
Università degli Studi di Padova

Department of Information Engineering
Master Thesis in Automation Engineering

System Identification meets
Reinforcement Learning:
probabilistic dynamics for

regularization

Supervisor Master Candidate
Prof. Alessandro Chiuso Francesco Zanini
Università di Padova

9 September 2019
Academic Year 2018/2019

Frivolous theorem of Arithmetic:

Almost all natural numbers are very, very, very large.

Abstract

Reinforcement Learning is one of themost active research areas in the scien
tific community, having deep links with machine learning, optimal control
and dynamic programming.
These connections emerged recently, while in the past the control commu
nity was mostly unrelated to artificial intelligence. This brought to the de
velopment of two main paradigm which both address the same problem of
exploiting in the best way some knowledge on the behaviour of a system in
the past to enhance future manipulation of that system: modelbased and
modelfree perspective.
Modelfree methods search directly the best behaviour over policies, acting
in some way on the system and then improving their choices.
Modelbased strategies tackle the same problem by seeking a good repre
sentation of the environment and then solving an optimal control problem.
In this Thesis a mixed approach is proposed, in which the interactions with
the real system are carried out in both ways: a rough model is retrieved in
order to play the role of a regularizer, while the punctual estimation over
specific values of the policy parameter is placing reliable punctual estimates
that should be fitted by the reconstructed function.

v

Acknowledgments

This Thesis represents the last step of my path as a student at University
of Padua.
I feel lucky to have found here such a dynamic and stimulating environ
ment, which gave me the opportunity to meet great people, whom I wanted
to thank.

First of all, I would like to thank all the Professors who have contributed to
my educational growth, with their courses and exams.

Above all, I must thank Prof. Alessandro Chiuso, who has gone far beyond
his normal duties as supervisor, helping me throughmany issues and devot
ing much of his time to me. I really appreciated his comments, which were
always appropriate and smart, and the experience he was able to bring into
this work.
Luca Zancato, Ph.D. student, also deserves a mention. He supported me
with his opinions and pieces of advice, being very kind and friendly from
the moment I met him.

I would also like to thank my friends and colleagues and everyone who has
been there for me, especially in the recent period.

I must express my profound gratitude to my parents Massimo and Luisa,
who supported me financially and also allowed me to focus as much as pos
sible on my studies, assisting me in many daily problems to save me time.

A special thank goes to my brother Giacomo: having a close person with
whomyou can talk daily about anything, frommathematical details to video
games, has been a fundamental resource.
I hope I can help him in the future as much as he did for me.

Nonetheless, my greatest and deepest thanks goes to the person who taught
me more than anyone else, and without whom I would never have been able
to reach this important milestone.

vii

Contents

Listing of figures xi

1 Introduction 1
1.0.1 Outline of the Thesis . 2

2 Reinforcement Learning 3
2.1 Introduction . 3
2.2 Introductory Examples . 5
2.3 Key Elements of RL . 7
2.4 Reinforcement Learning . 9
2.5 A First Formalization . 10
2.6 Applications . 17

3 System Identification Synopsis 21
3.1 Basics . 21
3.2 Gaussian Process Models . 23

3.2.1 Regression with Normal Noise 25
3.3 Dynamic Models . 27

3.3.1 BoxJenkins Models . 28
3.3.2 OutputError Models . 29
3.3.3 ARMAX Models . 29
3.3.4 ARX models . 30

3.4 PEM method . 30
3.5 Kernelbased PEM Method 32

4 Current Approaches 35
4.1 Control with Unknown Dynamics 35
4.2 State of the Art . 38
4.3 ModelBased Reinforcement Learning 39

4.3.1 PILCO . 40
4.4 ModelFree Reinforcement Learning 42

4.4.1 Policy Gradient . 45

ix

5 A Mixed Approach 47
5.1 Formalization . 49
5.2 A First Theoretical perspective 53

5.2.1 Setting and Simulations 57
5.3 The main procedure . 59

5.3.1 A prototypical example 65

6 Conclusions 69

Bibliography 71

x

Listing of figures

2.1 AgentEnvironment interaction scheme 11
2.2 Maze Example: bad and good reward functions 14

3.1 Model with feedback . 28

5.1 Gaussian approximations for cost function 60
5.2 X2distribution approximations for cost function 61
5.3 True cost function . 66
5.4 Reconstructed cost functions . 67
5.5 Boxplot of the prototypical example 68

xi

Try again. Fail again. Fail better.
Samuel Beckett

1
Introduction

Reinforcement learning has gradually become one of the most active re
search areas inmachine learning, artificial intelligence, and neural network
research. The field has developed strong mathematical foundations and im
pressive applications. The computational study of reinforcement learning
is now a large field, with hundreds of active researchers around the world in
diverse disciplines such as psychology, control theory, artificial intelligence,
and neuroscience. Particularly important have been the contributions es
tablishing and developing the relationships to the theory of optimal control
and dynamic programming. The overall problem of learning from interac
tion to achieve goals is still far from being solved, but our understanding of
it has improved significantly in recent years.
The early history of reinforcement learning has twomain threads, both long
and rich, that were pursued independently. One thread concerns learning
by trial and error that started in the psychology of animal learning. This
thread runs through some of the earliest work in artificial intelligence. The
other thread concerns the problem of optimal control and its solution using
value functions and dynamic programming. For the most part, this thread
did not involve learning.
Connections between optimal control and dynamic programming, on the one
hand, and learning, on the other, were slow to be recognized. However, from

1

1. Introduction

the advancements inMachine Learning the extensive use of theMarkov De
cision Process framework emerged some analogies that made clear a strong
correspondence between the two approaches.
These two threads both came into the world of Reinforcement Learning, giv
ing birth to two different approaches: ModelBasedReinforcement Learning
and ModelFree Reinforcement Learning.
This thesis is intended to represent another step forward in the unification
of the two approaches, proposing indeed a mixed strategy which exploits
both perspectives.

1.0.1 Outline of the Thesis

In Chapter 2 the basic notions of Reinforcement Learning are presented,
with particular attention to the Markov Decision Process framework.
In Chapter 3 two of the main strategies in System Identification are intro
duced, Gaussian process models and kernelbased PEM estimate, thate are
necessary tools to carry out the RL procedure proposed later on.
In Chapter 4 the RL framework is converted into an optimal control prob
lem, moreover the state of the art for both modelbased and modelfree ap
proaches is presented.
Chapter 5 is the core of this work, where it is proposed the mixed approach.
Initially a first theoretical attempt in deriving the regularizer is discussed,
then the main algorithm adn its benefits are reviewed.
Eventually in Chapter 7 final considerations are drawn and possible future
extensions of this work are described.

2

2
Reinforcement Learning

Reinforcement Learning is currently one of the most active research topics
in the scientific field: it has recently grown very fast thanks to its interdisci
plinary nature, having profound links with Artificial Intelligence, Machine
Learning, Control Theory and System Identification.
These connections have stimulated the interest of the community in this dis
cipline, which considers the whole problem of interacting with an unknown
environment, benefiting from the latest improvements in aforementioned
linked areas.
Nowadays Reinforcement Learning is developing both from a practical and
a theoretical point of view, from implementations of algorithms working in
real time, to new approaches to better understand how to refine current
studies.
This chapter is focused on surveying some background notions that are nec
essary to comprehend the core of this work.

