
1

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

CORSO DI LAUREA IN ICT FOR INTERNET AND MULTIMEDIA

TEE Against Backdoor Attack in Federate Learning

 Relatore: Prof. Conti Mauro

Laureando: Bastianon Mattia

ANNO ACCADEMICO 2021 – 2022

Data di laurea 14/07/2022

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

2

3

ABSTRACT

Nowadays deep learning systems are widely used in a lot of applications like IoT, law

enforcement, industrial production, virtual assistant, autonomous driving, etc. Its potential

stands on the ability to learn every complex task by training itself on a dataset that contains the

input and the wanted output. A new approach called Federate Learning permits a group of users

to collaboratively train a shared model with its own data without damaging privacy. Doing that,

however, exposes the deep learning model to backdoor attacks whose main purpose is to disrupt

the normal behavior of the model by solving a task in the wrong way or as the attacker wants.

Existing defense fails for protecting from such attacks, in our work we propose a new approach

based on TEE (Trust Execution Environment) which permits to integrate the local dataset from

each user for detecting which model is compromised or not. We investigate the feasibility of

possible directions consisting of analyzing the output of each individual layer’s model given as

input the local dataset and we highlight the drawbacks of these approaches. Our work is thought

for those people who want to go in the same direction and want to use our results as a start point

for a possible enhancement otherwise could be used as a warning for not doing the same.

4

5

CONTENTS

1. INTRODUCTION ... 8

2. BACKGROUND.. 11

2.1. Deep Learning .. 11

2.1.1. Neural Networks .. 12

2.1.2 Convolutional Neural Network .. 14

2.2. Federate Learning .. 19

2.3. Backdoor Attacks ... 22

2.4. Trust Execution Environment .. 25

3. RELATED WORKS ... 27

3.1. Secure Aggregation Method .. 27

3.2. Clustering Methods .. 29

3.3. BaFFLe Method ... 31

4. SYSTEM CONFIGURATION... 34

5. EXPERIMENT .. 38

5.1. Output Analysis ... 38

5.1.1. Purpose ... 38

5.1.2 Methodology .. 39

5.1.2 Results and Analysis .. 41

5.2 Distance Analysis... 46

5.2.1 Purpose ... 46

5.2.2 Methodology .. 46

5.2.3 Results and Analysis .. 49

5.3 Correlation Analysis .. 55

5.3.1 Purpose ... 55

5.3.2 Methodology .. 56

6

5.3.3 Results and Analysis .. 56

5.4 Neuron Analysis... 70

5.4.1 Purpose ... 70

5.4.2 Methodology .. 70

5.4.3 Results and Analysis .. 73

6. CONCLUSION .. 78

BIBLIOGRAFY .. 81

7

8

1. INTRODUCTION

Nowadays deep learning systems are widely used in a lot of applications like IoT, law

enforcement, industrial production, virtual assistant, autonomous driving, etc. Its potential stand

on the ability to perform a task like a human being but faster and sometimes also better. To

learn to complete a complex task, a system needs a dataset containing data where it can learn

how to work and how to solve the problem, more data are given more efficient the system

becomes. However, the data must contain all information necessary to put the model on the

right way for operating in all possible conditions. For example, suppose a system developed for

driving a car in an autonomous way, if during its training phase it never learns how to drive

during snow or other weather conditions there is a risk that it cannot handle these similar

situations exposing the passengers to have an incident and in the worst case causing the death,

this example is not the most classic but gives an idea on the importance to have a very good

dataset for building a deep learning system.

Gathered such data is very challenging because needs to have a good environment with all

possible conditions, a solution could be to generate the data from a simulated place but today

this thing is still a research area and fails to produce very realistic results. Another solution is

to collect data from a lot of sources and merge them. Consider a network of N users or sensors

spread in the world which acquire data and then send them to a centralized server where are

stored, the server trains a deep learning model on it and, once it has finished, it will be shared

among all users.

Shared privacy data, however, could lead to privacy risk because if an attacker compromises

the server also the data stored will be compromised. To avoid this problem a new paradigm was

proposed in 2017, called Federate Learning [10], which its main characteristic is to share the

model and not the data. Practically the users receive the model from the server and train it with

its own data, when is finished the model is sent back to the server. This part is explained more

in detail in Section 2.2. As for every IT system the Federate Learning is not free from security

risks. In this thesis, we analyze the most recurrent attack in the deep learning system

called backdoor attack (Section 2.3). Any deep learning model could be seen as a system that

takes in input data and return an output; the purpose of a backdoor attack is to modify it in order

to retrieve the output he wants only when specific input is given. For example, suppose an

autonomous vehicle equipped with a system in charge to recognize the road signs and an

attacker modify the system to confuse the stop sign with the no limit sign, every time the vehicle

encounters the stop it doesn’t stop because is considered as no limit. During the years a lot of

9

strategies were proposed to counterattack it (Section 3) but all of them fail. The attack scenario

consists in an attacker, which is one of the users, who want to replace the final model with its

own backdoored model; how this is possible is well explained in Section 2.3. However, most

of the existing defenses try to detect this malicious user by inspecting the model itself in order

to observe some dissimilarity among the evil and benign models’ updates, others instead,

modify the way that the server aggregates the models from the clients in order to reduce the

impact of the backdoor, if it’s present. Unfortunately, all these defenses fail allowing some evils

to pass or by rejecting some benigns. Due to this problem:

 we propose and analyze the feasibility of possible directions which exploit the behavior

of evil models on the local dataset of each client. We highlight the issues concerning

using these approaches. This thesis is focalized to give a start point for those people

who want to go in the same direction and could enhance the methods used or could be

considered as a warning to not apply them.

 The TEE, Section 2.4, is a cryptographic environment where all operations and data

inside cannot be handled by a third party unless it has specific authorizations, since each

client receives some models to evaluate, it can inspect them for retrieving some

information about the dataset used. Analyzing the models inside a TEE allows you to

overcome this problem.

10

11

2. BACKGROUND

In this section, we introduce the Federate Learning and the backdoor attack against it. In

Section 2.1 we briefly introduce the deep learning and the model’s architectures used in the

experiment (Section 5), in Section 2.2 we report in detail how Federate Learning works and in

Section 2.3 we define the backdoor attack involved. In Section 2.4 we introduce the TEE.

2.1. Deep Learning

Deep Learning is a branch of Artificial Intelligence that aims to simulate the human brain

function. There exist a lot of subfields in which deep learning is employed, for example, image

classification which aims to infer the type of object present in an image, object detection for

detecting the objects in an image, natural language process (NLP) which consists of analyzing

and recognizing the human speech, data analysis for extracting useful information from a pool

of data. Research in these fields is then used in a lot of applications:

 law enforcement for the analysis of the evidence and extract some patterns useful for

the investigations

 financial services for forecasting stock price or for automatically handling an

investment portfolios

 custom services like ChatBot

 in healthcare for support diagnosis analysis or diseases detection

 IoT security

 Virtual Assistant

 Analysis of the quality of a product in industrial production

 Network security where it is analyzed the flow of packets for determining if there is an

anomaly inside

12

2.1.1. Neural Networks

The Neural Network (NN) is the simplest deep learning model, its main component is the

neuron shown in Figure 2.1.

Figure 2.1: neuron of a Neural Network. The Xs are the input data, Ws are the weights and Ϭ is a non-

linear function, b is the bias and O is the output of the neuron.

The set {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} are the input, the {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5} are called weights and 𝑏 is the

bias. The 𝜎 is non-linear function known as the activation function, the most used are:

 Sigmoid: 𝜎(𝑥) =
1

1+ 𝑒−𝑥

 Tanh: 𝜎(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥

 ReLU: 𝜎(𝑥) = max (𝑥, 0)

The weights and bias are called trainable parameters because will be updated during the training

phase. The training consists on a dataset D which contains a couple of (X, �̂�) where X is the set

of 𝑥𝑖 and �̂� is the output associated with X, let 𝑙(𝑋, �̂�) = ‖𝑜 − �̂�‖2 be the error between real

output and the model output, the model has to learn suitable weights and biases to reduce the

error. During this phase, the model computes the error for each input and uses the Gradient

Descent method to update the weights and bias in order to reduce as much as possible the error:

13

𝑤𝑛𝑒𝑤
𝑖 ← 𝑤𝑜𝑙𝑑

𝑖 − 휂
∂ 𝑙(𝑋, �̂�)

∂ 𝑤𝑜𝑙𝑑
𝑖

(2.1)

 𝑏𝑛𝑒𝑤 ← 𝑏𝑜𝑙𝑑 − 휂
∂ 𝑙(𝑋,�̂�)

∂ 𝑏𝑜𝑙𝑑

(2.2)

The
∂ 𝑙(𝑋,�̂�)

∂ 𝑤𝑜𝑙𝑑
𝑖 is the gradient of the error 𝑙(𝑋, �̂�) with respect to 𝑤𝑜𝑙𝑑

𝑖 , the 휂 is the learning rate

and decides the amount of updating. Usually, it is used a value between 0.1 : 10^-5, more higher

is and more strong will be the update, vice versa, smaller is and less strong will be.

A set of neurons permits to create more complex architecture called Neural Network (NN)

reported in Figure 2.2.

Figure 2.2: Neural Network

14

Each node in the input layer takes the data and passes it to the next layer, the hidden layer. This

hidden layer extracts information from the input layer and transforms it using the non-

linear function.

The hidden layers contain the neurons with their weights and biases. Each neuron takes in

input all the output of the previous layer. The output returned by the hidden layer is then passed

to the final layer called the output layer, where depending upon the task, it gets different results.

For regression task the output is a real value 𝑜 ∈ ℝ, for classification, instead is a vector of

probabilities for each class, for example, suppose I want to classify cat and dog and the input

is a picture of a cat then the output will be the vector [0.9, 0.1] where 0.9 is the probability to

have a cat and 0.1 probability to have a dog.

As explained above during the training phase the weights and biases are updated based on the

gradient of the error. Depending on the task, regression or classification, the error could be

different:

 For classification is called categorical-crossentropy and is equal to 𝑙(𝐷, 휃) =

 ∑ log 𝑝𝑐(𝑥,𝑐)∈𝐷 where (x, c) is a couple of image x and the class c which belongs to, 𝑝𝑐

is the class - probability computed by the model

 For regression is the Mean Square Error (MSE) and is equal to 𝑙(𝐷, 휃) =

 ∑ ‖𝑜− �̂�‖2

(𝑥,�̂�)∈𝐷

|𝐷|
 where 𝑜 is the model’ s output while �̂� is the real output with input 𝑥.

2.1.2 Convolutional Neural Network

The Convolutional Neural Networks (CNN) is a more sophisticated architecture, used

especially for image classification and object detection. The CNN is extremely good at

modeling spatial data such as 2D or 3D images and videos. Its potential stands on the ability to

automatically extracts useful patterns or features from an image. The Figure 2.3 shows a

schematic representation of CNN.

https://www.v7labs.com/blog/convolutional-neural-networks-guide

15

Figure 2.3: Convolutional Neural Network

There are 2 parts, the first is called Feature Extractor which takes in input the image of a Panda, the

first layer extracts pattern like nose, eye, ears, then pass them to the next layer that extracts the shape

of the head and the body. The second part is called Classification which is basically a Neural Network,

and which takes in input the last information (head and body) predicting the type of animal.

The figure shows 3 types of operation Convolution, ReLU and Pooling. The ReLU is the same

explained above in Section 2.1.1., the others belong exclusively to the CNN architecture and

are used for extracting the features from the image. The Figure 2.4 shows how Convolution

works.

