
Department of Information Engineering

Master Degree in Computer Engineering

Active perception based on 2D LiDAR
for social navigation in crowded

environments

Master Candidate Supervisor
Guglielmin Niccol�o Prof. Bellotto Nicola
Student ID 2052422 University of Padova

Co-Supervisor
Prof. Gloria Beraldo

Academic Year 2022/2023
Graduation Date 30/11/2023





To all the people, places and
moments that experienced

my happiness, perseverance, and e�orts

To my family, to sincere friends

Thank you



ii



iii

Abstract

In the domain of social robotics, where robots dynamically interact with

humans, the fusion of laser data with vision systems and Machine Learning (ML)

techniques is crucial for navigation toward target people. Active perception not

only reduces uncertainties but also enhances the sociability of robots by granting

them a more profound comprehension of the social context in which they operate.

In this thesis new active perception methods for social navigation in crowded

environments are proposed that are based on 2D Light Detection and Rang-

ing (LiDAR) in order to be used in public space by respecting privacy and with-

out requiring additional sensors. The proposed methods consider a policy that

measures and exploits the level of uncertainty in the people detection to choose

the most useful poses for the robot to con�rm the detection or to deny a previous

wrong detection. The other two methods concern learning this policy based on a

Deep Neural Network (DNN) and learning via Reinforcement Learning (RL) the

most appropriate robot's motions, to increase the certainty about the people in

the environment.

Results about the policy behavior show that this approach is feasible to be

used on a real robot than the other two approaches that were tested only in

simulations. Furthermore, the experiments at the IAS-Lab on the Take It And

Go (TIAGo)++ revealed that the robot can adapt its behavior to the working

scenario, in which it can accomplish its tasks successfully when deployed in chal-

lenging situations, that is the goal of active perception.
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Sommario

Nel campo della robotica sociale, dove i robot interagiscono dinamicamente

con gli esseri umani, la fusione dei dati laser con i sistemi di visione e le tecniche

ML �e cruciale per la navigazione verso le persone target. La percezione attiva

non solo riduce le incertezze ma migliora anche la socialit�a dei robot garantendo

loro una comprensione pi�u profonda del contesto sociale in cui operano.

In questa tesi vengono proposti nuovi metodi di percezione attiva per la nav-

igazione sociale in ambienti a�ollati che si basano su 2D LiDAR per essere uti-

lizzati nello spazio pubblico rispettando la privacy e senza richiedere sensori ag-

giuntivi. I metodi proposti considerano una politica che misura e sfrutta il livello

di incertezza nel rilevamento delle persone per scegliere le pose pi�u utili al robot

per confermare il rilevamento o negare un precedente rilevamento errato. Gli altri

due metodi riguardano l'apprendimento di questa politica basata su una DNN

e l'apprendimento tramite RL dei movimenti pi�u appropriati per il robot, per

aumentare la certezza sulle persone nell'ambiente.

I risultati sul comportamento delle politiche mostrano che questo approccio

pu�o essere utilizzato su un robot reale rispetto agli altri due approcci che sono

stati testati solo nelle simulazioni. Inoltre, gli esperimenti presso lo IAS-Lab sul

TIAGo++ hanno rivelato che il robot pu�o adattare il suo comportamento allo

scenario di lavoro, in cui pu�o svolgere i suoi compiti con successo se impiegato in

situazioni di�cili, quale �e l'obiettivo della percezione attiva.
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Chapter 1

Introduction

In this chapter the introduction to the main general topic of Socially Aware

Robot Navigation (SARN) is provided through a couple of de�nitions to formalize

the topic, a general overview of the key aspects, and a speci�cation of the core

challenges in this �eld of research. Then, the motivation and the structure of this

thesis are reported.

1.1 Socially aware robot navigation

Navigation is an essential skill for autonomous robots, and it becomes a chal-

lenging task in human-populated environments. Robots need to perform the tasks

without disturbing the humans around them and ensure the comfort and safety of

humans as well [80]. There are various factors inuencing this behavior like social

norms, the geometry of the environment, and surrounding people. To establish

an e�ective socially aware robot navigation, the basic and fundamental compo-

nents that must be acquired are Social Conventions (SC), Human Motion (HM)

and Context-Aware Mapping (CAM).

By the fact that humans move from one place to another driven by some inner

motivation towards a goal following a nonlinear pattern, one of the most desirable

and complex task for a robot is to predict the accurate human trajectory in real-

time. The di�culty increases because of human random behavior, surrounding

people, social rules, and the environment. This is the reason why robots need to

understand the context in the form of CAM to achieve a highly e�cient SARN.

More precisely, human behavior, that is reected by HM, can be considered

to be random since human people can decide to change their own goals at any

instant. Despite this, human motion is mostly inuenced by both physical and

1



2 Chapter 1. Introduction

social constraints that can be found in the particular context and environment

(Figure 1.1).

Figure 1.1: Di�erent snapshots of scenarios with pedestrians taken from common datasets proposed
in [5].

However, in social environment settings, a robot is preferred to be reactive

enough to deal with these constraints, deliberating a suitable plan of motion

execution. For example, some general SC can be in support of human order of

motion, the respecting and the following of the queue, the motion to the left or to

the right-hand side of the way (according to each country), to ask for permission

(whenever required), etc.

Since tracking humans and obstacles is a tricky job for a robot in motion, in

general is preferred to predict human trajectories to plan the robot navigation

in advance, taking into account the most potential and probable human choices.

For this reason, formalization of both problem and potential situations is needed.

1.1.1 Problem Formulation

[59] proposes both formulations about the concepts of navigation and social

navigation that are reported in this subsection.

De�nition of Navigation

Consider a planar workspace C � R2 and denote by Cobs 2 C the subspace

of C that is occupied by static obstacles. Assume that an agent (an individual

or a group) a is embedded in C, lying at a con�guration q 2 Q � SE(2)1 and

occupying a �nite area A(q) � C. Starting from q, the agent intends to reach a

goal g 2 Q while avoiding collisions with the static environment. For agent a,

Navigation is the task of following a collision-free path � : [0; 1]! Q connecting

q to g. To this end, agent a is solving a problem of the form:

1SE(2) is the Special Euclidean group. It is a subgroup of the direct Euclidean isome-
tries whose elements are called rigid motions or Euclidean motions. They comprise arbitrary
combinations of translations and rotations, but not reections.



1.1 Socially aware robot navigation 3

� = argmin
�2T

c(�)

s.t. A(�(a)) =2 Cobs; t 2 [0; 1]

�(0) = q

�(1) = g

where t is a normalized notion of time, T is a space of paths, and c : T ! R
is a cost function describing additional path speci�cations (e.g., time to goal or

path smoothness) and taking into account environmental properties (e.g., terrain

traversability) [59].

De�nition of Social Navigation

Consider a set of nt > 1 agents ai, i 2 N = f1; :::; ntg, lying at con�gurations

qi 2 Q with volumes Ai(qi) at some time t � 0. Agents intend to reach their

individual destinations gi while avoiding collisions with the static environment

and abiding by social norms (e.g., respecting the personal space of others). At

planning time, agent i generates a path �i : [0; 1] ! Q, extracted by solving

Social Navigation as an optimization problem of the form:

�i = argmin
�2T

ci(�i) + �ic
s
i (�i; ~�−i)

s.t. Ai(�i(a)) =2 Cobs;8t 2 [0; 1]

Ai(�i(a)) \ Aj(~�j(a)) = ;;8t 2 [0; 1]; j 6= i

�(0) = qi

�(1) = gi

where ci : T ! R is an individual cost corresponding to an individual path

speci�cations; csi : T 2 ! R, a cost2 describing social considerations, such as

personal space, taking into account predictions about the future behaviour of

others ~�−i = (~�2; :::; ~�nt); and �i a weight. It is assumed that agents do not

have access to the complete navigation parameters of others. Speci�cally, it is

assumed that at planning time agent i is not aware of the navigation costs cj, c
s
j ,

and weight �j, �j [59].

2This cost function formulation is very generic to capture the widest variety of possible
behaviors. It spaces from social compliance to adversarial behavior.
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1.1.2 Social Conventions

Social Behaviours

Human behaviors can be analyzed from di�erent points of view like sociology

and psychology. The crucial point is to connect the right social cues to the right

social signals by humans (facial expressions, gestures, body posture, proximity,

etc). This is because robot navigation must ensure social comfort3, which is very

subjective and cannot be measured directly.

Proxemics

The term \Proxemics" refers to the study of maintaining spatial distances in

various interpersonal and social spaces [80]. Figure 1.2 shows the four types of

spaces that a socially aware robot should manage to avoid discomfort.

Figure 1.2: Classi�cation of personal space proposed in [80].

About groups, the related space changes according to how two or more in-

dividuals are engaged in conversation [80]. Figure 1.3 shows the seven types of

group spaces.

It must be taken into account that the space around any individual is situation-

dependent and, in general, dynamic in time. Indeed, Proxemics is strictly related

3Social comfort can be de�ned as the absence of stress and irritation while interacting with
robots [80].
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Figure 1.3: Di�erent types of group space con�gurations proposed in [80].

to other factors like the space between individuals and objects, robot appearance,

robot speed, and approach directions. Practically, some properties and behaviors

are suggested and preferred since they are more e�ective [81]. Such behaviors can

be related to robot speeds, head movements, and gaze direction [44].

Social Robot Capabilities

\Social Navigation" includes not only navigation itself. Since robots must

establish natural interaction similar to humans, approaching directions towards

humans are of fundamental importance. For this reason, a detailed knowledge

of human representation and space can help plan an e�ective and as correct as

possible SARN.

Social robots must be able to treat humans di�erently from objects while

navigating in a predictable and easily understandable manner. The needed ca-

pabilities can be classi�ed into four types (as shown in Figure 1.4):

1. Avoiding collision: it is established by Social Force Model (SFM)4 [49];

2. Passing humans : robots compute the cost for each selectable trajectory by

considering parameters and choosing a left or right pass when encountering

stationary humans [65];

3. Following humans : navigation is carried out in crowded scenarios by robots

considering a target location and selecting a human leader to follow;

4An example of the Social Force Model applied to robotics can be found in [27].
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4. Moving along with humans : motion is carried out in crowded environments

while taking optimum robot speed and braking into consideration, accom-

panying a human in the motion to a goal position [73].

Figure 1.4: Classi�cation of social robot capabilities proposed in [80]: (a) Avoiding collision. (b)
Passing humans. (c) Following humans. (d) Moving along with humans.

1.1.3 Modeling Human Motion

Modeling human motion is a complex task. It aims at generating future

data based on the observed, captured, and computed human motion state. This

task can be divided into three types of approaches: Physics-Based Approaches,

Pattern-Based Approaches and Planning-Based Approaches.

Physics-based approaches

These types of approaches use Newton's laws of motion to predict human

trajectories (how humans move) and their possible interactions with the environ-

ment. According to the di�erent modes of dynamics, they can be divided into

the following types:

� Single-model approaches : position and velocity are enough to represent hu-

man motion state in the form of a kinematic model, excluding the forces

that govern motion. Some models like map-based models (models that con-

sider map information into the system, Figure 1.5(a)) that do not consider

dynamic agents and that are static extensions of the previously de�ned, are

called Static models. Instead, a dynamic model considers external forces

and the context of the environment (Figure 1.5(b)). For example, a robot

that perceives abstract attractive forces from the desired end location while

perceiving repulsive forces from the obstacles can be localized to be in a

very changing context;
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� Multi-model approaches : to describe the complex motion behavior of the

dynamic agents, di�erent motion modes are taken into account, including

the map and dynamic environment-based models.

Figure 1.5: Two Physics-based approaches proposed in [80]: (a) Map-based model that does not
consider dynamic agents but mainly map information. (b) Dynamic environment-based
model that considers both external forces and context of the environment.

Physics-based approaches are very helpful in static environment or where

human motion can be modeled via mathematical functions.

Pattern-based approaches

These types of approaches exploit the power of data by deploying Sense Learn

Predict paradigm. According to the techniques used, they can be divided into

the following types:

� Sequential models : they are built on the assumption that the current posi-

tion and velocity (Figure 1.6(a)) can be expressed starting from the data of

the previous state's statistical observations (i.e., local transition patterns,

topological maps, Voronoi graphs). Most recent techniques used neural

networks and Long Short-Term Memory (LSTM);

� Non-sequential models : they intend to learn human motion patterns by

clustering trajectories observed over a long time. They want to exploit

unsupervised clustering techniques to predict human future trajectories in

social settings (Figure 1.6(b)).

Pattern-based approaches work well for large environments where dynamics

are unknown and multiple humans are involved in the scene.

Planning-based approaches

These types of approaches build on the Sense Reason Act paradigm. It makes

reasoning about the current state of human motion and acting accordingly. In
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Figure 1.6: Two Pattern-based approaches proposed in [80]: (a) Sequential model. (b) Non-
sequential model.

such a way the probability of choosing the best possible navigation path for the

robot increases a lot. According to the order of reasoning and acting phases,

these approaches can be classi�ed into the following types:

� Forward planning-based approaches : they use a prede�ned function for plan-

ning both motion and path (Figure 1.7(a)). Mostly used with probabilistic

dynamic models, they consider distances between the robot and the �nal

goal location as a metric to predict the next following state of humans in

the context scene;

� Inverse planning-based approaches : they compute a cost function by observ-

ing humans navigating in the current scene by exploiting various imitation

techniques (Figure 1.7(b)). The robot trajectory is selected by transform-

ing this problem into an optimization problem dependent on environment

semantics, cost functions, and human interactions.

Figure 1.7: Two Planning-based approaches proposed in [80]: (a) Forward planning. (b) Inverse
planning.

Planning-based approaches are extremely suitable when robots and human

goals can be explicitly de�ned in an environment.



1.1 Socially aware robot navigation 9

1.1.4 Context-Aware Mapping

Context-Aware Mapping technology helps the transaction from industries

built around a human-centered social setting to a human-robot shared social

setting. To do so, this technology gives interpretation and helps to understand

the robot's geometrical measures, data, and spatial relations to human environ-

ments. The context-aware mapping can be divided into Semantic Mapping and

Social Mapping.

Semantic Mapping

A robot equipped with Semantic Mapping software uses high-level modalities

to formulate its geometrical interpretation. It can accomplish tasks like Optical

Character Recognition (OCR), object recognition, and distance measurements

appending features understandable by humans on top of metric maps. In such a

way, the geometrical interpretation is enhanced and communicated to humans.

Since a robot can work both in indoor and outdoor environments, Semantic

Mapping is a technology that can work in both cases:

� Indoor single scene: data are acquired by a Red Green Blue-Depth (RGB-D)

camera and then they are transformed into a di�erent color space to perform

computations like the Conditional Random Field (CRF) model, followed by

forest model to execute segmentation of the scene [37];

� Outdoor scene: stereo RGB-D cameras perform feature extraction and seg-

mentation at multiple scales. Typically, multimodel approaches are very

useful to merge di�erent Field of Views (FoVs) with CRF to have, in gen-

eral, a very accurate and human-understandable representation of the cur-

rent scene [40]. As shown in Figure 1.8, each element in the scene (i.e.,

vehicles, road, vegetation, etc.) is labeled with a label to associate it with

the corresponding class.

Social Mapping

As soon as Semantic Mapping has been established, the next step is to take

into account human factors. The main ones are sociability, naturalness, safety,

and comfort. Social Mapping emphasizes the human-robot coexistence and robot

navigation in human-robot shared environments:
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Figure 1.8: Semantic segmentation with class labels [80].

� Safety and visibility are the key factors in forming social map. Respectively,

the former focuses on the distance between the robot and human, while the

latter is built on the criterion that all robots must be inside the �eld of

view of humans, so that no surprises or unexpected behaviors can occur in

humans (Figure 1.9) [80];

Figure 1.9: Social mapping experiment in an indoor environment proposed in [80].

� SFM is one of the most chosen types of analysis to shape social maps. It

aims at explaining and predicting human trajectories with the help of social

forces, modeled to represent neighboring obstacles and nearby humans as

repulsive forces.
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Moreover, customized cost functions that weight human responses can be

applied to increase human trust in robots [80].

1.2 Core challenges

Exciting challenges arise day-by-day given the daily spreading of the use of

robots. They are present in industrial environments, where automated robots

are programmed to perform repeatedly the same set of operations in a closed

workspace without nearby humans, and also in human-robot shared contexts. In

socially aware navigation, there are the following core challenges according to

[59]:

� Planning challenges : How should a robot plan its motion through a crowd

of navigating humans to ensure safety and e�ciency?

� Behavioural challenges : What types of social signals can be inferred from

human behavior and what types of behaviors should a robot exhibit to

ensure social norm compliance?

� Evaluation challenges : How can we evaluate a social robot navigation sys-

tem?

1.2.1 Planning Challenges

Planning Challenges of Social Navigation have been partitioned in literature

into two classes: Decoupled Prediction and Planning and Coupled Prediction and

Planning. As can be seen, this partition is based on the interaction between the

two �elds of interest in this subject.

Decoupled Prediction and Planning

These challenges can be further classi�ed based on dominant trends in re-

search:

� Humans as Dynamic, Non-responsive Obstacles : humans are treated as

non-reactive and dynamic obstacles without a very precise formalization of

their social interactions. Some examples are the works proposed in [12],

[29], [68];
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� Motion and localization Uncertainty : the idea is to infer where the agent

can be rather then where the agent is. This type of inference reasoning has

been boosted by contexts of crowds of humans where detecting people is

more di�cult due to occlusion and chaotic people motions.

Coupled Prediction and Planning

These challenges are fully covered by the two main trends of cooperation type,

capturing multi-agent interactions in crowded domains, where the agents are the

robot and the surrounding humans:

� Explicit Approaches : they exploit the structure of multi-agent collision

avoidance and agent models. For example, they employ explicit predic-

tions of human behavior, typically in the form of trajectories, probability

distributions, or expected occupancy maps;

� Implicit Approaches : they exploit the principles of cooperative collision

avoidance without imposing explicit constraints on the structures. They

work at a higher level w.r.t. explicit ones.

1.2.2 Behavioral Challenges

The Behavioral Challenges concern the core aspects of a successful navigation

with a focus on safety and e�ciency. To reach the level of abstraction required

for developing realistic behavioral software, the more common and general di�-

culties of behavioral implications of interactions between agents must be carefully

studied.

Behavioural Interactions

These interactions can be categorized with increasing order of social signal

\richness":

� Proxemics : as already explained in Section 1.1.2, in other words it describes

the space around a pedestrian5;

5A human walking in an environment.
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� Intentions : they represent rich cues that o�er hints about the future behav-

ior of an agent. For example, for a robot, an intention may be communi-

cated to humans through some particular gesture of the arm, body posture,

gaze, etc. These behaviors are fundamental to communicate the behavior,

conveying the actual and future state of the agent;

� Formations : the most popular research on pedestrian spatial behavior is on

grouping, which is a synchronization process where a few individuals form

a group. That group can form a static or dynamic setting: in the former

humans do not move and form interactions, while in the latter humans are

moving. Both static and dynamic group formations have to be respected

by mobile robots.

1.2.3 Evaluation challenges

Another core challenge regards the evaluation of the performances obtainable

by methodologies.

Metrics

The Evaluation Challenges can be faced by measuring some aspects like the

following:

� Navigation Success Rate: how often an agent reaches its goal destination;

� Path E�ciency and Optimality : the quality of the trajectories;

� Safety/Collision Avoidance: the number of constraint violations. For in-

stance, the number of collisions;

� Behavioral Naturalness : even if it is not directly connected to planning per-

formances, it represents a �tness score for a robot navigating in a human-

populated environment. One of the most general and common approaches

is to take a dataset of recorded human pedestrians. After, the score will

represent the distance between an agent's plans and the trajectories saved

in the data. According to the algorithm the score is computed, Average

Displacement Error (ADE) or Final Displacement Error (FDE) can be mea-

sured. The former is the average of Euclidean di�erences between tempo-

rally aligned points in the paths given by a navigation algorithm and the
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ground truth path of the dataset. Instead, the latter is the displacement

error only at the �nal time step.

All the above metrics can evaluate the performances of a single agent. Then,

a multi-agent study can be performed comparing each single-agent study.

A more schematic list of the common metrics proposed and detailed in [59]

can be found in Table 1.1.

Name Description
Arrival rate How often an agent successfully reaches the goal
Path length The distance traveled by an agent
Collision rate Frequency of collision per agent
Failure rate How often an agent fails to reach the destination
Average time to goal Average time spent by an agent to reach the goals
Social scores Indices to measure human comfort such as safety for the path

planned by the robot or the number of social constraints violated
Average acceleration Acceleration averaged per time
Average energy Integral of the squared velocity of an agent averaged per time
Path irregularity Total amount of displacements beyond planned path
Path e�ciency Ratio between straight line path and planned path
Time spent per unit path length Average time spent to move for one unit of path length
Topological complexity Amount of entanglement among agents' trajectories
Speed e�ciency Ratio between nominal and actual speed

Table 1.1: Evaluation metrics for social navigation proposed in [59].

1.2.4 Open Problems

For the challenges above several fundamental problems are still open:

� Modeling Interactions in Crowded Environment : as soon as the number of

humans in a context increases, problems and di�culties increase a lot. For

example, if a robot navigates inside a dense crowd, it is very di�cult for it to

socially navigate in a smooth way exploiting the most common techniques

such as SFM, without accounting for human cooperation;

� Behavioral Design: since the in�nite number of possible contexts, it is both

hard to code to embed hand-crafted behaviors in the robot software and to

train navigation models that can perform well in a wide variety of contexts

and environments;

� Role of Context : taking into account some main properties of the context

(e.g.: the shape of the space, the timing, the scene, and the grouping behav-

ior) can lead to both pros and cons. Indeed, some unexpected behaviors or
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problems can be faced by both embedding hand-crafted changes and learn-

ing algorithms in the robot software. However, this can lead to a loss of

generality;

� Better Behavior Understanding : this is the biggest behavioral challenge in

social navigation [59]. At the current stage, research in pedestrian mo-

tion understanding takes a trial-and-error-based approach. Indeed, because

of the limited knowledge available, researchers tend to use Deep Learning

techniques to implicitly model pedestrian behaviors. In such a way, they

can return in output behavioral outcomes (i.e., trajectory predictions, nav-

igation actions, etc.). Yet this still does not produce precise knowledge in

this �eld of research;

� Behavior Importance Evaluation: humans behavior analysis is a various

behavioral set of aspects that potentially bene�t social navigation. In addi-

tion, in simulation environments, pedestrians' behaviors are not de�ned in

a precise way, trying to simulate as randomly as possible the widest variety

of situations. Until now, this can be the only way to analyze the practical

e�ectiveness of solutions in real-world environments;

� Limitations of Existing Simulation Practices : since simulating crowd navi-

gation is a challenging task as it requires assumptions, abstraction does not

consider too many interactions that naturally may arise in real life;

� Towards a Benchmarking Protocol : in the State-of-the-Art there is a large

lack of standardized experimental benchmarks. The research community

needs to converge towards a standard de�nition to specify all necessary

experimental features: for instance exact de�nition of the task the robot

has to perform, types of experimental platforms with pros and cons, the

number and the role of humans, the context and the environment, the

metrics to use. In such a way the comparison among di�erent approaches

should be facilitated and more consistent;

� Formal Veri�cation: it is worth noting that even if a real-world benchmark

would have been established, it could be not enough representative about

the performances. Indeed, any benchmark would still inevitably at best

capture a small sample of representative real-world context and interactions.

Therefore, adding methods for formal veri�cation to benchmarks would
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strengthen performances. Unfortunately, in realistic settings more deep

research is still necessary.

1.3 Aim of the thesis

State-of-the-art approaches have made progress in human-robot shared tasks,

but challenges arise when robots operate in human crowded environments. The

key issue is to align robot behavior with human perception, both in how people

perceive the robot and how the robot perceives and interacts with people. Ac-

tive Perception tries to face both sides of this problem through the involvement

of behavior selection (e.g., get close to the possible target, move around to add

information about the environment, get close to a zone where there is small cer-

tainty about what can be found there, ...) to enhance information gathering in

a speci�c environment and context. Robots move and explore their surround-

ings by using their sensors to sample data and construct an understanding of the

environment. In active perception, the interpretation of sensors' data is closely

linked to the behaviors needed to capture that data, with action and perception

tightly coupled. In the people-aware navigation, challenges include e�ective robot

motion for people detection and tracking or re-identi�cation, dealing with limited

visibility in crowded areas, integrating data from various sensors, and address-

ing the computational load of di�erent components and modules in robots (e.g.,

perception, detection, choice of an action in line with the dynamics of the social

context, ...).

The thesis aims at developing di�erent possible solutions based on model-

based vs. RL approaches for the Active Perception task, with a focus on crowded

human environments, exploiting only data incoming from 2D LiDAR. More pre-

cisely, the robot has to improve the con�dence in people detection through the

execution of de�ned actions, while trying to �nd new people in di�erent scenarios.

Moreover, the robot should observe social behaviors during navigation since real

robots are the �nal users of these works for real applications, where interactions

with real humans are involved.

1.4 Structure of the thesis

This master thesis is organized into seven chapters, each contributing to a

comprehensive understanding of the research on the active perception topic, with
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particular attention to social navigation in crowded environments.

In this introductory chapter, the research problem, its signi�cance, and the

motivation behind the study are presented. The main research questions and

objectives are outlined, setting the context for the whole thesis.

Chapter 2 delves into the existing literature and provides an extensive review

of relevant studies, methodologies, and technologies, with a comparison of their

most signi�cant aspects. The focus is mainly on geometrical, SFM, and learning

approaches. After a take-home message to highlight the most remarkable aspects,

the last section discusses the gap between active perception techniques and what

is the goal of this thesis.

Chapter 3 introduces the tools and methods employed in this research. It

details the hardware and software utilized, including the 2D LiDAR sensor and

the most important packages. Additionally, it is discussed the experimental setup

and data collection procedures.

Chapter 4 focuses on the preprocessing steps necessary for an e�ective con-

tinuation of the work. It covers techniques for people detection using 2D LiDAR

data and the classi�cation of laser points to distinguish between di�erent objects

in the environment.

Chapter 5 is the core of the thesis, where the concept of socially active per-

ception is explained and elaborated upon. This chapter explores how the system

perceives and responds to social cues and human interactions to behave actively

and to successfully perceive environments. Di�erent types of approaches are

deeply analyzed, from a custom-de�ned policy to RL methods.

Chapter 6 presents the experimental design and the results obtained from

various tests. It includes quantitative and qualitative analyses to evaluate the

performances of the proposed active perception systems in human crowded envi-

ronments.

The �nal chapter (7) summarizes the key �ndings of the research and ad-

dresses the research questions and objectives outlined in Chapter 1. It collects

the implications of the results and their contributions to the �eld of active per-

ception and social navigation. Additionally, recommendations for future research

and potential applications are discussed.
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Chapter 2

State-of-art

This chapter illustrates the state-of-the-art approaches in the social-aware

navigation with particular attention to the active-perception. The proposed

overview aims at highlightening the pros and the cons of the di�erent approaches

(geometrical, social force model-based, and learning-based) from the simplest to

the most recent and advanced methods. Finally, the chapter ends with the take-

home messages from the review of the literature.

2.1 Geometrical Approaches

All the approaches described in this section rely on the concepts of personal

space, Gaussian functions, and modi�ed costmaps, in conjunction with geometri-

cal formulations. In this section three main works in the application of geometrical

methods in SARN are presented.

2.1.1 RGB-D and Laser Data Fusion based Human

Detection and Tracking

In [86], authors propose a framework to let mobile robots distinguish humans

from other types of regular obstacles. Moreover, they estimate human states (e.g.,

human positions, and motion). This is achieved by fusing multiple sensor data

to extract the information needed. Then, extended personal spaces are modeled

and incorporated into the kinodynamic Rapidly-exploring Random Trees (RRT)

motion planning system to get the acceptable1 trajectories for the robots.

1Here the term \acceptable" refers to the �nal trajectories that are comprehensible and
consistent in terms of human safety and comfort in social environments.

19
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Figure 2.1: A owchart of the proposed socially aware robot navigation system proposed in [86].

The proposed framework in Figure 2.1 can be divided into three stages:

1. Human detection and tracking : multisensor fusion technique to extract and

track human states.

The robot used in [86] is equipped with a Microsoft Kinect sensor (Red

Green Blue (RGB) camera and depth sensor) and a laser range �nder.

As depicted in Figure 2.2, data collected are then processed to produce

for both sensors a parameter set (a set of hl = (xl; yl) for the laser and

a set of hb = (xb; yb) for the Kinect sensor) that indicate the detected

humans. To complete the tracking, the fusion of data is done by performing

a particle �lter [8] with Global Nearest Neighbour data association [50].