2.1 Introduction

Reinforcement Learning is the way in which humans, and all other animals
in general, actually learn. Many of the central algorithms in this discipline

3

Introduction 2. Reinforcement Learning

have indeed been inspired by biological learning systems.
In general, learning is defined as the process of acquiring new, or modify
ing existing, knowledge, behaviour, skills, values or preferences. Humans
learn before birth and continue until death as a consequence of ongoing in
teractions between people and their environment: this ability has allowed
a rapid evolution and the development of new solutions to problems encoun
tered in life, in order to reach any kind of goals. Indeed the learning process
is often directed at improving the way tasks are performed by the learner,
from simple walking or sourcing food to driving a car or playing chess.
Different tasks yields different approaches in order to efficiently learn how
to achieve a goal that has been set. Adult human beings have a clear way
of conveying information, and thus they are able to help the learner by pro
viding the required knowledge with the aim of achieving the learning goal:
this is the case of a teacherstudent relationship, for example. However
many times in nature this ability to communicate is missing, leaving the
learner alone and with no information on how to address the task it is sup
posed to accomplish. Indeed, for most of the terrestrial moving animals,
walking and running are primary skills compared to communicating with
their own peers, therefore theymust face the problem of understanding how
to correctly move without an explicit teacher. They might figure out some
thing by observing how other animals behave, but the core of their modus
operandi of learning is trying and trying again until they find an effective
way of moving their bodies (and it is indeed a successful approach: a gazelle
calf struggles to its feet minutes after being born; half an hour later it is
running at 32 kilometres per hour). In general, when someone has to ac
complish a specific task while operating in an environment that is at least
partially unknown or uncertain, the fundamental way in which it can fulfil
its assignment is by learning from interaction.
The uncertainty of the environment is a key feature of a Reinforcement
Learning framework: if the subject operates under a fully known environ
ment, thus having complete knowledge of all consequences of every actions
relevant to the task, it can deterministically choose the best working paradigm
that makes it reach its goal in the most efficient way, and no learning is in
volved at all.

4

2. Reinforcement Learning Introductory Examples

When instead the agent is unaware of some fundamental knowledge about
the scenario it is facing, it is impossible to determine even a suboptimal se
quence of action that allow to solve the problem, and interaction with the
environment becomes necessary.
The very first idea of learning is indeed based on trying something, observ
ing the result, then trying something else that is supposed to work better.

2.2 Introductory Examples

The ideas described so far seem very vague and not easy to be formalized:
this properly reflects the breadth of cases to which this discipline is applica
ble. In order to better understand the Reinforcement Learning framework
and to find out the main issues encountered in this kind of problems it is
necessary to take a closer look through these two simple examples.

• Consider a student in Automation Engineering who needs to write his
Master Thesis using a computer which is running a text editor. He is
fully aware of the mapping between buttons of the keyboard and let
ters appearing on the screen, thus he can carry out his task without
resorting to learning (supposing he knows exactly what to write). As
it has been said earlier, if everything is well known in advance, it is
possible to precisely plan a sequence of actions surely leading to the
completion of the objective.
However, if the student were working on a computer with a keyboard
without labels on its buttons, things would be harder. The most in
stinctive way of progress with the Thesis would be to press a button,
see what letter appears on the screen, and to label the button accord
ingly.
Once he has fully determined all labels of the keyboard he has built a
reliable model of the environment, so he can go ahead carefully plan
ning what buttons to press.
Given the faculty that this student is enrolled in, one can expect that
memory may help him retrieving the button labels of the keyboard
that he needs to write down his work. This kind of prior knowledge
is obviously still built relying on previous experiments on the environ
ment, but allows to pursue a refined approach in which not all buttons

5

Introductory Examples 2. Reinforcement Learning

need to be pressed in order to be identified.
Moreover, some letters are used more often than others, so the stu
dent’s memory will be more accurate for certain labels than others.
How many and which letters does he need to test, in order to have a
sufficiently precise model to complete his work, without wasting time
in labelling unnecessary letters?
As a further matter, if throughout the whole work that he is writing he
will never use a specific letter, it is superfluous to gain knowledge of
that label: this shows again the inadequacy of the very first approach.

• A beginner archer needs to hit a target with his bow and arrows. The
closer to the centre the dart sticks, the better the shooting is evalu
ated.
It is not that easy for the bowman to compute exactly the strength he
needs to apply to his bow in order to shoot the arrow strong enough
to reach the target. As the environment is not fully known (the air
resistance, the exact angle of the bow, the exact amount of strength is
developed by the bow), so are the consequences of his actions, there
fore there may be the need for trying to act and observe the response
of the environment. If possible this can also help him build a mapping
from actions to responses, relying on reactions obtained before, to have
a more general (though still imprecise) idea of the environment faced.
Hence he decides to shoot a few preliminary arrows in order to have a
better idea of how to hit the centre: in the process, he is helped by the
a priori knowledge of elementary physics which tells him that the ten
sion of the bow is directly proportional to the distance that the arrow
will travel.
After some trials, he retrieved the correct way of striking arrows to
maximize his score. However the following day is windy, and this af
fects the range of the arrows shot, thus making the retrieved model
of the tensiondistance function incorrect. As the force of the wind is
utterly unpredictable, what is the best behaviour in striking arrows
in order to hit the target even in presence of changing in direction of
the wind?
And how he can adapt its learning strategy when dealing with a target
in a different position, or that is moving?

These examples show some questions that may arise in the study of a Re
inforcement Learning algorithm.
Furthermore, it is clear how the interaction with the uncertain environment

6

2. Reinforcement Learning Key Elements of RL

plays a fundamental role in carrying out the given task. In general, having
the ability to understand the consequences of actions produces a wealth of
information about causeeffect relationship governing the environment, re
sulting in a better decisionmaking for fulfilling the objective.
From the perspective of Machine Learning and Control Theory, ”actions”
are precise inputs for machines that should accomplish a predetermined
task formulated on the basis of their state. These are not fully aware of
their inputoutput relation, but they are capable of evaluating the cost (or
reward) of the results of their experience.

2.3 Key Elements of RL

Clearly the two main actors in a Reinforcement Learning paradigm are the
agent and the environment, and how the former interact with the latter to
gain a clearer picture of its own behaviour. However, starting to consider
a more formal framework, four other distinctive elements can be identified,
which play an essential role:

• The policy determines how the agent behaves at a given time. It is
a mapping from perceived states of the environment to actions that
can be taken in a specific state. The policy is the true core of a Re
inforcement Learning algorithm, determining the agent’s behaviour
and thus its performance over the assignment. It can be both deter
ministic or stochastic. From a Control Theory point of view the policy
is often regarded as a function depending both on the state and on the
control parameters, and providing the input control.

• The reward signal (or cost) defines the goal of a Reinforcement Learn
ing problem. This signal is a scalar measure of the goodness of the
state in which the agent is located. Maximizing the reward is the only
objective for the agent, and it is the primary basis for altering the pol
icy: if the action selected is followed by a low reward, the policy may
be changed in order to choose a different action with a higher reward.
The aim of the agent can be defined by either setting a reward function
or a cost function. Clearly in the latter case the agent will try to min
imize the signal from the environment. A classical example for a cost

7

Key Elements of RL 2. Reinforcement Learning

function could be the distance of a moving robot from a predetermined
desired locus.