16

Figure 2.4: Graphical representation of Convolution Operation

The kernel also called filter is a k x k matrix (2 x 2 in this case) that is applied to each part of

the image. The output is tensor with width and height reduced and with each pixel as a sum of

multiplication between the pixel’s input and kernel’s weights as shown in figure (Figure 2.4).

In this case, the image is a matrix of 4 x 4, the kernel is 2 x2, and the output is 3 x 3. The CNN

contains layers called Covolutional Layer which contains several kernels with different

weights, each of them is applied to the input generating different output, one for each kernel.

Using different kernel/filter permits to capture of several different features from the input.

Consequently, the final image will have W x H x F dimension where W and H are the new width

and height reduced by the F filters.

The next operation found is the Pooling also known as Max Pooling, described in Figure 2.5.

Figure 2.5: Max pooling operation

17

The Pooling is used for reducing further the dimensions of the output from Convolutional layer

by approximating a block of p x p pixel with the maximum value as shown in Figure 2.5.

Depending on the size of the pooling the result is further reduced p times the initial dimension.

The most commonly used is 2 x 2 which returns the half.

In the next 2 sections, we introduce 2 main architectures used for the experiment (Section 5).

The first is the main one and it is used for all 4 experiments instead the second is used in

experiment described in Section 5.4 only for doing a comparison.

ResNet18

Residual Network (ResNet) introduced first time by Microsoft researchers [9] is a complex deep

learning model widely used in Image Classification. The Figure 2.6 shows the schema of its

structure.

Figure 2.6: Schema of Residual Neural Network 18 (ResNet18)

It is important to notice 2 new functions inside the architecture, one is called

BatchNormalization and the other is the AveragePooling. The BatchNormalization is used only

for maintaining the output mean equal to 0 and the standard deviation equal to 1.

18

AveragePooling works as Pooling function but, instead of computing the maximum, it

computes the average. The red arrows are called Residual Connection, practically the input of

the block (e.g. a group of Conv-BatchNorm-ReLU-Conv-BatchNorm) is copied and added

directly with the output, formally:

𝑂𝐵 = 𝑓(𝑋) + 𝑋

(2.3)

Where f is the function that approximates the set of operations in the block, X is the tensor given

in input and 𝑂𝐵 is the sum. In some cases, there isn’t a direct copy of the input, but it first passes

through a Conv and BatchNorm operations (e.g. block yellow). The Residual Connection is

used to fix a problem related to deep architecture called Vanishing Gradient. In simple, as the

model grows, more layers are stacked, consequently the gradient computed for the weights of

the top layers becomes 0 and no update is possible.

In the figure we highlight with different colors 4 important parts of the model (red, yellow,

green, purple), this is important because in Section 5 we report some results of an experiment

in which we analyze the output from this part. We refer to them using a specific term, Layer0

for the red part, Layer1 for the yellow part, Layer2 for the green, and Layer3 for the purple. We

use instead Layer4 to refer last layer, the Linear layer which performs only a simple matrix

multiplication with 256 rows and 10 columns.

19

Figure 2.7: Schema of classical Convolutional Neuron Network

CNN + FCL

The CNN + FCL is the architecture used in the experiment in Section

5.4, it consists of 2 Convolution operations followed by a ReLU and

a Pooling operations. The last block contains 2 Linear operations with

a ReLU in the middle (Figure 2.7). This architecture is the classical

one, used for image classification when the dataset is very simple and

there aren’t a lot of classes to use. We use it to do a comparison with

ResNet in Section 5.4.

2.2. Federate Learning

Nowadays the deep learning model needs a lot of data to perform a task perfectly. A system in

charge of recognizing and detecting brain tumor in a patient, need to reach an accuracy of 100%

to be useful otherwise the patient cannot be operated in time. The Google Translate system

cannot translate a phrase in the wrong way otherwise become useless and people stop using it.

To build a system like that, which produce the high performance we need 2 important things, a

very good deep learning model and especially a good dataset for training it. Today deep learning

still requires a huge amount of data for the training, and, as more the task is difficult as more

data are required.

The data could be generated by a computer, in a simulated environment, or could be gathered

directly from the environment. However, the first approach requires that the simulated place

must be as real as possible in order to have the best data demanded, the second approach instead

has the problem of being difficult to acquire the best data needed, and a good dataset must have

the all possible data conditions to permit the model to learn the most possible scenarios. The

20

simulated environment is still an open research area, and some IT companies are investing a lot

in it but, unfortunately, is not yet possible to rely on him. For tackling the second method

instead, a possible way is to leave the data acquisition to the users, in practice, a group of N

users spreads in the world, equipped with, for example, cameras or sensors, collaboratively

share their acquisitions with a centralized server in charge to train the model, after that it is

shared among them or among systems that ask for such model. This approach is the best because

permits having a very heterogeneous dataset with a lot of data gathered in very different ways

and is very easy and fast to generate a huge dataset.

Unfortunately sharing their data exposes users to privacy leakage because if the server, where

data are stored, will be compromised the data will be, consequently, compromised, and possible

sensible information could be stolen. Federate Learning is a new training approach that solves

this problem by, instead of sharing the data, sharing the model. The first time was proposed by

Google in [10], the Figure 2.8 and 2.9 shows the main difference between traditional training

and Federate Learning.

Figure 2.8: Centralized training in which the data are shared with the server. The clients send their

data to the server through (red communications), the server collects all data into a unique dataset and

trains the model. After that, the trained model is sent back to each client (green communications).

21

In centralized training, the users acquire data and send them to a Server. Once the dataset is

created the model is trained and then sent back to all clients.

Figure 2.9: Decentralized training in which the data remain to the client. The clients received the model

from the server (green communications), and train the model with its data without sharing them. Then

the models are sent back to the server where are aggregated into a unique final model.

In a decentralized scenario instead, the users don’t share their data with the server, but,

collaboratively train the model. This type of training is called Federated Learning. At round t

each user i receives a copy of the global model 𝐺 𝑡−1 from previous round 𝑡 − 1, then trains it

with its own data (local dataset) and sent the updated model 𝑊𝑡
𝑖 to the server. The server

collects all 𝑊𝑡
𝑖 with 𝑖 = {1, 2, 3, … . . , 𝐾}, where K is the number of total users participating in

the training, and aggregates them in a final global model 𝑊𝑡. The aggregation function reported

in [10] is the weighted average over all models as:

𝐺𝑡 = ∑
𝜇𝑖

𝜇

𝐾

𝑖=1

∗ 𝑊𝑡
𝑖

(2.4)

Where 𝜇𝑖 is the cardinality of local dataset of user i instead 𝜇 is the sum of all 𝜇𝑖.

22

Algorithm 2.1: Federate Learning

This procedure is repeated until the model reaches the desired accuracy. Algorithm 2.1 shows

how Federate Learning works.

2.3. Backdoor Attacks

Deep Learning like every other IT system is not free from security risks [12]. One of the most

dangerous attacks is called Backdoor Attack which aims to make a different prediction on input

controlled by an attacker. For example, a green car is classified as a bird, or a cat is classified

as a dog. Our work is focused on backdoor attack in image classification where the purpose of

the attacker is to make the prediction of a specific images called poison images as he wants and

maintain unchanged the prediction on the other images which are the normal images.

The works done in [11] demonstrated how it is possible to perform such an attack in Federate

Learning. Considered the scenario reported in Figure 2.10 where there is an evil (sometimes

we call malicious) user who wants to infect the global model.

Data: N clients, E is the local epochs, η learning rate, K clients participating in the training,

R is number of training rounds

Server executes:

1. Initialize 𝐺0

2. For each round t = 1, 2,…R do:

a. 𝑆𝑡 ← (𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑒𝑡 𝑜𝑓 𝐾 𝑜𝑣𝑒𝑟 𝑁 𝑐𝑙𝑖𝑒𝑛𝑡𝑠)

b. 𝑭𝒐𝒓 𝒆𝒂𝒄𝒉 𝑐𝑙𝑖𝑒𝑛𝑡 𝑖𝑛 𝑆𝑡 𝒊𝒏 𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍 𝒅𝒐:

i. 𝑊𝑡
𝑘 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒(𝑘, 𝐺𝑡−1)

c. 𝐺𝑡 ← ∑
𝜇𝑘

𝜇
𝑁
𝑘=1 ∗ 𝑊𝑡

𝑘

ClientUpdate(k, G):

1. 𝛽 ← 𝑠𝑝𝑙𝑖𝑡 𝐷𝐾 𝑖𝑛𝑡𝑜 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝐵

2. For each local epoch i from 1 to E do:

a. For each batch b in 𝛽 do:

i. 𝑊 ← 휂∇𝑙(𝐺; 𝑏) # 𝑙(𝑤; 𝑏) is the error computed with the input in 𝑏

3. Return W to the server

23

Figure 2.10: Federate learning with 1 evil client

The attacker has to replace the global model with its backdoored model. The problem is that

the global model is the weighted average over all models (Equation 2.4) and the backdoor could

be deleted by the simple average operation. In [11] is explained how a user can replace the

final global model with his model. This method works when the training reaches the final stages

so when the models converged (the differences among their weights are very small). The

aggregation formula could be written as:

𝐺𝑡+1 = 𝐺𝑡 +
휂

𝑁
∗ ∑(𝑊𝑘

𝑡+1 − 𝐺𝑡)

𝐾

𝑘=1

(2.5)

Where 𝑊𝑘
𝑡+1 is the updated model of user k, 𝐺𝑡 is the global model at time t, 휂 is the learning

rate and N the number of the models, K is the models that participate in the training. This

formulation is different from Equation 2.4 but works the same.

The user prepares the model as in Equation 2.6:

24

 𝑋 = 𝐺𝑡 +
𝜂

𝑁
∗ ∑ (𝑊𝑘

𝑡+1 − 𝐺𝑡)𝐾
𝑘=1

(2.6)

and sent it to the server. The model’s updates become smaller as the training reaches the final

stages and so their distances from the previous global model become closer, consequently, the

summation ∑ (𝑊𝑘
𝑡+1 − 𝐺𝑡)𝐾−1

𝑘=1 goes to zero and the X becomes:

휂

𝑁
∗ 𝑋 − (

휂

𝑁
− 1) ∗ 𝐺𝑡 − ∑ (𝑊𝑘

𝑡+1 − 𝐺𝑡) ≈
𝐾−1

𝑖=1

휂

𝑁
∗ (𝑋 − 𝐺𝑡) + 𝐺𝑡

(2.7)

After the aggregation, the final global model will be equal to X. If X is a backdoor model the

final global model is backdoored. The backdoor is created by training a model over a dataset

𝐷 = 𝐷𝑝𝑜𝑖𝑠𝑜𝑛 ∪ 𝐷𝑛𝑜𝑟𝑚𝑎𝑙 that contains normal 𝐷𝑛𝑜𝑟𝑚𝑎𝑙 and poison images 𝐷𝑝𝑜𝑖𝑠𝑜𝑛. During the

training, the model learned to correctly predict the normal images and to predict as

the target class the poison images. The poison images contain a trigger that is used for

activating the backdoor making the prediction wrong, the trigger could be generated artificially,

for example, by placing a square of yellow pixels on the bottom side, or could be an object

present inside the image, for example, the green color of a car, wall place on the background, a

bottle on a table, etc. The first case is also called pixel-backdoor because exploits the pixel

regions on the image while the second is called semantic backdoor.