The output of the human tracking system is a collection of human states2

pi = (xpi ; y
p
i ; �

p
i ; v

p
i ) which is used to extend the personal space in the next

stage;

2. Extended Personal Space (EPS): human comfort and safety guaranteed by

EPS.

To model the space around a human it is used a two-dimensional Gaussian

function with the maximum at the center that gradually descends away

from it. This concept is based on the Hall personal space (Figure 2.3 (a)),

extended as the concept of basic personal space (Figure 2.3 (b)) divided

into the frontal and back area around a human pi.

2Each human state is represented by the position point (xpi ; y
p
i ) in which the human is

located, its orientation �pi , and its speed vpi .
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Figure 2.2: The result of the human detection method proposed in [86]: (a) laser-based human
detection, (b) RGB-D based on human body detection.

Figure 2.3: (a) Hall model, (b) Basic personal space using two-dimensional Gaussian function pro-
posed in [86].

Since robot states are de�ned as r = (xr; yr; �r; vr), the relative pose and

motion between humans and robots can be formalized as in Figure 2.4.

Figure 2.4: Related pose between a person and a robot [86].

At this point, the N EPSs of all people detected by the robot are represented

by the function Feps(x; y) = max (f eps1 (x; y); :::; f epsN (x; y)) where f epsi is the
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model of the EPS around person i;

3. System integration: �nal legible trajectories in output by kinodynamic

RRT-based motion planner.

This is done as represented in the data ow diagram in Figure 2.5.

Figure 2.5: Data ow diagram of the system integration proposed in [86].

The EPS function Feps(x; y) is integrated with the obstacle function Fobs(x; y).

This last function takes into account the static and dynamic obstacles de-

tected by the laser range�nder in the environment. The �nal local cost func-

tion in the proximity of the robot is F (x; y) = max (w1feps(x; y); w2fobs(x; y))

where the couple (x; y) is the coordinate of points around humans, w1 and

w2 are the weights of the two types of functions. It is this F (x; y) function

that is used in input to the kinodynamic RRT motion planning [52]. This

procedure is formalized in Algorithm 1 [86].

Algorithm 1 Kinodynamic RRT

Input: qstart; qgoal; K; F (x; y);�t;MP
Output: Robot Trajectory: traj

1: Initialize � with qstart;
2: while Nnodes < K do
3: qrand  randomState();
4: if :checkCollision(qrand; F (x; y)) then
5: qnear  nearestNeighbor(�; qrand);
6: qnew; ubest  extend(qnear; qrand;�t;MP );
7: if :checkCollision(qnew; F (x; y)) then
8: � .addVertex(qnew);
9: � .addEdge(qnear; qnew; ubest);

10: if qnew 2 qgoal then
11: traj  extractTrajectory(�; qnew); return traj;
12: end if
13: end if
14: end if
15: end while
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Simulated Experiments and Results

Authors of [86] implemented their proposed framework using Matrix Labo-

ratory (MATLAB)3 and C/C++ programming language with Robot Operating

System (ROS), Open Source Computer Vision Library (OpenCV)4 and Point

Cloud Library (PCL)5. Tests ran on an Intel core i7 2.2 GigaHertz (GHz) laptop.

All tests use the same initial start and goal poses, expecting the robot to move

avoiding obstacles and humans in the surrounding area, testing also the reliability

of the �nal path. Tests consider more situations: a human standing in front of

the mobile robot, a robot navigating while a person is moving and a group of two

people are standing in front of the robot (Figure 2.6).

Figure 2.6: A group of two people: (a) the extended personal space shown in contour, the RRT
tree (in green color) and the trajectory of the robot generated by the kinodynamic
RRT motion planner; (b) the human detection using RGB-D data and the human leg
detection using laser data proposed in [86].

This framework achieves good results in terms of human position and motion

states, controlling the robot to navigate in a good way. However, this method

is suitable and tested in very sparsely crowded contexts. Indeed, in the case of

crowds, extended social spaces around humans can force the robot not to move

since it is surrounded without any free way.

3For further details: https://it.mathworks.com/products/matlab.html .
4For further details: https://opencv.org/ .
5For further details: https://pointclouds.org/ .

https://it.mathworks.com/products/matlab.html
https://opencv.org/
https://pointclouds.org/
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2.1.2 Dynamic Social Zone (DSZ) based Mobile Robot

Navigation

In [84] an e�ective Dynamic Social Zone (DSZ) based navigation method

for mobile robots is proposed. Here the emphasis is on human safety in social

environments. With respect to the work presented in Section 2.1.1 ([86]), the

work in [84] allows to plan trajectories to avoid undesired physical contact with

humans, considering also psychological aspects and social constraints. Moreover,

another important di�erence with [86] is that this safety framework is applied

to mobile robots to navigate while avoiding humans to reach an appropriate

approaching position.

The system architecture of the extended navigation scheme for mobile robots

in social environments consists of a conventional navigation scheme (lower part of

Figure 2.7) with the addition of the human comfortable safety framework (in cyan

color in Figure 2.7). To the four blocks of the traditional navigation, the human

framework adds the ability to extract human characteristics for the development

of the DSZ. The output of DSZ is a human-aware decision that guarantees human

safety and comfort in both avoiding and approaching people.

Figure 2.7: The extended navigation scheme for mobile service robots proposed in [84].

The human comfortable safety framework of [84] is composed of six blocks:

1. Human states : they provide spatial and temporal characteristics of humans

such as human positions, orientations, velocities, hand poses (for human

actions), �elds of view, and human gaze directions (for the direction of social

attention of a human). All of them help to identify group interactions;
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2. EPS: as in Figure 2.3, this concept is used and it is enriched with infor-

mation like human hand poses and a�ected by other factors such as social

situation, gender, age, personality, etc;

3. Social Interaction Detection: social interaction detection can be classi�ed

into two types. The �rst, about human-object interaction detection, is the

key to de�ne the interaction space between humans and interesting objects.

The second, instead, has an essential role in detecting human groups. More

precisely, the respective algorithm in [84] outputs the number of human

groups and their center points, where each human group is called gi with

0 � i � (k − 1) in case of k groups;

4. Social Interaction Space (SIS): this type of space is built by incorporating

the space of social interactions detected with the use of Gaussian distribu-

tions and parameters that were properly tuned;

5. DSZ: it is de�ned as dynamic SIS around a human, a human group, or

human-object interaction. It derives by incorporating the social interaction

spaces and the EPSs as in Equation 2.1:

Fdsz(x; y) = max (w3Feps(x; y); w4Fsis(x; y)) (2.1)

In this way, robots are not allowed to navigate too much next to humans,

to avoid psychological discomfort and increase physical safety. DSZ is then

passed in input to Algorithm 2 [84];

6. Approaching humans : to accomplish this task, the estimation of the ap-

proaching area and the computation of the �nal goal pose must be done.

There are many context-dependent factors to consider. However, the con-

ditions to satisfy in all cases are that a mobile robot must end outside the

DSZ and in the human FoVs. Figure 2.8 shows the procedure to compute

the �nal approaching goal pose (Algorithm 2 [84]). The �nal robot's pose

for approaching people is computed as based on the current robot position

and it is considered more likely the one in the center of the approaching

areas (Figure 2.8).
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Figure 2.8: Estimation of the approaching pose for the robot: (a) the approaching area is the
thick blue circle; (b) the approaching areas �ltered by the human �eld of view; (c) the
approaching areas �ltered by the dynamic social zone; and (d) the robot's approaching
pose as the central point of the approaching area. The �gure is taken from [84].

Algorithm 2 Estimate Approaching Goal Pose

Input: gk = (xgk; y
g
k), pi = (xpi ; y

p
i ), Aout, (xr; yr)

Output: Approaching goal pose qgoal = (xq; yq; �q)
1: for each approaching area Aoutj in Aout do
2: Lj  length(Aoutj)

3: (xcj; ycj) Aoutj

�
Lj
2
;
Lj
2

�
4: dj  

p
(xr − xcj)2 + (yr − ycj)2

5: end for
6: Find the smallest dj
7: if dj is the smallest then
8: (xq; yq) (xcj; ycj)
9: if a human pi then

10: �q  atan2(ypi − yq; x
p
i − xq)

11: else if a group of humans gk then
12: �q  atan2(ygk − yq; x

g
k − xq)

13: end if
14: end if
15: return qgoal  (xq; yq; �q)
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Similarly to the methods proposed in [86], in [84] a synthesis function is used

(Equation 2.2) and its block diagram and data ow of incorporated DSZ into

motion planning system is in Figure 2.9.

F (x; y) = max (w5Fdsz(x; y); w6Fobs(x; y)) (2.2)

Figure 2.9: Block diagram of incorporating the DSZ into the motion planning system [84].

For experiments, authors considered the robot as a human to trace psycho-

logical safety in terms of relative poses (xpi ; y
p
i ; xr; yr; �i; �i) and relative motion

(vp; vr) humans-robot.

Figure 2.10: The result of the human safety framework in di�erent scenarios: the �rst row shows
the images from robot's camera, and the second row shows the results of the dynamic
social zone and approaching pose of the robot corresponding to the scenarios in the
�rst row. Each Pi indicates a person. From left to right: (a) a moving person, (b) a
head orientation, (c) a person with a hand pose, (d) a group of three people, and (e)
a human-object interaction. The �gure is taken from [84].

Implementation and tests done in [84] used a MATLAB-based simulation.

Then, the framework has been tested in a real environment, in more contexts.

Simulations consider the following cases:

� Humans are treated like obstacles: the robot never shows social behaviors

since it is not endowed with the capacity of di�erentiating between humans

and obstacles;
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� Use of the EPS: the robot takes into account humans using only their

EPSs. Sometimes the robot navigates in a good way staying far enough

from humans, other times it passes in between humans and objects they

were interacting with;

� Use of the DSZ: the robot takes into account humans, hence using DSZ.

The robot always navigates showing social behaviors staying far enough

from humans, without passing in between humans and objects they were

interacting with.

Then, to have more reliable results, the authors tested the system using the

real robot. Their focus was on a series of experiments to demonstrate that DSZ

is very e�ective in SARN in terms of human comfort safety:

� DSZ: as illustrated in Figure 2.10, DSZ can adapt very well to variations

of contexts, human states, and social interactions, providing an interesting

and correct approaching pose in terms of social behaviors;

� Avoiding a human group and approaching a human: the comparison be-

tween the same case with and without the use of DSZ lets to two very

di�erent cases and results, verifying another time the social correctness of

the framework;

� Avoiding a human and approaching a human group: as in the precedent

point, the di�erence between the two cases is important, and approaching

pose to a group has been proved.

In conclusion, DSZ is dynamically adaptable to variations of social interaction

information and single human states. In this way, robots are capable of avoiding

and approaching both single and groups of humans. Nevertheless, real-time, pow-

erful, and robust human detection and tracking modules are needed to improve

performances in a signi�cant way. Also tests performed in this work have involved

only static or semi-static environments, populated by a few people. In crowded

environments, the robot can end in a local minima without the possibility to �nd

a way out. This aspect is a limitation of this method and the one presented in

Section 2.1.1.
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2.1.3 Approaching Pose Prediction

To overcome the weaknesses of the work in Section 2.1.2, the authors of [85]

propose a uni�ed human approaching framework as an extension of the work in

[84]. In this way, [85] aims at enabling a mobile robot to approach both stationary

and dynamic humans and groups of interacting humans in a socially acceptable

manner. The main change that allows to handle dynamic humans with respect to

the previous version is the separation of the approaching pose estimation block

out of the one for DSZ to build a new functional block for approaching pose

prediction. Moreover, the author of [85] merged human status information into

the EPS and the velocity of moving social groups into the SIS.

The newly updated system architecture of the SARN system for mobile robots

to approach humans in a predicted way is depicted in Figure 2.11. It is composed

of the following blocks:

Figure 2.11: The Extended navigation scheme for mobile service robots proposed in [85] is com-
posed of two main parts: 1) a conventional navigation scheme and 2) a socially aware
navigation framework (in cyan color).

1. Human Detection and Tracking : it is based on the system in [86] (please

refer to Section 2.1.1);

2. EPS: it is computed similarly to [84];

3. SIS: similarly to [84], it is calculated with more emphasis on Social Group

Detection and Social Group Modeling;

4. DSZ: like in [84], it was formulated according to the Equation 2.3:

Fdsz(x; y) = max (w1Feps(x; y); w2Fsis(x; y)) (2.3)
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where Feps(x; y) = max (f eps1 (x; y); :::; f epsN (x; y)) and

Fsis(x; y) = max (f g1 (x; y); :::; f gK(x; y)), with N the number of humans next

to the robot and K the number of human interaction groups;

5. Approaching Pose Estimation and Prediction: regarding to the pose estima-

tion there is not something more to add to the requirements and constraints

remarked in the correspondent part of Section 2.1.2. Instead, two situations

can happen. For static humans, the estimated approaching pose can be used

qgoal = (xq; yq; �q), while for moving humans two steps are required: the fu-

ture human pose must be predicted and then the new approaching pose of

the robot must be estimated (Figure 2.12). The method proposed in [85]

suggests the use of a Kalman �lter [46] with a constant velocity-based mo-

tion model of the humans to get a predicted pose that is passed in input to

the proposed framework to accomplish the task. The updated approaching

pose of the robot after an interval �t is qgoal(t+ �t) = (x0q; y
0
q; �
0
q).

Figure 2.12: Approaching pose prediction of a moving person pi. The current approaching pose is
qgoal(t) and the predicted approaching pose qgoal(t + �t). The �gure is taken from
[85].

Analogously to [84], the synthesis function (Equation 2.4) is used, and its

block diagram and data ow is in Figure 2.13.

F (x; y) = max (w3Fdsz(x; y); w4Fobs(x; y)) (2.4)

Implementation has been done using MATLAB, C++ programming language,

OpenCV, PCL, and ROS. The uni�ed framework proposed in [85] has been tested

both in simulated and real environments.
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Figure 2.13: Pipeline of the framework proposed in [85] that incorporates the DSZ into the motion
planning system.

About simulations, the challenges authors faced are the following:

� Humans are treated like regular obstacles: even though the robot does not

physically hurt humans, humans do not feel comfortable and safe;

� Use of the DSZ: removing the approaching pose prediction block, the robot

does not move too close to humans and SISs during navigation. However,

it is not able to estimate the approach pose both for single humans and

groups of humans socially and properly;

� Use of the approaching human framework: the robot can behave in a socially

compliant way, ending successfully in all ten social contexts of the tests

proposed by authors.

The two experiments performed by authors regard real-environment tests:

� Approaching stationary humans divided into four particular test cases, per-

formances are good with a possibility to improve them, especially using

more precise sensors. The four cases are about a sitting person, a standing

human, a group of three standing people, and an interaction between two

humans and an interesting object;

� Approaching dynamic humans: this test is the most interesting and it in-

cludes three scenarios represented in Figure 2.14. The �rst row in the �gure

shows a third-per then the new approaching pose must be estimated son

view of the scenarios. The second row shows snapshots of the ROS Visu-

alization (RViz) visualization at the instance when the robot observed the

predicted approaching goal pose and the humans moved toward their pre-

dicted positions. Moreover, this row shows the human poses, the predicted

approaching pose, the approaching areas, the DSZ, and the planned path of

the robot. The third row visualizes the real trajectories of the robot and the
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humans in which the current approaching pose qgoal(t) and the predicted

approaching pose qgoal(t+ �t), and the DSZ, are highlighted. The robot is

very good at predicting future poses of humans and, as a consequence, it

estimates the correct approaching poses in all cases.

Figure 2.14: Experimental results of the second experiment where the robot approaches dynamic
humans as proposed in [85]. (a), (d), (g) Walking person. (b), (e), (h) Group of two
walking people. (c), (f), (i) Person moving an object.

This framework is highly capable of enabling the robot to approach humans,

independently of their status (standing or moving). Unfortunately, this frame-

work deals with social contexts in shared human-robot environments, but where

only a few people are present.

Such approaches described in Section 2.1 seem not to be suited for crowded

environments in the SARN research topic.
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2.2 Social Force Model (SFM)-based Approaches

In this section, the formulation of the general topic of SFM will be provided

before the presentation of one application in socially aware robot navigation re-

search topic.

2.2.1 Social Force Model for pedestrian dynamics

The motion of pedestrians can seem to be chaotic and not very predictable.

However, behavioral changes are guided by sensory stimuli that cause a reaction

that depends on personal aims. Hence, the motion of walking humans can be

described as subject to \social forces". These are not real forces directly exerted

by the environment on the pedestrian body, but they are the concrete cause of why

people perform a certain action because they inuence position and speed of an

agent. Indeed, as a reaction to the perceived environment, a human accelerates or

decelerates. This is the reason why one can say that a pedestrian acts as subject

to external forces. In other words, social forces ~F�(t) represent the e�ect of the

whole environment on the behavior of the walking human.

These forces can model the pedestrian behaviors using all measurable quan-

tities like acceleration towards the desired velocity of motion, a certain distance

to keep concerning other humans, walls and obstacles, and attractive forces con-

cerning goals.

In this subsection, words like humans, walking humans, and agents refer all to

the same concept of an agent that can move taking into account the environment.

Therefore, this agent can be a pedestrian, but also a robot navigating in a human-

robot shared environment.

As explained in [38], some main features of social forces guide the motion

behavior of a human �.

To reach a position goal ~r0
� in a comfortable and in the shortest possible way,

the points in between start and goal positions generate a polygon shape with

edges ~r1
�; :::; ~r

n
� := ~r0

�. From the actual position ~r�(t) of pedestrian � at time t, ~rk�

is the next edge of the polygon to reach. The desired direction ~e�(t) of motion is:

~e�(t) :=
~rk� − ~r�(t)

jj~rk� − ~r�(t)jj
(2.5)
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As a consequence, at every time t the human steers for the nearest point6

~rk�(t).

The desired speed v0
�, the deviation of the actual velocity ~v�(t) from the

desired velocity ~v0
�(t) := v0

�~e�(t) due to collision avoidance or other motivations,

lead to reach ~v0
�(t) with some relaxation/delay time ��. All these terms inuence

the speci�c force for the acceleration term:

~F 0
�(~v�; v

0
�~e�) :=

1

��
(v0
�~e� − ~v�) (2.6)

Since the motion of an agent � is a�ected by other agents, a certain distance

must be kept. This depends on the crowd density and the desired speed v0
�. This

is one of the motivations for the repulsive e�ects to consider. These repulsive

e�ects from other pedestrians � are formulated as in Equation 2.7:

~f��(~r��) := −r~rαβV��[b(~r��)] (2.7)

In detail, the repulsive potential V��(b) is a monotonic decreasing function of

b with equipotential lines having the form of an ellipse directed into the motion

direction, since a pedestrian needs space for the next step, which is considered

by other pedestrians.

Moreover, b denotes the semi-minor axis of the ellipse such that:

2b :=
q

(jj~r��jj+ jj~r�� − v��t~e�jj)2 − (v��t)2 (2.8)

where ~r�� := ~r� − ~r� and s� := v��t is the step width of pedestrian �.

Collisions with borders of buildings, streets, walls, and obstacles must be

avoided. This is the reason why if a border B provokes a repulsive e�ect, this

e�ect must be de�ned in the following way:

~F�B(~r�B) := −r~rαBU�B(jj~r�Bjj) (2.9)

with a repulsive and monotonic decreasing potential U�B(jj~r�Bjj), ~r�B :=

~r� − ~r�B and ~r�B represents the position of the part of border B that is near to

pedestrian �.

In contrast to precedent equations, all regarding repulsive situations, also

attractive situations towards target people or objects must be considered. Mono-

tonic increasing potentials W�i(jj~r�ijj; t) model the attractive e�ects ~f�i at places

6More precisely, the term \points" takes into account areas of space. This because an agent
must achieve a goal in a neighborhood of a certain point.
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~ri as in Equation 2.10:

~f�i(jj~r�ijj; t) := −r~rαiW�i(jj~r�ijj; t) (2.10)

where ~r�i := ~r�−~ri. For attractive e�ects, the attractiveness jj~f�ijj decreases

with time t since the interest descends. These types of forces are accountable for

group formation.

To generalize these equations for attractive and repulsive e�ects for situations

where not only the desired direction ~e�(t) of motion is taken into account, some

adjustments must be made. In practice, context related to the behind of an agent

inuences less than what is in the front. Hence, this behavior is modeled by in-

troducing a weaker inuence factor c with 0 < c < 1. To complete the perception

about the e�ective angle 2' of sight, forces must be weighted dependent on this

angle of view:

w(~e; ~f) :=

8<:1 if ~e � ~f � jj~f jj � cos'

c otherwise
(2.11)

The repulsive and the attractive e�ects on an agent's behavior are formalized

through Equations 2.12 and 2.13:

~F��(~e�; ~r� − ~r�) := w(~e�;−~f��) � ~f�� � (~r� − ~r�) (2.12)

~F�i(~e�; ~r� − ~ri; t) := w(~e�; ~f�i) � ~f�i � (~r� − ~ri; t) (2.13)

Finally, pedestrians' total motion is modeled by summing all e�ects above

mentioned since they all contribute at the same instant of time. It results in

Equation 2.14:

~F�(t) := ~F 0
�(~v�; v

0
�~e�) +

P
�
~F��(~e�; ~r� − ~r�)

+
P

B
~F�B(~e�; ~r� − ~r�B) +

P
i
~F�i(~e�; ~r� − ~ri; t)

(2.14)

Last, since the initial goal was to model the temporal changes of the preferred

velocity ~w�(t) of a pedestrian � (e.g., in general, an agent), the Social Force Model

is de�ned by Equation 2.15:

d~w�
dt

:= ~F�(t) + fluctuations (2.15)
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where a uctuation term has been added to describe random variations of

motion from the nominal behavior.

The pedestrian dynamic model is completed by the relation between the goal

velocity ~w�(t) and the current or actual velocity ~v�(t). By the fact that the

current speed is limited by the maximum acceptable speed vmax� which is the

nominal value, the realized motion is:

d~r�
dt

= ~v�(t) := ~w�(t) � g
�
vmax�

jj~w�jj

�
(2.16)

where

g

�
vmax�

jj~w�jj

�
:=

8<:1 if jj~w�jj � vmax�

vmax� =jj~w�jj otherwise
(2.17)

As can be understood in the general formulation described above [38], despite

the simplicity of this approach, the motion of pedestrians is taken into account

enough realistically.

However, its performance decreases in di�cult situations like very crowded

environments. Indeed, in the next section, the approach developed in [48] uses a

relatively small number of humans the robot has to deal with while navigating

in a quite simple environment. Stochastic behavioral models may be developed

if one restricts the description of behavioral probabilities that can be found in a

huge population of individuals.

2.2.2 Waypoint-based path planner

In [48], the SFM-based local planner has been extended with the A� algorithm

to get e�ective social paths, like smoothed and socially compliant paths. The

extension helps to avoid getting stuck in local minima and to take into account

social zones for human comfort.

In practice, the proposed method in [48] produces smoothed paths that re-

spect people's social space without unnecessary replanning increases a lot of per-

formance indexes.

Since SFM has a exible natural behavior by its mathematical formulation,

authors in [48] extended it with social cues and signals. Taking into account that

in a human-robot shared dynamic environment, future trajectory collisions must

be predicted and that a certain distance from people and obstacles must be kept,

the most remarkable extensions are the following:
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� Passing and crossing behavior: the collision prediction force applies a circu-

lar force at a speci�c angle to the potential conict point between a robot

and a human that are moving toward each other. Then, it lets accelerate

the nearest agent to that point, while the other slows down;

� Instant turns and oscillations: these problems can occur because of instant

changes in force size and discontinuity at certain points. To solve them,

when the robot moves in any direction, smoothing is applied to consecutive

time stamp forces. They are decreased or increased by a speci�c step size

when their magnitudes are bigger than a threshold, imposing continuity on

steering;

� Identifying force frame: given the origin based on the robot's pose, the

performing of vector operations of forces is handled by publishing a force

frame transformation (Figure 2.15);

Figure 2.15: The force global frame is not changing while the robot is turning right in the approach
proposed in [48].

� Robot controller: the output vector must be passed in input to the controller

of the robot in polar coordinates (Figure 2.16). This is the reason why the

total force vector is broken into x and y components: f total = frk� + fr?�.

Now, the robot acceleration can be written as a! = r � fr?� + k! or a! =

kp � �� + kd � (−!). The linear velocities are vr = vr + av � �t and !r =

!r + a! ��t. About rotation, it occurs as a yaw angle around the robot's
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z-axis as in Equation 2.18:

� :=

8<:� − (2�) if � < � < 2�

� + (2�) if − 2� < � < −�
(2.18)

Figure 2.16: Robot's main features about coordinates, rotation velocities, and total SFM force [48].

� Avoiding local minima: when a robot gets stuck in a local minima, it never

reaches the goal since attractive and repulsive forces balance out7 (Figure

2.17). This is solved by authors with a high-level global planner that �nds

a valid path between the starting point and goal point, to provide to the

SFM-based local planner to execute the plan;

Figure 2.17: Example of local minima condition, where the sum of the attractive forces fatt and
repulsive forces frep are balanced out. As a result, the robot gets stucked. The blue
arrow shows the path followed by the robot to go from the starting point pstart to the
local minima. The �gure is taken from [48].

� Waypoints (social subgoals) selection algorithm: in dynamic and uncertain

environments, re-planning is needed during plan execution since the plan

tends to change frequently. To avoid this costly operation, Algorithm 3 [48]

considers human social zones (costmaps) extracting waypoints by pruning

7The local minima problem happens when the direction of robot velocity, the obstacles and
the goal position are on the same straight line that points from the robot center to the target
location, passing through the obstacles.
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parts of the global path and assigning them incrementally to the robot's

path planner (Figure 2.19). It is based on the angle between the vectors of

the nodes.

Algorithm 3 Waypoints (Social Subgoals) Selection

Input: Global Path P = fp1; p2; p3; : : : ; png
Output: Waypoints K = fk1; k2; k3; : : : ; kmg

1: Initialize K as an empty set;
2: for all pi 2 P do
3: Calculate the angle value of node pi:
4: ~v1  ComputeV elocity(pi − pi−1)
5: ~v2  ComputeV elocity(pi+1 − pi)
6: cos(�) (~v1�~v2)

(jj~v1jj�jj~v2jj)
7: if � < threshold then
8: Erase pi from the global plan P
9: else

10: Add pi to waypoints K
11: end if
12: end for
13: return Waypoints K

The block diagram of the software architecture of the waypoint-based ex-

tended SFM planner is shown in Figure 2.18.

Figure 2.18: Software architecture overview of the waypoint-based extended SFM planner proposed
in [48].
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Figure 2.19: Process of �nding or selecting and extracting waypoints on the global plan (solving
local minima problem smoothly). The robot changes its global plan in all the three
examples that are displayed. The waypoints have been added to avoid: (a) walls; (b)
a man; (c) two men. Figure taken from [48].

Simulated Experiments and Results

Simulations for the work above ran in ROS Melodic on Ubuntu 18.04 using

Pedestrian Simulator (PedSim) (Section 3.1.4). A corridor-like dynamic environ-

ment has been simulated (Figure 2.20) with possible scenarios where the robot

could get stuck at the local minima. Comparing the traditional method with

this approach, experimental results show the precedent method is ine�cient, ex-

pensive in terms of time, and it is based on a rough path. Instead, running

this method, human comfort, social acceptance, path smoothness, path length

and performance indexes increase, avoiding most of the time problems like local

minima one.
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Figure 2.20: The corridor-like dynamic simulation environment consists of walls and moving hu-
mans where the robot can get stuck at the local minimum conditions. The robot R
navigates consecutively from the start point (Start) through points (A) and (B), and
then goes back to the start point while avoiding encountering dynamic humans H1-5
and obstacles in the environment. The �gure is taken from [48].

More in detail, performances are reported in Table 2.1.

However, this method is neither tested in a real scenario nor a crowded scene,

even simulated.

Evaluation metrics Without waypoint approach Proposed waypoint approach
Path execution time (s) 441 204

Path length (m) 43.652 40.030
# replanning 21 2

Total heading change (�) 5094 2282

Table 2.1: Comparison of w/out waypoint selection approaches on the characteristic of path prop-
erties taken from [48].