• The value function helps the agent to have a long term view of the
cost it will face following a certain policy. The value of a state is the
total amount of reward an agent can expect to accumulate over the
future, starting from that state. Whereas the rewards determine the
immediate desirability of environmental states, values indicate the
longterm appealing of the state on the basis of the states that are
likely to follow and their rewards. Recalling the previous example,
if the moving robot has adopted a certain policy that brings it in an
advantageous state for the next time step but leads it in subsequent
states with law rewards, the reward at the current time will be high
but the value function will be law.

• The model of the environment allows the agent to make inferences
about how the system will behave in response of a certain action, by
mimicking the behaviour of the environment. Given a state and an ac
tion, the agent can predict the next state and reward by relying on the
knowledge of the model, and therefore decide on the course of action
without experiencing it. This is a key element in modelbased Rein
forcement Learning, in which indeed the best policy is chosen through
planning, as will be further explained in Chapter 4, Section 4.3.

Rewards are in a sense primary, whereas values, as prediction of rewards,
are secondary. Indeed without rewards there could be no values, and the
only purpose of estimating values is achieving more reward. Nonetheless,
the choice of the policy is made according to values rather than rewards.
By seeking actions that yield high values, it is more likely to follow policies
which guarantee high reward over the whole run, as it is well illustrated by
the maze example in Section 2.5.
However, while rewards are directly provided by the environment, values
need to be estimated from sequence of observations of the agents. This is
one of the key feature of the Reinforcement Learning paradigm.

8

2. Reinforcement Learning Reinforcement Learning

2.4 Reinforcement Learning

Reinforcement Learning is a computational approach to learning whereby
an agent tries to maximize the total amount of reward it receives while in
teracting with a complex, uncertain environment.
The learner is not told which actions to take, but instead must discover
which actions yield the highest reward by trying them. Indeed in most in
teresting and challenging cases, actions may affect not only the immediate
reward but also the next situation, affecting all future costs as well.
Reinforcement Learning explicitly considers the whole problem of a goal
directed agent interacting with an uncertain environment, in all its aspects.
This one of the main difference with Machine Learning, that instead ad
dresses the more isolated subproblem of generalizing information coming
from a training set, or finding hidden structures in a given dataset.
In Supervised learning the learner is fed with labelled examples from a
knowledgable external supervisor: each samples could be a description of a
situation together with a specification of the correct action to take, the label.
The goal of the learner is to extrapolate the provided information in order
to choose the right action even in situations not present in the training set.
This kind of learning is not suitable for learning from interaction, since in
the prescribed framework there is no helpful teacher and the learner should
learn from its on experience.
Unsupervised learning is about finding structures hidden in collection of un
labelled data. This kind of approach can be indeed helpful in the Reinforce
ment Learning paradigm: uncovering structures in an agent’s experience
may lead to build a good model of the environment, but this does not solve
the problem of maximizing the reward signal, or minimizing the cost.
Reinforcement Learning is instead concerned with an agent that has an ex
plicit goal, can sense aspects of its environment, and can choose actions to
affect it.
As it came out of the introductory examples, a key feature of this framework
is the tradeoff between exploration and exploitation. By exploring different
actions on the environment, it is possible to build a more complete and ac
curate model of its behaviour, although it is a costly and timeconsuming

9

A First Formalization 2. Reinforcement Learning

operation. Moreover the process might lead to perform actions that have
a low reward. To obtain a lot of reward, a Reinforcement Learning agent
should prefer actions that it has tried in the past and found to be effective
in producing reward. But in order to discover those actions, it must resort
to exploration, that is trying action not selected before.
The agent has to exploit what it has already experienced to have a safe and
high reward, but it has also the need to explore different policies in order to
make better action selection in the future. Neither exploration nor exploita
tion can be pursued exclusively without failing at the task. The agent must
try a variety of actions and progressively favour those that appears to be
best.
Things gets more involved if the output of the environment is not deter
ministic, so the reward is a random variable as well. This allows the same
action to perform both good or bad in different time instants: a single action
must be then tested several times in order to get a reliable estimate of its
expected reward.
Being such an interdisciplinary subject, the concept of state in Reinforce
ment learning is not bound to represent the physical position of a moving
robot, but it can be seen as whatever information is available to the agent
about the environment it is facing. It is assumed that the state signal is pro
duced by some preprocessing system that is nominally part of the agent’s
environment. The state plays a fundamental role as it represent both the
input and the output of the model, and also a variable on which both cost
and value function depend.

2.5 A First Formalization

The problem of Reinforcement Learning is here formalized using ideas from
Dynamical System Theory and Markov Decision Processes.
A learning agent must be able to sense the state in which it is located an
must be able to take actions which affect that state, having a well defined
goal expressed by the reward. The reward itself is a function of the state,
therefore different actions lead to different rewards.

10

2. Reinforcement Learning A First Formalization

The agent and the environment interacts continually, the former selecting
actions and the latter responding to them giving rise to a reward, and pre
senting new situations to the agent.

48 Chapter 3: Finite Markov Decision Processes

actions and presenting new situations to the agent.1 The environment also gives rise to
rewards, special numerical values that the agent seeks to maximize over time through
its choice of actions.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in a Markov decision process.

More specifically, the agent and environment interact at each of a sequence of discrete
time steps, t = 0, 1, 2, 3,2 At each time step t, the agent receives some representation
of the environment’s state, St ∈ S, and on that basis selects an action, At ∈ A(s).3 One
time step later, in part as a consequence of its action, the agent receives a numerical
reward , Rt+1 ∈ R ⊂ R, and finds itself in a new state, St+1.4 The MDP and agent
together thereby give rise to a sequence or trajectory that begins like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (3.1)

In a finite MDP, the sets of states, actions, and rewards (S, A, and R) all have a
finite number of elements. In this case, the random variables Rt and St have well defined
discrete probability distributions dependent only on the preceding state and action. That
is, for particular values of these random variables, s′ ∈ S and r ∈ R, there is a probability
of those values occurring at time t, given particular values of the preceding state and
action:

p(s′, r |s, a)
.
= Pr{St=s′, Rt=r | St−1 =s,At−1 =a}, (3.2)

for all s′, s ∈ S, r ∈ R, and a ∈ A(s). The function p defines the dynamics of the
MDP. The dot over the equals sign in the equation reminds us that it is a definition
(in this case of the function p) rather than a fact that follows from previous definitions.
The dynamics function p : S × R × S × A → [0, 1] is an ordinary deterministic function
of four arguments. The ‘|’ in the middle of it comes from the notation for conditional

1We use the terms agent, environment, and action instead of the engineers’ terms controller, con-
trolled system (or plant), and control signal because they are meaningful to a wider audience.

2We restrict attention to discrete time to keep things as simple as possible, even though many of the
ideas can be extended to the continuous-time case (e.g., see Bertsekas and Tsitsiklis, 1996; Doya, 1996).

3To simplify notation, we sometimes assume the special case in which the action set is the same in
all states and write it simply as A.

4We use Rt+1 instead of Rt to denote the reward due to At because it emphasizes that the next
reward and next state, Rt+1 and St+1, are jointly determined. Unfortunately, both conventions are
widely used in the literature.

Figure 2.1: The agent‐environment interaction scheme represented through a Markov Deci‐
sion Process: the agent act on the environment that provides both a reward signal and a new
state for the agent.

