

Contents

Introduction 1

Introduction to Algorithmic Fairness 3

2.1 Problem deĄnition . 3

2.2 Problem analysis . 4

2.2.1 Methodology of the survey 6

2.3 Key data Ąelds . 7

2.3.1 Data domain . 8

2.3.2 Data task . 10

2.3.3 Sensitive features . 13

2.4 Dataset Curation . 14

2.5 Data brief structure . 14

2.6 Contribution of this work . 15

Problem Modeling 17

3.1 Model designation . 17

3.1.1 Linked Open Data . 17

3.2 Ontology . 19

3.2.1 Foundation Ontology . 20

3.2.2 New designed ontology 22

iii

Contents

3.2.3 Instance example . 32

Data parsing 35

4.1 Turtle serialization . 35

4.2 Parsers . 37

4.2.1 Datasets parser . 37

4.2.2 Bibliography parser . 46

Web Application 55

5.1 Web technologies . 55

5.1.1 Django . 55

5.1.2 React . 57

5.2 Web Application development 58

5.2.1 Environment and tools 58

5.3 Back-end . 59

5.3.1 Views development . 60

5.3.2 Full text search view . 71

5.3.3 Form view . 72

5.3.4 Development to production 73

5.4 Front-end . 74

5.4.1 Sensitive feature Ąlter 87

5.4.2 Form page . 90

Conclusions 93

iv

List of Figures

2.1 Datasets utilization in fariness research 7

2.2 Datasets domains in fairness research 8

2.3 Fairness dataset utilization . 14

3.1 5 star schema . 18

3.2 Ontology with focus on Datasets 23

3.3 Ontology with focus on papers 25

3.4 Ontology relation between dataset and documens 27

3.5 Full Ontolgy Schema . 29

3.6 New blank node . 30

3.7 Final ontology schema . 31

3.8 Tabular view of Adience example 32

3.9 Graph view of Adience example 33

4.1 Turtle preĄxes . 36

4.2 Namespaces bind operation . 37

5.1 Row results from query in JSON format 63

5.2 Query results . 64

5.3 API response . 64

5.4 Webpack idea . 74

v

List of Figures

5.5 Dataset tabular view . 75

5.6 Dataset page datail . 78

5.7 Dataset page . 79

5.8 Full dataset page content . 80

5.9 Example of Ąlter addition . 81

5.10 Single dataset view . 81

5.11 Related paper list . 82

5.12 Related paper details . 83

5.13 Home page - Ąrst version . 84

5.14 Home page - second version . 84

5.15 Dataset page header . 85

5.16 Header menu . 85

5.17 Paper page . 86

5.18 Suggest a dataset page . 90

5.19 Further information Ąeld . 91

5.20 E-mail JSON information . 91

vi

List of Algorithms

1 Dataset URI creation . 38

2 Dataset title triple creation . 39

3 Dataset year triple creation . 40

4 Sensitive features triple creation 40

5 Dataset reference triple creation 42

6 Dataset domain and task triple creation 44

7 Dataset full text search creation 45

8 insertDatasetIndex . 46

9 BIBTEX import . 47

10 Serialization function selection 48

11 IdentiĄer triple creation . 49

12 Title triple creation . 50

13 Volume triple creation . 50

14 Author triples creation . 51

15 Corporare body triples creation 51

16 Event - corporate body triples creation (a) 52

17 Event - corporate body triples creation (b) 53

18 Event - corporate body triples creation (c) 54

vii

List of Algorithms

19 URL patterns . 60

20 Dataset query . 61

21 Dataset index view . 62

22 clean_url . 65

23 create_json - part 1 . 66

24 create_json - part 2 . 67

25 create_json - new version . 69

26 Query to retrieve documents about a task of a dataset 70

27 Full text dataset query . 71

28 Full text view . 72

29 getDatasetList . 76

30 equalFeatures structure . 87

31 featuresClass structure . 88

32 checkSensitive function . 89

viii

Abstract

Data-driven algorithms are being studied and deployed in diverse domains to

support decisions. They directly impact on peopleŠs life and for this reason

more and more researchers are analyzing the equity of existing algorithms and

they are proposing new ones. Algorithmic fairness progress is based on data,

which can be used in a correct way only if sufficiently documented. As stated by

Fabris et al. (2022) "Unfortunately, the algorithmic fairness community, suffers

from a collective data documentation debt caused by a lack of information on

speciĄc resources and scatteredness of available information.". This thesis is

strictly connected with the researches done in this Ąeld by Prof. Gianmaria

Silvello and it proposes a Web Application to support and share their work.

Gli algoritmi basati sui dati vengono studiati e utilizzati in diversi ambiti per

supportare le decisioni. Questi impattano direttamente sulla vita delle persone

e per questo motivo sempre più ricercatori analizzano lŠequità degli algoritmi

esistenti e ne propongono di nuovi. LŠequità algoritmica si basa sui dati, che

possono essere utilizzati in modo corretto solo se sufficientemente documentati.

Come riportato da Fabris et al. (2022) "Purtroppo, in questo ambito si soffre di

un debito collettivo di documentazione dei dati, causato dalla mancanza di infor-

mazioni su risorse speciĄche e dalla dispersione delle informazioni disponibili.".

Questa tesi è strettamente legata alle ricerche condotte in questo campo dal

Prof. Gianmaria Silvello et al. e propone una Web Application per supportare

e condividere il loro lavoro.

ix

Introduction

Algorithms are a fundamental key point in Computer Engineering and Computer

Science Ąelds. In the last few decades they have been more and more concen-

trating on data and for this reasons they are called data-driven algorithms.

The community of researchers that is concentrating on the algorithms fairness

is growing. They study these types of algorithms which are used in various do-

mains.

An important consideration to make is that those algorithms have been used to

make decisions which directly inĆuence and impact our every day life.

The problem we will analyze in this thesis is related with the difficult situation

given by the lack of documentation of the data which is used in the data-driven

algorithms. The reader should consider that the previous mentioned algorithms

can be used correctly only if they are sufficiently documented.

This thesis is structured around four main chapters, without considering the this

Introduction chapter and the Conclusions. The Ąrst one is an introduction to the

algorithmic fairness and in particular it resumes the researches made by Fabris

et al. (2022), which is the background around this thesis. In conclusion there

is an explanation about the data brief structure composition and a discussion

about the contribution of this work.

In the second chapter the reader can Ąnd the problem modeling: there is a brief

introduction to Open Data and then it is explained how the ontology has been

developed with all its implementation details.

In the chapter number three the data parsing has been explained, in particular

which type of serialization was chosen and all the implementation details about

1

Chapter 1. Introduction

the developed parsers and serialization functions. Finally we explain how we

used PostgreSQL to implement the full text search.

The forth chapter is divided in three main sections. The Ąrst one describes

brieĆy the Web technologies used to develop the back-end and the front-end, so

we talk about Django and React with their advantages.

In the second one we explained how the Web application back-end was developed

in practical terms, so there are some example of code and we discuss some

implementation decisions.

Finally, the third section talk about the Web application front-end development.

It presents techniques and consideration done during its implementation.

2

Introduction to Algorithmic

Fairness

2.1 Problem deĄnition

As we can understand from the Introduction, this thesis deals with the data

used by algorithms and all their related aspects, in particular from the fairness

point of view. We can translate fairness with justice, equity, bias, power and

harms.

Another key point is given by data selection and utilization by users.

Two important works are published by Gebru et al. (2018) and Holland et al.

(2018), they are considered two complementary frameworks and they are called

respectively Datasheets fror Datasets and Dataset Nutrition Labels.

They are recognized important because they can help data producers to follow

best practices during data curation and data consumers are able to choose and

use datasets within the best productive way.

These new "standard" of work have inĆuenced also the Machine Learning Ąeld

so much so that in the Conference on Neural Information Processing Systems

(NeurIPS) has been introduced a way to track datasets into repositories, which

are particularly useful in scholarly articles and in all academic and business

researches world.

It is important to notice that it is applicable also to existing datasets (Bandy

and Vincent (2021), Garbin et al. (2021)) classifying their proprieties (Prabhu

and Birhane, 2020) and tracking their usage in researches (Peng et al., 2021).

3

Chapter 2. Introduction to Algorithmic Fairness

Recently Fabris et al. (2022) proposed the extension of the notion of documen-

tation debt by Bender et al. (2021) to all the collections of datasets utilized in a

research Ąled because the initial notion considers only the training sets.

Moreover, they identiĄed two aspects that produce the above-mentioned doc-

umentation debt: the Ąrst one is the opacity which represents the inadequate

documentation relative to single documents, the second one is the sparcity which

refers to the presence of relevant information but they are insufficiently con-

nected with the data.

An example of these relevant aspects is given by the German Credit dataset

(UCI Machine Learning Repository, 1994). In fact, in recent works of algorith-

mic fairness where this dataset is employed, the sex attribute is set as protected

attribute (He et al. (2020), Yang et al. (2020) and others), which means that it

is a feature that can not be used as basis to make decisions. On the contrary,

the existing documentation related with this dataset shows that this feature can

not be retrieved (Grömping, 2019).

Another important facet is the the relation between datasets and the tasks or

the domains where they have been employed, which may be unknown.

A key instance is given by the BUPT Faces datasets: it is known as the second

existing resource for face analysis with race annotations (Wang and Deng, 2020).

2.2 Problem analysis

Fabris et al. (2022), to reduce the problem produced by the documentation debt

of the algorithm fairness community, examined the datasets used in more than

500 articles published in that Ąeld. They decided to select them from the most

important conferences and workshops in the period from 2014 to 2021.

This work produced the so called data briefs, which are a sort of compact and

standardized documentation of the datasets found in the articles considered. To

give an idea of the work behind the Fabris et al. (2022) publication, they found

over 200 datasets connected with the articles of algorithmic fairness.

Data briefs are a kind of summary of the datasets where we can Ąnd the key

4

Chapter 2. Introduction to Algorithmic Fairness

proprieties, such as the purpose, the features (and in particular the sensitive

ones), the labeling procedure and the envisioned ML task, if present. Moreover

data briefs also indicate the domain of processes which produced the data and

the tasks in which the dataset is used. With these last two information a user

can also make search domain-based or task-based.

Fabris et al. (2022) to obtain all this detailed information, which are often not

given, contacted creator of the datasets and all the researchers involved with the

writing of the considered articles.

Thanks to the information published at the end of some articles they were able

to contact e receive feedback from 72 data curators and practitioners.

A particular attention was given to the most utilized datasets in the considered

articles: Adult, COMPASS and German Credit. For each of these a datasheet

and a nutrition label was produced.

From the analysis they were able to produce a summary of their merits and

limitations, a very useful taxonomy of domains and tasks involved in algorithmic

fairness of the existing resources. At the end, these technique are also a set of

best practises for curating novel datasets to achieve the expected anonymization,

the users consent, inclusively, labeling and transparency.