Over the years a lot of strategies are provided to defend against this attack (explained in Section

3) but all of them have some drawbacks that make them impossible to be applied. The work

done in [3] shows a new type of attack able to bypass these existing defenses, which is called

PGD (Projected Gradient Descent). Given a model W, and the global model 𝐺𝑡 at time t, the

attacker creates the dataset D with poison and normal images, then he trains the model imposing

that ‖𝑊 − 𝐺𝑡‖ ≤ 𝛿 where 𝛿 is a budget chosen by the attacker, in practice the backdoored

model remains close to the global model. This attack works because the existing strategies aim

to separate the evil from the benign by observing some differences in the model’s update,

applying a PGD attack imposes that evil remain closer to the global model and, since the same

happened naturally for the benign, these differences vanishing allowing the evil to bypass the

countermeasures.

25

2.4. Trust Execution Environment

Trust Execution Environment is a technology that provides confidentiality and integrity to an

application, TEE executes the entire code and data inside an encrypted memory region called

enclave. Inside the enclave only the processor can decrypt and run the application and a third

party cannot have access to the data or interfere with the code execution. One of the most

common TEE is Intel SGX [15] which also provides a mechanism for users to verify that the

TEE is benign and that an adversary did not alter their application running inside the enclave.

The verification process is called Remote Attestation [13] and allows users to establish trust in

their application running inside an enclave on a remote host. The Figure 2.11 shows a simple

schema to understand how TEE works.

Figure 2.11: Schema of how TEE works

The operating system establishes communication with the enclave, it sends and encrypts the

data and code to be executed. The enclave decrypts the data and runs the code inside until it has

finished, after that it returns the results to its owner. Every third party who wants to have access

inside will be blocked.

26

27

3. RELATED WORKS

In this section we explain the most known defense strategies existing and their vulnerabilities.

In Section 3.1 we introduce one of the first approaches based on modifying the aggregation

function in order to reduce the impact of the infected model. In Section 3.2 is reported the

clustering methods that aim to detect the evil models by analyzing the weight’s update . In

Section 3.3 is reported the BaFFLe which uses the local dataset of each user for evaluating the

global model.

3.1. Secure Aggregation Method

The first approaches modify the aggregation function (Equation 2.4). Krum [15] selects one of

the K models that are similar to other models as the global model. The idea is that, even if the

model chosen is infected, is similar to the other and then its impact is limited. The assumption

is that evil models are <
𝑁

2
 where N is the number of users in the network. Krum selects the

model with the smallest sum of squared distances as the global model, formally:

argmin
𝑖 ∈𝐾

(∑ ‖𝑤𝑖 − 𝑤𝑗‖

𝑗 ∈𝐾 ∧ 𝑗 ≠𝑖

)

(3.1)

 By the way, Krum could be influenced by the abnomal model’s weights and so Bulyan [16]

addressed this problem proposing a sort of trimmed mean (discuss next). Since the weights of

the model is a vector of parameters like 𝑤𝑖 = [휃1, 휃2, 휃3, 휃4, … … … … ., 휃𝑗], Bulyan

computes the 휃𝑗 parameter of the global model by first sorting the parameters of all models,

second choosing the 𝛾 closest parameters to the median and finally computes the mean of them.

The Trimmed Mean [17] is very similar to Bulyan, but the 휃𝑗 is computed by sorting the

parameters, then deleting the largest and smaller 𝛽 of them and finally computing the mean

with the remaining ones.

28

The purpose of the attacker is to modify its model in order to bypass the Secure Aggregation

defense. In [18] is explained an attack based on an optimization problem. We denote 𝑠𝑗 as the

changing direction of the 휃𝑗 global model parameter at the current round, 𝑠𝑗 = 1 or 𝑠𝑗 = −1

means the 휃𝑗 parameter is increased or decreased from the previous round. The scope of the

attack is to deviate the direction of the parameters of global model towards the inverse side,

formally:

max
𝑤1……..𝑤𝑐

𝑠𝑡 ∙ (𝐺 − 𝐺′)

subject to 𝑤 = Å(𝑤1, … , 𝑤𝑐 , 𝑤𝑐+1, … , 𝑤𝐾)

 𝑤′ = Å(𝑤1
′ , … , 𝑤𝑐

′, 𝑤𝑐+1, … , 𝑤𝐾)

(3.1)

Where 𝑤1 … … . . 𝑤𝑐 are the evil models controlled by the attacker, S is the column vector of 𝑠𝑗,

𝐺′ is the global model after the attack while 𝑤 is the global model before the attack, Å(∙) is the

secure aggregation function.

Attack Krum

The attacker has control over c evil models 𝑤1
′ , … , 𝑤𝑐

′. He constrains the 𝑤1
′ = 𝐺𝑅𝑒 − 𝜆𝑠 where

𝐺𝑅𝑒 is the global model received by the client so the previous global model. The other 𝑤𝑖
′ must

be closer to 𝑤1
′ , consequently only 𝑤1

′ must be closer to benign models in order to be chosen

by Krum, formally the optimization problem is the Equation 3.2:

max
𝜆

𝜆

 subject to 𝑤1
′ = 𝐾𝑟𝑢𝑚(𝑤1

′ , … , 𝑤𝑐
′, 𝑤𝑐+1, … , 𝑤𝐾)

 𝑤1
′ = 𝐺𝑅𝑒 − 𝜆𝑠

 𝑤𝑖
′ = 𝑤1

′ , for 𝑖 = 2, 3, … , 𝑐

(3.2)

29

The objective is to find the maximun 𝜆 which solves the problem. Practically, 𝑤1
′ must satisfy

2 main conditions, must be the one which cause the maximum variation to previous model and,

at the same time must be the one chosen by Krum.

To find 𝜆 it is used a binary search. First 𝜆 is initialized as an upper bound, if Krum gives in

output the 𝑤1
′ , 𝜆 is solved otherwise takes half of 𝜆 and repeat the process until Krum gives the

𝑤1
′ . How to compute the upper bound is explained in [18].

Trimmed Mean

To attack Trimmed Mean in [18] we denote 𝑤𝑚𝑎𝑥,𝑗 and 𝑤𝑚𝑖𝑛,𝑗 as the maximum and the

minimum of the 휃𝑗 parameters of benign models so 𝑤𝑚𝑎𝑥,𝑗 = max{𝑤(𝑐+1)𝑗, 𝑤(𝑐+2)𝑗, … , 𝑤𝑘𝑗}

and 𝑤𝑚𝑖𝑛,𝑗 = min{𝑤(𝑐+1)𝑗, 𝑤(𝑐+2)𝑗, … , 𝑤𝑘𝑗}. If 𝑠𝑗 = −1 it computes c numbers that are larger

than 𝑤𝑚𝑎𝑥,𝑗 as the 휃𝑗 model parameter of the c evil models, otherwise, if 𝑠𝑗 = 1, it use any c

numbers that are smaller than 𝑤𝑚𝑖𝑛,𝑗 as the 휃𝑗 model parameter for the c evil models. The

sampled c numbers must be close to 𝑤𝑚𝑎𝑥,𝑗 and 𝑤𝑚𝑖𝑛,𝑗 to avoid being detected as outliers. If

𝑠𝑗 = 1, then it randomly sample the c numbers in the interval [𝑤𝑚𝑎𝑥,𝑗, 𝑏 ∗ 𝑤𝑚𝑎𝑥,𝑗] (when

𝑤𝑚𝑎𝑥,𝑗 > 0) or [𝑤𝑚𝑎𝑥,𝑗,
𝑤𝑚𝑎𝑥,𝑗

𝑏
] , otherwise we randomly sample the c numbers in the range

[
𝑤𝑚𝑖𝑛,𝑗

𝑏
, 𝑤𝑚𝑖𝑛,𝑗] (when 𝑤𝑚𝑖𝑛,𝑗 > 0) or [𝑏 ∗ 𝑤𝑚𝑖𝑛,𝑗 , 𝑤𝑚𝑖𝑛,𝑗] (when 𝑤𝑚𝑖𝑛,𝑗 < 0). The attack

doesn’ t depend by b and must be 𝑏 > 1.

3.2. Clustering Methods

The clustering methods work by detecting the evil models by clustering the layers-parameters

and by considering the smallest cluster as the evil. A common assumption is that the number of

evil clients is less than
𝑁

2
 where N is the number of users.

The Auror [19] works by clustering the models based on their indicative features, every cluster

with a number of models below
𝑁

2
 is marked as a suspicious cluster, and the models which

appear as suspicious in more than 50% of the indicative features are considered malicious. The

indicative features are identified by dividing into 2 clusters the layer-parameters 휃𝐿 (weights of

the layer L) for the first 10 training epochs, then the distance (euclidean distance) between the

30

center of the clusters is computed and if it exceeds a specific 𝛼 these 휃𝐿 are considered the

indicative features. The clustering is performed using Kmeans [24] but could be used any others

clustering algorithm.

The FoolsGold [23] assumes that benign clients can be distinguished from the attacker by the

diversity of their weight’s update. It modifies the aggregation function as in Equation 3.3:

𝐺𝑡+1 = 𝐺𝑡 + ∑ 𝛼𝑖

𝐾

𝑖=1

∗ (𝑊𝑡
𝑖 − 𝐺𝑡)

(3.3)

Where 𝛼𝑖 is an adaptive learning rate, 𝑊𝑡
𝑖 is the model’s update of user i, 𝐺𝑡 is the global model

at round t. The 𝛼𝑖 is different for each user i and is based on:

 the cosine similarity among indicative features of 𝑊𝑡
𝑖

 Historical information from past rounds

The indicative features are different from Auror, and in this case are the weights of the last

layer. The historical information 𝐻𝑖 is the sum of the weight’s distances 𝑊𝑡
𝑖 − 𝐺𝑡 from the past

iterations. Practically FoolsGold for each model i computes the maximum cosine similarity 𝑐𝑖

among 𝐻𝑖 and 𝐻𝑗 with 𝑗 ≠ 𝑖, then calculates the 𝛼𝑖 = 1 − 𝑐𝑖, so the learning rate is the opposite

of the 𝑐𝑖. Models with maximum cosine similarity are considered malicious and are penalized

with smaller 𝛼𝑖 giving less impact in the final aggregation.

The FLGuard [21] uses a dynamic clustering, like HDBSCAN[1], over the models, it considers

the cluster with at least 50 % of the models as the cluster which contains the benign, the

remaining ones are marked as outliers. Since a possible evil could pass, an adaptive clipping

and noise are applied to each model in order to reduce the impact of the backdoored

model. Adaptive clipping is used to reduce the magnitude of the weight’s update 𝑊𝑖 , it works

by selecting the median S of all 𝐿2-Norms of (𝑊1, 𝑊2, 𝑊3, … , 𝑊𝑘) classified as benign

(bigger cluster), then each model is clipped as 𝑊𝑖 = 𝑊𝑖 ∗ min (1,
𝑆

𝑒𝑖
) where S is the median

and 𝑒𝑖 is the 𝐿2-Norm of 𝑊𝑖. The Adaptive Noising used a Gaussian distribution which is added

to the global model after the aggregation, like 𝐺𝑡 = 𝐺𝑡
∗ + 𝑁(0, 𝜎) where 𝜎 is computed as 𝜆 ∗

𝑆 where S is the median (the one found above) and 𝜆 is a parameter found empirically.