The agent and the environment interact at each of a sequence of discrete
time steps, t, t+1, . . . , in which the agent receives some representation of the
environment’s state St ∈ S and based on that, it select an action At ∈ A(St).
As a consequence, one time step later the agent receives the reward signal
Rt+1 ∈ R ⊂ R and find itself in a new state St+1.
Being the environment uncertain, the results of the actions Rt and St are
random variables and have well defined probability distribution given the
knowledge of the preceding state and action.
In a finite Markov Decision Process, sets of states, actions and rewards (re
spectively S, A and R) all have a finite number of elements. Hence for a
particular values of the random variables s′ ∈ S and r ∈ R there is a proba
bility of those values occurring at time t, given specific values of preceding
states and actions:

p (s′, r | s, a) .= Pr {St = s′, Rt = r |St−1 = s, At−1 = a} (2.1)

for all s, s′ ∈ S, r ∈ R and a ∈ A.
In a Markov Decision Process the probabilities given by p(|̇)̇ completely
characterize the environment dynamics, that indeed depends only on the
preceding action and state. The latter condensates all the information on

11

A First Formalization 2. Reinforcement Learning

previous interactions between agent and environment that affect the future:
this feature of the state is indeed calledMarkov property.
From the fourarguments dynamics function p, it is possible to compute any
thing else one might want to know about the environment, such as state
transition probabilities p : S × S ×A → [0, 1]:

p (s′ | s, a) .= Pr {St = s′ |St−1 = s, At−1 = a} =
∑
r∈R

p (s′, r | s, a) (2.2)

The expected rewards for stateaction pairs r : S ×A → R:

r (s, a)
.
= E [Rt |St−1 = s, At−1 = a] =

∑
r∈R

r
∑
s′∈S

p (s′, r | s, a) (2.3)

The expected reward for stateactionnextstate triples r : S ×A× S → R:

r (s, a, s′)
.
= E [Rt |St−1 = s, At−1 = a, St = s′] =

∑
r∈R

r
p (s′, r | s, a)
p (s′ | s, a)

(2.4)

The MPD framework is abstract and flexible and can be applied to many dif
ferent problems in many different ways. Recall the introductory examples:
actions cab be both lowlevel controls or highlevel decisions. Similarly, the
states can take a wide variety of forms.
One interesting feature of the Reinforcement Learning paradigm is that
the boundary between agent and environment is typically different from
the physical boundary of a robot’s or animal’s body. This of course depends
on the application for which the algorithm is designed, but often this par
tition is set closer to the agent, leaving to the environment also elements
that are commonly thought as part of the agent.
Consider for example a robotic arm with n joints: the motors, the mechani
cal linkages, and its sensing hardware should usually be considered part of
the environment rather than the agent. The actions of the agent might be a
ntuple indicating the position of each joint and the task to be accomplished
may be to bring the endeffector in a specific position. Therefore the agent
should learn what is the best set of values by trying different tuples and
observing the position of the end effector, or even solely its distance from

12

2. Reinforcement Learning A First Formalization

the goal. By defining the cost as the distance of the end effector from the
desired position, it is possible to see that the sensor giving this information
must be part of the environment and not part of the agent, since the cost
should come from the former.
The general rule is that anything that cannot be changed arbitrarily by the
agent is considered to be outside of it and thus part of the environment.
Surely the reward computation should be something on which the agent
has no full control, hence it must be external to the agent, since it defines
the task that has to be accomplished and it would be meaningless if the
agent could change it arbitrarily. Nonetheless, the agent may have knowl
edge about the environment and how its reward are computed as a function
of the states and actions taken, but still facing a challenging Reinforcement
Learning problem: a classical example is given by the maze. If the person
trapped in the labyrinth periodically hears a bell ringing exactly on the exit,
he may have an idea of how far or near the target is. It knows everything
about the environment: how to move from one point to another is straight
forward and the distance from the objective is given by the ringing bell, thus
it should be easy to get out. However the path leading to the exit is still un
known, and it might be more than likely that the route that seems to point
exactly towards the goal turns out to be a deadend road.
The expediency of shrinking the concept of agent as much as possible is use
ful in order to restrict the framework to nothingmore than what is essential,
an nothing less than everything useful.
A crucial aspect of a Reinforcement Learning algorithm is how to set the
reward (or the cost). The reward should best represent what the agent is
supposed to achieve as final goal, avoiding giving awards to minor success
that could deeply affect the way in which the agent is learning, leading to
bad performances. This is exactly what happens in the labyrinth example.
In fact if the agent is supposed to learn how to exit from the maze, defin
ing the cost as the distance between the agent and the exit is not a good
idea: clearly the agent will take the path pointing towards the goal, but
when reaching a deadend road it could remain stuck. Indeed taking the
same way back would result in an increase of the cost, if it does not take
into account a sufficiently long time horizon, and therefore the only way

13

A First Formalization 2. Reinforcement Learning

for the agent to minimize the cost would be to stand still. A better reward
signal would be to assign a constant negative value for every time instant
the agent is still within the maze: this express in a more accurate way the
concept of wanting it outside the labyrinth.

Figure 2.2: The maze example: the agent can move within the labyrinth starting from box fB
and it needs to exit the puzzle by reaching box aD. At every time step thee agent can choose to
move in any direction that is not obstructed by a wall. Every box is thought as a different state,
in which the resultant cost is written. The figures refer to two different cost signals.
In scheme a) it is presented the case of the cost function defined as the distance (in fictional
steps) between the position of the agent and the final goal. Even in this simple example, this
choice causes some problems. Indeed the agent is likely to move quickly towards box aC,
where it reaches a sort of local minimum for the cost function, and therefore it has no inten‐
tion of leaving that box, remaining stuck. The path that would lead it to the exit goes through
some boxes with high cost.
In case b) the only desire of exiting the maze is better expressed, so the agent is more likely
to fulfil its objective by reaching the final goal. In fact here it is penalized how much ”time” it
spends in searching the exit, forcing it to find its way out.

Having a longterm view of the costs it will face can lead to a much better
decisionmaking for the agent. As it has been said above, the true value
that should be taken into account in choosing a policy is the value function.
More formally, the agent will not try to minimize just the next reward Rt+1,
but instead the expected return, that is a function of the reward sequence.

14

2. Reinforcement Learning A First Formalization

In the most simple case it is given by:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + · · ·+Rt+T (2.5)

for a certain time horizon T ∈ N.
This approach is useful when the application has a natural definition for a
final step T , or when the agent cares about only a specific horizon. When
the agentenvironment interaction breaks naturally into subsequence, they
are called episodes. Episodes can all be considered to end in the same ter
minal state, with different rewards for different outcomes. Tasks based on
episodes are called episodic task.
In order to extend the set in which the value of T can be chosen to N∞ =

N∪{∞}, it is necessary to consider also a discount factor γ ∈ [0, 1], otherwise
the return could easily be infinite as well. By taking:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−1Rt+T =

T∑
k=0

γkRt+k+1 (2.6)

it is possible to weight howmuch the agent cares about the future by tuning
the value of γ, which is called discount rate. If γ is equal to 0, the agent is
not concerned with planning his behaviour, but only cares about maximiz
ing the payoff in the next step; if γ is equal yo 1, the reward at every time
step counts the same.
By taking γ < 1, even if the sum in (2.6) the time horizon is infinite, i.e.
T = ∞, the return will have a finite value as long as the reward sequence
{Rt} is bounded.
Almost all Reinforcement Learning algorithms involve the estimation of
value functions, that can be seen as a measure of the goodness of a given
state. A state is better than another if it yields a higher return for the con
sidered time horizon. Clearly the subsequent rewards will depend on the
actions taken by the agent, therefore value functions are defined with re
spect to particular ways of acting, called policies.
Formally, a policy is a mapping from states to probability distributions over
the set of actions A. If the agent is following policy π at time t, then π(a | s)
is the probability that At = a if St = s.

