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Abstract

MmWave communication systems are exposed to fundamental problems
when high interference is present, due to the high number of devices, strong
attenuation and transmission frequencies above 28GHz. The main ques-
tions are how this interference can be described statistically using the cor-
relation matrix, how this interference correlation can be estimated and how
the estimated interference correlation can be used to improve the capacity
of a mmWave transmission. Furthermore, changes in correlation matrices
should be detected, searching for methods which can be used in mmWave
environments. In this work a simple mmWave environment was reproduced.
A focus was set to the angles of arrival (AoA), which is a parameter that de-
fines the interference. Traditional and novel methods for AoAs estimation,
like MUSIC and methods based on a new gridless multidimensional AoAs
estimation method, are used in the mmWave environment to estimate the
interference correlation. They are compared with the least square estimation
method in terms of mean square error (MSE) and in terms of capacity in a
mmWave uplink transmission.The characteristics of the mmWave interfer-
ence was analyzed and used for the search of a possible algorithm to detect
changes in the interference correlation. This thesis revealed the importance
of knowing the AoAs for the interference correlation estimation and the dif-
ferences in terms of performance between the various estimation methods,
showing an estimation improvement in some novel methods taking into ac-
count the MSE. Considering the capacity of a mmWave transmission, all
methods, which use AoAs for the estimation of the interference correlation,
accelerate the reaching of the maximal capacity significantly. Also a slight
improve in terms of capacity of the novel gridless AoA estimation methods,
with respect to the MUSIC algorithm, was detected. Moreover a method for
change detection, called ODIT, was found and tested. It was asserted that it
satisfies the main properties to be used as mmWave interference correlation
change detection algorithm.
Keywords: mmWaves, interference correlation, change detection
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Chapter 1

Introduction

This thesis deals with a fundamental problem in mmWave communication
systems, when high interference is present, due to the high number of de-
vices, strong attenuation and transmission frequencies above 28GHz. The
consequences of this is that only a few echos of the transmitted signal are
available at the receiver, typically around 3 or 4. This results in a re-
duced capacity due to attenuation, environment noise and interference noise
coming from the other transmitters. To mitigate the effects of correlated
interference, the correlation matrix of the interference is estimated. Tradi-
tional methods like least square (LS) estimate the correlation matrix step
by step, using the interference vectors. This results in an accurate, but slow
process and is not useful in mobile environments, in which fast changes in
the environments occur. For this reason new methods, which could improve
the estimation of the correlation matrix, have been found. A first focus was
on searching methods to estimate the angles of arrival (AoA) of the inter-
ference devices signal echos. Traditional methods use solutions which make
use of the estimated covariance matrix, like the multiple signal classification
method (MUSIC). In this work this traditional method is compared with
a new method, which consists in a gridless technique, based on the atomic
norm minimization. They are compared when used for estimating the inter-
ference correlation matrix in terms of mean square error(MSE) and in terms
of capacity, when the estimated interference correlation matrix is used in an
uplink transmission channel. The second part of the thesis deals with the
change in time of the real interference correlation matrix. The estimated
correlation matrix could be, due to the mobility of the interferer, increase
again in terms of MSE, with respect to the real correlation matrix. This
brings a further challenge which was analyzed in this thesis. Different meth-

7
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ods are analyzed which could be used to detect a change of the interference
correlation matrix in time.



Chapter 2

Estimation of the
interference correlation

MmWave transmissions deal with carrier frequencies above 28GHz which
leads to a large bandwidth [3] but also to higher vulnerability due inter-
ference. The increased bandwidth comes at the expense of an increased
attenuation [2]. Different techniques have been developed to overcome this
problem, which focused by the majority on channel estimation techniques.
The problem of strong attenuation leads to a particular structure of the
mmWave channel, which is utilized in mmWave channel estimation tech-
niques. This property is visible in the 2-Dimensional discrete Fourier trans-
form (DFT) plane of the channel, where it appears as a structured paramet-
ric matrix with few parameters. The advantage of this property is that only
a few paths of each channel between base station (BS) and user end (UE),
must be considered, which are the paths that suffers less attenuation. Often
this property is also called ”sparsity” in the angular domain of the channel.
Techniques like compressed sensing (CS) have made use of this property for
channel estimation[1]. Other techniques use the particular algebraic struc-
ture of the mmWave channel, which is obtained exploiting the durability
of the directions of the angles of arrival (AoA), the angles of transmission
(AoT), the delays and the average power[1]. In this section the problem of
attenuation is approached in mitigating noise by estimating the correlation
matrix of the interference devices and using it for transmission. Being part
of the noise sent of by other devices interference is summed up with the
additive white Gaussian noise (AWGN) noise. Also the so called interfer-
ence environment channel has a particular non parametric structure with
few parameters and different researches [4] tried to use this for estimating

9
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the correlation matrix. In this work the basic least square (LS) estimation
was used as reference method to estimate the interference correlation matrix
and then a sort of advantage was obtained using traditional and novel meth-
ods which estimate the AoAs of the interferer devices. This advantage was
then used for the continuous correlation matrix estimation. The methods
used for AoA estimation were the multiple signal classification (MUSIC)[5]
procedure and a recent procedure developed for automotive radars, based
on a gridless AoA estimation [6] [7]. Furthermore, the latter method was
adapted and we tried to improve the performance using a clustering method
and using the subspace of a previous done LS estimation. The performance
was then evaluated in terms of mean square error (MSE) and in terms of
capacity.

