
 

 

  
 

UNIVERSITY of PADOVA 
 

DEPARTMENT of INFORMATION ENGINEERING  

MASTER THESIS IN ICT FOR INTERNET AND MULTIMEDIA 

 
LEARNING-BASED LOW LIGHT IMAGE DENOISING 

 

 

      SUPERVISOR             MASTER CANDIDATE 

               PROF. PIETRO ZANUTTIGH                  ESRAA M. B. ALNAJJAR 

              UNIVERSITY of PADOVA 

 

            CO-SUPERVISOR     STUDENT ID 

             MAZEN MEL  2009462 

            PHD STUDENT 

 

                                                       ACADEMIC YEAR 

                2022-2023 

 

 

 

 

 

 



 

I 

 

 

 

Acknowledgment 
 

First of all, I would like to praise and thank Almighty God, who has given me 

countless blessings, knowledge, and opportunity, so that I can finally complete the 

thesis. 

Words cannot express my gratitude to my mentor, Pietro Zanuttigh, for his 

patience and invaluable feedback. I also could not have made this trip without the 

guidance of Mr. Mazen Mel, who generously provided knowledge and experience. 

In addition, this endeavor would not have been possible without the support of 

the University of Padua faculty, for giving me the opportunity to do my research and 

providing all the resources. Thanks also to all the Professors who influenced and 

inspired me. 

I am also grateful to my family and friends for believing in me and keeping my 

spirits high and excited throughout the process. Without their encouragement and 

motivation, I would not have been able to complete this journey.



 

II 

 

Abstract 

 
The need for high quality imaging devices beyond the limitations imposed by the 

hardware and optics of such systems is essential for a variety of tasks such as in the 

medical field, monitoring, and industrial applications. In some cases, such images 

are captured under low-light conditions resulting in low contrast, low brightness and 

significant amount of noise, which leads to extremely poor image quality and 

difficulty in extracting meaningful information from such data.  

In this work, a deep learning-based low light image denoising and enhancement 

method is investigated, which can reduce noise and improve the image contrast at 

the same time. The method contains two deep sub-networks, an Image Denoising 

Network and an Enhancement Network. The Denoising network takes a noisy low-

light image as input and produces a denoised one while the Enhancement network 

takes the resulting denoised image as input and produces a brighter enhanced one.       
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         Introduction  

In recent years, the widespread use of digital cameras and smartphones has made 

photography an integral part of everyday life. However, capturing images in low light 

conditions remains a challenge due to the limited amount of available light. This can lead 

to images that are noisy, blurred, and lack details, making it difficult to perceive the scene 

and appreciate its visual qualities. 

 

Low-light image denoising and enhancement are two important tasks in image 

processing that aim to improve the quality of images captured in low-light conditions. 

Various approaches have been proposed to tackle these tasks, ranging from traditional 

signal processing methods to more recent machine learning-based techniques. 

 

In this thesis, we focus on learning-based methods for low-light image denoising 

and enhancement. Specifically, we explore the use of deep neural networks, which have 

shown remarkable performance in various computer vision tasks. We investigate 

architectures and loss functions that are tailored to the low-light image enhancement and 

demonstrate their effectiveness through extensive experiments on a benchmark dataset. 

 

The remainder of this thesis is organized as follows: we first review related work in 

low-light image processing and deep learning. Then, we describe our proposed methods 

for low-light image denoising and enhancement, followed by a thorough evaluation of 

their performance. Finally, we discuss the limitations of our approach and suggest possible 

directions for future research. 

 

1.1 Digital Cameras 

The widespread use of multimedia applications today, has led to the usage of 

digital camera as an essential component in various portable devices such as smartphones, 

webcams and gaming devices. A digital camera is an integrated system constituting of a 

lens, sensor, and digital image processor, each of which is a sophisticated system on its 

own. A digital camera system is a hardware device that designed based on principles of 

optics and device physics, a camera takes the trace of light from a scene and passes it 

through the lens to the sensor. In modeling any image formation pipeline, geometric 

primitives and transformations are crucial to project 3-D geometric features into 2-D 

features. However, apart from geometric features, image formation also depends on 

discrete color and intensity values. 
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1.1.1 Digital image formation pipeline 

In imaging system, Fig. 1.1 (a) gives a simple explanation of image formation, 

where the light from a physical source falls on the object, part of this light reflects on a 

particular surface after striking the object and goes through an image plane that reach a 

sensor plane via the lens (optics).  

 

From a viewpoint of color, we know visible light is only a small portion of a large 

electromagnetic spectrum, so Colour sensors are used to recognize a material's color in the 

RGB (red, green, blue) spectrum, while rejecting unwanted infrared or ultraviolet light.  

 

Bayer Grid/Filter is an important development to capture the color of the light. In 

a camera, RGB sensors capture all three-color primaries. Inspired by human visual 

preceptors, Bayer proposed a grid in which there are 50% green, 25 % red, and 25% blue 

color filters mounted on top of the sensor. 

 

A demosaicing algorithm is then used to obtain a full-color image where the 

surrounding pixels are used to estimate the values for a particular pixel. 

There are many other color filters that have been developed to sense colors apart 

from Bayer Filter. 

 

In digital camera, the light arises from multiple light sources, reflects on multiple 

surfaces, and finally enters the camera where the photons are converted into the (R, G, B) 

values that we see while looking at a digital image. Fig. 1.1(b) shows the image sensing 

pipeline where the light first falls on the lens. Following the aperture and shutter that can 

be adjusted. Then the light reaches an image sensor which can be CCD or CMOS sensor.  

This sensor is actually in the shape of array or a rectangular grid, where each cell in the 

array is light-sensitive diode that senses the intensity of photon and converts it to electrons. 

Then the image is obtained in an analog or digital form, and we get the raw image.  

 

In the case of CCD, a charge is generated at each sensing element and this 

photogenerated charge is moved from pixel to pixel and is converted into a voltage at the 

output node. Then an analog to digital converter (ADC) converts the value of each pixel to 

a digital value while in CMOS sensors a charge converted to voltage inside each element 

so we get a digital signal. Both CCD and CMOS are gray-scale sensors, senses the number 

of photons not their wavelength, and to get the colored image they use a color filter array 
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(CFA) which is a mosaic of tiny color filters placed over the image sensor to capture color 

information. 

 Next, white balancing and other digital signal processing operations are done and the                

  image is finally compressed to a suitable format and stored. 

 

 

 

(a) (b) 

 

  Figure 1.1: (a) Image formation (b) Image sensing pipeline in a camera [48] 
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1.1.2 Limitations of digital image sensors 

 

During image acquisition and transmission, noise is introduced into the image. The 

introduction of noise into the image could be caused by several factors such as: low-light 

conditions, sensor temperature, dust particles, transmission channel interference and other 

environmental factors that may have an impact on the imaging sensor. 

 

Digital images acquired by the sensor need to be processed before obtaining the 

final image. And due to the random absorption of photons, the image capture is always 

subject to noise which can be amplified by the processing operations.  

 

 Noise in image sensor is typically separated into two categories: random noise and 

fixed pattern noise.  

 

 Random noise produces statistically random variations in the brightness and color 

of an image both above and below the actual image intensity. Although the pattern of 

random noise varies between photos shot with identical exposure settings, the magnitude 

of the noise will remain the same. Random noise is present in all digital images and is 

especially prevalent in high ISO and short-duration exposures. It’s primarily caused by 

shot noise and read noise. While the Fixed-pattern noise is a term given to a particular 

noise pattern on digital imaging sensors often noticeable during longer exposure shots 

where particular pixels are susceptible to giving brighter intensities above the average 

intensity. Although fixed pattern noise appears more displeasing, it is usually easier to 

remove since it is repeatable. A camera's internal electronics just has to know the pattern 

and it can subtract this noise away to reveal the true image. Fixed pattern noise is much 

less of a problem than random noise in the latest generation of digital cameras. 

 

However, it is usually more difficult to remove random noise without affecting 

image quality. Software algorithms find it difficult to distinguish between random noise 

and the texture pattern, so removing this noise may end up removing the texture as well.  

 

1.1.3 Noise modeling     

In computer vision, noise modeling refers to the process of capturing and 

incorporating the random and often unpredictable distortions or corruptions in an image or 

video data that can occur during acquisition, transmission, or processing. These distortions 

can be caused by various factors such as sensor noise, environmental factors, compression, 

or hardware limitations. 

 

Noise modeling is important in computer vision because it enables researchers and 

engineers to simulate and analyze the impact of noise on image or video data, and to 
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develop algorithms and techniques that can effectively mitigate the effects of noise. This is 

especially important in applications such as medical imaging, surveillance, or autonomous 

driving, where the accuracy and reliability of computer vision systems can be critical. 

 

Noise models can vary depending on the application and the specific type of noise 

being considered. Common noise models used in computer vision include additive white 

Gaussian noise (AWGN), Rayleigh Noise, Erlang (or gamma) Noise, Exponential Noise, 

Uniform Noise, and Impulse Noise, among others. By incorporating these noise models 

into their algorithms and testing their performance under different noise conditions, 

researchers and engineers can better understand the limitations of their systems and 

optimize them for real-world application. 

