=) DIPARTIMENTO
= DI INGEGNERIA
— DELLINFORMAZIONE

RS \;(k‘\\ll : Q

UNIVERSITY OF PADUA
Department of Information Engineering - DEI

Master Degree in Computer Engineering

A WEB APPLICATION FOR SEARCHING

FAIRNESS DATASETS

SUPERVISOR CANDIDATE

Prof. Gianmaria Silvello Alberto Piva

Badge 2048674

CO-SUPERVISORS

Dott. Alessandro Fabris

Dott. Fabio Giachelle

Academic Year 2021,/2022
Graduation date 12/12/2022

Contents

Introduction

Introduction to Algorithmic Fairness

2.1

2.2

2.3

2.4

2.5

2.6

Problem definition

Problem analysis

2.2.1 Methodology of the survey

Key data fields

2.3.1 Data domain

2.3.2 Data task

2.3.3 Sensitive features

Dataset Curation

Data brief structure

Contribution of this work

Problem Modeling

3.1

3.2

Model designation

3.1.1 Linked Open Data

Ontology

3.2.1 Foundation Ontology

3.2.2 New designed ontology . .

1ii

10

13

14

14

15

17

17

17

19

CONTENTS

3.2.3

Data parsing

Instance example L.

4.1 Turtle serialization

4.2 Parsers

4.2.1

4.2.2

Datasets parser

Bibliography parser

Web Application

5.1 Web technologies
5.1.1 Django
5.1.2 React

5.2 Web Application development
5.2.1 Environment and toolso

53 Back-end
5.3.1 Views development
5.3.2 Full text search view
5.3.3 Formview
5.3.4 Development to production

5.4 Front-end
5.4.1 Sensitive feature filter
542 Formpage Lo

Conclusions

v

35

35

37

37

46

55

25

95

o7

58

58

29

60

71

72

73

74

87

90

93

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

5.1

5.2

5.3

5.4

Datasets utilization in fariness research
Datasets domains in fairness research

Fairness dataset utilization

bstar schema L oL
Ontology with focus on Datasets
Ontology with focus on papers
Ontology relation between dataset and documens
Full Ontolgy Schema
New blank node L
Final ontology schema
Tabular view of Adience example

Graph view of Adience example

Turtle prefixes

Namespaces bind operation

Row results from query in JSON format
Query results
APIresponse

Webpack idea

14

18

LisT oF FIGURES

9.9

2.6

5.7

2.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Dataset tabular view00 75
Dataset page datail oo 78
Dataset page 79
Full dataset page content 80
Example of filter addition 81
Single dataset view oL 81
Related paper list 82
Related paper details 83
Home page - first version 84
Home page - second version 84
Dataset page header 85
Header menu 85
Paper page 86
Suggest a dataset page 90
Further information field 91
E-mail JSON information, 91

vi

List of Algorithms

10

11

12

13

14

15

16

17

18

Dataset URI creation 38
Dataset title triple creation 39
Dataset year triple creation L. 40
Sensitive features triple creation 40
Dataset reference triple creation 42
Dataset domain and task triple creation 44
Dataset full text search creation 45
insertDatasetIndex oL 46
BIBTEX import o 47
Serialization function selection 48
Identifier triple creation 49
Title triple creation oL 50
Volume triple creation 50
Author triples creation 51
Corporare body triples creation o1
Event - corporate body triples creation (a) 52
Event - corporate body triples creation (b). 53
Event - corporate body triples creation (¢) 54

vii

LIST OF ALGORITHMS

19

20

21

22

23

24

25

26

27

28

29

30

31

32

URL patterns
Dataset query
Dataset index view .
clean url
create_ json - part 1 .

create_ json - part 2 .

create json - new version

Query to retrieve documents about a task of a dataset

Full text dataset query
Full text view
getDatasetList
equalFeatures structure
featuresClass structure

checkSensitive function

viil

60

61

62

65

66

67

69

70

71

72

76

87

88

89

Abstract

Data-driven algorithms are being studied and deployed in diverse domains to
support decisions. They directly impact on people’s life and for this reason
more and more researchers are analyzing the equity of existing algorithms and
they are proposing new ones. Algorithmic fairness progress is based on data,
which can be used in a correct way only if sufficiently documented. As stated by
Fabris et al. (2022) "Unfortunately, the algorithmic fairness community, suffers
from a collective data documentation debt caused by a lack of information on
specific resources and scatteredness of available information.". This thesis is
strictly connected with the researches done in this field by Prof. Gianmaria

Silvello and it proposes a Web Application to support and share their work.

Gli algoritmi basati sui dati vengono studiati e utilizzati in diversi ambiti per
supportare le decisioni. Questi impattano direttamente sulla vita delle persone
e per questo motivo sempre piu ricercatori analizzano 'equita degli algoritmi
esistenti e ne propongono di nuovi. L’equita algoritmica si basa sui dati, che
possono essere utilizzati in modo corretto solo se sufficientemente documentati.
Come riportato da Fabris et al. (2022) "Purtroppo, in questo ambito si soffre di
un debito collettivo di documentazione dei dati, causato dalla mancanza di infor-
mazioni su risorse specifiche e dalla dispersione delle informazioni disponibili.".
Questa tesi e strettamente legata alle ricerche condotte in questo campo dal
Prof. Gianmaria Silvello et al. e propone una Web Application per supportare

e condividere il loro lavoro.

X

Introduction

Algorithms are a fundamental key point in Computer Engineering and Computer
Science fields. In the last few decades they have been more and more concen-
trating on data and for this reasons they are called data-driven algorithms.
The community of researchers that is concentrating on the algorithms fairness
is growing. They study these types of algorithms which are used in various do-
mains.

An important consideration to make is that those algorithms have been used to
make decisions which directly influence and impact our every day life.

The problem we will analyze in this thesis is related with the difficult situation
given by the lack of documentation of the data which is used in the data-driven
algorithms. The reader should consider that the previous mentioned algorithms

can be used correctly only if they are sufficiently documented.

This thesis is structured around four main chapters, without considering the this
Introduction chapter and the Conclusions. The first one is an introduction to the
algorithmic fairness and in particular it resumes the researches made by Fabris
et al. (2022), which is the background around this thesis. In conclusion there
is an explanation about the data brief structure composition and a discussion
about the contribution of this work.

In the second chapter the reader can find the problem modeling: there is a brief
introduction to Open Data and then it is explained how the ontology has been
developed with all its implementation details.

In the chapter number three the data parsing has been explained, in particular

which type of serialization was chosen and all the implementation details about

CHAPTER 1. INTRODUCTION

the developed parsers and serialization functions. Finally we explain how we
used PostgreSQL to implement the full text search.

The forth chapter is divided in three main sections. The first one describes
briefly the Web technologies used to develop the back-end and the front-end, so
we talk about Django and React with their advantages.

In the second one we explained how the Web application back-end was developed
in practical terms, so there are some example of code and we discuss some
implementation decisions.

Finally, the third section talk about the Web application front-end development.

It presents techniques and consideration done during its implementation.

Introduction to Algorithmic

Fairness

2.1 Problem definition

As we can understand from the Introduction, this thesis deals with the data
used by algorithms and all their related aspects, in particular from the fairness
point of view. We can translate fairness with justice, equity, bias, power and
harms.

Another key point is given by data selection and utilization by users.

Two important works are published by Gebru et al. (2018) and Holland et al.
(2018), they are considered two complementary frameworks and they are called
respectively Datasheets fror Datasets and Dataset Nutrition Labels.

They are recognized important because they can help data producers to follow
best practices during data curation and data consumers are able to choose and
use datasets within the best productive way.

These new "standard" of work have influenced also the Machine Learning field
so much so that in the Conference on Neural Information Processing Systems
(NeurIPS) has been introduced a way to track datasets into repositories, which
are particularly useful in scholarly articles and in all academic and business
researches world.

It is important to notice that it is applicable also to existing datasets (Bandy
and Vincent (2021), Garbin et al. (2021)) classifying their proprieties (Prabhu
and Birhane, 2020) and tracking their usage in researches (Peng et al., 2021).

3

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

Recently Fabris et al. (2022) proposed the extension of the notion of documen-
tation debt by Bender et al. (2021) to all the collections of datasets utilized in a
research filed because the initial notion considers only the training sets.
Moreover, they identified two aspects that produce the above-mentioned doc-
umentation debt: the first one is the opacity which represents the inadequate
documentation relative to single documents, the second one is the sparcity which
refers to the presence of relevant information but they are insufficiently con-
nected with the data.

An example of these relevant aspects is given by the German Credit dataset
(UCI Machine Learning Repository, 1994). In fact, in recent works of algorith-
mic fairness where this dataset is employed, the sex attribute is set as protected
attribute (He et al. (2020), Yang et al. (2020) and others), which means that it
is a feature that can not be used as basis to make decisions. On the contrary,
the existing documentation related with this dataset shows that this feature can
not be retrieved (Gromping, 2019).

Another important facet is the the relation between datasets and the tasks or
the domains where they have been employed, which may be unknown.

A key instance is given by the BUPT Faces datasets: it is known as the second

existing resource for face analysis with race annotations (Wang and Deng, 2020).

2.2 Problem analysis

Fabris et al. (2022), to reduce the problem produced by the documentation debt
of the algorithm fairness community, examined the datasets used in more than
500 articles published in that field. They decided to select them from the most
important conferences and workshops in the period from 2014 to 2021.

This work produced the so called data briefs, which are a sort of compact and
standardized documentation of the datasets found in the articles considered. To
give an idea of the work behind the Fabris et al. (2022) publication, they found
over 200 datasets connected with the articles of algorithmic fairness.

Data briefs are a kind of summary of the datasets where we can find the key

4

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

proprieties, such as the purpose, the features (and in particular the sensitive
ones), the labeling procedure and the envisioned ML task, if present. Moreover
data briefs also indicate the domain of processes which produced the data and
the tasks in which the dataset is used. With these last two information a user

can also make search domain-based or task-based.

Fabris et al. (2022) to obtain all this detailed information, which are often not
given, contacted creator of the datasets and all the researchers involved with the
writing of the considered articles.

Thanks to the information published at the end of some articles they were able
to contact e receive feedback from 72 data curators and practitioners.

A particular attention was given to the most utilized datasets in the considered
articles: Adult, COMPASS and German Credit. For each of these a datasheet
and a nutrition label was produced.

From the analysis they were able to produce a summary of their merits and
limitations, a very useful taxonomy of domains and tasks involved in algorithmic
fairness of the existing resources. At the end, these technique are also a set of
best practises for curating novel datasets to achieve the expected anonymization,

the users consent, inclusively, labeling and transparency.

During their researches, Fabris et al. (2022) were able to produce the following

results:

o Analysis of common fairness datasets. In particular they produced a de-

tailed documentation for the above-mentioned resources.

« Analysis of existing resources. They documented also other resources used
in fair ML researches. In particular they produced a defined domain and
task annotation in which they are involved. This is achieved by connecting

all the spare information available.

o Analysis methods for new resources. This is a collection of best practices
that they gathered comparing different approaches. In this way the cura-
tion of novel datasets are informed about how they should document the

data.

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

2.2.1 Methodology of the survey

In the survey done by Fabris et al. (2022), all the articles published in the most
important and domain specific conferences were considered. To cite some of them
we can mention the ACM Conference on Fairness, Accountability and Trans-
parency (FAccT), the AAAI/ACM Conference on Artificial Intelligence, Ethics
and Society (AIES) but also proceedings papers coming from Machine Learning
and data mining conferencies such as the IEEE/CVF Conference on Computer
Vision and Patern Recognition (CVRP), the Conference on Neural Information
Processing System (NeurIPS), the International Conference on Machine Learn-
ing (ICML), the International Conference on Learning Representations (ICLR),
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD); and at last but not least articles available from Past Network
Events and Older Workshops and Events of the FAccT network. All the consid-
ered resources are published between 2014 and 2021.

The resources selected by Fabris et al. (2022) were chosen through a two step
method. The first step had the objective to select all the works which should
be strictly related to algorithmic fairness, in fact they decided to consider only
documents where one of the following sub-string are presents in their titles: fair,
bias, discriminat, equal, equit, disparate parit. As we can easily notice they are
centered around equity-based notions of fairness.

The second one is done by hand by the authors and it consisted in a manual
inspection of the selected documents. After this human check, some documents
were discarded because the selected string are used in different context so they
have different meaning to what they desired.

Moreover, other datasets have been discarded for other reasons, for example
because are toy datasets (which means that they are a simulation of a considered

real world) or there are not sufficient available information.

Fabris et al. (2022) elaborated a data brief for each of the considered datasets
after the selection made previously. From the staring point with more than 500

articles (and we can assume that each article has at least one connected dataset)

6

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

the resulting point is of 210 datasets.

Bear in mind that data briefs consist not only in a summary of the data but
also in the connection between datasets and articles, so we can estimate also
the popularity of a given dataset. As described in section 2.2, the most used
datasets are Adult, COMPASS and German Credit and it can be also inferred
from fig. 2.1.

Adult

100

& COMPAS

&0

Number of articles

40

German Credit

20
o L

o 50 100 150 200
Datasets

Figure 2.1: Datasets utilization in fariness research

For these in particular, Fabris et al. (2022) produced a detailed documentation
following the Gebru et al. (2018) and Holland et al. (2018) guidelines; the infor-
mation are retrieved using search engines (for academic publications) or thanks

to previous references related to the datasets.

2.3 Key data fields

This section presents the three aspects that describe the resources. In particular
in subsection 2.3.1 there are the possible domains related to fairness dataset, in
subsection 2.3.2 there is the taxonomy of fairness task proposed by Fabris et al.
(2022). In conclusion, they analyzed how these datasets are employed in fairness

research.