2.1 mmWave single user channel

We consider a single-carrier mmWave multiple input-multiple output (MIMO)
channel. The receiver has NR antennas and the transmitter NT antennas.
At both the transmitter and the receiver the antennas are organized in lin-
ear arrays. In an uplink transmission, at the base station (BS) the received
signal is

Y = HX +N , (2.1)

where Y ∈ C
NR×1 is the column vector of received signals, X ∈ C

NT×1

represents the column vector of transmitted symbols, H ∈ C
NR×NT repre-

sents the channel matrix, and N ∈ C
NR×1 is the noise column vector. In

particular, N is a vector of additive white Gaussian noise (AWGN), with
independent entries having zero mean and variance σ2.
Entry (r, t) of channel matrix H is

[H]r,t =

NC−1∑

i=0

ǧie
−j2π(r−1)η

(Rx)
i e−j2π(t−1)η

(Tx)
i , (2.2)

where r = 1, ..., NR, t = 1, ..., NT , NC is the number of reflected rays,

j =
√
−1, ǧi is a complex gain and η

(Tx)
i / η

(Rx)
i are the transmitter/receiver

phase shifts, defined as
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η
(Tx)
i =

D
(Tx)
min

λ
sinα

(Tx)
i ,

η
(Rx)
i =

D
(Rx)
min

λ
sinα

(Rx)
i ,

(2.3)

where D
(Tx)
min and D

(Rx)
min are the distances between the elements in the linear

antenna transmitter/receiver arrays and λ is the wavelength of the carrier
signal. At mmWaves we have λ ∈ [1 − 10]mm, which corresponds to a
frequency of 30− 300GHz.

Angles α
(Tx)
i and α

(Rx)
i represent the angle of departure (AoD) and the angle

of Arrival (AoA) of ray i. Variable i is the index of the ray and it varies
from i = 0 to NC − 1. In mmWaves, the attenuation is high, due to the
high operating frequencies and only a few rays participate in the formation
of the useful signal (typically NC = [1− 3]).

2.1.1 Angular domain representation

The mmWave channel can be well represented in the angular domain by
taking the two-dimensional discrete Fourier transform (DFT) of the channel
matrix. Let Ω = [Ω1,Ω2] and let us define matrix W (Ω) ∈ C

M1×M2 with
entries

[W (Ω)]φ1,φ2 =

[

NRsincNR

(
NR(φ1 − Ω1)

M1

)

e
−jπ(φ1−Ω1)

NR−1

M1

]

×
[

NT sincNT

(
NT (φ1 − Ω1)

M2

)

e
−jπ(φ2−Ω2)

NT−1

M2

]

,

(2.4)

where φ1 = 0, 1, ...,M1 − 1, and φ2 = 0, 1, ...,M2 − 1 and

sincN (a) =

{
sin(πa)

Nsin(πa
N

) , a 6= 0,

1, a = 0.
(2.5)

The 2-D DFT of sizes M1 and M2 of H is matrix Φ ∈ C
M1×M2 , with entries

[Φ]φ1,φ2 =

NR∑

r=1

NT∑

t=1

[H]r,te
−j2πφ1(r−1)

M1 e
−j2πφ2(t−1)

M2 =

NC−1∑

i=0

ǧi[W (Ω(i))]φ1,φ2 .

(2.6)
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2.2 Interference in mmWave channels

Considering (2.1), vector N includes not only AWGN but also interference
coming from other transmitters (e.g, in nearby cells), thus

N = GJ +Z, (2.7)

where G ∈ C
NR×NI is the complex interference channel matrix that de-

scribes the narrowband channel between the receiver and the interfering
transmit antennas, NI is the number of interference signals, J ∈ C

NI×1 is
the interference column vector, and Z ∈ C

NR×1 is the AWGN vector with
independent entries having zero mean and variance σ2. Vectors J and Z

are independent from each other, since they have different non correlated
origins. The entries of J have zero mean and are assumed to be independent
zero-mean Gaussian variables. For this reason, N is still zero mean. The
cross-correlation of N is

R = E(NNH) = E[(GJ +Z)(GJ +Z)H] = GGH + σ2I, (2.8)

where I ∈ C
NR×NR is the identity matrix. We have

GJ +Z ∼ G′J ′, (2.9)

in which ∼ means that the statistical distribution between the two sides is
the same and the column vector J ′ ∈ C

NI×1 are Gaussian distributed with
zero mean independent entries. From (2.9) and (2.8) we immediately have

E[(GJ+Z)(GJ+Z)H] = E[G′J ′J ′HG′H] = G′G′H = GGH+σ2I. (2.10)

Now using the singular value decomposition (SVD), GR
1
2
J can be decom-

posed as
G = UΛV , (2.11)

where U and V are unitary matrices and Λ is a diagonal matrix. From
(2.7) and (2.11), we obtain

GGH + σ2I = UΛΛHUH + σ2UUH = U(ΛΛH + σ2I)UH. (2.12)

Choosing G′ = U
√
ΛΛH + σ2I and considering (2.9), it can be stated that

the AWGN vector Z can be absorbed by the interference.
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2.3 Interference correlation estimation

