
DIPARTIMENTO DI INGEGNERIADELL’INFORMAZIONE

CORSO DI LAUREAMAGISTRALE IN CONTROL SYSTEMS

ENGINEERING

Architecture and Control design of a legged quadrotor

for landing on sloped surfaces

Relatore: Prof. Cenedese Angelo

Correlatrice: Dott. Michieletto Giulia

Correlatore: Dott. Antonello Riccardo

Laureando: Danieli Alessio

ANNOACCADEMICO 2022-2023

Data di laurea 5/03/2024



Abstract

This study aims to optimize the landing operation of a quadcopter on a sloped sur-

face, a condition that is usually unfeasible for standard quadcopters. Starting from a

previous research, a redesign of the landing structure has been performed. The goal

of the new design is to allow a safe landing on an inclined surface characterized by

high slope. To ensure a lighter structure, so that the flying capabilities of the quad-

rotor are not significantly compromised and with the purpose of optimization, only

one actuator has been used for moving the landing skids.

The initial phase of the study focused on the design of the structure, the mech-

anisms for its movement, and the positioning of the motor. An analysis to assess

the optimality of the solution was conducted in MATLAB environment. This ana-

lysis involved mathematical functions relating the slope of the landing surface, the

angular range of motion of the skids and the limits imposed to avoid the collision

between the drone body and the landing surface.

The second phase concentrated on the development of a software for drone con-

trol using ROS2. This consisted in designing nodes to control the drone movement,

the skids movement and perform the slope detection. The slope detection was per-

formed with a Time of Flight (ToF) sensor positioned along the drone heading direc-

tion, facing downward. To verify the efficiency of the solution the algorithms have

been tested in the Gazebo simulation environment.

The planned next phase involves the implementation of the solution on a real

quadrotor and test it in a laboratory, comparing simulative and real-world results.
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Chapter 1

Introduction

In recent years, the use of multirotor unmanned aerial vehicles (UAVs) has been

consistently growing in various fields, thanks to their numerous qualities. They

can be either operated remotely by a pilot on the ground or fly autonomously using

pre-programmed missions. Over the years several different types of categorizations

have been proposed. UAVs can be categorized taking into considerations their di-

mensions and weight, their fly capabilities and autonomy or a risk based approach.

The risk based approach is used by the European UnionAviation SafetyAgency

[5], which categorizes UAVs based on their weight and usage. This regulation is ap-

plied in all the countries of the European Union and specifies three main categories:

open , specific and certified.

• The open category is the one with lower risk, it outlines rules for drones with

weight up to twenty-five kilograms, divided in 3 sub-categories based on the

weight, usage destination, and considerations on the distance of the airspace

from people or residential areas. A schematic representation of this specific

class can be seen in figure 1.1.

• The specific category defines a higher level of riskwith respect to the open cat-

egory. Examples of activities falling under this category include UAV flights

beyond visual line of sight, drones that drop materials or those with a mass

greater than twenty-five kilograms. Operating drones in this category requires

an authorization and a risk assessment.

• The last category caters for the operations with the highest level of risk, with

safety requirements similar to those used for manned aviation. This last class

will include drones carrying passengers such as a taxi, which is required to

perform potentially hazardous tasks due to transporting people in residential

environments. Beyond the categories of UAVs, this type of vehicles allows

to easily complete every day tasks that in the past were impossible, more ex-

pensive or time consuming. They can easily reach positions that would be

difficult to access otherwise.

Thanks to the technological progresses nowadays multicopters can have different

sizes to accomplish various tasks. In some particular cases dimensional and weight

reduction has allowed their usage, an example is the indoor application that was not

possible with the first bigger models. Dimensional reduction also make multirotors

usage more convenient and cheaper. An example could be an outdoor photo or video

8
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Figure 1.1: Subcategories in the open category defined by the European UnionAvi-

ation Safety Agency

shoot that nowadays can be made with drones not larger than a dozen of centimetres,

which can be easily transported without requiring special equipment because of their

reduced dimensions. They are also capable of moving very quickly from point to

point and performing agile manoeuvres. Another advantage is the characteristic of

being unmanned, making them useful for dangerous tasks. These are only a few

of the qualities that make multicopters suitable for many different applications like

photograph/videomaking, package delivery, reconnaissance, surveillance, crop in-

spection, etc. . For these reasons the number of studies on this field has also being

consistently growing [1] in order to constantly increase performance and address

common problems. Examples can be found in the usage of drones for Search and

Rescue tasks [2]: in particular for these tasks the ability of the UAV to scan a wide

area in a small amount of time is crucial. Another recently developed application is

the inspection of wind power plants [3], in which UAV usage allows to avoid the de-

ployment of specialised technicians to inspect the growing number of plants, thereby

increasing human safety, allowing also time andmoney saving. UAVs perform great

also in forest wildfires detection [15], providing reliable and fast identification on

wide areas, increasing prevention and control of forest fire.

1.1 Motivations of the thesis

In different fields of application, the necessity of a landing on a non ideal flat smooth

surface could arise. In recent years several researches have been conducted to ad-

dress this issue, testing various solutions in different scenarios. An example is the

use of the multirotor weight for perching on a pipe or a branch [12]: this solution

avoids contact with the ground, eliminating the need to compensate for rough ter-

rain. The use of a passive mechanism permits to save battery and weight, but it

makes it impossible to land in a scenario where there are no structures similar to

Architecture and Control design of a legged quadrotor for landing on sloped

surfaces
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Figure 1.2: Solution proposed in [13]

pipes or branches where the multicopter can perch. Another approach for perching

and taking-off from vertical walls is presented in [16], for micro air vehicle using dry

adhesive gripper. The approach was tested and proved to be effective and efficient,

requiring simple manoeuvres to perch. Also in this case drawbacks are the impossib-

ility to safely land in absence of a smooth vertical surface to which the adhesive can

stick on, situation that could arise in outdoor applications, and the challenges posed

by applications for larger vehicles. An example in case of applications on rough

terrain, a landing could be required as failsafe action, or for waiting for another task

while saving battery charge. To address this issue, an additional structure can be

added to the main body of the multirotor, in order to compensate for the uneven

terrain. In order to not excessively compromise the flight performance of the mul-

tirotor, the structure has to be designed to be light and possibly symmetric for not

moving significantly the center of mass of the entire structure, which would lead to

a less stable body. In order to reduce the additional weight, the aim is to design a

compact lightweight structure, with a minimum number of actuators.

1.2 Related work

Different articles studied the problem of landing on tilted surfaces, presenting dif-

ferent solutions. The solution presented in [13] uses an asymmetric leg structure

with two linear actuators. The proposed structure is represented in figure 1.2 during

a flight test. The actuators through a special mechanism allow to move the landing

skid. The target angles for the legs are calculated using an objective function. The

function fixes 15 degrees as target angle for both the legs, considering also the dis-

tance between the propeller and the ground. The proposed solution achieves a safe

landing on surfaces up to 45 degrees.

A different structure is presented in [17] (figure 1.4). This solution is composed

by two different parts, a passive skid structure and a two link arm. The choice of a

passive skid was made in order to reduce electricity consumption, thus eliminating

the need to carry additional batteries and reducing the overall weight. The landing

procedure involves the contact of the passive mechanism with the ground, ensuring

two contact points. Subsequently the robotic arm is used to provide the third contact

point achieving stability while maintaining the robot body horizontal. The presented

solution ensures a safe landing on surfaces tilted with respect to two different axes,

achieving landing for angles between 20 and -60 degrees for the first angle and

10 Architecture and Control design of a legged quadrotor for landing on sloped

surfaces



Chapter 1

Figure 1.3: Solution proposed in [18]

Figure 1.4: Example of asymmetric structure with multiple actuators proposed in

[17]

between ±60 degrees for the second angle.
Another approach is the one presented in [18], in which four robotic legs with

two degrees of freedom are used ( figure 1.3). The legs are equipped with force and

torques sensors to perceive the external disturbances. In addition the leg tips are

equipped with movable pads in order to add compliance to the leg for uneven terrain.

The solution achieved remarkable results in landing on slopes up to 11 degrees and

on small steps.

In particular our project starts from a previous research [14], in which the usage

of a movable skid allows the drone to perform a safe landing on tilted surfaces up

to 25 degrees. It also incorporates a Time-of-Flight (TOF) sensor to perceive the

inclination of the landing surface, and determine the slope direction, in order to

automatically position the quadrotor accordingly.

1.3 Aims of the Project

This thesis project wants to bring an improvement to the previous work [14]. The

aim is to achieve a safe landing on surfaces tilted up to 60 degrees, which is a result

not presented in other papers in the literature. Another improvement is testing the de-

signed mechanism on a real quadrotor after a successful simulation. To accomplish

Architecture and Control design of a legged quadrotor for landing on sloped
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this, a new landing structure has been realized, with a different design that allows

the skids to be positioned above the drone body line. A study has been conducted

to create skids with a minimal length in order to reduce the weight. Furthermore in

order to minimize the number of actuators, the structure is moved by only one servo

motor that acts directly on one skid. A reduction gear enables the transmission of

motion to the second skid. Such reduction gear has been designed to ensure the full

range of motion required. The Time-of-Flight sensor is maintained for same purpose

of [14], so that the multirotor can automatically align its yaw angle and position the

skids accordingly to the performed detection of the landing surface.