15

A First Formalization 2. Reinforcement Learning

The value function of a state s under a policy π , denoted as vπ(s), is the
expected return when starting in s and following π thereafter. For MDPs,
it is possible to define vπ(s) as:

vπ(s)
.
= Eπ [Gt |St = s] = Eπ

[
∞∑
k=0

γkRt+k+1 |St = s

]
(2.7)

for all s ∈ S.
If an agent follows policy π andmaintains an average, for each state encoun
tered, of the actual returns that have followed that state, then the average
will converge to the state’s value vπ(s) as the number of times that state
is encountered approaches infinity. This way of estimating value functions
follows the principle of Monte Carlo methods: they indeed involve averag
ing over many random samples of the actual returns. The Monte Carlo
approach will be discuss in further detail when the main contribution of
this work will be presented (Chapter 5).
A fundamental property of value functions is that they satisfy recursive re
lationships. For any policy π and any state s, the following consistency con
dition holds between the value of s and the value of its possible successor
states:

vπ(s)
.
= Eπ [Gt |St = s]

= Eπ [Rt+1 + γGt+1 |St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p (s′, r | s, a) [r + γE [Gt+1 |St+1 = s′]]

=
∑
a

π(a | s)
∑
s′,r

p (s′, r | s, a) [r + γvπ (s
′)]

(2.8)

for all s ∈ S.
This last equation is called Bellman equation for vπ(s). It express a relation
ship between the value of a state and the values of its successor states, and
it is a key ingredient of many ways to compute, approximate and learn vπ.
The final goal of a Reinforcement Learning algorithm is to find a policy that
achieves a lot of reward over the long run. Since value function establish
a partial ordering over policies, for finite MDPs it is possible to define an

16

2. Reinforcement Learning Applications

optimal policy in the following way. A policy π is said to be better than or
equal to a policy π′ if the expected return is greater than or equal to that
of π′ for all states. Namely, π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S.
There will be always at least one policy that is better than or equal to all
other policies: this is an optimal policy, denoted as π∗.
There be more than one optimal policy, however they share the same state
value function, defined as:

v∗ (s)
.
= max

π
vπ (s) (2.9)

for all s ∈ S.
Clearly the Reinforcement Learning agent will learn the optimal policy only
rarely and in simple cases: for most of the task that are often considered,
optimal policies can be generated only with extreme computational cost.

2.6 Applications

Reinforcement Learning has countless fields of applications. This can be
easily understood by thinking about how many objects in every day life are
used in a repetitive way, with small variations in operative behaviour over
time, that could be learned automatically.
Moreover, there is a much larger set of things that could benefit from learn
ing from interaction, although not having necessarily a repetitive task. One
fascinating example is given by dynamic random access memories (DRAM).
The job of a DRAM memory controller is to efficiently use the interface be
tween the processor chip and an offchip DRAM system to provide the high
bandwidth and lowlatency data transfer necessary for highspeed program
execution. A memory controller needs to deal with dynamically changing
patterns of read/write requests while adhering to a large number of timing
and resource constraints required by the hardware. This is a formidable
scheduling problem, especially with modern processors with multiple cores
sharing the same DRAM.
Considering policies that take advantage of past scheduling experience and

17

Applications 2. Reinforcement Learning

account for longterm consequences of scheduling decisions can improve the
way the DRAM works over time for refreshing operations.
In 2008 researchers in [3] indeed designed a reinforcement learning memory
controller and demonstrated that it can significantly improve the speed of
program execution over what was possible with conventional controllers at
the time.
One of the most suitable environment for the application of Reinforcement
Learning algorithms is the game framework. Indeed game such as Check
ers are characterized by a simple environment in which most of the time
the set of actions for a player is quite limited and setting a reasonable re
ward function is often straightforward. If this is the case, the procedure
of learning is computationally feasible even exploring all set of actions and
considering a long time horizon in reward evaluation.
However considering just little more challenging cases such as Chess or Go,
an exhaustive search becomes unfeasible because the search space grows
very large. Nonetheless for Go the main difficulty is the definition of an
adequate position evaluation function. A good evaluation function allows
search to be truncated at a feasible depth by providing relatively easyto
compute predictions of what deeper search would likely yield: there is still
no such function for Go.
One of the greatest challenges in applying reinforcement learning to real
world problems is deciding how to represent and store value functions and/or
policies. Unless the state set is finite and small enough to allow exhaustive
representation by a lookup table—as in many of our illustrative examples—
one must use a parametrized function approximation scheme. Whether lin
ear or nonlinear, function approximation relies on features that have to be
readily accessible to the learning system and able to convey the information
necessary for skilled performance. Most successful applications of reinforce
ment learning owe much to sets of features carefully handcrafted based on
human knowledge and intuition about the specific problem to be tackled.
Function approximation becomes necessary when dealing with more com
plex frameworks such as Go itself or video games, which represent an in
teresting middle ground between a too limited framework and a real case
scenario.

18

2. Reinforcement Learning Applications

Another interesting feature of Reinforcement Learning is its connection
with Neuroscience. Indeed many core algorithms developed for Reinforce
ment Learning have been discovered to actually operate inside the brain.
This point of contact involves dopamine, a chemical deeply involved in re
ward processing in the brains of mammals. Dopamine appears to convey
temporaldifference errors to brain structures where learning and decision
making take place. From the convergence of computational reinforcement
learning and results of neuroscience experiments the reward prediction er
ror hypothesis of dopamine neuron activity emerged as a successful tool for
thinking about rewardbased learning in animals.

19

3
System Identification Synopsis

The generality of the concept of system allows the study of models associated
with it to play a leading role in almost all modern scientific disciplines.
A system is defined as an object in which variables of different kind inter
act and produce observable signals and its model is a set of equations which
describes it as sharply as possible, establishing relations among certain ob
served variables of the system.
In this chapter the basics of System Identification procedure are briefly
surveyed, with particular attention to Gaussian process models and kernel
based PEM estimate, which are two of the most used and widespread ap
proaches in learning dynamical systems and are part of the necessary back
ground to follow the main part of this Master Thesis.