31

Attack Auror

Auror was the first approach proposed and the simpler to bypass. As reported in [19] there are

2 main methods to evade Auror, demonstrated empirically:

 decreasing the fraction of malicious models has demonstrated a decay of the detection

rate

 decreasing the number of poisoned images in evil’s training dataset has shown a

deterioration of the detection performance

Attack FoolsGold

As reported in [20] if only 1 attacker is present the detection strategy fails, FoolsGold is

influenced by the distribution of the data. It performs well when data are non-IID, instead fails

when data are IID. Furthermore 2 possible attacks exist:

 a set of intelligent attackers send pairs of updates 𝑉𝑖 = 𝑊𝑖 + 𝑔𝑖, 𝑉𝑗 = 𝑊𝑗 + 𝑔𝑗 where 𝑔𝑖

and 𝑔𝑗 are a perturbation with sum up to zero (𝑔𝑖 + 𝑔𝑗 = 0). Doing that, increases the

dissimilarity among the weight’s update reducing the effectiveness of detecting them.

 adversaries compute their similarity among weight’s update and decide to send only the one

with the historical similarity 𝐻𝑖 low reducing the ability of FoolsGold to detect them.

FLGuard

FLGuard is the best one, it solves the problem of FoolsGold since can work also with IID

distribution and is not dependent on the number of attackers, moreover there is no adaptive

attack to evade the defense. The only problem is that some benign models are rejected in the

first phase when they use dynamic clustering.

3.3. BaFFLe Method

In BaFFLe [22] the Server sends the global model to a set of clients which are used for

validating it. The validation works by running the model on the local dataset 𝐷 of each client

and by computing 2 types of errors:

 Source-focused error 𝑒𝑟𝑟𝐷(𝑓)𝑦 →𝑥 is the fraction of samples in 𝐷 which belong to class

𝑦 and are misclassified by the model 𝑓.

32

 Target-focused error 𝑒𝑟𝑟𝐷(𝑓)𝑥 →𝑦 is the fraction of samples 𝐷 which 𝑓 wrongly assigns

to class y

BaFFLe defines 𝑣𝑠 (𝑓, 𝑓′, 𝐷, 𝑦) = 𝑒𝑟𝑟𝐷(𝑓)𝑦 →𝑥 − 𝑒𝑟𝑟𝐷(𝑓′)𝑦 →𝑥 and

𝑣𝑡 (𝑓, 𝑓′, 𝐷, 𝑦) = 𝑒𝑟𝑟𝐷(𝑓)𝑥 →𝑦 − 𝑒𝑟𝑟𝐷(𝑓′)𝑥 →𝑦 as the error variation for respectively

Source-focused error and Target-focused error. The 𝑓 and 𝑓′ are the global model at round 𝑡

and the global model at round 𝑡 + 1. The intuition is that the variation among global models at

consecutive rounds is very close if there is no attack and then if the error variation is different

from the past rounds it is marked as an outlier and will be rejected. Practically the decision of

rejecting or accepting the model relies on all clients. Each client computes the error variation

with its local dataset D and if it is different from the past rounds he sends back to the server a

1 (reject) otherwise a 0 (accept), then the majority of the votes decide the fate of the model.

This approach has 2 main vulnerabilities:

 The error variation is significant only when the global model is at the end of the training

and so is not possible to start the defense at the initial of the train.

 If the previous global model is backdoored the difference among the error variations

remains closer and then it is not more marked as outliers, consequently, the global model

will remain backdoored.

33

34

4. SYSTEM CONFIGURATION

In this section, we introduce all settings and configurations of the environment where the

experiments reported in Section 5 have been conducted.

In all experiments, the number of users N and evil clients p is different depending on the type

of the analysis. For simulating a Federate Learning scenario we used the model ResNet18

(Section 2.1.2) and CIFAR – 10 dataset reported in Figure 4.1.

Figure 4.1: CIFAR - 10 dataset used for conducting the experiment.

The CIFAR-10 contains 60000 images of 32x32 dimensions, it has 10 classes, airplane,

automobile, bird, cat, deer, dog with 6000 images each. The local dataset of each user

participating in the training has 384 images and is generated based on the degree of IID

(identical independent distribution) we want to use. Only in the first experiment (Section 5.1)

we consider 3 types of IID:

 Completely IID (independent identically distributed) where each local dataset has the

same number of images per class

 semi-IID where the local dataset contains 50 % images from a single class and the other

from different classes

 non-IID where the local dataset contains 90 % of images that come from the same class

and the other 10 % from the different classes.

35

Figure 4.2: MNIst dataset

In the others, instead, only non-IID is maintained because is the worst case. The dataset of evil

users is slightly different from the benign ones because contains the poison images. These are

50 % of the whole dataset and they exploit the semantic backdoor where the green cars are

predicted as bird (target class) with the trigger being the color green. For experiments in Section

5.2 and Section 5.3 the trigger, instead changes, and is a wall placed behind the car and the

target class remains the bird class.

In section 5.4 we use a different dataset, the MNist, reported in Figure 4.2, and we consider

another architecture which is the CNN+FCL (Section 2.1.2), used to perform a comparison with

ResNet18. In this case, we adopt a pixel-backdoor and the trigger is a yellow square placed on

the left bottom of the poison images. The target class is the number 0.

All benign users have the same learning rate and the number of local epochs, also evils have

the same learning rate and epochs but are different from benign. We use the terms lr_e, E_e,

lr_b, E_b to refer respectively to the learning rate of evil, the epochs of evil, the learning rate

of benign, and the epochs of benign.

The backdoor attack is implemented as described in [3] which is the PGD (Section 2.3). Each

user has a TEE (Section 2.4) where the models are stored, the Figure 4.3 shows a representation

of the network.

36

The server collects the model’s update from each user, then sends a group of K models to each

user. These are stored directly in the TEE without the possibility for the client to inspect them.

Inside the enclave, we conduct all the evaluation and analysis. The dataset used could be a

normal or a poisoned dataset depending on the analysis and the experiment.

Figure 4.3: Federated Learning with evil users and with each client equipped with a TEE where the

models are stored for the evaluation

37

38

5. EXPERIMENT

In this section, some approaches are tested and analyzed in order to counterattack the backdoor

attacks. The main purpose of the analysis is to pose some possible directions and highlight the

drawbacks of each. In Section 5.1 we investigate the possibility to separate evil models from

benign ones based on the output from the deepest layers in the architecture. In Section 5.2 we

analyze the layer-wise distances among the models. In Section 5.3 we analyze the correlation

among layers. In Section 5.4 the defense paradigm change, we exploit the fact that backdoored

model contains neurons that will act only when the image contains the trigger, and the idea is

to put a wall to block these neurons and consequently delete the backdoor.

In all sections first, we introduce the purpose of the experiment explaining the goals, then we

share, briefly, the methodology used for running and acquiring the data, and then we show and

analyze the main results.

5.1. Output Analysis

5.1.1. Purpose

This analysis is the first approach investigated and also the more intuitive. The backdoor attack

aims to misclassify images from a specific class with another call target class, for example, a

car as a bird. Consequently, each evil model will learn how to predict these images in a

different way than the benign does, and then, the training will be also different. In order to have

a wrong prediction the output from the layers must be different and this is the main hypothesis

exploited.

39

Algorithm 5.1: Output computation given in input the local dataset and K

models.

5.1.2 Methodology

This approach consists to separate the evil models from the benign by observing the output

from deep layers like Layer3 and Layer4, remember Figure 2.6 in Section 2.1.2.

The experiment uses N = 100 and p = 49 (wrong case). We consider 2 scenarios:

1. attack after 1000 rounds, when models converged

2. attack after the round 0 when models are not yet trained

Each client receives 5 models, computes the average output-layer both

from Layer3 and Layer4, and then sends the results to the Server. The Algorithm 1 shows how

a client computes the output given its local dataset and the 5 models.

Data: K models, Dataset D

1. For each model in models:

2. 𝑂𝐿𝑎𝑦𝑒𝑟3 = []

3. 𝑂𝐿𝑎𝑦𝑒𝑟4 = []

4. For each d in D:

5. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟3 ← 𝑚𝑜𝑑𝑒𝑙(𝑑)

6. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟4 ← 𝑚𝑜𝑑𝑒𝑙(𝑑)

7. 𝑂𝐿𝑎𝑦𝑒𝑟3. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑂𝑑,𝐿𝑎𝑦𝑒𝑟3)

8. 𝑂𝐿𝑎𝑦𝑒𝑟4. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑂𝑑,𝐿𝑎𝑦𝑒𝑟4)

9. < 𝑂𝐿𝑎𝑦𝑒𝑟3 > =
∑ 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟33𝑑 ∈𝐷

|𝐷|

10. < 𝑂𝐿𝑎𝑦𝑒𝑟4 > =
∑ 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟34𝑑 ∈𝐷

|𝐷|

11. Send < 𝑂𝐿𝑎𝑦𝑒𝑟3 > and < 𝑂𝐿𝑎𝑦𝑒𝑟4 > to Server S

40

The output from Layer3 and Layer4 is n – dimension and so in order to visualize them on 2 –

dimensional space we use PCA (Principal Component Analysis) for dimensionality reduction.

The lr_e and E_e are 0.025 and 15, and the lr_b and E_b are 0.1 and 2. The lr_e and E_e are

big only for technical reasons because the attack explained in [3] needs a small update for the

weights, which means a small lr and in order to insert the backdoor it needs to train the model

more times like 15.

41

5.1.2 Results and Analysis

We first report results when the attack is performed after 1000 rounds and the data are

completely IID, then we do a comparison with semi-IID and non-IID distribution.

Attack after 1000 rounds

Figure 5.1: Output from the last layer (Layer4) on the right column, output from the Layer3 on the left

side, the green dots represent benign models instead red dots are the evils, data are completely IID with

49 evils and 100 clients. Attack presents on the first 8 rounds.

42

The Figure 5.1 shows output-layer received by the Server. The data are completely IID

(independent identically distributed). It is important to remember that the Server sends 5 models

to each client and so each model has 5 outputs, consequently the number of dots is more than

100 (number of clients), because are 100*5 and so 500.

As you can see the dots during the attack define 2 big clusters, one is green (benign models)

and the other is red (evil models), furthermore, the Layer3 gets better results, with Layer4 at

the first 3 rounds is impossible to separate all benign from evil. A possible defense strategy

leverages the clustering technique. Since the assumption is that evils cannot be more or equal

to half of all models, the bigger cluster contains the benign and the other the evils. The most

used clustering algorithm is HDBSCAN [1] which is an improvement of DBSCAN [2] that

works without knowledge of the number of clusters.

Unfortunately, these good results depend on the distribution of data. In this case, is

completely IID and so each benign client has equal distribution except for evil which has half

of the dataset poisoned. During the training, all benign learn the same distribution, different for

the evils and this gets similar weights which generate similar output, far from the evil. In fact,

when data are semi-IID or non-IID the results change, Figure 5.2 shows this fact.

43

Figure 5.2: Output from the last layer (Layer4) on the right column, output from Layer3 on the left side,

the green dots represent benign models instead red dots are the evils, data are SEMI-IID with 49 evils

and 100 clients. Attack presents on the first 8 rounds.

Observing the output of Layer3, when there is an attack, some green are far from red but there

is no visual separation and is not possible to apply any clustering methods to separate them. On

the right side (output from Layer4) the situation is worse because, when there is an attack, the

red and green are mixed, in the same way when no attack is present. Same results are obtained

for non-IID data.

Other drawbacks come when the attack starts in the initial round. In the next section we analyze

this scenario.

44

Attack after first rounds

In the beginning all models have the weights randomly initialized and their accuracy is very

low, around 10 %. For this reason, the output-layers are very dissimilar, almost random. The

Figure 5.3 shows how the output appears at the first 11 rounds with the attack on the first 8 with

completely-IID data.

