T1, S, we can find pairwise edge-disjoint paths
p1, p2, . . . , pn in T1 such that each vertex in S is the end of precisely one of the
paths. Let G1 be the subgraph of G containing all edges of G except the edges
of the paths p1, p2, . . . , pn.

Similarly, we can find pairwise edge-disjoint paths p′1, p
′
2, . . . , p

′
n in T2 such

that each vertex in S is the end of precisely one of the paths. We let G2
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be the subgraph of G containing all edges of G except the edges of the paths
p′1, p

′
2, . . . , p

′
n.

The union of G1, G2 is G (because the trees T1, T2 are pairwise edge-disjoint
and hence also the paths p1, p2, . . . , pn and p′1, p

′
2, . . . , p

′
n are all pairwise edge-

disjoint); moreover, G1, G2 are Eulerian subgraphs, since the paths removed
to obtain each subgraph join precisely the vertices of G of odd degree. Apply
Theorem 21.

3.3.2 Every Hamiltonian graph has a cycle double cover

Theorem 23. Every Hamiltonian graph has a cycle double cover.

Proof. Let G be a Hamiltonian graph. As in the proof of Theorem 22, we want
to show that G can be written as the union of two Eulerian subgraphs.

Let w be a Hamiltonian tour of G; w is one of the two Eulerian subgraphs,
say G1.

Starting from an arbitrary vertex v of G, let v1, v2, . . . , v2k be the vertices
of odd degree in G as they appear in w. If k = 0, we take G as the subgraph
G2. Otherwise, we consider the paths p1 from v1 to v2 (in w), p2 from v3 to v4
(in w), . . . , pk from v2k−1 to v2k, all contained in w. Notice that these paths
are all pairwise edge-disjoint.

G2 is defined to be the subgraph containing all edges of G except the edges of
the paths p1, p2, . . . , pk. G2 is Eulerian because each of the paths p1, p2, . . . , pk
joins vertices of odd degree in G, with each vertex of odd degree being the
endpoint of exactly one of the paths.

As before, G1, G2 are Eulerian subgraphs whose union is G, hence the result
follows by Theorem 21.

3.3.3 1-factorable graphs

Let G be a graph. A k-factor of G is a spanning k-regular subgraph G. A k-
factorization of G is a decomposition of G into pairwise edge-disjoint k-factors.
Finally, G is said to be k-factorable if it has a k-factorization.

A 1-factor is a perfect matching, i.e. a matching that contains every vertex
of the graph. If a graph is 1-factorable (and the 1-factorization contains k 1-
factors), then each of the 1-factors increases by 1 the degree of every vertex of
the graph; therefore the graph is k-regular; the converse is not true in general.

A 1-factorization of a graph (into k 1-factors) gives an edge-coloring of the
graph with k colors. Conversely, if a k-regular graph can be k-edge-colored,
hence it has chromatic index k, then it is 1-factorable (and again into k 1-
factors). In fact, every vertex has degree k, hence it must be incident with an
edge of each color.

Theorem 24. Let G be a k-regular, 1-factorable and 2-edge-connected graph,
with k ≥ 2. Then G has a cycle double cover.

Proof. If k is even, then G is Eulerian; decompose it into pairwise edge-disjoint
cycles and take each of them twice.

Suppose that k is odd and let S1, S2, . . . , Sk be the k 1-factors of G. Then
G1 = G− S1, G2 = G− S2 are two Eulerian subgraphs whose union is G. The
result follows from Theorem 21.
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It is easy to characterize k-regular graph with k ∈ {0, 1, 2}: 0-regular graphs
consist of only isolated vertices, 1-regular graphs consist of isolated edges, 2-
regular graphs consist of isolated cycles.

The following graphs have been proven to be 1-factorable:

• any k-regular graph with chromatic index k (see before Theorem 24);
• any k-regular bipartite graph (Corollary 2.1.3 in [2]);
• any complete graph on an even number of vertices (Theorem 9.1 in [3]);
• any k-regular graph on 2n vertices, with k ∈ {2n− 1, 2n− 2, 2n− 3, 2n−

4, 2n− 5}, or with k ≥ 12n
7 (Chetwynd & Hilton [1]).

3.3.4 Final remarks

The converses of Theorems 22 and 23 are not true, with the Petersen graph
being a counterexample for both. The Petersen graph does not even satisfy
Theorem 21.

However, we can give a generalization of Theorem 21. Instead of having
just 2 Eulerian subgraphs, we consider a number n of Eulerian subgraphs such
that each edge of the graph is contained in one or two of them. The proof is
analogous to the proof of Theorem 21.

Theorem 25. Suppose that a graph G has a collection of Eulerian subgraphs
such that each edge of G is contained in one or two of these subgraphs. Then G
has a cycle double cover.

Proof. Let G1, G2, . . . , Gn be such Eulerian subgraphs. Let G0 be the subgraph
of G consisting of all edges of G contained in exactly one of the subgraphs
G1, G2, . . . , Gn; then G0 is also Eulerian. Decompose each of the subgraphs
G0, G1, G2, . . . , Gn into pairwise edge-disjoint cycles.

The converse of Theorem 25 is also true; in other words, the following two
facts are equivalent for a graph G:

• G has a collection of even subgraphs such that each edge of G is contained
in one or two of these subgraphs;

• G has a cycle double cover.

Therefore the cycle double cover conjecture can be equivalently stated as
follows:

Cycle double cover conjecture. Every 2-edge-connected graph G has a col-
lection of even subgraphs such that each edge of G is contained in one or two of
these subgraphs.
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