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

2.3.1 Data domain

From figure fig. 2.2 we can see, with regards to the considered datasets, the
macro-domains distribution in fairness research. We can notice that the sum of
these domains exceeds the number of considered datasets but the reason is that

a dataset can be associated with multiple domains.

Social Sciences
Computer Science

49
55
3 Natural Sciences
Computer Vision 28 12
Arts and Humanities
15
25 Miscellaneous
18
Health 20

Economics and Business

Linguistics

Figure 2.2: Datasets domains in fairness research

I report here a brief description of the fig. 2.2 domains.

Computer Science: we can consider that from this macro-domain are derived
information systems, social media, library and information sciences, com-
puter networks, and signal processing. They include various types of re-
sources belonging to search engines such as text, images but also worker

profiles and et cetera.

Social Sciences: this is a large macro-domain that includes law, education,
social networks, demography, social work, political science, transportation,

sociology and urban studies.

Computer Vision: this is a more recent argument and it is mostly related

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

with artificial intelligence. In this field fairness is associated with learned
representations and equality of performances across classes. To better
explain, it is intended as "the robustness of classifiers across different sub-
populations, without much regard for downstream benefits or harms to

these population”.

Health: this is a macro-domain which includes medicine, psychology and phar-
macology and it can be subdivided in a big number of sub-domains: public
health, cardiology, endocrinology, health policy but also more specific fields
like radiology, and dermatology, critical care medicine, neurology, pedi-
atrics, sleep medicine, nephrology, and applied psychology.

From the connected datasets can be also extracted data from multiple
medical centers and this is helpful to study problems of automated diag-

nosis.

Economics and Business: this macro-domain is composed by dataset in eco-

nomics, finance and marketing.

Linguistics: as I have already mentioned before, it consists of textual resources
but also by data derived from social media. Many datasets used in algo-
rithmic fairness articles are associated to the domain of linguistics and

Natural Language Processing (NLP).

Miscellaneous: this is a macro-domain containing all the domains that can
not be categorized into the other domains. In particular it is useful for

news domains and resources like the sushi preferences and video games.

Arts and Humanities: in this macro-domain we can include literature datasets,
which are strictly connected with NLP tools. Also books, movies, music

belong to this macro-domain.

Natural Sciences: in this domain we can find datasets from biology, biochem-

istry and plant science.

As we can easily conclude, these datasets represent in practice all the human

activities where algorithms are employed. As a reader can image, in particular

9

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

for some of these domains, the equity and the fairness are an important key

feature when an algorithm is developed.

2.3.2 Data task

More and more researchers and practitioners are paying deeper attention in

algorithmic fairness, and thanks to this the tasks involved are increasing, such

as fair classification, regression and ranking.

In the following part of this sub-section the most common tasks related to the

considered datasets are resumed.

Fair

Fair

Fair

Fair

Fair

Fair

classification: its objective is to equalize some keys measure across sub-
populations. For example, we can consider the recall, the precision or the

accuracy for different racial groups.

regression: regression models has the objective to predict a real-value
target, to do that they require that the average loss is balanced across
groups. In this context, the individual fairness requires that the losses

should be as uniform as possible between all the individuals.

ranking: it consists in a ranking of the population based on a required
feature. Here, fairness is applicable to people creating the data to be

ranked but also the consumers of the data/products.

matching: it is a task similar to the previous one but it has the objective

to match pairs of items on both sides of the market.

risk assessment: it is focused on algorithms that evaluate instances of a
dataset considering a predefined type of risk. A relevant difference between

this task and classification is the emphasis on real-value instead labels.

representation learning: it concerns the study of features learned by

models as intermediate representations for inference tasks.

10

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

Fair clustering: it is an unsupervised task aiming at dividing sample into ho-
mogeneous groups. In this type of task, fairness can be considered as the

fair representation of sub-populations in each cluster.

Fair anomaly detection: it is a task with the objective to identify surprising

or anomalous points in a dataset.

Fair districting: it consists in the division of a region to provide electoral

districts for political elections.

Fair task assignment: (and truth discovery) are different tasks but they be-
long to the same area. In fact, they are both concentrating on the sub-

division of work and the grouping of answers in crowdsourcing.

Fair spatio-temporal process learning: this task is concentrating on the es-

timation of models for processes (regarding both time and space).

Fair influence maximization: this task studies and creates models about the
diffusion of information throughout networks, in particular using graph

covering problems.

Fair resource allocation: it is a task focused on the problem of classification

with constraints on the positives items.

Fair data summarization: has the objective of finding portion of dataset
which sufficiently describes the entire dataset or the selection of the key

features.

Fair graph mining: it produces representations and prevision tasks on graphs.
In this case the fairness is intended as the absence of bias in the graph

representations or with respect to the inference.

Fair pricing: it is a task with the objective of creating an optimal pricing
models. In this case, the fairness is to give possibility of access to services

and goods between sensitive groups.

11

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

Fair

Fair

Fair

Fair

Bias

Bias

Fair

Fair

advertising: it is similar to the previous listed task. It is intended for
different types of purchasing methods (i.e. auction and bidding) and, as

we can imagine, the objective is to reduce discrimination.

routing: the main aim is to find the optimal path between two locations.

Here the fairness is related to the attempt of equalizing the driving costs.

entity resolution: this task is concentrating on identify whether multiple

items refer to the same entity.

sentiment analysis: it is a sub-task of fair classification, here the text
pieces are classified in three options (positive, negative or neutral) based

on the expressed sentiment.

in Word Embeddings: this particular task is focused on finding unde-
sired semantics and stereotypes belonging to vectorial representation of

words.

in Language Models: this task produce models trained on a big amount

of texts, from these can be inferred incorrect correlations and stereotypes.

Machine Translation: as we can understand from the task name, it con-
sists in (automated) translation. In this case the fairness could refer to
the fact that sometimes gender-neutral terms of source texts are translated

into gendered terms of target texts.

speech-to-text: this task is about transcription of speeches, in this case
equity and fairness is reflected in the ability of recognition different demo-

graphic regions.

Another aspect to consider is related to the settings, which stands for the chal-

lenge of avoiding that noise corrupts labels for sensitive attributes. Some of

these settings are now proposed:

Rich-subgroup fairness: in this setting fairness properties are necessary for

every number of sub-populations.

12

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

Noisy fairness: is used to express problems related to missing sensitive at-

tributes or corrupted by noise.

Limited-label fairness: includes all the settings where limited information are

available for the target variable.

Robust fairness: is related to issues produced by perturbations to the training
set, adversarial attacks and data shifting. This type of setting is often

associated to robust machine learning researches.

Dynamical fairness: isrelated to repeated decisions in changing environments.

A possible mutation events can be done by the algorithm itself.

Preference-based fairness: is a work informed by the presence of stakehold-

ers.

Multi-stage fairness: in this type of settings the decision are made by coex-

istent decision makers in a decision-making process.

Fair few-shot learning: this settings is referred to Machine Learning, in par-

ticular to create fair ML solutions when there are not many data samples.

Fair private learning: is related to the privacy-preserving mechanisms and
fairness constraints. Here an important consideration is that we would
like to produce fair machine learning models without loosing information

about individuals of training set.

This list is composed by the main settings with a brief description but I can
cite also other settings, for example: fair federated learning, fair incremental

learning, fair active learning and fair selective classification.

2.3.3 Sensitive features

Another important field presents in our datasets is the sensitive features.
It has a central position because the features belonging this field can not be

used by algorithms to make decisions. This is obviously connected to fairness

13

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

and equity, in fact the features are for example race, gender/sex, age, nationality

and so on.

2.4 Dataset Curation

25 I II

Number of datasets
= o =]

v

1990 1995 2000 2005 2010 01s 2020
Last known update

Figure 2.3: Fairness dataset utilization

After all this considerations, it is important to resume the best practices for
dataset curation proposed by Fabris et al. (2022). Their work was extremely de-
tailed, in fact they examined different perspectives for example the re-identification,
the consent, the inclusivity, sensitive attribute labeling and transparency.

The goal of their work is to let know as many researchers as possible the best
practices for datasets curation. As we can see from fig. 2.3, the number of

datasets used in algorithmic fairness is increasing, in particular since 2015.

2.5 Data brief structure

To conclude the discussion about the work made by Fabris et al. (2022), we now
explain which are the results of their activity. In particular the data briefs.

They are composed by the below fields, it is important to describe them because

14

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

they are used to create the data briefs parser (subsection 4.2.1) and the back-end
(section 5.3). The front-end takes advantage of this field, and for homogeneity
they are usually reported to the front-end, but in some cases the variables name

has been reduced for simplicity.

Description: this is a text field where the data creator can insert the objective
of the data. Moreover, we can also find a summary of the features available
in the dataset and how the attributes are annotated. Finally, there could

be the envisioned ML task, if any.

Affiliation of creators: in general it is retrieved from the documents (reports,

articles but also Web pages) which describe the resource.

Domain: it is an important field and it describes in which sector the data is

used (e.g., computer vision for ImageNet).
Tasks in fairness literature: it stands for the datasets employed for tasks.

Data spec: it represents the format in which the data are structured (e.g., text,

image, tabular).
Sample size: it is the dataset cardinality.
Year: it represents the last known update of the dataset.

Sensitive features: Sensitive attributes in the dataset, see subsection 2.3.3 for

more details.
Link: it is a Web page link where the resources can be downloaded or accessed.

Further information: it is a reference to documents or Web pages which de-

scribe the dataset.

2.6 Contribution of this work

Before entering into the modeling and development part of the thesis, it is inter-

esting to talk about the contribution of this work to Fabris et al. (2022) research

15

CHAPTER 2. INTRODUCTION TO ALGORITHMIC FAIRNESS

activities.

The developed Web application has not produced new discoveries and in-depth
analysis but it will certainly improve the researchers and practitioners activity.
As previously stated, it is a new research study fields and sometimes the infor-
mation are fragmented and not homogeneous.

So, the aim of this Web application is to produce data homogeneity and data
connection. It will help also the data citation and data founding which are two
important concepts because sometime happens that published documents are
not connected with the used data.

Another aspect to consider is that who are searching for a dataset for their re-
search or job activity, it can be retrieved through this Web application using the

full text search but also the faceted search.

16

Problem Modeling

Starting from this chapter we enter in the hands-on part of the thesis, which is
also connected to the research training.

The project behind this thesis is based on the development of a Web Application
about fairness dataset and related information. It was a Full Stack development
and for this reason Prof. Silvello, Dott. Alessandro Fabris, Dott. Fabio Giachelle
and I were able to decide the best possible solution for each part step-by-step.
In particular in this chapter is analyzed how we defined the best suited model

for the problem.

3.1 Model designation

Relational databases are the most used type of model behind the contemporary
Web and Software applications. They are well-suited for many applications,
where data are stored in two-dimensional tables. Unfortunately, it is not sug-
gested when the data are highly connected. In fact, relational databases are not

able to store easily relationships between elements.

3.1.1 Linked Open Data

An important aspect to consider is the possibility to produce Linked Open Data.
Recently this type of resources are more and more important both for academic
and business world. Open data refers to "data that can be freely used, re-used and
redistributed by anyone - subject only, at most, to the requirement to attribute

and sharealike." (Open Knowledge Foundation, 2009)

17

CHAPTER 3. PROBLEM MODELING

This type of data has countless benefits, among the most relevant there are
design products and services, that allow to make decisions in algorithmic and
improve the quality of the society.

The last improvement that can be done staring from Open Data is represented
by Linked Open Data. Linked Open Data has all the benefits of Open Data
with the additional possibility to connect, retrieve and identify resources thanks

to their URI, which should be globally unique.

Figure 3.1: 5 star schema

Linked Open Data has a classification, called "Five Star of Linked Open Data",

which is obviously composed by five levels:

1. the first stage consists of Open Data available on the Web (in whatever

format);

2. the second stage consists of machine-readable structured data (also in pro-

prietary format);

3. the third stage is similar to the previous one but it requires non-proprietary

formats (i.e. XML, CSV);

4. the forth stage is composed by the characteristics of the third level, plus
the requirements of W3C open standards (RDF and SPARQL);

18

CHAPTER 3. PROBLEM MODELING

5. the fifth stage has the previous requirements but the data must be linked.

This classification is well represented in the fig. 3.1. Considering the data to
be modeled, from the above reasoning we can conclude that a good solution is
to used Linked Open Data. We absolutely achieve the forth stage, but also the
fiftth because, as we will see, there are connection between external resources

and they can be also linked.

3.2 Ontology

The term Ontology has a philosophical origin and from this point of view it
describes the nature and the organization of reality. In Computer Science it
can be considered as syntactic object (it describes concepts via logical theory),
as semantic entity and conceptualization (which encodes via semantic structure
part of reality).

To describe our "world" we developed a domain ontology, which models our
specific domain of interests. To build up our ontology we questioned ourselves

through the following questions:

What is the domain that the ontology covers?
It is obviously concentrating around the concept of algorithmic fairness.

In particular we need to models the data briefs and the connected articles.

What is the employment of the ontology?
The ontology will model datasets and all the connected information, i.e.
the datasets’ creators and publisher, the connected domains and task,
every resources (for example articles or Web pages) which are connected

to datasets and tasks.

What information should the ontology provide?
o What are the datasets?

o What are the papers?

19

CHAPTER 3. PROBLEM MODELING

« What task/domain/paper are connected with a dataset?

« What task/dataset are connected with a paper?

What type of users will use the ontology?
The users of the ontology (and the Web Application) will be researchers

and practitioners.

3.2.1 Foundation Ontology

An important aspect to be considered during the ontology development is given
by the foundation ontology or ontologies selection. A foundation ontology is a
model of objects which are common and used in many domain ontologies.