The least square (LS) estimate of correlation matrix is defined as

R̂ls =
1

Tmax

Tmax−1∑

t=0

N(t)N(t)H, (2.13)

where Tmax is the number of samples of N on which we estimate the ma-
trix. For Tmax → ∞ the estimated correlation matrix R̂ls converges to R.
Considering the case with Nint interferers with NT antennas each. We have
NI = NintNT and we can write

G = [G1, ...,GNint
]. (2.14)

Considering that Gℓ where ℓ = 1, ..., Nint, has the same model as H, from
(2.2) we have:

Gℓ =

Ng−1
∑

i=0

vi,ℓaNR
(βi(Rx),ℓ)a

T
NI

(βi(Tx),ℓ), (2.15)

where Ng is the number of received rays per interferer and

aN (β) = [1, e−2πjβ, ..., e−2πjβ(N−1)]T. (2.16)

Thus, we have

GJ =
∑

ℓ

Ng−1
∑

i=0

aNR
(β

(Rx)
i,ℓ ) [vi,ℓa

T
NI

(β
(Tx)
i,ℓ )Jℓ]

︸ ︷︷ ︸
xi,ℓ

, (2.17)

where
J = [JT, ...,JT

Nint
], (2.18)

and xi,ℓ is zero-mean complex Gaussian with variance

E(xi,ℓxi∗,ℓ) = E(|xi,ℓ|2)
= vi,ℓvi∗,ℓa

T
NI

(β
(Tx)
i,ℓ )Jℓa

∗
NI

(β
(Tx)
i,ℓ )J∗

ℓ

= |vi,ℓ|2aT
NI

(β
(Tx)
i,ℓ )a∗

NI
(β

(Tx)
i,ℓ ),

(2.19)

The product of a∗
NI

(β
(Tx)
i,ℓ )J∗

ℓ results in a scalar value and for this reason the

two vectors can be exchanged to J∗
ℓ a

∗
NI

(β
(Tx)
i,ℓ ). Then (2.19) can be written

as
E(|xi,ℓ|2) = |vi,ℓ|2aT

NI
(β

(Tx)
i,ℓ )a∗

NI
(β

(Tx)
i,ℓ ), (2.20)
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where the average is taken with respect to Jℓ. The cross-correlation of xi,ℓ
and xj,ℓ with i 6= j is

E(xi,ℓx
∗
j,ℓ) = vi,ℓv

∗
j,ℓa

∗
NI

(β
(Tx)
i,ℓ )aT

NI
(β

(Tx)
j,ℓ ). (2.21)

Since Jℓ are independent and zero-mean, we can write

N(t) = GJ +Z = Ax(t), (2.22)

with

A = [aNR
(β

(Rx)
1,1 ), ...,aNR

(β
(Rx)
Ng ,1

),aNR
(β

(Rx)
1,2 ), ...,aNR

(β
(Rx)
Ng ,Nint

)] (2.23)

and x(t) =
∑Nint

ℓ=1 xℓ(t) a correlated Gaussian vector. In the following we

estimate the angles {β(Rx)
i,ℓ } and then we estimate the correlation matrix of

x(t) to obtain the full interference correlation matrix.

2.4 Sparse representation with single interference
device

Consider now a single interfering device. The 2D-DFT of the interference
channel has a structure depending on few parameters, considering only a
few paths to the interferer. This property will be used for the estimation of
the interference correlation matrix. In formulas, the M ×M 2D-DFT is

DFT2[G] = FGFH =

Ng−1
∑

ℓ=0

ǧℓW (Ωℓ), (2.24)

where Ng is the number of interference paths, and F is the 2-D M × M
DFT matrix. Using the property FHF = I, we have:

DFT2[GGH] = FGGHFH = FGFHFGHFH. (2.25)

Considering the following relations:

FGFH = DFT2[G], (2.26)

FGHFH = DFT2[GH] = (DFT2[G])H, (2.27)
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entry (m,n) of matrix DFT2(GGH) is

[DFT2(GGH)]m,n =

M∑

i=1

[DFT2(G)]m,i[DFT2(G)]∗n,i, (2.28)

and using (2.24), we have

[DFT2(GGH)]m,n =
M∑

i=1

Ng−1∑

ℓ1=0

Ng−1∑

ℓ2=0

ǧℓ1 ǧ
∗
ℓ2 [W (Ω(ℓ1))]m,i[W (Ω(ℓ2))]∗n,i. (2.29)

Thus

DFT2(GGH) =
∑

ℓ1

∑

ℓ2

ǧℓ1 ǧℓ2W (Ω)(ℓ1)W (Ω)(ℓ2)

=
∑

ℓ

ǧ
′

ℓX(Ω
′(ℓ)),

(2.30)

with Ω
′(ℓ) = [Ω

′(ℓ1),Ω
′(ℓ2)]

Example: Having only one reflection

[DFT2(GGH)]m,n =
M∑

i=1

|ǧ1|2[W (Ω(1))]m,i[W (Ω(1))]∗n,i =

|ǧ1|2
M∑

i=1

[W (Ω(1))]m,i[W (Ω(1))]∗n,i.