12 Architecture and Control design of a legged quadrotor for landing on sloped
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Leg study

The first objective for the landing gear design was to establish an optimality cri-

terion, upon which the design itself would be based.

The first design choice was to have symmetric legs. The aim of this choice was

to lower the impact on the inertia matrix of the system. To do so an important factor

to consider is the length of the legs, which obviously should be as short as pos-

sible, ensuring that the multirotor flying capabilities are not significantly affected.

Consequently the system will be as lightweight as possible, also reducing battery

consumption.

The second parameter being addressed is the maximum angular displacement of

the legs and their distance from the vertical symmetric plane of the system. These

parameters impact the drone landing capabilities, and also its stability once landed.

Clearly, a larger distance of the legs from the system’s vertical symmetric plane will

result in a more stable system once landed. However this would require longer legs

to reach a safe landing, given the angle of the landing surface.

In figure 2.1 it can be seen a schematic view of the previously cited parameters.

It can be noticed that there are two different pairs of legs in the figure. The first pair

is coloured in blue, the second is coloured in red. The parameters required for the

two different configurations are indicated with the respective colour. It can be easily

seen that the red legs have a larger distance from the vertical symmetric plane of the

quadrotor body. The legs with the subscript 2 have the same length both in the red
and in the blue solution, but the one in red requires a higher angular displacement

θ2 for the same surface slope ϕ. For the leg with subscript 1 it is shown that the red
one requires a greater length for the same angular displacement θ1.

The aim of the study is to determine a trade-off between these quantities. The

system has been equipped with only one servomotor to move both legs in order to

have less weight. The next steps of the design will be the creation of the mechanism

to transmit motion between the legs.

2.1 Landing Dynamics

The legs have been positioned on the sides of the multicopter along the y-axis, where

the x-axis is the heading direction (figure 2.2). Otherwise, if positioned along the

x-axis, they would interfere with the camera sensor positioned at the front of the

body.

The first step of the design was find the relationship between the slope angle

13
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Figure 2.1: Schematic view of the main parameters object of the design

Figure 2.2: Drone model with legs attatched along the y-axis

14 Architecture and Control design of a legged quadrotor for landing on sloped
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Figure 2.3: Side geometric scheme

of the landing surface and the 2 control parameters θ1 and θ2 (figure 2.3). Notice
that the angular displacements of the legs are considered positive in the clockwise

direction and negative in the counterclockwise direction. Notice also the numbering

of the legs : leg with subscript 1 is toward the lower part of the slope while leg with

subscript 2 is towards the higher part of the slope. The slope angle is indicated with

the letter ϕ. The drone dimension, meaning the horizontal distance between the

propellers tips is indicated with the letter d. The distance between the legs joints
is called b. To find the relationship between the slope of the surface and the legs
angular displacement the problem can be thought in two dimensions, considering

the horizontal and vertical distance between the legs tips, respectively the quantities

indicated with the letters x and y in figure 2.3.
The following relations hold:

ϕ = arctan
(︁
y
x

)︁
(2.1)

x = l sin(θ2)− l sin(θ1) + b (2.2)

y = l cos(θ1)− l cos(θ2) (2.3)

ϕ = arctan
(︂

l cos(θ1)−l cos(θ2)
l sin(θ2)−l sin(θ1)+b

)︂
= arctan

(︂
cos(θ1)−cos(θ2)

sin(θ2)−sin(θ1)+ b
l

)︂
(2.4)

l =
b tan(ϕtarget)

cos(θ1)− cos(θ2) + tan(ϕtarget) sin(θ1)− tan(ϕtarget) sin(θ2)
(2.5)

In the equation (2.5) we set, as previously said, the ϕtarget to 60
◦
. The angular

displacements θ1 and θ2 for a landing on an horizontal plane are fixed to:

θ1min = −85
◦

(2.6)

θ2min = 85
◦

(2.7)

The choice of these two values has been dictated by the purpose of maintaining the

barycentre of the system al low as possible reducing the risk of rollover. Clearly

Architecture and Control design of a legged quadrotor for landing on sloped
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this risk is increasing proportionally with the height of the barycentre and with the

proximity of the centre of mass to the boundaries of the support surface. On an

horizontal surface it can be easily verified that the height of the barycentre of the

quadrotor lowers proportionally with the raise of the two leg displacements towards

positive values for the leg number 2 and towards negative values for the leg number

1. These parameters has been chosen with a safety margin of 5
◦
from the ±90

◦

displacement, a condition the latter, in which the joints of the legs are touching the

surface, which has to be avoided.

The chosen configuration achieves maximum stability of the system by lowering the

barycentre and maximizing the support surface.

For the maximum angular displacement of leg 1, a value of 5
◦
was initially

chosen. A greater angular displacement of leg number one would permit reaching

higher slopes, keeping the leg length l and θ2max fixed. However this would result

in a smaller support surface and a higher center of mass. To verify the achievement

of stability given θ1max it’s necessary to know the length of the legs, so the proof of

stability will be shown later. The choice of the parameter θ2max was made through

a numerical analysis in MATLAB, evaluating among different values of the para-

meter and determining the required leg length needed to achieve a safe landing on

the target slope. The result of this analysis produced a function relating θ2max and l
, from which was possible to choose the best parameters.

Another constraint was introduced to verify that the drone was not colliding

with the plane (2.8 and 2.9). In particular the function (2.8), once fixed the drone

dimensions (b and d) directly relates the two parameters θ2max and l. In fact from
geometrical relations involving the angle displacement θ2 in the left part of the in-
equality it is retrieved the distance between the propeller tips and the projection on

the horizontal plane of the leg length. Function 2.9 retrieves the minimal length for

the leg in order to avoid the collision.

l sin(θ2)−
d− b

2
+
l cos(θ2)

tan(ϕ)
> 0 (2.8)

l >
d− b

2

tan(ϕ)

tan(ϕ) sin(θ2) + cos(θ2)
(2.9)

2.2 Design Results

The analysis for choosing the best possible parameters for θ2max and l was done in
MATLAB taking into account both functions (2.5 and 2.9). The former equation

defines the minimum leg length required to achieve landing on the desired sloped

surface, the latter establishes a lower limit for the length of the leg in order to avoid

collisions between the landing surface and the propeller tips.

As shown in figure 2.4 an optimum trade-off value is given by a leg length of

286 mm and a θ2max of 125
◦
. It can be noticed that these values don’t represent the

point of intersection between the two curves, because the points on the blue curve

coincides with the collision. In fact, as mentioned before, 2.9 is representing a lower

limit, and the point of intersection between the curves represents the case in which

the quadrotor will land on the surface, maintaining an horizontal body line, touching

whit the propeller the landing surface. Condition that obviously has to be avoided.

Given these results the legs length was fixed to l = 290 mm, and θ2max = 125
◦

16 Architecture and Control design of a legged quadrotor for landing on sloped
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Figure 2.4: Landing and collision curves

Once defined the three parameters it is necessary to verify that with θ1max sta-

bility is achieved. The condition for the barycenter’s projection to fall inside the

support surface is

θ1max < arcsin(
b

2l
) = 4.945

◦
(2.10)

This condition is not verified with the actual parameters, this will cause the mul-

tirotor to fall in the case of a landing on planes tilted by 60
◦
. Consequentially it’s

necessary a slight change in the parameters in order to avoid such problem. Different

options were considered:

• Bringing θ1max to 0
◦
will require a legs length greater than 30 cm. This solu-

tion is not preferable.

• Increasing only the length of the legs will not yield any benefits.

• Redefining θ1max = 4
◦
and θ2max = 128

◦
would permit reaching a safe land-

ing up to 61
◦
with the same legs length, while satisfying the stability condi-

tion (2.11). Despite this noticeable result, this would also bring the multirotor

close to a collision. Therefore a different solution was chosen.

The adopted solution was bringing the parameter b ( the distance between the legs )

from 50mm to 60mm. This solution meets all the requirements and a transmission
was designed to place the legs joints slightly protruding from the drone body.

The new landing and collision curves can be seen in figure 2.5 with a final

θ2max = 127°. With the new value of parameter b stability is achieved, in fact:

θ1max < arcsin(
b

2l
) = 5.938

◦
(2.11)

The last step is the design of the mechanism to transmit motion between the legs,

this was realised with a belt transmission with a transmission ratio that satisfies the

established angular excursions, given by:

τ =
θ2max − θ2min

θ1max − θ1min

=
7

15
(2.12)
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Figure 2.5: New landing and collision curves

Figure 2.6: Side geometric scheme

2.3 Different solution

A different solution was studied. This second option consisted of a sort of ”knee”

in the legs, with a first section of the leg that is fixed to the body of the drone, and

a second part connected to the first one with a revolute joint.