During their researches, Fabris et al. (2022) were able to produce the following

results:

• Analysis of common fairness datasets. In particular they produced a de-

tailed documentation for the above-mentioned resources.

• Analysis of existing resources. They documented also other resources used

in fair ML researches. In particular they produced a deĄned domain and

task annotation in which they are involved. This is achieved by connecting

all the spare information available.

• Analysis methods for new resources. This is a collection of best practices

that they gathered comparing different approaches. In this way the cura-

tion of novel datasets are informed about how they should document the

data.

5

Chapter 2. Introduction to Algorithmic Fairness

2.2.1 Methodology of the survey

In the survey done by Fabris et al. (2022), all the articles published in the most

important and domain speciĄc conferences were considered. To cite some of them

we can mention the ACM Conference on Fairness, Accountability and Trans-

parency (FAccT), the AAAI/ACM Conference on ArtiĄcial Intelligence, Ethics

and Society (AIES) but also proceedings papers coming from Machine Learning

and data mining conferencies such as the IEEE/CVF Conference on Computer

Vision and Patern Recognition (CVRP), the Conference on Neural Information

Processing System (NeurIPS), the International Conference on Machine Learn-

ing (ICML), the International Conference on Learning Representations (ICLR),

the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (KDD); and at last but not least articles available from Past Network

Events and Older Workshops and Events of the FAccT network. All the consid-

ered resources are published between 2014 and 2021.

The resources selected by Fabris et al. (2022) were chosen through a two step

method. The Ąrst step had the objective to select all the works which should

be strictly related to algorithmic fairness, in fact they decided to consider only

documents where one of the following sub-string are presents in their titles: fair,

bias, discriminat, equal, equit, disparate parit. As we can easily notice they are

centered around equity-based notions of fairness.

The second one is done by hand by the authors and it consisted in a manual

inspection of the selected documents. After this human check, some documents

were discarded because the selected string are used in different context so they

have different meaning to what they desired.

Moreover, other datasets have been discarded for other reasons, for example

because are toy datasets (which means that they are a simulation of a considered

real world) or there are not sufficient available information.

Fabris et al. (2022) elaborated a data brief for each of the considered datasets

after the selection made previously. From the staring point with more than 500

articles (and we can assume that each article has at least one connected dataset)

6

Chapter 2. Introduction to Algorithmic Fairness

with artiĄcial intelligence. In this Ąeld fairness is associated with learned

representations and equality of performances across classes. To better

explain, it is intended as "the robustness of classiĄers across different sub-

populations, without much regard for downstream beneĄts or harms to

these population".

Health: this is a macro-domain which includes medicine, psychology and phar-

macology and it can be subdivided in a big number of sub-domains: public

health, cardiology, endocrinology, health policy but also more speciĄc Ąelds

like radiology, and dermatology, critical care medicine, neurology, pedi-

atrics, sleep medicine, nephrology, and applied psychology.

From the connected datasets can be also extracted data from multiple

medical centers and this is helpful to study problems of automated diag-

nosis.

Economics and Business: this macro-domain is composed by dataset in eco-

nomics, Ąnance and marketing.

Linguistics: as I have already mentioned before, it consists of textual resources

but also by data derived from social media. Many datasets used in algo-

rithmic fairness articles are associated to the domain of linguistics and

Natural Language Processing (NLP).

Miscellaneous: this is a macro-domain containing all the domains that can

not be categorized into the other domains. In particular it is useful for

news domains and resources like the sushi preferences and video games.

Arts and Humanities: in this macro-domain we can include literature datasets,

which are strictly connected with NLP tools. Also books, movies, music

belong to this macro-domain.

Natural Sciences: in this domain we can Ąnd datasets from biology, biochem-

istry and plant science.

As we can easily conclude, these datasets represent in practice all the human

activities where algorithms are employed. As a reader can image, in particular

9

Chapter 2. Introduction to Algorithmic Fairness

for some of these domains, the equity and the fairness are an important key

feature when an algorithm is developed.

2.3.2 Data task

More and more researchers and practitioners are paying deeper attention in

algorithmic fairness, and thanks to this the tasks involved are increasing, such

as fair classiĄcation, regression and ranking.

In the following part of this sub-section the most common tasks related to the

considered datasets are resumed.

Fair classiĄcation: its objective is to equalize some keys measure across sub-

populations. For example, we can consider the recall, the precision or the

accuracy for different racial groups.

Fair regression: regression models has the objective to predict a real-value

target, to do that they require that the average loss is balanced across

groups. In this context, the individual fairness requires that the losses

should be as uniform as possible between all the individuals.

Fair ranking: it consists in a ranking of the population based on a required

feature. Here, fairness is applicable to people creating the data to be

ranked but also the consumers of the data/products.

Fair matching: it is a task similar to the previous one but it has the objective

to match pairs of items on both sides of the market.

Fair risk assessment: it is focused on algorithms that evaluate instances of a

dataset considering a predeĄned type of risk. A relevant difference between

this task and classiĄcation is the emphasis on real-value instead labels.

Fair representation learning: it concerns the study of features learned by

models as intermediate representations for inference tasks.

10

Chapter 2. Introduction to Algorithmic Fairness

Fair clustering: it is an unsupervised task aiming at dividing sample into ho-

mogeneous groups. In this type of task, fairness can be considered as the

fair representation of sub-populations in each cluster.

Fair anomaly detection: it is a task with the objective to identify surprising

or anomalous points in a dataset.

Fair districting: it consists in the division of a region to provide electoral

districts for political elections.

Fair task assignment: (and truth discovery) are different tasks but they be-

long to the same area. In fact, they are both concentrating on the sub-

division of work and the grouping of answers in crowdsourcing.

Fair spatio-temporal process learning: this task is concentrating on the es-

timation of models for processes (regarding both time and space).

Fair inĆuence maximization: this task studies and creates models about the

diffusion of information throughout networks, in particular using graph

covering problems.

Fair resource allocation: it is a task focused on the problem of classiĄcation

with constraints on the positives items.

Fair data summarization: has the objective of Ąnding portion of dataset

which sufficiently describes the entire dataset or the selection of the key

features.

Fair graph mining: it produces representations and prevision tasks on graphs.

In this case the fairness is intended as the absence of bias in the graph

representations or with respect to the inference.

Fair pricing: it is a task with the objective of creating an optimal pricing

models. In this case, the fairness is to give possibility of access to services

and goods between sensitive groups.

11

Chapter 2. Introduction to Algorithmic Fairness

Fair advertising: it is similar to the previous listed task. It is intended for

different types of purchasing methods (i.e. auction and bidding) and, as

we can imagine, the objective is to reduce discrimination.

Fair routing: the main aim is to Ąnd the optimal path between two locations.

Here the fairness is related to the attempt of equalizing the driving costs.

Fair entity resolution: this task is concentrating on identify whether multiple

items refer to the same entity.

Fair sentiment analysis: it is a sub-task of fair classiĄcation, here the text

pieces are classiĄed in three options (positive, negative or neutral) based

on the expressed sentiment.

Bias in Word Embeddings: this particular task is focused on Ąnding unde-

sired semantics and stereotypes belonging to vectorial representation of

words.

Bias in Language Models: this task produce models trained on a big amount

of texts, from these can be inferred incorrect correlations and stereotypes.

Fair Machine Translation: as we can understand from the task name, it con-

sists in (automated) translation. In this case the fairness could refer to

the fact that sometimes gender-neutral terms of source texts are translated

into gendered terms of target texts.

Fair speech-to-text: this task is about transcription of speeches, in this case

equity and fairness is reĆected in the ability of recognition different demo-

graphic regions.

Another aspect to consider is related to the settings, which stands for the chal-

lenge of avoiding that noise corrupts labels for sensitive attributes. Some of

these settings are now proposed:

Rich-subgroup fairness: in this setting fairness properties are necessary for

every number of sub-populations.

12

Chapter 2. Introduction to Algorithmic Fairness

Noisy fairness: is used to express problems related to missing sensitive at-

tributes or corrupted by noise.

Limited-label fairness: includes all the settings where limited information are

available for the target variable.

Robust fairness: is related to issues produced by perturbations to the training

set, adversarial attacks and data shifting. This type of setting is often

associated to robust machine learning researches.

Dynamical fairness: is related to repeated decisions in changing environments.

A possible mutation events can be done by the algorithm itself.

Preference-based fairness: is a work informed by the presence of stakehold-

ers.

Multi-stage fairness: in this type of settings the decision are made by coex-

istent decision makers in a decision-making process.

Fair few-shot learning: this settings is referred to Machine Learning, in par-

ticular to create fair ML solutions when there are not many data samples.

Fair private learning: is related to the privacy-preserving mechanisms and

fairness constraints. Here an important consideration is that we would

like to produce fair machine learning models without loosing information

about individuals of training set.

This list is composed by the main settings with a brief description but I can

cite also other settings, for example: fair federated learning, fair incremental

learning, fair active learning and fair selective classiĄcation.

2.3.3 Sensitive features

Another important Ąeld presents in our datasets is the sensitive features.

It has a central position because the features belonging this Ąeld can not be

used by algorithms to make decisions. This is obviously connected to fairness

13

Chapter 2. Introduction to Algorithmic Fairness

they are used to create the data briefs parser (subsection 4.2.1) and the back-end

(section 5.3). The front-end takes advantage of this Ąeld, and for homogeneity

they are usually reported to the front-end, but in some cases the variables name

has been reduced for simplicity.

Description: this is a text Ąeld where the data creator can insert the objective

of the data. Moreover, we can also Ąnd a summary of the features available

in the dataset and how the attributes are annotated. Finally, there could

be the envisioned ML task, if any.

Affiliation of creators: in general it is retrieved from the documents (reports,

articles but also Web pages) which describe the resource.

Domain: it is an important Ąeld and it describes in which sector the data is

used (e.g., computer vision for ImageNet).

Tasks in fairness literature: it stands for the datasets employed for tasks.

Data spec: it represents the format in which the data are structured (e.g., text,

image, tabular).

Sample size: it is the dataset cardinality.

Year: it represents the last known update of the dataset.

Sensitive features: Sensitive attributes in the dataset, see subsection 2.3.3 for

more details.

Link: it is a Web page link where the resources can be downloaded or accessed.

Further information: it is a reference to documents or Web pages which de-

scribe the dataset.

2.6 Contribution of this work

Before entering into the modeling and development part of the thesis, it is inter-

esting to talk about the contribution of this work to Fabris et al. (2022) research

15

Chapter 2. Introduction to Algorithmic Fairness

activities.

The developed Web application has not produced new discoveries and in-depth

analysis but it will certainly improve the researchers and practitioners activity.

As previously stated, it is a new research study Ąelds and sometimes the infor-

mation are fragmented and not homogeneous.

So, the aim of this Web application is to produce data homogeneity and data

connection. It will help also the data citation and data founding which are two

important concepts because sometime happens that published documents are

not connected with the used data.