Figure 5.3: Output from Layer4 on the right column, output from Layer3 on the left side, the green dots

represent benign models instead red dots the evils, data are completely IID with 49 evils and 100 clients

but at the beginning of the training. Attack present in the first 8 rounds.

45

From Figure 5.3 is possible to notice that the situation is in the worst case, with Layer4 (right

column) that gives the same results as for semi-IID where the dots are not separable. On the

left side (Layer3) only for round 3 the detection is possible but in the previous and next doesn’t.

Overall these problems, related to data distribution and if the attack starts early or not, another

issue exists, which is the most important, and depends mostly on the nature of the architecture.

Let’s suppose that you have fixed previous problems, a possible defense could apply

HDBSCAN [1] on the Layer3 output and consider the biggest cluster as the benign ones.

Consequently, an attacker, in order to bypass the detection, must put Layer3 output as close as

possible to benign, unfortunately, this is possible because the attacker knows the global model

from the previous round and so he can extend the work done in [3] to make its model as close

as possible to benign bypassing the defense. The idea is to constrict the Layer3 output to be

closer to the global model and the result is that a backdoor model will be grouped with the green

(benign models) without disrupting the backdoor.

In summary, seems that evil models and benign models generate different outputs

from Layer3 only when data are completely IID, instead, doesn’t when they are semi-

IID or non-IID. Besides being necessary a completely IID dataset, is also important that models

converged (after 1000 rounds) or at least have higher accuracy. Furthermore, in the case these

issues have been fixed, an attacker can bypass the detection by implementing the adaptive attack

explained above.

46

5.2 Distance Analysis

5.2.1 Purpose

The Distance Analysis aims to solve the problem related to distribution by analyzing the

distances among output instead of the output itself.

5.2.2 Methodology

Given a dataset D and a couple of models A and B, for each image is computed the Cosine

Distance among the output-layer as shown in Algorithm 5.2, obtaining a value in [0, 1].

For each Layer we compute 7 statistics over 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟 for extracting information about the

distribution:

1. The Mean that is suitable for synthesize the data:
 ∑ 𝑑𝑑 ∈ 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

|𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟|
.

2. the median that represents the value stand in the middle of the 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟.

Data: model A, model B, Dataset D

1 For each Layer in Layers: # iteration over the layers in the architecture

a. 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟 = []

b. For each d in D:

i. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟,𝐴 ← 𝑚𝑜𝑑𝑒𝑙𝐴(𝑑)

ii. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟,𝐵 ← 𝑚𝑜𝑑𝑒𝑙𝐵(𝑑)

iii. 𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟 ← 𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑑,𝐿𝑎𝑦𝑒𝑟,𝐴, 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟,𝐵)

iv. 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟)

c. Return 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

Algorithm 5.2: Compute distances among model A and B given a local dataset.

47

3. the skeweness that is a measure of the symmetry:

 ∑ (𝑑−𝑚𝑒𝑎𝑛)3
𝑑 ∈ 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

|𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟|

√
 ∑ (𝑑−𝑚𝑒𝑎𝑛)2

𝑑 ∈ 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

|𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟|

3
.

4. the kurtosis that is a measure of the “tailedness” and give an idea of the degree of

anomalies present (> 0 means lower number of anomalies, < 0 instead more anomalies):

 ∑ (𝑑−𝑚𝑒𝑎𝑛)4
𝑑 ∈ 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

|𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟|

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛4 − 3.

5. the standard deviation that defines how far all data in 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟 are from the mean:

√
 ∑ (𝑑−𝑚𝑒𝑎𝑛)2

𝑑 ∈ 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟

|𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟|
.

6. the max that is the maximum of 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟.

7. the min which is minimum of 𝐷𝑖𝑠𝑡𝐿𝑎𝑦𝑒𝑟.

The Cosine distance is computed as follow, given two tensors u and v the distance is equal to

1 −
𝑢∙v

‖𝑢‖∗ ‖𝑣‖
 where ‖𝑢‖ represents the norm and 𝑢 ∙ v is the dot product.

We have considered others types of distances but the results didn’t change. The metrics explored

was:

- Euclidean distance: √∑ (𝑢𝑖 − 𝑣𝑖)2𝑛
𝑖 where 𝑢𝑖 and 𝑣𝑖 are the i-esimo element of u and

v with dimension n.

- Manhattan distance: ∑ (𝑢𝑖 − 𝑣𝑖)𝑛
𝑖 .

- Chebyschev distance: max
𝑖

(𝑢𝑖 − 𝑣𝑖).

- Wasserstein distance:(min
𝐽 ∈ 𝜁(𝑢,𝑣)

∫‖𝑥 − 𝑦‖𝑝𝑑𝐽(𝑥, 𝑦))
1

𝑝 where 휁(𝑢, 𝑣) represents the set of

all join distribution among u and v.

- Symmetric Kullback - Leibler distance:
1

2
∗ 𝐾𝐿(𝑢||𝑣) +

1

2
∗ 𝐾𝐿(𝑣||𝑢) where

𝐾𝐿(𝑣||𝑢) is equal to ∑ 𝑣𝑖 ∗ log2
𝑣𝑖

𝑢𝑖

𝑛
𝑖 .

Since Wasserstein [4]-[5] and Kullback – Leibler are distances used among probability

distribution, u and v must be normalized before the computation. The main difference is that

Wasserstein computes the amount of work consumed for transforming a distribution in the

other, KL instead gives the amount of information you lost for replacing one distribution with

respect to the other.

48

Since we need to compute the distance for each couple, to reduce the computational cost we

used a network with N = 20 and p = 9 evil (49 %) and, in order to have the distances depending

only on the type of data distribution, we have set a lr and E equal to 0.025 and 15 for each

client, the data are non-IID (worse case).

Only 2 clients receive all models, one is evil with its local dataset poisoned instead the other is

benign with normal images.

Since the data are non-IID all users have a local dataset with the main label (or main class) that

is the class that occupies the 90 % of the whole dataset, therefore is possible that 2 or more

users train the models on a dataset with same main label and so, in the analysis, we have

distinguished the distances among models trained on the same main label with models trained

on a different one. For evil models the term main label is slightly different from benign, in fact,

the poisoned dataset has 2 bigger classes, the target class and another class, which, in some

cases, could coincide; the main label refers to the class different from the target, unless only

the target is present.

We consider both the distances computed among the models and among the models and the

global model. Only with the global model we have also distinguished the distances among

models with the same main label of the local dataset used for the computation.

First, we analyze the distances without attack in order to understand the meanings of each

statistic and, subsequently, to use the ones which give more information about the distribution.

Choosing a few of them, we, then, analyze the scenario where the attack is pursued. With respect

to Section 5.1, we also consider all other layers and not only the Layer3 and Layer4.

49

5.2.3 Results and Analysis

No Attack

The Figure 5.4 reports the statistics for each distance, computed for each layer.

Figure 5.4: Distances at the beginning of the training without attack. Red dots represent models with

different main label, green dots represent models with the same main label; the x-axis contains the value

of statistics and the y-axis is used for distinguishing the 2 groups. Each column represents the layer

where output is taken, each row represents the statistic.

For each layer the mean doesn’t show huge differences among red and green (Figure 5.4),

except for Layer4 in which some green have lower distance than most of the red. The median

gets the same results. For standard deviation in each layer the distances are below 0.125, for

50

Layer2 and Layer4 are also lower but in general no differences between red and green exist.

Min gets similar results to the mean, also better for Layer4 because is more visible the

differentiation among red and green. The Max doesn’t show anything. About Kurtosis, for

Layer2 and Layer4 (except for a couple of models) green are closer to 0 which means have few

outliers. The Skewness gets no meaningful information.

Figure 5.5: Distances after 1000 rounds of the training without attack. Red dots mean models with

different main label, green means models with the same main label; the x-axis represents value of the

statistics and the y-axis is used for distinguish the 2 groups.

After 1000 rounds the models converged. The mean decreases for almost all layers, some green

have lower distances than red, especially for Layer3 and Layer4 (Figure 5.5).

51

The std decreases except for Layer4 which instead increases. For the other statistics, no

interesting differences are present except for kurtosis which is decreased. A possible

explanation depends on the fact that models converged and since the dataset used to calculate

the distances has 90 % images (non-IID dataset) from the same class, for all of them the model

gets almost the same output or maybe slightly different, consequently, the distances remain

constant or change a few with a small deviation with the result of a very low number of

anomalies (remember the kurtosis is close to 0 when the distribution contains a low number of

anomalies)

This brief data analysis without attacks allows us to have an idea of which statistics are better

to consider during the next analysis (with attack). The mean, median, and min on Layer4 are

more significant and robust. Significant because they reflect the fact that models trained on the

same distribution, with the same main label, get closer output (small distance) than the others

trained on different distributions in fact with mean, median, and min some of the green are

lower than the most of red. More robust because this situation is maintained also after 1000

rounds so when models converged.

Attack

At the beginning of the training the models have no good performance and so the output from

layers is random without defining any kind of pattern. Therefore the next analysis is

concentrated when the attack is performed at the 1000th round. From here all figures contains

only the mean, median and min because, as we explained above, they are more useful.

 Before reporting and discussing the results we briefly explain the color’s meaning of the figures

reported below in order to better understand them.

The Figure 5.6 represents a statistic extracted from distances

related to a specific layer. The x-axis contains the values, and the

y-axis is used to distinguish the different types of models. The

colors have the following meaning:

 Green represents benign models with the same main label

 blue is benign with a different main label

 purple benign-evil with the same main label

 red benign-evil with a different main label

 black is evil-evil with the same main label

 orange evil-evil with a different main label

Figure 5.6: Distances statistics

52

Figure 5.7: Distances after 1000 rounds of training with the attack at 1000th round. The x-axis

represents the value of the statistics and the y-axis is used for distinguishing the groups. Distances are

computed on the normal dataset.

Figure 5.8: Distances after 1000 rounds of training with the attack at 1000th round. The x-axis

represents the value of the statistics and the y-axis is used for distinguishing the groups. Distances are

computed on the poisoned dataset.

With the normal dataset (Figure 5.7) the black are the closest ones and this reflects an important

hypothesis originally proposed in [8] which claims that weights of evil models have the same

direction and so they are closer to each other. Unfortunately, in our case this happened only for

evil with the same main label because orange instead fall far from them. The green are closer

than blue, these types of models are benign and so their behavior is similar to when there was

53

no attack. The purple and red instead don’t give any interesting results, they fall almost on the

same distance.

With the poisoned dataset (Figure 5.8) for the black and green remain the same considerations

discussed above, instead of for green and blue there are some differences, some green fall where

stand the blue.

The Layer3 and Layer4 get better results, in the others, instead, all points are merged together.

For implementing a good defense the orange and black must be separated from the others in

order to use some threshold or algorithm methods to distinguish benign-benign from benign-

evil/evil-evil, however only the black seems to satisfy this requirement and only when the

dataset is poisoned. Unfortunately, this is not sufficient for building an efficacy detection

algorithm.

In the next section we analyze distances computed with the global model.

Analysis with global model

We assume that the global model is benign, and the attack starts at 1000th round. The analysis

is done on the same statistics used above such as mean, median and standard deviation. All

distances are computed among the local and the global models.

The Figure 5.9 explains the colors used in order to understand the graphs.

Figure 5. 9: Statistics of distances with the global model.

 The green color means distances with benign models and the same main label of the

dataset

 blue means benign with a different main label of dataset

 purple is an evil with the same main label of dataset

 red is an evil with a different main label of dataset

54

Figure 5.10: Distances with global model after 1000 rounds of training with the attack at 1000th

round. The x-axis represents the value of the statistics and the y-axis is used for distinguishing the

groups. Distances are computed on the normal dataset.