3.1 Basics

The system identification procedure is based on three fundamental elements:

• The data

• The model class containing the candidate model

21

Basics 3. System Identification Synopsis

• A choice criterium by which candidate models can be ”ranked” using
the data

All models assume a directional dependency between an input or covari
ate u and the corresponding observable output or response y. Based on em
pirical observation the model attempts to describe the conditional distribu
tion p(y |u).
Moreover, the class of models described in this chapter assumes that this
relation can be decomposed into a systematic and a random component: the
systematic dependency is given by a function g : Rn → Rm such that the
sampling distribution, i.e. the likelihood, is of the form

p (y | g (u, ϕ) , φ) (3.1)

which describes the random aspects of the datagenerating process.
In models of the form (3.1) the parameter ϕ influences the core function,
while φ takes care of additional variables which define the random compo
nent.
Assume to observeN times the output {y(1), . . . , y(N)} and the input {u(1), . . . , u(N)}
of the considered system. Beside, y(k) ∈ Rm and u(k) ∈ Rn are taken simul
taneously. This experiment can be described by the regression model:

y (k) = gk (u (k) , ϕ) + e (k) , k = 1, . . . , N (3.2)

where gk : Rn × Rm → Rm is known, while parameter ϕ is chosen in such a
way to describe the relation between y(k) and u(k) properly through gk(·, ϕ);
e(k) is a random vector specified by φ and models both errors and the inad
equacy of gk(·, ϕ) to describe the inputoutput relation at the kth measure
ment.
Clearly for different values of the parameter ϕ, different values for the vari
ance of the noise should be considered. Suppose for example that data were
generated from a real model which is actually contained in the model class
considered in (3.2), with low realizations of the noise. If the identification
procedure were good enough to retrieve a suitable parameter ϕ̄, there would
be no need to consider a large value for the noise variance, since data are

22

3. System Identification Synopsis Gaussian Process Models

well explained. On the other hand a poor model needs to resort to large dis
turbances to account for the lack of precision in fitting the data. Therefore
parameters ϕ and φ are strictly connected: this issue will be addressed later
on.
Different frameworks rely on different definitions of the parameter ϕ. In
deed by taking it as an unknown but fixed vector, the estimation problem
will then fall under the Fisherian paradigm, in which it is postulated that
there exist an actual ϕ0 which describes exactly the considered system. This
hypothesis however is unrealistic since mathematical models are just ap
proximations of a real system: taking instead ϕ as a random vector, it is
followed the Bayesian approach.
As will be explained better in the next section, Bayesian inference is used to
describe how observed data change the beliefs and uncertainties about the
values of parameters in a given model, and subsequently how to address
the uncertainty about the model itself and how to choose the best model to
explain data.
Moreover, it is possible to further distinguish the estimation problem ac
cording to the space to which the parameter belongs, i.e. Φ ∈ Rp. When p is
finite, in (3.2) it is considered a parametric family of probability densities
F = {fϕ, ϕ ∈ Φ} for y(k) thus it is a parametric estimation; if it is considered
p =∞, i.e. an infinite dimensional parameter, it becomes a nonparametric
estimation problem.

3.2 Gaussian Process Models

The aim of inference is to identify the systematic component g(·) from em
pirical observations and prior beliefs: data comes in the form of an input
output pairwise observations, while prior belief needs to be formalised.
The parametric approach is to assume a structure for g(u, ϕ) with finitely
many parameters ϕ (as it happens with Neural Networks): in this case the
prior uncertainty about g is usually expressed in terms of a prior distribu
tion on ϕ. However, in situationswhere the form of g is not known, assuming
a particular parametric formmight be too restrictive: the drawback of para

23

Gaussian Process Models 3. System Identification Synopsis

metric models is that the accuracy by which g can be identified is bounded
by the best function having the assumed structure. Therefore it is an in
tuitively appealing approach to make inference about g directly, i.e. in a
nonparametric way.
The name Gaussian process model refers to using a Gaussian process (GP)
as a prior on g. The Gaussian process prior is nonparametric in the sense
that instead of assuming a particular parametric form of g(u, ϕ) andmaking
inference about ϕ, the approach is to put a prior on function values directly.
Hence, the model in (3.1) now rely on a latent function g, giving:

p (y | g, φ) (3.3)

which would be equal toN (y | g(u), σ2) in the case of a normal noise, with the
variance controlled by the additional parameter φ, i.e., φ = σ2. A Gaussian
process prior on g technically means that a priori the joint distribution of a
collection of function values g[1,N] = [g(u1), . . . , g(uN)]

T associated with any
collection of N inputs u[1,N] = [u1, . . . , uN]

T is multivariate normal:

p
(
g[1,N] |u[1,N], ψ

)
= N

(
g[1,N] |µ,K

)
(3.4)

with mean µ and covariance matrix K.
A Gaussian process is then specified by a mean function µ(u) and a covari
ance function k(u, u′, ψ) such thatKij = k(ui, uj, ψ) and µ = [µ(u1), . . . , µ(uN)]

T .
By choosing a particular form of covariance functionwemay introduce hyper
parameters ψ to the Gaussian process prior. Depending on the actual form
of the covariance function k(u, u′, ψ) the hyperparameters ψ can control var
ious aspects of the Gaussian process.
Note that the sampling distribution of y in (3.3) depends on g only through
g(u). As an effect the likelihood of y, given the data D .

= [u[1,N], y[1,N]], fac
torises

p (y | g, φ) =
N∏
i=1

(yi | g (ui) , φ) = p
(
y | g[1,N], φ

)
(3.5)

and depends on g only through its value at the observed inputs g[1,N]. Ac
cording to the model, conditioning the likelihood on g[1,N] is equivalent to

24

3. System Identification Synopsis Gaussian Process Models

conditioning on the full function g. This is of central importance since it
allows us to make inference over finite dimensional quantities instead of
handling the whole function g.
The posterior distribution of the function values, p(g[1,N] | D, φ, ψ), can be
computed according to the Bayes rule, so that it is possible to retrieve the
posterior predictive distribution of g(ũ) for any input ũ.
Furthermore, the joint prior distribution of g[1,N] and g(ũ) due to the GP
prior is multivariate normal

p
(
g[1,N], g (ũ) |u[1,N], ũ, ψ

)
= N

([
g[1,N]

g (ũ)

]
|

[
µ

µ∗

]
,

[
K K∗

KT
∗ K∗∗

])
(3.6)

where the covariance matrix is partitioned such thatK∗∗ is the prior covari
ance matrix of the g(ũ) and K∗ contains the covariances between g[1,N] and
g(ũ).
The conditional distribution of g(ũ) | g[1,N] is then given by

p
(
g (ũ) | g[1,N], u[1,N], ũ, ψ

)
=

N
(
g (ũ) |µ∗ +KT

∗ K
−1
(
g[1,N] − µ

)
, K∗∗ −KT

∗ K
−1K∗

) (3.7)

which is again multivariate normal.