Another aspect to consider is that who are searching for a dataset for their re-

search or job activity, it can be retrieved through this Web application using the

full text search but also the faceted search.

16

Problem Modeling

Starting from this chapter we enter in the hands-on part of the thesis, which is

also connected to the research training.

The project behind this thesis is based on the development of a Web Application

about fairness dataset and related information. It was a Full Stack development

and for this reason Prof. Silvello, Dott. Alessandro Fabris, Dott. Fabio Giachelle

and I were able to decide the best possible solution for each part step-by-step.

In particular in this chapter is analyzed how we deĄned the best suited model

for the problem.

3.1 Model designation

Relational databases are the most used type of model behind the contemporary

Web and Software applications. They are well-suited for many applications,

where data are stored in two-dimensional tables. Unfortunately, it is not sug-

gested when the data are highly connected. In fact, relational databases are not

able to store easily relationships between elements.

3.1.1 Linked Open Data

An important aspect to consider is the possibility to produce Linked Open Data.

Recently this type of resources are more and more important both for academic

and business world. Open data refers to "data that can be freely used, re-used and

redistributed by anyone - subject only, at most, to the requirement to attribute

and sharealike." (Open Knowledge Foundation, 2009)

17

Chapter 3. Problem Modeling

5. the Ąfth stage has the previous requirements but the data must be linked.

This classiĄcation is well represented in the Ąg. 3.1. Considering the data to

be modeled, from the above reasoning we can conclude that a good solution is

to used Linked Open Data. We absolutely achieve the forth stage, but also the

Ąfth because, as we will see, there are connection between external resources

and they can be also linked.

3.2 Ontology

The term Ontology has a philosophical origin and from this point of view it

describes the nature and the organization of reality. In Computer Science it

can be considered as syntactic object (it describes concepts via logical theory),

as semantic entity and conceptualization (which encodes via semantic structure

part of reality).

To describe our "world" we developed a domain ontology, which models our

speciĄc domain of interests. To build up our ontology we questioned ourselves

through the following questions:

What is the domain that the ontology covers?

It is obviously concentrating around the concept of algorithmic fairness.

In particular we need to models the data briefs and the connected articles.

What is the employment of the ontology?

The ontology will model datasets and all the connected information, i.e.

the datasetsŠ creators and publisher, the connected domains and task,

every resources (for example articles or Web pages) which are connected

to datasets and tasks.

What information should the ontology provide?

• What are the datasets?

• What are the papers?

19

Chapter 3. Problem Modeling

• What task/domain/paper are connected with a dataset?

• What task/dataset are connected with a paper?

What type of users will use the ontology?

The users of the ontology (and the Web Application) will be researchers

and practitioners.

3.2.1 Foundation Ontology

An important aspect to be considered during the ontology development is given

by the foundation ontology or ontologies selection. A foundation ontology is a

model of objects which are common and used in many domain ontologies.

This is fundamental because it helps developers to create standardize ontologies

and in this way they create connection between the standardized components.

Another advantage is related to the simpliĄcation of the development process

thanks to foundation ontologies and most important deĄned ontologies in their

respective Ąelds. When an ontology is imported, all its properties, attributes

and classes are imported.

The project is based on algorithmic fairness and all the connected resources, so

we need to describe datasets, tasks, domains and articles.

After some researches, where we consider the possible ontologies in this Ąelds, we

decided to choose Data Catalog Vocabulary (Archer, 2014), and FRBR-aligned

Bibliographic Ontology (Peroni and Shotton, 2012).

Moreover we have also take advantage of Functional Requirements for Biblio-

graphic Record (Ciccarese and Peroni, 2018) and DCMI Metadata Terms (DCMI

Usage Board, 2006). I now brieĆy describe what we used from each imported

ontology to give the opportunity of understanding all the following explanations.

Data Catalog Vocabulary, also known as DCAT, is a RDF vocabulary de-

signed to help interoperability between data catalogs. It can be used by a

publisher to represent datasets and data services.

From this vocabulary we have used the Dataset class which represents a

20

Chapter 3. Problem Modeling

collection of data. It can describe very well the data briefs. Moreover,

there are a big number of object and data properties already deĄned for

the Dataset class, we will see them more in detail later.

FRBR-aligned Bibliographic Ontology, called FaBiO for short, is an on-

tology designed for describing resources (published or designed to describe

publishable documents) on the Semantic Web. These entities contain ref-

erences to bibliographic resources.

This ontology, in particular, had a primary role into the project develop-

ment. We imported the following classes:

• Work: it represents works that are published or that can be published,

where are present bibliographic references or can be referenced. It is

a sub-class of FRBR work.

• Expression: it is a sub-class of FRBR expression. It represents

expressions of fabio:work. It is useful to specify that the following

FaBiO classes are deĄned as sub-class of the Expression class.

• Web page: it represents a Web resource, generally identiĄed with a

URI and accessible through a Web browser.

• Article: it represents a writing on a speciĄc topic, in general pub-

lished in a periodical publication.

• Journal: it represents the periodical where research papers are usu-

ally published.

• Book: it represents a document published in a single volume or in

a Ąnite number of volumes. It is commonly identiĄed by the ISBN

(International Standard Book Number).

• Ph.D. symposium paper: it represents a document presented or pub-

lished during a conference dedicated to PhD students, where they can

presents they researches.

• Proceedings Paper: it represents a paper published, in general,

within an academic proceedings volume where are reported academic

researches.

21

Chapter 3. Problem Modeling

• Technical Report: it represents a technical document.

Functional Requirements for Bibliographic Record, called FRBR for short.

It is proposed by the International Federation of Library Association (IFLA)

and it is a model to describe every type of resource (physical or digital)

and its evolution.

We have used some classes from FRBR, which in some cases are directly

imported into the FaBiO ontology by its creators. In particular we have

considered:

• Event: it represents an occurrence (or an action).

• Corporate Body: it represents an organization or people acting as a

unit. It resumes different type of group including also the occasional

once.

All the object and data properties related to the above mentioned classes will

be described later.

3.2.2 New designed ontology

An important part related to the model designation regards the comprehension

of which are the necessary parts to be developed, in addition to imported re-

sources cited in Foundation Ontology section.

The documentation about the ontology is available at the following URL:

https://fairnessdatasets.dei.unipd.it/schema/

After some drafts, we developed the schema in Ąg. 3.2. As the reader can see,

there are the above mentioned classes and also their related properties. The

DCAT:Dataset class has already the most important ones, but we had the ne-

cessity to add some data properties.

The Ąrst one is the dataSpec which represents the data structure, i.e. the way

(structured or not) used by the creators to store the data inside the dataset. An

example could be a text form, a tabular data form, image form, etc.

The second one is the sampleSize which is a literal Ąeld that represents the

22

Chapter 3. Problem Modeling

The Dataset class has the dcterms:creator object property which has range in

foaf:Agent, so we deĄned a new class called Creator as sub-class of foaf:Agent.

It has only one data property called creatorName and it stores the affiliation of

the creator or the creator name if the Ąrst option is not available.

Similarly to the Creator class, we deĄned also the Publisher class which repre-

sents the entity responsible for making the resource available, i.e. published. It

may refer to the same entity of the Creator class or a different one and it has

also a corresponding property to store the publisher name.

Two classes, of fundamental importance for this ontology, are the Domain and

the Task which are connected with Dataset using respectively the object prop-

erties domain and task.

The Domain class represents the domain of interest of the resource, in this case

the dataset. The Task, instead represents in which Ąeld or task the dataset can

be used. They both have only one data property which is used to store the name

of the domain or task.

In addition, the Task class has an object property called isDescribedBy which

connect the Task with a fabio:Work. In this way we are able to model all the

resources related with a Task, in particular it can be described by a Web resource

(i.e. Web page using the fabio:hasManifestation property) or a document

(we will see in the following part how a document is connected thought the Work

class).

The last thing, related with the part of schema shown in Ąg. 3.2, is the way

in which we refer to the resources used to describe a dataset and its possible

variants. From DCAT we used the dcterms:isReferencedBy which is has been

utilized to connect the datasets and their related resources. Moreover, we de-

Ąned the variant object property which connect a dataset to a work, like the

dcterms:isReferencedBy, but with a different meaning. In fact, it refers to

resources that describe possible variants of a dataset.

At the beginning of the ontology development we thought to store the possible

variants of a dataset using a data property but notice that usually they are

represented by documents or Web pages, the schema in Ąg. 3.2 Ąts better the

24

Chapter 3. Problem Modeling

the proceedings papers, the books, the articles and the journals.

In addition to these classes, we can observe two new deĄned classes: the class

Author and the class Misc.

The Ąrst one is intuitive, it represents the author entity of a given resource.

It is deĄned as sub-class of foaf:Agent, in this way it is a valid range of the

object property dcterms:creator of the document resources. We deĄned one

data property related to Author class, the identifier which is the identiĄer of

a given author, if available. We used also foaf:name and foaf:surname which

obviously represent the name and surname of the considered author.

The reader can observe that every document represented by the classes in Ąg. 3.3

has an object property that creates a relationship between the document itself

and its author or authors.

The second deĄned class is the Misc. It represents all the documents which

can not categorized into the FaBiO classes reported in the schema in Ąg. 3.3.

It has been deĄned in the way that we can use the following data proper-

ties: dcterms:title, fabio:hasPublicationYear, dcterms:identifier and

fabio:hasURL.

Moreover, some Misc documents have an affiliation to an organization, so we are

able to describe this concept creating a relation with fabio:CorporateBody us-

ing the property frbr:responsibleEntity; others were being published during

an event so these once are connected with frbr:Event using the frbr:partOf

property.

We were able to import and take advantage of most of the data properties already

present into the Foundation Ontology but some Ąelds of the input data had not

a corresponding one. So we had the necessity to deĄne new data properties to

store these speciĄc Ąelds:

keyword it is a literal datatype and represents a keyword associated with a

resource;

proceedingTitle it is a literal datatype and represents the title of the proceed-

ing where the proceedings paper is published. It is a property related only

26

Chapter 3. Problem Modeling

illustrated in Ąg. 3.2 and Ąg. 3.3. From FaBiO ontology we can conclude that

they are connected using the frbr:realization which means that a work is

realized through an expression.

In practice we can think at the individuals of fabio:work as the results of

an agent effort and the individuals of fabio:expression represent the "real"

objects which are produced from that work and they could be associated to an

identiĄer. For example the pre-print and the Ąnal version of a paper are two

expression of the same work.

28

Chapter 3. Problem Modeling

34

Data parsing

The data parsing chapter has the objective to explain how the input data has

been elaborated to produce a serialization and how the RDF data are represented

using a textual form.

4.1 Turtle serialization

We decided to use Turtle Ąle as output for our serialization. There are multiple

advantages of exploiting TTL Ąles instead other type of serialization:

• compared to RDF/XML serialization, it is more efficient;

• compared to JSON-LD, it is more human readable;

• compared to N-Triples, it is more readable and memory saving. In fact

N-Triples is considered as the most raw way to store RDF triples because

they are stored and represented with unabbreviated URIs.