2.3 Learning-based Approaches

In this section three important works in the application of learning methods

in SARN are presented. They are based on di�erent learning approaches (e.g.,

DNN, Encoder-Decoder, LSTM, RL, etc.), sometimes merged with other types

of operations.
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2.3.1 Human Trajectory Prediction in Crowds

In [51], the problem of human trajectory prediction has been cast as learning a

representation of human social interactions. Current human trajectory prediction

works can be categorized into learning human-human interactions or human-space

interactions, more properly called social and physical interactions, respectively.

The work in [51] belongs to the �rst category and it is focused on short-term

human trajectory prediction (about the next �ve seconds).

In addition, the notion of primary pedestrian8 is crucial for a better under-

standing.

The problem of human trajectories prediction takes in input the trajectories of

all people involved in a scene, where people are denoted by X = fX1; X2; :::; Xng
and respective future trajectories Y = fY1; Y2; :::; Yng. At each time step t the

pedestrian i is represented by xt
i = (xti; y

t
i), its velocity vt

i , and its state sti =

[xt
i ;v

t
i ]. From the positions of pedestrians in the time interval t = f1; :::; Tobsg,

future positions must be predicted in the time interval t = fTobs+1; :::; Tpredg.
Predictions are labeled with Ŷ.

For their work purposes, authors of [51] decided to categorize types of tra-

jectories based on each scene concerning its corresponding primary pedestrian

(Figure 2.21):

Figure 2.21: Visualization of the four high-level de�ned trajectory categories according to [51]. The
category takes into account the shape of the trajectories and whether there will be or
not an interaction between humans.

1. Static: the Euclidean displacement of the primary pedestrian in the scene

with another human is less than a threshold (Figure 2.21(a));

2. Linear : the trajectory of the primary pedestrian can be correctly predicted

with the help of an Extended Kalman Filter (EKF) ([75], [46]) (Figure

2.21(b));

8A primary pedestrian is a particular pedestrian of interest in the scene according to [51] .
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3. Interacting : called Type III trajectories (Figure 2.21(c)), these regard con-

texts in which the primary pedestrian experiences social interactions. They

can be divided again into other four types as in Figure 2.22;

Figure 2.22: Visualization of Type III interactions commonly occurring in real-world crowds pro-
posed in [51].

4. Non-Interacting : the trajectory of the primary pedestrian is non-linear and

undergoes no social interactions during prediction (Figure 2.21(d)).

As introduced above, given a scene the goal is to predict all future people

trajectories present in that scene. Figure 2.23 shows the global pipeline for pre-

dicting human motion. The main modules are the Motion Encoding Module, the

Interaction Module, and the Decoder Module. Briey, the �rst module encodes

the past pedestrian's motions, while the second learns to capture social interac-

tions. The output is the social representation of the scene, passed in input to the

third main module, which predicts a single trajectory or a trajectory distribution.

Figure 2.23: A data-driven pipeline for human trajectory prediction. The focus of the work pro-
posed in [51] is on the design choices for the interaction module.

The choices in [51] take into account the di�erent types of data-driven inter-

action encoders present in the literature. They can be divided into the following

way:

� Grid-based Interaction Models : the interaction module gets input from a

local grid built around the primary pedestrian. Each cell represents a par-

ticular spatial position relative to that human. The neighbor input state
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representation brings di�erent designs of models: Neighbor Input State

with Occupancy Pooling (Figure 2.24 (a)), Social Pooling (Figure 2.24 (c))

or Directional Pooling (Figure 2.24 (b)), used in [51];

Figure 2.24: Illustration of the grid-based interaction encoding modules. (a) Occupancy pooling:
each cell indicates the presence of a neighbor. (b) Directional pooling proposed in
[51]: each cell contains the relative velocity of the neighbor concerning the primary
pedestrian. (c) Social pooling: each cell contains the LSTM hidden state of the neigh-
bor. The constructed grid tensors are passed through an MLP-based neural network
to obtain the interaction vector. Figure taken from [51].

� Non-Grid-based Interaction Modules : they capture social interactions in a

grid-free way. They are inuenced by four factors (Figure 2.25): Neighbor

Input State, Input State Embedding, Aggregation strategy, and Aggregated

Vector Embedding.

Figure 2.25: Illustration of the non-grid-based encoding modules to obtain the interaction vector.
The challenge lies in handling a variable number of neighbors and aggregating their
state information to construct the interaction vector. (a) Neighbor information is ag-
gregated via attention mechanism. (b) Neighbor information is aggregated utilizing a
symmetric function. (c) Neighbor information is aggregated via concatenation. Figure
taken from [51].

To build the prediction model, the time-sequence encoder has been chosen

to be an LSTM since it can handle and capture long-term dependencies. The

state sti is embedded using a single-layer Multi-Layer Perceptron (MLP) to get

the state embedding et
i . It follows that the interaction vector pt

i of person i is
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computed by the interaction encoder. Now, the concatenation of the interaction

vector with the velocity embedding is the input to the sequence encoding module.

Finally, the hidden state of the LSTM at time step t of pedestrian i is the one

used to predict the distribution of the velocity at time step t+ 1.

The method used to develop this work can be de�ned to be a Layerwise

Relevance Propagation (LRP) [62] method. This type of work is one of the most

prominent in ML. LRP distributes the decision outputs of the model back to

each of the input variables. This suggests each input contributes to the output.

Furthermore, LRP a�ects which neighbors and past velocities of the primary

pedestrian the model is focusing on during the regression of the next velocity

prediction. Shortly, LRP techniques are generic and applicable as bases of any

trajectory prediction network.

Tests performed in [51] showed the proposed models outperformed competi-

tive baselines on a synthetic dataset specially built. Instead, on the real dataset

there was no clear winner against all designs in terms of distance metrics and

other indexes. However, a notable reduction of model prediction collisions has

been gained. Also, the quality of trajectory prediction models of the work pro-

posed in [51] can be still increased.

2.3.2 Genetic algorithm for learning to plan people-aware

trajectories

The work in [9] presents a computationally light method to make a robot

learn to implement social behaviors according to proxemic rules, without wors-

ening traditional navigation performances. The method is based on a genetic

algorithm to solve the motion planning task problem by optimizing the obsta-

cle avoidance, path length, and the computation of social trajectories. In this

way, the parameters of traditional local planners are automatically tuned. Ev-

erything is handled by exploiting an RL technique, for which the robot is trained

to perform the navigation task by attempting to maximize the reward function.

The pipeline is represented in Figure 2.26and it is inspired by the Genetic Al-

gorithm (GA), the method searches for the optimal solution in the space spanned

by the chromosomes. The optimization problem is made up of a sequence of

variables, called genes, that represent chromosomes. Then, starting from the ini-

tial population, some steps lead the algorithm to convergence in expectation of

a near-optimal solution. These steps are reproduction, selection, crossover, and

mutations, in cycles. This is the main principle formalized in Algorithm 4 to opti-
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mize the set of parameters related to path planning provided by ROS navigation

stack9.

Figure 2.26: The pipeline of the work proposed in [9]. The blue blocks represent the main contri-
butions of [9], while the others represent software that authors of [9] only used.

Moreover, each chromosome gets a score depending on the following three

indices:

� Time score stime;

� Social score sdistance;

� Social score ssocial.

The �nal score function is de�ned as in Equation 2.19, where wst , wss and

wsd are de�ned to highlight the ssocial.

schromo = wst � stime + wss � ssocial + wsd � sdistance (2.19)

To update the current population in each cycle, reproduction, mutation, and

selection operators have been speci�cally de�ned by the authors [9].

Simulations, training, and testing phases proposed in the work [9] ran on a

computer equipped with Intel Core i5-6660 Central Processing Unit (CPU) and

16 GigaByte (GB) Random Access Memory (RAM). Based on virtual forces

generated on the y when a probable collision is detected, the obstacle avoidance

functionality improves.

Experiments done in [9] used the AutonomousActorPlugIn10, which is a GAZEBO

(Section 3.1.1) plug-in11 to manage the 3D human models of actor dynamics. The

9For further details: https://wiki.ros.org/navigation .
10For further details: https://github.com/bach05/gazebo-plugin-autonomous-actor .
11For further details: https://gazebosim.org/tutorials?tut=actor&cat=build_robot .

https://wiki.ros.org/navigation
https://github.com/bach05/gazebo-plugin-autonomous-actor
https://gazebosim.org/tutorials?tut=actor&cat=build_robot
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Algorithm 4 Genetic training

Input: gen, pop, seed chromo, �2

1: for i 1 to pop do
2: population  seed chromo + N (0; �2

1);
3: end for
4: for k  1 to gen do
5: ==Evaluation
6: for all chromo 2 population do
7: computeScore(chromo);
8: end for
9: count  countWorstChromos(population);

10: while size(population) < pop+ count do
11: Pick parents 2 population randomly;
12: ==Reproduction + ==Mutation
13: population  newChromo(parents) + N (0; �2

2) with prob;
14: end while
15: ==Selection
16: removeWorsts(population, count);
17: end for

robot is the robot platform TIAGo base12 (Section 3.2). Experiments have been

conducted in a simulated o�ce and a simulated house. Both training of the

genetic model and its testing have been done with and without the use of Prox-

emic social navigation layers13 of ROS to alter the costmaps around pedestrians

positions. After the training of the 36 chromosomes for 24 generations and a

probability of mutation of 50%, testing navigation accuracy achieved is about

70-75% in both environments, in all conditions. It means the approach of [9]

does not disturb the traditional navigation performances, proving in this way the

reliability and robustness of the system.

When the social layer is not included the global path does not respect so-

cial rules and dynamic obstacles are sometimes in collision, while with it the

right behaviour is shown, as expected. Furthermore, [9] proves with its simple

optimization algorithm it is possible to obtain good performances using an ex-

tension of the social layers, without using other tools too expensive and heavy.

Still, the work can be extended to capture more complex social behaviors about

Human-Robot Interaction (HRI) and, possibly, increase a little bit performance

again.

12For further details: https://pal-robotics.com/robots/tiago-base/ .
13For further details: https://wiki.ros.org/social_navigation_layers .

https://pal-robotics.com/robots/tiago-base/
https://wiki.ros.org/social_navigation_layers
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2.3.3 Neuro-Symbolic Approach for Enhanced Human

Motion Prediction

In [61], the scope is on a new approach for context reasoning in the research

�eld of human motion prediction. The authors propose a neuro-symbolic ap-

proach, called NeuroSyM, that can weigh the di�erent interactions in the neigh-

borhood by exploiting the spatial representation technique of Qualitative Trajec-

tory Calculus (QTC) [36].

In [61] the motion prediction is based on weighted interactions embedding

between pairs of agents. Starting from raw trajectories as inputs, the following

two architectures have been chosen:

� NeuroSyM SGAN : it is a type of Social Generative Adversarial Network

(SGAN) famous in literature [35] because it can increase accuracy and speed

of human motion prediction in crowds. The performance indices for the

model proposed in [61] (Figure 2.27) are ADE and FDE, respectively de�ned

in Equations 2.20 and 2.21, where Tpred is equal to the number of steps

predicted and each step measures 0.4 seconds, N is the total number of

training trajectories, ~X and X are respectively the predicted trajectory

and the true trajectory;

Figure 2.27: The neuro-symbolic SGAN pooling mechanism proposed in [61]. The di�erence with
the original SGAN pooling mechanism can be seen from the mixed arrows color added
within and outside the red grid to represent di�erent types of spatial relations or
interactions with the central agent standing on the red spot, which can be inferred
from the NeuroSyM SGAN architecture according to [61].

ADE =

PN
i=1

PTpred
t=1 jj ~X i

t −X i
t jj2

N � Tpred
(2.20)

FDE =

PN
i=1 jj ~X i

Tpred
−X i

Tpred
jj2

N
(2.21)

� NeuroSyM DA-RNN : it is a Dual-stage Attention (DA) Recurrent Neural

network (RNN) prediction architecture that does not use a pooling mech-
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anism to overcome the size problem of dynamic input series. Indeed, it

weights each single input data by assigning the proper attention to each

one separately. In literature, it seems a good choice for time-series pre-

dicting [70]. Figure 2.28 shows where the NeuroSyM module acts on the

original DA-RNN model with the introduction of a Conceptual Neighbour-

hood Diagram (CND) layer between the embedding and the softmax layers.

Figure 2.28: A neuro-symbolic approach for attention-based time-series prediction models proposed
in [61]. Di�erently from SGAN-like architectures, attention-based mechanism have no
pooling modules. The diagram is extended from [69] and modi�ed for multi-step
attention-based context-aware human motion prediction in crowded environments.
The input are n* time series of agents, within a cluster centered at the �rst time
series, while the output is the prediction of the cluster center's agent. The vector e
denotes the input embeddings normalized to � after passing through the CND layer,
which adds a-priori knowledge to them in the form of �kcnd,t. The CND layer weights

di�erently the spatial relations (represented by mixed arrows color) of the neighbor
agents with the central one. The vector I denotes the temporal attention weights of
the encoder's hidden states output, normalized to �, while c represents the context. X
= fx; yg is the input driving vector; Y = fx0; y0g is the label vector; h and d are the
encoder and the decoder hidden states, respectively. The input and temporal attention
layers are constructed from dense layers according to [61].

The encoder attention weights, called alpha in Figure 2.28, measure the

importance of each input series at time t on the output prediction at t+ 1.

In Equation 2.22 exp(ekt ) is the embedding of the kth input series at time t

(Equation 2.23), ht−1 and st−1 are the hidden and cell state of the encoder

LSTM at the previous step.

�kt =
exp(ekt )Pn
i=1 exp(e

i
t)

(2.22)

ekt = dense
�
tanh

(
dense(ht−1; st−1) + dense(xk1::Th)

��
(2.23)

Overall, experimental results in [61] show NeuroSyM outperforms in most

cases the standard architectures about prediction accuracy. Precisely, tests fo-

cused on medium and long-term time horizons using two famous architectures in

this �eld and six datasets have been used to challenge crowded scenarios tests.

Simulations results show that:
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� NeuroSyM SGAN : the average relative gains for ADE and FDE over the

datasets for Tpred = 8; 12 time steps are collected in Table 2.2;

Measure Average Relative Gain (%)

ADE +60.84 / +78.58
FDE +58.40 / +76.97

Table 2.2: Performance comparison between the average relative gain across all datasets considered.
The results' format refers to the 8/12 prediction time steps. ADE and FDE values are
in meters. The results are taken from [61].

� NeuroSyM DA-RNN : evaluated over medium and long time horizons (48

and 80 time steps, respectively), Table 2.314 reports the indices Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) computed between

the predicted (x0; y0) coordinates and the true labels (x; y).

Architecture RMSE MAE

DA-RNN (Baseline) 3.61 / 3.572 2.097 / 2.753
NeuroSyM DA-RNN 2.815 / 3.728 2.162 / 2.166
Relative Gain (%) +22 / -4.37 -3.1 / +21.32

Table 2.3: Performance comparison between the baseline architecture DA-RNN and the NeuroSyM
approach on the JackRabbot dataset. The results' format refers to the 48/80 prediction
time steps. RMSE and MAE values are in meters, and the best results are highlighted
in bold (i.e. the lower error, the better). The results are taken from [61].

2.4 Active Perception

This section presents an overview about the work of active perception by

focusing on the contribution of each mentioned work.

2.4.1 Classical Approaches

About the application of classical approaches to the topics of social naviga-

tion and people detection, Table 2.3 lists a considerable collection of papers and

highlights the features of each approach:

� The single or multi-pedestrian is related to the presence of one or more

pedestrians or humans involved in the study, and to the pedestrian path

prediction whether implemented;

14For further details on JackRabbot: https://svl.stanford.edu/projects/jackrabbot/
.

https://svl.stanford.edu/projects/jackrabbot/
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� The group awareness whether groups of people are properly taken into ac-

count and whether crowds are the main theme of contexts considered;

� The presence of links to a code repository;

� The speci�cation of the metrics chosen as performances evaluation indexes;

� The display of results of simulation tests and real-world tests.

In short, geometrical approaches have been widely employed in SARN to

model and reason about the robot's environment. These methods leverage ge-

ometric representations and algorithms to process and manipulate simple data

to geometric representations, such as occupancy grids or potential �elds, to plan

robot trajectories and avoid collisions with obstacles and humans. While geomet-

rical methods o�er simplicity and e�ciency in planning robot motion, they often

struggle with handling complex social interactions. They often assume static

environments and can not capture higher-level social cues and intentions. Fur-

thermore, these methods are prone to local minima and can result in unnatural

or ine�cient robot behavior. To handle these limitations and to enable more e�-

cient and accurate solutions, researchers have turned to SFMs and learning-based

approaches.

SFM methods have gained signi�cant attention in recent years due to their

ability to model and simulate complex crowd dynamics. Inspired by the princi-

ples of social psychology, these methods employ forces to represent interactions

among individuals within a crowd. By considering factors such as social norms,

personal preferences, environmental constraints, goals, and the forces exerted by

other agents, SFMs can predict and simulate crowd behaviors with enough ac-

curacy. However, accurately calibrating the parameters of these models can be

challenging, as they often require empirical data and extensive parameter tuning.

In addition, these methods may not fully capture the complex cognitive processes

involved in human decision-making. Researchers continue to enhance SFM by in-

corporating ML techniques and real-time data analysis, enabling more accurate

predictions and more e�ective crowd-control strategies. However, the choice of

learning methods is constantly growing since they have revolutionized the �eld

of computer engineering. These methods strengthen the power of data-driven

models to automatically learn patterns and make predictions or decisions.

Learning methods, particularly those based on ML and DNN, have acquired

signi�cant attention in recent years for their ability to capture a lot of complex



52 Chapter 2. State-of-art

patterns and behaviors in social navigation. These methods can learn from large-

scale datasets to infer social norms, predict human motion and generate robot

trajectories that adhere to social conventions. RL algorithms have been employed

to optimize robot behavior by rewarding socially acceptable actions. One notable

advantage of learning methods is their ability to adapt and generalize. By training

on diverse datasets, these models can handle a wide range of social scenarios

and variations in human behavior. However, learning-based approaches often

require substantial amounts of annotated data, which can be costly and time-

consuming to acquire. Furthermore, it is very hard to determine how to tune

the parameters to achieve the desired robot's behavior, mainly in social contexts,

resulting in tedious and time-consuming tuning. Unfortunately, performances

are strongly dependent on a lot of parameters that the user should set according

to the speci�c situation. Additionally, the outputs of learning-based approaches

may not be interpreted by humans, making it challenging to understand why a

particular decision or action was taken by the robot.

Finally, the absence of a singularly superior method often leads to the common

choice to mix di�erent approaches for enhanced performances.
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Framework

[86] M X X � � X � X

Group and Socially Aware Multi-
Agent Reinforcement Learning

[87] M � X � � X X �

Modeling Cooperative Navigation in
Dense Human Crowds

[88] M X X X � X X �

Crowd-Aware Robot Navigation for
Pedestrian with Pedestrians with
Multiple Collision Avoidance Strate-
gies via Map-based Deep Reinforce-
ment Learning

[91] M X � X X X X X

Macroscopic and microscopic dy-
namics of a pedestrian cross-ow:
Part I, experimental analysis

[93] M X � X � X � X

Macroscopic and microscopic dy-
namics of a pedestrian cross-ow:
Part II, modelling

[94] M X � X � X � X

Table 2.3: Analysis of the state-of-the-art approaches based on the following parameters: (a) Single
or Multi pedestrian; (b) Pedestrians prediction; (c) Group awareness; (d) Crowds; (e)
Link to code; (f) Evaluation metrics; (g) Simulation tests; (h) Real word tests. If a
work takes into account single or multi pedestrians, then symbols M or S are respectively
added. For the other features, a tick or a cross will be added according to the study of
that feature in the work.
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2.4.2 Active Perception

The works described previously highlight some limitations in term of robot's

perception. One e�ective way to limit these limitations can be Active Perception.

In the �eld of Active Perception there are still open challenges and a lot of

work to do. Indeed, most recent works on this topic do not rely mainly on Active

Perception behaviors, but they are based on more classical solutions like people

detection, tracking or following (e.g., [55]), or on the use of vision exploiting

cameras and sensors data. Crowded situations are not traditionally included

since, except for a few works (e.g., [33], [58]), groups considered are at most made

up of between 10 and 15 people (e.g., [72], [6], [89]). Even though these numbers

of people in contexts may not be labeled as crowded, this is a subjective analysis

based on the space available in the environment15. Some other approaches merge

data incoming from more external sensors (e.g., [1], [31], [33], [56]) or re�ne

computations with the help of Deep Learning (DL) predictions (e.g., [2], [6], [11],

[42], [45]), cameras and vision systems (e.g., [2], [21], [23], [34], [42], [82], [89],

[90]).

Table 2.3 collects interesting papers related to the topic of active perception

and analyses the di�erences highlighting the gap between their work and the

purpose of this thesis.

Title Work Gap

Tracking of Multiple People in
Crowds Using Laser Range Scan-
ners

[1] Required use of external laser
sensors. Crowd is considered.

Detection and tracking using 2D
laser range �nders and deep
learning

[2] Required use of camera and vi-
sion. No crowd. Use of DL.

Friendly Robot Outdoor Guide
(FROG): A new people detection
dataset for knee-high 2D range
�nders

[6] Very recent approach (June
2023). Use of DL and dataset
proposed. No crowd, but until
10/12 people.

Multi-modal active perception
for information gathering in sci-
ence missions

[7] Useful for spatial environments.

Revisiting active Perception [10] Only theoretical general intro-
duction.

15A given number of people in a small environment can be identi�ed as a crowd, while the
same people in a large environment can be placed in a very sparse way.



2.4 Active Perception 57

Title Work Gap

Semantic-aware Active Percep-
tion for Unmanned Aerial Ve-
hicles (UAVs) using Deep Rein-
forcement Learning

[11] For UAVs. Required use of cam-
era and vision. Only regions in
images. No crowd.

Online planning for multi-
robot active perception with
self-organising maps

[13] Multi-goal path planning for ac-
tive perception and data collec-
tion tasks. Required collection of
3D point clouds. No crowd.

Deep Person Detection in 2D
Range Data

[14] Less annotated dataset with re-
spect to [6].

Active Visual Perception for Mo-
bile Robot Localization

[21] Required use of camera and vi-
sion. Intense use of landmarks for
pose estimation. No crowd.

Socially-Aware Multi-Agent Fol-
lowing with 2D Laser Scans
via Deep Reinforcement Learning
and Potential Field

[23] No properly crowd considered.
Simple environment.

Vision and Radio Frequency
IDenti�cation (RFID) data fu-
sion for tracking people in crowds
by a mobile robot

[31] Required use of camera for vi-
sion data fusion. Used for hu-
man following tasks. Not prop-
erly crowd.

Simultaneous People Tracking
and Localization for social
Robots Using External Laser
range Finders

[33] Required use of a big number of
external laser sensors. Crowd is
considered.

Tracking People in a Mobile
Robot From 2D LiDAR Scans
Using Full Convolutional Neural
Networks for Security in Clut-
tered Environments

[34] No crowd. Very simple environ-
ment.

Self-Supervised Person Detection
in 2D Range Data using a Cali-
brated Camera

[42] Required use of camera for auto
generation of labels. No crowd.

2DLaserNet: A deep learning ar-
chitecture on 2D laser scans for
semantic classi�cation of mobile
robot locations

[45] Classi�cation of locations using
DL and 2D laser scan detection.
This can be simpli�ed starting
from the map of the environment.

Person Tracking and Following
with 2D Laser Scanners

[55] People following tasks. Approach
tested on di�erent robot plat-
forms. No crowd.
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Title Work Gap

An Ensemble Learning Method
for Robot Electronic Nose with
Active Perception

[56] Required use of custom sensors as
the electronic nose.

Active Simultaneous Localiza-
tion And Mapping (SLAM) in
Crowded Environments

[58] Only static environments consid-
ered. A lot of assumptions about
the type of environment. A cou-
ple of crowds.

People2D: realtime people detec-
tion in 2D range data

[72] Ready-to-use software to be
tested and evaluated. No
crowds, but some people.

Active Perception for Foreground
Segmentation: An RGB-D Data-
Based Background Modeling
Method

[82] Required use of camera and vi-
sion. No crowd.

Multiscale Adaptive-switch Ran-
dom Forest (MARF): Multiscale
Adaptive-Switch Random Forest
for Leg Detection With 2-D Laser
Scanners

[89] Complex approach. No crowd,
up to 5 people considered in one
environment.

LiDAR and Camera Detection
Fusion in a Real-Time Industrial
Multi-Sensor Collision Avoidance
System

[90] Required use of camera and vi-
sion. No crowd.

Table 2.3: Collection of approaches where title and work de�ne the analyzed paper. In the Gap
column the limitations of such approaches are reported.



Chapter 3

Tools and methods

In this chapter, the tools and the methods used to develop the work of this

thesis are provided: from the ROS framework, GAZEBO, RViz and PedSim sim-

ulators, with other useful packages like Distance Robust SPatial Attention and

Auto-regressive Model (DR-SPAAM) detector, to the TIAGo robot that is the

main character in this project.

3.1 Robot Operating System (ROS)

ROS1 (Figure 3.1) is an open-source software framework for robots. It pro-

vides the services one would expect from an operating system, including hardware

abstraction, low-level device control, implementation of commonly-used function-

ality, message-passing between processes, and package management. It also pro-

vides libraries and tools for writing robot software [92]. ROS aims to simplify

robot complex tasks, encouraging collaborative robotics software development. It

enables e�cient �le-handling systems, hardware abstraction, and package man-

agement.

Figure 3.1: ROS icon.

Since several languages like C/C++ and Python2 can be used to build soft-

ware with the ROS platform, code across multiple computers can be built, written

and ran. ROS communicates between its �les and simulation software through

1For further details: https://www.ros.org/ .
2For further details: https://www.python.org/ .
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nodes. ROS uses the topic that will be publishing, subscribing, or doing both.

ROS can be considered the backbone of modern robotics systems for its easiness

in debugging and manipulating code.

The primary goal of ROS is to support code reuse in robotics research and

development. Following this idea, developers can reuse code from other universi-

ties and improve it with their proper research. This approach contributes directly

to science, where state-of-art techniques can be improved by sharing the code.

ROS currently runs on Unix-base platforms. The work developed for this

thesis has exploited the ROS Melodic version with Ubuntu 18.04.6 Long-Term

Support (LTS) bionic. The Linux kernel version is 5.4.0-84-generic. The distri-

bution is compatible with TIAGo (Section 3.2) robot by PAL Robotics.

3.1.1 GAZEBO

GAZEBO3 (Figure 3.2) is an open-source well-designed simulator that makes

possible test robot task solutions using realistic scenarios. These scenarios can

be modeled to be similar to real-world indoor and outdoor environments through

the speci�cation of world model �les. It provides a robust physics engine and a

graphical interface to help the test phase and the simulation of the environment.

Figure 3.2: GAZEBO simulator icon.

This open-source simulation environment works with the following main com-

ponents:

� 3D Uni�ed Robot Description Format (URDF) models;

� Controllers;

� Tutorials.

More speci�cally, the architecture of the GAZEBO is a Client/Server architec-

ture. It uses the publishers and subscribers for their inter-process communication.

This simulator has a standard Player interface and additionally, it has a native

interface.

3For further details: https://staging.gazebosim.org/home .

https://staging.gazebosim.org/home
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In the process of dynamic simulation, GAZEBO can access the high-performance

physics engines like Open Dynamics Engine (ODE), Bullet, Simbody, and Dynamic

Animation and Robotics Toolkit (DART) which are used for rigid body physical

simulation. Object-Oriented Graphics Rendering Engine (OGRE) provides the

3D graphics rendering of environments of GAZEBO.

The PAL Robotics team provides TIAGo simulation using ROS and GAZEBO.

ROS plugins help in implementing a direct communication interface from GAZEBO

to ROS. The TIAGo simulation model allows a smooth transition from simulation

to the robot. Thereby both the real world and the simulated robot are controlled

using the same software.

Simulated experiments explained in this thesis have been carried out also in

this simulation environment.

3.1.2 ROS Visualization (RViz)

RViz4 (Figure 3.3) is a powerful 3D visualization tool for ROS. It allows

users to view the simulated robot model, log sensor information from the robot's

sensors, and replay the logged sensor information. In other words, it shows the

robot's perception of its world, whether real or simulated.

Figure 3.3: RViz simulator icon.

RViz handles the visualization with a visualizer in which users can add, mod-

ify, remove, and rename displays. A display can draw some objects in the 3D

world, and likely it has some options available in its displays list.

Di�erent con�gurations of displays are often useful for di�erent uses of the

visualizer. To this end, the visualizer allows users to load and save di�erent

con�gurations. Moreover, di�erent camera types can be used, and a lot of other

4For further details: https://wiki.ros.org/rviz .

https://wiki.ros.org/rviz
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tools can be exploited, just as coordinate frames, goal navigation, pose estimation,

and time.