 

1.2 Thesis overview 

 

Denoising low-light images is a challenging task arising from the various sources 

of noise. In low light conditions, digital cameras increase the ISO (electronic gain) to 

amplify the brightness of captured images. However, this in turn amplifies the noise, 

arising from read and shot sources. In the raw domain, read and shot noise are effectively 

modeled using Gaussian and Poisson distributions respectively. 

 

In low-light imaging, noise removal becomes a critical challenge to produce a high-

quality, detailed image with low noise. In this work, we use a residual neural network that 

combines the strengths of residual learning and U-Net [49] for image denoising. The 

network is built with residual units and has similar architecture to that of U-Net. The 

benefits of this model have two parts: first, residual units ease the training of deep 

networks. Second, the rich skip connections within the network could facilitate 

information propagation, allowing us to design networks with fewer parameters and better 

performance. 

 

 For low light enhancement, we will use multiple techniques, starting from 

traditional methods like histogram equalization and moving toward state-of-the-art deep 

learning approaches. 
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         Related Work  

Image Denoising is the process of recovering a clean image from its noisy 

observation. It is a crucial research topic in the fields of computer vision and image 

processing due to its importance in many high-level applications such as image encryption, 

bioinformatics, texture classification and many others.  

 

In recent decades, we have witnessed great progress in image denoising and low 

light enhancement techniques models starting from traditional model-based methods 

toward deep learning-based models which offer fast inference and good performance. 

 

2.1 Model-based image denoising and enhancement 

 

Various techniques of noise reduction have been developed from different points of 

view, such as image filtering, shrinkage of coefficients in transform domains, sparse 

representation of a learned dictionary, and non-local self-similarity statistics. 

Representation methods include bilateral filtering [1], non-local means (NLM) [2],  

markov random field (MRF) models, block matching and 3D filtering (BM3D) [3], K-

SVD [4],higher-order singular value decomposition (HOSVD) [5], and weighted nuclear 

norm minimization (WNNM) [6].To improve the performance of the approaches 

mentioned above, Schmidt, Roth [7] proposed a cascade of shrinkage fields (CSF) for 

image denoising, a kind of unified random field model. Recently, Chen and rock [8] 

developed a trainable nonlinear reaction-diffusion (TNRD) model. These classical methods 

performed well in denoising however, they may require manual parameter setting and are 

computationally expensive. 

 

As for the traditional model-based methods which are suitable for low-light image 

enhancement, several methods have been proposed. Gamma Correction used to correct the 

differences between the way a camera captures content, the way a display displays content, 

and the way our visual system processes light, Rahman et al. [9] proposed an adaptive 

gamma correction method that dynamically determines the intensity conversion function 

based on the statistical characteristics of the image. 

 

  Histogram Equalization [10] rearrange the pixel values of low light image to 

improve the contrast and brightness of the image. Adaptive Histogram Equalization (AHE) 
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[11] has been proposed to enhance the contrast locally. However, AHE overamplifies the 

noise in relatively homogeneous region of the image and to prevent this a Contrast Limited 

Adaptive Histogram Equalization (CLAHE) [12] is used. 

 

Retinex-based methods [13][14] decompose the low light image into reflectance 

and illumination maps and obtain the enhanced image by fusing the restored reflectance 

map and the illumination maps. 

 

Dehazing-based methods [15][16] improve the visibility of the image by 

considering the inverted low-light image as a haze and applying the dehazing. 

 

Although these methods can improve the brightness for the dark pixels, they barely 

regard the realistic lighting conditions and produce enhanced images that are inconsistent 

with the actual scene. 

 

2.2 Deep learning for low-light Image Denoising and enhancement 

 

Deep learning technologies is widely used in various fields, achieving promising 

results in image denoising and enhancement. Since the proposal of big data analysis and 

Graphic Processing Unit (GPU), deep learning techniques received a great deal of attention 

and has been widely applied in the field of image processing. 

 

In the fields of image processing and computer vision, Image Denoising has been a 

hot topic for a long time, therefore, numerous deep learning-based models have achieved 

remarkable success in this field. In [35], Jain and Seung use convolutional neural networks 

(CNNs) for image denoising and claimed that CNNs have similar or even better 

representation power than the MRF [36] model. A deep convolutional neural network for 

image denoising (DnCNN) was proposed by Zhang et al. [17], this model employs bundle 

of convolutional layers, rectified linear unit activations (ReLU), batch normalization [18] 

and the use of residual learning to improve the performance of denoising. In [19] Tai et al. 

proposed a deep end-to-end persistent memory network for image denoising, this model 

fuses both short-term and long-term memories to capture different levels of information. 

The fast and flexible denoising CNN (FFDNet) proposed by Zhang et al. [20] introduces 

noise feature map for handling non-uniform noise level and downsampled sub-images for 

increasing the receptive field and the performance speed. The work in [21] proposes a deep 

residual CNN (DRCNN) based on DnCNN and ResNet [22] architecture to get rid of 

gradient vanishing problem caused by increasing the network depth. Despite their excellent 

performance, these models' complexity and number of parameters were increased to 

achieve such an improvement. 

Additionally, to boost the performance, several recent methods apply techniques 

such as residual learning and skip connections. The Unet model [23] is one of widely used 
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autoencoder architectures today, the encoder block uses several convolutions and max-

pooling that halve the size of feature maps and double the number of these maps while the 

decoder restores the size of feature maps and reuse it by the use of skip connection leading 

to a reduction in the loss of information that is caused by the encoding process.  

Deep learning-based Methods have a brilliant impact on low-light image 

enhancement. Lore et al. [24] proposed the first convolutional neural networks for low-

light image enhancement termed (LL-Net) that performs contrast enhancement and 

denoising based on deep auto-encoder. Chen et al. [25] proposed Retinex-Net, which 

mainly has two networks, Decom-Net decomposes the input images into reflectance and 

illumination maps, and Enhance-Net that adjusts the illumination map to get the final 

enhanced image. Guosheng Lin et al. in [37] proposed a refined network LL-RefineNet 

which is built to learn from the synthetical dark and noisy training images, and perform 

image enhancement for natural low-light images in symmetric-forward and backward-

pathways. 

 In KinD [28] Zhang et al. inspired by the Retinex-Net and presented a new 

decomposition network, a reflection enhancement network and an illumination map 

enhancement network, which achieved outstanding performance in low light image 

enhancement. Wang et al. proposed an end-to-end enhancement network [39], which is 

composed of Retinex decomposition network (RDNet) and fusion enhancement network 

(FENet). After inputting the image, it is decomposed into illumination component and 

reflection component by RDNet, and then the decomposed illumination component is 

preliminarily enhanced by the camera response function. Finally, the input image, the 

decomposed reflection component, and the preliminary enhanced illumination component 

are used as the input to FENet for fusion enhancement, and the final enhancement result is 

obtained. Zhu et al. [40] proposed the low-light enhancement method of EEMEFN. The 

network framework is divided into multi exposure fusion (MEF) which generates multiple 

exposure images through a given exposure ratio, and edge enhancement (EE) that fuses the 

different scale information of the generated multiple exposure images through the U-net 

structure. 

 In [26] Guo et al. proposed a zero-shot learning method called Zero-DCE which 

heavily relies on the usage of multi-exposure training data. The work in [27] proposes a 

backbone model EnlightenGAN which relies on large number of parameters for good 

performance. Chen Wei et al [41] proposed RRDNet that uses a recurrent residual dense 

block to process the input low-light image. The block consists of multiple dense 

convolutional layers and residual connections to allow information flow between layers, 

while also avoiding the vanishing gradient problem.  

 

In [42] Zamir et al. proposed a multi-scale information retention which (MIRNet) 

introduces a new design that aims to preserve high-resolution features across the entire 

network, while also leveraging rich contextual information from the low-resolution 

representations. The dual illumination estimation network (DIEN) [43] aims to enhance 

low-light images by using a dual-pathway network to extract features from the input image 
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under both illumination conditions. These features are then combined and used to generate 

the enhanced image. 
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               Dataset  

3.1 Overview 

 

Low light datasets are often used in computer vision research, particularly to 

evaluate the performance of different algorithms and techniques for image 

enhancement, denoising, and object detection in low light conditions. These datasets 

can be captured in a variety of low light conditions or by simulating low light 

conditions through post-processing techniques. 

 

 

In this work, we will evaluate the proposed models using the LOL (LOw-

Light) [29] dataset which contains 500 low-light and normal-light image pairs of 

different kinds such as toys, books, garden, etc. It is divided into 485 training pairs 

and 15 testing pairs. All the images have a resolution of 400×600.  Fig. 3.1 shows 

some samples. 

 

 

 

Figure 3.1: LOL dataset samples 
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3.2 Raw Images 

 

RAW images are a digital camera-specific format that typically contains 

unprocessed image containing both the sensor pixel values and all meta-information 

about the image generated by the camera. Raw files come in many proprietary file 

formats (Nikon’s. NEF, Canon’s .CR2, etc.) these files constitute a repository of all 

the captured information of the scene. 