Finally we can consider the Turtle serialization as the combination of N-Triples

and abbreviation given by CURIEs. In fact, it deĄnes the preĄxes which must

be bound between the local CURIEs and the global URIs, in Ąg. 4.2 we can see

how this operation is done using Python programming language. They are a

sort of preamble at the beginning of the Turtle Ąle.

Moreover, there are other abbreviations that can be done using TTL Ąles, for

example:

• the rdf:type can be abbreviated with "a"

35

Chapter 4. Data parsing

tiĄer but it was rarely available;

description : it is a text Ąeld representing the description of the dataset;

affiliation : it represents the affiliation of the creators of the dataset;

domain : it stores the belonging domain of the dataset;

tasks : it represents the tasks where the dataset is applied;

data_spec : it represents how the data are stored inside the dataset;

sample_size : it represents the dimension or dimensions of the dataset;

year : it represents the publication year (or the last update year if available);

sensitive : it represents the sensitive features related to the dataset;

further : it consists of possible further information about the dataset;

variants : it stores possible variants of a dataset.

Obviously these information have been mapped to the ontology model explained

in section 3.2.

When the DataFrame has been built, an iterator along all its rows is created

and the serializeDatasetItem function is called for each row. From its name

we can infer that its objective is to serialize a dataset item. Now we will see

some implementation details but we will not cover all the development parts.

Algorithm 1: Dataset URI creation

Dataset = createURI(FDO, "dataset", strToID(name=row["name"]))

From algorithm 1 we can see the function that creates the URI of a given re-

source. The createURI function has three input parameter and they are used

to create the URI, in particular the Ąrst one corresponds to the namespace, the

second one is the resource type and the third one is the ID of the resource. It is

separated from the remaining part of the URI by a "/" but it is only a conven-

tion that we decided to adopt. In fact, all the resources are created inside our

38

Chapter 4. Data parsing

namespace.

The last thing to notice is the srtToID function which takes as input any num-

ber of strings and returns the a string without any punctuation, any space or

any symbol which should not be inside the ID.

Then, the remaining part of the function is used to serialize the data and object

properties connected to the given resource. We can take into consideration the

example in algorithm 2 where the triple about the title of a dataset is created.

It is an general illustration of how every column of the DataFrame is imported

(except for particular cases).

Algorithm 2: Dataset title triple creation

if "name" in row then

name = remove_latex(row["name"])

g.add((Dataset, DCTERMS["title"], Literal(name)))

end

It is worth pointing out that we can not assume that every columns is present

so we need to check if the columns is available. In general, we used the cus-

tom function remove_latex which, as the reader can image, removes the LATEX

"grammar" from a string. Finally, the triple is create and added to the graph.

A different problem is related to the year information, in fact sometimes the

year Ąeld is present but it contains "unknown" or "present". The solution is

easy: if the year Ąeld is present and it is different from "unknown" then we add

the data property and if the variable contains "present" we substitute the string

with the present year. At the moment, as we can see in algorithm 3, we create

two identical triple one for the dataset year of creation and one for the dataset

modiĄcation year but in future implementation they can be separated into two

different information when more details are provided.

39

Chapter 4. Data parsing

Algorithm 3: Dataset year triple creation

if "year" in row and "unknown" not in row["year"] then

if "present" in row["year"] then

year = datetime.date.today().year

g.add((Dataset, DCTERMS["modiĄed"], Literal(year,

datatype=XSD.gYear)))

g.add((Dataset, DCTERMS["issued"], Literal(year,

datatype=XSD.gYear)))

else

g.add((Dataset, DCTERMS["modiĄed"], Literal(row["year"],

datatype=XSD.gYear)))

g.add((Dataset, DCTERMS["issued"], Literal(row["year"],

datatype=XSD.gYear)))

end

end

Another consideration must be done about the sensitive features creation.

Algorithm 4: Sensitive features triple creation

if "sensitive" in row then

if "N/A" not in row["sensitive"] then

sensitive_list = row["sensitive"].split(",")

for sensitive in sensitive_list do

g.add((Dataset, FDO["sensitiveFeature"], Literal(

remove_latex(sensitive).strip())))

end

end

end

In fact, in this case a single string is provided but we need to split the sensitive

features and create a triple for each sensitive feature. This is necessary because

40

Chapter 4. Data parsing

we would like to make Ąlters using this Ąeld.

As we can see in algorithm 4, also in this case there is a particular string that

must be ignored, the "N/A".

A similar approach is done for the landing page, which can be composed by

more than one URL. The only difference is that a URL in LATEX is wrapped by

curly brackets so we developed a function called clean_latex which is similar

to remove_latex but it remove only the LATEX provided as input parameter.

A different method is done for the further information which produces all the

triple about the reference of a dataset. Indeed, in this case we could Ąnd dif-

ferent LATEX elements, for example a URL but also citation like \cite, \citet

and \citep.

In algorithm 5 we can see an example of the code developed to create the ref-

erence part. It is only resume, in fact as we can observe there are not the cases

\citet and \citep but the reader can extend the implementation to them us-

ing same "if" code block used for \cite. Moreover, the further_list is a list

produced by splitting the further column, if it is available.

From that algorithm, but also from the ontology designed in subsection 3.2.2,

we can understand that a dataset can have different type of references. In fact,

the Ąrst part of the algorithm considers the option that the reference is pro-

vided as Web page and a Web page individual is created but it is connected

through a Work node, differently from the dataset URL directly connected us-

ing dcat:landingPage.

As convention, the URI of a resource is composed by the namespace, the type

individual and its name (or ID if available) which is used as ID. Sometimes the

ID can not be the name of the resource because it is only a URL, in this case

we decided to use an hash function to generate the ID and in particular with

the ctypes.c_size_t function at line 7 of algorithm 5 we generate only positive

hashes.

Another considered option is the \cite, that is very similar to the previous one,

the differences are that the \cite is removed instead \url but also how the

paper URI is generated.

41

Chapter 4. Data parsing

Algorithm 5: Dataset reference triple creation

1 for element in further_list do

2 if "\url" in element) then

3 url_list = split_latex(element,delimiter="\url")

4 for url in url_list do

5 further_WebPage = URIRef(clean_latex(url,"\url"))

6 g.add((further_WebPage, RDF.type, FABIO["WebPage"]))

7 Work = createURI(FDO, "work", str(

ctypes.c_size_t(hash(clean_latex(url,"\url"))).value))

8 g.add((Work, RDF.type, FABIO["Work"]))

9 g.add((Dataset, DCTERMS["isReferencedBy"], Work))

10 g.add((Work, FABIO["hasManifestation"], further_WebPage))

11 end

12 else

13 if "\cite" in element then

14 citation_list = clean_latex(element,"\cite").split(",")

15 for citation in citation_list do

16 Paper = Ąnd_paper_URI(citation.strip(),bib_database)

17 if Paper != None then

18 furtherInfo = createURI(FDO,"work",citation.strip())

19 g.add((furtherInfo, RDF.type, FABIO["Work"]))

20 g.add((Dataset, DCTERMS["isReferencedBy"],

furtherInfo))

21 g.add((furtherInfo, FRBR["realization"], Paper))

22 else

23 print("Further info: paper NOT found! "+citation)

24 end

25 end

26 end

27 end

28 end

42

Chapter 4. Data parsing

The createURI function is called inside the find_paper_URI function. It takes

as input the entire bibliography and the resource that should be connected to

the dataset. If the resource is found inside the bibliography, then the resource

type and ID are used to generate the URI as deĄned convention, an exception

is returned otherwise.

The same algorithm structure is used also for the variants of a dataset. The

only difference originates from the fact that a variants could be only a text

description, for example "C-MNIST: images from MNIST, such that both digits

and background are colored.".

In this case we created an individual of Work class and we stored this text

information inside the dcterms:abstract. Furthermore, if a URL is available

in the entire Ąeld then the individual is connected to the Web page instance.

A more complicated reasoning must be done for the domains and the tasks

connected with a dataset. Sometime happens that a dataset has not a speciĄed

domain or "N/A" is the only value presents in the Ąeld. In this case no domain

individual is created and only the tasks individuals are created.

On the contrary, if at least one domain is available then its individual is created

and it will be connected with every available tasks. To help the reader, if there

are n tasks and m domains, for each of these m domains we will create an

:investigates object property for each of the n tasks.

So, as we can see in algorithm 6, we checked if a domain is available and different

from N/A, then we create the Domain individual and Ąnally we call the addTasks

function which will generate and connect all the available tasks.

If at least one of the Ąrst two checks fails the addTask function is called but

instead of the Domain variable, None is passed as input.

This function works in analogous way of the references and variants algorithms,

the difference is that in this case we have the possibility to input the domain

instance. As previously mentioned, if the domain is not available then None is

passed and so there will not be created the related object properties.

43

Chapter 4. Data parsing

Algorithm 6: Dataset domain and task triple creation

if "domain" in row then

if "N/A" not in row["domain"] then

domain_list = row["domain"].split(",")

for domain in domain_list do

Domain = createURI(FDO, "domain",

strToID(domain=domain))

g.add((Domain, RDF.type, FDO["Domain"]))

g.add((Domain, FDO["domainName"], Literal(domain)))

g.add((Dataset, FDO["domain"], Domain))

if "tasks" in row then

addTasks(g, Dataset, Domain, row["tasks"], bib_database)

end

end

else

if "tasks" in row then

addTasks(g, Dataset, None, row["tasks"], bib_database)

end

end

else

if "tasks" in row then

addTasks(g, Dataset, None, row["tasks"], bib_database)

end

end

The last things to report about the serializeDatasetItem is related to the

full text search functionality. We decided to use the full text search provided by

PostgreSQL, so we had the necessity also to create a sort of very easy relational

database.

It is designed only with a single table with two Ąelds: the ID of the resource

which is the primary key and a second Ąeld to store all the information belonging

44

Chapter 4. Data parsing

a dataset. After some researches we have found the tsvector data-type which

"represents a document in a form optimized for text search" as stated into the

documentation. Moreover, there is a similar data-type called tsquery which is

used when the query is created.

Algorithm 7: Dataset full text search creation

id = strToID(name=row["name"])

data = ""

if "year" in row and "present" in row["year"] then

today = datetime.date.today()

year = today.year

row["year"] = str(year)

end

for (index, value) in row.items() do

if "contact" not in index and "email" not in index and len(value)> 0

then

if type(value) == str then

data = data + " " + value

else

for element in value do

data = data + " " + element

end

end

end

end

insertDatasetIndex(cur, id, data)

The algorithm 7 shows how the information of a given dataset are grouped

together, the only ignored information are those about the contacts for a dataset.