Since RViz shows the robot's perception, it can work well also with TIAGo

by PAL Robotics without meaningful problems.

Simulated experiments explained in this thesis have been carried out also in

this simulation environment.

3.1.3 Distance Robust SPatial Attention and Auto-regressive

Model (DR-SPAAM)

DR-SPAAM5 (Figure 3.4) is a ROS package for 2D person detection in 2D

range data based on the work in [41]. It is a package useful for detecting people

standing or moving using only data incoming from 2D LiDAR data and for gen-

erating labels automatically6 during deployment and �ne-tuning the detector, in

case a user wants to train and evaluate one of the networks proposed in [43].

Figure 3.4: Simple scene of a home environment, inspired by the simple o�ce with people context
developed in [9]. The GAZEBO simulation on the left shows the context, while the RViz
window on the right displays the laser scan data as red dots, with people detection
predicted by the detector of DR-SPAAM [41]. Although most of the detection are
correct, some errors occur.

5For further details: https://github.com/VisualComputingInstitute/2D_lidar_

person_detection .
6For this purpose a calibrated camera is needed in the robot. As a calibrated camera it is

intended a camera in which the transformation from the camera to the LiDAR is known.

https://github.com/VisualComputingInstitute/2D_lidar_person_detection
https://github.com/VisualComputingInstitute/2D_lidar_person_detection
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3.1.4 Pedestrian Simulator (PedSim)

PedSim7 (Figure 3.5) is a ROS package for a 2D pedestrian simulator based

on SFM [38]. It is a package useful for robot navigation experiments with simple

or crowded scenes that are hard to acquire in practice. Its main features are:

� Individual walking using SFM for very large crowds in real time;

� Group walking using the extended SFM;

� Robot agent with teleoperation allowed for the user. Robot interactions

with individual agents are properly handled through SFM;

� Social activities simulation;

� Sensors simulation (e.g., point clouds in robot frame for people and walls);

� Extensible Markup Language (XML) �le-based scene design;

� Extensive visualization, since it is an environmental representation tool that

is used on RViz;

� Option to connect with GAZEBO for physics reasoning.

These packages have been developed in part during the EU FP7 project Social

situation-aware perception and action for cognitive robots (SPENCER)8.

Figure 3.5: PedSim simulator simple scene.

7For further details: https://github.com/srl-freiburg/pedsim_ros .
8For further details: http://www.spencer.eu/ .

https://github.com/srl-freiburg/pedsim_ros
http://www.spencer.eu/
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3.1.5 OpenAI Reinforcement Learning (OpenAI RL)

OpenAI RL9 (Figure 3.6) is a ROS package that provides an RL set of libraries

that allows users to train agents on user-de�ned tasks in needed environments.

Main components when working with the pipeline (Figure 3.6) of this package

are:

1. Training script : it de�nes and sets up the learning algorithm that is going

to be used to train the robot. It is composed by the learning algorithm

that is provided in input to the start training script, which runs the whole

process;

2. Task environment : it speci�es the speci�c task the robot has to learn;

3. Robot environment : it integrates the GAZEBO simulations of the robot

and the algorithm environments;

4. Gazebo environment : this class connects the user's OpenAI programs to

GAZEBO simulator.

These components can be grouped into two high-level classes: Training script

(1) and Training environments (the components 2, 3, and 4 of the previous list).

Figure 3.6: Pipeline followed by OpenAI RL for ROS.

9For further details: https://wiki.ros.org/openai_ros .

https://wiki.ros.org/openai_ros
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3.2 Take It And Go (TIAGo++) robot

TIAGo10 is a service robot designed to work in indoor environments. TIAGo's

features make it the ideal platform to assist in research, especially in ambient

assisted living or light industry. It combines mobility, perception, manipulation,

and human-robot interaction capabilities.

TIAGo Mobile Manipulator Robot is produced by PAL Robotics which pro-

vides customizable modular con�gurations. The most popular are the following

(Figure 3.7):

� TIAGo Base (a base robot without a body);

� TIAGo IRON (a robot with 1 screen to interact with the robot);

� TIAGo STEEL (a robot with 1 arm and 1 hand made up of 1 gripper);

� TIAGo TITANIUM (a robot with 1 arm and 1 hand made up of 5 �ngers);

� TIAGo++ (a robot with 2 arms and 2 hands).

TIAGo Base     TIAGo IRON TIAGo STEEL              TIAGo TITANIUM TIAGo++

TIAGo Customizable

Modular Configurations

Create your own TIAGo Robot here

Figure 3.7: TIAGo Mobile Manipulator Robots Modular Con�gurations by PAL Robotics. From
left to right: TIAGo Base, TIAGo IRON, TIAGo STEEL, TIAGo TITANIUM,
TIAGo++.

3.2.1 Versatility

TIAGo is also very versatile since it can work in a lot of �elds such as health-

care, smart homes, collaborative robotics, Internet of Things (IoT), assisted living

and research. A graphical representation of this property is in Figure 3.8.

10For further details: https://wiki.ros.org/Robots/TIAGo .

https://wiki.ros.org/Robots/TIAGo
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Figure 3.8: Fields in which Tiago can be applied.

3.2.2 Hardware architecture

TIAGo combines mobility, perception, manipulation, and human-robot inter-

action capabilities. The main parts of the robot used for real experiments are

depicted in Figure 3.9. As explained in [67], its hardware architecture is modular

and composed of:

� Mobile base: it has a di�erential drive mechanism. The base is provided

with a laser plane for SLAM and safety purposes. On the rear part of the

mobile base, there are some ultrasounds to prevent collisions when moving

backward. TIAGo is capable of auto-navigating with a maximum speed of

up to 1m/s;

� Torso: the upper body of TIAGo is composed of a lifting torso with a stroke

of 35 cm so that the robot height can be adjusted between 110 and 145 cm.

On the upper lateral part of the torso, there is a user panel providing some

expansion ports. The top part of the torso (the so-called \laptop tray")

is at so that a laptop can be placed on top of it. The frontal part has a

stereo microphone and a speaker, both aimed at Human-Robot Interaction.

There robot used for the experiments has two arms;

� Arms: the arms of TIAGo++ have 7 Degrees of Freedom (DoF). A force/-

torque sensor can be attached at the end point of the wrist;

� End-e�ectors: in the TIAGo++ robot the common end-e�ectors are a par-

allel gripper and/or a robotic hand. The one proposed by PAL Robotics is

the Hey5 hand;

� Head: it has 2 DoF providing 2 degrees of movement and it is equipped

with a RGB-D camera.
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Figure 3.9: TIAGo++'s main components.

All these parts can be moved by di�erent motors that can be controlled using

ROS interfaces. For instance, TIAGo's head has 2 DoF, so we can move it up

to down and left to right, and with this, we can perform an environment scan

to map the scene. In addition, to perform manipulation tasks the lifting torso

can be used to increase the workspace by positioning TIAGo in a higher or lower

place or taking the arm to a vertical movement.

For navigation purposes, it is worth noting that this robot is equipped with

several sensors such as LiDAR and RGB-D cameras. Speci�cations of the robot

are summarized in Table 3.1.

3.2.3 Software architecture

The software architecture of TIAGo is modular. TIAGo uses di�erent soft-

ware middlewares to take the best from each one and provide a powerful software

architecture. Built on top of the Ubuntu Operating System, the most interesting

components for this thesis are the following:
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Dimensions
Height 110 { 145 cm
Weight 72 Kg

Base footprint Diameter 54 cm

Degrees of freedom

Mobile base 2
Torso lift 1

Arm 4
Wrist 3
Head 2

Hey5 hand 19 (3 actuated)
PAL gripper 2

Mobile base
Drive system Di�erential
Max speed 1 m/s

Torso Lift stroke 35 cm

Arm
Payload 2 Kg
Reach 87 cm

Electrical features Battery 36 V, 20 Ah

Sensors

Base
Laser range-�nder

Sonars
IMU

Torso Stereo microphones
Arm Motors current feedback
Wrist Force/Torque
Head RGB-D camera

Table 3.1: TIAGo++'s main speci�cations.

� ROS: the real standard robotics middleware that provides well-known in-

terfaces to roboticists to develop applications;

� ros control: a speci�c layer of ROS to provides access to the hardware

exposing ROS interfaces. All the controllers of TIAGo are implemented as

plugins of ros control so that the users can develop their plugins and replace

the default controllers;

� MoveIt!11: the motion planning library comes o�-the-shelf and integrated

with TIAGo, so that users can easily develop applications requiring com-

plex upper body motions, preventing self-collisions and collisions with the

environment.

11For further details: https://moveit.ros.org/ .

https://moveit.ros.org/
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Furthermore, TIAGo is provided with whole-body control. More precisely,

its hierarchical quadratic solver provides online inverse kinematics of the robot's

upper body:

� 7 DoF arm;

� Torso prismatic joint;

� 2 DoF head;

� Self collision avoidance;

� Joint limit avoidance;

� Gaze control.

Its code is used in running and simulating the robot with several GAZEBO-

simulated environments. TIAGo's ROS package is an elaborate package de�ned

for executing several robotic purposes like auto navigation, teleoperation, joystick

control, and keyboard control. It has a camera package for image processing

purposes. The package also contains arm control, head control, and torso control.

Finally, TIAGo works with open software and custom packages, URDF mod-

els, drivers, and controllers. All of them are available online.

3.2.4 Simulated TIAGo Base robot

Since the complete TIAGo model results to be a bit heavy when simulated, for

this thesis the TIAGo Base Robot has been preferred to be used in all simulations.

In this way, a lot of components like the body, the arm, and the head are not

included so that they do not need to be simulated and handled, resulting in a

much less heavy computation load. The appearance of the robot in the GAZEBO

simulator (Section 3.1.1) is shown in Figure 3.10, while the one in RViz (Section

3.1.2) is in Figure 3.11.
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Figure 3.10: TIAGo Base Robot by PAL Robotics in GAZEBO simulator environment.

Figure 3.11: TIAGo Base Robot by PAL Robotics in RViz 3D environment.



Chapter 4

Preprocessing: People detection

and laser points classi�cation

In this section the people detection method is described, starting from the

main geometrical technique to interpolate laser data with human feet, then the

data points classi�cation is described, to return the �nal people detection. The

content of this chapter will be further used in Chapter 5 as preprocessing.

4.1 Obstacles interpolation method

The �rst phase in the people detection module used in this thesis is the

interpolation of a detected obstacle using N laser data points fp1; p2; :::; pNg.
Here, for simplicity, we assume that all N points belong to the same object1.

Given these points, the aim of this initial module is to interpolate them with

a circle. The radius of each circle will be compared properly with a measure

template of reference, computed in Section 4.2, and used as described in Section

4.3.

Given a set of points P = fp1; p2; :::; pNg of an object detected by the laser, it

is assumed to be a circular object when they represent human legs2. Since with

the laser only points on a circumference arc can be acquired, the computation

of the object radius is required to get its center. As in Algorithm 5, given a

set of points, the laser points of the object that are picked are P1 = [x1; y1],

PC = [xC ; yC ], and P2 = [x2; y2]. These are the points of �rst, middle and last

1This can be assumed at this point since in the next steps it will be guaranteed by con-
struction.

2This assumption is motivated because the laser detects objects and people at the human
ankle height and the human ankle can be simpli�ed as a circular shape.

71
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Figure 4.1: Graphical representation of the geometric interpolation from the laser data points re-
lated to a person's leg or an obstacle. Red dots represents laser data points. P1, Pc,
and P2 are respectively the laser points of �rst, middle, and last index. PM is the center
of the circle that will be approximated.

index. To compute the radius, the center point PM = [xM ; yM ] must be known.

With basic geometry, imposing the equality on the radii PMP1 = PMPC that

will be identi�ed as Equation 4.1, knowing P1, P2, PC , yM (Equation 4.2), mCM

as the angular coe�cient of the line PCPM (Equation 4.3) and developing the

calculations, xM can be obtained (Equation 4.4). In this way, the coordinates of

the circle center PM can be expressed as a function of only one variable xM . A

graphical representation of what is above is in Figure 4.1.

PMP1 = PMPC , (xM − x1)2 + (yM − y1)2 = (xM − xC)2 + (yM − yC)2 (4.1)

yM = mCM � (xM − xC) + yC (4.2)

mCM = − 1

m12

= −x2 − x1

y2 − y1

(4.3)

xM =
(yC − y1)2 + x2

1 − x2
C − 2mCM � xC � (yC − y1)

2(x1 − xC −mCM � (yC − y1))
(4.4)
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Algorithm 5 General circle interpolation points interpolation(P)

Input: Points P = fp1; p2; :::; pNg where each pi = P [i] = fxi; yi; zig,
1: N = jP j;

Output: Center PM = (xM ; yM), Radius PMP1 = PMPC = PMP2 ;
2:

Pick the main points.
3:

4: P1 = (x1; y1)  P [1] = p1;
5: P2 = (x2; y2)  P [N ] = pN ;
6: middle index  bN=2c;
7: PC = (xC ; yC)  P [middle index];
8:

Compute the needed quantities.
9:

10: Impose PMP1 = PMPC (Equation 4.1);
11: Compute yM (Equation 4.2);
12: Compute mCM (Equation 4.3);
13: Compute xM (Equation 4.4);

return PM = (xM ; yM), r = PMP1;

4.2 Template Computation for detecting people

This part handles the computation of the parameters for the measure template

of reference mentioned in the previous section. The template used in this test

represents a Gaussian distribution of radius values. More precisely, the template

will be used to compare a given radius to the true radius that can be associated

with a human foot. The idea behind is that a particular radius measure can

be identi�ed as a human foot radius with a certain probability. This probability

increases when the radius value is close to the parameter mean �r of the template

reference. To check how far a computed radius is from the reference mean, the

parameter standard deviation �r of the template reference is introduced.

To get these two reference values, data acquisition has been performed using

a simulated context in which there are only standing people that are placed at

di�erent distances and positions. The top and rear views of the scenario used are

respectively in Figure 4.2 and Figure 4.3.

The procedure of data acquisition starts with the reading of laser data, then



74 Chapter 4. Preprocessing: People detection and laser points classi�cation

Figure 4.2: Top view of the crowded context in which some parameters of the gaussian based tem-
plate used in this thesis are computed.

Figure 4.3: Rear view of the crowded context in which some parameters of the gaussian based
template used in this thesis are computed.

it �lters the not physical measures3 and converts them from polar to Cartesian

coordinates. At this point, Algorithm 6 can be run.

In the �rst sub-task presented in Algorithm 7, the list of Cartesian points can

be divided into groups of points, all belonging to the same object detection. The

�rst threshold used is needed to group the points. It has been set enough bigger

than the maximum distance between two consecutive laser points, hence with

respect to the laser speci�cations (e.g.: angle of increment, maximum range, ...).

The second important threshold de�ned regards the minimum number of points

required, so that groups made up of only a few points are deleted, increasing the

robustness of the procedure to outliers.

Then, the interpolation process in Algorithm 8 is applied to each group of

points with a circle as de�ned in the Algorithm 5, otherwise in the case of only

two points in a group, the radius is computed as half of their 2D distance. As

soon as the radius of each group has been obtained, the mean and the standard

3If in a laser point p(range; �) the laser does not detect any obstacle in the distance range
between its minimum and maximum range (range min � range � range max, � �xed), then
the inf value is assigned.
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deviation are returned and saved for further use (Section 4.2).

An example of the distribution obtained is in Figure 4.4. These parameters

depend on the model of standing people used in the simulation.

Figure 4.4: Example of Gaussian distribution obtained with the parameters (�r; �r) equal to
(0:066639; 0:054146).

Algorithm 6 Human Feet Detection Parameters
compute parameters(P )

Input: Points P = fp1; p2; :::; pMg where each pi = P [i] = fxi; yi; zig,
M = jP j (Each pi is a laser point. People's positions may not be included in
the list of points);

Output: Mean �r and standard deviation �r of a Gaussian distribution function;

CONST MINIMUM DISTANCE OBJECTS = 0.01 m;
CONST MINIMUM NUMBER OF POINTS = 2;

obstacle data groups  group data points(P );
�r, �r  compute template parameters(obstacle data groups);

return mean �r, standard deviation �r;



76 Chapter 4. Preprocessing: People detection and laser points classi�cation

Algorithm 7 Group Laser Data Points
group data points(P )

Input: Points P = fp1; p2; :::; pMg where each pi = P [i] = fxi; yi; zig,
M = jP j (Each pi is a laser point. People's positions may not be included in
the list of points);

Output: Groups of valid points g = fg1; g2; :::; gF 0g where each group
gi = fp1i ; p2i ; :::; pNig with 1 � i � F 0. In general: Ni = jgij, Ni 6= Nj;
8i 6= j; 1 � i; j � F 0

Separate points into groups: each group contains points belonging to the
detection of the same human foot.
for i 1 to M − 1 do

save point in current foot(P[i]);
if distance(P [i]; P [i+ 1]) > MINIMUM DISTANCE OBJECTS then

save current foot();
end if

end for
save last foot();

At this point the M points have been divided into F groups, where each
group gi = fp1i ; p2i ; :::; pNig with 1 � i � F .
In general: Ni = jgij, Ni 6= Nj;8i 6= j; 1 � i; j � F (this highlights that it is
not needed to have groups with the same number of points).

Delete groups made up of only a few points (less than 2).
for i 1 to F do

if Ni � MINIMUM NUMBER OF POINTS then
save current foot();

end if
end for

return Groups of valid points;
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Algorithm 8 Interpolate Group Points
compute template parameters(g)

Input: Groups of valid points g = fg1; g2; :::; gF 0g where each group
gi = fp1i ; p2i ; :::; pNig with 1 � i � F 0.
In general: Ni = jgij, Ni 6= Nj;8i 6= j; 1 � i; j � F 0

Output: Mean �r and standard deviation �r of a Gaussian distribution function;

The groups obtained at this stage are in number F 0. Interpolate each group
of points with a circle.
sum radii  0;
for i 1 to F 0 do

if Ni � 3 then It means that group gi contains at least 3 points.
ri  points interpolation(gi); The points interpolation(P) algorithm is

used.
else if Ni = 2 then It means that group gi contains 2 points (gi =

fp1i ; p2ig).
ri  distance(gi[1]; gi[2]) / 2;

end if
save current radius(ri); The current radius has been saved in all radii that

has size R.
sum radii  sum radii + ri;

end for

Compute the �nal parameters
�r  sum radii = F 0;
deviation  0;
for all radius 2 all radii do

deviation  deviation + (radius − �r)
2;

end for
�r  

p
deviation=R;

return mean �r, standard deviation �r;
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4.3 People Detection method

At this stage, everything is ready to apply the algorithms above to detect

people in given contexts. Four important measures have to be de�ned. The nor-

malization factor for the Gaussian distribution (Equation 4.5) to make it a proba-

bility density function, and the two thresholds to decide regions of con�dence for

that Gaussian. In addition, the two de�ned in Algorithm 6 are considered. The

laser data are read from a scan topic (input of Algorithm 13) and the parameters

(�r; �r) of the Gaussian distribution computed in Section 4.2 are loaded. All

laser measures are veri�ed to be physical measures and converted from polar to

Cartesian points.

f(x;�r; �r) = NORM−FACTOR �
1

�r
p

2�
e
− (x−µr)2

2σ2r (4.5)

After, all points are separated into groups of points, each one representing

a detected obstacle. As mentioned in Algorithm 6, the robustness is increased

by deleting groups composed of only a few points, with the di�erence that here

two new laser data messages are initialized, according to the level of con�dence

associated to them. Since one of the goals is to publish messages of laser points

to evaluate and return at the end of Algorithm 13, one message will be used to

store laser data belonging to high-con�dence people detection, while the other

will contain laser data of middle-con�dence people detection. The information in

the second type of message will be used as a starting point to guide the active

behavior of the robot (please refer to Chapter 5). The messages will be initialized

by copying the original laser message, with only1 data since they are not physical

data, to be overwritten with real data in the next steps. Next, each group is

interpolated with a circle for the same reason explained in the two sections above

(Section 4.1, Section 4.2), in the same way as in Algorithm 6. In case the radius

obtained is NaN , it is assigned the 1 value.

Classi�cation of the obstacle is now done by looking at which region the

current radius belongs (i.e., in which zone between the thresholds it is included).

To do so, the Gaussian distribution is divided into �ve regions as represented

in Figure 4.5. If the radius belongs to the green region, it means the current

group of points detected has high con�dence to be the detection of a human foot,

hence its points are converted into polar coordinates and saved in the appropriate

message. If the radius belongs to the light yellow regions, the group points are

saved in the message of points of middle con�dence, to be analyzed further. As
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Figure 4.5: Example of classes of radii assigned to the classes for people detection: the green
space refers to high con�dence radii, yellow spaces refer to those of middle con�-
dence, and not colored spaces to low con�dence radii. In blue and green are dis-
played the thresholds to divide spaces. This Gaussian distribution is obtained with
(�r; �r) = (0:066639; 0:054146). In this case thresholds used are [�r−1:0��r; �r−0:5�
�r; �r + 0:5 � �r; �r + 1:0 � �r].

soon as all groups have been considered, the messages are published. This step

ends with the classi�cation part. The DR-SPAAM ROS detector (see Section

3.1.3) handles the detection by reading the laser messages that save the high

con�dence points (i.e., the points of the obstacles that have a high probability of

being human feet detection) and by coupling the feet into people detection. In

the end, also people's poses are available in the proper topic.

Algorithm 13 uses other smaller algorithms that specify each sub-task as in

Algorithms 9, 7, 10, 11, 12.

Algorithm 9 Laser data to Points
laser data to points(scan topic)

Input: Laser scan topic name scan topic;
Output: Array of physical points P in Cartesian coordinates;

M  read scan topic(scan topic);
for all range 2M:ranges do

if range is a physical distance then
P  convert polar in cartesian(M; range);

end if
end for

return P;
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Algorithm 10 Initialize new message
init new message(M)

Input: Laser scan message M ;
Output: Laser scan message new message that is a copy of M, except for all

ranges that are equal to 1;

Initialize a new message to publish laser scan points.
new msg  M;
for all range 2 new msg.ranges do

range  1;
end for

return new msg;

Algorithm 11 Update Message to Publish
update message(msg, gi)

Input: Message msg with ranges data to update and the current vector of points
gi that belong to the same object detection;

Output: Message msg with ranges data updated;

for all point 2 gi do For each point in the current group gi.
range, angle  convert cartesian in polar(point);
index  angle−msg:angle−min

msg:angle−increment
;

msg.ranges[index]  range;
end for

return msg with ranges data updated;
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Algorithm 12 Classify groups
classify groups(g, new scan msg, sab scan msg)

Input: Array with groups of points g, messages to classify new scan msg and
sab scan msg;

Output: The two messages new scan msg and sab scan msg classi�ed;

sum radii  0;
for i 1 to F 0 do

if Ni � 3 then It means that group gi contains at least 3 points.
ri  points interpolation(gi); The points interpolation(P) algorithm is

used.
else if Ni = 2 then It means that group gi contains 2 points (gi =

fp1i ; p2ig).
ri  distance(gi[0]; gi[1]) / 2;

end if
if radius = NaN then

radius  1;
end if

Here assign the class and check to publish messages
radius class  assign class(radius, �r, �r);
if radius class = \LIKELY" then

update message(new scan msg, gi);
else if radius class = \UNDEFINED" then

update message(sab scan msg, gi);
end if

end for
return new scan msg, sab scan msg;
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Algorithm 13 People Detection and Classi�cation
people detection classi�cation( scan topic, �r, �r)

Input: Laser scan topic name scan topic, parameters �r and �r;
Output: Laser scan messages new scan msg of points labeled as LIKELY, peo-

ple detected with high con�dence (con�dence � 35%) people detection poses,
laser scan messages sab scan msg of points labeled as UNDEFINED;

CONST MINIMUM DISTANCE OBJECTS = 0.01 m;
CONST MINIMUM NUMBER OF POINTS = 2;
CONST NORM FACTOR = 0.1;
CONST STDDEV THRESHOLDS [2] = f0.5, 1.0g;

P  laser data to points(scan topic);
g  group data points(P);

The groups obtained at this stage are in number F 0.

Initialize a new message to publish laser scan points LIKELY.
new scan msg  init new message(M);

Initialize a new message to publish laser scan points UNDEFINED.
sab scan msg  init new message(M);

Interpolate each group of points with a circle. new scan msg,
sab scan msg  classify groups(g, new scan msg, sab scan msg);

Publish the two messages.
publish(new scan msg);
publish(sab scan msg);

Use the detector DR SPAAM ROS (Section 3.1.3) to get the poses of peo-
ple, detected with high con�dence.
people detection poses  DR SPAAM ROS(new scan msg);

return new scan msg, people detection poses, sab scan msg;
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4.4 Intermediary test to verify the preprocessing

approach

In this chapter two methods for people detection have been presented: the

DR-SPAAM detector described in Section 3.1.3 and the human feet detection

above, based on the template test, in addition to the detector. To verify and

prove the second proposed method, some analysis is required. Here, the two

techniques are compared in some contexts, in each of them the confusion matrix4,

the precision, the recall, and the accuracy indexes are computed for both.

The terms Actual 0 and Actual 1 in the �gures of confusion matrices are

related respectively to a person that it is not really placed in a position, and to

a person that is really placed in a position. The same holds for both Predicted

0 and Predicted 1, with the di�erence that they are related to the predictions of

the approach.

In each context, the con�gurations are slightly di�erent since humans simulate

people walking. However, these comparisons have to highlight the di�erence on

false positive detection predicted by the only use of DR-SPAAM detector with

respect to out approach.

4.4.1 Crowded environment

Figure 4.6: On the left: RViz window displaying the crowded environment with red circles indicating
people detection is done only by the detector and the base laser link frame of the robot.
On the right: GAZEBO window displaying the crowded environment with the robot.

The results of this comparison reward the simplest method (Figure 4.7). How-

ever, it must be highlighted that the context taken into account is highly con-

trolled, since there are only people. For this reason, there is no chance to predict

any obstacle as human feet, hence no false positive and true negative can occur.

4The values reported inside the cells of the tables are computed following the rule: given
Humans = fh1; h2; :::; hHg, cell =

PH
i=1 hi where hi 2 f0; 1g.
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Figure 4.7: Confusion matrix of the crowded context where people detection is performed only by
the DR-SPAAM detector. Actual values refer to the ground truth, while the others are
to those predicted.

Figure 4.8: On the left: RViz window displaying the crowded environment with red circles indicating
people detection is done by the human feet detector and the DR-SPAAM detector, and
the base laser link frame of the robot. On the right: GAZEBO window displaying the
crowded environment with the robot.

Figure 4.9: Confusion matrix of the crowded context where people detection is performed by the
human feet detector and the DR-SPAAM detector. Actual values refer to the ground
truth, while the others are to those predicted.

Indexes DR-SPAAM only Pre-processing + DR SPAAM

Precision 1.00 1.00
Recall 0.70 0.35

Accuracy 0.70 0.35

Table 4.1: Table of indexes computed for both methods applied to the crowded environment.
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4.4.2 No people environment

Figure 4.10: On the left: RViz window displaying the simple environment with no people, the red
circles indicating people detection is done only by the detector and the base laser link
frame of the robot. On the right: GAZEBO window displaying the simple environment
with no people and the robot.

Figure 4.11: On the left: RViz window displaying the simple environment with no people and the
base laser link frame of the robot. Here no people are detected by the human feet
detector and the DR-SPAAM detector. On the right: GAZEBO window displaying
the simple environment with no people inside and the robot.

In this test, although there are no people, we verify the performances of

the two approaches. The results of this comparison seems to reward the second

method (Figure 4.11). Indeed, this comparison has not been reported to compute

the tables but to support the point highlighted before that the DR-SPAAM tends

to over-detect. However, due to the simplicity, no confusion matrices are reported.

4.4.3 Simple o�ce with people environment

Because of the complexity of the possible con�gurations of people in this

environment, here more than one situation is taken into account. Each confusion

matrix is computed summing all those computed for the respective situations.

The results of this comparison favor the second method (Figure 4.14). However,

it must be highlighted that the performances can be optimized by choosing more
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(a) (b)

Figure 4.12: (a) and (b): con�gurations of people in the simple o�ce environment. On the left
of both pictures: GAZEBO window displaying the simple o�ce environment with
the robot, the people, and the furniture of the rooms. On the right of both pictures:
RViz window displaying the simple o�ce environment with red circles indicating people
detection done by the DR-SPAAM detector and the base laser link frame of the robot.
Note: only people in the FoV of the laser are considered for Figure 4.13 .