(2.31)

with

DFT2(R) = |ǧ1|2X(Ω(1)) (2.32)

where

[X(Ω(1))]m,n =
M∑

i=1

[W (Ω(1))]m,i[W (Ω(1))]∗n,i. (2.33)
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2.4.1 MUSIC angle of arrival estimation

The MUSIC-Algorithm [5] is an estimation method, invented by Ralph Otto
Schmidt and it permits to estimate the AoA, evaluating a series of received
vectors which are affected by interference. The algorithm calculates the cor-
relation matrix between the received vectors. Successively the eigenvalues
and the eigenvectors of the correlation matrix are calculated and two sub-
spaces (noise and signal) are created. These subspaces are used to calculate
a spectrum in which it is possible to determine the largest peaks and then
to estimate the angles of arrival (AoA).

Figure 2.1: MUSIC AoA estimation steps [14]

2.4.2 Gridless angle of arrival estimation

This method is part of the gridless estimation techniques and it is based
on the atomic norm minimization [6] [7]. This technique does not recover

directly the AoA, but recovers the angular frequencies β
(Rx)
i,ℓ , which are spec-

ified in Section 2.4.5. The main steps of the procedure can be summarized
in the following points:

1. L0 atomic norm minimization of the received vectors.

2. Determination of the eigenvalues and eigenvectors
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3. Eigendecomposition

4. Vandermode decomposition

5. Frequency pairing and acquisition of the angular frequencies

This new method should have advantages, compared to more traditional
methods like MUSIC, especially in a rapidly changing environment where
the number of homogeneous received vectors is limited. The estimation is
done on a set of received vectors N .

2.4.3 Gridless angle of arrival estimation - Short Method

The Gridless AoA - Short Method performs a LS estimation of the received
vectors N using (2.13). The so estimated correlation matrix R̂ is cleaned
of the noise

R̂NL = R̂− σ2I. (2.34)

The obtained matrix is then transformed into a Hermitian matrix and the
diagonal values are replaced with the mean power of the matrix R̂, i.e. ,

diag(R̂NL) = mean(diag(R̂NL)) (2.35)

On the obtained matrix R̂NL an eigenvalue decomposition of the first Ng

eigenvalues λ, where λ ∈ C
Ng×Ng , with the eigenvalues on the diagonal

and the corresponding Ng largest eigenvectors e, where e ∈ C
NR×Ng is per-

formed. Using the obtained vectors/values a subspace matrix V is calculated
as

V = e
√
λ. (2.36)

The so obtained matrix is then used in the previous described Gridless AoA
estimation method on a fixed number of vectors Ng, to obtain the angular

frequencies β
(Rx)
i of the Ng rays. This method has the advantage to use in

the fist step the LS estimation, which is not heavy in terms of calculation
resources. Then in the second step the Gridless AoA estimation method is
used on a fixed number of vectors Ng. In this way the AoAs are estimated
continuously using new vectors N with a fixed amount of calculation power,
due to the fixed vector size in Gridless AoA estimation.

2.4.4 Gridless angle of arrival estimation - Average Method

The Gridless AoA - Average Method performs an standard Gridless AoA
estimation every test received vectors N(t) on test vectors. The estimated



18CHAPTER 2. ESTIMATION OF THE INTERFERENCE CORRELATION

angular frequencies β
(Rx)
i,ℓ are mapped in space. Using the new calculated

β
(Rx)
i,ℓ and all the previous one, the Ng cluster centers are calculated and each

β
(Rx)
i,ℓ assigned to a cluster. So the cluster centers are iteratively updated

using new estimations of the angular frequencies β
(Rx)
i,ℓ . Further, after the

calculation of the cluster centers and the assignment to these, the clusters
are cleaned removing far points from the clusters in clusters where more
points than t/test are revealed. This because in optimal case every test
noise vectors one point should be add to each cluster and if there are more
points present, points from other clusters have been wrongly assigned. The

obtained cluster centers are then used as β
(Rx)
i,ℓ in (2.16) for the calculation

of R̂

2.4.5 Estimation of the correlation matrix with angle of ar-
rivals (AoA)

It can be observed that the correlation matrix can be written as

R = AE(x(t)xH(t))AH = ARxA
H + σ2I. (2.37)

x can be obtained from N(t) as

A†N(t) = x(t) +A†Z(t), (2.38)

where A† is the pseudo-inverse of A. Defining as

y =
∑

t

A†NNH(A†)H = A†R̂(A†)H = Rx +A†A†Hσ2, (2.39)

an estimate of Ry is

R̂y =
1

Tmax

Tmax−1∑

t=0

A†N(t)NH(t)A†H. (2.40)

With Tmax → ∞ the estimated correlation matrix R̂y goes toRx+A†A†Hσ2.
Rx can so be estimated subtracting the correlation matrix which belongs to
the white Gaussian noise:

R̂x = R̂y −A†A†Hσ2. (2.41)

Using R̂x and R̂y the estimated correlation matrix is obtained using

R̂ = AR̂xA
H + σ2I. (2.42)
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2.5 Tested scenario and result

2.5.1 Interference environment

In the simulated scenario a Base Station (BS) is at the center of a quadratic
radio cell. The cell of the receiver BS is surrounded with 8 neighborhood
cells, in which interferers communicate with their own BS.