At the end, the insertDatasetIndex function is called, that does the insertion

into the database. Its full code is available at algorithm 8, where we can see

that the IDs are composed by the resource type plus the resource ID. Finally the

45

Chapter 4. Data parsing

information are transformed to the tsvector data-type using the to_tsvector

PostgreSQL function.

Algorithm 8: insertDatasetIndex

id = "dataset/" + id

cur.execute("""

INSERT INTO "indexSchema".dataset(id, data)

VALUES (%s,to_tsvector(ŠenglishŠ,%s));

""",(id,query_data))

With this algorithm we Ąnish the discussion about the parsing of the dataset

resources.

4.2.2 Bibliography parser

On the contrary to the dataset resources, where we had to use a custom parser,

for the bibliography information we had the chance to use an existing parser.

This powerful module, called BibTexParser, provides useful features which helps

to import and manipulate the contents of a BibTex Ąle.

Before going on in the explanation of all the adopted features, I would like to

specify that all the namespaces present in Ąg. 4.1 and the binding operations in

Ąg. 4.2 are still valid and used for the bibliographic parser.

Coming back to the parser, we started with the line in algorithm 9, which calls

Ąrstly the BibTexParser function with the following options:

• common_strings = True which means that common strings are loaded

(for example we can consider month abbreviation);

• ignore_nonstandard_types = False which means that non-standard

BIBTEX entry are not ignored;

• homogenize_Ąelds = False which means that BIBTEX Ąelds name are

not sanitized, for example it change url to link. We do not want any

modiĄcation because these Ąelds are used to understand when there is for

46

Chapter 4. Data parsing

example a URL or a citation.

Algorithm 9: BIBTEX import

bib_database = bibtexparser.bparser.BibTexParser(

common_strings=True, ignore_nonstandard_types=False,

homogenize_Ąelds=False).parse_Ąle(bibtex_Ąle)

Then, the BibTexParser function is concatenated with the parse_file function

which takes as input the BIBTEX Ąle to be parsed. It returns the bibliographic

database generated from the provided input Ąle (the data-type is BibDatabase).

In addition, we used other two customization provided by the bibtexparser

module which are the authors split feature and the type customization. The

Ąrst one converts the author Ąeld of the bibliographic resource to a list where

every element is in this form: "Name, Surname"; the second one instead converts

to lower case every resource type to avoid case sensitive miss-mach.

Then, for every entry into the BIBTEX Ąle, is applied the correct serialization

function based on the entry type.

To achieve this choice we used the match-case structure available starting from

Python 3.10. This functionality is the same of the "classic" switch-case in many

other languages.

The code reported in algorithm 10 is only a summary of the entire structure of

the switch-case.

There are some considerations to analyze:

• the serializeProceeding function used for the case "inproceedings" has

been used also for the entries of type "incollection", "inbook" and "confer-

ence". We can do this because the data properties, the object properties

and the relation with other classes are the same, moreover they reprsents

similar concepts.

• the same approach was done for the "mastersthesis" entry type using the

serializePhD for the preovuous reason.

• when there is an "article" entry type, we can not use directly the serializeArticle

47

Chapter 4. Data parsing

because when there is the word proceeding inside the Ąeld journal (if avail-

able), we have to use the serializeProceeding serialization function.

Algorithm 10: Serialization function selection

switch item["ENTRYTYPE"] do

case "book" do

serializeBook(item, g, cur)

end

case "article" do

if "journal" in item and "proceeding" in item["journal"].lower() then

serializeProceeding(item, g, cur)

else

serializeArticle(item, g, cur)

end

end

case "techreport" do

serializeTechReport(item, g, cur)

end

case "phdthesis" do

serializePhD(item, g, cur)

end

case "inproceedings" do

serializeProceeding(item, g, cur)

end

case "misc do

serializeMisc(item, g, cur)

end

end

Now we will discuss how these serialization functions act. All of these functions

start Ąlling the table used for the full text functionality. As for the dataset

insertion function we use PostgreSQL and we create a similar function to algo-

48

Chapter 4. Data parsing

rithm 8, the two differences are about its name (insertPaperIndex) and the

ID construction. In fact, it is composed by the preĄx "paper/" plus the resource

ID.

With regards to the data and object properties, we can start explaining how the

dcterms:identifier is built. As we can see in algorithm 11, we Ąrstly check if

the "doi" Ąeld is available and then we create the triple using dcterms:identifier.

If it is not available then may happen that there is the arXiv identiĄer. In this

case we can use the FaBiO sub-property of dcterms:identifier which is used

to store the arXiv identiĄer.

Algorithm 11: IdentiĄer triple creation

if "doi" in item then

g.add((Article, DCTERMS["identiĄer"], Literal(item["doi"])))

else

if "journal" in item and "arxiv" in item["journal"].lower() then

g.add((Article, FABIO["hasArXivId"], Literal(item["journal"])))

end

end

Related to the arXiv, there is also a part focused on the creation of the Journal

and Publisher individials. In fact if the identiĄer is the arXiv ID we create an

individual related to this entity which is an pre-print and post-print electronic

repository where documents are published. In this case arxiv.org will be also

the publisher of these resources.

On the contrary, the journal will be the one presents into the journal Ąeld and

if there is also the publisher Ąeld the relative triples will be created.

Other Ąelds are Ąlled directly like the title one, as we can see in algorithm 12.They

are quite easy to understand and we do not waste time with the explanation of

them.

49

Chapter 4. Data parsing

Algorithm 12: Title triple creation

if "title" in item then

g.add((Article, DCTERMS["title"], Literal(item["title"])))

end

More interesting is the algorithm 13 where we can observe that there are two

possible Ąelds where the information (about the volume in which the article is

published) can be store inside the items present in BIBTEX Ąle.

Algorithm 13: Volume triple creation

if "volume" in item and len(item["volume"])>0 then

g.add((Article, FDO["volume"], Literal(item["volume"])))

else

if "number" in item and len(item["number"])>0 then

g.add((Article, FDO["volume"], Literal(item["number"])))

end

end

Finally, I would like to explain how we developed the triples creation about the

authors related to a resource.

The algorithm 14 illustrates how the triples are created. At the beginning of

this section we talk about the BibTexParser customization feature about the

author list creation.

In this way we can iterate the triple creation for each author. In the code below,

we split the name and the surname of the author thanks to the convention that

store the surname followed by the name with a comma between them.

50

Chapter 4. Data parsing

Algorithm 14: Author triples creation

if "author" in item then

for author in item["author"] do

author_data = author.split(",")

surname = author_data[0].strip()

name = author_data[1].strip()

Author = createURI(FDO, "author", strToID(author=author))

g.add((Author, RDF.type, FDO["Author"]))

g.add((Author, FOAF["name"], Literal(name)))

g.add((Author, FOAF["surname"], Literal(surname)))

g.add((Article, DCTERMS["creator"], Author))

end

end

As previously said, there are a big number of common Ąelds which can be used in

every type of bibliographic document. Sometime happens that there are minor

changes but the structure is pretty much the similar.

We now see algorithms which have not been explained yet. Starting from the

Tech report where there may be the institutional Ąeld.

Algorithm 15: Corporare body triples creation

if "institution" in item then

CorporateBody = createURI(FDO,"corporateBody",

strToID(ist=item["institution"]))

g.add((CorporateBody, RDF.type, FRBR["CorporateBody"]))

g.add((CorporateBody, DCTERMS["description"],

Literal(item["institution"])))

g.add((TechReport, FRBR["responsibleEntity"], CorporateBody))

end

As we can see in algorithm 15, the information related to the corporate body are

stored using the dcterms:description data property and then the relationship

51

Chapter 4. Data parsing

between the resource and the institution is added thanks to the last line of the

algorithm.

The PhD and master thesis documents have not an institution Ąeld but they

may have the school attribute. In this case we mapped this information like the

institutional one and we can use the same algorithm 15.

A more complicated argument is related to the proceedings paper and misc

documents. In fact they have also a relationship with an event where they are

presented and/or published.

The reported code in algorithm 16 is a summary and it can be applied only if

the "series" Ąeld, is available. The Ąrst step is to split the content of the "series"

Ąeld if it is available. Then, following the ontology available in Ąg. 3.7, we check

if a number is present, which could represent the year or the edition of the event.

Algorithm 16: Event - corporate body triples creation (a)

splitten_data = re.split(" |Š",item["series"])

for data in splitten_data do

if strToID(s=data).isnumeric() then

numb_found = 1

end

end

Then the second part is divided in two section, formally there is an if-clause

that check if the numb_found variable is "1".

In this case is applied the algorithm algorithm 17 where the event individual

is created and then the number is searched and used to Ąll its edition data

property.

The remaining part of the "series" Ąeld is concatenated and it will be stored into

the dcterms:description data property of the responsible entity of the event.

52

Chapter 4. Data parsing

Algorithm 17: Event - corporate body triples creation (b)

Event = createURI(FDO, "event", strToID(serie=item["series"]))

g.add((Event, RDF.type, FRBR["Event"]))

g.add((InProc, FRBR["partOf"], Event))

corporate = ""

for data in splitten_data do

if strToID(s=data).isnumeric()) then

g.add((Event, FDO["edition"], Literal(strToID(s=data),

datatype=XSD.positiveInteger)))

else

corporate += data + " "

end

end

CorporateBody = createURI(FDO, "corporateBody",

strToID(c=corporate))

g.add((CorporateBody, RDF.type, FRBR["CorporateBody"]))

g.add((CorporateBody, DCTERMS["description"],

Literal(corporate.strip())))

g.add((Event, FRBR["responsibleEntity"], CorporateBody))

The last option is when there is not any number inside the "series" Ąeld so we

decided to create the event individual using the "year" Ąeld of the resource, if it

is available, and then use it as the edition data property.

Starting from this assumption we were able to create the event and then using

the information about the "series" Ąeld we produced the corporate body and its

property.

These considerations can be done also for the resources of type "misc". The

only difference is that in this case the event and corporate body individuals are

instantiated if the word "workshop" is present inside the "note" Ąeld instead of

the "series" Ąeld. The convention about the year if a number is not available, it

is still valid.

53

Chapter 4. Data parsing

Algorithm 18: Event - corporate body triples creation (c)

if "year" in item and "unknown" not in item["year"] then

Event = createURI(FDO, "event", strToID(serie=item["series"],

edition=item["year"]))

g.add((Event, RDF.type, FRBR["Event"]))

g.add((Event, FDO["edition"], Literal(item["year"],

datatype=XSD.positiveInteger)))

g.add((InProc, FRBR["partOf"], Event))

CorporateBody = createURI(FDO, "corporateBody"

,strToID(cb=item["series"]))

g.add((CorporateBody, RDF.type, FRBR["CorporateBody"]))

g.add((CorporateBody, DCTERMS["description"],

Literal(item["series"])))

g.add((Event, FRBR["responsibleEntity"], CorporateBody))

end

With this last algorithm we have completed the discussion about the biblio-

graphic parser.