3.2.1 Regression with Normal Noise

Bayesian inference about the latent function g in Gaussian process regres
sion models is analytically tractable if the observational noise is assumed
to be normally distributed.
The model assumes y = g(u) + ϵ where the additive observational error fol
lows a normal distributionN (ϵ | 0, σ2) such that p(y | g(u), φ) = N (y | g(u), σ2).
Again the noise variance σ2 is an additional parameter of the likelihood.
Given the observed input locations u[1,N] the likelihood of g becomes

p (y | g, φ) = N
(
y | g[1,N], σ

2IN
)

(3.8)

25

Gaussian Process Models 3. System Identification Synopsis

By detrending the data, it is possible to reasonably set the prior mean func
tion to zero, µ(u) = 0. Therefore the prior on the latent function values at
the observed inputs is

p
(
g[1,N] |u[1,N], ψ

)
= N

(
g[1,N] | 0, K

)
(3.9)

where the elements of the covariance matrix K are computed elementwise
using a covariance function k(u, u′, ψ). Since likelihood and prior are both
multivariate normal, the posterior on g can be calculated analytically.
Then the posterior predictive distribution of the latent function values g(ũ[1,Ñ])

for an arbitrary set of test locations ũ[1,Ñ] takes the form

p
(
g(ũ[1,Ñ]) | D, ũ[1,Ñ], φ, ψ

)
=

N
(
g (ũ) |KT

∗
(
K + σ2IN

)−1
y,K∗∗ −KT

∗
(
K + σ2IN

)−1
K∗

) (3.10)

The above argumentation generalises to an arbitrary set of input locations,
meaning that the posterior process g | D is again a Gaussian process with
posterior mean and covariance function

µ∗ (u) = k (u)T
(
K + σ2IN

)−1
y

k∗ (u, u
′) = k (u, u′)− k (u)T

(
K + σ2IN

)−1
k (u′)

(3.11)

where k(u) = [k(u1, u), . . . , k(uN , u)]
T is a vector of prior covariances between

u and the training inputs u[1,N]. Thereby for any given set of input locations
ũ[1,Ñ] it is possible to compute the posterior predictive distribution of the
corresponding function values g(ũ[1,Ñ]) which is a multivariate normal dis
tribution.
So far inference over the latent function g has been described for a given
noise variance φ = σ2 and hyperparameters ψ of the Gaussian process
prior. Typically, values of these parameters are not known a priori. In a
full Bayesian setting one should also perform inference over these parame
ters.
Assigning prior distributions p(φ) and p(ψ) it is possible to resort to maxi
mum likelihood approaches in order to find out the best performing values

26

3. System Identification Synopsis Dynamic Models

for the above variables; alternatively validations schemes are available for
an efficient way of estimating those quantities.

3.3 Dynamic Models

Clearly the regression model in (3.2) is a static model because gk describes
the relation only between y(k) and u(k). Choosing gk which describes the
relation between y(k) and u(k), . . . , u(k − h), with h ∈ N, it is possible to
obtain a dynamic regression model having the structure:

y = g(u, ϕ) + e (3.12)

where the variance of e again depends on the additional parameter φ.
However considering amore controloriented paradigm, it arises the need to
deal with a more structured model, including both the inputoutput relation
and the effects on the input of the feedback controller.
Defining F(z) as the model of the plant, G(z) as a forming filter that shapes
the noise,−H(z) as the controller, andw(t) as the reference signal, a general
linearmodel with feedback describing the dynamical relation between u and
y is: y (t) = F (z)u (t) + G (z) e (t)

u (t) = H (z) y (t) + r (t)
(3.13)

where

• F(z), G(z), H(z) are analytic and causal;

• G(z) and G(z)−1 are analytic, causal, BIBO stable and G(∞) = I;

• F(∞) = 0 (strictly causal);

• e is white noise;

• w is a wide sense stationary deterministic process

• F , G, H are such that the transfer matrices governing the relations
w → y, e→ y, y → u and e→ u are BIBO stable.

27

Dynamic Models 3. System Identification Synopsis

A block diagram scheme representing the model with feedback in (3.13)
is depicted in Fig. 3.1.

MODELS WITH FEEDBACK 77

3. F(∞) = 0 (i.e. strictly causal);

4. e is white noise;

5. w is a WSS deterministic process;

6. F ,G,H are such that the transfer matrices governing the relations w 7→ y,
e 7→ y, y 7→ u and e 7→ u are BIBO stable.

Remark 4.2 F(z) has a delay to avoid algebraic loops. In the case that H(z) = 0
we can take F(z) without delay.

H(z)

F(z)

G(z)

w(t) y(t)

e(t)

u(t)

Figure 4.1: Model with feedback (4.3).

In system identification, the aim is to identify the red part of the diagram in Fig-
ure 4.1. The above model is common in many applications, where:

F(z) models the plant;

G(z)e(t) models disturbances and possible inadequacies of F(z);

−H(z) is the controller;

w(t) is the reference signal.

The presence of feedback is necessary to avoid the plant work in dangerous con-
ditions. On the other hand, the presence of feedback is not good to perform system
identification (we will see that).

Lect. 13

Figure 3.1: The model with feedback represented through a block diagram. The aim of System
Identification is to identify the red part, i.e. the transfer function of the plant and the ”shape”
of the noise that models both disturbances and inadequacies of the model.

Therefore, with the aim of finding the relation between y and u through
model

y (t) = F (z)u (t) + G (z) e (t) (3.14)

it would be useful to define a parameter ϕ characterizing model (3.14).

3.3.1 BoxJenkins Models

The BoxJenkins model is given by:

y (t) =
B (z)

F (z)
u (t− nk) +

C (z)

D (z)
e (t) (3.15)

28

3. System Identification Synopsis Dynamic Models

where

B (z) =

nB−1∑
k=0

bkz
−k → deg (B (z)) = nB − 1

F (z) = 1 +

nF∑
k=1

fkz
−k → deg (F (z)) = nF

C (z) = 1 +

nC∑
k=1

ckz
−k → deg (C (z)) = nC

D (z) = 1 +

nD∑
k=1

dkz
−k → deg (D (z)) = nD

(3.16)

and nk ∈ N is the input delay, e is white noise with variance σ2.
The parametrization yields:

ϕ = [b0, . . . , bnB−1, f1, . . . , fnF
, c1, . . . , cnC

, d1, . . . , dnD
]T (3.17)

The number of parameters p in ϕ is:

p = nB + nF + nC + nD (3.18)

3.3.2 OutputError Models

The OutputError model is a particular BoxJenkins model with nC = 0 and
nD = 0, that is C(z) = 1 and D(z) = 1.

3.3.3 ARMAX Models

The BoxJenkins model is given by:

A (z) y (t) = B (z)u (t− nk) + C (z) e (t) (3.19)

29

PEM method 3. System Identification Synopsis

where
A (z) = 1 +

nA∑
k=1

akz
−k → deg (A (z)) = nA

B (z) =

nB−1∑
k=0

bkz
−k → deg (B (z)) = nB − 1

C (z) = 1 +

nC∑
k=1

ckz
−k → deg (C (z)) = nC

(3.20)

and nk ∈ N is the input delay, e is white noise with variance σ2.
The parametrization yields:

ϕ = [a1, . . . , anA
, b0, . . . , bnB−1, c1, . . . , cnC

]T (3.21)

The number of parameters p in ϕ is:

p = nA + nB + nC (3.22)

3.3.4 ARX models

The ARX model is a particular ARMAX model with nC = 0, that is C(z) = 1.

For every model structure considered above, Φ contains only vectors for
which the conditions on the model with feedback in (3.13) are respected.