 

The image sensor’s Raw data contains the light intensity values captured 

from the scene, this data is a single channel intensity image, and typically comes in 

the form of color filter array (CFA) which is an 𝑚 ∗ 𝑛 array of pixels (where m and 

n are sensor’s dimensions), each pixel carries information about a single-color 

channel (Red, Green or Blue). Since the light falls on any given pixel in CCD 

sensor is recorded as a number of electrons in a capacitor, it can be saved only as a 

scalar value; and hence a single pixel can’t reflect the three-dimensional nature of 

the light. CFAs offer a compromise where information about each of the three-color 

channels is captured at different locations by means of spectrum-selective filters 

placed over each pixel. Bayer array (shown in Fig. 3.2) is the most common CFA 

pattern used in the modern digital cameras, it has twice as many pixels represent 

green light because the human eye is more sensitive to contrast in shades of green 

and closely correlates with the light intensity perception of a scene. 

 

 

Figure 3.2: Bayer pattern [50] 
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3.3 Data Preprocessing 

 

Data pre-processing is the first crucial step in converting raw data into 

processed data that can be fed into the model. 

     3.3.1 Data Generator 

Using a data generator to load data is imperative while training deep 

learning models as we need large dataset to train good models, so there is a need for 

large memory requirements to analyze and process this extremely large amount of 

data. But due to the limitations of our memory, it is not possible to load the whole 

data into memory; therefore, we used a data generator to get around this issue. 

 

The data generator is a function that generates batches of input data and its 

corresponding target data for training a neural network. It loads a batch of data into 

memory and feeds it to the model for training, then discards it and loads the next 

batch. This allows the model to be trained on large dataset without running out of 

memory. 

 

     3.3.2 Data Normalization 

In deep learning, data normalization refers to the process of transforming 

input data to have zero mean and unit variance. It is one of the most important 

stages of data preparation for training neural networks, it can improve the 

performance and the stability of the model during training. 

 

Normalization assigns equal weights/importance to each variable, ensuring 

that no single variable steers model performance in one way simply because it is 

larger. There are four typical normalization techniques that may be useful: 

 

▪ Min-Max Normalization: is one of the most popular methods for 

normalizing data for each feature, the lowest value is converted to a 0, the 

maximum value is converted to a 1, and all other values are converted to a 

decimal between 0 and 1. It is formulating as: 

 

𝒙, = (𝒙 − 𝒙𝒎𝒊𝒏) (𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏)⁄      (1) 

 

▪ Z-Score Normalization: This technique, also known as standardization.  

It's common in machine learning methods like SVM and logistic 

regression and expressed as follows: 

 

                    𝒙, =  (𝒙 −  𝝁) 𝝈⁄                      (2) 
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Here, 𝑥 , represents the standard score, 𝜇 the population mean, and 𝜎 

the population standard variation. 

 

▪ Log Scaling: is a method that uses logarithms to compress a wide range 

into a smaller range. As a result, the distances between the data before and 

after scaling may not be proportionate. It is ideal for detecting many 

natural occurrences, it formulated as: 

 

     𝒙, =  𝒍𝒐𝒈(𝒙)                      (3) 

 

▪ Feature Clipping: is the process of removing data points beyond a certain 

minimum or maximum. It's useful for removing extreme outliers from a 

data set. It is typically done during the data preprocessing step. 

 

 

  Figure 3.3: Summary of normalization techniques [51] 

 

 

     3.3.3 Data Augmentation 

             Data augmentation is a technique generally used in deep 

learning to increase the size of a dataset by applying different transformations to the 

existing dataset. 

 

The main idea behind data augmentation is to produce a model that can be 

more robust and generalize better to a new dataset, by introducing slight variations 

to the existing dataset. 

 

Data augmentation is most appropriate when the existing dataset is small, as 

it allows the model to learn from a more diverse and representative set of examples. 

It is often used in computer vision tasks such as image classification, object 

detection, and natural language processing tasks, where new data is created by some 

transformations applied on the input dataset, some of common transformations used 

in computer vision tasks include: 

 

▪ Random cropping: randomly cropping a region of the image 
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▪ Random flipping: randomly flipping the image horizontally or vertically 

▪ Random rotation: randomly rotating the image by a small angle 

▪ Random scaling: randomly scaling the image by a small factor 

 

By combining these transformations, a large number of new training 

examples can be created from the original dataset, which can improve the 

performance of the model and reduce the risk of overfitting.  

 

Moreover, we can apply some other transformation like changing the 

brightness or contrast of the original data, and also in some cases data 

augmentation can involve adding noise to the original dataset.   

 

     3.4 Shot and Read Noise Model  

The shot noise and read noise model is a widely adopted model in the field 

of signal processing and imaging that describes the sources of the actual noise in an 

image. 

 

Shot noise, also referred to as photon noise, originates from the random 

nature of light when it is exposed by a camera sensor. This type of noise is 

proportional to the square root of the number of photons detected by the sensor, and 

it is generally the dominant source of noise in bright image regions. 

 

Read noise, on the other hand, is a type of electronic noise that arises during 

the process of reading out the signal from the camera sensor. It is a constant noise 

level that is present in all images captured by the sensor, and it is typically more 

significant than shot noise in well-light imaging situations. 

 

In this work, inspired by the noise model proposed in [31] we simulate the 

noise in raw sensor, where shot noise represents a Poisson random variable whose 

mean is the true light intensity, whereas read noise is a Gaussian random variable 

with zero mean and fixed variance. Together shot and read noise can be modeled as 

a single heteroscedastic Gaussian, where the noise values are independent and 

identically distributed random variables with zero mean and a certain standard 

deviation.  

 

The observed intensity 𝓨 is treated as a random variable whose variance is a 

function of the input intensity 𝑥, 

 

           𝓨 ~ 𝓝(µ = 𝒙 , 𝝈𝟐 =  𝝀𝒓𝒆𝒂𝒅 +  𝝀𝒔𝒉𝒐𝒕 𝒙 )                (4) 
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Where  𝜆𝑟𝑒𝑎𝑑,  𝜆𝑠ℎ𝑜𝑡 are determined by the sensor’s analog and digital gains. For digital 

gain  gᵈ , analog gain  g𝑎 and certain sensor readout variance  𝜎𝑟
2, we have:  

                       𝝀𝒓𝒆𝒂𝒅 =  𝒈𝒅
𝟐  𝝈𝒓

𝟐,  𝝀𝒔𝒉𝒐𝒕 = 𝒈𝒅 𝒈𝒂                         (5) 

 

To choose noise levels for our input images, we generate random noise levels 

from a log-log linear distribution, then model the joint distribution of different 

read/shot noise parameter pairs in the real raw images of the LOL dataset.  

 

𝐥𝐨𝐠( 𝝀𝒔𝒉𝒐𝒕) ~ 𝓤(𝒂 = 𝐥𝐨𝐠(𝟎. 𝟎𝟎𝟎𝟏) , 𝒃 = 𝐥𝐨𝐠(𝟎. 𝟎𝟏𝟐))     

𝐥𝐨𝐠( 𝝀𝒓𝒆𝒂𝒅) | 𝒍𝒐𝒈( 𝝀𝒔𝒉𝒐𝒕) ~𝓝(µ = 𝟐. 𝟏𝟖 𝐥𝐨𝐠( 𝝀𝒔𝒉𝒐𝒕) + 𝟏. 𝟐 , 𝛔 = 𝟎. 𝟐𝟔)       (6) 

 

In short, we can summarize the data processing stage as shown in Fig.4, where 

we applied data augmentation on the original LOL dataset, and then used the noise 

model to generate random noise that simulates the noise generated by the camera 

sensor, and finally, we used the data generator to feed the denoising model with a 

pair of the clean and noisy image. 

 

 

 

Figure 3.4: Data processing pipeline 
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       Residual Learning 

4.1 Residual Learning in Deep Learning 

 

Residual Learning, a.k.a residual network or ResNet, is a technique used in 

deep learning to address the problem of vanishing gradients. Traditional deep 

networks are designed to learn a mapping function F(x) from the input data x to the 

output data y. However, the gradient of the loss function becomes very small or 

even vanishes as the network goes deeper, so it can be challenging for the network 

to learn a direct mapping between the input and output, which can lead to the 

network becoming harder to optimize and slowing down learning. 

 

The problem of gradient vanishing in deep learning arises when the 

gradients in the backpropagation algorithm (shown in Fig. 4.1) become very small 

as they are propagated back through many layers of the neural network. This can 

make it difficult to train the network effectively because the weights are updated 

based on these gradients and if they are too small, the updates will also be too small 

and the training process will be slow or may even stall. 

 

 

 

Figure 4.1: Schematic diagram of backpropagation training algorithm [52] 
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The reason why this occurs is that the backpropagation algorithm involves 

multiplying many small gradients together as they are propagated backward through 

the layers of the network. As the number of layers in the network increases, the 

gradients can become extremely small and may eventually approach zero, which 

means that the weights are no longer being updated effectively. 

 

There are several ways to address the problem of gradient vanishing in deep 

learning, including using specialized activation functions (such as the rectified 

linear unit or ReLU), batch normalization, and techniques such as residual 

connections and skip connections, which allow for gradients to bypass certain 

layers and flow more easily through the network. This work is proposed mainly 

based on these techniques 

 

Residual learning (Fig. 4.2) introduces skip connections to overcome the 

gradient vanishing problem, which allows the output of one layer to be added 

directly to the input of a following layer, and hence the model can learn to make 

residual corrections to the output of a previous layer, rather than trying to learn the 

entire transformation from scratch. 