Figure 4.13: Confusion matrix of the simple o�ce with people context where people detection is
performed only by the DR-SPAAM detector. Actual values refer to the ground truth,
while the others are to those predicted.

Figure 4.14: Confusion matrix of the simple o�ce with people context where people detection is
performed by the human feet detector and the DR-SPAAM detector. Actual values
refer to the ground truth, while the others are to those predicted.

suitable parameters. In addition, more distant people are detected fewer times

than those closer because of e�ects farthest introduced (i.e., occlusions, more

noisy laser data), as expected. Finally, the zeros in the table in Figure 4.14 come
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: From (a) to (f): con�gurations of people in the simple o�ce environment. On the left
of each picture: RViz window displaying the simple o�ce environment with red circles
indicating people detection is done by the human feet detector and the DR-SPAAM
detector, with the base laser link frame of the robot. On the right of each picture:
GAZEBO window displaying the simple o�ce environment with the robot, the people,
and the furniture of the rooms. Note: only people in the FoV of the laser are considered
for Figure 4.14 .

from the fact that the second detection method results in being more robust to

outliers and over-predicts fewer times than the �rst one.

It is possible to notice that the combination of the pre-processing with the

DR-SPAAM gives more importance to the people nearest to the robot. This is

useful since people in the foreground occlude people behind them because of the

laser operating principle. The fact that people closer to the robot can be detected
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Indexes DR-SPAAM only Pre-processing + DR SPAAM

Precision 0.67 1.00
Recall 0.82 0.68

Accuracy 0.58 0.68

Table 4.2: Table of indexes computed for both methods applied to the simple o�ce with people
environment.

more reliably is exploited in Section 4.5.

Given the observations reported above, the hybrid approach composed of

preprocessing + DR-SPAAM has been chosen to be used in the following of this

thesis work.

4.5 Discussion of the intermediary test

The performance of the detection method, the subject of this chapter, can be

improved. The most direct ways to achieve this optimization are the following:

� In GAZEBO simulations, human models can be customized to be compliant

with parameters computed in Section 4.2 (Figure 4.16). Hence, detection

will be more accurate and precise since computations will respect the bench-

marks (Figure 4.17);

Figure 4.16: Custom human model for GAZEBO simulations. The most important links of this
model are the legs, which respect the parameters (�r; �r) found in Section 4.2.

� Since parameters are computed through equations (Section 4.1), the more

points, the lower approximation is obtained in the �nal parameters. The

number of points changes due to the physical working principle of 2D

LiDAR: the farther the sensor is from the object to detect, the more the

laser will detect the object with fewer points. Hence, what changes with
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Figure 4.17: Custom human models that represent people detected in the simple o�ce scenario.
In this example detection predicted by the human feet detector and the DR-SPAAM
detector are perfect. On the left, there is the GAZEBO simulation, while on the right
the RViz window is displayed.

distance is the density of laser points that are reected by the object (Fig-

ure 4.18, 4.19). This motivates the introduction of the starting principle of

the Active Perception behavior developed in Chapter 5;

Figure 4.18: Simple GAZEBO simulation with 2D LiDAR: the density of laser rays gets smaller
with distance from the robot.

� In real applications this problem needs more reliable parameters. The most

simple solutions can be datasets. Indeed, starting from a dataset that

contains laser readings of people in crowded environments, the parameters

can be estimated.
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(a) The robot is far from the person
(GAZEBO).

(b) The robot is far from the
person (RViz).

(c) The robot is closer to the person
(GAZEBO).

(d) The robot is closer to the person
(RViz).

Figure 4.19: (a) and (b): the robot is far from the human and laser data are few. As soon as
the robot gets closer to the person, distance decreases so laser data density increases.
Indeed, in (c) and (d), there are many more points in the RViz window.



Chapter 5

Social Active Perception

In this current section, the methods developed for the robot to execute Social

Active Perception behavior are reported in detail, starting from an overview on

RL to the mathematical description of the deterministic active perception policy.

For additional analysis of the topic, learning of this policy is proposed, followed

by the RL training method developed for the agent.

The brief review review about active perception reported in this chapter has

been inspired by the work in [10].

The essence of active perception is to set up a goal based on some current

belief about the world and to execute the actions that may achieve it. With the

term perception, it is intended the environment in which an agent exists and how

the agent interacts with that environment. This is strictly related to another

term, that is a�ordance, which refers to the opportunities for action provided by

a particular object or environment.

In the general concept, it is not needed to spend much e�ort and time on

processing and arti�cially improving imperfect data, but rather accepting imper-

fect and noisy data as a matter of fact, and incorporating them into the overall

processing strategy.

A general agent is an active perceiver if it knows why it wishes to sense,

and then chooses what to perceive, and determines how, when, and where to

achieve that perception [10]. Therefore, an actively perceiving agent (in this case

the robot) is one that dynamically determines the why of its behavior and then

controls at least one of the what, how, where, and when for each behavior. This

is the reason why the �ve main constituents of an actively perceiving agent are

de�ned: why, what, how, when, and where (Figure 5.1).

Each element of the active perception de�nition can be further decomposed

91
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180 Auton Robot (2018) 42:177–196

Fig. 1 The basic elements of Active Perception broken down into their constituent components. Instances of an embodiment of active perception
would include the Why component and at least one of the remaining elements whereas a complete active agent would include at least one component
from each

also because in practice, the number of sensors (and other
physical components of an agent) is limited as well. Thus,
choices must be made. In vision, the history of studies of
visual attention covers centuries of thought and cannot be
summarized here (see Tsotsos et al. 2005). Within computa-
tional vision, attention has played a role since the mid-1970s
(e.g., Williams et al. 1977), with early proponents of the
explicit link between computational and biological visual
attention being found in Koch and Ullman (1985), Fukushima
(1986), Tsotsos (1987), and Burt (1988).

Each element of the active perception definition can
be further decomposed into the set of computations and
actions it comprises, as shown in Fig. 1, noting that this
decomposition is abstract and may be further detailed.
Table 2 presents each of the elements of Fig. 1 along
with some of the seminal works that first addressed those
elements.

The remainder of this paper will present a brief histori-
cal perspective on the methods developed over the past 45+
years that address each element of what it means to be an
active perceiver. The overwhelming conclusion that we draw,
consistent with the seminal (Barrow and Popplestone 1971;
Bajcsy 1988; Aloimonos 1990; Ballard 1991) as well as
modern conceptualizations (Aloimonos 2013; Soatto 2013,
among others), is that the full task of perception requires an
active agent.

2 Why does an agent need to choose what to sense?

The fundamental difference between an active perception
system and other perception systems lies in action, or lack of
it. Whereas both types of systems include decision-making
components, only the active system includes dynamic mod-
ulations to the overall agent’s behavior, both external (via
motors) and internal (via parameter configurations) (Coates
et al. 2008). Let us give an example: consider that we have
trained, using state of the art techniques in machine learn-
ing, a filter to recognize a particular object, like a knife, from
images. Consider further that our filter has a success rate of
90%. This may be a breakthrough result, however, it may not
be so interesting for a behaving robotic system. Indeed, by
using this filter we can search for images—in a database—
containing a knife and out of ten results, nine will be correct.
But this is not sufficient for an active perception-action sys-
tem that needs to act and make changes to the world. With
90% success, 10% of the time the system will be acting on
the wrong objects. A different approach seems needed. In the
best case, this filter could be used as an attention mechanism
(among others) to suggest that a knife maybe in such loca-
tion. This section dissects the components of an active vision
system, as shown in Fig. 1, for specific cases and describes
why would an agent wish to sense a particular scene or scene
element. It does so by also providing some historical per-
spective.
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Figure 5.1: The basic elements of Active Perception broken down into their constituent components.
Instances of an embodiment of active perception would include the Why component and
at least one of the remaining elements whereas a complete active agent would include
at least one component from each [10].

into the set of computations and actions it comprises, as shown in Fig. 5.1, noting

that this decomposition is abstract and must be further detailed depending on

each particular task.

In addition, resource constraints play an important role not only because of

computer power and memory capacity but also because, in practice, the number

of sensors is limited as well. Thus, choices must be made. The agent must be

placed appropriately within the sensory �eld or, in other words, be mechanically

aligned to its task. The sensing geometry must be set to enable the best sensing

action for the agent's expectations. An agent that knows its body position and

orientation concerning some arbitrary location can control the viewing angle and

distance for each sensing act to place its sensors to best perceive the target and

its aspects more relevant to accomplish its task.

A clear example of active perception performed by an agent in a mostly

unknown environment covers both research operations in unknown places and

the �eld of exploration for information gathering in environments not suitable for

humans (e.g.: scienti�c missions to other planets [7]).
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5.1 Reinforcement Learning (RL): Introduction

The main components of RL are reported in Figure 5.2. The basic process is:

� Observe of the environment;

� Decide how to act using some strategy;

� Act accordingly;

� Receive a reward or penalty;

� Learn from the experiences;

� Iterate over all episodes.

Figure 5.2: RL general scheme.

The strategy is also known as Policy �. The agent has to learn to act using

the chosen policy, that is to decide on the action a to take, based on the current

state s, with some probability (Equation 5.1).

� : (s; a) 7! [0; 1] : �(ajs) = P(A = ajS = s) (5.1)

The so-called state transition (Equation 5.2) is the transition that action a

leads from the current state si to the next state si+1. In general, the randomness

of the state transition is from the environment, while randomness in action is

from the policy function (Equation 5.3) and the randomness in the state is from

the state transition function (Equation 5.4).

p(s0js; a) = P(S 0 = s0jS = s; A = a) (5.2)

Current state si New state si+1
Action a
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A � �(�js) (5.3)

S 0 � p(�js; a) (5.4)

Given policy �, the action-value function Q�(s; a) evaluates how good it is

for the agent to pick action a while being in state s (Equation 5.5).

Q�(s; a) = E[UtjSt = s; At = a] (5.5)

The �nal basic process of RL training is precisely formulated in Algorithm

14.

Algorithm 14 General Reinforcement learning training

Input: Number of epochs n epochs, number of steps n steps
Output: Trained agent

1: for e 2 n epochs do
2: for t 2 n steps do
3: Observe state st;
4: Select action at � �(�jst);
5: Execute at;
6: Get new state st+1 from environment;
7: Get reward rt;
8: Update the cumulative reward Ut;
9: end for

10: end for
return Trained agent;

The rewards are used to guide the learning of the policy. Indeed, the �nal

goal of RL is to maximize the expected future cumulative reward to ensure the

agent learns as well as possible. Hence, Equation 5.6 is related to the cumulative

reward (Equation 5.7).

Ut = Rt + Rt+1 + 2Rt+2 + :::+ n−tRn =
nX
t=0

tRt (5.6)

Here  2 [0; 1) is the discount rate: it is less than 1 to weigh the future events

less than those in the immediate future. Instead, the current cumulative reward

at step t can be simply computed as in Equation 5.7.

RT =
TX
t=0

Rt (5.7)
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5.2 Q-learning

The �rst idea was to use Q-learning since it is an important concept in the

�eld of RL for the following reasons:

� Q-learning can be combined with deep neural networks to create DQN

(Deep Q-Network). It is a deep neural network that is suitable for learning

the quality function associated with a couple state-action in RL;

� It is a model-free RL approach, meaning it does not require a model of the

environment;

� Q-learning can handle large state spaces e�ectively since it can use a table

(Q-table) to store the values of the expected cumulative rewards for each

state-action pair. Despite its simplicity, Q-learning can scale reasonably

well to problems with a large number of states and actions.

During RL training, a Neural Network (NN) model learns how to act by

associating the current state to the action that maximizes the reward. This

association is captured through the update of the Q function, which stands for

Quality function, and the parameters learning rate and discount rate. Figure 5.3

shows the mathematical equation to update the Q value for the pairs state-action:

to the current Q values the reward for taking an action in a state is added by

weighing it with the learning rate. Then, the discount rate weighs the di�erence

between the maximum expected future reward that all possible actions could

produce, starting from the Q values of the current state. Q-learning requires a

�nite number of actions1 and states, but there are not �nite states2. Since Q-

learning can not be always applied, more than one strategy to choose the proper

actions must be found.

Figure 5.3: Q-learning equation.

1The number of actions de�ned further will be �nite.
2The states will be further de�ned to be a union of more data.
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5.3 Introduction to the proposed approaches

In the beginning, the objective was to make the robot learn the abilities

needed through RL training. This method would have needed the de�nition

of elements like the state, the actions, the model of the network to train, some

optimizers, a lot of hyperparameters, and a reward function. This raised the need

to face some di�culties, which had to be handled mainly for the reward function

de�nition. This function would have kept into account state data. Indeed, after

some trials, the next step has been to de�ne a custom reward function for RL

training with �nite motion actions. This process outputs a model able to map

the state to the action to execute.

For comparison, the other part of the work has produced a mathematical

formulation of a deterministic policy that the agent must follow and execute to

act accordingly and reach its goal. The �nal general goal is always to maximize

the number of people detected.

To make the active behavior to be compliant with the policy, the work started

before collecting the intuition behind the approach, and then the implementation

with the mathematical formulation of the policy that is driven by utility, reward

function, etc. These elements are further presented in the next section, while the

RL training guided by the reward function is explained in detail later.

5.3.1 Intuition behind the proposed approach

The robot starts a training episode. It should acquire people detection for

some time interval3 and, if needed, it should create a distribution map (or some-

thing similar). The robot has to decide which action to take by computing the

utility function for all possible actions, and then by choosing the one with max

utility. After the chosen action has been performed, the robot repeats again the

detection, and the reward function computation to get its current reward for the

update of the total reward. Then, the loop goes on with the next iteration with

the next action.

This happens for a certain number of episodes where each one lasts up to the

maximum number of steps.

3This is not necessary, but it can increase reliability since a new person may be detected
but only once, because of some reason like to be a false positive.
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Here the main situations to take into account are the following:

� From the state the robot can compute the distribution of people;

� The robot should be penalized for taking too much time on an episode;

� The robot should obtain a higher reward if the variation in people detection

is increasing;

� The robot should obtain a penalty (negative reward) as soon as it acquires

fewer people than in the previous steps since if time passes and the robot

loses detection, which results to be poor-quality work;

� The robot should choose the action that maximizes the trade-o� between

going towards a high-density cluster of people that is far away and going

towards a non-maximum (a general number) of people in the cluster that

is the closest.

5.4 Design and Implementation of the Proposed

Approaches

In this section, a summary of the key contributions of this work is detailed.

In the following �gures, each block represents an important module for the whole

pipeline. The color of the block speci�es whether it represents the implementation

of a work already available (grey) or new since some modi�cations were required

in the existing modules (light red). All these pipelines have been aimed at de�ning

the behavior of the robot, which is always the endpoint. All bulleted lists gather

the blocks' main functionalities, but they are not always the only ones that a

block can have.

5.4.1 Deterministic Policy

The framework for active perception guided by the policy in Figure 5.4 can

be resumed into three main parts:

� People detection and laser points classi�cation: the people detector im-

plements the open-source DR-SPAAM for ROS, based on NN prediction.

The classi�cation task is based on the optimized parameters for crowded



98 Chapter 5. Social Active Perception

contexts. This big block interpolates laser points to detect possible obsta-

cles and it returns the input for the active perception task after obstacle

�ltering;

� Navigation: the planner of the ROS navigation stack with the use of a

custom action server to execute the planned path from the current pose to

the goal one;

� Active Perception: �rst, policy works on input data, indeed clustering and

data memory are needed to associate an utility score to each possible action,

so that the action that maximizes this score can be chosen. Finally, the

execution of the action completes the task, from the state update to the

evaluation of the action by the reward computation.

Figure 5.4: Scheme of the architecture for the active perception guided by the policy.

The interaction between perception and decision-making is the central aspect.

Determinism is a property of the latter, while the former is not, since it is based on

network predictions. As a consequence, given the same input, the policy returns

the same action, but it is not guaranteed to get the same detection in the same

situation.

Moreover, the pipeline is ready to use on the robot without any training. By

looping it for a large number of runs, meaningful data can be acquired to be

further learned by NN models. In this way, the focus is moved on how better

networks can simulate this �nal process (Section 5.4.2).
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5.4.2 Learning from data

Figure 5.5 shows the extension of the pipeline above. This time perception

models can be obtained through data-driven approaches:

� NN: once the model has been de�ned with its forward learning method, a

speci�c network operates;

� Training : it returns models able to simulate as best as possible the whole

Active Perception block in Figure 5.4. Some metrics suggest how good has

been the training phase.

Finally, trained models can work directly on the robot. As data-driven meth-

ods, results improve with the increase of data relating to more scenarios, more

runs, and more contexts of use.

Figure 5.5: Scheme of the architecture to train active perception models to learn from data of policy
executions.

5.4.3 Reinforcement Learning

The RL training can be split into training script and training environment.

The pipeline in Figure 5.6 represents the application of advanced ML techniques

in the �eld of active perception. As introduced in Section 3.1.5, the training

environment is based on OpenAI ROS. It has been properly customized to adapt

the base code to the current task. Instead, the training script de�nes the modules

to handle the whole training:
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� Training script : the network learns through the learning algorithm. Given

the DQN structure and the forward method, the learning algorithm imple-

ments the Q-learning with batch data memory. The main functions such as

Reset, Step, Done, and Close guide the training. In the end, the evaluation

of the metrics returns the quality of the whole process;

� Training environment : this is the low-level handler of the whole pipeline.

More precisely, in the Task environment the actions, the reward, the clus-

tering, and the done are performed and checked. Their execution changes

according to the robot used. For this reason, the next step is to send the

commands to the Robot environment, where the set-up of the sensors and

the collision check are de�ned. The �nal step is to execute the program.

Since the training is simulated in Gazebo, a proper module called Gazebo

environment connects everything. As soon as the high-level functions are

called, the module associates data incoming from the robot's sensors with

the de�nitions of the functions, so that the proper behavior is achieved.

Figure 5.6: Scheme of the architecture to train active perception models with RL.

The network models chosen for both methods are more similar as possible,

to allow a comparison as fair as possible. The only di�erences are due to suitable

changes. in addition, these trained models can work directly on the robot. Once

again, as data-driven methods, results improve with the increase of data relating

to more scenarios, more runs, and more contexts of use.

In summary, the three contributions collectively form the basis of this re-

search, providing novel insights and solutions for enhancing perception.
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5.5 Clustering analysis for points grouping

Before proceeding with the mathematical de�nition of the problem to face,

an optimal clustering algorithm to group points must be found. In this section,

the clustering comparison analysis is reported.

The comparison takes into account three types of clusterings, with the analy-

sis done for three sets of points, assuming that each point is a person4. All these

people must be grouped. The target clustering method must be able to:

� Form groups with size � 1;

� Enforce a minimum distance between points in di�erent clusters, in a way

that two points must be assigned to di�erent clusters if their distance is

greater than or equal to a speci�ed minimum distance.

The value for this minimum distance has been chosen by referring to the Hall

space model (Figure 2.3 Chapter 2): since the personal space of a person includes

the space inside 1:2 m, two people are not interacting until their distance becomes

� 2:4 m (Figure 5.7).

Figure 5.7: By considering the measures of the intimate and personal space as on the left of the
�gure according to Hall space convention, two people can be considered as interacting
if their distance is � 2:4 m, as in the right of the �gure. Indeed, as soon as this
distance increases, they are enough far away to belong to di�erent social groups, hence
not interacting (middle of the �gure).

The clustering algorithms5 tested in this thesis are to compare are the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), the Ordering

Points To Identify Cluster Structure (OPTICS) and the Hierarchical Agglom-

erative. These clusterings have been chosen since they are the most suited to

cluster data in groups in a similar way people do. The �rst test done with these

4This assumption is used here to simplify the problem to �nd an optimal clustering. Fur-
ther, this will be applied to the set of points labeled as LIKELY and to those labeled as
UNDEFINED.

5For further details: https://scikit-learn.org/stable/modules/clustering.html .

https://scikit-learn.org/stable/modules/clustering.html
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methods showed that hierarchical clustering returns always the desired output.

Hence, DBSCAN and OPTICS are here compared with the hierarchical, handled

as ground truth.

For each set of points, all the following elements are included:

� The plots of points and the clusterings outputs;

� The comparison DBSCAN vs hierarchical with a confusion matrix, indices

histogram and table;

� The comparison OPTICS vs hierarchical with a confusion matrix, indices

histogram and table.

The metrics computed for the comparison are:

� Adjusted Rand Index (ARI);

� Normalized Mutual Information (NMI);

� Fowlkes-Mallows index (FMI);

� Homogeneity;

� Completeness;

� V-Measure;

� Purity.

5.5.1 Preliminary tests on clustering

We tested three particular con�gurations of points to have a preliminary test

about the correct functioning of the classical algorithms: DBSCAN, OPTICS,

and hierarchical clustering. The con�guration of points and the outputs of these

algorithms are analyzed in Section 5.5.2, Section 5.5.3, and Section 5.5.4.
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5.5.2 First experimented con�guration

In Figure 5.8 there are the four plots of data and the clusterings outputs. In

Figure 5.9 and in Figure 5.10 the hierarchical clustering is compared respectively

to DBSCAN and OPTICS. Table 5.1 collects the metrics values to summarize

what has been computed.

(a) Points.
(b) DBSCAN clustering applied.

(c) OPTICS clustering applied. (d) Hierarchical clustering (ground truth).

Figure 5.8: Plots of the �rst experimented con�guration with the outputs of the clusterings.
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(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.9: Metrics comparison between labels predicted by DBSCAN vs those of hierarchical clus-
tering (ground truth labels).

(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.10: Metrics comparison between labels predicted by OPTICS vs those of hierarchical clus-
tering (ground truth labels).

Metric DBSCAN vs Hierarchical OPTICS vs Hierarchical

ARI 0.73972 0.91629
NMI 0.90574 0.95871
FMI 0.80757 0.93094

Homogeneity 0.82772 0.99999
Completeness 1.00000 0.92069

V-Measure 0.90574 0.95871
Purity 0.80000 1.00000

Table 5.1: Table of metrics displayed in the histograms in Figure 5.9 and in Figure 5.10.
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5.5.3 Second experimented con�guration

In Figure 5.11 there are the four plots of data and the clusterings outputs. In

Figure 5.12 and in Figure 5.13 the hierarchical clustering is compared respectively

to DBSCAN and OPTICS. Table 5.2 collects the metrics values to summarize

what has been computed.

(a) Points.
(b) DBSCAN clustering applied.

(c) OPTICS clustering applied. (d) Hierarchical clustering (ground truth).

Figure 5.11: Plots of the second experimented con�guration with the outputs of the clusterings.
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(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.12: Metrics comparison between labels predicted by DBSCAN vs those of hierarchical
clustering (ground truth labels).

(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.13: Metrics comparison between labels predicted by OPTICS vs those of hierarchical clus-
tering (ground truth labels).

Metric DBSCAN vs Hierarchical OPTICS vs Hierarchical

ARI 0.44597 0.80990
NMI 0.61277 0.90666
FMI 0.65828 0.84921

Homogeneity 0.44172 0.93916
Completeness 1.00000 0.87635

V-Measure 0.61277 0.90666
Purity 0.65000 0.95000

Table 5.2: Table of metrics displayed in the histograms in Figure 5.12 and in Figure 5.13.
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5.5.4 Third experimented con�guration

In Figure 5.14 there are the four plots of data and the clusterings outputs. In

Figure 5.15 and in Figure 5.16 the hierarchical clustering is compared respectively

to DBSCAN and OPTICS. Table 5.3 collects the metrics values to summarize

what has been computed.

(a) Points.
(b) DBSCAN clustering applied.

(c) OPTICS clustering applied. (d) Hierarchical clustering (ground truth).

Figure 5.14: Plots of the third experimented con�guration with the outputs of the clusterings.

Metric DBSCAN vs Hierarchical OPTICS vs Hierarchical

ARI 0.00000 0.00000
NMI 0.71341 0.71341
FMI 0.00000 0.00000

Homogeneity 0.55450 0.55450
Completeness 1.00000 1.00000

V-Measure 0.71341 0.71341
Purity 0.42857 0.42857

Table 5.3: Table of metrics displayed in the histograms in Figure 5.15 and in Figure 5.16.
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(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.15: Metrics comparison between labels predicted by DBSCAN vs those of hierarchical
clustering (ground truth labels).

(a) Confusion matrix.

(b) Histogram of the analyzed indices.

Figure 5.16: Metrics comparison between labels predicted by OPTICS vs those of hierarchical clus-
tering (ground truth labels).

5.5.5 Clusterings comparison conclusions

The plots and the metrics show that DBSCAN works worse than OPTICS,

which works worse than hierarchical clustering. Both need some hyperparameters

to set that, to get the best, have been ran with ranges of parameters. In this way,

the best cluster is returned and displayed in this section.

In addition, both DBSCAN and OPTICS have been shown to produce clusters

of size � 2, which is not true in the case of groups of people. Indeed, people

standing or walking alone belong to a group that has a size equal to 1.

For these reasons, from this point the chosen clustering method is hierarchical

agglomerative with an adjusted threshold (2:4 m), Ward6 linkage.

6Ward linkage criteria minimizes the sum of squared di�erences within all clusters. It is a
variance-minimizing approach tackled with an agglomerative hierarchical approach.
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5.6 Mathematical formulation of the problem

In this section the mathematical formulation of the problem to come to a

proper policy is reported with the related elements: the possible actions for the

robot, states, both the proposed utility and reward functions and other informa-

tion related to the context of use.

5.6.1 Elements formalization

In the following, all primary problem elements are formalized:

� Scenarios : two types of scenarios are considered to apply this work. In

the �rst (DANGER), the goal of the robot is to look for people in less

possible time to save as many people as it can, while in the second one

(DISCOV ER) the robot has to discover as many people as possible7;

s(x) =

8<:aP = [1:0; 0:5; 0:1] ; if x = \DANGER"

aP = [0:5; 1:0; 0:1] ; if x = \DISCOV ER"
(5.8)

� State: the current state si for step i is represented by a vector of size 212�3

(please see Equation5.6.1). The basic elements are:

{ Detection: vector of n (x; y) points of the people detection, all with

respect to a global frame;

{ Unde�ned: vector ofm (x; y) points labeled to belong to the UNDEFINED

class (Section 4.3), also these with respect to a global frame;

{ Padding points: points that contain values of invalid meaning (e.g.: in

a world of size 150m� 270m a padding point can be [500; 500]);

{ Filter vectors: vector made up of 1 and 0 where 1 marks the point as

valid, both for the detection and the unde�ned vectors.

An example of the �nal general state vector is above. The length of 106

for each point vector has been chosen to cover all detection cases, without

losing detection in any situation. This is the reason why the length must

approximate the maximum number of people the robot can detect. The

7In the DISCOV ER scenario the time is important, but less important than in a dangerous
scenario (e.g.: a �re).
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[ [ xD1, yD1, fD1 = 1 ],
[ xD2, yD2, fD2 = 1 ],
[ xD:::, yD:::, fD::: = 1 ],
[ xDn, yDn, fDn = 1 ],
[ xDn+1, yDn+1, fDn+1 = 0 ],
[ xD:::, yD:::, fD::: = 0 ],
[ xD106, yD106, fD106 = 0 ],
[ xU1, yU1, fU1 = 1 ],
[ xU2, yU2, fU2 = 1 ],
[ xU:::, yU:::, fU::: = 1 ],
[ xUm, yUm, fUm = 1 ],
[ xUm+1, yUm+1, fUm+1 = 0 ],
[ xU:::, yU:::, fU::: = 0 ],
[ xU106 yU106 fU106 = 0 ] ]

Table 5.4: General state vector for RL training.

robot used in this work is the TIAGo base, so the length computation

started from the laser information.

To maximize the number, occlusion can not occur, hence there is no person

in front of another. Hence, they must be one next to the other, at the

same distance from the robot. The bigger this distance, the bigger the

number of people in the scene. This distance is the maximum radius of

the laser (range max [m]), as in Figure 5.17. In that �gure, there are only

eleven people, but the idea is that one must stay next to the other while

respecting at limit the intimate area of the Hall space (radius of 0.45 m).

Thus, the approximate number of people becomes 106. The state, in this

problem, is the state of the perceived environment;

length circular sector

diameter intimate space
=

(angle max− angle min)=360� � 2� � � range max

2� 0:45m

=
(110� − (−110�))=360� � 2� � � 25m

2� 0:45m
' 106 (5.9)
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Figure 5.17: Example of people con�guration to maximize the number of detection (106).