Figure 5.11: Distances with global model after 1000 rounds of training with the attack at 1000th round.

The x-axis represents the value of the statistics and the y-axis is used for distinguishing the groups.

Distances are computed on the poisoned dataset.

Considering the mean and the normal dataset (Figure 5.10), the green and blue are closer than

red, this happened because the previous model is benign and so for that it would be reasonable

to expect a closer output since also blue and green are benign. This also happened for min

which, however, seems to be possible to separate the 2 types of models. A possible best

approach could use the HDBSCAN[1] which identifies groups of points that are closer to each

55

other, in this case blue and green are grouped together excluding the red which identifies

another cluster (the evil). However, when, the dataset is poisoned (Figure 5.11) purple and blue

fall together and if we apply HDBSCAN[1] to detect the 2 clusters is possible that one evil is

taken and this is enough for allowing the backdoor injection.

With the poisoned dataset, Layer3 permits separating evil from benign using the mean and

the median but this doesn't work with the normal dataset where the separation is not possible.

Summing up, what we have done was to analyze the distances among layers seeking something

useful for detecting evil models. The distances are both computed among models and with the

global model. With the first seems is possible to detect the evils with the same main label but

this is not sufficient for building an efficacy defense because some of them pass. With the global

model instead, the type of dataset covers an important role because without poisoned images

the minimum distances from Layer4 permit to separate the evil from benign, however, when

images are poisoned the Layer4 becomes useless and Layer3 acquires more importance for the

detection. However, if we want to detect backdoor models based on distances, we need that

they are dataset-type-independent because, for example, if we want to use Layer4 to detect evil

models and the models have been sent to a client which has poisoned images, thus, as we

demonstrated above the Layer4 becomes useless allowing evil models to evade the defense, the

same thing happened if we use the Layer3 and the dataset is normal. In the next section, this

analysis will be extended by further evaluation of the correlation among layers.

5.3 Correlation Analysis

5.3.1 Purpose

In the previous section, we have described a possible way to detect evil models based on their

layer-wise distances both among models and the global model. Unfortunately, some drawbacks

were raised, and no efficacy defense strategy is possible to exploit. In this section, we will

extend the use of distances by analyzing the correlation between them, more precisely

correlation among layers.

56

Algorithm 5.3: Computing correlation among layers.

5.3.2 Methodology

 The configuration of the experiment and the network remains unchanged from Section 5.2. So

all analyses are conducted on No-attack and Attack scenarios, using

both normal and poisoned datasets. Algorithm 5.3 shows how correlation is computed among

2 layers, given models A and B and a dataset D.

The X and Y are plotted in 2-dimensional space. Analyzing the correlation visually is better

than using correlation coefficients like Pearson or Spearman since these are more suitable for

linear correlation but is possible to have a non-linearity shape like sin or cosine for example.

5.3.3 Results and Analysis

In this section, first we report and analyze data for the No-Attack scenario at the first round and

after 1000 rounds of training, then we analyze data under Attack, again at the first and 1000th

round. For each figure L0, L1, L2, L3, and L4 means Layer0, Layer1, Layer2, Layer3, and

Layer4.

Data: model A, model B, dataset D

Set: 𝑋 ← [], 𝑌 ← []

1. For each d in D:

a. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟1,𝐴 = 𝑚𝑜𝑑𝑒𝑙𝐴,𝐿𝑎𝑦𝑒𝑟1(𝑑)

b. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟1,𝐵 = 𝑚𝑜𝑑𝑒𝑙𝐵,𝐿𝑎𝑦𝑒𝑟1(𝑑)

c. 𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟1 = 𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑑,𝐿𝑎𝑦𝑒𝑟1,𝐴, 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟1,𝐵)

d. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟2,𝐴 = 𝑚𝑜𝑑𝑒𝑙𝐴,𝐿𝑎𝑦𝑒𝑟2(𝑑)

e. 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟2,𝐵 = 𝑚𝑜𝑑𝑒𝑙𝐵,𝐿𝑎𝑦𝑒𝑟2(𝑑)

f. 𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟2 = 𝐶𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑂𝑑,𝐿𝑎𝑦𝑒𝑟2,𝐴, 𝑂𝑑,𝐿𝑎𝑦𝑒𝑟2,𝐵)

g. X.append(𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟1)

h. Y.append(𝑑𝑖𝑠𝑡𝑑,𝐿𝑎𝑦𝑒𝑟2)

2. Return X, Y

57

No Attack – Round 0

With no attack all models are benign and is possible to understand the correlation between the

layers and how this changes during an attack. Moreover, considering the first round and the

1000th round we highlight the changes when models are not trained and when they converged.

In the beginning, the models are randomly initialized and their output per layer gets random

results, which means with similar images (similar features) from the same class the output is

very different. However, as Figure 5.12 demonstrates, in some cases, a correlation exists.

Figure 5.12: Correlation among 2 models in the first round. Each graph represents a couple of layers,

the axis represents the layers reported in the title. For example, for L0/L2 the x-axis projects the

distances computed from Layer0, instead y-axis from Layer2. The number 9/10 on the first graph (top

left) represents the models involved in the computation. Benign are from 0 to 10 instead evil from 11 to

19.

Observing the figure, it is possible to see that L0/L1, L0/L2, L0/L3, L1/L2, L1/L3 have no

correlation and the points are grouped as a ball. For layers that contain L4, instead, there is a

correlation because they are more spread along the y-axis and instead remain close on the x-

axis creating a sort of vertical line. Some couple of models have linear correlation also

in L1/L3 or L1/L2 and all couples present linearity in L2/L3, Figure 5.13.

58

In some cases, you can see a strong correlation like graph 1 or less correlation like graph 9 but

most of the time is similar to the rest of them.

No Attack – Round 1000

After 1000 rounds all the models converged, and the correlation slightly change, Figure 5.14.

Figure 5.14: Correlation among 2 models at the 1000th round.

Each layer doesn’t show any correlation except for the ones with L4. The L2/L3 lost its linearity

and becomes similar to the others. With L4 all layers show a sort of vertical column where

distances along the x-axis are closer and along the y-axis (Layer4) they are spread. At the end

Figure 5.13: Correlation among Layer2/Layer3 of 10 couples of models

59

of the training the models have reached a very high accuracy like 98 % and each layer has

learned a different thing, layers on the top like Layer0, Layer1 have learned simple patter

like edges or corners, Layer2, Layer3 instead of more complex pattern like

the shape, Layer4 has learned how to associate this pattern to the right class. The distances

computed on the top layer (x-axis on each graph with L4) are below 0.2 which means, given

the same input, 2 models get almost the same output and so they have learned the same pattern,

with Layer3 the distance increase to 0.4 but however for all images the models get almost the

same distance or slightly different. With Layer4 (y-axis) instead, some images get a distance

distributed between 0.2 and 0.8, thus Layer4 captures the fact that these 2 models are different

and not equal, they are trained on a different dataset. In conclusion, the top layer says these

models come from the same categories because their distances are closer and then the

predictions are the same instead Layer4 highlights the fact that they are not the same models.

Attack – Round 0

Now we show how correlation appears when an attack is pursued. The analysis is split into 2

parts, with the attack in the first round and after 1000 rounds. We show the correlation between

benign models, evil models and benign-evil models. The distances are both computed on the

normal dataset and the poisoned dataset.

The Figure 5.15-5.16 shows the correlation for a benign model.

Figure 5.15: Correlation of 2 benign models when the attack is performed at round 0. The distances are

computed on the normal dataset.

60

Figure 5.16: Correlation of 2 benign models when the attack is performed at round 0. The distances

are computed on the poisoned dataset.

At the beginning of the training, the linear correlation among L2/L3 remains identical to the no-

attack scenario (Figure 5.12). The layers show linearity on L1/L2 however only a couple of

models have the correlation there, for most of the others the correlation is similar

to L0/L2 or L1/L4 in Figure 5.16 (a sort of ball). Moreover, the correlation is not sensible to the

type of dataset since for normal (Figure 5.15) and poison (Figure 5.16) we obtain the same

results.

 For evil-benign the correlation changes as reported in the Figure 5.17 and 5.18. In both cases,

with normal (Figure 5.17) and poisoned datasets (Figure 5.18), the correlation

on L2/L3 disappears. All correlation with L4 shows 2 different clusters, one with poison images

and the other with not, this happened also for evil-evil models as reported in the Figure

5.20 below.

Figure 5.17: Correlation of benign - evil models when the attack is performed at round 0. The distances

are computed on the normal dataset.

61

Figure 5.18: Correlation of benign - evil models when the attack is performed at round 0. The distances

are computed on the poisoned dataset. Red dots represent poisoned images.

Figure 5.19: Correlation of evil - evil models when the attack is performed at round 0. The distances

are computed on the normal dataset.

62

Figure 5.20: Correlation of evil - evil models when the attack is performed at round 0. The distances

are computed on the poisoned dataset. Red dots represent poisoned images.

The most difference between benign-evil and evil-evil is that the points are more spread and

also the distances for poison images (red dots) are smaller along the y-axis (considering only

the graph with Layer4), in fact for evil-evil (Figure 5.19) are below 0.4 instead with benign-

evil (Figure 5.18) stand above.

 Summary when an attack is performed at the beginning of the training there are 2 possible

ways to detect evil models by simply analyzing the correlation among L3/L4 and verifying if 2

clusters are present. If a model hasn’t got linearity on L3/L4 or has 2 clusters for each graph

with Layer4 this is an evil model. Unfortunately, what we have shown and highlighted until

now doesn't happen for all couple of evil-evil or benign-evil models. Figure 5.21 is an example

of that where L2/L3 shows linear correlation, and no 2 clusters are present.

Figure 5.21: Correlation of evil - evil models when the attack is performed at round 0. The distances are

computed on the poisoned dataset. Red dots represent poisoned images.

63

By this analysis of the first round, we see the impossibility to detect evil models by observing

the correlation among the layers. In the next section, we perform the same analysis but when

an attack is conducted at 1000th round.

Attack – Round 1000

After 1000 rounds of training benign models has the same correlation observed in Figure 5.14.

What is important is to verify what happened on evil-evil and benign-evil models. Figure 5.22-

5.23 show how correlation change for benign-evil models.

Figure 5.22: Correlation of benign - evil models when the attack is performed at round 1000. The

distances are computed on the normal dataset.

Figure 5.23: Correlation of benign - evil models when the attack is performed at round 1000. The

distances are computed on the poisoned dataset. Red dots represent poisoned images.

For both the normal dataset (Figure 5.22) and poisoned dataset (Figure 5.23) the correlation

among layers is similar to benign-benign (Figure 5.14) with a vertical column for all layers

with Layer4 and no correlation in another case. The red points (Figure 5.23) are not more

64

separated from the other points. The same situation happened for evil-evil reported in Figure

5.24-5.25.

Figure 5.24: Correlation of evil - evil models when the attack is performed at round 1000. The distances

are computed on the normal dataset.

Figure 5.25: Correlation of evil - evil models when the attack is performed at round 1000. The distances

are computed on the poisoned dataset. Red dots represent poisoned images.

However evil-evil and benign-evil have something different from benign-benign. Observing the

correlation on L3/L4 it has a different shape. The shape (Figure 5.26) of benign-benign is

similar to a vertical column while for the other 2 is more similar to a ball.

Figure 5.26: Correlation among Layer3/Layer4. Benign-Benign models (left), benign-evil

(center) and evil-evil (right).

65

Furthermore, these patterns are independent of the type of dataset (normal or poisoned) but,

unfortunately, only at round 1000 the correlation assumes that configurations because, if the

attack starts before models converged, the shape converged in a unique pattern.