This is fundamental because it helps developers to create standardize ontologies
and in this way they create connection between the standardized components.
Another advantage is related to the simplification of the development process
thanks to foundation ontologies and most important defined ontologies in their
respective fields. When an ontology is imported, all its properties, attributes

and classes are imported.

The project is based on algorithmic fairness and all the connected resources, so
we need to describe datasets, tasks, domains and articles.

After some researches, where we consider the possible ontologies in this fields, we
decided to choose Data Catalog Vocabulary (Archer, 2014), and FRBR-aligned
Bibliographic Ontology (Peroni and Shotton, 2012).

Moreover we have also take advantage of Functional Requirements for Biblio-
graphic Record (Ciccarese and Peroni, 2018) and DCMI Metadata Terms (DCMI
Usage Board, 2006). I now briefly describe what we used from each imported

ontology to give the opportunity of understanding all the following explanations.

Data Catalog Vocabulary, also known as DCAT, is a RDF vocabulary de-
signed to help interoperability between data catalogs. It can be used by a
publisher to represent datasets and data services.

From this vocabulary we have used the Dataset class which represents a

20

CHAPTER 3. PROBLEM MODELING

collection of data. It can describe very well the data briefs. Moreover,
there are a big number of object and data properties already defined for

the Dataset class, we will see them more in detail later.

FRBR-aligned Bibliographic Ontology, called FaBiO for short, is an on-
tology designed for describing resources (published or designed to describe
publishable documents) on the Semantic Web. These entities contain ref-
erences to bibliographic resources.

This ontology, in particular, had a primary role into the project develop-

ment. We imported the following classes:

e Work: it represents works that are published or that can be published,
where are present bibliographic references or can be referenced. It is

a sub-class of FRBR work.

o Expression: it is a sub-class of FRBR expression. It represents
expressions of fabio:work. It is useful to specify that the following

FaBiO classes are defined as sub-class of the Expression class.

o Web page: it represents a Web resource, generally identified with a

URI and accessible through a Web browser.

e Article: it represents a writing on a specific topic, in general pub-

lished in a periodical publication.

e Journal: it represents the periodical where research papers are usu-

ally published.

e Book: it represents a document published in a single volume or in
a finite number of volumes. It is commonly identified by the ISBN

(International Standard Book Number).

e« Ph.D. symposium paper: it represents a document presented or pub-
lished during a conference dedicated to PhD students, where they can

presents they researches.

e Proceedings Paper: it represents a paper published, in general,
within an academic proceedings volume where are reported academic

researches.

21

CHAPTER 3. PROBLEM MODELING

e Technical Report: it represents a technical document.

Functional Requirements for Bibliographic Record, called FRBR for short.
It is proposed by the International Federation of Library Association (IFLA)
and it is a model to describe every type of resource (physical or digital)
and its evolution.

We have used some classes from FRBR, which in some cases are directly
imported into the FaBiO ontology by its creators. In particular we have

considered:

o Event: it represents an occurrence (or an action).

« Corporate Body: it represents an organization or people acting as a
unit. It resumes different type of group including also the occasional

once.

All the object and data properties related to the above mentioned classes will

be described later.

3.2.2 New designed ontology

An important part related to the model designation regards the comprehension
of which are the necessary parts to be developed, in addition to imported re-
sources cited in Foundation Ontology section.

The documentation about the ontology is available at the following URL:
https://fairnessdatasets.dei.unipd.it/schema/

After some drafts, we developed the schema in fig. 3.2. As the reader can see,
there are the above mentioned classes and also their related properties. The
DCAT:Dataset class has already the most important ones, but we had the ne-
cessity to add some data properties.

The first one is the dataSpec which represents the data structure, i.e. the way
(structured or not) used by the creators to store the data inside the dataset. An
example could be a text form, a tabular data form, image form, etc.

The second one is the sampleSize which is a literal field that represents the

22

CHAPTER 3. PROBLEM MODELING

creatorName: rdfs:Literal

Web
page

'
-

dcterms:title: rdfs:Literal
dcterms:description: rdfs:Literal
dcterms:modified: xsd:gYear
dataSpec: rdfs:Literal
sampleSize: rdfs:Literal
sensitiveFeature: rdfs:Literal
dcterms:issued: xsd:gYear

uonelsajiueysey:olqe)
1012812:SWI310P

dcterms:abstract: rdfs:Literal
:variant

Work t

dcterms:isReferencedBy

%
A ",
2
(’6//-
o “ c s,
g o £ 3
2 5
=
1+
Q
s3]
<
dcterms:description: rdfs:Literal
:investigates
taskName: rdfs:Literal domainName: rdfs:Literal

Figure 3.2: Ontology with focus on Datasets

number of samples present in the dataset, we decided to store this information
as literal because we noticed that not all the datasets have a simple number
but sometimes it may be composed of more complex data (for example "~ 1K
defendants from COMPAS and ~ 400 crowd-sourced labellers. Each defendant
is judged by 20 different labellers.").

The last added property is the sensitiveFeature which represents the features
inside the dataset that should not be considered to make algorithmic decisions,
as already discussed in subsection 2.3.3.

In addition, if a landing page related to the dataset is available, then an indi-
vidual of fabio:webpage is instantiated to refer to it and it is connected using

the property dcat:landingPage, which is provided by DCAT.

23

CHAPTER 3. PROBLEM MODELING

The Dataset class has the dcterms: creator object property which has range in
foaf:Agent, so we defined a new class called Creator as sub-class of foaf : Agent.
It has only one data property called creatorName and it stores the affiliation of
the creator or the creator name if the first option is not available.

Similarly to the Creator class, we defined also the Publisher class which repre-
sents the entity responsible for making the resource available, i.e. published. It
may refer to the same entity of the Creator class or a different one and it has
also a corresponding property to store the publisher name.

Two classes, of fundamental importance for this ontology, are the Domain and
the Task which are connected with Dataset using respectively the object prop-
erties domain and task.

The Domain class represents the domain of interest of the resource, in this case
the dataset. The Task, instead represents in which field or task the dataset can
be used. They both have only one data property which is used to store the name
of the domain or task.

In addition, the Task class has an object property called isDescribedBy which
connect the Task with a fabio:Work. In this way we are able to model all the
resources related with a Task, in particular it can be described by a Web resource
(i.e. Web page using the fabio:hasManifestation property) or a document
(we will see in the following part how a document is connected thought the Work
class).

The last thing, related with the part of schema shown in fig. 3.2, is the way
in which we refer to the resources used to describe a dataset and its possible
variants. From DCAT we used the dcterms:isReferencedBy which is has been
utilized to connect the datasets and their related resources. Moreover, we de-
fined the variant object property which connect a dataset to a work, like the
dcterms:isReferencedBy, but with a different meaning. In fact, it refers to
resources that describe possible variants of a dataset.

At the beginning of the ontology development we thought to store the possible
variants of a dataset using a data property but notice that usually they are

represented by documents or Web pages, the schema in fig. 3.2 fits better the

24

CHAPTER 3. PROBLEM MODELING

dcterms:title: rdfs:Literal
fabio:hasPublicationYear: xsd:gYear
dcterms:identifier: rdfs:Literal
fabio:hasURL: xsd:anyURI
5
g
ié/
g
5
g 2
S g
£ g
3
7
E %
e % determs:title: rdfs:Literal
% fabio:hasPublicationYear: xsd:gYear
kS fabio:hasURL: xsd:anyURI
dcterms:description: rdfs:Literal Q.
frbr:responsibleEntity Corporate frbr:responsibleEntity \
edition: xsd: > body -
FRER \ -
a0
A A ™ g
S
& 2
g g g
H 3 " foaf:name: rdfs:Literal 2
3 B foaf:surname: rdfs:Literal Q
= g /V identifier: rdfs:Literal
o =4
dcterms:title: rdfs:Literal dc\e(msﬁ'ea r;h / Y
fabio:hasPublicationYear: xsd:gYear 2
fabio:hasURL: xsd:anyURI < o
i rdfs:Literal ngs o S
keyword: rdfs:Literal 'd's})&‘« 4ssOf
proceedingTitle: rdfs:Literal fabio:hasURL: xsd:anyURI Ud
keyword: rdfs:Literal 3
symposium

dcterms:description: rdfs:Literal
refPages: xsd:string

determs:publisher

\

dcterms:description: rdfs:Literal

dcterms:title: rdfs:Literal

fabio:hasPublicationYear: xsd:gYear
dcterms:description: rdfs:Literal

paper

dcterms:identifier: rdfs:Literal
dcterms:title: rdfs:Literal

fabio:hasPublicationYear: xsd:gYear
volume: xsd:positivelnteger

keyword: rdfs:Literal
bookEdition: rdfs:Literal
fabio:hasURL: xsd:anyURI

Josse|Dans:s|pI

ublisher

determs:P

determs:publisher

Figure 3.3: Ontology with focus on papers

g
g
3
5

<

dcterms:identifier: rdfs:Literal
dctermsttitle: rdfs:Literal
fabio:hasURL: xsd:anyURI

fabio:hasPublicationYear: xds:gYear

fabio:hasPageCount: xsd:positivelnteger
volume: xsd:positivelnteger
keyword: rdfs:Literal
dcterms:description: rdfs:Literal
refPages: rdfs:Literal

dcterms:title: rdfs:Literal

Another part of the modelled ontology is visible in fig. 3.3, where we modeled

all the classes about the documents connected with a dataset or a task.

As the reader can see, the "starting" point is given by the FaBiO class Expression

whose definition is available in subsection 3.2.1. In fact, all the published docu-

ments can be categorized in a sub-class of fabio:Expression.

In this schema there is also the Publisher class which is the same of the fig. 3.2

and so we have already talked about it. It is useful to specify that the documents

(and so the corresponding classes) can have a relation with the Publisher are

25

CHAPTER 3. PROBLEM MODELING

the proceedings papers, the books, the articles and the journals.

In addition to these classes, we can observe two new defined classes: the class
Author and the class Misc.

The first one is intuitive, it represents the author entity of a given resource.
It is defined as sub-class of foaf:Agent, in this way it is a valid range of the
object property dcterms:creator of the document resources. We defined one
data property related to Author class, the identifier which is the identifier of
a given author, if available. We used also foaf :name and foaf :surname which
obviously represent the name and surname of the considered author.

The reader can observe that every document represented by the classes in fig. 3.3
has an object property that creates a relationship between the document itself

and its author or authors.

The second defined class is the Misc. It represents all the documents which
can not categorized into the FaBiO classes reported in the schema in fig. 3.3.
It has been defined in the way that we can use the following data proper-
ties: dcterms:title, fabio:hasPublicationYear, dcterms:identifier and
fabio:hasURL.

Moreover, some Misc documents have an affiliation to an organization, so we are
able to describe this concept creating a relation with fabio:CorporateBody us-
ing the property frbr:responsibleEntity; others were being published during

an event so these once are connected with frbr:Event using the frbr:part0f

property.

We were able to import and take advantage of most of the data properties already
present into the Foundation Ontology but some fields of the input data had not
a corresponding one. So we had the necessity to define new data properties to

store these specific fields:

keyword it is a literal datatype and represents a keyword associated with a

resource;

proceedingTitle it is a literal datatype and represents the title of the proceed-
ing where the proceedings paper is published. It is a property related only

26

CHAPTER 3. PROBLEM MODELING

to proceedings paper;

refPages it is a literal datatype and specifies the pages where we can find the

proceedings paper inside a proceeding or an article in a journal,

volume it is a positive integer datatype and it represents the volume of a col-

lection of books or article;

bookEdition it is a literal datatype and it represents the edition of a book

resource;

edition it is a positive integer datatype and represents the edition of an event.

To conclude the description about the schema in fig. 3.3, we need to specify that
only fabio:Article has a relation with fabio:Journal, in fact an article can
be published inside a Journal.

Moreover, the documents represented by the classes fabio:proceedingsPaper,
fabio:phdSymphosiumPaper, fabio:technicalReport and Misc can have a re-
sponsible entity which is represented by frbr:corporateBody.

The last concept is related to the fact that proceedings papers and, as already
mentioned, misc documents can be presented during an event (schematized in
our ontology by the frbr:Event). An Event class has only one property which
represents its edition and it has always, or almost, a responsible entity (described

by frbr:corporateBody).

frbr:realization Work

EXxpression
-

dcterms:abstract: rdfs:Literal

Figure 3.4: Ontology relation between dataset and documens

We previously do not talk about how the datasets are connected with their

related resources. In fig. 3.4 we can observe two classes already described and

27

CHAPTER 3. PROBLEM MODELING

illustrated in fig. 3.2 and fig. 3.3. From FaBi0O ontology we can conclude that
they are connected using the frbr:realization which means that a work is
realized through an expression.

In practice we can think at the individuals of fabio:work as the results of
an agent effort and the individuals of fabio:expression represent the 'real
objects which are produced from that work and they could be associated to an
identifier. For example the pre-print and the final version of a paper are two

expression of the same work.