1 ---

2 seq: 162

3 stamp:

4 secs: 564

5 nsecs: 602000000

6 frame_id: "base_laser_link"

7 angle_min: -1.80437970161

8 angle_max: 1.80437970161

9 angle_increment: 0.00577401509508

10 time_increment: 0.0

11 scan_time: 0.0

12 range_min: 0.0500000007451

13 range_max: 25.0

14 ranges: [0.11099119484424591 , 0.1106792539358139 ,

0.11036767810583115 , 0.11013428866863251 , ...,

0.11143097281455994 , 0.11165988445281982 ,

0.11196549981832504 , 0.11196549981832504]

15 intensities: [0.0, 0.0, 0.0, 0.0, ..., 0.0, 0.0, 0.0, 0.0]

16 ---

Listing 5.1: Laser scan message example
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� Actions : a = f GO LIKELY, GO UNDEFINED, SCANNING g. In the

code the set of possible actions will be codi�ed as a = f 0, 1, 2 g;

� Actions Priorities : aP = f �aP , �aP , aP g are the general priority weights.

According to the scenario of use, these weights assume the values in Equa-

tion s(x);

� Reward function: at each step t, the reward must be updated as in Equation

5.10 by adding to the current reward the one computed for the speci�c

step. A signi�cant reward has to be found, better if with a meaning for the

problem, both as a positive case and also as a penalty (Section 5.6.4). The

main point for this purpose is to de�ne the so-called �Rt;t−1 to gain after

an action between two consecutive steps;

Rt = Rt−1 + �Rt;t−1; Rt−1 =
t−1X
t0=1

�Rt0;t0−1 (5.10)

� Clustering method : given the points above, a perfect clustering method is

essential to cluster points in the best way to catch potential social groups

of people (Section 5.5);

� Group utility function: for each group of the clustering obtained as the

output of the clustering method, applied to both sets of labeled points, a

group utility score must be computed. The bigger this index, the more it

should reect the utility for the robot to approach that group, by weighting

context data (Section 5.6.2);

� ID assignment : given a set of new points just collected

IDs = f(ID1; p1); (ID2; p2); :::; (IDK ; pK)g where jIDsj = K and

pi = (xi; yi) 81 � i � K, an ID to each of those points must be assigned

to keep track of them in the future. As soon as a new point pi = (xi; yi) is

acquired, it is coupled with the �rst integer not assigned yet8, then inserted

in the list;

� Memory list : in this list, all visited points are recorded as couples (key; value)

= (ID; point), so that in the case of a future action a given point pi =

(xi; yi) will be visited again, it will be remembered if a couple of the type

(keypi ; valuepi) = (IDpi ; pi) is already present in this memory list;

8To ensure the key value keypi is a monotonically increasing function, avoiding duplicates.
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� Working policy : given a current context (iteration), the robot must follow

the high-level steps of Algorithm 15.

Algorithm 15 Robot Working Policy

Input: LiDAR sensor data at time t
Output: Current iteration reward Rt+1

1:

2: Compute sensor data classi�cation and people detection (Section 4.3);
3: Save the number of people detected;
4: Update list of IDs and memory list;
5:

6: Run clustering on likely and unde�ned points;
7: Compute utility score for each group in likely points clustering;
8: Get the maximum of likely scores;
9: Compute utility score for each group in unde�ned points clustering;

10: Get the maximum of unde�ned scores;
11: Compute utility score for the scanning action;
12: Get the maximum among all max utility indices to choose the action;
13: Execute the chosen action;
14:

15: Detect people again and save the number of people detected;
16: Compute the di�erence in the number of people detected before and after the

action;
17: Compute the current iteration reward.
18:

return Reward Rt+1;

5.6.2 Design of the problem

To design the problem, precise meaning must be provided for the possible

actions. In the next paragraphs, we will present the de�nition of the proposed

actions: Go Likely and Go Unde�ned, and Scanning. Finally, we specify the

action selection.

Go Likely and Go Unde�ned

Starting from the laser scan topics where points labeled as likely and unde-

�ned are stored, the two sets of points pointslikely and pointsundefined can be built.

The same holds for the positions of people detected, available in the proper topic

after publication done by the people detector (Section 4.3).
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Through clustering, points are divided into groups. For each group of each

set, the already mentioned utility score must be produced.

This function depends on the current distance robot-group called d and on

the group size. In general, points in a group can have been already visited. For

this reason, the list of IDs assigned to points and the memory list helps to keep

track of those visited. This is the reason why the second parameter for the utility

function is the number x of points in a group that, once visited, can increase the

length of the memory list. Indeed, in the case where no point has been visited,

this number coincides with the size of the group, while if only a few are not in

the memory list, then the group must get less importance. Since just in case of

a group completely visited x is equal to zero, a little �9 must be added properly.

In addition, in case the increase in length of the memory list is zero the function

should return a penalty, otherwise a monotonically increasing positive number10.

Taking into account this information, the �rst version of the utility function

is in Equation 5.11.

U(x; d; �) =

8<:ln (x+ �) if 0 � x � 0:5

ex

d2
if x > 0:5

(5.11)

Then, these two pieces of the previous equation can be joined into Equation

5.12. Figure 5.18 shows the graphic plots of these equations.

U(x; d; �) =
ex

d2
+ ln (x+ �); x 2 f0g [ N (5.12)

The inclusion of the two functions in Equation 5.11 into a single function 5.12

is justi�ed by the following reasons:

1. A single function is more appropriate than a piecewise function so that no

particular cases must be analyzed separately but after the study of this

section a single, general, and simpler function is obtained and it can be

applied without taking into account again the particular value in input;

2. The comparison of a single function can be done by working only on the

other parameters (e.g.: d, �), without the need to specify individually each

piece of the function;

9The proposed value for � is 1e-15, but it can be modi�ed at will, provided it is very little.
10The threshold number of Equation 5.11 must be a number t j � < t < 1. The proposed

threshold is 0.5 .
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Figure 5.18: Simple plot of the group utility function (d = 1:0m, � = 1e− 15).

3. The di�erence between the functions de�ned in Equation 5.12 and in Equa-

tion 5.11 is almost zero in the whole domain, as can be seen for example in

Figure 5.19.
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(a) d = 1:0 m. (b) d = 3:0 m.

(c) d = 5:0 m. (d) d = 6:0 m.

Figure 5.19: Plots of the di�erence between the group utility function and the piecewise one, for
distance d 2 f1; 3; 5; 6g (� = 1e− 15).

As can be seen, the maximum di�erence is about 4 units (regardless of the d

value) which does not a�ect signi�cantly the work of the method. The inuence

of the d value on the function shape, instead, is analyzed in Figure 5.20 and in

Figure 5.21. The focus of these two pictures is respectively on the left (small x

values) and the right part (bigger x values) of the shape.

Scanning

In case there is no point belonging to the LIKELY class or to the UNDEFINED

class, a particular action is needed. To do so, the SCANNING action helps to

solve or at least �ght this behavior.

Given the sets of likely (L) and unde�ned points (U), let's call jLj and jU j
the cardinalities of these two sets, hence since N = L [ U , jN j = jLj+ jU j. The

utility of this action must return a big number as soon as one of these two sets is

going (or is/are) empty.
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Figure 5.20: Small overview of the group utility functions with di�erent distance measures (d [m])
and �xed � = 1e − 15. Here the focus is on the left side of the function (little input
values).

Figure 5.21: Overview of the group utility functions with di�erent distance measures (d [m]) and
�xed � = 1e− 15. Here the focus is on the right side of the function (bigger and more
relevant input values).
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U(L;U) =
(jLj+ jU j) � (jLj+ jU j)

jLj � jU j
=
jN j2

jLj � jU j
(5.13)

To avoid divisions by zero, let's add two epsilons in the proper positions so

that Equation 5.13 becomes Equation 5.14.

U(L;U) =
(jLj+ jU j) � (jLj+ jU j)

(jLj+ �) � (jU j+ �)
=

jN j2

(jLj+ �) � (jU j+ �)
(5.14)

In this way, in case of jLj or jU j that tend to zero, U(SCANNING) becomes

a big number, that multiplied by aP [2] (e.g.: aP [2] = 0:1), still is a big number

that gives SCANNING action a high probability of being chosen among all

possible actions.

As soon as the SCANNING action is selected, the robot is subject to a

little random movement of position and rotation (pose) so that a new iteration

can happen by doing a new scanning of the current situation.

Action selection

The �nal action will be the one that maximizes the utility score, weighted

with the action priorities aP = f �aP , �aP , aP g.

maxL = maxfU(xCi ; dCi ; �);8Ci 2 Cluster(pointslikely)g (5.15)

maxU = maxfU(xCj ; dCj ; �);8Cj 2 Cluster(pointsundefined)g (5.16)

maxS = U(L = pointslikely; U = pointsundefined) =
jN j2

(jLj+ �) � (jU j+ �)
(5.17)

action = argmaxaP �U [aP [0] �maxL; aP [1] �maxU ; aP [2] �maxS] (5.18)

5.6.3 Example of algorithm executions

In this section, one example of execution is displayed for each action (go

likely,go unde�ned, scanning). For instance, we examine such actions in the

DISCOVER scenario to have a coherent comparison.
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GO LIKELY

Given the current context in Figure 5.22, after the clustering of group points,

the utility score must be computed for each group.

Figure 5.22: Example of a starting scenario. As shown in the legend, the circles represent the points
labeled as LIKELY, the crosses stand for those UNDEFINED, and the grey rhombus
is placed in the robot position.

The utilities computed for both sets of points are in Table 5.5 and Table 5.6.

Also, the utility for the scanning action is calculated with jLj = 10, jU j = 10,

� = 1e− 15.

Group LIKELY x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 2 1.26025 4.65240 0.69315 5.34555
Cluster 2 2 1.21748 4.98503 0.69315 5.67818
Cluster 3 6 2.37010 71.81796 1.79176 73.60972

Table 5.5: Table of indexes computed for all groups in the LIKELY clustering. The bold cluster is
the one with maximum utility for the potential Go Likely action.

Group UNDEFINED x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 7 6.02892 30.17053 1.94591 32.11644
Cluster 2 2 5.35222 0.25794 0.69315 0.95109
Cluster 3 1 6.11658 0.07266 1.11022e-15 0.07266

Table 5.6: Table of indexes computed for all groups in the UNDEFINED clustering. The bold
cluster is the one with maximum utility for the potential Go Unde�ned action.

The GO LIKELY action will be executed (Table 5.7): the robot will choose to

get closer11 to Group 3 (Figure 5.23), which mean position is at (4:07333; 5:39833)

at a distance robot-group of 2.37010.

11In these examples, the distance robot-group after the action is 1:2 m to simulate an ap-
proaching of the robot into the group's personal space (Hall model).
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Action Max utility Action weight Final utility

Go Likely 73.60972 0.5 36.80486
Go Unde�ned 32.11644 1.0 32.11644

Scanning 4.00000 0.1 0.40000

Table 5.7: Table of indexes computed for all potential actions, to decide which can have an higher
utility. The bold action is the one that will be executed.

Figure 5.23: Scenario after the action. The robot is closer to the chosen group.

GO UNDEFINED

Given the current context in Figure 5.24, after the clustering of group points,

the utility score must be computed for each group.

Figure 5.24: Example of a starting scenario. As shown in the legend, the circles represent the points
labeled as LIKELY, the crosses stand for those UNDEFINED, and the grey rhombus
is placed in the robot position.

The utilities computed for both sets of points are in Table 5.8 and Table 5.9.

Also, the utility for the scanning action is calculated with jLj = 5, jU j = 15,

� = 1e− 15.
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Group LIKELY x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 0 1.11831 0.79956 -34.53878 -33.73922
Cluster 2 2 0.86812 9.80462 0.69315 10.49777

Table 5.8: Table of indexes computed for all groups in the LIKELY clustering. The bold cluster is
the one with maximum utility for the potential Go Likely action.

Group UNDEFINED x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 2 1.71627 2.50852 0.69315 3.20167
Cluster 2 3 1.28990 12.07175 1.09861 13.17036
Cluster 3 7 5.21914 40.25900 1.94591 42.20491
Cluster 4 2 4.24306 0.41042 0.69315 1.10357
Cluster 5 1 5.07776 0.10543 1.11022e-15 0.10543

Table 5.9: Table of indexes computed for all groups in the UNDEFINED clustering. The bold
cluster is the one with maximum utility for the potential Go Unde�ned action.

Action Max utility Action weight Final utility

Go Likely 10.49777 0.5 5.24888
Go Unde�ned 42.20491 1.0 42.20491

Scanning 5.33333 0.1 0.53333

Table 5.10: Table of indexes computed for all potential actions, to decide which can have an higher
utility. The bold action is the one that will be executed.

The GO UNDEFINED action will be executed (Table 5.10): the robot will

choose to get closer to Group 3 (Figure 5.25), which mean position is at (7:87286; 2:88714)

at a distance robot-group of 5.21914.

Figure 5.25: Scenario after the action. The robot is closer to the chosen group.
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SCANNING

Given the current context in Figure 5.26, after the clustering of group points,

the utility score must be computed for each group.

Figure 5.26: Example of a starting scenario. As shown in the legend, the circles represent the points
labeled as LIKELY, the crosses stand for those UNDEFINED, and the grey rhombus
is placed in the robot position.

The utilities computed for both sets of points are in Table 5.11 and Table

5.12. Also, the utility for the scanning action is calculated with jLj = 1, jU j = 19,

� = 1e− 15.

Group LIKELY x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 0 1.19928 0.69528 -34.53878 -33.84350

Table 5.11: Table of indexes computed for all groups in the LIKELY clustering. The bold cluster
is the one with maximum utility for the potential Go Likely action.

Group UNDEFINED x d ex=d2 ln(x+ �) U(x; d; �)

Cluster 1 0 2.00785 0.24805 -34.53878 -34.29073
Cluster 2 0 2.53165 0.15602 -34.53878 -34.38276
Cluster 3 0 1.47941 0.45690 -34.53878 -34.08188
Cluster 4 1 3.98007 0.17160 1.11022e-15 0.17160
Cluster 5 1 3.86569 0.18190 1.11022e-15 0.18190
Cluster 6 1 4.37350 0.14211 1.11022e-15 0.14211

Table 5.12: Table of indexes computed for all groups in the UNDEFINED clustering. The bold
cluster is the one with maximum utility for the potential Go Unde�ned action.
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Action Max utility Action weight Final utility

Go Likely -33.84350 0.5 -16.92175
Go Unde�ned 0.18190 1.0 0.18190

Scanning 21.05263 0.1 2.10526

Table 5.13: Table of indexes computed for all potential actions, to decide which can have an higher
utility. The bold action is the one that will be executed.

The SCANNING action will be executed (Table 5.13): the robot will go in

a random position at a distance of 0:5 m from its previous one12 (Figure 5.27).

Here the position value changes from (3:92544; 3:39594) to (3:82113; 3:86131).

Figure 5.27: Scenario after the action. The robot has moved away from the previous position with
a random movement.

5.6.4 Reward function

Starting from two consecutive detection, a general idea could be to compute

a simple reward that counts the di�erence �pt;t−1 between detection from step

t as compared to step t − 1. This is too simple and it would not work when an

agent is completing the detection and only a few people are missing, so it would

continuously get a reward very close to zero, classifying its work to be of poor

quality, but it is not true.

This is the reason why a more complete and suitable reward function is re-

quired for this problem that has to reect a balancing of these important features:

� Di�erence �pt;t−1: the reward has to reect both the case of gain in detec-

tion and of loss in detection;

12In this example, the distance of robot motion after the SCANNING action is 0.5 m to
simulate a little random movement, trying to move from local minimum positions.
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� Common detection pcommont,t−1 : the reward has to increase according to

the number of people already detected and still con�rmed by the following

detection;

� New detection pnewt,t−1 : in the case in which there is a gain in detection, the

reward must be inuenced also by the number of people detected at step t

that had not been detected at step t− 1;

� Lost detection plostt,t−1 : in the case in which there is a loss in detection, the

reward must be inuenced also by the number of people detected at step

t− 1 that have not been detected also at step t.

The function in Equation 5.19 must change according to the scenario of use:

a parametric function must be modeled (Equation 5.20).

�Rt;t−1 =

8<:�pt;t−1 + pcommont,t−1 + pnewt,t−1 ; if �pt;t−1 > 0

�pt;t−1 + pcommont,t−1 − plostt,t−1 ; if �pt;t−1 � 0
(5.19)

Table 5.14 collects the sign analysis of the components of the function.

pcommont,t−1 pnewt,t−1 plostt,t−1 �Rt;t−1

�pt;t−1 > 0 � 0 > 0 > 0
�pt;t−1 � 0 � 0 � 0 � 0;= 0;� 0

Table 5.14: Sign analysis of the reward function components.

�Rt;t−1 =

8<:�1;1�pt;t−1 + �1;2pcommont,t−1 + 1;3pnewt,t−1 ; if �pt;t−1 > 0

�2;1�pt;t−1 + �2;2pcommont,t−1 + 2;3plostt,t−1 ; if �pt;t−1 � 0
(5.20)

A more compact notation can be used to collect these parameters:

� Detection array: it collects detection data as in Equation 5.21;

�
�pt;t−1; pcommont,t−1 ; pnewt,t−1

�T
(5.21)
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� Reward weights matrix: in the �rst row there are the parameters for the

�pt;t−1 > 0 case, while the second one is related to the �pt;t−1 � 0 case

(Equation 5.22).  
�1;1 �1;2 1;3

�2;1 �2;2 2;3

!
(5.22)

Since there can be two types of scenarios, these values must be set properly

to capture the scenario features. The proposed reward weights are those in the

Equation 5.23 for the DISCOVER scenario, while Equation 5.24 is for the DAN-

GER one. Respectively, the former scenario focuses on new people to �nd, hence

the loss of past detection has less importance than the discovery of new people;

while in the latter scenario, the robot has mainly to move to collect as many

detection as possible, hence gain detection is highly rewarded while the loss in

detection is highly penalized.  
1 0:5 2

1 0:5 −0:5

!
(5.23)

 
1 1 2

1 1 −2

!
(5.24)

As a result, the �nal reward function can be represented by the matrix-

vector multiplication (Equation 5.25). The �nal reward value, instead, is the

�rst component for the gain in detection when the number of people detected

increases, otherwise the second one.

 
�1;1 �1;2 1;3

�2;1 �2;2 2;3

!0B@ �pt;t−1

pcommont,t−1

pnewt,t−1

1CA =

 
rewardgaindetection

rewardlossdetection

!
(5.25)
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5.6.5 Example of reward function application

In this section, one simple example of the application of the reward func-

tion is presented for the two possible cases. The scenario for these examples is

DISCOVER.

Gain in people detection

In Figure 5.28 the meaningful detection to compute Rt;t−1 are shown. A more

comprehensible view is in Figure 5.30. The �nal values of the components de�ned

to compute the reward function are in Table 5.15.

Figure 5.28: Gain in detection: plot of the detection before (the purple dots) and after (the purple
crosses) step t. Dots closer enough to crosses are tracked to be the same person.

Component Value

pt−1;t−2 3
pt;t−1 5

�pt;t−1 +2
pcommont,t−1 3
pnewt,t−1 2
plostt,t−1 0
�Rt;t−1 +7:5

Table 5.15: Gain in detection: analysis of the reward function components.
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Loss in people detection

In Figure 5.29 the meaningful detection to compute Rt;t−1 are shown. A more

comprehensible view is in Figure 5.31. The �nal values of the components de�ned

to compute the reward function are in Table 5.16.

Figure 5.29: Loss in detection: plot of the detection before (the purple dots) and after (the purple
crosses) step t. Dots closer enough to crosses are tracked to be the same person.

Component Value

pt−1;t−2 6
pt;t−1 4

�pt;t−1 −2
pcommont,t−1 3
pnewt,t−1 1
plostt,t−1 3
�Rt;t−1 −2

Table 5.16: Loss in detection: analysis of the reward function components.
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(a) Detection at step t− 1. (b) Detection at step t

Figure 5.30: Gain in detection: on the left image and the right one the GAZEBO windows of the
context before and after step t.

(a) Detection at step t− 1. (b) Detection at step t

Figure 5.31: Loss in detection: on the left image and the right one the GAZEBO windows of the
context before and after step t.
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5.7 Learning from data

After the policy de�nition, it is interesting to capture correlations among data

exploiting NN, to learn them. The result of NN training is a model that can drive

an agent in an environment, not necessarily known, showing active perception

behavior to maximize the number of people detected, trying to increase e�ciency.

Starting from all the basic elements of the policy, listed in the previous section,

the structure of the network model and the parameters with training results are

presented.

Since this method is an extension of the policy de�nition of the previous

section, the main elements are the same. Running the policy for n epochs and

collecting main data for each action execution, then the network is trained as in

Algorithm 16.

Algorithm 16 Learning from policy data runs

Input: Number of epochs n epochs, number of steps n steps
Output: Trained agent

1: for e 2 n epochs do
2: for t 2 n steps do
3: Load policy data run;
4: Predict output;
5: Compute loss;
6: Backward update;
7: Optimize network;
8: Update the cumulative reward Ut;
9: end for

10: end for
return Trained agent;

5.7.1 Neural Network (NN) for policy learning

The learning of this section trains a NN to provide in output a model to

use. The input to the DQN is the representation of the current state of the

environment in features. The network maps the input to the output, which is the

set of values for the Poses13 data (Position = [x; y; z]; Orientation = [x; y; z; w]).

Therefore, given the input state, the model must be able to predict the goal

pose to reach to have the biggest increase in detection, according to the policy

previously de�ned.

13For further details: https://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/
Pose.html .

https://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Pose.html
https://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/Pose.html
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The structure of the network (Figure 5.32) can be resumed as follows:

� The state has a shape (212� 3);

� Given an input, a �rst forward pass, and a simple transposition makes it a

vector (1; 212).

� This is a feed-forward network in which the central part is made up of

three groups of fully connected and Leaky Recti�ed Linear Unit (ReLU)

activation function layers14;

� The last layer is fully connected, which action space is equal to seven since

the goal poses the network has to predict are made up of seven elements.

5.7.2 Parameters for policy learning

The parameters that let the learning run are de�ned in Table 5.17.

n inputs n outputs learning rate n epochs n steps = n data

disc 212 7 0.0001 5000 1621 (DANGER)
212 7 0.0001 5000 1460 (DISCOVER)

Table 5.17: Parameters for the policy learning: the number of steps for a single epoch changes
according to the number of data collected during simulated runs of the policy.

5.7.3 Results of learned policy

As can be seen in the �gures, indices compared to evaluate the results of the

learning of both the DANGER and the DISCOVER scenario are the loss values

(Equation 5.26), the RMSE (Equation 5.27), and the MAE (5.28). Also, training

time is added to the analysis.

Loss MSE =
1

n

nX
i=1

(ŷi − yi)2 (5.26)

RMSE =

vuut 1

n

nX
i=1

(ŷi − yi)2 (5.27)

MAE =
1

n

nX
i=1

jŷi − yij (5.28)

14Here Leaky ReLU is used to allow negative data. The use of ReLU would have not led to
negative numbers as a prediction of the network.
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Figure 5.32: Structure of the NN network used to learn the policy.
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DANGER MIN MAX AV G

LOSS 0.0191 18.2871 4.6354
RMSE 1.3121 5.6898 1.8016
MAE 0.3180 3.0559 0.6631

Table 5.18: Parameters for the policy learning (DANGER scenario): 33.00 minutes, 58.61 seconds.

DISCOV ER MIN MAX AV G

LOSS 0.0023 18.0214 3.0110
RMSE 0.6615 4.8578 1.3811
MAE 0.2558 2.9781 0.5892

Table 5.19: Parameters for the policy learning (DISCOVER scenario): 29.00 minutes, 31.47 seconds.

(a) DANGER.

(b) DISCOVER.

Figure 5.33: Scenario comparison: learning loss. In blue the loss is shown, while in red the average
loss with a data window of 10 values.
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Figure 5.34: Scenario DANGER: RMSE and MAE indices.

Figure 5.35: Scenario DISCOVER: RMSE and MAE indices.
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5.8 RL Training

The RL Training method is explained here. As a result of this training, a

model should be returned such that an agent that uses the model can navigate

in an environment, not necessarily known, showing active perception behavior to

maximize the number of people detected. With the term navigation, it is intended

that the agent should be able to predict one of the four possible movement actions

(forward, backward, turn left, turn right) to execute and accomplish the task.

The computations are done using the template code available in the openai ros

package (Section 3.1.5) and other Python modules (gym15, torch16, etc).

5.8.1 RL training elements

For a better comparison, here the main elements of the RL training for the

movement actions prediction are listed, similar to what is in Section 5.6.

� Scenarios : the two types of scenarios are the same for consistency, thus also

the weights associated with them;

� State: the current state si for step i is represented by the same vector as

before;

� Actions : a = fFORWARD, TURN LEFT, TURN RIGHT, BACKWARDg.
In the code the set of possible actions will be codi�ed as a = f0, 1, 2, 3g;

� Actions Priorities : no action priorities are de�ned since the training is

guided by the reward associated with the actions;

� Reward function: at each step t, the reward must be updated as in Equation

5.10 by adding to the current reward the one computed for the speci�c step

(Rsap). Di�erently from the reward de�ned in Section 5.6.4, in this task, the

robot has also to learn how to navigate. This is the reason why the current

reward computed for the social active task Rsap, also a reward Rnavigation is

added as a second part of the total current step reward;

� Done conditions : each step can end either as soon as the last step has been

completed or when the DONE condition is achieved. This condition is a

concatenation of three possible situations:

15For further details: https://www.gymlibrary.dev/index.html .
16For further details: https://pypi.org/project/torch/ .

https://www.gymlibrary.dev/index.html
https://pypi.org/project/torch/
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1. The maximum number of episode steps allowed is reached;

2. The robot reaches the maximum episode reward;

3. The robot has detected the maximum number of people;

4. The robot has crashed into some obstacle.

� Clustering method : no clustering algorithm is used, the agent must learn

the right way to understand whether to choose an action in place of another,

using the information of detection to compute the reward;

� Group utility function: no group utility function is de�ned to let the agent

free to learn its policy;

� ID assignment : another skipped part is the assignment of IDs to points;

� Memory list : the agent learns alone whether to use a similar mechanism or

not;

� Working policy : given a current context (step), the robot must follow the

high-level steps of Algorithm 17.

Algorithm 17 Robot RL training step

Input: LiDAR sensor data at time t
Output: Current iteration reward Rt+1

1:

2: Compute sensor data classi�cation and people detection (Section 4.3);
3: Save the detections and points labeled as unde�ned;
4: Build the state vector;
5: Choose the action using Q-learning;
6: Execute the action;
7: Do again detection;
8: Compute the current iteration reward;
9: Train the DQN;

10: Check the DONE conditions;
11:

return Reward Rt+1;

5.8.2 Deep Q-Network (DQN) for RL training

The RL training of this section runs to train a DQN to provide as output a

model to use. The input to the DQN is a representation of the current state of the
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environment in features. The network maps the input to the output, which is a set

of action-values (Q-values) associated with each possible action that the agent

can take in the given state. These Q-values indicate the expected cumulative

rewards the agent can obtain by taking each speci�c action in that state: at step

i, the network has to learn the function f : ai = f(si) where si is the current

state and ai is the action to take to reach state si+1 from state si.

The structure of the network (Figure 5.36) can be resumed as follows:

� The state has a shape (212� 3) and at each training step the network has

been trained using batches of 16 elements (e.g.: in Figure, the network has

been shaped to accept input batches of n = 4 states);

� Given a batch of size n, the input shape is (n; 212; 3). Before passing forward

the input state batch, it is subject to a reshape through the �rst fully

connected layer, so that the current shape is (n; 212; 1). All the n batches

are concatenated one on the right of the other (concatenation at dimension

1) so that their shape is equivalent to (212; n). Then, a simple transposition

makes them to be matrices (n; 212).

� This is a feed-forward network in which the central part is made up of three

groups of fully connected, 1D batch normalization17 and ReLU activation

function layers;

� The last layer is fully connected, which action space is equal to four since

there are four possible movement actions the network can predict.

5.8.3 RL training parameters

This subsection gathers all the parameters that have been set for the training

and used from the beginning. The parameters tuned during learning are in the

next section (5.8.4). Other parameters like reward weights matrices for SAP have

not been repeated.

All these tables are built respectively over the parameters used for:

� Training of the DQN (Table 5.20);

17This type of layer improves the training and convergence of deep neural networks through
the normalization of the input across the batch dimension. Learning is stabilized and acceler-
ated.
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Figure 5.36: Structure of the DQN network proposed for RL training.