 

By allowing information to flood directly from earlier layers to subsequence 

layers, ResNets allow the model to be trained to greater depths and achieve higher 

accuracy than traditional deep neural networks, which can result in crucially better 

performance on a wide range of computer vision tasks. 

 

 

 Figure 4.2: Residual learning 
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4.2 Residual Learning Formulation 

As mentioned before, Residual learning [53] involves adding skip/short 

connections to a neural network. These connections allow the network to learn 

residual mappings, which are the difference between the desired output and the 

current output of the network. 

The residual learning formulation is based on the idea that it is easier to 

learn the difference between the desired output and the current output of a network 

than to learn the entire mapping from input to output. 

Mathematically, the residual learning formulation is expressed as follows: 

Given an input 𝒙   , a residual block computes the output y as: 

𝒚 = 𝓕 (𝒙) + 𝒙     (7)                 

 

 

Figure 4.3: Residual block [53] 

where 𝒙 is the input to the layer, 𝓕 (𝒙) is the residual function learned by 

the layer, and 𝒚 is the output of the layer. Adding x directly to the output of the 

layer creates a "shortcut connection", which allows the gradient to flow easily 

during the training, so the network can learn to predict the residual function rather 

than the full mapping function. This formulation of residual learning using skip 

connections has become a popular approach in deep learning and has been widely 

used in a variety of applications, including image recognition, speech recognition, 

and natural language processing. 

 

4.3 Networks Architecture  

UNet [54] and ResUNet [53] are convolutional neural network architectures 

that were designed based on the concept of residual learning. The UNet design 

primarily uses skip connections, whereas ResUNet used many residual blocks that 

are stacked on top of each other, and each block has multiple convolutional layers 

and a shortcut/skip connection, to achieve the goal of alleviating the vanishing 
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gradient issue in deep networks and offering models that can be trained to greater 

depths with higher accuracy on a variety of tasks. 

  

4.3.1 UNet Architecture 

The U-Net [54] is a U-shaped encoder-decoder network structure, it 

considers an improvement of the existing fully convolutional networks. It consists 

of encoder blocks and decoder blocks connecting via a bridge. The encoder part 

halves the spatial dimensions of the input and doubles the number of filters (feature 

channels) at each encoder block. Likewise, the decoder part doubles the spatial 

dimensions and halves the number of feature channels. Fig. 4.4 shows Unet 

architecture. 

 

Figure 4.4: UNet architecture [53] 

 

The encoder Network in UNet network usually consists of convolutional 

layers with stride 2, which reduces the spatial resolution of the input image by a 

factor of 2 in each layer with the aim of capturing high-level features of the image 

and reducing its dimensionality, offering more efficient processing in later layers by 

maintaining the spatial information of the image as it passes through the network. 

The encoder block is typically followed by a bottleneck layer, which is a set of 

convolutional layers that further reduce the spatial resolution of the image while 

preserving the number of feature maps. The bottleneck layer is important for 

capturing the most important features of the input image before passing them to the 

decoder block. The Encoder network represents a feature extractor in the UNet 

model it mainly learns the representation of the input image through a sequence of 



 

 

20 

4-Residual Learning 

encoder blocks, each block consists of two 3x3 convolution layers followed by the 

ReLU activation function which introduces a non-linearity into the network, and 

helps in better generalization of training data. The activation function followed by 

2x2 max-pooling where the spatial dimensions of feature maps are reduced by half.  

This decreases the number of trainable parameters and thus reduces the 

computational cost.  

 

The skip connections afford additional information that helps the decoder to 

generate better features. They act as a shortcut connection that helps in better flow 

of gradient during backpropagation which in turn helps the network learns the better 

representation for the input image. 

 

The decoder network starts with a 2x2 transpose convolution. Next, it is 

concatenated with the corresponding skip connection feature map from the encoder 

block. These skip connections provide features from earlier layers that are 

sometimes lost due to the depth of the network. After that, two 3x3 convolutions are 

used, where each convolution is followed by a ReLU activation function. The 

output of ReLU function passes through 1x1 convolution with sigmoid activation 

which give the final output. 

 

However, different variations and modifications of the UNet architecture 

have been proposed since then, with different numbers of encoder and decoder 

blocks. For example, some implementations may have more or fewer levels of 

resolution or may use different types of pooling or upsampling layers. 

 

In practice, the number of encoder and decoder blocks is often chosen based 

on the complexity of the input data and the desired level of accuracy. 

 

The key feature of the U-Net architecture is the usage of skip connections 

between the encoder and decoder. These skip connections allow the decoder to 

access feature maps from earlier layers in the encoder, which helps to preserve 

spatial information besides alleviating the gradient vanishing problem.  
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4.3.2 ResUNet Architecture  

ResUNet [53] is a deep learning architecture that combines two popular 

neural network architectures, ResNet and U-Net. ResNet [30] is a convolutional 

neural network (CNN) that uses residual connections to improve training and 

performance, and the previously mentioned U-Net that uses an encoder-decoder 

architecture. 

 

ResUNet, therefore, has an encoder based on the ResNet architecture, and a 

decoder based on the U-Net architecture. The encoder network consists of several 

blocks of convolutional layers with residual connections. Residual connections 

help in extracting feature maps from the input image. The decoder network, on the 

other hand, has a bilinear upsampling block that incrementally increases the spatial 

resolution of the feature maps. 

 

Figure 4.5: ResUNet architecture [55] 

 

As Fig. 4.4 shows, we can notice that it has the same structure as UNet in 

Fig.4.5 with the addition of the residual connections within each block, which allow 

the network to better propagate gradients through the network during training. The 

combination of convolutional layers and residual connections leads to better 

computational efficiency compared to UNet since the residual connections reduce 

the trainable parameters that need to be learned by the network. 
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Overall, the UNet and ResUNet architectures have proven to be highly 

effective for a variety of computer vision tasks and have achieved state-of-the-art 

results on various benchmarks. 
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     Proposed Denoising Model 

This study introduces a deep learning approach for improving low-light 

images by removing noise and enhancing image quality. The method is divided into 

two stages: Denoising and Enhancement. The evaluation is performed using specific 

performance metrics, and the outcomes of the approach are presented in detail. The 

focus of this chapter is on the first stage, which is image denoising. 

 

 

Figure 5.1: Flowchart of low-light image denoising and enhancement 

 

 

5.1 Methodology 

5.1.1 ResUnet Model 

Our proposal is the deep ResUnet, a neural network that merges the UNet 

and residual neural network's strengths. By doing so, we gain two advantages: 

firstly, the use of residual units aids in training the network, and secondly, the skip 

connections present both within a residual unit and between low and high levels of 

the network enable efficient information propagation without degradation. This 

design results in a neural network requiring significantly fewer parameters while 

achieving comparable or superior performance on image denoising. 

 

The denoising model is mainly composed of three parts: encoding, bridge, 

and decoding as shown in Fig. 5.2. A custom data generator is used to feed the 

model with a pair of clean low-light and noisy images, and all of these parts are  
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built with residual units of two 3x3 convolutional blocks added to the 

shortcut connection, where each convolutional block represents a combination of a 

BN layer, a ReLU activation layer, and a convolutional layer. The residual 

connections connect the input of one layer with the output of the following layer, 

and each residual connection has a 3x3 convolutional layer followed by a BN layer. 

Finally, the skip connections combine the feature extracted by the encoder block 

with the spatial information of the corresponding decoder block. 

 

 

  The first part is the encoder, which in turn handles learning features of the 

noisy image. It consists of four residual units, in each unit a stride of 2 is applied to 

the first convolutional block instead of using the max pooling operation to reduce 

the feature map by half as in the UNet model.   In contrast, the decoder also 

composes of four residual units but before each unit, there is an up-sampling 

operation applied to the feature maps from the lower level and the concatenation 

with the feature maps from the corresponding encoding level. 

 

 

 At the last level of the decoding path, a 1x1 convolutional layer is applied to 

project the multi-channel feature maps into the desired output. The middle part 

serves as a bridge connecting the encoding and decoding paths. Table5.1 presents 

the convolutional layer and the output size after each residual unit. 
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 Unit Level Conv. 

Filter 

Stride Output 

size 

Input 
   400x600x3 

Encoder 

Level1 

3x3/16 1 400x600x16 

3x3/16 1 400x600x16 

Level2 

3x3/32 2 200x300x32 

3x3/32 1 200x300x32 

Level3 

3x3/64 2 100x150x64 

3x3/64 1 100x150x64 

Level4 

3x3/128 2 50x76x128 

3x3/128 1 50x76x128 

Bridge 

 
3x3/256 1 25x38x256 

 
3x3/256  25x38x256 

Decoder 

Level5 

3x3/128 1 50x76x128 

3x3/128 1 50x76x128 

Level6 

3x3/64 1 100x150x64 

3x3/64 1 100x150x64 

Level7 

3x3/32 1 200x300x32 

3x3/32 1 200x300x32 

Level8 

3x3/16 1 400x600x16 

3x3/16 1 400x600x16 

output 
 1x1/3 1 400x600x3 

 

Table 5.1: Convolutional layers in residual units of denoising model 
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                         Figure 5.2: Architecture of the proposed denoising network 
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5.1.2 Loss Functions  

Consider a clean image 𝑥 corrupted by a generic noise ⱱ: 𝒚 = 𝒙 + ⱱ. Our 

goal is to estimate the trainable parameters 𝑾 of the network, such that it recovers 

the original clean image 𝑥. This is achieved by minimizing the loss between the 

generated noisy image and the original one. The problem of recovering 𝑥 can be 

formulated as: 

                             �̂� = 𝓕(𝒚, 𝑾)                                       (8) 
where �̂� is the estimated recovered image of the original image 𝒙, 𝒚 is the 

corrupted image, and 𝑾 is the network parameters. 