54

Web Application

The Web application project and the thesis have been developed during my

personal research training activity. Also for this reason we decided to choose

technologies which I have never studied, so I had the opportunity to learn new

approaches and useful frameworks.

We have already talked about how store the information, now we will see how

we retrieve and expose them to the user.

5.1 Web technologies

5.1.1 Django

We developed the back-end using the famous Python framework called Django.

All the detailed information are available at its Web page djangoproject.com,

but now we will discuss its main features and advantages.

As above mentioned, Django is a high-level Python Web framework, moreover

it is open source. This last things blends well the project principles.

In particular Django has the following advantages:

• fast: Django designers have the goal of creating a framework which helps

developers to create application as fast as possible;

55

Chapter 5. Web Application

• features: it brings with itself some interesting features which help devel-

opers to complete common features in Web development;

• secure: it is designed to prevent common security negligence;

• scalable: it helps to distribute the heaviest traffic demands quickly and

Ćexibly;

• versatile: it can be used in different domains.

Django works using a modular approach, I think that in this way developers are

able to make the code cleaner and more readable. We used this framework in

our Web application development to implement only the back-end although it

allows also to build the front-end.

In practice, we developed a REST API using Django, which is deĄned as "a Ćexi-

ble, lightweight way to integrate applications, and have emerged as the most com-

mon method for connecting components in microservices architectures." (IBM

Cloud Education, 2021).

REST, which means Representational State Transfer, is a paradigm or an archi-

tectural style which deĄnes how Web information are shared and how computer

systems communicate.

For this reason we can develop a REST API using any programming language

with different data formats. The only requirements is to follow the REST design

principles:

uniform interface: every time a resource is required over an API, it should be

always the same.

Client-server separation: this design principle establishes that client and

server applications must be independent. The client side communicates

with server side only through calling the APIŠs URI.

Stateless: a REST API is stateless, which means that there is no session and

every request-response must include all the information.

56

Chapter 5. Web Application

the developer can decompose a big "problem" into sub-problems to make

easier the development and reduce bugs.

Anywhere applicable: thanks to its designers approach, React can be used in

different Ąelds, also server side with Node and mobile with React Native.

Community: React has a big community composed by millions of developer

but it is also maintained by Facebook developers.

Moreover, thanks to the fact that it is JavaScript based, it can manage efficiently

JSON objects provided by the back-end, as discuss in subsection 5.1.1.

5.2 Web Application development

From that section we will analyze the implementation of the Web application

front-end and back-end thanks to the technologies proposed in section 5.1.

In particular we will describe environment settings and the tools used in the

Ąrst section, then in the second and third section we will inspect the back-end

and the front-end respectively.

5.2.1 Environment and tools

The development of the Web application has taken advantage of different tool

and software.

I decided to use a GIT which is an open source software for distributed version

control, it is not useful only on collaborative developing but also for individual

developer to track changes and code history. I have used bitbucket.org as repos-

itory hosting service just because I have familiarity with this platform thanks

to academic past projects.

As code editor I adopted Visual Studio Code by Microsoft. It is available for

both the operating systems which I use at the time, i.e. Windows and Linux

Ubuntu.

58

Chapter 5. Web Application

We decided to install OpenLink Virtuoso Open Source Edition (which is a store

database system to store triple) inside a Docker container. Thanks to this choice,

we were able to isolate the database system from the hosting system but it allows

us to expose only the desired features and moreover we can export the container

and its conĄguration.

For the same reason, we used Docker container for PostgreSQL, an open source

object-relational database system used to store the information needed to the

full text search feature, and its open source administration and development

platform, called pgAdmin.

Moreover I used Postman, which is a tool to design and test API.

5.3 Back-end

As mentioned in subsection 5.1.1, Django is suitable to be modular. For this

reason, it has been used to develop the back-end REST APIs and in particular

we decided to develop a Django "app" for every different part.

In Django there is the concept of "app" which is different from the "project"

concept. In fact, an app is a Web application with a speciĄc objective, a project

is composed by many application and conĄguration. In conclusion, every Django

application represents a Python package.

Into the "backend" app we put all the settings and the route for each request.

For example here we have deĄned the DB_ENDPOINT variable representing the

URL endpoint of Virtuoso. It is imported by all the apps, in this way we can

change the parameter only once. It is considered a good practice to avoid errors

when the values need to be changed.

As previously said, the "urls" Ąle maps every request to the correct app, the

code in algorithm 19 represents the root urls Ąle. From that the requests are

redirected to the speciĄc "urls" Ąle for a given app and then they select the

correct "view" to be called. A view is a Python function and has the objective

to retrieve a request, elaborate and return a response. In our back-end, all, or

almost, the response are JSON data.

59

Chapter 5. Web Application

In fact we can consider the empty path, which through the corresponding "urls"

Ąle calls the view_index function. The code is not reported because it is only

a render function of the index.html template. We will see more in details in

subsection 5.3.4 how it has been used.

Algorithm 19: URL patterns

urlpatterns = [path("admin/", admin.site.urls),

path("", include("startPage.urls")),

path("dataset/", include("dataset.urls")),

path("task/", include("task.urls")),

path("domain/", include("domain.urls")),

path("creator/", include("creator.urls")),

path("publisher/", include("publisher.urls")),

path("author/", include("author.urls")),

path("event/", include("event.urls")),

path("corporateBody/", include("corporateBody.urls")),

path("paper/", include("referencePaper.urls")),

path("referenceWebpage/", include("referenceWebPage.urls")),

path("journal/", include("journal.urls")),

path("search/", include("textSearch.urls"))

]

5.3.1 Views development

We will now see the main steps and functions of the views. They have the same

main structure and the changes are related only to the data differences between

the resources.

For every resource type there are two main APIs that can be called. For in-

stance, if we consider a dataset resource, we know that the paths must start

with /dataset/ and with this information the backend app redirect the request

to the dataset app. Then there are two possibilities:

60

Chapter 5. Web Application

• /dataset/ without any other string after the slash. This call the index

view which returns all the datasets available inside the database;

• /dataset/<str:id> this call, with the string "id" after the slash, invokes

the detail view which returns all the information related to the dataset

with the speciĄed identiĄer.

To achieve the result we need to perform a query to the database that is available

in algorithm 20. As we can see, it Ąrstly binds the ?dataset variable to the

dcat:Dataset class and then it retrieves all the relative information. Finally,

the triples are ordered in ascendant order to be sure that all the triples about a

resources should be near.

Algorithm 20: Dataset query

query = """

select distinct ?dataset ?prop ?obj where {

?dataset a dcat:Dataset ;

?prop ?obj.

} order by ASC(?dataset)

"""

This type of query provides the idea of all the queries used to retrieve also other

type of resources (changing the bounded type class). After some test of the Web

application, we discovered a problem with all this query. It derives from the

database system, in fact it has a limit variable to setup the maximum number

of triples returned.

To bypass that problem there are two solution: we can increase the number

of maximum triples returned (actually it is 10000) but it is not scalable. The

second solution, the chosen one, is to use the OFFSET option of SPARQL query

language, which allows to produce in output only the solutions after the speciĄed

number. In practice we repeat the query increasing the OFFSET number starting

from zero, until we do not found further results.

61

Chapter 5. Web Application

Algorithm 21: Dataset index view

1 sparql = SPARQLWrapper(endpoint=settings.DB_ENDPOINT)

2 sparql.setQuery(preĄx+query)

3 sparql.setReturnFormat(JSON)

4 result = sparql.query().convert()

5 result_set = result["results"]["bindings"]

6 for triple in result_set do

7 clean_dict(triple)

8 previous = "dataset"

9 for item in triple do

10 if "landingPage" in triple[previous] then

11 previous = item

12 continue

13 end

14 triple[item] = clean_url(triple[item])

15 previous = item

16 end

17 end

18 data = create_json(result_set)

19 result = json.dumps(data, indent=4)

20 return HttpResponse(result)

Starting from the above algorithm 21 we can make the following considerations:

• from the Ąrst line we can see that we have used SPARQLWrapper to connect

and query the database. The DB_ENDPOINT variable is the one previusly

mentioned.

• at line two, the query variable is the one present in algorithm 20 and the

preĄx variable includes all the preĄxes in Ąg. 4.1.

• the line three sets up the format desired to be returned. We decided to

use JSON data format.

62

Chapter 5. Web Application

Before going on, I would like to specify how the detail view query is developed.

It is very similar to the one presents in algorithm 20 but it need to select the

desired resource and we can achieve this objective in two ways:

• apply a FILTER regex over the ?dataset variable;

• bind the resource directly because we know that the convention used to

create the resources URI is "namespace / resource_type / ID" so, in the

case of a dataset, its URI will be "namespace/dataset/ID".

The remaining part of the detail view is the same.

Now we can explain the above mentioned functions used inside the views. The

Ąrst one is the clean_dict, I do not report the code because it simply iterates

over all the triples and their items and keeps only the value belonging to the

"value" keys of the structure in Ąg. 5.1.

The clean_url function has the objective of cleaning the resourcesŠ URL (see

Ąg. 5.2 to understand their structure).

Algorithm 22: clean_url

if "#" in item then

item = item[item.rĄnd("#")+1:]

else

item = item[item.rĄnd("/")+1:]

end

return item

As the reader can observe from algorithm 22 there are two cases: if the URI

contains the "#" symbol it should start from that symbol, on the contrary it

will cut starting from the last "/".

The most important function is the create_json function which transforms all

the retrieved triples into a list of JSON objects.

65

Chapter 5. Web Application

Algorithm 23: create_json - part 1

dataset = []

for triple in result_set do

found = 0

for item in dataset do

if triple[ŠdatasetŠ] == item.get(ŠidŠ) then

found = 1 break

end

end

if found == 0 then

dataset.append(ŠidŠ:triple[ŠdatasetŠ])

end

end

The Ąrst part of the create_json function, available in algorithm 23, creates

the resources list and then creates all the dictionary objects only with the ID

key.

The second part of the function, available in algorithm 24, is the most time

consuming part of the create_json function.

In fact it has two nested for-loop, the Ąrst one over all the triples and the

second one over all the elements of the dataset list of JSON objects.

In the reported resume of the function are not present all the cases, the reader can

extend to all the possible cases easily. The algorithm searches for every triple the

corresponding dictionary resource and then adds the information related to the

considered triple. As the reader can see there are two type of insertion functions:

the insert_element function adds a single element in the form of "key:value",

instead the insert_list function checks if the input key is already presents in

the dictionary resource and, if it is the case, appends the input element. On the

contrary, i.e. the key does not exist yet, the function creates the new key with

a list of one elements, the input one, as value.