In order to compare this solution with the chosen one, the leg length limit was

fixed to 290mm, which had already been determined as the optimal solution. This
configuration came from the idea of using one of the leg joints as a point of sup-

port for landing when the sloped surface has an inclination that was the maximum

reachable. As in the previous case the slope angle is indicated with the letter ϕ. The
horizontal distance between the propellers tips is indicated with the letter d. The
distance between the legs fixed joints is called b. The fixed angle between the drone
body and the first part of the legs is indicated with the letter ρ. With this configura-

tion (figure 2.6 ) from geometrical relations, the non-collision condition is:
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tan(ϕ) <
Lfsin(ρ)

d−b
2

− Lfcos(ρ)
(2.13)

From this constraint it can be retrieved the minimum required length for Lf :

Lf >
d− b

2

tan(ϕ)

tan(ϕ) cos(ρ) + sin(ρ)
(2.14)

This represents a lower limit, ensuring the propeller is not colliding with the

landing surface. Once verified the condition to avoid the collision with the landing

surface, the second step is to verify that the configuration is capable to compensate

for the required slope:

tan(ϕ) =
L cos(θ1)

2Lf cos(ρ)− Lsin(θ1) + b
(2.15)

Having imposed a limit to the length of the leg we have the following relation:

L = 290− Lf (2.16)

With the substitution of (2.16) in (2.15) we have:

Lf =
290 tan(ϕ) + 290 cos(θ1)− b tan(ϕ)

2 tan(varphi) cos(ρ) + tan(ϕ) sin(θ1) + cos(θ1)
(2.17)

Analysing the equation 2.17 it results that the value of θ1 that minimises the length
Lf is θ1 = 0◦. As in the previous case the two presented constrains are evaluated
in MATLAB in order to establish an optimal trade-off for the leg length. The men-

tioned constraints (2.14 and 2.17) don’t define an intersection point for the minimum

length. As it can be seen in figure 2.7, the constraint to avoid collision represents

a higher lower limit with respect to the landing constraint. Therefore considering

only the constraint 2.14, the best solution has been retrieved :

1. Lf = 107mm

2. ρ = 30◦

From equation 2.15 the retrieved value for L is :

L=425mm (2.18)

As result of the analysis the solution with the “knee” requires legs divided in two

section. The first section Lf with a length of 107mm and a second section L with

length 425mm. The sum of the two required lengths Lf and L it is almost doble

the value required from the previous solution and it is clear as this solution is worst

with respect to the first one presented. For this reason it has been discarded.
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Figure 2.7: Landing and collision curves

2.4 Resulting landing system

The starting point of the design was the choice of a symmetric landing structure and

the usage of a single actuator. With these starting constraints it has been developed

a study to verify the feasibility of the solution.

With the results presented in this chapter it has been highlighted the optimality

of the chosen solution, considering different parameters.

Some of them were fixed by the drone dimensions or initially fixed to a value

in order to reduce the complexity of the analysis. In particular the distance between

the propeller tips d = 306mm is imposed by the structure of the purchased drone

available in the laboratory, the value of the parameter b (distance between the legs
joints) was initially fixed to 50mm that corresponds to the quadrotor main body

dimension on y axis and the θ1max value was fixed at 5
◦
. This allowed to reduce

the complexity of the equations, allowing the optimization of the legs length. The

initial values were modified after the optimization shown in the previous section to

the values reported in table 2.1.

b [mm] d [mm] θ1max [deg] θ2max [deg] l [mm]

initial values 50 306 5 125 290

final values 60 306 5 127 290

Table 2.1: parameters values

The landing structure is composed of two symmetric legs of length 290mm and

two skids attached at the legs tips. The legs are moved with the usage of a single

actuator and a transmission gear. A front view of the final design can be seen in

figure 2.8, in the figure the transmission gears are highlighted in light blue, the time

of flight (ToF) support is highlighted in violet.

The necessary transmission ration between the two legs is of 7
15
that is sufficient

to ensure the full range of motion needed for the two legs. Leg 1 has a minimum
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Figure 2.8: Front view of the proposed solution

angle of −85 degrees and a maximum angle of 5degrees. The range of motion for
leg 2 is from 85 degrees up to 127 degrees. The servomotor it is placed in the back of
the model, and the movements between the two highlighted gears can be transmitted

with a belt (that for simplicity was not added to the model).

Architecture and Control design of a legged quadrotor for landing on sloped

surfaces

21



Chapter 3

Drone Model Dynamics and Control

Architecture

3.1 Quadrotor Model

The quadrotor is composed of a main body with four arms, each of them equipped

with a spinning propeller. To describe the quadrotor model, a reference frame (Body

Frame FB) is attached to its center of mass (CoM).

In the standard quadrotor the four arms are usually disposed with an angular

displacement of 90
◦
between them, so the Body frame will have the x and y axes

pointing towards two propellers and the z axis pointing up. To describe the full pose

(position and orientation) of the body with respect to the inertial world frame (FW )

a vector p ∈ R3 and a rotation matrix R ∈ SO(3) are used. Defining v and ω the

linear and angular velocities of FB with respect to FW , with ω expressed in FB we

have the kinematic model :

ṗ = v (3.1)

Ṙ = R[ωB]x (3.2)

For the dynamicmodel, the starting point is to consider the forces (f ) and torques
(τ ) generated by each propeller (i = 1, 2, 3, 4). Definingωi the controllable spinning

rate of the propeller i and ui = ωi|ωi| as the control input, for the thrust force we
have:

fi = cfiuizî (3.3)

where cfi is a propeller coefficient and zî is the propeller spinning axis, pointing
upward with respect to the body frame. Notice that the generated force f will be

positive if the propeller is spinning accordingly to its spinning direction (clock-

wise propeller spinning clockwise and counterclockwise propeller spinning coun-

terclockwise ) and negative otherwise.

The rotation of each propeller around its axis generates a drag torque ( τ di ) equal
to:

τ di = cτiuizî (3.4)

where cτi is a propeller coefficient. Another torque (force torque) is generated by the
fact that the propellers are applying a force translated from the CoM of the quadrotor

body. For each propeller the generated force torque is:

τ fi = pi × fi (3.5)
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Figure 3.1: Forces and torques applied to the quadrotor

The overall forces and torques applied to the quadrotor’s body can be seen in figure

3.1.

Defining the matrices F and M as follow:

F =

⎡⎣ 0 0 0 0
0 0 0 0
cf cf cf cf

⎤⎦ M =

⎡⎣ 0 lcf 0 −lcf
−lcf 0 lcf 0
cτ cτ cτ cτ

⎤⎦ (3.6)

The sum of forces and torques can be expressed in matrix form as:

4∑︂
1

fi = Fu
4∑︂
1

τi =Mu (3.7)

where u is the input vector u =
[︁
u1 u2 u3 u4

]︁T
With the above notation the quadrotor dynamics from Newton’s Euler equation is:

mp̈ = −mge3 +RFu (3.8)

Jω̇ = −ω × Jω +Mu (3.9)

where J ∈ R3×3 is the quadrotor inertia matrix.

3.2 Simplified model

In the rotational dynamics formula (3.9) the gyroscopic effect (−ω×Jω), assuming
a diagonal inertia matrix J is equal to:

−ω × Jω =

⎡⎣ 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

⎤⎦⎡⎣Jxωx

Jyωy

Jzωz

⎤⎦ (3.10)

=

⎡⎣(Jy − Jz)ωzωy

(Jz − Jx)ωxωz

(Jx − Jy)ωxωy

⎤⎦ (3.11)
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This effect can be neglected in the case of similar values in the inertia matrix (Jx ≈
Jy ≈ Jz). With this approximation formula 3.9 simplifies in:

Jω̇ =Mu (3.12)

The relationship between the angular velocity ω and the derivatives of the ori-

entation angles φ,θ and ψ can be retrieved starting from 3.2.