Figure 2.2: Interference environment

The quadratic cells have a diagonal size dS of 200m. So the maximal
distance off a Mobile Device (MD) to his BS is dmax = 100m. MDs must
have a minimum distance of d0 = 3m from their BS. The reiceiver BS, in
the center of the environment, suffers from interference, which is generated
by the interferers, located in the neighborhood cells. Signals are generated
by the MDs and sent to their BS. The interference, which is received at
the receiver BS, arrives with i reflected rays, which in mmWave can be
approximated to 3, due to the strong attenuation. The angles of transmission
(AoT) at the MDs vary randomly between 0 and 2π and the angles of arrival
(AoA) at the receiver BS varies randomly around the real positions of the
MDs between + π

12 and − π
12 . In the simulations the number of interferes

Nint = 4 and all interferers have a distance d = 149m from the BS.
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Interference Channel between BS and a single MD

The MD communicate on a carrier frequency fc = 28GHz, which corre-
sponds to a wavelength of λ = c

f = 10.7mm. This is a typical wavelength
used in mmWave communications. The amplitude of the echos are complex
normally distributed and have the following exponential decreasing ampli-
tude profile:

exp (−δ(i− 1)). (2.43)

where δ assumes the values 0, 1, 2.

Interference Channel between BS and more MDs

The receiver BS works with NR receiving antennas and the MDs with NT

transmission antennas. For the simulation these values were set as NR = 32
and NT = 1. To create the interference channel matrix G all interference
channel matrices between the BS and the MDs Gx, where the index x stays
for the considered interferer, are merged together to form

G = [G1, ...,GNint
], (2.44)

of size NR ×NR.

Results

In the following scenarios three simulations has been done. In the diferent
scenarios, in which the noise varies with respect to the mean power. The
mean power of the interference channel G is calculated as

∑

K

GGH = σ2
G, (2.45)

with K a sufficient high number (ex. 100). The noise power σ2
Z was then

choosen as σ2
G[dB] − 3dB, σ2

G and σ2
G[dB] + 3dB. Using the formulas in

Section 2.4.5 In the following graphs the correlation matrix R was estimated
the following different methods:

1. The LS estimation which is updated every new received N vector.

2. The reference estimation having real AoAs.

3. The gridless AoA-slow method with continuously estimating the AoAs
using all previous received N vectors until a value test = 10.
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4. The MUSIC method with continuously estimating the AoAs using new
arrived N vectors

5. The gridless AoA-short method with continuously estimating the AoAs
using new arrived N vectors

6. The gridless AoA-average method which performs an AoA estimation
every test = 10 N vectors on test = 10 N vectors

Every graph is averaged by 100 distinct realizations.

Figure 2.3: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB] +

3dB, δ = 0
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Figure 2.4: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB]−

3dB, δ = 0

Figure 2.5: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB],

δ = 0
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Figure 2.6: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB] +

3dB, δ = 1

Figure 2.7: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB]−

3dB, δ = 1
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Figure 2.8: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB],

δ = 1

Figure 2.9: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB] +

3dB, δ = 2
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Figure 2.10: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB]−

3dB, δ = 2

Figure 2.11: MSE[dB] vs t[slots] between R and R̂ with σ2[dB] = σ2
G[dB],

δ = 2

From the graphs, it can be seen how the advantage increases when the
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AoAs are known, especially when the noise power increases. Without noise
no MSE reduction would be obtained with respect to the standard LS esti-
mation method. In all graphs the AoA-short method performs best because
it derives an advantage from a previous done LS estimation and its AoAs
are continuously estimated with every new N . Both the MUSIC and the
standard AoA-slow methods perform very similar, which is also a very in-
teresting result knowing that AoA-slow continues to estimate the AoAs only
until t = 10. It seems that the MUSIC method, which performs the AoA
estimation on the covariance matrix, reaches a certain limit, hence it does
not improve the estimation. The AoA-average method is problematic in all
graphs. A possible reason could be the limited number of estimations (with
100 vectors 11 estimations are done). Increasing the amplitude profile from
δ = 0 to δ = 2 a general convergence of all methods towards the real angles
curve can be observed (with exception of the average method).

2.6 Capacity evaluation

In this simplified scenario an uplink transmission between a BS with NR

receiver antennas and a MD withNT = 1 transmitter antennas is considered.
The received signal of the BS, y is determined by (2.1). A whitening filter is
applied to the signal to transform the interference and noise to white noise.
This is done decomposing the correlation matrix of the noise R = E[NNH ]
using SVD as

R = UΛUH. (2.46)

The received vector with whitened noise can be obtained as

Y ′ = Λ−1/2UHY = Λ−1/2UHHX +N ′ = gX +N ′, (2.47)

where g = Λ−1/2UHH. The obtained vector N ′ is white noise. The ca-
pacity of this upload transmission channel can be obtained using a Maximal
Ratio Combiner (MRC) at the receiver. For this purpose X̂ = gHY ′ is
defined and the SNR of the signal can be obtained decomposing X̂ as

X̂ = gHY ′ = gH(gX +N ′). (2.48)

The signal part of X̂ is composed out of gHgX. The power of the signal
part is obtained taking the power of two of the signal part, i.e.,

E[gHgX2] = |gHg|2E[|X|2] = |gHg|2σ2
x. (2.49)
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The noise part of X̂ is composed out of gHN ′. The power of the noise part
is obtained taking the averaged power of the noise, i.e.,

E[(gHN ′)(N ′Hg)] = gH
E[N ′N ′H]g = gHIσ2g = gHgσ2, (2.50)

where σ2 is the power of the noise. The capacity can then be obtained as:

C = log2

(

1 +
gHgσ2

x

σ2

)