28

PROBLEM MODELING

CHAPTER 3.

title: rdfs:Literal
fabio:hasPublicationYear: xsd:gYear
dcterms:identifier: rdfs:Literal
fabio:hasURL: xsd:anyURI

by,
Tes,
Ponsipye e
I]I/Iy

o

% determsitle: rdfs:Literal
nw fabio:hasPublicationYear: xsd:gYear
éo fabio:hasURL: xsd:anyURI

determs:description: rdfs:Literal

e JO10RI0SWIRNP

frbr:responsibleEntity frbrresponsibleEntity /

variant

creatorName: rdfs:Literal

dcterms:isReferencedBy

investigates

J0RaISUBIP

Dataset

dcterms:title: rdfs:Literal
determs:description: rdfs:Literal
dcterms:modified: X
dataSpec:
sampleSize: rdfs:Literal
sensitiveFeature: rdfs:Literal
dcterms:issued: xsd:gYear

edition: xsd: :
FRER / - (Fas0)
%
@@
A ﬁ%m.c a
oct m
g g \ g
] 3 " foat:name: rdfs:Literal 2
3 B foaf:surname: rdfs:Literal Q
- g \ identifier: rdfs:Literal
o g
: rdfs:Literal doterms:re2 H \ \ /
sd:gYear E) &
fabio:hasURL: xsd:anyURI =4 g
determs:identifier: rdfs:Literal s &S es0f jon) g brrealzation
keyword: rdfs:Literal S |||.||||||\' (raeo) |
proceedingTitle: rdfsLiteral fabiorhasURL: xsd:anyURI 4 .) -
determs: nmm“_u_u:o:. Sm._.ﬂ_ﬁmﬁmﬁ keyword: rdfs:Literal determs:abstract: rdfs:Literal
refPages: xsd:string !
fabio:hasPublicationYear: xsd:gYear g A
determs:description: rdfs:Literal &
£
2
5
determs:identifier: rdfs:Literal N a
dcterm: rdfs:Literal @
5 fabio:hasPublicationYear: xsd:gYear £
& volume: xsd:positivelnteger [e)
32 keyword: -
2 bookExditio avet ™| 8
g fabio:hasURL: xsd:anyURI A =
5]
B Book taskName: rdfs:Literal
(FaBO) ideniifer: rafs Literal
determs:title: rdfs:Literal
fabio:hasURL: xsd:anyURI
Article fabio:hasPublicationYear: xds:gYear
fabio:hasPageCount: xsd:positivelnteger
FaBiO volume: xsd:positivelnteger
keyword: rdfs:Literal
oublisher ;
v dcterms:pub determs:description: rdfs:Literal
5 refPages: rdfs:Literal
]
g
8
dcterms:description: rdfs:Literal =
\
Journal

dcterms:title: rdfs:Literal

domainName: rdfs:Literal

Full Ontolgy Schema

Figure 3.5

29

CHAPTER 3. PROBLEM MODELING

We can see the complete schema representing the ontology in fig. 3.5.

So, to resume how it should be interpreted, we see that the datasets are central
and they have a creator and a publisher (they could refer to the same entity or
not). A dataset has a corresponding domain or domains of interest and can be
applied to zero or more tasks. Every dataset generally has a reference document
which describes the dataset itself and sometimes some of its variants can occur.
Moreover, a task can be described by resources like documents or Web pages.

The other parts of the schema models every type of considered document.

During the front-end development we noticed that there was a problem: we were
not able to retrieve the documents related to a task and a specific dataset. In
practice, if we tried to retrieve the document describing a task we was not able
to identify which of these documents are used in that task with a dataset or
another one.

The easiest solution we found was to introduce blank nodes, which have the ob-
jective of drawing the schema without the URIref for these particular nodes.
They are connected with a dataset, a task and directly with the expressions
describing that task. In this way a task is described by all the documents con-
nected with that task but we are also able to identify the specific documents if
we refer to a task when is used by a dataset.

The solution is depicted in fig. 3.6 and the final ontology schema is available in
fig. 3.7.

variant

Expression

(FaBiO)

frbr:realization Work
FaBiO =
L) dcterms:isReferencedBy

.'fe/e rs

-about /
/ sinvestigates
-

Figure 3.6: New blank node

:domain
<—

Agpaquasags!:

30

PROBLEM MODELING

CHAPTER 3.

[eI3T:S}P ‘BWeNurewop

[esays)p1
[eIeN:SIpI
[eIeN:SIpI

J1abajujaaisod:psx

13Ba1ujaANIS0d:pSX

1RapBISpX
[4NAue:psx
[eISN:SIpI
IR S)PI

[R13):SID] BWENSE]

1voa
195810
JueeA:
10aAB:pSX :panssISWIBP

2Injea4aAIsuas
ozISa|dwes
oadselep
payipows:suLelp
suonduosap:suialp
apn:swiBlp

sajebnsaul:

. \ noge:

:

——F

%

&

AgpaouaiajeysiSwIalop

determs:creator

fabio:hasManifestation x
—— <]
B

(GTT))
abed
qam

[RI3NT:SJPI :BWLNIOIRaI)

[RIBYT:SIPI JB:SWIBIP

aunopabedsey:oiqe)
£1RBAUOIRI|ANSRY-0IqR)

Iqe)
a:swIslp

IayUBPISWIIP

[RI3T:SIPI 10RISqR:SWISIOP

» (G >

uonezifeariqy

(ogea)

rewnop
S
B
2
sabegjal <]
uondLIdSaPISWLBIP
promAax
SUINJOA

(G

apmy

rdfs:subClyssOf

Cores)

48ysiand:suiayop

s wieP

(o)
008
IdnAue:psx :TgNsey:olqe)

[RIBIT:SPI :UONIPTHOOG
[RIBIT:SPI :pIOMARY
Jsabaujeansod:psx :awnjon

103 B:psX :1eaAuONelaNgSLey:0lqR)

[RIBISIPI HIBYIUBPISULBIP

[R2)7:5JP1 {UORCIIISBP:SWIBNP
1RaAB:PSX {IRAALONRIIGNSELY:0Iqe)
[RI3:SIPI BISWIBIOP

[eJBN:SIPI plomAaY

[¥NAUE:pSX 1T NSeY:0IqR)

N

uoissaidx3

Jossr o sisip1
S
‘ o

w_u.m::m_uu

[RIBMT:SIPI “IBNUSPI
[RIBMT:SIPI BWRUINS Je0)
[RIBT:SIPI BWRL:JRO)

frbr:responsibleEntity

JaNAUE:pSX TTHNSRY:0Iqe)
1e3AB:PSX 11eaAUONLINGNGSLeU:0lqe)
[RIBIT:SIPI BNN:SWBIOP

fnuzajqisuodsasiqy

IdNAUEIPSX YNSeY 0IgR)
[RIBI:SJPI IBYNUBPLSULIBIIP
TeaAB:PSX 11RaALONRIIGNGSEeY:0Iqe)
[RIBY:SIPI BNN:SWIRNIP

J1aysiqnd:suuaiop

1aded
sBujpaasoid

]
e
]
s
£

(ugud)

[e1R):SJPI UONALISBP:SULINIP

Buns:psx :sabegjel

IBYIUBPIISULIBIP
JdNAUR:pSX :TNSeY:0IqR)

1e3AB:pSX 1eaAuOIROIANdSeY;0IqR)
[RIB):SIPI BNI:SWIBIIP

Jabaujanmsod:psx :uompa

inal ontology schema

F

Figure 3.7

31

CHAPTER 3. PROBLEM MODELING

3.2.3 Instance example

In this subsection we will see a practical example of a dataset entity and its
related individuals available into the database. In this way the reader will un-
derstand easily the relation between the individuals and also how the blank
nodes are used.

For this example we consider the dataset Adience (OUI and Adience, 2014)

where we can find some interesting points.

aset/Adience fdo:has _:node3084

fdo:has —:node3085

fdo:ha —:node3086

fdo:sampleSize "~30K images of ~2K subjects”
“age"

"gender”

|
fdo:sensitiveFeature "skin type”
)|
|
|

"th source was devel to favour the study of autom
ated age and gender identification from images of faces. P

hotos were sourced from Flickr albums, among the ones a

Figure 3.8: Tabular view of Adience example

The above fig. 3.8 is the tabular view of the results for the Adience dataset. As
we can see, there are data and object properties but also blank nodes.

Instead the fig. 3.9 represents the graph view of the considered dataset. It is
more interesting because we can see the relationship between the individual
and also we can understand how the model is transposed at the entity level.
In particular, we have expanded a document related with the dataset and we
have discovered that it is a proceeding paper. It was published during an event
organized by the Proceeding of Machine Learning Research, in particular in the
2018 edition.

From the graph we can also observe the other resources presented at the same
conference and we could also navigate through the database to display other

stored resources.

32

CHAPTER 3. PROBLEM MODELING

Figure 3.9: Graph view of Adience example

33

CHAPTER 3. PROBLEM MODELING

34

Data parsing

The data parsing chapter has the objective to explain how the input data has
been elaborated to produce a serialization and how the RDF data are represented

using a textual form.

4.1 Turtle serialization

We decided to use Turtle file as output for our serialization. There are multiple

advantages of exploiting TTL files instead other type of serialization:

« compared to RDF /XML serialization, it is more efficient;
o compared to JSON-LD, it is more human readable;

o compared to N-Triples, it is more readable and memory saving. In fact
N-Triples is considered as the most raw way to store RDF triples because

they are stored and represented with unabbreviated URIs.

Finally we can consider the Turtle serialization as the combination of N-Triples
and abbreviation given by CURIEs. In fact, it defines the prefixes which must
be bound between the local CURIEs and the global URIs, in fig. 4.2 we can see
how this operation is done using Python programming language. They are a
sort of preamble at the beginning of the Turtle file.

Moreover, there are other abbreviations that can be done using TTL files, for

example:

o the rdf:type can be abbreviated with "a"

35

CHAPTER 4. DATA PARSING

« considering that triples are composed by subject predicate and object, if
more than one triple share the same subject, then we can use a semicolon
(;) at the end of the first triple and it indicates that following query has

the same subject

o using the previous consideration, if more than one triple share the same
subject and predicate, then we can use a comma (,) at the end of the
first triple and it indicates that following query has the same subject and

predicate.

Turtle stands for Terse RDF Triple Language and this file format is used to
express RDF data. Furthermore, Turtle is a W3C standard.

In practice, a TTL file should contain all the triples representing an entity.

fix dcat: <http://www.w3.o0rg/ns/dcat#> .
dcterms: <http://purl.org/dc/terms/> .
x fabio: <http://purl.org/spar/fabio/> .
x fdo: <http://fairnessdatasets.dei.unipd.it/schema/> .
x foaf: <http://xmlns.com/foaf/0.1/> .

x frbr: <http://purl.org/spar/frbr/core#> .
rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

X xsd: <http://www.w3.0rg/2001/XMLSchema#> .

Figure 4.1: Turtle prefixes

In fig. 4.1 are reported all the prefixes used into the created Turtle file and
in the below fig. 4.2 we can see the necessary Python code to make the "bind
operation'. There are three lines that define the namespaces not present into
the RDFlib library then the graph, where the triples will be stored, is created

and finally there are some line of codes that bind the namespaces into the graph.

36

CHAPTER 4. DATA PARSING

FABIO = Namespace("http://purl.org/spar/fabio/")
FRBR = Namespace("http://purl.org/spar/frbr/core#")
FDO = Namespace("http://fairnessdatasets.dei.unipd.it/schema/")

= Graph()

.bind("xsd", XSD)
.bind("rdf", RDF)
.bind("rdfs", RDFS)
.bind("foaf", FOAF)
.bind("dcat",DCAT)
.bind("dcterms",DCTERMS)

.bind("fabio", FABIO)
.bind("frbr", FRBR)

.bind("fdo",FDO)

Figure 4.2: Namespaces bind operation

4.2 Parsers

An important part of the data mapping is given by the BIEX parsers. In fact
the input files were in two formats: a BIB file and a IXTEX file.

To develop the code we took advantage of Python versatility.

4.2.1 Datasets parser

Thanks to Dott. Alessandro Fabris, I was able to start from a DataFrame
structure because he developed a function which takes as input the data briefs
KETEX file and returns the previous mentioned structure.

In particular the DataFrame has the following columns:

name : the title of the dataset, it is also used to create the ID of the dataset

into the database;

label : derives from the "\label{}" IXTEX command. It might be a good iden-

37

CHAPTER 4. DATA PARSING

tifier but it was rarely available;
description : it is a text field representing the description of the dataset;
affiliation : it represents the affiliation of the creators of the dataset;
domain : it stores the belonging domain of the dataset;
tasks : it represents the tasks where the dataset is applied;
data_ spec : it represents how the data are stored inside the dataset;
sample__size : it represents the dimension or dimensions of the dataset;
year : it represents the publication year (or the last update year if available);
sensitive : it represents the sensitive features related to the dataset;
further : it consists of possible further information about the dataset;

variants : it stores possible variants of a dataset.

Obviously these information have been mapped to the ontology model explained
in section 3.2.

When the DataFrame has been built, an iterator along all its rows is created
and the serializeDatasetItem function is called for each row. From its name
we can infer that its objective is to serialize a dataset item. Now we will see

some implementation details but we will not cover all the development parts.

Algorithm 1: Dataset URI creation

Dataset = createURI(FDO, "dataset", strTolD(name=row['name"]))

From algorithm 1 we can see the function that creates the URI of a given re-
source. The createURI function has three input parameter and they are used
to create the URI, in particular the first one corresponds to the namespace, the
second one is the resource type and the third one is the ID of the resource. It is
separated from the remaining part of the URI by a "/" but it is only a conven-

tion that we decided to adopt. In fact, all the resources are created inside our

38

CHAPTER 4. DATA PARSING

namespace.
The last thing to notice is the srtToID function which takes as input any num-
ber of strings and returns the a string without any punctuation, any space or
any symbol which should not be inside the ID.

Then, the remaining part of the function is used to serialize the data and object
properties connected to the given resource. We can take into consideration the
example in algorithm 2 where the triple about the title of a dataset is created.
It is an general illustration of how every column of the DataFrame is imported

(except for particular cases).

Algorithm 2: Dataset title triple creation

if "name"” in row then
o " "
name = remove_ latex(row|"name'])

g.add((Dataset, DCTERMS["title'], Literal(name)))

end

It is worth pointing out that we can not assume that every columns is present
so we need to check if the columns is available. In general, we used the cus-
tom function remove_latex which, as the reader can image, removes the KTEX

"erammar’ from a string. Finally, the triple is create and added to the graph.