In fact Ṙ it is also equal to:

Ṙ =
∂R

∂φ
φ̇+

∂R

∂θ
θ̇ +

∂R

∂ψ
ψ̇ (3.13)

Inserting 3.13 in 3.2 it can be derived the relation:

ω =

⎡⎣ωx

ωy

ωz

⎤⎦ =

⎡⎣1 0 −sin(θ)
0 cos(θ) cos(θ)sin(φ)
0 −sin(φ) cos(θ)cos(φ)

⎤⎦⎡⎣φ̇θ̇
ψ̇

⎤⎦ (3.14)

That can be simplified assuming the quadrotor is almost in hovering condition

(θ ≃ 0 , φ ≃ 0) , resulting in: ⎡⎣φ̇θ̇
ψ̇

⎤⎦ ≃

⎡⎣ωx

ωy

ωz

⎤⎦ (3.15)

With the above simplifications, using 3.1 , 3.8, 3.15 and 3.12 the resulting model

is:

ẋ =

⎡⎢⎢⎣
ṗ
p̈
α̇
α̈

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v

−g e3
ω

03×1

⎤⎥⎥⎦+

⎡⎢⎢⎣
03×1

1
m
RFu
03×1

J−1Mu

⎤⎥⎥⎦ (3.16)

From 3.6 and 3.7 the two new input variables for the control can be defined as

the thrust force :

Fu =

⎡⎣0
0
T

⎤⎦ (3.17)

and the torque:

Mu = τ =

⎡⎣τxτy
τz

⎤⎦ (3.18)

3.3 Control example

The structural properties of the standard quadrotor determines its under-actuation,

allowing to control only four variables among the six degrees of freedom of the

system. A possible choice is to take as control variables the position
[︁
x y z

]︁T
and the yaw angle ψ. The evolution of φ and θ angles will the depend on the x and
y states. For the quadrotor a decoupled control architecture can be applied. The
controller can be divided in two main blocks: the position controller and the attitude

controller. The former takes as input the desired position and produces as output an
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Figure 3.2: Quadrotor decoupled control scheme

acceleration in x and y and a trust force, the latter takes as input the desired angles
of roll (φ) pitch (θ) and yaw (ψ) producing a torque τ . The desired accelerations in
the horizontal plane ẍ ÿ can be related with angular velocities φ θ starting from 3.8

and 3.17

p̈ =

⎡⎣ (sin(ψ)sin(φ) + cos(ψ)sin(θ)cos(φ)) T
m

(−cos(ψ)sin(φ) + sin(ψ)sin(θ)cos(φ)) T
m

−g + (cos(θ)cos(φ)) T
m

⎤⎦ (3.19)

It can be performed a linearization around the desired trajectory, considering the

hovering condition. The three angles can be approximated as:

• sin(φtrgt) ≈ φtrgt , cos(φtrgt) ≈ 1

• sin(θtrgt) ≈ θtrgt , cos(θtrgt) ≈ 1

• ψ = ψtrgt

With these approximations the equation 3.19 becomes:

p̈ =

⎡⎣ (sin(ψtrgt)φtrgt + θtrgtcos(ψtrgt))
T
m

(−cos(ψtrgt)φtrgt + sin(ψtrgt)θtrgt)
T
m

−g + T
m

⎤⎦ (3.20)

looking at the third row of equation 3.20 and recalling the condition for hovering:

z̈ = 0 it results:
T

m
= g ⇒ T = gm (3.21)

Using equation 3.21 in 3.20, looking at the first two rows, we have:[︃
ẍ
ÿ

]︃
=

[︃
(sin(ψtrgt)φtrgt + cos(ψtrgt)θtrgt)g
(−cos(ψtrgt)φtrgt + sin(ψtrgt)θtrgt)g

]︃
(3.22)

=g

[︃
sin(ψtrgt) cos(ψtrgt)
−cos(ψtrgt) sin(ψtrgt)

]︃ [︃
φtrgt

θtrgt

]︃
(3.23)

Inverting the relation 3.23 the desired accelerations in the horizontal plane produced

as output by the position controller can be converted in reference roll and pitch

angles to feed as reference to the attitude controller, as it can be seen in figure 3.2.
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Figure 3.3: Control architecture

The desired accelerations are produced as output from the position controller

that can be implemented as a PID controller with the addition of the feedforward

action as follow:

p̈trgt = p̈ref +Kpe+Kdė+Ki

∫︂
e (3.24)

The attitude controller can be implemented as a PD controller while the desired trust

can be modelled as:

T =
m

cos(φ)cos(θ)

[︁
g + p̈trgt +Kpez +Kdėz

]︁
(3.25)

For the control of the drone during the flight it has been used the autopilot con-

troller described in previous section, commanded by ROS2 [10] nodes running on

a Raspberry Pi 4 board mounted on the drone body. In figure 3.3 it is possible to

see the control scheme used, in which the position setpoints are given as input to the

autopilot from a predefined sequence of trajectory setpoints. Once the last trajectory

setpoint is reached, the drone starts the detection of the plane. The retrieved inform-

ation is: the yaw direction of the slope, the slope value, and the drone altitude. The

first manoeuvre is the alignment of the drone yaw angle in order to position the left

side of the drone facing the landing surface. The following phase is a sequence of

detections of the landing surface, a correction of the drone yaw angle and lower-

ing of the altitude. This phase was made necessary by the errors of the real sensor

readings that are 5% of the value for readings greater than 20cm.

The lowering of the altitude is performed taking as reference the altitude of the

leg 2 calculated from the estimated altitude of the drone and the estimated slope

value. Once reached the altitude of 30cm of the leg 2, it starts the movement of the
legs, through a PID controller described in section 3.5.2. Once the legs are correctly

positioned the quadrotor starts the autonomous landing procedure.
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Figure 3.4: Px4 Autopitol control scheme

3.4 Px4 autopilot scheme

The autopilot uses a cascaded control architecture (figure 3.4).

The two main blocks of the architecture are both composed by the cascades of

two controllers. The former block takes as input the desired setpoint specified in x
y z coordinate and the desired yaw angle ψd and produces a desired acceleration.

The latter takes the desired attitude for the multicopter and produces angular rates

and thrust forces that are then converted in different inputs for the rotors. Both

blocks use a cascade of a P and a PID control, with an anti wind up. Between these

two blocks it is applied a conversion in order to transform the desired accelerations,

specified in the inertial world frame, in desired attitude in the body fixed frame. The

outer controllers can be bypassed depending on the offboard control mode. It fact

it is possible to specify if the reference is given in position, velocity, acceleration,

attitude, body rates, thrust and torques or directly rotors input. Once specified the

reference input, the outer control loops are disabled. As example if the reference is

a velocity command, the position controller is bypassed.

3.5 Leg control design

3.5.1 Leg inertia calculation

The first step to define the model dynamics is to calculate the inertia of the legs.

The inertia of the single leg is calculated as sum of two different components, the

inertia relative to the first section of the leg, connecting the joint and the skid, and

the inertia of the skid. The mass of the component is denoted with the letter m, r
indicates the ray of the skid, l the length of the component. The inertia of the first
part of the leg is the well known inertia of a rod with axis of rotation passing through

one of the end: I = 1
3
ml2 . The inertia of the skid can be calculated as the inertia of

a cylinder with axis of rotation translated of a distance l from the axis of the cylinder,

where the distance l = 290mm is the length of the leg. The resulting formula for

the inertia calculation is expressed in 3.26. The parameters used in formula 3.26 and

the resulting inertia are reported in 3.27.

I = (
1

3
ml2 +

1

2
mr2 +ml2) (3.26)

m = 0.05kg l = 0.290m d = 0.195m r = 0.007m I = 0.0056kgm2

(3.27)

Architecture and Control design of a legged quadrotor for landing on sloped

surfaces

27



Chapter 3

Figure 3.5: Scheme of the leg system

3.5.2 Leg dynamics and control

The target of the control is obviously the angle θ of the leg, defined as in the previous
chapters, meaning angle 0 correspond to the leg in a vertical position in the negative
direction of the z axis, angle are defined positive in the clockwise direction, and

negative in the counterclockwise direction. With the inertia calculated in 3.26, it is

possible to define the dynamics of the leg. In formula 3.28 it is denoted with the

letter M the total mass of the leg, while with the letter d is indicated the distance
between the joint rotation axis and the leg center of mass (CoM).

Iθ̈ = −Mdgsin(θ)− θ̇µ+ τ (3.28)

The scheme of themodel is represented in figure 3.5, in which it is possible to see

the forementioned quantities. From the system dynamics (equation 3.28) the input

torque τ can be defined as the sum of two different components. The first input

component is needed to compensate the effect of the gravity force −Mdgsin(θ),
while the second component is formed by a PID action and it is used to drive the

error to 0. The error is defined as the difference between the target position θtrgt and
the position of the leg θ

eθ = θtrgt − θ (3.29)

The resulting torque τ applied to the joint is then:

τ =Mdgsin(θ) + τ ′ (3.30)

where τ ′is:

τ ′ = Kpeθ +Kdėθ +Ki

∫︂
eθ (3.31)

inserting 3.31 in 3.28 the resulting dynamics is:
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Iθ̈ =−Mdgsin(θ)− θ̇µ+Mdgsin(θ) + τ ′ (3.32)

Iθ̈ =− θ̇µ+ τ ′ (3.33)

From 3.33 it is possible to define the State space system representing the leg

dynamics as :

ẋ =

[︃
0 1
0 −µ

I

]︃
x+

[︃
0
−1

I

]︃
τ ′ (3.34)

y =
[︁
1 0

]︁
x (3.35)

Where the state x is composed with the leg angle θ and its first derivative x =[︁
θ θ̇

]︁T
. With the usage of an integral action for the control, the model has to be

extended, with the addition of the integral state xi =
∫︁ t

0

[︁
y(t)− r(t)

]︁
the new state

vector becomes:

x =

⎡⎣∫︁ t

0

[︁
θ − θtrgt

]︁
θ

θ̇

⎤⎦ (3.36)

The previously defined state space system 3.34 can be extended as:

ẋ =

⎡⎣0 1 0
0 0 1
0 0 −µ

I

⎤⎦x+
⎡⎣ 0

0
−1

I

⎤⎦ τ ′ −
⎡⎣10
0

⎤⎦ r (3.37)

y =
[︁
0 1 0

]︁
x (3.38)

With the newmodel 3.37, with the feedback gain matrixK defined as :
[︁
ki kp kd

]︁
the input τ ′ becomes :τ ′ = −Kx The Amatrix of the closed loop system is then:

A =

⎡⎣ 0 1 0
0 0 1

−ki
I

−kp
I

−µ−kd
I

⎤⎦ (3.39)

The matrix eigenvalues can be placed at arbitrary position by selecting the gains ki,
kp and kd that correspond to the gains of the PID controller. The poles have to be

placed in positions such that the closed loop system has the desired performances.