 

Since the noisy image 𝒚 contains most of the structure of the clean image 𝒙 

it makes sense to keep this structure and estimate only the noise for this reason 

residual learning is used. 

Accordingly, in order to evaluate the trainable parameters 𝑾, we can use the 

following optimization problem: 

 

𝑾∗  =  𝒂𝒓𝒈𝒎𝒊𝒏 
𝟏

𝑵
 ∑ 𝓛𝑵

𝒊=𝟏 (𝓕(𝒚𝒊, 𝑾), 𝒙𝒊) + 
𝝀

𝟐
 ‖ 𝑾 ‖             (9) 

 

Where {(𝒚𝒊, 𝒙𝒊)} is the training dataset, 𝒙𝒊 is the clean image and 𝒚𝒊 is the 

corresponding noisy image. The first term of the Eqn. (7) corresponds to the fidelity 

term and the second one is the regularization term, while the hyperparameter 𝜆 > 0 

controls the tradeoff between the two terms. The 𝓛 (𝑦, 𝑥) is the loss function, in our 

case, the mean square error provided a better loss, i.e, we use the following 

function: 

                   𝓛(𝒚, 𝒙) =
𝟏

𝑵
 ∑ ‖𝒚 − 𝒙 ‖𝑵

𝒊=𝟏  𝟐                             (10) 

 

5.1.3 Evaluation Metrics 

 

There are many performance metrics used to evaluate these models and 

prove their worth or failure in achieving their endeavor of them. In this work, we 

chose PSNR and SSIM metrics for assessing the proposed models. 

 

PSNR stands for Peak Signal-to-Noise Ratio and is a widely used metric in 

image processing to evaluate the quality of an image compared to its original or 

reference image. It measures the ratio of the maximum possible value of the signal 

to the noise in the image. The higher the PSNR value, the less noise there is in the 

processed image, and the better the image quality. 
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PSNR is calculated by comparing the mean square error (MSE) between the 

original and processed images to the maximum possible pixel value in the image. 

The formula for PSNR is: 

 

    𝑷𝑺𝑵𝑹 =  𝟐𝟎  𝒍𝒐𝒈𝟏𝟎(𝑴𝑨𝑿𝒑) −  𝟏𝟎  𝒍𝒐𝒈𝟏𝟎(𝑴𝑺𝑬)      (11) 

 

where 𝐌𝐀𝐗𝐩 is the maximum possible pixel value (usually 255 for 8-bit 

images), and 𝐌𝐒𝐄 is the mean squared error between the original and processed 

images. 

 

PSNR is a useful metric for evaluating the effectiveness of image 

compression algorithms or image processing techniques. However, it should be 

noted that PSNR does not always reflect the perceptual quality of an image, as some 

noise may not be noticeable to the human eye. Therefore, we use another metric, 

SSIM [56] stands for Structural Similarity Index, which is another widely used 

metric for evaluating the similarity between two images. Unlike PSNR, SSIM takes 

into account the structural information of the images and how the human visual 

system perceives the differences between the two images. 

 

SSIM works by comparing the luminance, contrast, and structure of the 

original and processed images. The SSIM index ranges from -1 to 1, where a value 

of 1 indicates perfect similarity between the two images, and a value of -1 indicates 

complete dissimilarity. A value of 0 indicates that the two images are uncorrelated. 

The formula for SSIM is as follows: 

 

   𝑺𝑺𝑰𝑴( 𝒙 , 𝒚)  =  [𝒍(𝒙 , 𝒚)] 𝜶. [𝒄(𝒙 , 𝒚)]𝜷.  [𝒔(𝒙 , 𝒚)]𝜸   (12) 

 

where 𝒙 and 𝒚 are the two images being compared, 𝒍(𝒙 , 𝒚) represents the 

luminance similarity, 𝒄(𝒙 , 𝒚) represents the contrast similarity, and 𝒔(𝒙 , 𝒚) 

represents the structural similarity. 

 

The parameters α, β, and γ are constants that control the relative importance of 

each component. Typically, they are set to α = β = γ = 1 

 

It is worth noting that SSIM, like any other metric, has its limitations and 

may not always accurately reflect human perception. Therefore, the conjunction 

between PSNR and SSIM provides a more complete evaluation of image quality. 
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5.2 Experimental setup 

 

5.2.1 Dataset 

 

In the denoising model we use Low-Light (LOL) Dataset originally 

proposed for Unsupervised Low-light Image Enhancement with Decoupled 

Networks [32]. LOL is composed of 500 low-light and normal-light image pairs and 

is divided into 400 training pairs, 85 validation pairs, and 15 testing pairs. The Data 

generator augments the data and generates a random noise according to Eqn. (6) that 

simulates the noise generated by the camera’s sensor and produces a pair of clean 

and noisy images to be fed to the model. All the images have the full resolution of 

400 × 600 as described in Table 5.1. 

 

5.2.2   Implementation details 

The proposed model is implemented using Keras [33] framework. Adam 

optimizer [34] is used to optimize the whole network with learning rate (0.0001) to 

train the model. 

We train the model on NVIDIA GTX1070 GPU with 8 Gb of Ram, we 

choose a batch size of 2 for 500 epochs. We use a small batch size to fit the GPU 

memory. 

 

 Overall, the training process involves to minimize the mean square loss 

(MSE) defined in Eqn. (10), and achieving the best values for the evaluation metrics 

(PSNR, SSIM).  

 

5.3   Denoising Results  

Before choosing the final loss function to train our model, we try out 

multiple loss functions during model training and compare the resulting 

performance to determine the most suitable one for our specific task. Table. 5.2 

shows a comparison between the results of these functions. The comparison is done 

over 100 epochs. 

Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Loss 

function 
MSE MAE 

Vgg 

Perceptual 

loss 

MAE + MSE 
MSE + MAE 

+ Vgg 

Values 37.91 0.875 37.341 0.871 36.39 0.865 37.199 0.873 33.834 0.740 

 

Table 5.2: Comparison between different loss functions 
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Where the MAE (Mean Absolute Error) is the average of the absolute 

differences between the predicted denoised image and the clean low-light image.  

                   𝓛 (𝒚, 𝒙)  =   
𝟏

𝑵
 ∑ |𝒚 − 𝒙|𝑵

𝒊=𝟏                                    (13) 

 

 

While the Vgg perceptual loss [57] is a type of loss function used in image 

processing tasks such as image style transfer, super-resolution, and image 

generation. It is named after the VGG-19 [58] network a popular convolutional 

neural network architecture used in computer vision tasks. 

 

 

The VGG perceptual loss measures the difference between the feature 

representations of two images, where one image is a denoised image and the other is 

a target clean image. The feature representations are obtained by passing the images 

through a pre-trained VGG-19 network, and extracting the output of certain 

intermediate layers. By comparing the feature representations of the denoised image 

and the target image, the VGG perceptual loss encourages the denoised image to 

have similar low-level and high-level features as the target image.  

 

We also utilize a weighted sum to combine multiple losses in our approach. Fig. 5.3 

illustrates the loss curves of these functions. 
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It is evident that MSE yielded a satisfactory loss curve and the highest 

evaluation metrics value. The MAE also produced a favorable loss curve, however, 

it failed to deliver the intended output. Conversely, the Vgg loss curve seems to be 

indicating overfitting (for more epochs), while the combined losses resulted in a 

blurry output and lower metric values when compared to MSE. we chose MSE to 

train our proposed model. 

 

 

 

 
 

MAE MSE 

 
 

Vgg MAE + MSE 

 
Weight sum of MSE, MAE and Vgg 

 

Figure 5.3: Loss curves 
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Training the model for 500 epochs gave impressive results. It achieved PSNR = 

44.85 and SSIM = 0.9576.  

The curves in the figures below show the improvement of evaluation metrics 

values and the decrease in the loss during training. 

 

                                                                              . Train  . Validation 

  

(a) (b) 

Figure 5.4: (a) PSNR curve (b) SSIM curve 

 

 

 

 Figure 5.5: ResUnet MSE loss curve 

 

Fig. 5.5 shows that after many epochs of training, the training and validation 

loss functions reach a minimum point of convergence and there is little difference 

between the two final values, the training data loss is slightly less than the 

validation data loss, indicating that we have a good fitting scenario for our model. 
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5.3.1 Sample Results 

Ground-Truth Noisy-Image Denoised-output 

 

   

   

   

   

 

Figure 5.6: Test samples and denoised outputs 

 

We can see from the resulting images that the output images are very near to 

the clean ground truth images, so we can conclude that the denoising phase was 

successful based on the outputs, evaluation metrics values, and loss curve. 
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Fig. 5.7 below shows some details of these denoised images compared to their noisy counterpart. 