. (2.51)

Estimating the noise correlation matrix R̂ a reduced capacity can be ob-
tained which depends on the estimation error. We decompose by SVD R̂N ′

as

R̂N ′ = Λ̂−1ÛHR̂ÛΛ̂−1, (2.52)

and define

ĝ = Λ̂−1/2ÛHH, (2.53)

to obtain

Ŷ ′ = Λ̂−1/2ÛHY = ĝX + N̂ ′, (2.54)

with N̂ ′ with correlation matrix

RN̂ ′ = Λ̂−1/2ÛHRÛΛ̂−1/2. (2.55)

The capacity is obtained as

Ĉ = log2

(

1 +
|ĝHĝ|2σ2

x

ĝHRN̂ ′ ĝ

)

. (2.56)

The capacity, using the estimated correlation matrix is Ĉ < C.
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2.6.1 Results

Figure 2.12: Capacity vs t with σ2[dB] = σ2
G[dB] + 3dB, δ = 0.

Figure 2.13: Capacity vs t with σ2[dB] = σ2
G[dB]− 3dB, δ = 0.
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Figure 2.14: Capacity vs t with σ2[dB] = σ2
G[dB], δ = 0.

Figure 2.15: Capacity vs t with σ2[dB] = σ2
G[dB] + 3dB, δ = 1.
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Figure 2.16: Capacity vs t with σ2[dB] = σ2
G[dB]− 3dB, δ = 1.

Figure 2.17: Capacity vs t with σ2[dB] = σ2
G[dB], δ = 1.
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Figure 2.18: Capacity vs t with σ2[dB] = σ2
G[dB] + 3dB, δ = 2.

Figure 2.19: Capacity vs t with σ2[dB] = σ2
G[dB]− 3dB, δ = 2.
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Figure 2.20: Capacity vs t with σ2[dB] = σ2
G[dB], δ = 2.

The graphs above are more meaningful for our purpose. The first thing
which can be seen is that with larger signal power, with respect to the
noise power, the maximal capacity, which could be obtained, increases. The
second important observation is that estimating the AoAs gives a clear ad-
vantage, in terms of capacity, with respect of estimation methods where
these are unknown. So also if in some graphs after t = 100 the MSE is more
than the MSE of LS, in terms of capacity all methods which estimate the
AoAs perform better. The estimations which make use of the gridless AoA
estimation method performs similar to the esimation which uses MUSIC.
Nevertheless a small advantage in terms of capacity is visible. So with t = 2
and also sometimes with t = 3 there is an advantage using the Gridless es-
timation methods. Looking at the amplitude profile the difference between
δ = 0 and δ = 2 is very limited. But in the first 10 vectors a slight sharper
increase can be observed using δ = 0.

2.7 Orthogonal matching pursuit

From (2.30) it can be observed that the orthogonal matching pursuit(OMP)
algorithm on the estimate R̂. In fact, we first define D̂(1) = DFT2(R̂),
Ω̂

′(1) = [Ω̂(1), Ω̂(2)] such that, for ℓ = 1
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(ǧ′1,Ω
′(1)) = argmin

ǧ′1,Ω
′(1)

||D̂(1) − ǧ′1X(Ω
′(1))||2 (2.57)

Then we remove its contribution from defining, for ℓ = 1,

D̂(ℓ+1) = DFT2(D̂(ℓ) − ǧ′ℓX(Ω
′(ℓ))) (2.58)

The process is repeated for ℓ = 2, 3, 4, ... with (2.57) and (2.58) iterated at
each step. A stopping criterion can be either a fixed maximum value for ℓ
or the step ℓ

′

when ||D̂(ℓ+1)|| < ǫ with ǫ a suitable threshold.
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Chapter 3

Change detection of the
interference correlation

The previous described procedures for the estimation of the interference
correlation matrix deals with a static environment, in which the correlation
matrix does not change. The main focus was to find methods which mon-
itor the correlation matrix in real time evaluating received vectors every
time they are received by the BS. Procedures and algorithms which satisfy
this purpose are also used in cybersecurity, health care and the automotive
field. The correlation matrix is calculated out of vectors which are origi-
nated by a certain number of antennas. So an anomaly/change could only
be detected if all parameters are monitored. The change detection must
satisfy the requisite of a multivariate anomaly detection system. Another
requisite is that the procedures should work sequentially having memory of
the previous received information. One of the standard procedures, which
satisfy this task is the Cumulative Sum (CUSUM) [7] [8]. In this thesis the
standard algorithm was tested on a correlation matrix but it has problems
for further use, because it must be aware of the statistics before and after the
anomaly event [9]. This could be useful only in ideal static conditions with
a fixed number of interferers in fixed positions and known behaviors. There
are some CUSUM-like methods which deal with these problems [9] but not
in a multivariate sense. Other papers dealt with this problem using kNN
based solutions [12]. These methods work well considering the multivariate
property and the unknown type of statistics of the data, but have problems
with temporal anomalys. [10] proposed a method with a temporal window
based kNN detection method in which the time is split in windows and tested
when the statistics exceeds a certain threshold. Also these methods are not

35
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fast in detecting changes. [11] proposed a method based on kNN, which
resolved the problem of real time detection, called Online Discrepancy Test
(ODIT). In the paper the CUSUM procedure was tested on a correlation
matrix and the ODIT procedure analyzed. Both methods could be, as a
further challenge beyond this thesis, tested on the correlation matrices of
the previous section.