� RL training (Table 5.21);

� Task environment de�nition (Table 5.22);

� Social Active Perception (Table 5.23).
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5.8.4 Results of RL training

The approach based on RL training has been executed for the DISCOVER

scenario for 500 steps and 1000 steps. Figure 5.37 and Figure 5.38 show that we

have not achieved satisfying results. It means that the model has not learned

well enough even though the training ran for two days. Of course, more training

time is required.

Figure 5.37: Loss achieved during RL training.

Figure 5.38: Reward achieved during RL training.



140 Chapter 5. Social Active Perception

5.9 Simulated World

To run the policy and the RL training, a world for the simulations to let the

robot learn is needed. The world must be compliant with the use it has to be

exploited for. Indeed, the design and the use of this world are mainly focused on

the training phase, without putting too much e�ort into details. The features to

put in the context are the following:

� Large environment: a big location that provides the classical services present

in these places;

� Groups of people: they can be families or friends that are going to any

shop, or the info points, etc;

� Queues of people: for example, they are waiting for the elevator to change

the oor;

� People waiting: people standing next to the chairs;

� People walking: people moving around, simulated with the help of PedSim

simulator (Section 3.1.4) that are better displayed in Figure 5.40;

� People who are doing a speci�c activity: for example, they are buying some-

thing from the vending machines are either speaking in groups or waiting

at the info point operator, etc;

� Alone people: these can be modeled as groups of people with size 1;

� Private room: the classical room, not accessible by clients, where the em-

ployees rest or put in order work tools.

In Figure 5.39 the chosen world is displayed. It is the context of an airport

terminal, which is a vital part of an airport where passengers check in, pass

through security, wait for their ights at departure gates, and retrieve luggage

upon arrival. This custom world presents all the features listed above.

As previously mentioned in Section 4.5, the humans are simulated with a

custom simple model to increase detection performances as much as possible.
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In this work the main features are the high number of obstacles, contexts

and the dynamism. All dynamic agents are spawned in the world by PedSim,

which allows social navigation. Indeed, in this simulated world the agents can

avoid collisions during navigation both between them, between them and the

robot, and against walls. The planned path in case of possible human collision

is modi�ed a little bit, while for human-robot avoidance the paths change more.

Instead, since walls are enlarged to ensure secure human navigation, agents can

avoid also environmental boundaries (Figure 5.41).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.41: From (a) to (f): the path planned of PedSim agents with ID 9, 10, 11, and 12 are
modi�ed such that to observe social behaviors in navigation. For agents 9 and 10 this
behavior is much more highlighted since they are closer to the robot than agents 11,
12.



Chapter 6

Experimental Results

This chapter collects all the tests performed on the real robot and the related

experimental results. These tests have been chosen to validate whether the work

contributions described in Chapter 5 allow the robot to behave in an e�ective

way thanks to the active perception. Precisely, all the tests have been carried out

with the approach of the deterministic policy described in Section 5.4.1.

As already anticipated, the chosen robot is a TIAGo (in particular, a TIAGo++)

located in the Autonomous Robotics Laboratory of the University of Padova.

The testing phase is structured as follows:

� All tests have been performed for both scenarios DISCOVER and DANGER

in a real environment (see Section 6.1);

� All tests have been repeated at least ten times, except for the one with only

obstacles (in this case one run has been considered su�cient since it is out

of the scope of this thesis);

� Each single trial has been stopped after the robot has detected all people1

or when the robot delocalized2;

� Ten trials of a single test have been analyzed to extract the results reported

in the next sections.

1All people present in the particular test have been detected by the robot during the actions.
2During the navigation, the robot is no longer able to map correctly its pose in the working

environment. This leads to a wrong association between robot pose and data measured by
the robot through its sensors (e.g.: odometry from navigation sensors, laser points about the
environment from LiDAR sensor, ...).

145
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6.1 Test Environment

The map of the whole test environment is represented in Figure 6.1. Since

the focus of this thesis is on crowded environments, the test environment must

simulate a crowded world. Hence, a small area has been chosen to place people

and let the robot perceive and act given the di�culty in recruiting a big number

of people. For this reason, all tests have been performed only in the area inside

the red box, and all the next �gures will take into account only what happens

inside that region.

Figure 6.1: Map of the whole test environment. The map frame is located in the origin. The area
used for the tests is the one inside the red box: width 7.85m and height 2.55m.

The obstacles used in the tests have been collected to appear as in Figure 6.2.

(a) (b)

Figure 6.2: Obstacles used in the environment: (a) Bin; (b) Small table, pole, and two cones. All
these obstacles were used at the same time only once. Notice the white panels to hide
desks, chairs, and other objects that are not part of the experiments.
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6.2 Test Con�gurations

In this section, all six types of experiments are described and analyzed. These

speci�c con�gurations have been tested to highlight or stress a peculiar behavior

of the robot.

In detail, the following points list the six con�gurations (Figure 6.3):

1. Only obstacles : the robot has to move around the test area to verify which

obstacles are robust to the method or often lead to false positives. For this

simple test, it is considered only one run;

2. Group vs. single target : in the scene, there are three people where two form

a group and the third one is alone;

3. Queue of targets : three people are standing in a queue, and the person

nearest to the robot occludes one leg each of the two people behind him in

the queue. The remaining legs must help the robot detect all people;

4. Occlusion to target : a small desk occludes the right leg of the standing

person. The visible leg has to suggest to the robot to get closer and detect

successfully the person;

5. Occlusion to object : similar to point (4), but this time a pole next to the

small desk has to try to confuse the robot about false positive detection;

while getting closer the robot has to get more con�dent about the pole as

a true negative;

6. Double target occlusion with objects : points (4) and (5) are mixed to stress

the robot about uncertainty on the standing person that has a leg com-

pletely occluded by the small desk and the other one partially occluded by

the pole.

The behaviors described above represent the expected behaviors of the robot,

but the speci�c scenario in which it is deployed to work has to change it accord-

ingly:

� DISCOVER: the robot is allowed to move around the environment and

discover as much information as possible, even though it has to �nd people;

� DANGER: the robot is strongly expected to have a more direct movement

towards people detected, before moving around the environment to look for

people.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: RViz visualization of the six types of the setup for the experiments: (a) only obstacles;
(b) group vs. single target; (c) queue of targets; (d) occlusion to target; (e) occlusion
to object; (f) double target occlusion with objects. Only the used part of the map envi-
ronment is shown. Laser scan points are the blue dots. The reference frame represents
the starting pose of the robot. Colors: red for a person, orange for a cone, purple for
the small desk, black for the pole, and brown for the bin.
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The parameters for the people detection template have been set experimen-

tally, starting from those computed in simulations (see section 4.2). Hence, the

�nal reference parameters mean and standard deviation are:

� �r: 0:0666;

� �r: 0:0541.

6.3 Evaluation metrics

To evaluate the tests performed for this thesis, the following evaluation met-

rics for active perception were computed:

� People detected : maximum number of people found per run, in both sce-

narios;

� Accuracy : formulated as in Equation 6.1, the accuracy A(test) has been

measured on a percentage scale as the accuracy achieved both in all tests

and in the whole scenario;

A(test) =

8<:
1

10�n(test)
�
Pn(test)

i=1 a(test; pi); if true people(test) > 0

1−
�

1
10
�
Pn(test)

i=1 a(test; pi)
�
; if true people(test) = 0

(6.1)

a(test; pi) =

8<:1; if person pi has been found during the test

0; if otherwise
(6.2)

where n(test) is the number of true people present in the test, a(test) is the

binary value associated with a person if detected at least one time during

the test, as in Equation 6.2. Note that in case no people are involved in the

test, then the accuracy is computed through the error about false positive

detection;

� Execution Time: comparison of duration per run and average duration per

run, both scenarios;
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� Actions executed : minimum number of actions required to detect the max-

imum number of people found and the total number of actions done before

the end of the run;

� Qualitative evaluation of active perception: in terms of robot-people dis-

tance and time of the test, this evaluation has to verify the increase in

con�dence about people detection when the robot gets closer to people,

and the time required by the system to verify the presence of people. More

precisely, this type of evaluation has to show how the regions of unde�ned

points become likely as soon as the robot gets closer to those areas, during

the test, according to the scenario. Finally, if there are people, the robot

has to detect them with a higher con�dence value, otherwise, points have

to be discarded in the next robot's motion. The qualitative analysis has to

support the hypothesis that active perception is suitable for the robot to

convince about the state of the environment in a given scenario. Moreover,

the analysis has to verify the evidence of the hypothesis in real contexts;

� Correlation over data: data about people-robot distances and con�dences

in people detection of all runs and all tests in both scenarios have been

collected. These data have been analyzed to verify their linear correlation

since we hypothesize the con�dence of detection has to increase (and the

uncertainty has to decrease) when the distance decreases (and the robot

gets closer to people or objects). These correlation has been computed

using Model-Implied Temporal Associations3.

6.4 Results

In this section the test results are collected and organized in subsections.

Each result compares the performances achieved in a particular test, for both

scenarios. Then, two sections about general comparison of the two scenarios end

the chapter.

6.4.1 Results on only obstacles

First of all, a test about how the robot perceives the environment is required

to understand where possible sources of false positive can be located.

3Model-implied temporal correlations and covariances measure the self and cross-lag asso-
ciations between measurement and state variables in a state-space model.
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Figure 6.4 shows the RViz window in which the robot is located in three

di�erent poses. The only obstacles that the robot detects very often as a false

positive are the two cones, while our approach is very robust to the others. Since

this test focuses only on the evaluation of false positive detection, no di�erence

according to the scenario is considered.

For the image of the real world please refer to Figure 6.2.

(a) Starting robot pose. (b) Cones detected. (c) Pole not detected.

Figure 6.4: RViz representation of the three poses reached by the robot. Only the experimental
area is shown. Laser scan points are the blue dots. The reference frame represents the
current pose of the robot. Colors: red for points labeled as UNLIKELY, green for points
labeled as LIKELY, and a red circle indicates the position of a detected person by the
hybrid syste,m composed of DR-SPAAM + preprocessing.

6.4.2 Results on group vs. single target

From the results in the following �gures, this type of test con�rms that in

the DANGER scenario the robot pays more attention to people than in the other

scenario. Indeed, in the left column of all �gures detection are very good (Figures

6.5, Figure 6.6), and people are detected from the beginning (Figure 6.7, Figure

6.8). This leads to a smaller number of actions to do, even though the mean

durations result to be very similar (Figure 6.9).
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(a) (b)

Figure 6.5: Comparison of people found in the ten runs. The red dotted line is placed in correspon-
dence with the mean of the people found. Real number of people in the test is three.
(a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.6: People found at the end of all runs. Classes correspond to the number of people detected.
(a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.7: Actions required to detect people found vs. total number of actions. The red dotted
line is placed in correspondence with the mean of the actions required to detect people
found, while the purple one is placed to represent the mean of the total number of
actions executed. (a) Scenario DANGER; (b) Scenario DISCOVER.
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(a)
(b)

Figure 6.8: Minimum number of actions required to �nd the people found for all runs. Classes
correspond to the number of people detected. (a) Scenario DANGER; (b) Scenario
DISCOVER.

(a) (b)

Figure 6.9: Durations per run vs. average duration per run. The red dotted line is placed in
correspondence with the mean of the durations per run, while the purple one is placed
to represent the mean of the average duration per run. (a) Scenario DANGER; (b)
Scenario DISCOVER.

Figure 6.10 and Figure 6.11 are strictly related because they refer to the same

test run in a given scenario. The �rst �gure shows the evolution of people detec-

tion con�dence over time and robot-people distance: black and empty circles have

to become black and �lled (since UNDEFINED points have to become LIKELY

points), until some stars appear if the robot gets closer to people, otherwise they

have to vanish. Moreover, the number of detection in the DANGER scenario is

higher. This follows by the hypothesis in which, in that scenario, the robot has

to pay more attention on people. Instead, the �gure below shows the evolution

of the path of the robot in blue, where the direction is indicated by the black

arrow. People are still represented by stars.
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(a) (b)

Figure 6.10: Test: group vs. single target. Comparison of the evolution of people detection con-
�dence over time and robot-people distance. Black and empty circles are the points
labeled as UNDEFINED. Black and �lled circles are the LIKELY points. Starts repre-
sent people detected at a given time and robot-people distance. The color scale on the
right represents the con�dence level associated with a person detection. (a) Scenario
DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.11: Test: group vs. single target. A blue trajectory is the path of the robot during a test
run. The black arrows indicate the direction of motion. The red and green points are
the starting and the �nal positions. Stars represent people. (a) Scenario DANGER;
(b) Scenario DISCOVER.
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6.4.3 Results on queue of targets

From the results in the following �gures, this type of test con�rms that in the

DANGER scenario the robot is attracted more by the two people in the queue

that it can detect better. Indeed, it is a bit more di�cult to �nd new people

(the third one it often misses) while working in the DANGER scenario (Figures

6.12, Figure 6.13). However, in the DANGER scenario, the robot detects people

a little bit before than in the other scenario (Figure 6.14, Figure 6.15). The mean

durations of actions are still very similar (Figure 6.16).

(a) (b)

Figure 6.12: Comparison of people found in the ten runs. The red dotted line is placed in corre-
spondence with the mean of the people found. Real number of people in the test is
three. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.13: People found at the end of all runs. Classes correspond to the number of people
detected. (a) Scenario DANGER; (b) Scenario DISCOVER.

Figure 6.18 and Figure 6.17 are strictly related because they refer to the same

test run in a given scenario. The �rst �gure shows the evolution of people detec-

tion con�dence over time and robot-people distance: black and empty circles have

to become black and �lled (since UNDEFINED points have to become LIKELY
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(a) (b)

Figure 6.14: Actions required to detect people found vs. total number of actions. The red dotted
line is placed in correspondence with the mean of the actions required to detect people
found, while the purple one is placed to represent the mean of the total number of
actions executed. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.15: Minimum number of actions required to �nd the people found for all runs. Classes
correspond to the number of people detected. (a) Scenario DANGER; (b) Scenario
DISCOVER.

points) until some stars (i.e., people identi�ed also by the detector) appear if the

robot gets closer to people, otherwise they have to vanish. Moreover, the de-

tection in the DANGER scenario have higher con�dence. It means the behavior

of the robot has been successful in accomplishing the task of people detection,

keeping a good level of con�dence. This follows the hypothesis in which, in that

scenario, the robot has to pay more attention to people. Instead, in the other

one, detection have more variable levels of con�dence, as allowed for the discovery

behavior. In addition, the �gure below shows the evolution of the path of the

robot in blue, where the direction is indicated by the black arrow. People are still

represented by stars. The motion of the robot in the top-left of Figure 6.17(a)

where it approaches the person is very di�erent from the one in the DISCOVER
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(a) (b)

Figure 6.16: Durations per run vs. average duration per run. The red dotted line is placed in
correspondence with the mean of the durations per run, while the purple one is placed
to represent the mean of the average duration per run. (a) Scenario DANGER; (b)
Scenario DISCOVER.

(a) (b)

Figure 6.17: Test: queue of targets. A blue trajectory is the path of the robot during a test run.
The black arrows indicate the direction of motion. The red and green points are the
starting and the �nal positions. Stars represent people. (a) Scenario DANGER; (b)
Scenario DISCOVER.

scenario, where the robot turns and goes to discover the person in the right-center

of Figure 6.17(b).
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(a) (b)

Figure 6.18: Test: queue of targets. Comparison of the evolution of people detection con�dence
over time and robot-people distance. Black and empty circles are the points labeled
as UNDEFINED. Black and �lled circles are the LIKELY points. Starts represent
people detected at a given time and robot-people distance. The color scale on the
right represents the con�dence level associated with a person detection. (a) Scenario
DANGER; (b) Scenario DISCOVER.

6.4.4 Results on occlusion to target

The results in the following �gures are quite similar, it does not matter the

scenario. The occluded person is always detected very soon (Figures 6.19, Figure

6.20). In the DISCOVER scenario, some di�erent actions are performed, but it

is good because of the working principle (Figure 6.21, Figure 6.22). This is also

reected in the mean durations of actions (Figure 6.23).

(a) (b)

Figure 6.19: Comparison of people found in the ten runs. The red dotted line is placed in corre-
spondence with the mean of the people found. Real number of people in the test is
one. (a) Scenario DANGER; (b) Scenario DISCOVER.
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(a) (b)

Figure 6.20: People found at the end of all runs. Classes correspond to the number of people
detected. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.21: Actions required to detect people found vs. total number of actions. The red dotted
line is placed in correspondence with the mean of the actions required to detect people
found, while the purple one is placed to represent the mean of the total number of
actions executed. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.22: Minimum number of actions required to �nd the people found for all runs. Classes
correspond to the number of people detected. (a) Scenario DANGER; (b) Scenario
DISCOVER.
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(a) (b)

Figure 6.23: Durations per run vs. average duration per run. The red dotted line is placed in
correspondence with the mean of the durations per run, while the purple one is placed
to represent the mean of the average duration per run. (a) Scenario DANGER; (b)
Scenario DISCOVER.

Figure 6.24 and Figure 6.25 are strictly related because they refer to the same

test run in a given scenario. The �rst �gure shows the evolution of people detec-

tion con�dence over time and robot-people distance: black and empty circles have

to become black and �lled (since UNDEFINED points have to become LIKELY

points) until some stars appear if the robot gets closer to people, otherwise they

have to vanish. Moreover, the detection in the DANGER scenario have higher

con�dence, even though they are few since there is only one person that can be

found. However, in the other scenario, the increase in con�dence is very visible

(e.g.: the levels of con�dence between the cyan star and the red star in Figure

6.24(b)). This is related to the discovery behavior of the robot, which is displayed

also in Figure 6.25. This �gure shows the evolution of the path of the robot in

blue, where the direction is indicated by the black arrow. People are still repre-

sented by stars. The motion of the robot is quite similar in both �gures, but on

the right one, the robot stops between the obstacle and the person, while on the

left �gure, it stops next to the person, where the small desk is less visible. These

di�erent behaviors can be motivated by explaining that in the DANGER scenario

the robot focuses mainly on people, while on the other one it has to achieve poses

that could let it detect something more. This is another test that provides proof

of the correctness of our hypothesis about the change in robot behavior according

to the scenario.
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(a) (b)

Figure 6.24: Test: occlusion to target. Comparison of the evolution of people detection con�dence
over time and robot-people distance. Black and empty circles are the points labeled
as UNDEFINED. Black and �lled circles are the LIKELY points. Starts represent
people detected at a given time and robot-people distance. The color scale on the
right represents the con�dence level associated with a person detection. (a) Scenario
DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.25: Test: occlusion to target. A blue trajectory is the path of the robot during a test run.
The black arrows indicate the direction of motion. The red and green points are the
starting and the �nal positions. Stars represent people. (a) Scenario DANGER; (b)
Scenario DISCOVER.



162 Chapter 6. Experimental Results

6.4.5 Results on occlusion to object

The results in the following �gures are very similar, it does not matter the

scenario. This test has been performed to check the behavior of the robot in

a context without people, which is the opposite of a crowded environment. No

people are detected, hence no false positives were found (Figures 6.26, Figure

6.27). Also, the mean durations of actions are similar (Figure 6.23).

(a) (b)

Figure 6.26: Comparison of people found in the ten runs. The red dotted line is placed in corre-
spondence with the mean of the people found. in this test there are no people. (a)
Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.27: People found at the end of all runs. Classes correspond to the number of people
detected. (a) Scenario DANGER; (b) Scenario DISCOVER.

Since in this test there are no people involved, the resulting plot about con-

�dence evolution is not presented because it is not enough signi�cant. However,

Figure 6.29 shows the path of the robot in blue, where the direction is indicated

by the black arrow. The small desk and the pole are represented by the cross

and the circle. In this test, we tried to confuse the robot about the pole as one of

two possible human legs. In Figure 6.29(a) the robot detects no people, hence its

actions are very short, while in Figure (b) the robot is working in the DISCOVER
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(a) (b)

Figure 6.28: Durations per run vs. average duration per run. The red dotted line is placed in
correspondence with the mean of the durations per run, while the purple one is placed
to represent the mean of the average duration per run. (a) Scenario DANGER; (b)
Scenario DISCOVER.

(a) (b)

Figure 6.29: Test: occlusion to object. A blue trajectory is the path of the robot during a test run.
The black arrows indicate the direction of motion. The red and green points are the
starting and the �nal positions. Stars represent people. (a) Scenario DANGER; (b)
Scenario DISCOVER.

scenario, so it moves around more than before. This test provides proof again of

the correctness of our hypothesis about the change in robot behavior according

to the scenario.
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6.4.6 Results on double target occlusion with objects

The results in the following �gures are good for both scenarios. The oc-

cluded person is always detected very soon (Figures 6.30, Figure 6.31). In the

DISCOVER scenario, fewer actions are performed, but the �rst detection come a

bit later than in the DANGER scenario. This is allowed because of the working

principle (Figure 6.32, Figure 6.33). Mean durations of actions are more or less

the same, but they seem to be more regular in the DANGER case (Figure 6.34).

Hence, since in this test the only person is occluded by two objects (the small

desk and the pole), the robot could be stressed but it behaves correctly.

(a) (b)

Figure 6.30: Comparison of people found in the ten runs. The red dotted line is placed in corre-
spondence with the mean of the people found. Real number of people in the test is
one. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.31: People found at the end of all runs. Classes correspond to the number of people
detected. (a) Scenario DANGER; (b) Scenario DISCOVER.
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(a) (b)

Figure 6.32: Actions required to detect people found vs. total number of actions. The red dotted
line is placed in correspondence with the mean of the actions required to detect people
found, while the purple one is placed to represent the mean of the total number of
actions executed. (a) Scenario DANGER; (b) Scenario DISCOVER.

(a) (b)

Figure 6.33: Minimum number of actions required to �nd the people found for all runs. Classes
correspond to the number of people detected. (a) Scenario DANGER; (b) Scenario
DISCOVER.

(a) (b)

Figure 6.34: Durations per run vs. average duration per run. The red dotted line is placed in
correspondence with the mean of the durations per run, while the purple one is placed
to represent the mean of the average duration per run. (a) Scenario DANGER; (b)
Scenario DISCOVER.
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Figure 6.35 and Figure 6.36 are strictly related because they refer to the same

test run in a given scenario. The �rst �gure shows the evolution of people detec-

tion con�dence over time and robot-people distance: black and empty circles have

to become black and �lled (since UNDEFINED points have to become LIKELY

points) until some stars appear if the robot gets closer to people, otherwise they

have to vanish. Moreover, the detection in the DANGER scenario have higher

con�dence that tends to increase on average, even though they are few since there

is only one person that can be found. However, in the other scenario, the increase

in con�dence is bigger. This is related to the discovery behavior of the robot,

which is displayed also in Figure 6.36. This �gure shows the evolution of the path

of the robot in blue, where the direction is indicated by the black arrow. People

are still represented by stars. In this test, there is the small desk that occludes

one leg of the human, while the pole adds noise to a possible detection of the

other leg. The motion of the robot is very di�erent in the two cases: on the left,

it moves to increase visibility on the human, but on the right �gure, the robot

stops next to the desk. This is due to a starting uncertain detection in the DAN-

GER scenario, indeed the path is not smoothed since the robot always detects

only that person. In the other scenario, the starting detection of the human has

middle-high con�dence, which is enough for the robot to be sure of the human,

hence it moves with a discovery behavior. The �nal position lets the robot check

better the perimeter of the desk so that no new people are found. This stress test

provides notable information about the correct execution of our work.

(a) (b)

Figure 6.35: Test: double occlusion to target. Comparison of the evolution of people detection con-
�dence over time and robot-people distance. Black and empty circles are the points
labeled as UNDEFINED. Black and �lled circles are the LIKELY points. Starts repre-
sent people detected at a given time and robot-people distance. The color scale on the
right represents the con�dence level associated with a person detection. (a) Scenario
DANGER; (b) Scenario DISCOVER.
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(a) (b)

Figure 6.36: Test: double occlusion to target. A blue trajectory is the path of the robot during
a test run. The black arrows indicate the direction of motion. The red and green
points are the starting and the �nal positions. Stars represent people. (a) Scenario
DANGER; (b) Scenario DISCOVER.

6.4.7 Accuracy comparison

In Figure 6.37 the comparison between the accuracies achieved in each test is

shown, according to the scenario. The mean accuracy for the DANGER scenario

is higher than the one for the DISCOVER. This veri�es the hypothesis about

the use of active perception to behave according to the scenario, to improve

the robot's con�dence about the environment and general detection, as people

detection can be in particular.
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(a) (b)

Figure 6.37: Comparison of the accuracies achieved in all the tests performed. The red dotted
line is placed in correspondence with the mean accuracy. (a) Scenario DANGER; (b)
Scenario DISCOVER.

6.4.8 Correlation over data

As anticipated in Section 6.3, the �nal analysis of test data collected regards a

possible correlation over the variables people-robot distances and people detection

con�dences.

The data collected in Table 6.1 and the two �gures below have been com-

puted with MATLAB. Figure 6.38 shows the correlation over the variables in the

DANGER scenario, while Figure 6.39 shows the one for DISCOVER.

Data Scenario DANGER Scenario DISCOVER

N.� Detection 165 160
N.� Distances 165 160

N.� Con�dences 165 160
Linear regression coe�cients (-0.039811, 0.97003) (-0.045956, 0.96382)

Correlation -0.34129 -0.35014

Table 6.1: Summary table with analysis on correlation over people-robot distances and people de-
tection con�dences. The correlation indices are in bold. The linear regression coe�cients
are the angular coe�cient mlr and the intercept qlr of the linear regression line.

In the table above, the numbers of detection, distances, and con�dences are

equal since they are the components of a robot detection done in a precise time

and at a certain distance from the people with a level of con�dence. Moreover,

this comparison between scenarios can be performed since the numbers of samples

are very similar.
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Figure 6.38: Plot of the data collected in the DANGER scenario. Little blue circles are the people
detection done at a certain distance. The linear regression correlation line is the one
in red.

Figure 6.39: Plot of the data collected in the DISCOVER scenario. Little blue circles are the people
detection done at a certain distance. The linear regression correlation line is the one
in red.

The �nal regressions con�rm the correlation over the two variables. In both

cases, there is a negative correlation, which means the increase of one variable is

followed by the decrease of the other one, coherently with our hypothesis. For

sure the acquisition of more data can help reveal more about this relationship.
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6.5 Assessment Questionnaire

We administrated a questionnaire to all the ten people (seven boys and three

girls) who took part in the test at the Autonomous Robotics Laboratory of the

University of Padova. Only three of them had previous experience with real

robots.

The questionnaire is composed of eight simple questions to collect feedback

both using numerical indices and short open questions. The information about

the eight questions have been resumed in Table 6.2, while the exact questions are

listed as follows:

1. Q1 : How many times have you participated to this activity?

2. Q2 : How many total hours were you involved in the experience?

3. Q3 : With respect to the de�nitions in the image above (Figure 6.42), eval-

uate the degree of compliance with the most common sociability indices

about the robot's behavior during the tests

4. Q4 : How do you evaluate the robot, the tools, and the equipment available

in terms of work functionality? Please refer to possible limitations about

the application of these tools in real world for this research topic

5. Q5 : Do you consider the robot has been able to detect you?

6. Q6 : What would you like the robot to do as soon as it detects you?

7. Q7 : Do you have fear about the robot's behavior?

8. Q8 : Do you have any other general comment on the experience?

Number Type Values References

Q1 Closed [0, 1, 2, More than 3] -
Q2 Closed [Less than 1, 1-2, 2-3, 3-4, More than 4] -
Q3 Closed [1,2, 3, 4, 5, 6, 7, 8] -
Q4 Closed [1, 2, 3, 4, 5] [30]
Q5 Open - -
Q6 Open - -
Q7 Open - -
Q8 Open - -

Table 6.2: Table of metrics displayed in the histograms in Figure 5.12 and in Figure 5.13.
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The distributions of the answers to questions Q1, Q2, and Q4 are reported

in Figure 6.40 and in Figure 6.41.

(a) Distribution of the answers for Q1. (b) Distribution of the answers for Q2.

Figure 6.40: Distribution of the answers for the �rst two questions Q1 and Q2. The legends collect
the possible answers to each question.

Figure 6.41: Distribution of the answers for Q4.

The answers to Q5 are:

� Yes;

� Sometimes;

� Most of the times, yes;

� Sometimes;

� Yes I do;
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� Yes, it is;

� Most of the times.

The answers to Q6 are:

� Play a musical note or shake its arm;

� Say hello to me in some way or make a noise if possible;

� Make it clear that it sees me, for example via an audio cue;

� For instance greet me;

� acknowledge me in some way and keep on with its task;

� Raise his arms and say Hello;

� The robot should do a sound cue.