  

  

  

(a) Noisy Images (b)  Denoised Image 

Figure 5.7: Noisy and denoised samples 
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     Enhancement Techniques 

The objective of low-light enhancement in deep learning is to enhance the 

quality and visibility of images that were taken under low-light conditions. In such 

conditions, images can encounter challenges like low contrast, noise, and blurriness, 

which can make it challenging to extract meaningful information from them. 

In this section, we will explore various methods to enhance image 

illumination, ranging from conventional techniques to deep learning techniques. 

The input to this model will be the image obtained from the denoising phase. We 

will cover histogram equalization, MIRNet [59] and Zero-dce [60] techniques. 

 

6.1 Histogram Equalization 

 

A histogram is a visual depiction that shows how the pixel intensities are 

distributed throughout an image. It counts the number of pixels that belong to 

different intensity ranges or bins to provide a summary of the image content. 

Histogram equalization is a technique used in computer vision to enhance 

the contrast of an image by adjusting the distribution of its pixel intensities. The 

method works by re-mapping the pixel intensity values of an image so that they 

cover the entire range of values available. 

 

 

      

        Figure 6.1: Histogram of an image before and after equalization [61] 
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The histogram equalization process involves calculating the cumulative 

distribution function (CDF) of the image's histogram and then scaling the pixel 

values to obtain a new histogram with a uniform distribution. 

 

The CDF of an image's histogram is computed by summing the number of 

pixels in each intensity level and dividing by the total number of pixels. This 

function gives the probability of each intensity level occurring in the image. The 

pixel intensity values are then scaled based on the CDF values, so that higher 

intensity values are more spread out, and lower intensity values are compressed. 

Thus, the equalization function is: 

 

𝒔𝒌 = 𝑻(𝒓𝒌) = (𝑳 − 𝟏) ∑ 𝒑𝒓
𝒌
𝒋=𝟎 (𝒓𝒋)       (14) 

 

where s and r are the output and input pixel intensities respectively. L is the 

maximum intensity value (for n bit image L = 2𝑛). The probability of occurrence of 

the intensity level 𝒓𝒋 in the image is approximated by: 

 

𝒑𝒓(𝒓𝒋) =  
𝒏𝒋

𝑴𝑵
           (15) 

 

 

It is not advisable to separately apply histogram equalization to the red, 

green, and blue components of an image as it can result in significant changes to the 

image's color balance. Hence, to prevent this, we first converted the image to a 

different color space, such as HSV, before applying the equalization to the output of 

the denoising model (i.e., denoised images). This allowed the algorithm to be 

applied to the luminance channel without affecting the hue and saturation of the 

image. 
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6.1.1 Histogram Equalization Result 

Clean Low-Light Denoised output Enhanced output 
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  Figure 6.2: Histogram equalization enhanced results 

 

In summary, our findings suggest that the use of histogram equalization can 

enhance an image's contrast, facilitating the differntiation of various objects or 

characteristics present in the image. Nevertheless, it may also cause some loss of 

details, as our experiment indicated that this method has the potential to amplify 

noise in the image since the histogram equalizer will redistribute the noisy pixels 

intensities for higher values. 

 

6.2 Zero-Reference Deep Curve Estimation 

 

This deep learning-based method is capable of handling various lighting 

conditions, including nonuniform and poor lighting situations. Instead of mapping 

images directly, the proposed technique reformulates the problem as an image-

specific curve estimation task. To achieve this, the input low-light image is used to 

produce high-order curves that are then utilized to adjust the dynamic range of the 

input on a pixel-by-pixel basis. The curve estimation process is designed to preserve 

the image's range and contrast of neighboring pixels while being differentiable, 

allowing the adjustable parameters of the curves to be learned using a deep 

convolutional neural network. The proposed network [26] is lightweight, and it can 

be used iteratively to approximate higher-order curves to achieve more robust and 

accurate dynamic range adjustment. 
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Figure 6.3: Framework of zero-reference deep curve estimation [60] 

        Fig. 6.3 illustrates the architecture of the Zero-Reference Deep Curve 

 Estimation (Zero-DCE) framework, which uses a Deep Curve Estimation 

 Network (DCE-Net) to estimate a set of Light-Enhancement (LE) curves that 

 best fit the input image. The framework applies these curves iteratively to all 

 pixels in the input's RGB channels to obtain the final enhanced image. This 

 process involves key components, such as the LE-curve, DCE-Net, and non-

 reference loss functions, which will be detailed in the following sections.  

 

6.2.1 Zero-DCE Framework 

I. Light-Enhancement Curve (LEC) and pixel-wise Curve 

 

The LEC represents a global adjustment of the brightness of the image, which 

is applied uniformly to all pixels in the image. It captures the overall illumination 

level of the image and adjusts it to a more suitable level for human perception. The 

LEC is learned by the Deep Curve Estimation Network (DCE-Net) and is applied to 

the input image as a single curve. It can be formulated as: 

 

 𝑳𝑬(𝑰(𝒙), 𝜶) =  𝑰(𝒙) +  𝜶 [𝑰(𝒙)(𝟏 − 𝑰(𝒙)]                    (16) 

where 𝒙 denotes pixel coordinates, 𝑳𝑬(𝑰(𝒙), 𝜶) is the enhanced version of the given input 

𝑰(𝒙), and 𝜶 ∈ [−𝟏, 𝟏] is the adjustment trainable curve parameter. 

 

On the other hand, the pixel-wise curve is a local adjustment of the brightness 

of the image that is applied on a per-pixel basis. It allows for fine-grained 
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adjustments of brightness at the local level, which can capture details and textures 

that may be lost in the LEC adjustment. The pixel-wise curve is also learned by the 

DCE-Net and is applied iteratively to each pixel in the image, and can be 

formulated as: 

 

𝑳𝑬𝒏(𝒙) =  𝑳𝑬𝒏−𝟏(𝒙) + 𝑨𝒏 [𝑳𝑬𝒏−𝟏(𝒙)(𝟏 − 𝑳𝑬𝒏−𝟏(𝒙)]       (17) 

 

where n is the number of iterations, and 𝑨𝒏 is the parameter map with the same size as the 

input image. 

In summary, the LEC is a global adjustment that applies a single curve to the 

entire image, while the pixel-wise curve is a local adjustment that applies a curve to 

each pixel in the image. The combination of these two components allows the Zero-

DCE approach to achieve accurate and fine-grained image enhancement in low-light 

conditions without the need for a reference image. 

 

II. Deep Curve Estimation Network 

 

 The Deep Curve Estimation Network (DCE-Net) is a key component of 

the Zero-DCE approach. It is a convolutional neural network (CNN) that is trained 

to estimate a set of best-fitting Light-Enhancement (LE) curves, which are used to 

enhance the input image. 

 

The DCE-Net takes the low-light image as input and outputs a set of LE curves, 

including the Light Enhancement Curve (LEC) and a pixel-wise curve. The DCE-

Net is typically composed of seven convolutional layers. Each layer consists of 32 

(3x3) convolutional kernels of stride 1 followed by ReLU activation function. The 

last convolutional layer is followed by Tanh activation to produce 24 parameter 

maps for 8 iterations (n = 8), where each iteration requires three curve parameter 

maps for the three channels. (Fig. 6.4).  
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Figure 6.4: Deep curve estimation network architecture [62] 

 

 

During training, it learns to estimate the LE curves that minimize the difference between 

the generated enhanced image and the ground truth image. This is typically done by minimizing 

a loss function (will be described in the next section). 

 

The DCE-Net architecture can vary depending on the specific implementation but typically 

includes features such as skip connections to capture multi-scale information, batch 

normalization to reduce internal covariate shift, and residual blocks to improve gradient flow 

during backpropagation. 

 

Overall, the DCE-Net is a powerful tool for enhancing low-light images by 

estimating the best-fitting LE curves, which are then applied to the image to 

produce a visually pleasing and enhanced output. 
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Table 6.1:  Zero-DCE layers 

 

 

 

The statement highlights the fact that DCE-Net, a particular neural network 

architecture, has a relatively low number of trainable parameters, specifically 

79,416. This characteristic makes it lightweight and capable of running on 

computational resource-limited devices, such as mobile platforms. In other words, 

DCE-Net is a computationally efficient model that can be easily deployed on 

devices with limited processing power without compromising its performance. 
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III. Non-Reference Loss Functions 

 

In order to facilitate zero-reference learning within the Deep Curve Estimation Network 

(DCE-Net), a set of differentiable non-reference loss functions has been proposed. These loss 

functions enable the evaluation of the quality of the enhanced images that are generated by the 

DCE-Net. 

 

The DCE-Net is trained using four different types of non-reference loss 

functions, which allow for the comparison of the generated images with their 

ground truth counterparts. These loss functions are designed to capture different 

aspects of image quality, including texture, color, and sharpness. The use of these 

loss functions ensures that the DCE-Net is trained to generate images that are 

visually pleasing and of high quality. 

 

The Spatial Consistency Loss (𝑳𝒔𝒑𝒂) is a loss function that promotes spatial 

consistency in the enhanced image by preserving the difference between 

neighboring regions in the input image and its corresponding enhanced version. The 

goal of this loss function is to ensure that the enhanced image maintains the same 

spatial coherence as the input image, which helps to preserve important details and 

structures in the image. It can be expressed as: 

 

𝑳𝒔𝒑𝒂 =  
𝟏

𝑲
 ∑ ∑ (|𝒀𝒊 − 𝒀𝒋|𝒋∈𝜴(𝒊)

𝑲
𝒊=𝟏 − |𝑰𝒊 − 𝑰𝒋|)𝟐          (18) 

 

a parameter K represents the number of local regions in the image. Each local 

region is centered at a specific point, and includes four neighboring regions - top, 

down, left, and right - denoted by 𝜴(𝒊). Within each local region, the average 

intensity value of the corresponding region in the enhanced image is represented as 

Y, while the average intensity value of the same region in the input image is 

represented as I. 