3.1 Notation

The interference has a statistic which changes in time, in particular with the
correlation matrix. The change of the correlation matrix happens because of
the On/Off behavior of the UDs, which follow the scheduling of their cells.
Let R(s) be the correlation matrix at time s (slot duration). Let us suppose
that L correlation matrices occur, R(ℓ), with ℓ = 1, ..., L.
The change detection procedure supposes that R(s) = R(ℓ) and tries to
understand, in slot τ > s, if the matrix changes (R(τ) 6= R(ℓ)). Furthermore,
the algorithm wants to reveal the new correlation matrix for a ℓ 6= ℓ′ so that
R(τ) = R(ℓ′) with the estimation time for the change τ . To understand if
a change has happen, the noise vector N(s) is analyzed if it is a Gaussian
vector with mean value 0 and correlation matrix R(ℓ) or not. In the first
part only scenarios with L = 2 are considered, which means that only two
possible correlation matrices are considered.

3.2 CUSUM

The multivariate cumulative sum (CUSUM) is a procedure to detect changes
in the statistics on a sequence of observed vectors, N(s) in our case. Of
these vectors a certain number m are part of a distribution function Fa and
a certain number of a distribution function Fb.

{

N(1), ...,N(m) ∈ Fa

N(m+ 1), ..., N(∞) ∈ Fb

(3.1)

A sum value St, is defined, which is updated at each received noise vector
N recursively, having S0 = 0 and

St = max

(

St−1 + log
fa(N(n))

fb(N(n))
, 0

)

, (3.2)
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where fa and fb are the probability density functions which correspond to
the distribution functions Fa and Fb. The stopping vector, which determines
a change in the distribution is

Tstop = inf(t : St ≥ hc), (3.3)

where hc is a preset level which, if it is exceeded, reveals a change of the
correlation matrix. Note that in order to apply this method we need the
statistics Fa and Fb, i.e., we need Fb known in advance R(1) and R(2).

3.2.1 Tested scenarios and results

1. Convergence test:
In the first scenario the CUSUM change detector is not used. A fic-
titious change is introduced every nchange = 50 vectors and and the
following matrices are used to compose the covariance matrices:







Σ1 = diag(1, ..., 1) ∈ C
64×64

Σ2 = diag(2, ..., 2) ∈ C
64×64

D = Discrete Fourier Transform Matrix ∈ C
64×64

(3.4)

The received vectors N have a Gaussian distribution with mean value
0 and covariance matrices

R1 = DΣ1D
T,

R2 = DΣ2D
T.

(3.5)

Furthermore the level hc is set to 200. This experiment is only a
preliminary test to show the convergence between the estimated co-
variance matrices R̂ and the real covariance matrices R. To measure
the convergence the mean square error (MSE) is used

MSE =
1

k2

k∑

i=1

k∑

j=1

([R]i,j − [R̂]i,j)
2, (3.6)

where k is set equal to 64 considering the size of the covariance ma-
trices.
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Figure 3.1: MSE vs T of between R1 and R̂1

Figure 3.2: MSE vs T of between R2 and R̂2

In Fig.3.1 and Fig.3.2 the convergence of the covariance matrices can
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be seen when 10000 vectors are received. Due to the perfect conditions
all the vectorsN participate in the estimation of the correct covariance
matrix. Both figures show also that with an increasing number of
associated vectors the MSE decreases.

2. Perfect change detector:
In the second scenario the CUSUM change detector is introduced. The
covariance matrices R1 and R2 and the parameters hc are maintained
as in scenario 1 and nchange is set to 500. In this scenario the change
detector is aware of the real correlation matrices R1 and R2.

Figure 3.3: MSE vs T of R̂1 and R̂2 compared with R1
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Figure 3.4: MSE vs T of R̂1 and R̂2 compared with R1

Fig.3.3 and Fig.3.4 show that three different behaviors can be observed:

(a) The MSE decreases when the new realizations of the received
vectors N are associated to the correct R and participate so in
the convergence of this matrix towards the real one.

(b) The MSE remains stable if the received vectors N are not used
to estimate the selected correlation matrix.

(c) The MSE increases if the change detection algorithm does not
reveal the change or it is revealed with a certain delay and the
vectors N are used to estimate the wrong correlation matrix.

The change detector, in this setting, is able to detect very precisely
the change. This can be seen in the figures as the MSE never increase
significantly.

3. In the third scenario the CUSUM change detector is still used but the
detector is not aware of the real correlation matrices R1 and R2. The
change detector has to use the estimated matrices R̂1 and R̂2 to detect
a change in the distribution. In this scenario all parameters are the
same as in scenario 1 whit exception of nchange = 2000.
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Figure 3.5: MSE vs T of R̂1 and R̂2 compared with R1

Figure 3.6: MSE vs T of R̂1 and R̂2 compared with R2

In figure 3.5 the first covariance matrix converges but at the change
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point the change is not detected. This is due to the initial conditions.
Even with a good estimation of the first covariance matrix R̂1 (MSE ≈
4dB) after 2000 noise vectors N , the second estimation matrix R̂2 is
not known until that point. The second initial estimated correlation
matrix R̂2 can be set very similar or very different with respect to the
first estimation matrix. But both settings are problematic:

❼ If the two estimated matrices R̂1 and R̂2 are too similar a change
detection oscillation is observable with a lot of false alarms and
consequently an update of the wrong covariance matrix.