66

Chapter 5. Web Application

Algorithm 24: create_json - part 2

for triple in result_set do

for i in range(len(dataset)) do

if triple["dataset"] == dataset[i].get("id") then

switch triple["prop"] do

case "title" do

insert_element(dataset[i],"title",triple["obj"])

end

case "description" do

insert_element(dataset[i],"description",triple["obj"])

end

case "dataSpec" do

insert_element(dataset[i],"dataSpec",triple["obj"])

end

case "sensitiveFeature do

insert_list(dataset[i],"sensitiveFeature",triple["obj"])

end

case "domain" do

insert_list(dataset[i],"domain",triple["obj"])

end

case "task" do

insert_list(dataset[i],"task",triple["obj"])

end

case "creator" do

insert_list(dataset[i],"creator_id",triple["obj"])

end

case "isReferencedBy" do

insert_list(dataset[i],"isReferencedBy",triple["obj"])

end

end

end

end

end

return dataset

67

Chapter 5. Web Application

During the Web application development we took care of its performances. This

argument is not strictly related with how the user interacts with the applications

but it affects directly the user experience.

When the above version of the create_json function was ready, we applied

some tests to verify if the response time was acceptable. Unfortunately, the

performance was not as good as we expected. From the test we concluded that

the problem was originated from right over the create_json function.

In fact, we noticed that it ran approximately in 10 seconds (in some cases also

more than that) and on the contrary the remaining parts of the view act in

matter of milliseconds. So we can easily assume that a user after that time will

leave the Web application in Ćavour of a better performing one.

We have done a lot of test using different data structures to improve the create_json

function and after some researches we decided to used a dictionary of dictio-

nary instead a list of dictionary. In this way we can avoid to use two nested

for-loops.

In practice the structure will be composed of key-value pairs where the key is

the resources ID and the value is the dictionary containing all the information.

The new version of the create_json function is reported in algorithm 25.

Now we are going to explain some details of this new version, starting from the

Ąrst for-loop.

First of all, it is more compact, in fact using the dictionary for each triple we

can verify if the ID (and so the key of the dictionary entries) is already present,

on the contrary it is added. In this way we do not need to scan linearly all the

elements of the list for each triple.

In algorithm 25 we do not report all the possible cases because, as in the algo-

rithm 24 the reader can extend to all the possible options. We want to show

how the dictionary of dictionary impacts the implementation compared to the

previous version.

Also in this case we avoid to use two nested for-loops because we retrieve the

resourcesŠ dictionary using the ID which is the key of the structure. As the

reader can see, it is retrieved directly into the insert functions and given as in-

68

Chapter 5. Web Application

put parameter. The two version of insertion functions are still the same in both

the developed versions.

Finally, to produce the correct structure expected by the front-end, this new

version returns only the entries of the main dictionary converted into a list.

Algorithm 25: create_json - new version

dataset_set = for triple in result_set do

if triple[ŠdatasetŠ] not in dataset_set.keys() then

dataset_set.update(triple[ŠdatasetŠ]:"id":triple[ŠdatasetŠ])

end

end

for triple in result_set do

switch triple[ŠpropŠ] do

case ŠtitleŠ do

insert_element(dataset_set[triple[ŠdatasetŠ]],ŠtitleŠ,triple[ŠobjŠ])

end

case ŠdescriptionŠ do

insert_element(dataset_set[triple[ŠdatasetŠ]],ŠdescriptionŠ,triple[ŠobjŠ])

end

case ŠcreatorŠ do

insert_list(dataset_set[triple[ŠdatasetŠ]],Šcreator_idŠ,triple[ŠobjŠ])

end

case ... do

end

end

end

return list(dataset_set.values())

69

Chapter 5. Web Application

Considering another path, we will now discuss about the one starting with

/paper and in particular the one dedicated to retrieve all the papers related

to a dataset-task pair.

The full path is in the following form:/paper/<str:id>/<str:task_id>

As we can image, the query will be different from the previous illustrated one.

In fact, it needs to retrieve the resources matching the pairs using the blank

nodes. The query is reported in algorithm 26.

The code of this view does not use the previous mentioned create_json function

but it uses the create_json made for the paper (so it has different Ąelds but

the same structure). The elaborations, to remove the useless JSON information

in the response and to clean the URIs, are done before calling the create_json

function.

Algorithm 26: Query to retrieve documents about a task of a dataset

query = """

select distinct ?paper where {

fdoDataset:"""+dataset_id+""" a dcat:Dataset ;

fdo:has ?bNode .

?bNode ?about fdoTask:"""+task_id+""";

fdo:refers ?paper .

?paper ?pred ?obj .

} order by ASC(?paper)

"""

Before moving on to the section dedicated to the full text search, it is interesting

to explain how the debug and log activities are done. They are very important

in every development project.

Differently from a classical software style, during Web and in particular back-

end development we can not simply "print" the information. In this case, the

solution is using a module that allows to "export" information, the adopted

solution is the "logging" module. In practice it allows to print information to a

speciĄed Ąle.

70

Chapter 5. Web Application

5.3.2 Full text search view

In this section we will analyze how the views dedicated to the full text search

are implemented.

There are two views: the Ąrst one query the table dedicated to the datasets in-

formation, the second one instead investigates the documents information using

a similar query.

In this case the path allowed by the "urls" Ąle are (considering that the base

path is /search/):

• the empty path which reply an "error" message

• dataset/<str:searchText> which redirects to the view dedicated to re-

trieve information about datasets;

• paper/<str:searchText> which redirects to the view dedicated to re-

trieve information about documents.

We will analyze only one of these views because the structure, the used functions

and the queries are similar.

The query, reported in algorithm 27, is obviously PostgreSQL query language

because, as we previously mentioned, we use a PostgreSQL database manage-

ment system.

Algorithm 27: Full text dataset query

query = """

SELECT id

FROM "indexSchema".dataset

WHERE data @@ plainto_tsquery(ŠenglishŠ,%s)

ORDER BY id ASC

"""

For those whom already know this query language the main structure of the

query is understandable. The interesting part is after the WHERE keyword. In

fact the data @@ plainto_tsquery("english", %s) code is not common to

71

Chapter 5. Web Application

see, at least for someone which works with the standard features.

In practice it makes a sort of intersection between the data column and the

results of the plainto_tsquery function. This statement converts every piece of

text into a tsquery data-type which is the corresponding data-type of tsvector

for the queries. The inputs are the text language and the text to be transformed.

Now we have understood the query, so we can talk about the implementation.

Algorithm 28: Full text view

conn = psycopg2.connect(dbname="index_db", user=settings.user,

password=settings.pswd, host=settings.db_host)

cur = conn.cursor()

cur.execute(query, [searchText])

results = cur.fetchall()

cur.close()

conn.close()

result = json.dumps(results, indent=4)

return HttpResponse(result)

The code is available in the algorithm 28, where the query variable is the one

present in the algorithm 27.

We can see that there are a lot of "database" stuff but nothing about the data

elaborations. In fact we only need to establish the connection, execute the query

and retrieve the results. From the algorithm we can noticed that we used the

psycopg2 module to reach the database inside the PostgreSQL DBMS.

Finally, we convert the results to JSON data format and we send them using

the HttpResponse function.

5.3.3 Form view

In this subsection we will talk about the only view dedicated to manage POST

request. It is particularly easy, in fact it checks if the request is of type POST

and then it retrieves the request body.

72

Chapter 5. Web Application

This information are loaded as JSON format and then they are used into the

mail content.

In fact the objective of this view is to retrieve the information from the front-end

form and to send them by mail so that the data creator can manage and upload

them into the Web application database.

To manage the e-mail sending we use the send_mail function provided by

django.core.mail. We only need to conĄgure the required information (the

host name, the port, the username and the password) inside the settings Ąle.

5.3.4 Development to production

We have already discussed about the view_index function which render the

index.html Ąle.

During the Web application development two processes were required: the back-

end service was executed to expose all the REST APIs and the front-end service

was executed to expose the user interface. The reason why we decided to use

this approach instead of a single process is easy: every time we save a code

modiĄcation the front-end was reloaded and so we could see immediately the

updates.

This approach has two main problems at the production stage:

• the front-end code is fully available, so there are both security and copy-

right problems;

• running back-end and front-end over two distinct processes increase the

possibility of the Web application crash. In fact, there are two processes

that can crash, go down and make the system unresponsive.

For these reasons the above approach is not feasible in production environment

so we studied how to run in a single process and without exposing the source

code.

The solution found is using webpack which is "a static module bundler for mod-

ern JavaScript applications". It is a useful tool with many features which help

73

Chapter 5. Web Application

developers to create a single bundle that can be imported as static script Ąle in

a HTML Ąle.

Figure 5.4: Webpack idea

We can now understand what the index.html Ąle does. In practice it is a sort

of container for the front-end which is executed thought the JavaScript bundle.

In conclusion, there will be one process, the one relative to the back-end, which

executes also the React front-end.

5.4 Front-end

In this section we will explain how the React front-end has been developed.

During the implementation sometimes we needed to change the used techniques

to achieve the desired results. So we will make a summary of the changes and

the Ąnal results.

The Ąg. 5.2 represents the Ąrst test we have done to display the results of the

/dataset API call. It is interesting to specify that it was a great satisfaction

to display this row data because, as we have already mentioned, it was my Ąrst

approach to React. Obviously, they were difficult to understand if they are dis-

played in this way but, when the back-end was ready, we were able to display a

more understandable presentation of the resources using a tabular view.

It is useful to mention that we decided to start from the dataset information be-

cause all the Web application is about the dataset and their related information.

74

Chapter 5. Web Application

Algorithm 29: getDatasetList

1 axios

2 .get("${host}/dataset/")

3 .then(res => {

4 setDatasetList(res.data);

5 res.data.map(data =>{

6 saveJSON("dataset/"+data.id,data);

7 })

8 setLoading(false);

9 }).catch(err => {

10 console.error(err);

11 setLoading(false);

12 })

values.

The second line makes the request to the input URL, in this case it requires all

the dataset resources as we have seen in subsection 5.3.1.

The third line retrieves the response and starting from this line we make its

elaboration. The setDatasetList is a set function connected to a datasetList

variable. In practice, the datasetList incorporates a state into a function com-

ponent called Hook. An Hook is a React feature which is used to "contains

reusable code logic that is separate from the component tree" (Banks and Por-

cello, 2020).

After that, we iterate over all the resources in the response and for each of these

we apply the saveJSON custom function, which store the information into the

session storage of the browser. It is done to improve performances of the

Web application, so when a resource is requested, it is searched inside the ses-

sion storage. If it is not available then a request to the back-end is created.

Finally, there is a setLoading Hook function to "communicate" that all the

information are retrieved and stored.

76

Chapter 5. Web Application

From line nine of the algorithm there is the catch clause which is used to

intercept and manage an error response.

Before going on, we need to specify two implementation strategy:

• the saveJSON function takes two input parameters. In fact, the infor-

mation are stored in a key-value pair way. The key is composed by the

resource type plus the resource ID, i.e. dataset/resource_ID, the value

instead is composed by the information in JSON format of the resource.

Moreover, there is the symmetric function to retrieve information form

the session storage, called loadJSON. It requires only one parameter: the

key of the element inside of the session storage which is composed as we

previously explained.