A different problem is related to the year information, in fact sometimes the
year field is present but it contains "unknown' or "present’. The solution is
easy: if the year field is present and it is different from "unknown' then we add
the data property and if the variable contains "present" we substitute the string
with the present year. At the moment, as we can see in algorithm 3, we create
two identical triple one for the dataset year of creation and one for the dataset
modification year but in future implementation they can be separated into two

different information when more details are provided.

39

CHAPTER 4. DATA PARSING

Algorithm 3: Dataset year triple creation

if "year" in row and "unknown" not in row["year'] then

if "present” in row["year'] then

year = datetime.date.today().year

g.add((Dataset, DCTERMS|['modified"], Literal(year,
datatype=XSD.gYear)))

g.add((Dataset, DCTERMS]|"issued'], Literal(year,
datatype=XSD.gYear)))

else
g.add((Dataset, DCTERMS|"modified"], Literal(row["year"],

datatype=XSD.gYear)))
g.add((Dataset, DCTERMS]|"issued"], Literal(row["year"],
datatype=XSD.gYear)))

end

end

Another consideration must be done about the sensitive features creation.

Algorithm 4: Sensitive features triple creation

if "sensitive” in row then
if "N/A" not in row/"sensitive'] then
sensitive_list = row|"sensitive'].split(",")

for sensitive in sensitive list do
g.add((Dataset, FDO|"sensitiveFeature"], Literal(

remove_ latex(sensitive).strip())))

end

end

end

In fact, in this case a single string is provided but we need to split the sensitive

features and create a triple for each sensitive feature. This is necessary because

40

CHAPTER 4. DATA PARSING

we would like to make filters using this field.

As we can see in algorithm 4, also in this case there is a particular string that
must be ignored, the "N/A".

A similar approach is done for the landing page, which can be composed by
more than one URL. The only difference is that a URL in BTEX is wrapped by
curly brackets so we developed a function called clean_latex which is similar
to remove_latex but it remove only the IXTEX provided as input parameter.
A different method is done for the further information which produces all the
triple about the reference of a dataset. Indeed, in this case we could find dif-
ferent WTEX elements, for example a URL but also citation like \cite, \citet
and \citep.

In algorithm 5 we can see an example of the code developed to create the ref-
erence part. It is only resume, in fact as we can observe there are not the cases
\citet and \citep but the reader can extend the implementation to them us-
ing same "if" code block used for \cite. Moreover, the further_list is a list
produced by splitting the further column, if it is available.

From that algorithm, but also from the ontology designed in subsection 3.2.2,
we can understand that a dataset can have different type of references. In fact,
the first part of the algorithm considers the option that the reference is pro-
vided as Web page and a Web page individual is created but it is connected
through a Work node, differently from the dataset URL directly connected us-
ing dcat:landingPage.

As convention, the URI of a resource is composed by the namespace, the type
individual and its name (or ID if available) which is used as ID. Sometimes the
ID can not be the name of the resource because it is only a URL, in this case
we decided to use an hash function to generate the ID and in particular with
the ctypes.c_size_t function at line 7 of algorithm 5 we generate only positive
hashes.

Another considered option is the \cite, that is very similar to the previous one,
the differences are that the \cite is removed instead \url but also how the

paper URI is generated.

41

1

2

3

4

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

CHAPTER 4. DATA PARSING

Algorithm 5: Dataset reference triple creation

for element in further list do

if "\url" in element) then

url_list = split_ latex(element,delimiter="\url")

for url in url _list do

further WebPage = URIRef(clean_latex(url,"\url"))

g.add((further_ WebPage, RDF.type, FABIO["WebPage']))

Work = createURI(FDO, "work", str(
ctypes.c_size_t(hash(clean_ latex(url,"\url"))).value))

g.add((Work, RDF.type, FABIO["Work']))

g.add((Dataset, DCTERMS["isReferencedBy"|, Work))

g.add((Work, FABIO["hasManifestation"], further WebPage))

end

else

if "\cite" in element then

citation_ list = clean_ latex(element,"\cite").split(",")

for citation in citation list do

Paper = find_paper URI(citation.strip(),bib_database)

if Paper !|= None then

furtherInfo = createURI(FDO,"work" citation.strip())

g.add((furtherInfo, RDF.type, FABIO["Work']))

g.add((Dataset, DCTERMS]|"isReferencedBy"],
furtherInfo))

g.add((furtherInfo, FRBR|'realization'], Paper))

else

print("Further info: paper NOT found! "+citation)

end

end

end

end

end

42

CHAPTER 4. DATA PARSING

The createURI function is called inside the find_paper_URI function. It takes
as input the entire bibliography and the resource that should be connected to
the dataset. If the resource is found inside the bibliography, then the resource
type and ID are used to generate the URI as defined convention, an ezception
is returned otherwise.

The same algorithm structure is used also for the wariants of a dataset. The
only difference originates from the fact that a variants could be only a text
description, for example "C-MNIST: images from MNIST, such that both digits
and background are colored.".

In this case we created an individual of Work class and we stored this text
information inside the dcterms:abstract. Furthermore, if a URL is available

in the entire field then the individual is connected to the Web page instance.

A more complicated reasoning must be done for the domains and the tasks
connected with a dataset. Sometime happens that a dataset has not a specified
domain or "N/A" is the only value presents in the field. In this case no domain
individual is created and only the tasks individuals are created.

On the contrary, if at least one domain is available then its individual is created
and it will be connected with every available tasks. To help the reader, if there
are n tasks and m domains, for each of these m domains we will create an
“investigates object property for each of the n tasks.

So, as we can see in algorithm 6, we checked if a domain is available and different
from N/A, then we create the Domain individual and finally we call the addTasks
function which will generate and connect all the available tasks.

If at least one of the first two checks fails the addTask function is called but
instead of the Domain variable, None is passed as input.

This function works in analogous way of the references and variants algorithms,
the difference is that in this case we have the possibility to input the domain
instance. As previously mentioned, if the domain is not available then None is

passed and so there will not be created the related object properties.

43

CHAPTER 4. DATA PARSING

Algorithm 6: Dataset domain and task triple creation

if "domain" in row then
if "N/A" not in row/"domain'] then
domain_list = row["domain'].split(",")

for domain in domain_list do
Domain = createURI(FDO, "domain",

str'TolD(domain=domain))
g.add((Domain, RDF.type, FDO|['Domain']))
g.add((Domain, FDO["domainName"], Literal(domain)))
g.add((Dataset, FDO["domain"|, Domain))
if "tasks" in row then
addTasks(g, Dataset, Domain, row["tasks'], bib_database)

end

end
else
if "tasks" in row then
addTasks(g, Dataset, None, row|"tasks'], bib_ database)

end

end

else
if "tasks" in row then

addTasks(g, Dataset, None, row["tasks'], bib_ database)

end

end

The last things to report about the serializeDatasetItem is related to the
full text search functionality. We decided to use the full text search provided by
PostgreSQL, so we had the necessity also to create a sort of very easy relational
database.

It is designed only with a single table with two fields: the ID of the resource

which is the primary key and a second field to store all the information belonging

44

CHAPTER 4. DATA PARSING

a dataset. After some researches we have found the tsvector data-type which
"'represents a document in a form optimized for text search" as stated into the
documentation. Moreover, there is a similar data-type called tsquery which is

used when the query is created.

Algorithm 7: Dataset full text search creation

id = strTolD(name=row['name"])

data ="'

if "year" in row and "present” in row["year'] then
today = datetime.date.today()
year = today.year
row["year'] = str(year)

end

for (index, value) in row.items() do
if "contact” not in index and "email" not in index and len(value)> 0

then
if type(value) == str then
data = data + " " + value
else
for element in value do
data = data + " " + element

end

end

end
end

insertDatasetIndex(cur, id, data)

The algorithm 7 shows how the information of a given dataset are grouped
together, the only ignored information are those about the contacts for a dataset.
At the end, the insertDatasetIndex function is called, that does the insertion
into the database. Its full code is available at algorithm 8, where we can see

that the IDs are composed by the resource type plus the resource ID. Finally the

45

CHAPTER 4. DATA PARSING

information are transformed to the tsvector data-type using the to_tsvector

PostgreSQL function.

Algorithm 8: insertDatasetIndex

id = "dataset/" + id

nnn

cur.execute(
INSERT INTO "indexSchema'.dataset(id, data)
VALUES (%s,to_tsvector(’english’,%s));

nnn

,(id,query__data))

With this algorithm we finish the discussion about the parsing of the dataset

resources.

4.2.2 Bibliography parser

On the contrary to the dataset resources, where we had to use a custom parser,
for the bibliography information we had the chance to use an existing parser.
This powerful module, called BibTexParser, provides useful features which helps
to import and manipulate the contents of a BibTex file.

Before going on in the explanation of all the adopted features, I would like to
specify that all the namespaces present in fig. 4.1 and the binding operations in

fig. 4.2 are still valid and used for the bibliographic parser.
Coming back to the parser, we started with the line in algorithm 9, which calls

firstly the BibTexParser function with the following options:

o« common__strings = True which means that common strings are loaded

(for example we can consider month abbreviation);

e ignore_nonstandard_ types = False which means that non-standard

BIBTEX entry are not ignored;

 homogenize_ fields = False which means that BIBTEX fields name are
not sanitized, for example it change wurl to link. We do not want any

modification because these fields are used to understand when there is for

46

CHAPTER 4. DATA PARSING

example a URL or a citation.

Algorithm 9: BIBTEX import

bib_ database = bibtexparser.bparser.BibTexParser(
common__strings=True, ignore nonstandard_types=False,

homogenize fields=False).parse file(bibtex file)

Then, the BibTexParser function is concatenated with the parse_file function
which takes as input the BIBTEX file to be parsed. It returns the bibliographic
database generated from the provided input file (the data-type is BibDatabase).
In addition, we used other two customization provided by the bibtexparser
module which are the authors split feature and the type customization. The
first one converts the author field of the bibliographic resource to a list where
every element is in this form: "Name, Surname”; the second one instead converts
to lower case every resource type to avoid case sensitive miss-mach.

Then, for every entry into the BIBTEX file, is applied the correct serialization
function based on the entry type.

To achieve this choice we used the match-case structure available starting from
Python 3.10. This functionality is the same of the "classic" switch-case in many
other languages.

The code reported in algorithm 10 is only a summary of the entire structure of
the switch-case.

There are some considerations to analyze:

e the serializeProceeding function used for the case "inproceedings" has
been used also for the entries of type "incollection", "inbook" and "confer-
ence'. We can do this because the data properties, the object properties
and the relation with other classes are the same, moreover they reprsents

similar concepts.

» the same approach was done for the "mastersthesis" entry type using the

serializePhD for the preovuous reason.

« when there is an "article" entry type, we can not use directly the serializeArticle

47

CHAPTER 4. DATA PARSING

because when there is the word proceeding inside the field journal (if avail-

able), we have to use the serializeProceeding serialization function.

Algorithm 10: Serialization function selection

switch item/"ENTRYTYPE'] do

case "book" do
‘ serializeBook(item, g, cur)
end
case 'article” do
if "journal” in item and "proceeding" in item/["journal’].lower() then
‘ serializeProceeding(item, g, cur)
else
‘ serializeArticle(item, g, cur)

end

end

case "techreport” do

‘ serializeTechReport(item, g, cur)
end

case "phdthesis" do

‘ serializePhD(item, g, cur)

end

case "inproceedings" do

‘ serializeProceeding(item, g, cur)
end

case "misc do

‘ serializeMisc(item, g, cur)

end

end

Now we will discuss how these serialization functions act. All of these functions
start filling the table used for the full text functionality. As for the dataset

insertion function we use PostgreSQL and we create a similar function to algo-

48

CHAPTER 4. DATA PARSING

rithm 8, the two differences are about its name (insertPaperIndex) and the
ID construction. In fact, it is composed by the prefix "paper/" plus the resource
ID.

With regards to the data and object properties, we can start explaining how the
dcterms:identifier is built. As we can see in algorithm 11, we firstly check if
the "doi" field is available and then we create the triple using dcterms:identifier.
If it is not available then may happen that there is the arXiv identifier. In this
case we can use the FaBiO sub-property of dcterms:identifier which is used

to store the arXiv identifier.

Algorithm 11: Identifier triple creation

if "doi" in item then
g.add((Article, DCTERMS]|"identifier"], Literal(item["doi"])))
else

if "journal” in item and "arziv" in item["journal’].lower() then

g.add((Article, FABIO["hasArXivId'], Literal(item["journal'])))

end

end

Related to the arXiv, there is also a part focused on the creation of the Journal
and Publisher individials. In fact if the identifier is the arXiv ID we create an
individual related to this entity which is an pre-print and post-print electronic
repository where documents are published. In this case arxiv.org will be also
the publisher of these resources.

On the contrary, the journal will be the one presents into the journal field and

if there is also the publisher field the relative triples will be created.

Other fields are filled directly like the title one, as we can see in algorithm 12.They
are quite easy to understand and we do not waste time with the explanation of

them.

49

CHAPTER 4. DATA PARSING

Algorithm 12: Title triple creation

if "title” in item then
g.add((Article, DCTERMS|"title"], Literal(item|"title"])))

end

More interesting is the algorithm 13 where we can observe that there are two
possible fields where the information (about the volume in which the article is

published) can be store inside the items present in BIBTEX file.

Algorithm 13: Volume triple creation

if "volume" in item and len(item["volume"[)>0 then

g.add((Article, FDO["volume'], Literal(item|"volume"])))

else

if "number"” in item and len(item[" number'])>0 then
g.add((Article, FDO["volume'], Literal(item['number'])))

end

end

Finally, I would like to explain how we developed the triples creation about the
authors related to a resource.