Suppose the attack starts 50 rounds before, the new correlation at round 1000th between

layer L3/L4 becomes closer to the benign-benign shape.

This problem subsists when the attack is performed for the first time and p over N models

become infected but the remaining ones don’t, after the aggregation the global model contains

the backdoor, then Server generates N copies which are sent to N clients. The evil clients

continue to maintain the backdoor inside making it more strong with respect to the previous

round instead benign destroying the backdoor, however, this time, after the aggregation, the

global model will contain a stronger backdoor. In the next round again evil strengthens the

backdoor instead of benign try to delete it but without succeeding because it has been

strengthened in the previous round. Continuing the attacks for more rounds make the backdoor

always more difficult to destroy and if the benign cannot delete it they become themselves evil

with the result that all models become infected. At this point is not possible to distinguish evil-

evil, benign-benign, and benign-evil because all of them are evil-evil.

Analysis with global model – Attack Round 0

In the previous analysis, the correlation among models didn’t get any sufficient results or

information to detect poison models. In the following section, we report results when the

distances are computed with the global model and not among the models.

Since we assume the global model to be benign, all results shown in No Attack can be extended

also with the global model, so we skip this part and show directly what happens under attack.

Figure 5.27: Correlation among Layer3/Layer4. Benign-Benign models (left), benign-evil

(center) and evil-evil (right) after 50 consecutive attacks.

66

The Figure 5.28-5.29 show correlation for benign models on the normal (top) and the poisoned

(bottom) dataset.

Figure 5.28: Correlation of benign models when the attack is performed at round 0. The distances are

computed on the normal dataset.

Figure 5.29: Correlation of benign models when the attack is performed at round 0. The distances are

computed on the poisoned dataset.

67

Figure 5.30: Correlation of evil models when the attack is performed at round 0. The distances are

computed on the normal dataset.

Figure 5.31: Correlation of evil models when the attack is performed at round 0. The distances are

computed on the poisoned dataset.

Again, there is a linear correlation between Layer2 and Layer3 in all cases, evil and benign with

both types of datasets. For the normal dataset L1/L2 and L1/L3 show antilinearity,

while L0/L2 and L0/L3 are linear. For the poisoned there is only linearity on L2/L3 and the rest

of the layer doesn’t show correlation, except for L1/L2, L1/L3, and L0/L2, L0/L3 which is

similar to the normal dataset despite being less strong. However, these correlations are not

common for all evil models, some of them are similar to the benign ones making them

impossible to distinguish. With poison dataset correlation with Layer4 shows that distances

computed on the target class (red dots) are separated from the other.

68

Analysis with global model – Attack Round 1000

Figure 5.32: Correlation of benign models when the attack is performed at round 1000th . The distances

are computed on the normal dataset.

Figure 5.33: Correlation of benign models when the attack is performed at round 1000th . The distances

are computed on the poisoned dataset.

With benign (Figures 5.32, 5.33) the linear correlation disappears for L2/L3 and for other layers

no correlation is presented. L0/L1 also get some linear correlation but only for some models

and not for all. All layers with Layer4 show a vertical column.

With evil (Figures 5.34, 5.35) there is no correlation for all couple of layers, the layers

with Layer4 show a vertical column except for L3/L4 where instead the pattern has a different

shape or reveals 2 clusters. However, this doesn’t happen when the attacks are performed for

consecutive rounds (Figure 5.36). In this case, the previous global model is not benign but is

infected and, for the same reason explained in the previous section, all the models become

infected, therefore, for each couple of layers we have the same pattern making it unable to

distinguish which one is benign or not.

69

Figure 5.34: Correlation of evil models when the attack is performed at round 1000th . The distances

are computed on the normal dataset.

Figure 5.35: Correlation of evil models when the attack is performed at round 1000th . The distances

are computed on the poisoned dataset.

Figure 5.36: Correlation of evil models when the attack is performed for 50 consecutive rounds.

70

In summary, we see how correlation appears with and without attack. First, we have analyzed

distances among models and we have seen something that is possible to exploit for separating

evil from benign but, however, this happens only in specific conditions. Then we have

conducted the same analysis with distances computed with the global model and the results are

the same.

5.4 Neuron Analysis

5.4.1 Purpose

In the previous analysis, we have only investigated the output from the main layers in the

architecture and we have shown possible directions and the problems related to them. In this

section, we investigate another possible solution by, instead of finding something for detecting

evil models, imposing that the evil model behaves as a benign model. The idea is to modify the

architecture of the model by following 2 rules:

1. The normal behavior must remain unchanged

2. The backdoor, if present, must be blocked

These rules are obvious because is the task of all backdoor defenders, but the problem is how

to satisfy them.

When a model processes an image not all neurons inside the architecture participate in the

classification task, so not all of them fire, these types of neurons are called non-active neurons.

A backdoor model, when taken in input a normal image (without a trigger inside), has some

neurons that don't fire, instead of when the same image with the trigger is processed neurons

that didn't fire before, now fire [6]. A backdoor model could also misclassify a poisoned image

only triggering one single neuron that makes the final prediction wrong [7].

5.4.2 Methodology

To investigate this fact the idea is to seek the non-active neurons when normal images are

processed and to put a mask on them in order to be blocked when a poison image is given. To

71

do that we use a binary mask that multiplies the output of layer l and returns only the output of

active neurons, formally:

𝑂′𝑙 = 𝑂𝑙 ∗ 𝑀𝐴𝑆𝐾𝑙

(5.1)

where 𝑂′𝑙 is the output of active neurons, 𝑂𝑙 is the output from layer l and 𝑀𝐴𝑆𝐾𝑙 is a tensor of

the same shape of 𝑂𝑙 with 0 for non-active neurons and 1 for active.

To compute a binary mask we need to identify non-active neurons placed on each layer. Given

a clean dataset D and a model M, not important if is evil or not, we compute the average output

of neuron i of layer l over all input images 𝑑 ϵ 𝐷 so:

𝑂𝑖,𝑙 =
∑ 𝑂𝑖,𝑙,𝑑𝑑 ϵ 𝐷

|𝐷|

(5.2)

 where 𝑂𝑖,𝑙,𝑑 is the output of neuorn i in the layer l with input image d and 𝑂𝑖,𝑙 is the average

over all images. Now if 𝑂𝑖,𝑙 is below a threshold 휀 (very small value) then this neuron is

considered non-active. The 휀 is different for each layer l so we first have to find the set 휀 =

{휀1, 휀2, 휀3, … . , 휀𝐿} where L is the number of layers of model M.

Each 휀𝑖 is estimated by plotting the hystograms of all 𝑂𝑖,𝑙 with i = {1, 2, 3,, n} where n is

the number of neurons per layer, divided in 60 bins, the lowest bins is 휀𝑖. As shown in Figure

5.37 each lower bins is close to zero, in the first layer it also the one with higher frequency

while in the other the frequancy is below 0.1.

72

Once the 휀 set is computed we generate the binary mask 𝑀𝐴𝑆𝐾𝑙:

𝑓(𝑂𝑖,𝑙) = {
0 if 𝑂𝑖,𝑙 ≤ 휀𝑙

1 if 𝑂𝑖,𝑙 > 휀𝑙
}

(5.3)

To have a correct Mask is necessary that our models have been trained for a lot of rounds and

at least the accuracy must be over 0.8, in order to have significant outputs. Due to this fact, the

whole analysis is conducted when the attack is performed at round 1000th . With respect to the

previous case, this approach is not sensitive to the number of consecutive attacks before models

converged because in our assumption the trigger neurons stand in a specific part of the network,

if a consecutive attack is carried out, they don't change, and so non-active neurons found at the

first attack or after n attacks are the same.

In the next 2 sections, we show how Backdoor Accuracy (BA) and Main Task Accuracy (MA)

change when the mask is applied. Backdoor Accuracy is the percentage of how many poison

images a correctly misclassified as the target class. Main Task Accuracy is the percentage on

how many images (not poisoned) get the right prediction. The sections report a comparison

Figure 5.37: First 10 bins of first 4 layer from ResNet18.

73

between 2 architectures, ResNet18 (the one used in the previous analysis) and a simple CNN +

FCL (Convolutional Neural Network + FullyConnected Layers) running on a MNist dataset, in

order to highlight some problems related to this approach.

The mask is applied after each ReLU layers.

We use the pixel-backdoor attack.

We setted N = 30, p = 15, lr_e = 0.025, lr_b = 0.1, E_b = 2 and E_e = 15.

We consider IID and non-IID data distribution.

5.4.3 Results and Analysis

Backdoor Accuracy Comparison

The Figure 5.38 shows BA for ResNet18 and CNN+FCL for IID data.

Figure 5.38: Backdoor Accuracy (BA) with IID data. The left figure shows BA for each model with

ResNet18, right instead for CNN+FCL. The x-axis represents the number of the bin used for computing

the thresholds. The green lines are the benign models and the red lines are the evils.

With ResNet18 for each bin (threshold) the evil models remain higher at 100 % instead of

benign shows some oscillations. With CNN+FCL instead, the results are better, for a specific

threshold, at the 5th bin all BA is below 5 % and the maximum (at the 20th bin) is below 40 %,

after the 30th however all neurons turn off with the results that the prediction for each poison

image is zero and consequentially the BA drop to zero.

74

The next figure (Figure 5.39) reports the same analysis but with non-IID data.

Figure 5.39: Backdoor Accuracy (BA) with non - IID data. The left figure shows BA for each model

with ResNet18, right instead for CNN+FCL.

For ResNet18 the results are similar to IID, however, some evil models at earlier bins have a

BA close to 0.

For CNN+FCL the BA is reduced only at the first bin, the maximum is below 65 %, and

surprisingly is benign which has a higher value. This depends on the fact that the mask applied

to that particular model reduces also the MA and so the model gets random predictions so when

it has as input poison images it randomly predicts them as target class. However, the maximum

BA is 65 % and so is not a risk. With other bins instead, BA remains higher however this

happens because after a specific threshold (5th bin) almost all neurons turn off, and, given an

image the prediction is always the same, unfortunately, in this case, is always zero which is also

the target class.

75

Main Task Accuracy Comparison

The Figure 5.40 show MA with IID data.

Figure 5.40: Main Task Accuracy (MA) with IID data. The left figure shows MA for each model with

ResNet18, right instead for CNN+FCL.

Increasing the threshold, the ResNet18 goes to zero faster than CNN+FCL. As we have

explained in the previous section increasing the threshold turns off a lot of neurons inside which

makes the prediction always the same, in this case, zero. The MA traces how many images per

class are right predicted and if all of them get zero the MA becomes 0. The Figure 5.41 shows

MA when data are non-IID.

Figure 5.41: Main Task Accuracy (MA) with non - IID data. Left figure shows BA for each model with

ResNet18, right instead for CNN+FCL.

76

With ResNet18 the results are very bad, using the first bin as the threshold the MA drops down

to 12.5 %, and consequently, increasing the threshold, the MA decreases. For CNN+FCL the

results are much better, with the first bin the MA remains at 80 % but then decreases as the bins

increase.

From this comparison we deduce that the Mask can block the backdoor attacks only

for CNN+FCL and not for ResNet18. The main difference stands in the architecture, ResNet is

very more complex (Figure 2.6) than simple CNN+FCL (Figure 2.7), it contains more layers

and some non-canonical connections (Residual Connections). Therefore, most likely, the trigger

neurons are sparse in the network making it challenging to detect and deactivate them. A

possible solution could be trying to activate each subset manually until you notice the prediction

is wrong, however, this is computationally impossible.