The answers to Q7 are:

� No;

� Not at all;

� No, the robot was moving very slowly and it did not cause fear;

� Nothing;

� Most of the times no;

� No I do not;

� Absolutely no;

� The robot does not cause fear.

The answers to Q8 are:

� A very interesting experiment, I would have liked to see it in a larger space;

� I think the robot is a bit too large and it would need more space to move

better;

� The robot should take much space among the person;
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� You should perform tests in a larger space with more people.

The questions above refer to practical information, while question Q3 asks

the evaluation of some of the most common sociability indices. Their graphical

representation, which we also included in the questionnaire, can be found in

Figure 6.42 proposed in [30]. Instead, the distribution of the answers for Q3 is in

Figure 6.43.

Figure 6.42: Most popular social navigation indices that can be computed to evaluate the proper
work. They have been proposed in [30].

Given the small sample size of the answers, no statistical tests were performed.

The people in the experiments have been able to understand when the robot

detected them since it moved properly. They had no fear about the robot's behav-

ior, rather they would like to receive feedback from the robot itself, like a sound

cue. Finally, the most shared tip is to test our approach in a big environment,

which is the �nal use case of the work for this thesis.
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(a) Safety. (b) Comfort.

(c) Legibility. (d) Politeness.

(e) Social norms. (f) Agent understanding.

(g) Proactivity.
(h) Contextual appropriate-

ness.

Figure 6.43: Disitrbutions of the answers for the social indices listed in the questionnaire and pro-
posed in [30]. Possible values for the indices go from 1 to 5. The colors associated to
them are blue, red, orange, green, and purple.
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Conclusions

In this �nal chapter, the conclusion about our work and the future works we

propose are described.

7.1 Discussions

The goal of this thesis was to develop at least one possible solution to the

active perception task, to perform in crowded environments, to solve the problem

of people detection. In this thesis, the focus was not on improving the detection

module, but on making the robot autonomous in moving around the environment

to achieve this goal, exploiting only data incoming from laser sensor data.

We worked mainly on a policy behavior to guide the robot in its perception

task, in an active way, di�erentiating two types of scenarios: \DANGER" and

\DISCOVER". In the former, the robot must pay more attention to perceiving

and act to �nd more people as possible and in less time it can; while in the latter,

the robot is allowed to move around the environment with the same �nal goal

(e.g.: to detect more people it can), but without imposing too many constraints

on time and trajectory.

Simulations of this approach ran in dynamic environments, while we car-

ried on the tests in a static environment to check better how the robot moved,

according to what it was able to sense.

The deployment on the TIAGo++ robot was done at the Autonomous Robotics

Laboratory of the University of Padova: the robot started from a position and

then it was free to navigate in the test environment to increase con�dence about

people, hence true positive, and to decrease con�dence about false positive ob-

jects and obstacles. These initial real-world tests proved this approach to work

175
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well, both in a qualitative and quantitative evaluation. Indeed, the robot could

detect people in the scene and behave according to the particular scenario in

which it has to work.

People involved in the experiments suggested proving this approach in a larger

environment so that problems of space can be solved, and the robot can approach

people over their intimate space. We expected to get this feedback since, because

of restricted space, we used a small space to get a more crowded context as

possible.

Active perception is a di�cult task. Human behaviors are di�erent among

people because they are inuenced by the context in which the human is living,

and on the current mood, emotions, and physical state. For the robot, instead,

both simulated and real-world navigation are one of the weaknesses. In some

runs of the tests, the robot does not follow a precise path and recomputes its �nal

goal because of delocalization, mainly in real-world use, which is of fundamental

importance to match the robot's position in the environment, objects, people, and

the environment itself. However, for the aim of this thesis, the navigation module

considered is the one provided by ROS and the developers of TIAGo++ robot.

Finally, the robot has limited memory, computational resources, and battery,

hence developing methods that must not be much complex and time-resources

consuming, increases these di�culties.

7.2 Future works

Future works will be focused on improving the performances by integrating

a module for the check of the goal pose that the robot can choose among a set

of proposed goal poses, considering also their feasibility in the environment and

the context.

The next steps could be a deeper analysis and validation of the other two

methods we proposed for learning the policy using DNN and RL. The former

method should be able to decrease the computation done by the policy method,

while the latter should provide an approach feasible for real-time action execution,

to let the robot work in a highly dynamic world by adapting in real-time its

actions.

The next tests should consider larger environments, both static and dynamic,

as gathered from the questionnaire answers. Moreover, when the robot detects

and approaches people next to its �nal goal pose, it should send some cues (e.g.:
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a short sound cue or a little motion of his arm).

In conclusion, the future of active perception for the detection of people or

for particular object recognition can supply another working direction for the

improvement of current state-of-the-art methods.



178



References

[1] Ladji Adiaviakoye, Plainchault Patrick, Bolircene Marc, and Jean-Michel

Auberlet. Tracking of multiple people in crowds using laser range scanners.

In 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor

Networks and Information Processing (ISSNIP), pages 1{6, 2014.

[2] Eugenio Aguirre and Miguel Garcia-Silvente. Detecting and tracking using

2d laser range �nders and deep learning. Neural Computing and Applications,

35, 09 2022.

[3] Emmanuel Alao and Philippe Martinet. Uncertainty-aware navigation in

crowded environment. In 2022 17th International Conference on Control,

Automation, Robotics and Vision (ICARCV), pages 293{298, 2022.

[4] Silas F. R. Alves, Alvaro Uribe-Quevedo, Delun Chen, and Jon Morris. De-

veloping a vr socially assistive robot simulator employing game development

tools. In 2022 IEEE Games, Entertainment, Media Conference (GEM),

pages 1{4, 2022.

[5] Javad Amirian, Bingqing Zhang, Francisco Valente Castro, Juan Jose Balde-

lomar, Jean Bernard Hayet, and Julien Pettre. Opentraj: Assessing pre-

diction complexity in human trajectories datasets. CoRR, abs/2010.00890,

2020.

[6] Fernando Amodeo, No�e P�erez-Higueras, Luis Merino, and Fernando Ca-

ballero. Frog: A new people detection dataset for knee-high 2d range �nders,

2023.

[7] Akash Arora, P. Michael Furlong, Robert Fitch, Salah Sukkarieh, and Ter-

rence Fong. Multi-modal active perception for information gathering in sci-

ence missions, 2017.

179



180 REFERENCES

[8] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on

particle �lters for online nonlinear/non-gaussian bayesian tracking. IEEE

Transactions on Signal Processing, 50(2):174{188, 2002.

[9] Alberto Bacchin, Gloria Beraldo, and Emanuele Menegatti. Learning to plan

people-aware trajectories for robot navigation: A genetic algorithm *. pages

1{6, 08 2021.

[10] Ruzena Bajcsy, Yiannis Aloimonos, and John K. Tsotsos. Revisiting active

perception, 2016.

[11] Luca Bartolomei, Lucas Teixeira, and Margarita Chli. Semantic-aware active

perception for uavs using deep reinforcement learning. In 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

3101{3108, 2021.

[12] Nicola Bellotto and Huosheng Hu. A bank of unscented kalman �lters

for multimodal human perception with mobile service robots. I. J. Social

Robotics, 2:121{136, 06 2010.

[13] Graeme Best, Jan Faigl, and Robert Fitch. Online planning for multi-robot

active perception with self-organising maps. Autonomous Robots, 42, 04

2018.

[14] Lucas Beyer, Alexander Hermans, Timm Linder, Kai O. Arras, and Bastian

Leibe. Deep person detection in 2d range data, 2018.

[15] Rashmi Bhaskara, Maurice Chiu, and Aniket Bera. Sg-lstm: Social group

lstm for robot navigation through dense crowds, 2023.

[16] Manuel Boldrer, Alessandro Antonucci, Paolo Bevilacqua, Luigi Palopoli,

and Daniele Fontanelli. Multi-agent navigation in human-shared environ-

ments: A safe and socially-aware approach. Robotics and Autonomous Sys-

tems, 149:103979, 12 2021.

[17] Kuanqi Cai, Weinan Chen, Chaoqun Wang, Shuang Song, and Max Meng.

Human-aware path planning with improved virtual doppler method in highly

dynamic environments. IEEE Transactions on Automation Science and En-

gineering, PP:1{18, 01 2022.



REFERENCES 181

[18] Jiyu Cheng, Hu Cheng, Max Meng, and Hong Zhang. Autonomous naviga-

tion by mobile robots in human environments: A survey. pages 1981{1986,

12 2018.

[19] Lindsey Co�ee-Johnson and Debbie Perouli. Detecting anomalous behav-

ior of socially assistive robots in geriatric care facilities. In 2019 14th

ACM/IEEE International Conference on Human-Robot Interaction (HRI),

pages 582{583, 2019.

[20] Sara Cooper and S�everin Lemaignan. Towards using behaviour trees for

long-term social robot behaviour. In 2022 17th ACM/IEEE International

Conference on Human-Robot Interaction (HRI), pages 737{741, 2022.

[21] Javier Correa and �Alvaro Soto. Active visual perception for mobile robot

localization. Journal of Intelligent and Robotic Systems, 58:339{354, 2010.

[22] Serhan Co�sar and Nicola Bellotto. Human re-identi�cation with a robot ther-

mal camera using entropy-based sampling. Journal of Intelligent & Robotic

Systems, 98, 04 2020.

[23] Yuxiang Cui, Xiaolong Huang, Yue Wang, and Rong Xiong. Socially-aware

multi-agent following with 2d laser scans via deep reinforcement learning and

potential �eld. 09 2021.

[24] Yuxiang Cui, Haodong Zhang, Yue Wang, and Rong Xiong. Learning world

transition model for socially aware robot navigation. pages 9262{9268, 05

2021.

[25] Daniel Dugas, Kuanqi Cai, Olov Andersson, Nicholas Lawrance, Roland

Siegwart, and Jen Jen Chung. Flowbot: Flow-based modeling for robot nav-

igation. In 2022 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 8799{8805, 2022.

[26] Juan Fasola and Maja J Mataric. Using socially assistive human{robot in-

teraction to motivate physical exercise for older adults. Proceedings of the

IEEE, 100(8):2512{2526, 2012.

[27] Gonzalo Ferrer, Anais Garrell, and A. Sanfeliu. Robot companion: A social-

force based approach with human awareness-navigation in crowded environ-

ments. pages 1688{1694, 11 2013.



182 REFERENCES

[28] Gonzalo Ferrer, Ana��s Garrell, and Alberto Sanfeliu. Robot companion: A

social-force based approach with human awareness-navigation in crowded

environments. In 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1688{1694, 2013.

[29] Amalia Foka and Panos Trahanias. Probabilistic autonomous robot naviga-

tion in dynamic environments with human motion prediction. I. J. Social

Robotics, 2:79{94, 03 2010.

[30] Anthony Francis, Claudia P�erez-D'Arpino, Chengshu Li, Fei Xia, Alexandre

Alahi, and Rachid Alami et al. Principles and guidelines for evaluating social

robot navigation algorithms. 2023.

[31] T. Germa, F. Lerasle, Noureddine Ouadah, and Viviane Cadenat. Vision and

r�d data fusion for tracking people in crowds by a mobile robot. Computer

Vision and Image Understanding, 114:641{651, 06 2010.

[32] �Oscar Gil, Ana��s Garrell, and Alberto Sanfeliu. Social robot navigation tasks:

Combining machine learning techniques and social force model. Sensors,

21(21), 2021.

[33] Dylan F. Glas, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. Si-

multaneous people tracking and localization for social robots using external

laser range �nders. In 2009 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 846{853, 2009.

[34] �Angel Guerrero-Higueras, Claudia �Alvarez Aparicio, Maria Carmen Oliv-

era, Francisco Rodr��guez Lera, Camino Fern�andez, Francisco Mart��n, and

Vicente Matell�an. Tracking people in a mobile robot from 2d lidar scans us-

ing full convolutional neural networks for security in cluttered environments.

Frontiers in Neurorobotics, 12:85, 01 2019.

[35] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre

Alahi. Social GAN: socially acceptable trajectories with generative adver-

sarial networks. CoRR, abs/1803.10892, 2018.

[36] Marc Hanheide, Annika Peters, and Nicola Bellotto. Analysis of human-

robot spatial behaviour applying a qualitative trajectory calculus. pages

689{694, 09 2012.



REFERENCES 183

[37] Kensuke Harada, Tokuo Tsuji, Soichiro Uto, Natsuki Yamanobe, Kazuyuki

Nagata, and Kosei Kitagaki. Stability of soft-�nger grasp under gravity. In

2014 IEEE International Conference on Robotics and Automation (ICRA),

pages 883{888, 2014.

[38] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics.

Physical Review E, 51, 05 1998.

[39] Jarrett Holtz and Joydeep Biswas. Socialgym: A framework for benchmark-

ing social robot navigation, 2022.

[40] Jongmin Jeong, Tae Yoon, and Jin Park. Towards a meaningful 3d map

using a 3d lidar and a camera. Sensors, 18:2571, 08 2018.

[41] Dan Jia, Alexander Hermans, and Bastian Leibe. DR-SPAAM: A Spatial-

Attention and Auto-regressive Model for Person Detection in 2D Range Data.

In International Conference on Intelligent Robots and Systems (IROS), 2020.

[42] Dan Jia, Mats Steinweg, Alexander Hermans, and Bastian Leibe. Self-

supervised person detection in 2d range data using a calibrated camera,

2021.

[43] Dan Jia, Mats Steinweg, Alexander Hermans, and Bastian Leibe. Self-

Supervised Person Detection in 2D Range Data using a Calibrated Camera.

2021.

[44] Vishnu K. Narayanan, Anne Spalanzani, Francois Pasteau, and Marie Babel.

On equitably approaching and joining a group of interacting humans. pages

4071{4077, 09 2015.

[45] Burak Kaleci, Kaya Turgut, and Helin Duta�gac�. 2dlasernet: A deep learning

architecture on 2d laser scans for semantic classi�cation of mobile robot

locations. Engineering Science and Technology, an International Journal,

28, 06 2021.

[46] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82(1):35{45, 03 1960.

[47] Mincheul Kim, Youngsun Kwon, and Sung-Eui Yoon. Group estimation for

social robot navigation in crowded environments. In 2022 22nd International

Conference on Control, Automation and Systems (ICCAS), pages 1421{1425,

2022.



184 REFERENCES

[48] Hasan Kivrak, Furkan C�akmak, Hatice Kose, and S�rma Yavuz. Waypoint

based path planner for socially aware robot navigation. Cluster Computing,

25, 06 2022.

[49] Hasan Kivrak, Furkan C�akmak, Hatice Kose, and S�rma Yavuz. Waypoint

based path planner for socially aware robot navigation. Cluster Computing,

25, 06 2022.

[50] Pavlina Konstantinova, Alexander Udvarev, and Tzvetan Semerdjiev. A

study of a target tracking algorithm using global nearest neighbor approach.

In Proceedings of the 4th International Conference Conference on Computer

Systems and Technologies: E-Learning, CompSysTech '03, page 290{295,

New York, NY, USA, 2003. Association for Computing Machinery.

[51] Parth Kothari, Sven Kreiss, and Alexandre Alahi. Human trajectory fore-

casting in crowds: A deep learning perspective. IEEE Transactions on In-

telligent Transportation Systems, 23(7):7386{7400, 2022.

[52] Steven LaValle and James Ku�ner. Randomized kinodynamic planning. I.

J. Robotic Res., 20:378{400, 01 2001.

[53] Hong Thai Le, Duy Thao Nguyen, and Xuan Tung Truong. Socially aware

robot navigation framework in crowded and dynamic environments: A com-

parison of motion planning techniques. In 2021 8th NAFOSTED Conference

on Information and Computer Science (NICS), pages 95{101, 2021.

[54] Min-Fan Ricky Lee and Shar�den Hassen Yusuf. Mobile robot navigation

using deep reinforcement learning. Processes, 10(12), 2022.

[55] Angus Leigh, Joelle Pineau, Nicolas Olmedo, and Hong Zhang. Person track-

ing and following with 2d laser scanners. In 2015 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 726{733, 2015.

[56] Shengming Li, Lin Feng, Yunfei Ge, Li Zhu, and Liang Zhao. An ensemble

learning method for robot electronic nose with active perception. Sensors,

21(11), 2021.

[57] Ela Liberman-Pincu and Tal Oron-Gilad. Exploring the e�ect of mass cus-

tomization on user acceptance of socially assistive robots (sars). In 2022 17th

ACM/IEEE International Conference on Human-Robot Interaction (HRI),

pages 880{884, 2022.



REFERENCES 185

[58] Dario Mammolo. Active slam in crowded environments. Master thesis, ETH

Zurich, Zurich, 2019.

[59] Christoforos Mavrogiannis, Francesca Baldini, Allan Wang, Dapeng Zhao,

Pete Trautman, Aaron Steinfeld, and Jean Oh. Core challenges of social

robot navigation: A survey. ACM Transactions on Human-Robot Interac-

tion, 02 2023.

[60] Rajesh Kannan Megalingam, Vignesh Naick, Sakthiprasad K.M, and Vinu

Sivananthan. Analysis of tiago robot for autonomous navigation applications.

pages 257{261, 08 2021.

[61] Sariah Mghames, Luca Castri, Marc Hanheide, and Nicola Bellotto. A neuro-

symbolic approach for enhanced human motion prediction, 2023.

[62] Gr�egoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech

Samek, and Klaus-Robert M�uller. Layer-Wise Relevance Propagation: An

Overview, pages 193{209. Springer International Publishing, Cham, 2019.

[63] Francisco-Angel Moreno, Javier Monroy, J.R. Ruiz-Sarmiento, Cipriano

Galindo, and Javier Gonz�alez-Jim�enez. Automatic waypoint generation to

improve robot navigation through narrow spaces. Sensors, 20:240, 12 2019.

[64] Vishnu K. Narayanan, Anne Spalanzani, Fran�cois Pasteau, and Marie Babel.

On equitably approaching and joining a group of interacting humans. In

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4071{4077, 2015.

[65] Diego Paez Granados, Yujie He, David Gonon, Dan Jia, Bastian Leibe, Kenji

Suzuki, and Aude Billard. Pedestrian-robot interactions on autonomous

crowd navigation: Reactive control methods and evaluation metrics. pages

149{156, 10 2022.

[66] Diego Paez Granados, Yujie He, David Gonon, Dan Jia, Bastian Leibe, Kenji

Suzuki, and Aude Billard. Pedestrian-robot interactions on autonomous

crowd navigation: Reactive control methods and evaluation metrics. 08

2022.

[67] Jordi Pag�es, Luca Marchionni, and Francesco Ferro. Tiago: the modular

robot that adapts to di�erent research needs. 2016.



186 REFERENCES

[68] Jong Jin Park, Collin Johnson, and Benjamin Kuipers. Robot navigation

with model predictive equilibrium point control. pages 4945{4952, 10 2012.

[69] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garri-

son Cottrell. A dual-stage attention-based recurrent neural network for time

series prediction, 2017.

[70] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garri-

son W. Cottrell. A dual-stage attention-based recurrent neural network for

time series prediction. CoRR, abs/1704.02971, 2017.

[71] U.U.Samantha Kumara Rajapaksha, Chandimal Jayawardena, and Bruce A.

MacDonald. Ros based heterogeneous multiple robots control using high level

user instructions. In TENCON 2021 - 2021 IEEE Region 10 Conference

(TENCON), pages 163{168, 2021.

[72] People2D: realtime people detection in 2D range data.

[73] Ely Repiso, Ana��s Garrell, and A. Sanfeliu. Adaptive side-by-side social robot

navigation to approach and interact with people. International Journal of

Social Robotics, 12, 08 2020.

[74] Ely Repiso, Ana��s Garrell, and A. Sanfeliu. Adaptive side-by-side social robot

navigation to approach and interact with people. International Journal of

Social Robotics, 12, 08 2020.

[75] Maria Ribeiro and Isabel Ribeiro. Kalman and extended kalman �lters:

Concept, derivation and properties. Technical report, 04 2004.

[76] Meera Sebastian, Santosh Balajee Banisetty, and David Feil-Seifer. Socially-

aware navigation planner using models of human-human interaction. pages

405{410, 08 2017.

[77] Seif Eddine Seghiri, Noura Mansouri, and Ahmed Chemori. Implementa-

tion of sarl* algorithm for a di�erential drive robot in a gazebo crowded

simulation environment. In 2022 2nd International Conference on Advanced

Electrical Engineering (ICAEE), pages 1{6, 2022.

[78] Ishneet Sethi, Alka Trivedi, Pranav Singhal, Mrinal Bhave, Rishika Agarwal,

Rahul Kala, and Gora Chand Nandi. Group-aware human trajectory pre-

diction. In 2022 IEEE 6th Conference on Information and Communication

Technology (CICT), pages 1{5, 2022.



REFERENCES 187

[79] Phani Singamaneni, Anthony Favier, and Rachid Alami. Human-aware nav-

igation planner for diverse human-robot contexts, 2021.

[80] Kiran Jot Singh, Divneet Kapoor, and Balwinder Sohi. Understanding so-

cially aware robot navigation. Journal of Engineering Research, 9, 10 2021.

[81] Micol Spitale and Franca Garzotto. Socially assistive robots in smart homes:

Design factors that inuence the user perception. pages 1075{1079, 03 2022.

[82] Yuxiang Sun, Ming Liu, and Max Q.-H. Meng. Active perception for fore-

ground segmentation: An rgb-d data-based background modeling method.

IEEE Transactions on Automation Science and Engineering, 16(4):1596{

1609, 2019.

[83] Phani Teja S. and Rachid Alami. Hateb-2: Reactive planning and decision

making in human-robot co-navigation. In 2020 29th IEEE International

Conference on Robot and Human Interactive Communication (RO-MAN),

pages 179{186, 2020.

[84] Xuan-Tung Truong and Trung Dung Ngo. Dynamic social zone based mo-

bile robot navigation for human comfortable safety in social environments.

International Journal of Social Robotics, 8, 11 2016.

[85] Xuan-Tung Truong and Trung Dung Ngo. \to approach humans?": A uni�ed

framework for approaching pose prediction and socially aware robot naviga-

tion. IEEE Transactions on Cognitive and Developmental Systems, PP:1{1,

09 2017.

[86] Xuan-Tung Truong, Voo Nyuk Yoong, and Trung-Dung Ngo. Rgb-d and

laser data fusion-based human detection and tracking for socially aware robot

navigation framework. In 2015 IEEE International Conference on Robotics

and Biomimetics (ROBIO), pages 608{613, 2015.

[87] Manav Vallecha and Rahul Kala. Group and socially aware multi-agent

reinforcement learning. In 2022 30th Mediterranean Conference on Control

and Automation (MED), pages 73{78, 2022.

[88] Anirudh Vemula, Katharina Muelling, and Jean Oh. Modeling cooperative

navigation in dense human crowds. pages 1685{1692, 05 2017.

[89] Tianxi Wang, Feng Xue, Yu Zhou, and Anlong Ming. Marf: Multiscale

adaptive-switch random forest for leg detection with 2d laser scanners, 2022.



188 REFERENCES

[90] Pan Wei, Lucas Cagle, Tasmia Reza, John Ball, and James Ga�ord. Lidar

and camera detection fusion in a real-time industrial multi-sensor collision

avoidance system. Electronics, 7(6), 2018.

[91] Shunyi Yao, Guangda Chen, Quecheng Qiu, Jun Ma, Xiaoping Chen, and

Jianmin Ji. Crowd-aware robot navigation for pedestrians with multiple

collision avoidance strategies via map-based deep reinforcement learning. In

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 8144{8150, 2021.

[92] Leon Jung Yoonseok Pyo, Hancheol Cho and Darby Lim. ROS Robot Pro-

gramming (English). ROBOTIS, 12 2017.

[93] Francesco Zanlungo, Claudio Feliciani, Zeynep Y�ucel, Katsuhiro Nishinari,

and Takayuki Kanda. Macroscopic and microscopic dynamics of a pedestrian

cross-ow: Part i, experimental analysis. Safety Science, 158:105953, 02

2023.

[94] Francesco Zanlungo, Claudio Feliciani, Zeynep Y�ucel, Katsuhiro Nishinari,

and Takayuki Kanda. Macroscopic and microscopic dynamics of a pedestrian

cross-ow: Part ii, modelling. Safety Science, 158:105969, 02 2023.



Acknowledgments

I would like to express my heartfelt gratitude to everyone who has contributed

to the completion of my academic path and my master's thesis in Computer En-

gineering at the University of Padova. It has been a long and challenging journey,

but it would not have been possible without the support and encouragement of

so many wonderful people.

First and foremost, I would like to thank my parents for the unconditional

love, unwavering support, and endless encouragement they made me feel every

day. Their sacri�ces and dedication have been instrumental in helping me pursue

my dreams and achieve my goals. I cannot thank them enough.

I would also like to express my gratitude to my brother. His huge belief in me

has pushed me to strive for excellence, and I am grateful for his love and support.

I would like to acknowledge the support I received from my professors, who

have been instrumental in shaping my academic and professional growth. Their

guidance, constructive feedback, and insightful discussions have broadened my

horizons and helped me develop my research skills.

I would also like to thank my friends for their continuous encouragement,

which has kept me motivated and energized throughout my studies both in the

positive and in the negative moments we spent together. In particular, I have to

express a special appreciation to my friends who took part in my experiments.

I would like to convey my sincere gratitude to my trainer, whose guidance,

expertise, and mentorship have played a daily support and crucial role in shap-

ing my personality and my ability to approach challenges with a resilient and

victorious mindset.

Finally, I would like to greet the contributions of all the people who helped

me to review my thesis since they provided me valuable feedback and suggestions

to improve the quality of my work.

Thank you all. I will always cherish the memories of this journey.

189


	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Socially aware robot navigation
	Problem Formulation
	Social Conventions
	Modeling Human Motion
	Context-Aware Mapping

	Core challenges
	Planning Challenges
	Behavioral Challenges
	Evaluation challenges
	Open Problems

	Aim of the thesis
	Structure of the thesis

	State-of-art
	Geometrical Approaches
	RGB-D and Laser Data Fusion based Human Detection and Tracking
	Dynamic Social Zone (DSZ) based Mobile Robot Navigation
	Approaching Pose Prediction

	Social Force Model (SFM)-based Approaches
	Social Force Model for pedestrian dynamics
	Waypoint-based path planner

	Learning-based Approaches
	Human Trajectory Prediction in Crowds
	Genetic algorithm for learning to plan people-aware trajectories
	Neuro-Symbolic Approach for Enhanced Human Motion Prediction

	Active Perception
	Classical Approaches
	Active Perception


	Tools and methods
	Robot Operating System (ROS)
	GAZEBO
	ROS Visualization (RViz)
	Distance Robust SPatial Attention and Auto-regressive Model (DR-SPAAM)
	Pedestrian Simulator (PedSim)
	OpenAI Reinforcement Learning (OpenAI RL)

	Take It And Go (TIAGo++) robot
	Versatility
	Hardware architecture
	Software architecture
	Simulated TIAGo Base robot


	Preprocessing: People detection and laser points classification
	Obstacles interpolation method
	Template Computation for detecting people
	People Detection method
	Intermediary test to verify the preprocessing approach
	Crowded environment
	No people environment
	Simple office with people environment

	Discussion of the intermediary test

	Social Active Perception
	Reinforcement Learning (RL): Introduction
	Q-learning
	Introduction to the proposed approaches
	Intuition behind the proposed approach

	Design and Implementation of the Proposed Approaches
	Deterministic Policy
	Learning from data
	Reinforcement Learning

	Clustering analysis for points grouping
	Preliminary tests on clustering
	First experimented configuration
	Second experimented configuration
	Third experimented configuration
	Clusterings comparison conclusions

	Mathematical formulation of the problem
	Elements formalization
	Design of the problem
	Example of algorithm executions
	Reward function
	Example of reward function application

	Learning from data
	Neural Network (NN) for policy learning
	Parameters for policy learning
	Results of learned policy

	RL Training
	RL training elements
	Deep Q-Network (DQN) for RL training
	RL training parameters
	Results of RL training

	Simulated World

	Experimental Results
	Test Environment
	Test Configurations
	Evaluation metrics
	Results
	Results on only obstacles
	Results on group vs. single target
	Results on queue of targets
	Results on occlusion to target
	Results on occlusion to object
	Results on double target occlusion with objects
	Accuracy comparison
	Correlation over data

	Assessment Questionnaire

	Conclusions
	Discussions
	Future works

	References
	Acknowledgments