The algorithm 14 illustrates how the triples are created. At the beginning of
this section we talk about the BibTexParser customization feature about the
author list creation.

In this way we can iterate the triple creation for each author. In the code below,
we split the name and the surname of the author thanks to the convention that

store the surname followed by the name with a comma between them.

20

CHAPTER 4. DATA PARSING

Algorithm 14: Author triples creation

if "author" in item then

for author in item["author'] do

author data = author.split(",")

surname = author__data[0].strip()

name = author_data[l].strip()

Author = createURI(FDO, "author", strTolD(author=author))
g.add((Author, RDF.type, FDO["Author']))

g.add((Author, FOAF['name"], Literal(name)))
g.add((Author, FOAF|["surname'], Literal(surname)))
g.add((Article, DCTERMS]|"creator'], Author))

end

end

As previously said, there are a big number of common fields which can be used in
every type of bibliographic document. Sometime happens that there are minor

changes but the structure is pretty much the similar.

We now see algorithms which have not been explained yet. Starting from the

Tech report where there may be the institutional field.

Algorithm 15: Corporare body triples creation

if "institution" in item then
CorporateBody = createURI(FDO,"corporateBody",

strTolD(ist=item|["institution"]))
g.add((CorporateBody, RDF.type, FRBR['CorporateBody"]))
g.add((CorporateBody, DCTERMS|"description'],
Literal(item["institution"])))
g.add((TechReport, FRBR["responsibleEntity'], CorporateBody))

end

As we can see in algorithm 15, the information related to the corporate body are

stored using the dcterms:description data property and then the relationship

o1

CHAPTER 4. DATA PARSING

between the resource and the institution is added thanks to the last line of the
algorithm.

The PhD and master thesis documents have not an institution field but they
may have the school attribute. In this case we mapped this information like the

institutional one and we can use the same algorithm 15.

A more complicated argument is related to the proceedings paper and misc
documents. In fact they have also a relationship with an event where they are
presented and/or published.

The reported code in algorithm 16 is a summary and it can be applied only if
the "series" field, is available. The first step is to split the content of the "series'
field if it is available. Then, following the ontology available in fig. 3.7, we check

if a number is present, which could represent the year or the edition of the event.

Algorithm 16: Event - corporate body triples creation (a)

n |7ll

splitten_ data = re.split(" |",item["series'])
for data in splitten data do
if strTolD(s=data).isnumeric() then
numb found =1

end

end

Then the second part is divided in two section, formally there is an if-clause
that check if the numb_found variable is "1".

In this case is applied the algorithm algorithm 17 where the event individual
is created and then the number is searched and used to fill its edition data
property.

The remaining part of the "series" field is concatenated and it will be stored into

the dcterms:description data property of the responsible entity of the event.

52

CHAPTER 4. DATA PARSING

Algorithm 17: Event - corporate body triples creation (b)

Event = createURI(FDO, "event', strToID(serie=item|["series"]))
g.add((Event, RDF.type, FRBR["Event']))

g.add((InProc, FRBR["partOf'], Event))

corporate = "'

for data in splitten_data do

if strTolD(s=data).isnumeric()) then
g.add((Event, FDO["edition"], Literal(strTolD(s=data),
datatype=XSD.positivelnteger)))

else
| corporate += data +

end

end

CorporateBody = createURI(FDO, "corporateBody",
str'TolD(c=corporate))

g.add((CorporateBody, RDF.type, FRBR['CorporateBody"]))

g.add((CorporateBody, DCTERMS|"description"],
Literal(corporate.strip())))

g.add((Event, FRBR|"responsibleEntity"], CorporateBody))

The last option is when there is not any number inside the "series" field so we

decided to create the event individual using the "year" field of the resource, if it

is available, and then use it as the edition data property.

Starting from this assumption we were able to create the event and then using

the information about the "series" field we produced the corporate body and its

property.

These considerations can be done also for the resources of type "misc'. The

only difference is that in this case the event and corporate body individuals are

instantiated if the word "workshop" is present inside the "note" field instead of

the "series" field. The convention about the year if a number is not available, it

is still valid.

53

CHAPTER 4. DATA PARSING

Algorithm 18: Event - corporate body triples creation (c)

if "year" in item and "unknown" not in item["year'] then
Event = createURI(FDO, "event", strToID(serie=item|["series'],

edition=item|"year']))

g.add((Event, RDF.type, FRBR["Event']))

g.add((Event, FDO["edition"], Literal(item["year"],
datatype=XSD.positivelnteger)))

g.add((InProc, FRBR["partOf'], Event))

CorporateBody = createURI(FDO, "corporateBody"
,strToID(cb=item|"series"]))

g.add((CorporateBody, RDF .type, FRBR["CorporateBody"]))

g.add((CorporateBody, DCTERMS|"description'],

Literal(item|"series"])))

g.add((Event, FRBR['responsibleEntity"|, CorporateBody))

end

With this last algorithm we have completed the discussion about the biblio-

graphic parser.

o4

Web Application

The Web application project and the thesis have been developed during my
personal research training activity. Also for this reason we decided to choose
technologies which I have never studied, so I had the opportunity to learn new
approaches and useful frameworks.

We have already talked about how store the information, now we will see how

we retrieve and expose them to the user.

5.1 Web technologies

django

We developed the back-end using the famous Python framework called Django.
All the detailed information are available at its Web page djangoproject.com,
but now we will discuss its main features and advantages.

As above mentioned, Django is a high-level Python Web framework, moreover
it is open source. This last things blends well the project principles.

In particular Django has the following advantages:

o fast: Django designers have the goal of creating a framework which helps

developers to create application as fast as possible;

%)

CHAPTER 5. WEB APPLICATION

o features: it brings with itself some interesting features which help devel-

opers to complete common features in Web development;
e secure: it is designed to prevent common security negligence;

o scalable: it helps to distribute the heaviest traffic demands quickly and
flexibly;

e versatile: it can be used in different domains.

Django works using a modular approach, I think that in this way developers are
able to make the code cleaner and more readable. We used this framework in
our Web application development to implement only the back-end although it
allows also to build the front-end.

In practice, we developed a REST API using Django, which is defined as "a flexi-
ble, lightweight way to integrate applications, and have emerged as the most com-
mon method for connecting components in microservices architectures.” (IBM
Cloud Education, 2021).

REST, which means Representational State Transfer, is a paradigm or an archi-
tectural style which defines how Web information are shared and how computer
systems communicate.

For this reason we can develop a REST API using any programming language
with different data formats. The only requirements is to follow the REST design

principles:

uniform interface: every time a resource is required over an API, it should be

always the same.

Client-server separation: this design principle establishes that client and
server applications must be independent. The client side communicates

with server side only through calling the API’s URI.

Stateless: a REST API is stateless, which means that there is no session and

every request-response must include all the information.

26

CHAPTER 5. WEB APPLICATION

Cacheability: resources can be cached at client or server side. This require-
ments is to improve scalability at server side and performance at client

side .

Layered architecture: REST API must be developed in a way that both
server and client side do not know if they are interacting with the final ap-
plication or with an intermediary. This requirements is needed because the

requests and responses can be managed by communication intermediaries.

Code on demand: this is an optional requirements. In fact, REST APIs re-
turns usually static resources but may happen that the response contains

executable code.

REST APIs communicate via HTTP requests using all the possible methods
depending the task. The state of a resource is shared using different formats
but the most used one is the JavaScript Object Notation (JSON) because it is
easily readable by humans and machines but it is also programming language-

agnostic.

5.1.2 React

Regarding to the front-end we decided to adopt another open-source framework,
React. It is a JavaScript library that allows developer to produce user interface.
It was a good choice for many reasons, in fact it is lightweight and fast to use.

The main characteristics of React are the following:

Declarative: declarative user interfaces make the code more predictable and

easier to debug.

Components: it applies a nested components design approach. In this way

o7

CHAPTER 5. WEB APPLICATION

the developer can decompose a big "problem" into sub-problems to make

easier the development and reduce bugs.

Anywhere applicable: thanks to its designers approach, React can be used in

different fields, also server side with Node and mobile with React Native.

Community: React has a big community composed by millions of developer

but it is also maintained by Facebook developers.

Moreover, thanks to the fact that it is JavaScript based, it can manage efficiently

JSON objects provided by the back-end, as discuss in subsection 5.1.1.

5.2 Web Application development

From that section we will analyze the implementation of the Web application
front-end and back-end thanks to the technologies proposed in section 5.1.

In particular we will describe environment settings and the tools used in the
first section, then in the second and third section we will inspect the back-end

and the front-end respectively.

5.2.1 Environment and tools

The development of the Web application has taken advantage of different tool
and software.

I decided to use a GIT which is an open source software for distributed version
control, it is not useful only on collaborative developing but also for individual
developer to track changes and code history. I have used bitbucket.org as repos-
itory hosting service just because I have familiarity with this platform thanks
to academic past projects.

As code editor I adopted Visual Studio Code by Microsoft. It is available for
both the operating systems which I use at the time, i.e. Windows and Linux

Ubuntu.

o8

CHAPTER 5. WEB APPLICATION

We decided to install OpenLink Virtuoso Open Source Edition (which is a store
database system to store triple) inside a Docker container. Thanks to this choice,
we were able to isolate the database system from the hosting system but it allows
us to expose only the desired features and moreover we can export the container
and its configuration.

For the same reason, we used Docker container for PostgreS()L, an open source
object-relational database system used to store the information needed to the
full text search feature, and its open source administration and development
platform, called pgAdmin.

Moreover I used Postman, which is a tool to design and test API.

5.3 Back-end

As mentioned in subsection 5.1.1, Django is suitable to be modular. For this
reason, it has been used to develop the back-end REST APIs and in particular
we decided to develop a Django "app' for every different part.

In Django there is the concept of "app" which is different from the "project"
concept. In fact, an app is a Web application with a specific objective, a project
is composed by many application and configuration. In conclusion, every Django

application represents a Python package.

Into the "backend" app we put all the settings and the route for each request.
For example here we have defined the DB_ENDPOINT variable representing the
URL endpoint of Virtuoso. It is imported by all the apps, in this way we can
change the parameter only once. It is considered a good practice to avoid errors
when the values need to be changed.

As previously said, the "urls" file maps every request to the correct app, the
code in algorithm 19 represents the root urls file. From that the requests are
redirected to the specific "urls' file for a given app and then they select the
correct "view" to be called. A view is a Python function and has the objective
to retrieve a request, elaborate and return a response. In our back-end, all, or

almost, the response are JSON data.

59

CHAPTER 5. WEB APPLICATION

In fact we can consider the empty path, which through the corresponding "urls"
file calls the view_index function. The code is not reported because it is only
a render function of the index.html template. We will see more in details in

subsection 5.3.4 how it has been used.

Algorithm 19: URL patterns

urlpatterns = [path("admin/", admin.site.urls),
path("", include("startPage.urls")),
path("dataset/", include("dataset.urls")),
path("task/", include("task.urls")),
path("domain/", include("domain.urls")),
path("creator/", include("creator.urls")),

path("publisher/", include("publisher.urls")),

(
(
(
(
(
path("author/", include("author.urls")),
path("event/", include("event.urls")),
path("corporateBody/", include("corporateBody.urls")),
path("paper/", include("referencePaper.urls")),
path("referenceWebpage/", include("referenceWebPage.urls')),
path("journal/", include("journal.urls")),

(

path("search/", include("textSearch.urls"))

]

5.3.1 Views development

We will now see the main steps and functions of the views. They have the same
main structure and the changes are related only to the data differences between
the resources.

For every resource type there are two main APIs that can be called. For in-
stance, if we consider a dataset resource, we know that the paths must start
with /dataset/ and with this information the backend app redirect the request

to the dataset app. Then there are two possibilities:

60

CHAPTER 5. WEB APPLICATION

o /dataset/ without any other string after the slash. This call the index

view which returns all the datasets available inside the database;

o /dataset/<str:id> this call, with the string "id" after the slash, invokes
the detail view which returns all the information related to the dataset

with the specified identifier.

To achieve the result we need to perform a query to the database that is available
in algorithm 20. As we can see, it firstly binds the ?dataset variable to the
dcat:Dataset class and then it retrieves all the relative information. Finally,
the triples are ordered in ascendant order to be sure that all the triples about a

resources should be near.

Algorithm 20: Dataset query

query =
select distinct ?dataset ?prop 7obj where {
?dataset a dcat:Dataset ;
7prop 7obj.
} order by ASC(7dataset)

nun

This type of query provides the idea of all the queries used to retrieve also other
type of resources (changing the bounded type class). After some test of the Web
application, we discovered a problem with all this query. It derives from the
database system, in fact it has a limit variable to setup the maximum number
of triples returned.

To bypass that problem there are two solution: we can increase the number
of maximum triples returned (actually it is 10000) but it is not scalable. The
second solution, the chosen one, is to use the OFFSET option of SPARQL query
language, which allows to produce in output only the solutions after the specified
number. In practice we repeat the query increasing the OFFSET number starting

from zero, until we do not found further results.

61

10

11

12

13

14

15

16

17

18

19

20

CHAPTER 5. WEB APPLICATION

Algorithm 21: Dataset index view

sparql = SPARQLWrapper(endpoint=settings. DB ENDPOINT)

spargl.setQuery (prefix+query)

sparql.setReturnFormat(JSON)

result = sparql.query().convert()

result_set = result['results']["bindings"]

for triple in result _set do

clean_ dict(triple)

previous = "dataset"

for item in triple do

if "landingPage" in triple[previous] then
previous = item
continue

end

triple[item] = clean_ url(triple[item])

previous = item

end

end

data = create_json(result_ set)
result = json.dumps(data, indent=4)

return HttpResponse(result)

Starting from the above algorithm 21 we can make the following considerations:

o from the first line we can see that we have used SPARQLWrapper to connect
and query the database. The DB_ENDPOINT variable is the one previusly

mentioned.

o at line two, the query variable is the one present in algorithm 20 and the

prefix variable includes all the prefixes in fig. 4.1.

o the line three sets up the format desired to be returned. We decided to
use JSON data format.