Performances in the transient are specified in the time domain as a desired set-

tling time ts and a maximum desired overshoot M∗
p . The steady state requirement

is the following of the step reference with zero error. Notice that the presence of the

integral action in the controller ensures the meeting of the steady state requirement.

Approximating the behaviour of the closed loop system with the one of a second or-

der system (dominant pole approximation), it is possible to approximatively relate

time and frequency domain specification.

Starting from the second order system transfer function:

W (s) =
1

s2

ωn
+ 2ξ

wn
s+ 1

(3.40)
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The closed loop bandwidth can be approximated with the frequency of the dom-

inant poles. The time domain specifications can be related to the damping factor

and natural frequency on the poles with the known formulas:

Mp = e
−πξ√︂
1−ξ2 ⇒ξ =

log
(︂

1
Mp

)︂
√︃
π2 + log

(︂
1

Mp

)︂2
(3.41)

ts5% =
3

ξωn

⇒ωn =
3

ξts5%
(3.42)

(3.43)

From 3.42 and 3.43 it is possible to retrieve admissible regions for the pole allocation

in the complex plane: the admissible regions are represented in figure 3.6.

Figure 3.6: Admissible regions for the pole allocation method based on the perform-

ance requirements

Three different gains tested are:

Kp Ki Kd

gains 1 4.4066 13.534 0.0287

gains 3 11.1499 30.2057 0.0599

gains 5 6 4 0.0287

Table 3.1: Gain values

The step responses of the different gain values can be seen in figure 3.7

The resulting poles position can be seen in figure 3.8. It is evident that the two

gains 1 and 5 are positioning the poles outside the prescriber region. A confirm

of the worse performance can be seen in the step response graph in figure 3.7. In

particular gains 1 causes a larger overshoot, gains 5 cause a slow convergence to

the target value. Gains 3 places the poles inside the desired area with an evident

increase in the performance reducing overshoot and settling time.
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Figure 3.7: Step responses corresponding to 3 different gain values

In figure 3.9 it can be seen the leg step response measured in the gazebo simula-

tion environment, the red dotted line highlights the value of 1.05 values that defines
the settling time ts5%, the overshoot is also highlighted by a black dotted line. In the
simulation were inserted saturations in the PID output to consider the limitations of

the servomotor that will be used in a real application, and a saturation in the integral

component of the controller to prevent large overshoot effects due to saturation. In

figure 3.10 it is shown the measured torque at the joint, which respects the physical

limitations of the real actuator.

3.6 Simulink schemes

In figure 3.11 it is shown the overall control scheme with the feedback action used

to calculate the error, which is fed into the PID controller. the feedback action it

is also used to calculate the component of the input torque used to compensate the

gravity action as shown in 3.32.

The system representing the leg dynamics is implemented respecting the equa-

tion 3.28.
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Figure 3.8: Poles location in the complex plane for different gain values

Figure 3.9: Leg step response
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Figure 3.10: Leg step response measured torque

Figure 3.11: Simulink control scheme
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Software and Simulation setup

To control the quadrotor during the flight it has been used the PX4 Autopilot. This

autopilot has been chosen because it is designed to be compatible with the Pixhawk

controller board purchased with the drone. It’s main characteristics are described in

4.1.

For the simulation environment it has been chosen Gazebo[4] Garden which is

the only available version from Ubuntu Linux 22.04. ROS2 [10] framework has

been used to manage the upper level control tasks due to the various advantages of

this framework described in 4.2 and its compatibility with Gazebo [4] .

4.1 PX4-Autopilot

PX4[7] is an open source flight control software known for its great adaptability,

and modularity. These characteristics make it able to control many different types

of vehicles including aircraft, ground vehicles and underwater vehicles. It is used in

a wide range of cases, from consumer to industrial applications. It’s also compatible

with different flight controllers, especially with the Pixhawk Series, for which it was

initially designed. The flight controller can be integrated with companion computer

for higher level command and control. Another great feature is the possibility to

define flight modes, which provide different levels of automation.

4.2 ROS2

ROS[10] is an open-source set of tools and libraries that provides the building blocks

to develop robot applications. It is based on the concept of nodes, which are inde-

pendent programs. The nodes can communicate with each other exchanging inform-

ation through 3 different ways depending on their needs. The 3 types of communic-

ations are:

• Messages: This is the simplest way to communicate between nodes, it is an-

onymous and asynchronous. The node that sends data is called publisher, and

it publish information on a specific topic which acts as middleware between

publisher and subscriber, where information are stored. The node that receives

information is called subscriber. When a message is published, every other

node that needs that information can subscribe to the specific topic and read

the data.
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• Services: Services are used when a node needs to exchange information with

another specific node. They are used to perform tasks or computations that

require a response. The service client asks to the service server to perform the

specific task, waits for the result and then proceeds with the program.

• Actions: Actions are similar to services, but are specifically designed for pro-

cesses that take a longer time to be executed. This type of communication

provides, in addition to a request and a response, a feedback to inspect the

progress of the process and the possibility to cancel the process.

This approach of dividing an application in subprograms (nodes), the efficient ways

to communicate, the modularity, the reusability and adaptability make ROS2 [10] a

perfect choice for every robotic application.

ROS [9] was developed in 2007, it has been widely tested and over the years

different new versions have been released, bringing constant improvements. The

ROS1 [9] development was primarily focused on a single robot, with no real time

requirements. It was based on a great network connectivity with no critical aspects.

Furthermore it’s development was intended mostly for academic use. Year after year

ROS1 [9] usage has been consistently growing, with application also in commercial

products in different fields of application. The ROS2 [10] project has the goal to

leverage the great characteristics of ROS1 [9] improving its lacking aspects. The

wide use of ROS [9]framework in many different situations brought the necessity

to improve some aspects. In particular regarding:

• Standard approach for teams of multiple robots, overcoming the single-master

structure of ROS1 [9].

• Optimization for embedded platforms

• Support for real time systems

• Account for non ideal connectivity, taking into account delays, data loss and

other network problems

• Improvements of ROS [9] as framework for market and real world products

instead of research limited applications

Over the years several new technologies and protocols have been developed. In

addition, many ready-to-use open source libraries have been created. These tools

can be applied in the ROS [9] framework in order to improve it.

4.3 uXRCE-DDS middleware

A middleware is necessary to allow communication between ROS2 [10] and PX4

[7], it allows ROS2 [10] to interact with uORBmessages as ROS2 [10] topics (figure

4.1).

In this way the companion computer running ROS2 nodes can easily access in-

formation related to the vehicle. In fact uORB [11] messages are internally used

by the flight controller for inter-thread/inter-process communication. The uXRCE-

DDS middleware consists of:
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Figure 4.1: uxrce-dds middelware

• Client publishes to/from a predefined set of uORB [11] topics to the global

DDS data space.

• Agent runs on the companion computer and acts as a proxy for the client in

the DDS/ROS 2 network.

The client is generated at build time and included in PX4 [7] firmware by default, the

agent is independent from the client code and it can be built or installed alone. ROS2

[10] needs to have the same message definitions in the built workspace in order to

interact with the middleware. uORB [11] messages are a set of predefined messages

useful for exchanging information about the controlled system. For example, the

message ‘VehicleLocalPosition’ contains information about the vehicle’s position,

velocity and acceleration in the local reference frame.

In this project this middleware was used to read from the px4 autopilot inform-

ation on the vehicle state and to send command such as trajectory setpoints, set up

and maintain the offboard control mode as will be explained in following chapters.

4.4 Mavlink Messaging

Mavlink [6] is a lightweight message protocol for drones. It uses a 14 bytes over-

head to provide fast and secure communication even with small bandwidth, noise or

latency. It providesmethods for packet drop detection, and corruption. It can be used

both for onboard and offboard communications. It offers both multicast and unicast

communication modes. The former is based on a publish/subscribe pattern, it is op-

timised for high frequency data streams in which there is not a specific receiver but

many devices can subscribe to the specific topic and access the information. This

approach allows to remove the target systems and id saving link bandwidth. The

latter is designed for communications that requires a secure delivery such as config-

uring an onboard mission. In this project it has been used to communicate with the

ground station (QGroundControl [8] see section 4.6).