 

The Exposure Control Loss (𝑳𝒆𝒙𝒑) is a loss function that is designed to limit 

the impact of under- or over-exposed regions in the image. This loss function 

measures the distance between the average intensity value of a local region and a 

desired exposure level, denoted as 𝑬. The well-exposedness level 𝑬 is typically set 

to the gray level in the RGB color space, following existing practices [44,45]. In 

this experiment, we set E to 0.6. The formula for the Exposure Control Loss, 

denoted as 𝑳𝒆𝒙𝒑, is used to optimize this aspect of the image enhancement process is 

expressed as: 

 

𝑳𝒆𝒙𝒑 =  
𝟏

𝑴
 ∑ |𝒀𝒌 −  𝑬|𝑴

𝑲=𝟏                                                   (19) 
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Where 𝑴 represents the number of nonoverlapping local regions, and Y is the average 

intensity value of a local region in the enhanced image. 

 

 

The Color Constancy Loss (𝑳𝒄𝒐𝒍) is designed to correct potential color 

deviations in the enhanced image, while also building relationships among the three 

adjusted color channels. This loss function is based on the Gray-World color 

constancy hypothesis [46], which suggests that the average color in each sensor 

channel should be gray over the entire image. 

 

To achieve color constancy in the enhanced image, the Color Constancy Loss 

measures the difference between the average intensity values of the three-color 

channels (R, G, and B) in the enhanced image, and the average intensity value of the 

green channel in the input image as follow: 

 

         𝑳𝒄𝒐𝒍 =   ∑ (𝑱𝒑 − 𝑱𝒒)𝟐
∀(𝒑,𝒒)∈𝝐    , where 𝝐 =  {(𝑹, 𝑮), (𝑹, 𝑩), (𝑮, 𝑩)}    (20) 

  

where 𝑱𝒑 denotes the average intensity value of 𝒑 channel in the enhanced image, (𝒑, 𝒒) 

 represents a pair of channels. 

The Color Constancy Loss is an important component of the Zero-DCE 

network, as it helps to ensure that the enhanced image has accurate and consistent 

color representations.  

 

The Illumination Smoothness Loss (𝑳𝒊𝒍𝒍) is used to preserve the monotonicity 

relations between neighboring pixels in the image. This is achieved by adding an 

illumination smoothness loss to each curve parameter map A in the Zero-DCE 

network. It can be defined as: 

𝑳𝒊𝒍𝒍 =
𝟏

𝑵
  ∑ ∑ (|𝜵𝒙𝑨𝒏

𝒄 | + |𝜵𝒚𝑨𝒏
𝒄 |)

𝟐
𝒄∈𝜺

𝑵
𝒏=𝟏 ,    where 𝜺 =  {𝑹, 𝑮, 𝑩}       (21) 

 

where 𝑵 is the number of iterations,  𝛁𝒙 and 𝛁𝒚 represent the horizontal and vertical 

gradient operations, respectively. 

 

The total loss function used to train the Zero-DCE network and guide the 

image enhancement process is defined as a combination of the four individual loss 

functions described earlier. The expression for the total loss function is given by: 

  𝑳 =  𝑳𝒔𝒑𝒂  + 𝑳𝒆𝒙𝒑  + 𝝎𝒄𝒐𝒍𝑳𝒄𝒐𝒍 + 𝝎𝒊𝒍𝒍𝑳𝒊𝒍𝒍      (22) 

 

 

Here, 𝑳𝒔𝒑𝒂, 𝑳𝒆𝒙𝒑, 𝑳𝒄𝒐𝒍, and 𝑳𝒊𝒍𝒍 represent the Spatial Consistency Loss, 

Exposure Control Loss, Color Constancy Loss, and Illumination Smoothness Loss, 
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respectively. The coefficients 𝝎𝒄𝒐𝒍 and 𝝎𝒊𝒍𝒍 are hyperparameters that control the 

relative importance of the corresponding loss term and they are set to 0.5, and 20 

respectively to balance the scale of losses, where 𝑳𝒄𝒐𝒍 pays attention to the relations 

among three channels when curve mapping is applied. While 𝑳𝒊𝒍𝒍 emphasizes the 

correlations between neighboring regions. The importance of 𝑳𝒔𝒑𝒂 lies in preserving 

the difference between neighboring regions between the input and the enhanced 

image. 

 

By minimizing the total loss 𝑳 during training, the Zero-DCE network is able to 

learn the optimal set of curve parameters and produce high-quality enhanced images 

that are visually appealing and consistent with the underlying scene. 

 

 

6.2.2 Zero-DCE Experiment and Results 

 

I. Implementation Details 

 

 

As previously mentioned, the input to this stage of the work is the denoised 

images obtained from the first denoising phase. The Zero-DCE model was 

implemented using the Keras framework with the Adam optimizer and a learning 

rate of 0.0001. The model was trained on an NVIDIA GTX1070 GPU with 8GB of 

RAM, and a batch size of 2 was selected for 100 epochs. A small batch size was 

used to ensure that the GPU memory was sufficient. 

 

During the training process, the goal was to minimize the total loss function 

defined in Eqn. (20) while achieving the best possible values for the evaluation 

metrics such as PSNR and SSIM. By optimizing the model parameters in this way, 

we were able to produce high-quality enhanced images that effectively preserve the 

important details and characteristics of the original scene while eliminating noise 

and other unwanted artifacts. 

 

 

 

II. Results 

 

 Fig. 6.5 illustrates the curves of the loss functions obtained after training the 

 model. 
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A. Losses Curve 

  

Spatial Constancy loss curve exposure loss curve 

  

Color constancy loss curve Illumination smoothness loss curve 

 

Total loss curve 
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     Figure 6.5: Zero-dce loss curves 

The total loss curve in Fig. 6.5 is used to measure the difference between the enhanced 

image and the ground truth image. It is used to optimize the deep network during training.             

The curve estimation is specially designed, considering pixel value range, monotonicity, and 

differentiability. It can be seen in the total loss curve where the training loss continues to 

decrease while the validation loss starts to increase. This indicates that the model is starting to 

overfit the training data and will not generalizing well to new data.  

 

B. Sample Results 

Clean Low-Light Denoised output Enhanced output 

   

   

   

   



 

 

48 

6- Enhancement Techniques 

   

   
 

Figure 6.6:  Zero-dce enhanced results 

 

 

In the experiment, we discovered that Zero-DCE is appealing due to its relaxed 

reference picture assumption, i.e., it does not require any paired or even unpaired 

data during training. This is accomplished through the use of a set of carefully 

formulated non-reference loss functions, which indirectly measure the enhancement 

quality and drive the network's learning. Despite its simplicity, it demonstrates that 

it generalizes well to a variety of lighting situations. This approach is effective 

because image enhancement can be accomplished using an intuitive and simple 

nonlinear curve mapping technique. 

 

 

 

6.3 Multi-Scale Information Retention Network 

 

 The Multi-Scale Information Retention Network (MIRNet) [59] is a 

convolutional neural network (CNN) that has been specifically designed for the low 

light image enhancement. The network's architecture is tailored to retain and 

enhance low light image details while suppressing noise and artifacts that may 

appear in the image. This involves increasing the resolution of a low-light image to 

produce a high-resolution version with greater clarity. MIRNet uses a multi-scale 

approach to retain important information at various levels of detail, which is 

achieved through its hierarchical architecture with multiple levels of abstraction. 

The input image is processed at different scales, using convolutional layers to 
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extract increasingly complex features, which are then combined to create a multi-

scale representation of the original image. To prevent the vanishing gradient 

problem that can occur in deep networks, MIRNet also employs residual 

connections, which help the network to learn residual mappings between the low-

light input and enhanced output images.  

 

 

Figure 6.7:  MIRNet architecture [59] 

6.3.1 MIRNet Framework 

MIRNet's architecture comprises three primary modules: a feature extraction 

module, a multi-scale feature fusion module, and a reconstruction module. 

 

The Feature Extraction Module of MIRNet is designed to extract features 

from the input image at different scales. It is composed of a set of convolutional 

layers that operate on the input image at multiple scales, extracting progressively 

more complex features as the scale increases. This module plays a crucial role in 

enabling the network to capture both local and global information in the input 

image. 

 

The Multi-Scale Feature Fusion Module of MIRNet takes the features 

extracted by the feature extraction module and fuses them together to create a 

multi-scale representation of the input image. This is done using a set of 

learnable weights that determine how much weight each scale should be given in 

the final representation. 

 

The Reconstruction Module in MIRNet utilizes the multi-scale 

representation of the input image that is generated by the multi-scale feature 

fusion module to produce the high-resolution output image. This module 
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comprises a set of convolutional layers that operate on the multi-scale 

representation, followed by an upsampling layer that enhances the resolution of 

the output image. By employing this module, MIRNet can effectively 

reconstruct a high-quality image from the multi-scale features. 