We try also other different approaches for building an efficacy mask which are listed below:

1. we apply the mask on the last layers because usually, the trigger neurons stand there

since it’s easy to propagate their signals

2. we select 휀𝑖 as the rarer values which are the bins with very low frequency because

we assume that those neurons, maybe, are the trigger

3. we select bins randomly

None of these solutions change the results.

77

78

6. CONCLUSION

In our work we have shown that Federate Learning gives the possibility to a group of users to

collaboratively participate in the model training without sharing their own data. Doing that, it

guarantees that the privacy of the data is maintained but consequently exposes the final model

to other vulnerabilities like backdoor attack, which makes the model prediction on the crafted-

attacker inputs as the attacker wanted. Over the years a lot of defense strategies have been

implemented as countermeasures against such attacks but however, none of them successfully

works. The Krum [15], Bulyan [16], and Trimmed Mean [17] operate by modifying the

aggregation function in order to discard the evil models, Auror[19], FoolsGold [23],

and FLGuard [21] detect the evil models by using clustering techniques. The BaFFLe [22]

exploits the performance on a real dataset to infer if the global model is backdoored or not,

unfortunately, these methods have some drawbacks which make them impossible to be applied

in a real scenario. In our work, we propose TEE (Trust Execution Environment) to evaluate the

models using the local dataset in a secure enclave without destroying the privacy and we

propose some possible directions for detecting malicious updates by analyzing the output of

each single model’s layer given input the local dataset. In Section 5.1 we have analyzed if it is

possible to separate the evil clients from benign by inspecting the output from the last layers of

the model, this works if the data distribution is IID and fails in the other case, moreover the

detection doesn’t work if it starts at the beginning of the training, in Section 5.2 we have

analyzed the cosine distance among output per layer but this approach has shown some issues,

especially because, based on the type of the dataset used (poisoned or normal), the results are

different, in Section 5.3 we have introduced a method based on correlation analysis among the

layer and we saw that the correlation with distances computed with previous global models has

demonstrated some potential but fail when a consecutive attack is performed and moreover

works only when the training is at the final rounds. In Section 5.4 we have changed the

paradigm, instead of analyzing the output per layer we put a mask in front of each ReLU layer,

the masks are computed by allowing to fire only the neurons activated when a normal dataset

(dataset without poisoned images) is used. In theory, when a poison image is given in input, the

masks block the trigger neurons and allow to pass only normal neurons thus the backdoor will

be deactivated. Such approach has demonstrated efficacy only if we use a simple architecture

like CNN + FCL but instead fails when a more complex like ResNet18 is used.

Future works will start from the idea that only looking at the output per layer is not a good and

promising solution but, however, some possible more sophisticated approaches could be

79

investigated, in our work we only observed the distances and the correlations but something

more advance could be done.

Another possible direction could integrate the explainability of AI into the detection process.

Imposing that TEE is not only used for evaluating the models but also for the training process

permits that the attacker cannot touch the architecture during the training and make the

backdoor attack more difficult to inject. Unfortunately, in [3] is also explained how to perform

an attack under this condition, which is called a black-box attack, in practice, the poison images

used by the attacker have a very low frequency (so only the attacker has these images) and so

the architecture learns how to predict wrongly these images. However, if we also force that the

local dataset, once is inserted inside the TEE, cannot be modified by the attacker we can use

the explainability of AI to detect the poison dataset. Since the attack works only because the

poison images don’t belong to other users [3], trying to understand how a model predicts the

more frequency images against the low frequency could be exploited for detecting the poison

dataset and discarding it for the next training rounds.

.

80

81

BIBLIOGRAFY

[1] Claudia Malzer and Marcus Baum , “A Hybrid Approach To Hierarchical Density-based

Cluster Selection”

[2] Martin Ester, Hans-Peter Kriegel, Jiirg Sander, Xiaowei Xu, “A Density-Based Algorithm

for Discovering Clusters in Large Spatial Databases with Noise”. Institute for Computer

Science, University of Munich Oettingenstr. 67, D-80538 Miinchen, Germany {ester I kriegel

I sander I xwxu } @informatik.uni-muenchen.

[3] Hongyi Wangw, Kartik Sreenivasanw, Shashank Rajputw, Harit Vishwakarmaw, Saurabh

Agarwalw Jy-yong Sohnk, Kangwook Leew, Dimitris Papailiopoulos, “Attack of the Tails: Yes,

You Really Can Backdoor Federated Learning”. University of Wisconsin-Madison

arXiv:2007.05084v1 [cs.LG] 9 Jul 2020 k Korea Advanced Institute of Science and

Technology.

[4] Kolouri, Soheil, et al. “Optimal Mass Transport: Signal processing and machine-learning

applications”. IEEE Signal Processing Magazine 34.4 (2017): 43-59.

[5] Villani, Cedric. Topics in optimal transportation. No. 58. American Mathematical Soc.,

2003.

[6] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. “Fine-Pruning: Defending Against

Backdooring Attacks on Deep Neural Networks”. New York University, Brooklyn, NY, USA

{kang.liu,brendandg,siddharth.garg}@nyu.edu.

[7] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, Xiangyu Zhang.

“ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation”. Kingdom.

ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3319535.3363216

[8] Clement Fung, Chris J.M. Yoon, Ivan Beschastnikh. “Mitigating Sybils in Federated

Learning Poisoning”.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Deep Residual Learning for Image

Recognition”. Microsoft Research, {kahe, v-xiangz, v-shren, jiansun}@microsoft.com

https://doi.org/10.1145/3319535.3363216
mailto:jiansun%7d@microsoft.com

82

[10] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Ag¨uera y

Arcas. “Communication-Efficient Learning of Deep Networks from Decentralized Data”,

Google, Inc., 651 N 34th St., Seattle, WA 98103 USA

[11] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, Vitaly Shmatikov.

“HowToBackdoorFederated Learning”.

[12] Marco Barreno, Blaine Nelson, Anthony D. Joseph. “The security of machine learning”.

[13] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol. ePrint

Arch. (2016)

[14] Intel. 2013. Software Guard Extensions Programming Reference. Reference no. 329298-

001US.

[15] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. “Machine

learning with adversaries: Byzantine tolerant gradient descent”. In NIPS, 2017.

[16] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. “The hidden vulnerability

of distributed learning in byzantium”. In ICML, 2018.

[17] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. “Byzantine-robust

distributed learning: Towards optimal statistical rates”. In ICML, 2018.

[18] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, Neil Zhenqiang Gong. “Local Model Poisoning

Attacks to Byzantine-Robust Federated Learning”. ECE Department, The Ohio State

University, ECE Department, Duke University fang.841@osu.edu, {xiaoyu.cao, jinyuan.jia,

neil.gong}@duke.edu

[19] Shiqi Shen, Shruti Tople, P. Saxena. “Auror: defending against poisoning attacks in

collaborative deep learning systems”. National University of Singapore {shiqi04, shruti90,

prateeks} @comp.nus.edu.sg

[20] Clement Fung, Chris J.M. Yoon, Ivan Beschastnikh. “The Limitations of Federated

Learning in Sybil Settings”. Carnegie Mellon University clementf@andrew.cmu.edu,

University of British Columbia yoon@alumni.ubc.ca, University of British Columbia

bestchai@cs.ubc.ca

[21] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Mollering, Hossein Fereidooni,

Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza Sadeghi, Thomas

mailto:fang.841@osu.edu
mailto:neil.gong%7d@duke.edu
https://www.semanticscholar.org/author/Shiqi-Shen/2072819932
https://www.semanticscholar.org/author/Shruti-Tople/2855848
https://www.semanticscholar.org/author/P.-Saxena/1750032
mailto:clementf@andrew.cmu.edu
mailto:yoon@alumni.ubc.ca
mailto:bestchai@cs.ubc.ca

83

Schneider, and Shaza Zeitouni. “FLGUARD: Secure and Private Federated Learning”. System

Security Lab, TU Darmstadt, Germany - {ducthien.nguyen, phillip.rieger, hossein.fereidooni,

markus.miettinen, ahmad.sadeghi, shaza.zeitouni}@trust.tu-darmstadt.de, Encrypto, TU

Darmstadt, Germany - {yalame, moellering, schneider }@encrypto.cs.tu-darmstadt.de 3Aalto

University and F-Secure, Finland - samuel.marchal@aalto.fi 4Google, USA -

azalia@google.com.

[22] Sebastien Andreina, Giorgia Azzurra Marson, Helen Möllering, Ghassan Karame.

“BaFFLe: Backdoor Detection via Feedback-based Federated Learning”. NEC Labs Europe

sebastien.andreina@neclab.eu, NEC Labs Europe giorgia.marson@neclab.eu,

ENCRYPTO/TU Darmstadt moellering@encrypto.cs.tu-darmstadt.de, NEC Labs Europe

ghassan@karame.org.

[23] Clement Fung, Chris J.M. Yoon, Ivan Beschastnikh. “Mitigating Sybils in Federated

Learning Poisoning”. University of British Columbia clement.fung@alumni.ubc.ca, University

of British Columbia yoon@alumni.ubc.ca, University of British Columbia bestchai@cs.ubc.ca.

[24] David Arthur, Sergei Vassilvitskii. “k-means++: The Advantages of Careful Seeding”.

[25] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jörg Sander.” LOF: Identifying

Density-Based Local Outliers”. Institute for Computer Science University of Munich

Oettingenstr. 67, D-80538 Munich, Germany { breunig | kriegel | sander } @dbs.informatik.uni-

muenchen.de, Department of Computer Science University of British Columbia Vancouver,

BC V6T 1Z4 Canada rng@cs.ubc.ca

mailto:shaza.zeitouni%7d@trust.tu-darmstadt.de
mailto:azalia@google.com
https://www.computer.org/csdl/search/default?type=author&givenName=Sebastien&surname=Andreina
https://www.computer.org/csdl/search/default?type=author&givenName=Giorgia%20Azzurra&surname=Marson
https://www.computer.org/csdl/search/default?type=author&givenName=Helen&surname=M%C3%B6llering
https://www.computer.org/csdl/search/default?type=author&givenName=Ghassan&surname=Karame
mailto:sebastien.andreina@neclab.eu
mailto:giorgia.marson@neclab.eu
mailto:moellering@encrypto.cs.tu-darmstadt.de
mailto:ghassan@karame.org
mailto:clement.fung@alumni.ubc.ca
mailto:yoon@alumni.ubc.ca
mailto:bestchai@cs.ubc.ca

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1. Deep Learning
	2.1.1. Neural Networks
	2.1.2 Convolutional Neural Network
	2.2. Federate Learning
	2.3. Backdoor Attacks
	2.4. Trust Execution Environment

	3. RELATED WORKS
	3.1. Secure Aggregation Method
	3.2. Clustering Methods
	3.3. BaFFLe Method

	4. SYSTEM CONFIGURATION
	5. EXPERIMENT
	5.1. Output Analysis
	5.1.1. Purpose
	5.1.2 Methodology
	5.1.2 Results and Analysis
	5.2 Distance Analysis
	5.2.1 Purpose
	5.2.2 Methodology
	5.2.3 Results and Analysis
	5.3 Correlation Analysis
	5.3.1 Purpose
	5.3.2 Methodology
	5.3.3 Results and Analysis
	5.4 Neuron Analysis
	5.4.1 Purpose
	5.4.2 Methodology
	5.4.3 Results and Analysis

	6. CONCLUSION
	BIBLIOGRAFY
	Segnalibri di Word
	tw-target-text