4.5 Gazebo Garden

Gazebo [4] is an accurate physics simulator, and one of its features is offering mul-

tiple physics engines to better simulate different simulation contexts. The physics

engine that has been utilized for the simulation is the default one for PX4 [7]which
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is the ODE engine. The simulator also offers the possibility to customize the simu-

lation environment, to better represent specific situations. For this purpose Gazebo

[4] offers many different types of ready-to-use models and worlds for simulations on

a cloud-hosted sever. Another feature is the possibility to simulate many different

types of sensor like IMUs, lidar or cameras with the possibility to reproduce sensor

noise. To integrate with ROS2 [10], a ROS2 package ‘ros_gz_bridge’ is necessary

for handling message conversion between the two environments.

4.6 QGroundControl

QGroundControl [8] is a ground control station designed to work with vehicles mi-

crocontrollers using the MAVLink [6] protocol. In figure 4.2a it can be seen the

main window of the application with a top view of a predefined map with the po-

sition of the vehicle. It offers the possibility to completely set up the vehicle with

different options:

• Firmware : Install PX4 [7] or ArduPilot firmware onto the microcontroller

• Airframe : Specify the airframe type for the vehicle choosing among different

groups/types such as ‘Generic Quadcopter’ or ‘Generic Hexarotor’ and then

selecting a specific configuration within the group that best matches the real

vehicle.

• Radio : Complete configuration and calibration of the main transmitter.

• Sensors : Configure and calibrate the vehicle’s compass, gyroscope, acceler-

ometer and any other sensors.

• Flight Modes : Mapping flight modes to radio channels, and the switches on

the radio control transmitter.

• Power : Configure battery parameters and advanced settings for propellers

pwm control.

• Actuators : Configure propeller number, position and spinning direction. Con-

figure and test general actuators.

• Safety : Configure failsafe actions such as landing in the case of low battery,

or return to start position in the case of loss of radio-control signal.

• PID Tuning : Tuning the flight controllers.

• Camera : Configure physical outputs to trigger a camera.

• Parameters : Modify all parameters associated with the vehicle. Parameters

are divided in groups that contain related specific parameters, group examples

are : EKF2 and PWM Outputs.

In figure 4.2 it can be seen the QGroundControl [8] window that allows the config-

uration of the parameters cited before.

On top of that it offers instruments for a complete analysis of the recorded data,

mission planning for autonomous flight and map visualization.
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(a) QGroundControl application

window

(b) Vehicle setup in QGroundcontrol

Figure 4.2: QGroundControl windows

Having completed the initial phase addressing the mechanism design, the next

stage is numerical simulation.

There are several positive aspects related to the simulation phase. The first one is

that it is money and time saving. A simulation can be easily repeated several times,

always starting from the desired initial conditions, with no dependence on external

factors. If the simulation environment is compromised or changed during the sim-

ulation, it doesn’t require to be manually restored to the initial conditions. During

the simulation time can be controlled, allowing adjustment on the speed at which it

runs: faster, slower or even stopped. In general it is also possible to proceed step by

step allowing an accurate inspection of the system dynamics.

In addition to that, there is no risk of damaging expensive equipment or hurting hu-

man beings, leading to a safety improvement. Furthermore it is possible to have

complete control over the environment conditions, such as wind in an outdoor sim-

ulation, illumination and sensor noise. High-performance physics engines allows a

precise representation of the real world, ensuring safety and satisfactory perform-

ance for the future real implemented system.

As previously said, it has been used the Gazebo [4] simulation environment, de-

scribed in 4.5 to verify the effectiveness of the proposed solution. The SDFormat is

a standard format used to describe objects in the Gazebo [4] environment. The men-

tioned format it has been used to define the quadrotor model used in the simulation.
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Figure 4.3: SDFormat example

4.7 SDFormat

SDFormat is an xml format that describes objects and environments, used for robotic

simulation. It has been in use for several years, becoming stable and robust. It allows

the description of every aspect of robots, objects, ambient light condition, terrain and

physics. Specifically, to describe a Robot, the main elements needed are:

• The model tag: It is the main tag that contains all other elements that describe

the robot.

• The link tag: Inside the model tag, it is used to describe every link composing

the robot. The principal components for its description are the link pose, in-

ertial properties like mass and position of its center of mass (CoM), collision

and visual properties.

• The joint tag: Inside the model tag, used to describe interactions between

links. The main description elements for a joint are the type of joint, such as

revolute or prismatic, the parent and child links, the joint axis and pose.

• The sensor tag: It can be placed inside a link or inside a joint tag. The main

components to describe it are the sensor type, the topic on which it has to

transmit, the update rate, the pose and different other parameters that are de-

pendent on the specific sensor type.

An example of robot description using the SDFormat can be seen in figure 4.3

4.8 Gazebo model

In Gazebo the SDFormat (described in section 4.7) is used to describe the simulation

environment (world model) and the drone model. As previously said, Gazebo offers

lots of different ready to use models in its cloud server, but among them there was

no model suitable for this study. The multirotor model was created from scratch,

starting from taking precise measurements of the drone parts. The 3d model was

created usingAutodesk Fusion360 (figure 4.4) and then exported in SDFormat to be

used in the simulation environment.

In the SDF file used in Gazebo, the drone model is composed of three main links.

The first one is the base link, within which all metal plates composing the main body
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Figure 4.4: Fusion360 model

(a) Gazebo Model (b) Collsion model shape

Figure 4.5

and every other part rigidly attached to it such as batteries, the four motors and the

servomotor, were merged. The other two links are the two movable legs. In addition

to that other four links are used to describe the four rotors. Figure 4.5a is showing

the resulting model in the Gazebo world.

During the simulation the model collision shapes are used by the physics engine

to simulate interactions between objects. For simplicity it has been used a simple

cube shape for the main body, cylindrical shapes for the rotors and two cylindrical

shapes for each leg (figure 4.5b). These simplifications are not compromising the

results of the experiment. In fact the simplifications are increasing the real collision

shapes of the model. For the rotors, a cylinder is representing the region of space

in which the rotor will collide with objects while spinning. Similarly for the skids a

cylinder shape is sufficient to model the contact with the ground.

The pre-built plugin for Gazebo, JointPositionController was modified as
later explained to be used for legs control. The main parameter required for this

plugin is clearly the name of the joint that has to be controlled. The plugin can

be used sending commands through a specific topic, that can be customised, using

position or velocity commands. The movement control is performed with a tunable

PID controller; it also allows limits imposition for the produced command or PID

components.

The feedback for the leg positionwas provided by a pre-built plugin, JointStatePublisher
that publishes joint information such as position and velocity on a specific topic.
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4.9 Time of Flight Sensor

The sensor that is used in this project is the VL53L5CX Time of Flight sensor pro-

duced by STMicroelectronics. It provides accurate ranging up to four meters and

works with a frequency of 60 Hz. Using the sensor specifications it was modelled
in Gazebo [4] as lidar, inserted inside the base_link link, meaning the main drone
body, positioned in the front of it, pointing downwards. The sensor was configured

to have 8 laser reading in the horizontal direction ( with respect to the sensor frame,

meaning along the z,y plane in the body frame) and eight vertical readings forming

a grid of 64 measurements.

The errors in the laser readings were introduced artificially following the datasheet

specifications. Tests conducted on the real sensor allowed to verify the better per-

formance of the real sensor with respect to the specifications, thereby ensuring in

this way a worst case analysis in the simulation environment.

4.10 Laserscan translation from Gazebo to Ros2

The translation was made through the ROS2 [10] package ros_gz_bridge, which
offers different nodes to translate topics between Gazebo [4] and ROS2 [10]. The

Translation can bemade in both directions using the executable parameter_bridge
for the desired topic.

The message definition in ROS2 [10] for the Laserscan is not fully compatible

with the Gazebo [4] definition of the corresponding message. In fact The Gazebo [4]

message definition allows the message to contain data from a sensor reading in 2 di-

mensions, while the message definition in ROS2 [10] allows only planar Laserscan.

The quick fix was modify the source code of the ros_gz_bridge package.
The original behaviour of the packagewas to select themiddle one, among all the

vertical Laserscan detections in the gazebo message, and copy that only one planar

reading as ROS2 [10] Laserscan message. It was sufficient to modify the indexes

inside the node coping function to ensure all data were translated to ROS2 [10] as a

planar laserscan of length: row_length * column_length , where row_length is
the number of points in a single planar laserscan detection, and column_length is

the number of planar laserscan performed vertically.

A schematic representation of the original behaviour is shown in figure 4.6a

while the modified version is showed in figure 4.6b.