 

Apart from the aforementioned modules, MIRNet incorporates residual 

connections to mitigate the vanishing gradient problem that can arise in deep 

networks. These connections enable the network to learn residual mappings 

between the low-light input image and the output image. By leveraging residual 

connections, MIRNet can effectively capture important details of the input 

image and learn to produce high-quality output images. 

 

The network first applies a convolutional layer to extract low-level features 

from the low-light input. The feature map then traverses N recursive residue 

groups (RRGs) to get deep features. Note that each RRG contains multiple 

multiscale residual blocks. Then we apply a convolutional layer to the deep 

features and get the residual image. Finally, the enhanced image is obtained by 

adding the residual image to the low-light input image.  

 

The following are the major components of these modules: 

 

I. Selective Kernel Feature Fusion 

 

Two operations Fuse and Select perform the dynamic modification of 

receptive fields in the Selective Kernel Feature Fusion or SKFF module. The 

information from multiple-resolution sources is combined by the Fuse operator 

to produce global feature descriptors. These identifiers are used by the Select 

operator to recalibrate the feature maps before their aggregation. 

 

Fuse operator: Three parallel convolution streams bearing various 

informational scales are inputs to the SKFF. We first combine these multi-scale 

features using an element-wise sum, and then across the spatial dimension, we 

use Global Average Pooling (GAP) to create a compact feature representation, 

we then apply a channel-downscaling convolution layer. This layer then goes 

through three parallel channel-upscaling convolution layers giving us three 

feature descriptors. 

 

Select operator: Using the feature descriptors as input, this operator uses 

the softmax function to produce the corresponding activations, which are then 

used to adaptively recalibrate multi-scale feature maps. The product of the 

corresponding multi-scale feature and the feature descriptor is used to describe 

the aggregated features. 
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   Figure 6.8:  Selective kernel feature fusion [59] 

 

II. Dual Attention Unit 

 

Features in the convolutional sequences are extracted using the Dual 

Attention Unit, or DAU. The DAU block provides the means to share 

information within a feature tensor along the spatial and channel dimensions 

while the SKFF block fuses information across multi-resolution branches. Only 

more informative characteristics are allowed to continue after being suppressed 

by the DAU. Utilizing the Channel Attention and Spatial Attention processes, 

this feature calibration is accomplished. 

 

By using squeeze and excitation procedures, the Channel Attention branch 

takes advantage of the inter-channel relationships of the convolutional feature 

maps. The squeeze operation takes as input a feature map, uses Global Average 

Pooling across spatial dimensions to encode global context, and produces a 

feature descriptor as a result. This feature description is subjected to two 

convolutional layers, sigmoid gating, and the excitation operator, which 

produces activations. Rescaling the input feature map using the output 

activations results in the output of the Channel Attention branch. 

 

The inter-spatial correlations of convolutional features are intended to be 

taken advantage of by the Spatial Attention branch. To create a spatial attention 

map and use it to recalibrate the incoming characteristics is the aim of spatial 

attention. The Spatial Attention branch first independently performs Global 

Average Pooling and Max Pooling operations on input features along the 

channel dimensions, concatenates the outputs to form a resultant feature map, 

and then obtains the spatial attention map by passing the resultant feature map 

through convolution and sigmoid activation. The incoming feature map is then 

scaled using this spatial attention map. 
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    Figure 6.9:  Dual attention unit [59] 

 

 

III. Multi-Scale Residual Block 

 

While keeping high-resolution representations and getting rich contextual 

data from low-resolutions, the Multi-Scale Residual Block can produce an 

output that is spatially precise. The MRB is composed of a number (three in this 

work) of parallel fully-convolutional streams. It enables information sharing 

between parallel streams so that low-resolution features can be used to help 

consolidate high-resolution features, and vice versa. A recursive residual 

architecture (with skip connections) is used by the MIRNet to facilitate 

information flow during the learning process. Residual resizing modules are 

used to carry out the downsampling and upsampling operations that are used in 

the Multi-scale Residual Block in order to preserve the residual character of our 

architecture. 

 

 

 

 

 

 

 

   Figure 6.10:  Multi-Scale residual block [59] 
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6.3.2 MIRNet Experiment and Results 

 

I. Implementation Details 

 

To prevent the requirement of training the Multi-Scale Information 

Retention Network (MIRNet) from scratch, a pre-trained model was utilized on 

our denoised output derived from the denoising phase. Given that MIRNet has a 

substantial number of trainable parameters, training it from the scratch can 

consume a considerable amount of computational resources. Therefore, the 

application of a pre-trained network could offer a more efficient method for 

achieving superior results on our dataset. 

 

During training, the network is optimized to minimize the difference 

between the enhanced image and the ground-truth denoised image using 

Charbonnier Loss. Where Charbonnier loss [47] is a modification of the L1 loss 

that is more robust to outliers and can handle images with various noise levels 

effectively. The Charbonnier loss is defined as: 

   𝐋(𝐈ˆ, 𝐈∗) =  √‖𝐈ˆ − 𝐈∗‖𝟐 + 𝛜𝟐                (23) 

 

Where 𝑰ˆ is the enhanced image,  𝑰∗ is the ground-truth image and 𝝐 is a 

constant set to 10−3. Adam optimizer [34] is used to optimize the whole network 

with learning rate (0.0001) to train the model. 
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II. Results 

 

A. Loss Curve 

 

 

Figure 6.11: MIRNet loss curve  

 

As shown in Fig. 6.11, the learning curve for training loss improves, as does 

the learning curve for validation loss. We can state that the validation loss is 

lower than the training loss at the start of training, indicating that the validation 

dataset may be easier for the model to predict than the training dataset. 

 

B. Sample Results 

Clean Low-Light Denoised output Enhanced output 
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    Figure 6.12: MIRNet enhanced results  

As demonstrated by sample results, the MIRNet method produces enhanced 

images that are visually closer to the ground truth in terms of brightness and 

global contrast. 
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6.4 Results Comparison and Evaluation  

6.4.1 Denoising phase: 

   

   

   

(a) Low-Light Input (b) Noisy Low-light (c) Denoised Output 

 

     Figure 6.13: Final ResUnet output 

Metrics PSNR SSIM 

ResUnet 44.85 0.9576 

     Table 6.2: Evaluation metrics of ResUnet 

Based on the results of the trained de-noising Model shown in Fig. 6.13 and 

table 6.2, we can conclude that the proposed model achieved its intended goal, as 

we obtained images as close as possible to the clean image, and we achieved 

high values of the evaluation metrics (PSNR,SSIM), which indicate that we get a 

better quality of the reconstructed image.  These results will be used as input for 

the enhancement phase to obtain an image with higher brightness. 
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6.4.2 Enhancement phase: 

    

    

    

(a) Input (Denoised 

Output) 

(b)  Histogram 

Equalization 
(c) MIRNet (d) Zero-Dce 

 

                                 Figure 6.14: Visual comparison with enhancement methods 

 

 

Metric HE MIRNet Zero-Dce 

PSNR 19.52 24.73 30.67 

SSIM 0.701 0.835 0.923 

  Table 6.3: Quantitative comparison on LOL dataset in terms of PSNR, SSIM 
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According to Fig. 6.14 and Tabel 6.3, while histogram equalization 

brightens the image, it also highlights the presence of noise on it, whereas 

MIRNet recovers high-quality image content from its denoised low-light version 

by learning an enriched set of features that combines contextual information 

from multiple scales while preserving high-resolution spatial details. It enhances 

color and contrast adjustments, resulting in images that appear more natural and 

pleasant. Whereas zero-dce is efficient because low-light image enhancement is 

achieved through a straightforward and intuitive nonlinear curve mapping. 

Despite its simplicity and lightness, its results produced higher quality values, 

and it was considered the best of the bunch based on outcome samples and 

evaluation metrics. 
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     Conclusion 

The aim of this thesis was to eliminate the image noise that is produced by 

the camera sensor during the image-capturing process and enhance low-light 

images captured in low-light conditions. After reviewing some of the previous 

scientific literature, we investigate the use of residual learning in this work. 

Residual learning has shown remarkable performance in such tasks. It involves 

adding short/skip connections that enable the network to learn residual 

mappings, which are the difference between the desired output and the current 

output of the network. We explore architectures and loss functions that are 

designed for low-light image denoising and enhancement and prove their 

effectiveness by conducting extensive experiments on a benchmark dataset. 

 

Regarding the denoising task, we integrate residual blocks into UNet in the 

ResUnet we investigate. This allows us to combine the advantages of these two 

networks at the same time. The ResUnet is trained on noisy low-light images to 

extract feature information and spatial information of the noisy image within the 

encoder-decoder network framework. 

 

We used the denoised results as input to a new network to enhance low-light 

images and obtain clear details of an image. For this purpose, we employed a 

variety of techniques ranging from traditional methods like histogram 

equalization to deep learning models such as zero-dce, which estimates pixel-

wise and high-order tonal curves for dynamic range adjustment of a given image 

using a lightweight CNN, and MIRNet works in a more complex way by 

learning an enriched set of features that combine contextual information from 

multiple scales while still preserving high-resolution spatial details. At the 

conclusion of this study, we briefly compared the performance of these models 

to their evaluation metric’s actual values. 
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