62

CHAPTER 5. WEB APPLICATION

« the line four executes the query to the endpoint and apply the conversion of
the retrieved results. If the results are in JSON format, they are converted

to a Python dictionary structure.

o the line five is used to retrieve only the needed information. The whole

result variable includes useless database and query information.

e Then an important part is the "cleaning" of the retrieved data. In fact,
we can observe in fig. 5.1 how the data are returned from the database
in JSON format. The clean_dict function has the objective to remove
all the unnecessary information from the dictionary. The remaining code

inside this for-loop converts the resources’” URI (see fig. 5.2) to their ID.

o After the loop we ca see an important function for the back-end, the
create_json. It takes as input the whole results set and produce in output
a list of dictionaries where every dictionary represents a resource. Then the
following instruction transforms the list of dictionaries to a list of JSON

objects.

o Finally there is the return statement which sends the HT'TP response of

the JSON data.

Figure 5.1: Row results from query in JSON format

63

CHAPTER 5.

WEB APPLICATION

Dataset URI Propery Obj

http: dei.unipd.it/schema/Dataset/2010FrequentlyOccurr http: 0rg/1999/02/22-rd| ype http: org/ns/dcat#Dataset

http://fai dei.unipd.it/schema/Dataset/2010FrequentlyOccurr http://purl.org/dg ied 2016

htp: dei.unipd.it/schema/Dataset/2010FrequentlyOccurr htp://purl.org/dc/terms/creator http: dei.unipd.it/schema/Creator/USC

httpi/Fai deiunipdit/schema/Dataset/2010FrequentlyOccurt Hetoourlore/d rintion this dataset reports all surnames occurring 100 or more times in the 2010 U Census, brol
American Indian and Alaskan Native only (AIAN), multiracial, or Hispanic)

hetp://fair dei.unipd.it/schema/Dataset/2010FrequentlyOccurr hetp://purl. http://fairnessdatasets.dei.unipd.it/schema/Work/-430148465641764408

http://Fair dei.unipd.it/schema/Dataset/2010Fr http://purl 2016

http://Fair dei.unipd.it/schema/Dataset/2010Fr http://purl.org/dc/terms/publisher https dei.unipd. G

http://Fai dei.unipd.it/schema/Dataset/2010Fr http://purl.org/dc/terms/title 2010 Frequently Occurring Surnames

http: dei.unipd.it/schema/Dataset/2010FrequentlyOccurr http: org/ns/d: g1 https; 010_surnames.html

http://fair dei.unipd.it/schema/Dataset/2010FrequentlyOccurr http: di http: dei.unipd.it/schema/Ds

http://fair dei.unipd.it/schema/Dataset/2010FrequentlyOs htt, d ~200K surnames.

http://Fair dei.unipd.it/schema/Dataset/2010Fr i d urerace

http://fair dei.unipd.it/schema/Dataset/2010Fr i d htty dei.unipd.it/schema/T:

htp dei.unipd.it/schema/Dataset/2016USPresidentialPoll htp 0rg/1999/02/22-1d ype http:; org/ns/dcat#Dataset

http: dei.unipd.it/sche Dataset/2016USPresidentialPoll http://purl.org/dc/terms/modified 2016

http://fair dei.unipd.it/schema/Dataset/2016UsPresidentialPoll http://purl.org/dc/terms/creator dei.unipd.it/schema/C hirtyEight
this dataset was collected and maintained by FiveThirtyEight, a website specialized in opit
roviding an aggregated estimate based on multiple polls, weighting each input accordin

b deianipdtfchema/Daase 201 Seresdentlll e fpuror/dcermsdescrption rganization.Fot soch ol the dtase provides e pariod ofdat colecio t sl
source data

http://fair dei.unipd.it/schema/Dataset/2016USPresidentialPoll http://purl.org/dc/terms/isReferencedBy http://fairnessdatasets.dei.unipd.it/schema/Work/7130700487165414823

hetp://Fair dei.unipd.it/schema/Dataset/2016USPresidentialPoll http://purl.org/dc/terms/issued 2016

http://fair dei.unipd.it/schema/Dataset/2016USPresidentialPoll http://purl.org/dc/terms/publisher htty dei.unipd.it/sches ThirtyEight

http dei.unipd.it/schema/Dataset/2016USPresidentialPoll http//purl org/dc/terms/title 2016 US Presidential Poll

http:/fai dei.unipd.it/schema/Dataset/2016USPresidentialPoll http://www.w3.0rg/ns/dcat#landingPage http://projects fivethirtyeight.com/general-model/president_general_polls_2016.csv

http://fair dei.unipd.it/schema/Dataset/2016USPresidentialPoll ity .dei.unipd.it/ dei.unipd.it/schs Ds

http://fair dei.unipd.it/schema/Dataset/2016USPresidentialPoll http: dei.unipd.it ~13K poll results

Figure 5.2: Query results

In fig. 5.3 we can find the results of a request of a dataset resource. As the reader

can see, there are some fields where there is string text representing information,

like the description or the modified, but there are also fields where there are

the ID of the related resources, for example the creator id.

Moreover, when there are more than one related resource, the information are

stored using a list inside the value of a JSON key.

Figure 5.3: API response

64

CHAPTER 5. WEB APPLICATION

Before going on, I would like to specify how the detail view query is developed.
It is very similar to the one presents in algorithm 20 but it need to select the

desired resource and we can achieve this objective in two ways:

« apply a FILTER regex over the ?dataset variable;

e bind the resource directly because we know that the convention used to
create the resources URI is "namespace / resource_type / ID" so, in the

case of a dataset, its URI will be "namespace/dataset/ID".

The remaining part of the detail view is the same.

Now we can explain the above mentioned functions used inside the views. The
first one is the clean_dict, I do not report the code because it simply iterates
over all the triples and their items and keeps only the value belonging to the
"value" keys of the structure in fig. 5.1.

The clean_url function has the objective of cleaning the resources’ URL (see

fig. 5.2 to understand their structure).

Algorithm 22: clean_url

if "#"in item then

‘ item = item[item.rfind("#")+1:]
else

‘ item = item[item.rfind("/")+1:]
end

return item

As the reader can observe from algorithm 22 there are two cases: if the URI
contains the "#" symbol it should start from that symbol, on the contrary it
will cut starting from the last "/".

The most important function is the create_json function which transforms all

the retrieved triples into a list of JSON objects.

65

CHAPTER 5. WEB APPLICATION

Algorithm 23: create json - part 1

dataset = ||

for triple in result_set do
found = 0

for item in dataset do

if triple[’dataset’] == item.get(’id’) then
| found = 1 break

end

end

if found == 0 then
dataset.append(’id’:triple[’dataset’])

end

end

The first part of the create_json function, available in algorithm 23, creates
the resources list and then creates all the dictionary objects only with the 1D
key.

The second part of the function, available in algorithm 24, is the most time
consuming part of the create_json function.

In fact it has two nested for-loop, the first one over all the triples and the
second one over all the elements of the dataset list of JSON objects.

In the reported resume of the function are not present all the cases, the reader can
extend to all the possible cases easily. The algorithm searches for every triple the
corresponding dictionary resource and then adds the information related to the
considered triple. As the reader can see there are two type of insertion functions:
the insert_element function adds a single element in the form of "key:value",
instead the insert list function checks if the input key is already presents in
the dictionary resource and, if it is the case, appends the input element. On the
contrary, i.e. the key does not exist yet, the function creates the new key with

a list of one elements, the input one, as value.

66

CHAPTER 5. WEB APPLICATION

Algorithm 24: create json - part 2

for triple in result set do

for i in range(len(dataset)) do

if triple["dataset’] == dataset[i].get("id") then
switch triple/"prop'] do

case 'title" do
| insert_ element(dataset|[i],"title" triple["obj"])

end

case "description” do
| insert_element(dataset[i],"description’,triple["obj'])

end

case "dataSpec” do
| insert_element(datasetl[i],"dataSpec",triple['obj"])

end

case "sensitiveFeature do
| insert_ list(dataset][i],"sensitiveFeature" triple["obj"])

end

case "domain" do
| insert_ list(dataset[i],"domain" triple["obj'])

end

case "task" do
| insert_ list(dataset][i],"task" triple["obj'])

end

case 'creator” do
| insert_ list(dataset[i],"creator_id" triple["obj"])

end

case "isReferencedBy" do
| insert_ list(dataset[i],"isReferencedBy" triple['obj"])

end

end

end

end

end

return dataset

67

CHAPTER 5. WEB APPLICATION

During the Web application development we took care of its performances. This
argument is not strictly related with how the user interacts with the applications
but it affects directly the user experience.

When the above version of the create_json function was ready, we applied
some tests to verify if the response time was acceptable. Unfortunately, the
performance was not as good as we expected. From the test we concluded that
the problem was originated from right over the create_json function.

In fact, we noticed that it ran approximately in 10 seconds (in some cases also
more than that) and on the contrary the remaining parts of the view act in
matter of milliseconds. So we can easily assume that a user after that time will
leave the Web application in flavour of a better performing one.

We have done a lot of test using different data structures to improve the create_json
function and after some researches we decided to used a dictionary of dictio-
nary instead a list of dictionary. In this way we can avoid to use two nested
for-loops.

In practice the structure will be composed of key-value pairs where the key is
the resources ID and the value is the dictionary containing all the information.
The new version of the create_json function is reported in algorithm 25.
Now we are going to explain some details of this new version, starting from the

first for-loop.

First of all, it is more compact, in fact using the dictionary for each triple we
can verify if the ID (and so the key of the dictionary entries) is already present,
on the contrary it is added. In this way we do not need to scan linearly all the
elements of the list for each triple.

In algorithm 25 we do not report all the possible cases because, as in the algo-
rithm 24 the reader can extend to all the possible options. We want to show
how the dictionary of dictionary impacts the implementation compared to the
previous version.

Also in this case we avoid to use two nested for-loops because we retrieve the
resources’ dictionary using the ID which is the key of the structure. As the

reader can see, it is retrieved directly into the insert functions and given as in-

68

CHAPTER 5. WEB APPLICATION

put parameter. The two version of insertion functions are still the same in both
the developed versions.
Finally, to produce the correct structure expected by the front-end, this new

version returns only the entries of the main dictionary converted into a list.

Algorithm 25: create json - new version

dataset set = for triple in result _set do
if triple[’dataset’] not in dataset_set.keys() then
dataset__set.update(triple['dataset’]:"id":triple['dataset’])
end
end
for triple in result set do
switch triple/’prop’] do

case ‘title’ do
| insert_element(dataset_set[triple[’dataset’]], title’ triple['obj’])

end

case ’‘description’ do
| insert_element(dataset_set[triple[’dataset’]],’description’,triple[’obj’])

end

case ’‘creator’ do
| insert_ list(dataset_set[triple[’dataset’]],’creator_id’ triple[’obj’])

end

case ... do

end

end
end

return list(dataset_ set.values())

69

CHAPTER 5. WEB APPLICATION

Considering another path, we will now discuss about the one starting with
/paper and in particular the one dedicated to retrieve all the papers related
to a dataset-task pair.

The full path is in the following form:/paper/<str:id>/<str:task_id>

As we can image, the query will be different from the previous illustrated one.
In fact, it needs to retrieve the resources matching the pairs using the blank
nodes. The query is reported in algorithm 26.

The code of this view does not use the previous mentioned create_json function
but it uses the create_json made for the paper (so it has different fields but
the same structure). The elaborations, to remove the useless JSON information
in the response and to clean the URIs, are done before calling the create_json

function.

Algorithm 26: Query to retrieve documents about a task of a dataset

mun

query =
select distinct ?paper where {
fdoDataset:"""+dataset_id+""" a dcat:Dataset ;
fdo:has ?bNode .
?bNode 7about fdoTask:"""+task id+""";
fdo:refers 7paper .
?paper ?pred 7obj .
} order by ASC(7paper)

nnn

Before moving on to the section dedicated to the full text search, it is interesting
to explain how the debug and log activities are done. They are very important
in every development project.

Differently from a classical software style, during Web and in particular back-
end development we can not simply "print" the information. In this case, the
solution is using a module that allows to "export' information, the adopted
solution is the "logging" module. In practice it allows to print information to a

specified file.

70

CHAPTER 5. WEB APPLICATION

5.3.2 Full text search view

In this section we will analyze how the views dedicated to the full text search
are implemented.

There are two views: the first one query the table dedicated to the datasets in-
formation, the second one instead investigates the documents information using
a similar query.

In this case the path allowed by the "urls" file are (considering that the base
path is /search/):

o the empty path which reply an "error" message

e dataset/<str:searchText> which redirects to the view dedicated to re-

trieve information about datasets;

e paper/<str:searchText> which redirects to the view dedicated to re-

trieve information about documents.

We will analyze only one of these views because the structure, the used functions
and the queries are similar.

The query, reported in algorithm 27, is obviously PostgreSQL query language
because, as we previously mentioned, we use a PostgreSQL database manage-

ment system.

Algorithm 27: Full text dataset query

query =
SELECT id
FROM 'indexSchema'.dataset
WHERE data @@ plainto__tsquery(’english’,%s)
ORDER BY id ASC

mun

For those whom already know this query language the main structure of the
query is understandable. The interesting part is after the WHERE keyword. In

fact the data @@ plainto_tsquery("english", %s) code is not common to

71

CHAPTER 5. WEB APPLICATION

see, at least for someone which works with the standard features.