To reconstruct the 3d structure of the measurement in ROS2 [10] from the mes-

sage definition is sufficient to know the number of readings in the two directions, in

our case both equal to eight.

4.11 Plane detection

The detection of the slope value from the time of flight (ToF) sensor, was improved

with respect to the previous project ([14]). It didn’t require the exclusion of any

inconsistent measurement due to the fact that the legs are not in the sensor field of

view when it is performing the slope detection. The legs can be moved laterally up

to 85 degrees positive or negative, depending on the leg, and are moved in position

for the landing only after the sensor reading.
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(a) ros_gz_bridge plugin original behaviour

(b) ros_gz_bridge plugin modified behaviour

Figure 4.6: ros_gz_bridge plugin original and modified behaviours
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The time of flight (ToF) sensor collects a total of 64 measurement, returning

information on the distance and angular displacement of the rays. This information

is then converted in x,y and z coordinate in the multirotor frame. The vector of z
values and matrix of x and y coordinate define a linear regression problem, in which
for every point:

z = αx+ βy + γ (4.1)

In order to have a more compact description of the problem the following ele-

ments can be defined:

w =

⎡⎣αβ
γ

⎤⎦ X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 1
.
.

xi yi 1
.
.

x64 y64 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
.
.
zi
.
.
z64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.2)

Where xi, yi and zi are the i-th point coordinate. Resulting in the following relation

Xw = Z (4.3)

if the matrix
(︁
XTX

)︁
is invertible the solution can be foud as:

w =
(︁
XTX

)︁−1
XTZ (4.4)

Otherwise it can be used the singular value decomposition of the matrix X:

X = USV T (4.5)

The solution of the problem is then:

w = V S−1UTZ (4.6)

Once retrieved from the data the coefficients α β and γ looking at the standard plane
equation:

ax+ by + cz + d = 0 (4.7)

a

c
x+

b

c
y +

d

c
= −z (4.8)

[︁
x y 1

]︁ ⎡⎣a
c
b
c
d
c

⎤⎦ = −z (4.9)

Looking at the equations 4.9 and 4.3 it is clear that the plane orthogonal vector is:

n =

⎡⎣αβ
1

⎤⎦ (4.10)
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A simple example is the detection of an horizontal plane, as it can be seen in

figure 4.7. The quadrotor is placed at an altitude of 0.35m, with the described pro-
cedure the retrieved w is :w =

[︁
00− 0.35

]︁
Inserting the values of w in 4.9 it results:

0x+ 0y–0.35 = −z (4.11)

Meaning the equation of a x-y plane passing through the point: =
[︁
000.35

]︁T
. The

altitude of the drone is clearly the third component of the vector w and the coef-

ficients of the vector n orthogonal to the plane can be found as showed in 4.10

resulting in:

n =

⎡⎣00
1

⎤⎦ (4.12)

That is clearly a vector parallel to the z axis and orthogonal to the detected plane.

Figure 4.7: Detection example in Gazebo

The normal vector is represented with respect to the time of flight (ToF) sensor

frame, attached to the drone body. In order to calculate the plane slope and direction

in the world reference frame, the normal vector n is then converted through a change

of coordinate. Then the vector yaw angle can be calculated, the operation can be

thought in the xy plane, through the atan2 operator. The target heading direction

for the drone will be orthogonal to the plane normal (figure 4.8a). The slope value

is the angle between the plane normal and the z axis (figure 4.8b).

4.12 Px4 Autopilot Offboard control

The autopilot can be controlled offboard imposing the correspondent flight mode. In

this mode the vehicle can be controlled in position, velocity, acceleration, attitude

rates or thrust and torque setpoints. The reference setpoints need to be provided

from an external source like a companion computer using the Mavlink [6] protocol

described in section 4.4. The autopilot requires a constant stream of data, either set-

points or OffboardControlModemessages, from the external controller as a ”proof

of life”. If the frequency of the stream of data drops below 2Hz the autopilot will
exit the offboard control mode performing a failsafe action. A simple representation

of the described procedure is showed in figure 4.9.
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(a) Plane normal vector yaw angle (b) Plane slope value

Figure 4.8: Informations retrieved from the plane normal vector

Figure 4.9: PX4 Offboard control mode control flow chart

In addition, before switching to this mode, in order to ensure the stability of the

communication, the autopilot requires that the above-mentioned data stream is sent

for at least a second

4.12.1 Ros2 and Px4 reference frames

The Px4 [7] Autopilot uses a FRD reference frame both for the inertial world frame

and for the body frame. The frame name is specifying the directions of frame axis

x y and z meaning F for forward, R for right and D for down. In the ROS2 [10] and

Gazebo [4] environments different reference frames are used, both the body frame

and the world frame are FLU frames, where the axis x y and z are pointing forward,
left and up. A representation of the different reference frames is shown in figure

4.10. To compensate for this difference a static transformation in the data is needed

in order for the offboard control to properly send position commands and receive
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feedback. The necessary transformation can be retrieved in terms of roll pitch and

yaw angles. As shown in figure 4.11 it is sufficient a rotation of 180
◦
about y axis

and −90
◦
about the z axis. The resulting transformation matrix is:

R =

⎡⎣0 1 0
1 0 0
0 0 −1

⎤⎦ (4.13)

(a) Frame in Px4 Autopilot (b) Frame in Ros2

Figure 4.10: Difference in reference frames

Figure 4.11: Frame transformation between Gazebo and ROS2 world frames

4.13 Ros2 nodes structure

In order to exploit the peculiar characteristics of the ROS2 framework, different

nodes were designed to benefit from the property of modularity. Themain nodes that

have been developed are the Offboard_control_node, the Leg_control_node
and the Plane_detection_node.

The schematic representation of the nodes structure and the information flow is

showed in figure 4.12.

A flow chart with the different phases of the simulation can be seen in figure

4.13.
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Figure 4.12: Schematic ROS2 nodes representation

4.13.1 Offboard _control Node

The Offboard_control_node is designed to be themain node for the platform con-

trol. It’s first function is to publish the commands specifying the offboard control

mode for the px4 autopilot at 10Hz , a frequency that is sufficient as a ”proof of life”
as already explained. The second function is to publish the trajectory setpoints with

the same frequency. Trajectory Setpoint are specified before starting the simulation,

they are specified with respect to the ROS2 [10] fames and then converted to the px4

reference frame (see 4.12.1). Setpoints are used to navigate over the landing plane.

Once in position, the node command the detection of the slope angle and slope ori-

entation at the service node plane_detection_node using a custom service. Once

received a response, the node, after a transformation to the ROS2 [10] world refer-

ence frame, proceeds in aligning the vehicle yaw accordingly. Before landing, legs

are moved in position through a request to the service node leg_control_node.

4.13.2 Pre-loaded data

As previously seen in chapter 2, is possible to compute the desired angular displace-

ments of the legs offline, through the formula 2.4. In particular, with the introduction

of a function disp representing the leg1 angular displacement, using the fact that θ1
and θ2 have a ratio of

7
15
as shown in 2.12, the angles θ1 and θ2 can be expressed as

a functions of the initial minimum values and the disp variable:

θ1 = θ1min + disp (4.14)

θ2 = θ2min + disp
7

15
(4.15)

The equation 2.4 becomes:

ϕ = arctan
(︂

l cos(θ1min+disp)−l cos(θ2min+disp 7
15

)

l sin(θ2min+disp 7
15

)−l sin(θ1min+disp)+b

)︂
(4.16)
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The disp variable has a range of vales that start from 0 corresponding to θ1min

and a horizontal plane, to 90
◦
corresponding to the maximum slope value for the

plane, meaning 60
◦

Figure 4.14 illustrates the relation given by the formula with respect to θ1. The
computed values can be loaded into the onboard controller in order to save compu-

tational time.

4.13.3 Leg Control Node

The Ros2 node to control the legs movement is implemented as a service node. It

is composed by two publishers, used to send commands to the plugins for the joints

control, and a subscriber used to have a feedback on legs position.

For simplicity during the first phase of the simulation, instead of implementing the

gear mechanism transmitting motion between legs, allowing a control with a single

plugin, it has been preferred to individually control each leg, maintaining the relation

between the two sent commands of 7
15
.

A custom service was designed for the communication with this node. The re-

quest has a field containing the slope value of the landing surface, the response

consists in a boolean value specifying if the action is completed successfully. Once

a request is received, the slope value is searched in a pre-loaded data structure in

order to find the correspondent angular displacement required for the servomotor.

Then the command with the motor position is sent with a certain frequency to the

joint position controller plugin. Once the legs are in position the response in sent

back with a true value.

4.13.4 Leg Control Plugin

The plugin used for the control of the legs is a plugin from the Gazebo [4] system

package modified to act as specified in previous sections. The plugin is divided in

two main pieces of code, the code relative to the configuration of the plugin and the

code for themain function of the plugin. The former is composed by instructions that

are executed only once, when the plugin is loaded. Information to set the parameters

is retrieved from the file written in SDFormat (section 4.7). The main parameters set

in this phase are the name of the joint that has to be controlled, the type of message

received as input by the plugin and the PID gains with the possibility to specify

saturations for the integral action and for the total PID output (figure 4.15). If the

PID gains are not specified explicitly in the SDF file, the plugin uses the default

values.