❼ If the two estimated matrices R̂1 and R̂2 are too different the
changes are not detected (3.5 and 3.6). The MSE of the first
estimated matrix R̂1 continues to decrease and successively to
increase. The second estimated covariance matrix R̂2 is never
estimated.

3.3 Online discrepancy test (ODIT)

A possible algorithm, which takes vectors as input for the change detection
procedure, is the ODIT procedure proposed by [8].
A training set of noise vectors NC of size C is partitioned into two sets NC1

and NC2 with C = C1 + C2.
This training set consists in a nominal data-set which is used to learn the
statistical properties of the system in the starting condition. This means
that ODIT trains only on the initial conditions and compares then sequen-
tially the observed noise vectors N with the training data, without having
a training on the anomalous data.
The Euclidean distances between the points N(m) ∈ NC1 and its k near-
est neighbors in NC2 are calculated. We define the total k-nearest neigh-
bor(kNN) distance of N(m) as

L(m) =

k∑

n=k−s+1

gγn(N(m)), (3.7)

where (gn(N(m))) is the Euclidean distance between point N(m) ∈ NC1

and its nth nearest neighbors in NC2 , s ∈ {1, ..., k} is a fixed number, γ > 0
a weight introduced for flexibility and α ∈ (0, 1) is a significance level. The
training phase is finished by choosing the (1−α)th percentile of total k-NN
distances {L(m)}.
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The algorithm selects theKth smallest distance L(K) withK = ⌊C1(1− α)⌋
as a baseline statistic for measuring the deviation of new observations from
the nominal data-set in the test phase.

In the test phase, ODIT computes the total kNN distance L(t) for each
observation N(t) with respect to the nominal points in NC2 . This provides
the anomaly evidence

D(t) = NI(logL(t)− logL(K)), (3.8)

with NI the dimension of the data, which in our case is the number of
interference antennas. At this point, D(t) shows a positive or negative
evidence for statistical change/anomaly. A positive D(t) for example shows
that the observations lies outside the estimated most compact set of the
nominal training set, which proves a positive evidence for a change.
The algorithm updates the detection statistic ∆(t) over time. This continues
until the first time ∆(t) exceeds the predefined threshold h. This follows
the following update and decision rule:

∆(t) = max{∆(t− 1) +D(t), 0}, ∆(0) = 0,

Tstop = min{t : ∆(t) ≥ h}.
(3.9)

The size of C1 and C2 should be so that C2 is larger than C1, because C2

determines the accuracy of (3.8) and C1 the significance of the accuracy
parameter α.
ODIT is part of the non parametric techniques for multivariate change de-
tection. This means that compared to CUSUM, which is a parametric tech-
nique, no specific probability distributions are assumed.

3.3.1 Tested scenarios and results

The algorithm was tested using multivariate vectors N ∈ R
1×NI choosing

for NI = 64. The vectors have a correlation matrix R1 = (eye(64) + 1)
and a mean value of 0. At a certain received vector N(t) with t = 50 the
statistics of the vector changed and they were produced with a correlation
matrix R2 = (eye(64) + 1)500. The training phase was done using C = 100
N vectors, dividing the set in C1 = 0.2C and C2 = C − C1. The training
set so happened without having vectors from the anomalous data set. α was
chosen as 0.05 and s = 1, following the suggestions in [8]. In the following
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graph a cumulative distribution function (CDF) was done testing in 400
rounds when the change was detected.

Figure 3.7: Cumulative Distribution Function with change point t=50

In figure 3.7 the false alarm probability was 0% and after around 21
N vectors 80% of the changes were detected. The correlation matrices R1

and R2 were very different and so the change of the correlation matrix was
detected fast.
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Figure 3.8: Cumulative Distribution Function with change point t=50

Contrary in figure 3.8 when R2 = (R1 + 1)10 the result is worse and
around 209 vectors are needed to capture 80% of the changes.

3.3.2 Conclusion

ODIT could work well on correlation matrices determined in the previous
chapter. Only some modifications shoud be done which allows to the al-
gorithm to deal with complex vectors instead only with real vectors. But
the fact that is is capable to do real time change detection on multivari-
ate vectors without knowing the statistics of the anomalous data is perfect
for the mmWave environment, in which the interference correlation matrix
R changes fast and without a known behavior, because of the ON/OFF
behavior of the UE and their mobility.
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Chapter 4

Conclusion

About the interference correlation matrix estimation, the obtained results
show a clear advantage of estimating the AoAs with respect to methods
which are not aware of the AoAs. Also a little advantage in terms of capac-
ity of the new Gridless AoA estimation methods can be seen. Nevertheless
further analysis should be done improving the scenarios and trying to sim-
ulate a more realistic environment with more interferers and in particular
interferers with active/inactive behaviours and mobility in the environment
(fast and slow). Maybe the advantage of gridless AoAs estimation could be
emphasized as it is developed for automotive and radar solutions. About the
change detection, a further step could be then the simulation of the ODIT
algorithm to detect behavioral changes of the interferers and to react against
them, maintaining the capacity stable. ODIT satisfies all requirements for
this, but due to time reasons and technical problems (implementation of
ODIT with complex vectors) it could not be implemented.

47
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