• the second consideration is that algorithm 29 has a symmetric implemen-

tation, called getDataset, which allows developers and so the front-end

to retrieve the information about a speciĄc resource. It has the same

implementation with the only difference of the URL, It is in the form

"$host/dataset/$dataset_id", according to the back-end speciĄcation.

To retrieve all the correct information from their IDs, we used a nested structure

using more and more detailed and speciĄc components, as React requires.

After some tests, we decided to switch from a tabular view using the table

HTML tag to a tabular view using div and speciĄc classes because we notice

that in this way we can achieve a better graphic visualization.

In order to make the contents more readable we used thin lines to separates

resources and to distinguish the Ąelds inside a resource. The results are proposed

in Ąg. 5.6 and Ąg. 5.7

77

Chapter 5. Web Application

5.4.1 Sensitive feature Ąlter

When all the faceted search were ready, we noticed that we had the necessity to

add a new feature. The problem was about the sensitive features Ąlter into the

Datasets page. In practice we notice that the sensitive features can be grouped

into a sort of "classes".

For example if a user wants to add a Ąlter to the "sex" sensitive feature then

probably should be added also the similar ones, for example the "gender" at-

tribute which represents the same concept.

Like this example, there are other features which can be grouped together and

thanks to Dott. Alessandro Fabris, the data curator, we were able to deĄne

the structure in algorithm 31. It is a dictionary object where the keys are the

features name and the value represents the belonging class.

Algorithm 30: equalFeatures structure

const equalFeatures = {

"1" : ["demographics of people featured in entities and their

relations","textual references to people and their demographics","visual

and textual references to gender"],

"2" : ["family wealth","Ąnancial status"],

"3" : ["gay-friendliness","sexual orientation"],

"4" : ["gender","sex"],

"5" : ["language","spoken language"],

"6" : ["political affiliation","political leaning"],

"7" : ["race","skin color","skin tone","skin type","ethnicity"]

}

Then we deĄne another dictionary object, illustrated in algorithm 30, where

there are all the below classes as key and the corresponding value is a list of all

the features belonging that class.

87

Chapter 5. Web Application

Algorithm 31: featuresClass structure

"demographics of people featured in entities and their relations": "1",

"textual references to people and their demographics": "1",

"visual and textual references to gender": "1",

"family wealth": "2",

"Ąnancial status": "2",

"gay-friendliness": "3",

"sexual orientation": "3",

"gender": "4",

"sex": "4",

"language": "5",

"spoken language": "5",

"political affiliation": "6",

"political leaning": "6",

"race": "7",

"skin color": "7",

"skin tone": "7",

"skin type": "7",

"ethnicity": "7"

In this way, every time a new sensitive feature is added to the relative Ąlter, the

algorithm 32 is appointed to inspect the above structures to Ąnd similar classes

that should be added contextually with the user selected one.

The Ąrst row represents a copy of the entire list of the selected sensitive features,

then the algorithm retrieves the belonging class for every element of this list

using the algorithm 31 structure.

The second for-loop has the objective to check if all the elements belonging the

above mentioned classes have already been selected and on the contrary they

are added to the new list of the chosen sensitive features.

88

Chapter 5. Web Application

Algorithm 32: checkSensitive function

function checkSensitive (selectedSensitiveFeature,setSensitiveFeature){

let newSelectedSensitiveFeature = JSON.parse(

JSON.stringify(selectedSensitiveFeature));

for feature in newSelectedSensitiveFeature do

let featureClass = featuresClass[feature];

for newFeature in equalFeatures[featureClass] do

if newSelectedSensitiveFeature.indexOf(newFeature) === -1 then

newSelectedSensitiveFeature.push(newFeature);

end

end

end

setSensitiveFeature(newSelectedSensitiveFeature);

}

The last problem to be solved is the strategy to use to remove the selected

features. In fact, without the above algorithm there was not issue in this part

but now, every time that there is a lacking feature from the classes, it will

automatically add the missing one.

We can understand that in this way we are no more able to remove a single

feature but we always need to use the "Reset" button which remove all the

features simultaneously.

As it is an undesired limit, we solve this problem by storing the length of the

list of selected sensitive features and then for every variation of this dimension

we update this value but we call the checkSensitive function only if this value

is greater that the previous one.

89

Chapter 5. Web Application

92

Conclusions

With this Ąnal chapter ends this thesis. I have some considerations about fair-

ness algorithmic but in particular about the Web application development.

Concerning to the fairness algorithmic Ąelds, I would like to say that it was

an interesting Ąelds to work about. I did not know it until Prof. G. Silvello

proposed me the thesis and research training activity. In particular, it was in-

teresting to discover that some algorithmic around our every days life are biased

by data that should not be considered by them; we can think also that it is

frightful from some point of view.

Regarding the pure development part was very interesting and I liked to work

on a Web application as thesis argument. I think that it allowed me to increase

my skills as developer but also as problem solver, in fact every part of the model,

the back-end and the front-end have been carefully studied and I hope that it

has emerged from this thesis.

93

Acknowledgements

This thesis represents the end of my master Degree university career. It was

undoubtedly an important part of my student life.

Even if it represents the shortest academic path thought all my academic career

it has been the most interesting and the most relevant. The reason is easy,

I liked all the proposed and chosen courses and every one improved my skills

which I will exploit during my working life.

During the Master Degree I was lucky enough to meet helpful and knowledge-

able professors and to work with nice classmates.

I would like to thank my thesis co-Supervisor Dott. Alessandro Fabris and

Dott. Fabio Giacchele who were always support giving in my thesis and devel-

opment activity.

A special thank is to my thesis Supervisor, Professor Gianmaria Silvello who

was always helpful and he managed the Web application project and the thesis

activity in the best possible way.

I would like to thanks my entire family, my mother Patrizia, my father Ennio

and my bro Lorenzo. They accompanied and supported all my student career

and I think that I was able to achieve my objective also thaks to them.

A thanks to Giulia who has been by my side in every moment of this Master

Degree career and more.

95

References

P. Archer. Data Catalog Vocabulary (DCAT) (W3C Recommendation), 2014.

URL https://www.w3.org/TR/vocab-dcat/.

J. Bandy and N. Vincent. Addressing "documentation debt" in machine learning

research: A retrospective datasheet for bookcorpus, 2021. URL https://

arxiv.org/abs/2105.05241.

A. Banks and E. Porcello. Learning React: Modern Patterns for Developing

React Apps. OŠReilly Media, 2020. ISBN 9781492051695. URL https://

books.google.it/books?id=tDjrDwAAQBAJ.

E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dan-

gers of stochastic parrots: Can language models be too big? In Proceedings

of the 2021 ACM Conference on Fairness, Accountability, and Transparency,

FAccT Š21, page 610Ű623, New York, NY, USA, 2021. Association for Com-

puting Machinery. ISBN 9781450383097. doi: 10.1145/3442188.3445922. URL

https://doi.org/10.1145/3442188.3445922.

P. Ciccarese and S. Peroni. Essential FRBR in OWL2 DL Ontology (FRBR),

2018. URL http://purl.org/spar/frbr.

DCMI Usage Board. DCMI metadata terms. DCMI recommendation,

DublinCore, 2006. URL http://dublincore.org/documents/2006/12/18/

dcmi-terms/.

A. Fabris, S. Messina, G. Silvello, and G. A. Susto. Algorithmic fairness datasets:

the story so far. Data Mining and Knowledge Discovery, 36(6):2074Ű2152,

97

References

2022. doi: 10.1007/s10618-022-00854-z. URL https://doi.org/10.1007%

2Fs10618-022-00854-z.

C. Garbin, P. Rajpurkar, J. Irvin, M. P. Lungren, and O. Marques. Structured

dataset documentation: a datasheet for chexpert, 2021.

T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach,

H. Daumé III, and K. Crawford. Datasheets for datasets. arXiv preprint

arXiv:1803.09010, 2018.

U. Grömping. South German Credit Data: Correcting a Widely Used

Data Set. Report. Technical report, Beuth University of Applied Sciences

Berlin, 2019. URL http://www1.beuth-hochschule.de/FB_II/reports/

Report-2019-004.pdf.

Y. He, K. Burghardt, and K. Lerman. A geometric solution to fair represen-

tations. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and

Society, AIES Š20, page 279Ű285, New York, NY, USA, 2020. Association for

Computing Machinery. ISBN 9781450371100. doi: 10.1145/3375627.3375864.

URL https://doi.org/10.1145/3375627.3375864.

S. Holland, A. Hosny, S. Newman, J. Joseph, and K. Chmielinski. The dataset

nutrition label: A framework to drive higher data quality standards. arXiv

preprint arXiv:1805.03677, 2018.

IBM Cloud Education. Rest-apis, 2021. URL https://www.ibm.com/cloud/

learn/rest-apis.

Open Knowledge Foundation, 2009. URL https://opendatahandbook.org/

guide/en/what-is-open-data/.

OUI and Adience. Data, 2014. URL https://talhassner.github.io/home/

projects/Adience/Adience-data.html.

K. Peng, A. Mathur, and A. Narayanan. Mitigating dataset harms requires

stewardship: Lessons from 1000 papers. arXiv preprint arXiv:2108.02922,

2021.

98

References

S. Peroni and D. M. Shotton. Fabio and cito: Ontologies for describing bib-

liographic resources and citations. J. Web Semant., 17:33Ű43, 2012. doi:

10.1016/j.websem.2012.08.001. URL https://doi.org/10.1016/j.websem.

2012.08.001.

V. U. Prabhu and A. Birhane. Large image datasets: A pyrrhic win for computer

vision? arXiv preprint arXiv:2006.16923, pages 1536Ű1546, 2020.

M. Wang and W. Deng. Mitigating bias in face recognition using skewness-aware

reinforcement learning. In IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 9319Ű9328, 2020.

F. Yang, M. Cisse, and S. Koyejo. Fairness with overlapping groups;

a probabilistic perspective. In H. Larochelle, M. Ranzato, R. Had-

sell, M. F. Balcan, and H. Lin, editors, Advances in Neural Informa-

tion Processing Systems, volume 33, pages 4067Ű4078. Curran Associates,

Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

29c0605a3bab4229e46723f89cf59d83-Paper.pdf.

99

	Introduction
	Introduction to Algorithmic Fairness
	Problem definition
	Problem analysis
	Methodology of the survey

	Key data fields
	Data domain
	Data task
	Sensitive features

	Dataset Curation
	Data brief structure
	Contribution of this work

	Problem Modeling
	Model designation
	Linked Open Data

	Ontology
	Foundation Ontology
	New designed ontology
	Instance example

	Data parsing
	Turtle serialization
	Parsers
	Datasets parser
	Bibliography parser

	Web Application
	Web technologies
	Django
	React

	Web Application development
	Environment and tools

	Back-end
	Views development
	Full text search view
	Form view
	Development to production

	Front-end
	Sensitive feature filter
	Form page

	Conclusions