In practice it makes a sort of intersection between the data column and the
results of the plainto_tsquery function. This statement converts every piece of
text into a tsquery data-type which is the corresponding data-type of tsvector

for the queries. The inputs are the text language and the text to be transformed.

Now we have understood the query, so we can talk about the implementation.

Algorithm 28: Full text view
conn = psycopg2.connect(dbname="index__db", user=settings.user,

password=settings.pswd, host=settings.db_host)
cur = conn.cursor|()
cur.execute(query, [searchText])
results = cur.fetchall()
cur.close()
conn.close()
result = json.dumps(results, indent=4)

return HttpResponse(result)

The code is available in the algorithm 28, where the query variable is the one
present in the algorithm 27.

We can see that there are a lot of "database" stuff but nothing about the data
elaborations. In fact we only need to establish the connection, execute the query
and retrieve the results. From the algorithm we can noticed that we used the
psycopg2 module to reach the database inside the PostgreSQL DBMS.
Finally, we convert the results to JSON data format and we send them using

the HttpResponse function.

5.3.3 Form view

In this subsection we will talk about the only view dedicated to manage POST
request. It is particularly easy, in fact it checks if the request is of type POST

and then it retrieves the request body.

72

CHAPTER 5. WEB APPLICATION

This information are loaded as JSON format and then they are used into the
mail content.

In fact the objective of this view is to retrieve the information from the front-end
form and to send them by mail so that the data creator can manage and upload
them into the Web application database.

To manage the e-mail sending we use the send mail function provided by
django.core.mail. We only need to configure the required information (the

host name, the port, the username and the password) inside the settings file.

5.3.4 Development to production

We have already discussed about the view_index function which render the
index.html file.

During the Web application development two processes were required: the back-
end service was executed to expose all the REST APIs and the front-end service
was executed to expose the user interface. The reason why we decided to use
this approach instead of a single process is easy: every time we save a code
modification the front-end was reloaded and so we could see immediately the
updates.

This approach has two main problems at the production stage:

o the front-end code is fully available, so there are both security and copy-

right problems;

o running back-end and front-end over two distinct processes increase the
possibility of the Web application crash. In fact, there are two processes

that can crash, go down and make the system unresponsive.

For these reasons the above approach is not feasible in production environment
so we studied how to run in a single process and without exposing the source
code.

The solution found is using webpack which is "a static module bundler for mod-

ern JavaScript applications". It is a useful tool with many features which help

73

CHAPTER 5. WEB APPLICATION

developers to create a single bundle that can be imported as static script file in

a HTML file.

Figure 5.4: Webpack idea

We can now understand what the index.html file does. In practice it is a sort
of container for the front-end which is executed thought the JavaScript bundle.
In conclusion, there will be one process, the one relative to the back-end, which

executes also the React front-end.

5.4 Front-end

In this section we will explain how the React front-end has been developed.
During the implementation sometimes we needed to change the used techniques
to achieve the desired results. So we will make a summary of the changes and
the final results.

The fig. 5.2 represents the first test we have done to display the results of the
/dataset API call. It is interesting to specify that it was a great satisfaction
to display this row data because, as we have already mentioned, it was my first
approach to React. Obviously, they were difficult to understand if they are dis-
played in this way but, when the back-end was ready, we were able to display a
more understandable presentation of the resources using a tabular view.

It is useful to mention that we decided to start from the dataset information be-

cause all the Web application is about the dataset and their related information.

74

CHAPTER 5. WEB APPLICATION

Adressa

id Adressa

this dataset was curated as part of the RecTech project on recommendation technology owned by Adresseavisen (shortened to
Adressa) a large Norwegian newspaper. It summarizes one week of traffic to the newspaper website by both subscribers and non-
subscribers, during February 2017. The dataset describes reading events, i.e. a reader accessing an article, providing access
timestamps and user information inferred from their IP. Specific information about the articles is also available, including author,
keywords, body, and mentioned entities. The dataset curators also worked on an extended version of the dataset (Adressa 20M), ten
times larger than the one described here

Description

Issued 2018

Modified 2018

Type Dataset

Domain newsinformationsystems‘

Task Fairranking‘

Landing -
http: lab.idi.ntnu.no/dataset,

page p://reclab.idi.ntnu.no/dataset/

Sample size ~3M ratings by ~15M readers over ~1K articles

Sensitive eoaraph

features 909
Adresseavisen

Creator - N " -
NorwegianUniversityofScienceandTechnology|

. Adresseavisen

Publisher _ F— -
NorwegianUniversityofScienceandTechnology|

Reference |gulla2017adressa;

Adult

id Adult

this dataset was created as a resource to benchmark the performance of machine learning algorithms on socially relevant data. Each
instance is a person who responded to the March 1994 US Current Population Survey, represented along demographic and socio-
economic dimensions, with features describing their profession, education, age, sex, race, personal and financial condition. The
dataset was extracted from the census database, preprocessed, and donated to UCI Machine Learning Repository in 1996 by Ronny
Kohavi and Barry Becker. A binary variable encoding whether respondents’ income is above 50,000 was chosen as the target of the
prediction task associated with this resource. See Appendix :adult for extensive documentation

Issued 1996

Modified 1996

Description

Figure 5.5: Dataset tabular view

From the above fig. 5.5, but also from fig. 5.3, we can see that there are in-
formation stored inside a list (or array) and there are the IDs instead of the
information which should be displayed at front-end (for example task, domain,
creator, publisher but also a the reference documents).

Now, the most challenging step was to retrieve all the information from their
IDs. From the back-end point of view it is not a problem because for each type
of resource there is its dedicated API. All the requests to the back-end are in-
stantiated using the AXIOS function, which is a "promise-based HTTP Client for
node.js and the browser', as stated from its introduction page.

An example of request code is available in algorithm 29, now we will inspect line

by line to understand better what it does.

The first things to notice is that there are concatenated functions, in this way

the code is shorter and we do not need to create variables to store the returned

75

1

N

10

11

12

CHAPTER 5. WEB APPLICATION

Algorithm 29: getDatasetList

axios

.get("${host} /dataset/")

then(res => {
setDatasetList(res.data);
res.data.map(data =>{

saveJSON("dataset/"+data.id,data);

)
setLoading(false);

}).catch(err => {
console.error(err);

setLoading(false);

)

values.

The second line makes the request to the input URL, in this case it requires all
the dataset resources as we have seen in subsection 5.3.1.

The third line retrieves the response and starting from this line we make its
elaboration. The setDatasetList is a set function connected to a datasetList
variable. In practice, the datasetList incorporates a state into a function com-
ponent called Hook. An Hook is a React feature which is used to "contains
reusable code logic that is separate from the component tree' (Banks and Por-
cello, 2020).

After that, we iterate over all the resources in the response and for each of these
we apply the saveJSON custom function, which store the information into the
session storage of the browser. It is done to improve performances of the
Web application, so when a resource is requested, it is searched inside the ses-
sion storage. If it is not available then a request to the back-end is created.
Finally, there is a setLoading Hook function to "communicate" that all the

information are retrieved and stored.

76

CHAPTER 5. WEB APPLICATION

From line nine of the algorithm there is the catch clause which is used to

intercept and manage an error response.

Before going on, we need to specify two implementation strategy:

o the saveJSON function takes two input parameters. In fact, the infor-
mation are stored in a key-value pair way. The key is composed by the
resource type plus the resource ID, i.e. dataset/resource_ID, the value
instead is composed by the information in JSON format of the resource.
Moreover, there is the symmetric function to retrieve information form
the session storage, called 10oadJSON. It requires only one parameter: the
key of the element inside of the session storage which is composed as we

previously explained.

o the second consideration is that algorithm 29 has a symmetric implemen-
tation, called getDataset, which allows developers and so the front-end
to retrieve the information about a specific resource. It has the same
implementation with the only difference of the URL, It is in the form

"$host/dataset/$dataset_id", according to the back-end specification.

To retrieve all the correct information from their IDs, we used a nested structure
using more and more detailed and specific components, as React requires.
After some tests, we decided to switch from a tabular view using the table
HTML tag to a tabular view using div and specific classes because we notice
that in this way we can achieve a better graphic visualization.

In order to make the contents more readable we used thin lines to separates
resources and to distinguish the fields inside a resource. The results are proposed

in fig. 5.6 and fig. 5.7

7

CHAPTER 5. WEB APPLICATION

2010 Frequently Occurring Surnames

DESCRIPTION
Last
UPDATE

DomAIN

TAsK
LANDING
PAGE

Data
SPECIFICATION

SAMPLE
SIZE

SENSITIVE
FEATURE

CREATOR
AFFILIATION

FURTHER
INFORMATION

INTERNAL
ID

| This dataset reports all surnames occurring 100 or more times in the 2... See more ¢

| 2016
‘ linguistics
‘ fair subset selection Related paper faimess under unawareness Related paper

| https://www.census.govitopics/population/genealogy/data/2010_surnames.html

| Tabular data

| ~200K surnames
‘ race
‘ US Census Bureau

| https://www2.census.govitopics/genealogy/2010surnames/surnames. pdf

| 2010FrequentlyOccurringSurnames

| 4=

2016 US Presidential Poll

v

Dataset description: This dataset was collected and maintained by FiveThirtyEight, a website specialized
in opinion poll analysis. This resource was developed with the goal of providing an aggregated estimate
based on multiple polls, weighting each input according to sample size, recency, and historical accuracy of
the polling organization. For each poll, the dataset provides the period of data collection, its sample size,
the pollster conducting it, their rating, and a url linking to the source data

Figure 5.6: Dataset page datail

As the reader can notice there are arrow buttons, in fact we decide to display

only the dataset title and its description when a user accesses the dataset page,

as you can see in fig. 5.7. In this way, the page is more readable and a user can

choose the resource to inspect.

78

CHAPTER 5. WEB APPLICATION

2010 Frequently Occurring Surnames

Dataset description: This dataset reports all surnames occurring 100 or more times in the 2010
US Census, broken down by race (White, Black, Asian and Pacific Islander (API), American
Indian and Alaskan Native only (AIAN), multiracial, or Hispanic)

v

2016 US Presidential Poll

Dataset description: This dataset was collected and maintained by FiveThirtyEight, a website
specialized in opinion poll analysis. This resource was developed with the goal of providing an
aggregated estimate based on multiple polls, weighting each input according to sample size,
recency, and historical accuracy of the polling organization. For each poll, the dataset provides
the period of data collection, its sample size, the pollster conducting it, their rating, and a url
linking to the source data

darea

Dataset description: This dataset was extracted from DBLP to study the problem of topic
modeling on documents connected by links in a graph structure. The creators extracted from
DBLP articles published at 20 major conferences from four related areas, i.e., database, data
mining, machine learning, and information retrieval. Each author is associated with four
continuous variables based on the fraction of research papers published in these areas. The
associated task is the prediction of these attributes

ANPE ¥

Dataset description: This dataset represents a large randomized controlled trial, assigning job
seekers in France to a program run by the Public employment agency (ANPE), or to a program
outsourced to private providers by the Unemployment insurance organization (Unédic). The data
involves 400 public employment branches and over 200,000 job-seekers. Data about job
seekers includes their demographics, their placement program and the subsequent duration of
unemployment spells

Figure 5.7: Dataset page

Moreover, when a user wants to see more details about a resource and opens its
detailed view, the description is contracted within a line and clicking on text
button "see more", the full description is displayed, as the reader can see in
fig. 5.6.

Another things that can be observed in fig. 5.6 are the light blue buttons. They
can be clicked to apply filters to the list of displayed resources. We will see more
in details how the filters are implemented but at the moment the reader needs to
know that a user can apply restriction over the list of displayed resources based

on their features.

79

CHAPTER 5. WEB APPLICATION

Datasets

Adience Filters

Domain filter

Dataset description: This resource was developed to favour the study of automated age and gender identification computer vision -
from images of faces. Photos were sourced from Flickr albums, among the ones automatically uploaded from iPhone

and made available under Creative Commons license. All images were manually labeled for age, gender and identity

“using both the images themselves and any available contextual information”. These annotations are fundamental for -

the tasks associated with this dataset, i.e. age and gender estimation. One author of 2018gender labeled each image

in Adience with Fitzpatrick skin type

Task filter -

CelebA ¥

Sensitive features filter

age -
Dataset description: CelebFaces Attributes Dataset (CelebA) features images of celebrities from the CelebFaces

dataset, augmented with annotations of landmark location and binary attributes. The attributes, ranging from highly

subjective features (e.g. attractive, big nose) and potentially offensive (e.g. double chin) to more objective ones (e.g. -

black hair) were annotated by a “professional labeling company”

Creator filter A
v

Diversity in Faces (DiF)

Dataset description: This large dataset was created to favour the development and evaluation of robust face
analysis algorithms across diverse demographics and domain-specific features, such as craniofacial distances and
facial contrast). One million images of people's faces from Flickr were labelled, mostly automatically, according to 10
different coding schemes, comprising, e.g., cranio-facial measurements, pose, and demographics. Age and gender
were inferred both automatically and by human workers. Statistics about the diversity of this dataset along these
coded measures are available in the accompanying report

Figure 5.8: Full dataset page content

In fig. 5.8 we can see all the contents which are available inside the dataset
page: at the left side the dataset resources and at the right one there are the
faceted search filters. In the example reported here has been applied two filters:
we restrict the list only to documents having "computer vision" as domain and
"age" as sensitive feature.

The filters can be applied by clicking the buttons inside the resources detail (see
fig. 5.6) but also selecting one of the present in the list of a filter field or directly
typing.

In fact, if we click a filter field, the entire list of available options will appear
and typing some text we can see the options which are compatible with input
text, as we can see in the example in fig. 5.9.

Finall<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>