The main code executed by the plugin to accomplish its function is contained in

the PreUpdate function. This function is a callback that is invoked at every iteration

before the physics engine runs, applying the PID control signal. The main modific-

ation from the standard plugin was the addition of the feedback non linear term to

compensate the action of the gravity force (gCompGain), with the possibility to set
the gain value in the model SDF file. The resulting controller output formula used

by the plugin is shown in figure 4.16. The gains gCompGain is previously calculated
using the system parameters as explained in section 3.5.2.
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4.13.5 Issues during the simulation setup

The setup for the simulation was a highly time consuming activity. Starting from the

creation from scratch of the model in Autodesk Fusion360 that required an accurate

design of each single part composing the robot structure. The export of the model in

a format usable by Gazebo was a difficult task due to the lack of a pre-built tool in the

software to export SDF files. The file export was performed thanks to an unofficial

plugin that the software allows to install. Then the exported SDF file was completed

with the addition of the sensors plugins and the modification of the collision shape

as described in section 4.8.

The set up of the communication betweenGazeboGarden [4] andROS2 [10] was

source of many different and also time consuming problems. This was caused by

the fact that Gazebo Garden [4] is the newer version of Gazebo [4] and is the default

version integrated with the PX4 [7]toolchain. This newer version of Gazebo [4],

and the only supported version for Ubuntu 22.04 onwards. Unfortunately it has not

a recommended version of ROS2 [10] associated with it. In order to allow the com-

munication between the two software it has to be installed the non official package

ros_gz. The install instructions were often out of date, due to the rapid evolution of
the software and the presence of different branches in the online repositories, each

containing different software versions.

The addition of the plugins in Gazebo [4] was also a difficult task due to the lack

of documentation. Some minor problems were encountered in the offboard control

of the drone during the landing phase, caused by a lack in the documentation of the

PX4 autopilot.

Architecture and Control design of a legged quadrotor for landing on sloped

surfaces

49



Chapter 4

Figure 4.13: Flight flow chart
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Figure 4.14: Linear relation between the slope of the landing surface and leg angular

displacement

Figure 4.15: Plugin parameters settings

Figure 4.16: PID output calculation with the addition of gravity compensation term
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Flight Simulation Results and

conclusions

The simulations of a complete flight were conducted in Gazebo [4] and consisted

in several steps. The drone starts from an initial position laying on the flat ground

plane waiting for commands. When the connection with the ROS2 [10] node is

established, after the start command given by hand, the drone takes off. After fol-

lowing the preloaded trajectory setpoints, the drone is hovering above the landing

surface. Above the target landing site a phase starts with several readings of the ToF

sensor to retrieve information about the landing surface, with the following align-

ment of the yaw angle of the drone and a lowering of the altitude to get more accurate

measurements. When the tip of the leg facing the slope is at an estimated altitude

of 30cm it is sent a request to the ROS2 [10] service node preposed to manage the

leg movements. When the legs are in position, the autonomous landing command

is sent to the PX4 [7] autopilot. In figure 5.1 it is represented the UAV during the

lowering altitude and sensor reading phase. The leg reference is sent as a ramp of

increasing angle displacements instead of a single step with the aim of reducing even

more the overshoot in the leg movements and avoid as much as possible oscillations

in the position of the drone.

The legs positions and measured torques during the flight can be seen in figure

5.3. The graphs are reporting three different simulation results for different gains of

the PID controller. It can be seen that for a choice of gains the overshoot is greater

with respect the other two cases, this is because those gains where positioning the

poles of the system slightly outside the allowed region, it is evident as a reposition

of the poles inside the prescribed region has increased the performances, in partic-

ular has reduced the overshoot. In the graphs representing the angular position it is

possible to observe different phases:

1. The legs are maintaining a constant position, in particular the default position

for horizontal plane landing which is −1.4834rad for the leg number 1 and
1.4834rad for leg 2. As previously said in this position the legs are not in
the field of view of the ToF sensor when it is performing the detections of the

surface. In the torques graphs it can be observed the time of take off of the

drone, in which the measured torque changes from ±1Nm to ±0.2Nm that

is the torque needed to compensate for the gravity force.

2. Leg movement; there is a quick change in their positions. Subsequently the
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Figure 5.1: The UAV hovering above the landing surface

Figure 5.2: The UAV landed on the landing surface
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legs maintains the prescribed position for the landing. In the torques graphs

it is visible a peak corresponding to the legs movement.

3. Landing moment is highlighted by a relevant change in the measured torque.

In particular before the evident change in the torque measured, it is possible

to notice a small peak, that is the moment in which the legs are touching the

landing surface.

After that moment the PID controller is increasing the commanded torque in order to

bring back the legs at the prescribed position. In fact after the impact with the landing

surface legs slightly change their position. For two gains values in the torques graphs

it can be seen a slow decaying of the measured torque due to the fact that the legs are

slowly reaching the target angle causing a decrement also in the commanded torque.

The error after landing is different between the two legs, and it is depending also on

the slope value of the landing surface. In fact for high slope value surfaces such as at

60° it has to be increased the friction coefficient in order to be able to perform a safe

landing to avoid the slipping of the skids on the surface. In general, errors are higher

for leg number one, which is positioned lower than leg number two and supports

the majority of the drone weight. The greater error measured for the legs position

after landing is of 0.0176rad for the leg number one which converted in degrees is
approximatively equal to 1°. Although the final error in the leg position during the
simulation, it is important to notice that the leg displacement from the target position

after landing would not be present in a real world applications. In fact the chosen

actuator present in laboratory has a stall torque of 2Nmwhich is considerably higher

with respect to the torque peak that can be observed in the graphs (fig. 5.3).This

ensures that the real actuator will not move when legs touches the ground.

The attitude value were recorded through QGroundControl, the complete flight

attitude graphs are shown in figure 5.4. Graphs represents the attitude for a complete

flight and landing on a surface tilted of 60°. It can be observed the changes in roll
and pitch values during the flight phase. The greater displacement from zero degree

is in the pitch angle, with a final value of 1° after landing. This is caused by an error
occurred during the plane detection phase, in which the sensor has relevant errors

in measuring laser distances, especially for longer rays that has a greater error. This

causes a detection error that is increasing with the tilting angle of the landing surface,

causing the legs to be positioned to land on slopes with an inclination different from

the real one. Despite the minor error in the plane detection phase, the simulation

results showed in the graphs highlights the effectiveness of the adopted solution, in

fact a tilt of 1° is not compromising the landing and takeoff phases of the drone. As
last observation it can be noticed the yaw angle that is changing from−180° to 180°
due to the fact that the drone was rotated of exactly 180° on the z axis, small errors
in attitude detection were causing the atan2 operator used to retrieve the angle to

quickly change between the two values.

5.1 Conclusions

In this study it has been re-designed the landing structure of a legged quadrotor

starting from a previously developed project. The goal was to increase the landing

capability of the UAV increasing the range of slopes for which is possible to safely
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Figure 5.3: Legs position and measured torques
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(a) Roll angle

(b) Pitch angle

(c) Yaw angle

Figure 5.4: qav attitude graphs
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land up to 60
◦
, the second goal was to ensure the optimality of the solution. To reduce

weight during the flight and increase performances it has been used one actuator to

move the landing structure. The quadrotor it has been equipped with a ToF sensor

to sense the landing surface allowing an automatic orientation of the yaw angle and

automatic leg positioning.

The first phase of the study involved the definition of an optimality criterion

for the required dimension of the landing structure evaluating geometrical relations.

Different proposed structures have been evaluated, with the subsequent choice of

the structure satisfying the optimality criterion defined. The actuation of the landing

structure has been modelled and it was performed a controller definition and tuning

to optimize the performances. It was also studied the Plane detection algorithm in

order to retrieve information from the ToF sensor.

The second phase involved the setup of a simulation to test the designed solution.

It has been required the creation of the simulation world, UAV model and ROS2

nodes structure con manage the flight, the plane detection algorithm, and the legs

movement.

The third phase involved the simulation of a complete flight and autonomous

landing on a tilted surfaces, which information are not known in advance, except

for the x y coordinates.

The proposed solution gave satisfactory results with the achievement of the ob-

jective of a safe landing on surfaces tilted up to 60
◦
. The different landing surfaces

tested have been correctly detected with a precise calculation of the slope value and

yaw direction. As desired themovement of the legs didn’t cause relevant oscillations

in the UAV in flight position and the structure maintains the main body of the quad-

rotor horizontal with no contact with the landing surface. Apossible future challenge

is the implementation of the solution on the real quadrotor in the laboratory, with

comparation of the results between the simulation and real world tests.
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