3.4 PEM method

The PEMmethod is a choice criterium for the best parameter ϕwhich is the
analogue of the LeastSquares principle in the static case.
Consider the model structureM:

M (ϕ) : y (t) = Fϕ (z)u (t) + Gϕ (z) e (t) (3.23)

30

3. System Identification Synopsis PEM method

that can be implemented through BJ, OE, ARMAX or ARX models.
This approach rely on predictions of the output variable, therefore in the
following is computed a suitable onestepahead predictor of y given its past
and the past of u.
By multiplying on the left equation (3.14) by G(z)−1 (causal and BIBO stable
by assumption), it can be written:

G (z)−1 y (t) = G (z)−1F (z)u (t) + e (t) (3.24)

Since G(∞) = I, by defining

G1 (z)
.
= G (z)− I (3.25)

it will be G1(∞) = 0, therefore G1(z) is BIBO stable and strictly causal. Then:

G (z)−1 (G (z)− G1 (z)) y (t) = G (z)−1F (z)u (t) + e (t)

y (t)− G (z)−1 G1 (z) y (t) = G (z)−1F (z)u (t) + e (t)

y (t) = G (z)−1 G1 (z) y (t) + G (z)−1F (z)u (t) + e (t)

(3.26)

Then it is possible to conclude that

ŷ (t | t− 1) = G (z)−1 G1 (z) y (t) + G (z)−1F (z)u (t) + e (t) (3.27)

is a onestepahead linear predictor of y given the past of y and u.
It can be also proved that ŷ (t | t− 1) is the minimummean square error pre
dictor.
If at time t only the past data {y(s), u(s), s < t} are available, a good predic
tion of y(t) under modelM(ϕ) given the past data is

ŷϕ (t | t− 1) = Gϕ (z)−1 G1,ϕ (z) y (t) + Gϕ (z)−1Fϕ (z)u (t) + e (t) (3.28)

that yield a prediction error defined as: ϵϕ(t) .= y(t)− ŷϕ(t | t− 1).
Considering the whole dataset:

u[1,N]
.
= [u (1) , . . . , u (N)]T

y[1,N]
.
= [y (1) , . . . , y (N)]T

(3.29)

31

Kernelbased PEM Method 3. System Identification Synopsis

it is possible to compute the prediction at every time step and compare it
with the actual output. The predictor in (3.28) however must be initialized
with initial conditions: since they are unknown as well, they are set ot zero.
By doing that it is then possible to compute an approximation of ϵϕ(t) for
t = 1, . . . , N .
From the above observation an estimate of ϕ is given by minimizing the
term:

1

σ2

N∑
t=1

ϵϕ (t)
2 (3.30)

or equivalently

VN (ϕ)
.
=

1

N

N∑
t=1

ϵϕ (t)
2 (3.31)

since the true parameter σ2 is unknown, and the expression (3.30) and (3.31)
yield the same minimum. Accordingly the Prediction Error Minimization
(PEM) estimate is:

ϕ̂PEM

(
y[1,N], u[1,N]

)
= argminϕ∈ΦVN (ϕ) (3.32)

The corresponding estimated model isM(ϕ̂PEM(y[1,N], u[1,N])).
Moreover an estimate of the noise variance σ2, and therefore a reasonable
value for the parameter φ, is given by:

σ̂2
(
y[1,N], u[1,N]

)
=

1

N

N∑
t=1

ϵϕ̂PEM
(t)2 (3.33)

3.5 Kernelbased PEM Method

The kernelbased PEM method is a choice criterium for the best parameter
ϕ which is the analogue of the Regularized LeastSquares principle in the
static case.
This kind of approach deals with nonparametric models under a Bayesian
perspective. For every model in (3.24) it can instead be considered a finite

32

3. System Identification Synopsis Kernelbased PEM Method

version in which transfer functions are truncated to their practical length:
indeed given that a transfer function F (z) =

∑∞
k=0 fkz

−k is BIBO stable, it
is known that fk → 0 as k →∞. Therefore since both G(z)−1 and G(z)−1F (z)

are analytic, causal and BIBO stable, any nonparametric model can be ap
proximated through an ARX model given by:

A (z) y (t) = B (z)u (t− nk) + e (t) (3.34)

whereA(z) andB(z) are the truncated approximations ofG(z)−1 andG(z)−1F (z),
respectively. Consider the nonparametric OutputError model:

y (t) = F (z)u (t− nk) + e (t) (3.35)

where F (z) =
∑∞

k=0 fkz
−k is a random transfer function, i.e. fks are random

variables. Its practical approximation is given by the following ARX model:

M (ϕ) : y (t) = B (z)u (t− nk) + e (t) (3.36)

where B(z) =
∑nB−1

k=0 bkz
−k is a random transfer function, and nb − 1 is the

practical length of F (z).
Equation (3.36) can be rewritten as

y (t) = φ (t)T ϕ+ e (t) (3.37)

where φ(t) = [u(t − 1), u(t − 2), . . . , u(t − nB)]
T , ϕ = [b0, b1, . . . , bnB−1]

T is a
random vector such that E[ϕ] = 0 and E[ϕϕT] = K = KT ≻ 0. K is called
kernel matrix. ϕ contains the coefficients of the impulse response of B(z).
From E[ϕϕT] = K it can be derived E[∥ϕ∥2k−1] = nB. The latter means that
∥ϕ∥2k−1 is bounded in mean and so it is reasonable to assume that a real
ization is bounded too. Given data (yN , uN), drawing inspiration from the
PEM method from the previous section and in view of the last observation,
an estimate of ϕ is given by minimizing the fit term 1

σ2

∑N
t=1 ϵϕ (t)

2 under the
constraint that ∥ϕ∥2k−1 is bounded.

33

Kernelbased PEM Method 3. System Identification Synopsis

It can be proved that the problem is equivalent to:

ϕ̂K

(
yN , uN

)
= argminϕ∈Φ

1

σ̂2

N∑
t=1

ϵϕ (t)
2 + ∥ϕ∥2K−1

= argminϕ∈Φ

N∑
t=1

ϵϕ (t)
2 + σ̂2 ∥ϕ∥2K−1

(3.38)

that is the kernelbased PEM estimate using kernel K.
The corresponding model isM(ϕ̂K(y

N , uN)).
Different kernels can be designed according to the prior knowledge that is
available for the estimation problem at hand.
Consider the ARX model

y (t) = B (z)u (t− nk) + e (t) (3.39)

The Diagonal kernel is represented by a matrix of the form

K = λdiag
(
β, β2, . . . , βnB

)
(3.40)

with 0 < β < 1, and it is possible to prove that the use of this kernel im
poses BIBO stability on B(z) as nB → ∞. In this case there are two hyper
parameters, therefore φ = [λ, β].
In order to further impose the boundedness of the first derivative for thee
impulse response of B(z) while keeping the constraint on BIBO stability it
is possible to consider the TunedCorrelated kernel that is given by

K = λKTC where (KTC)i,j = min
{
βi, βj

}
(3.41)

with the same hyperparameters as before.
In both kernels

√
β can be understood as an upper bound of the slowest

mode in B(z).

34

4
Current Approaches

In this chapter the state of the art in Reinforcement Learning is briefly sum
marized, with the emphasis on the dichotomy betweenmodelbased perspec
tive andmodelfreemethods. First of all the main framework is restated in
a controloriented fashion, then the two main approaches will be presented
with the help of actual algorithms that follow one or the other methodology.

4.1 Control with Unknown Dynamics

Both Control Theory and Reinforcement Learning study how to use past
data to enhance the future manipulation of a dynamical system, although
from different viewpoints: the latter is a data driven approach while the
former heavily relies on a model of the system. Moreover, while in control
engineering the main focus may be to design a controller that drives the sys
tem as specified by a reference signal with a robust solution, Reinforcement
Learning algorithms achieve impressive performances but they are neither
safe nor reliable. Indeed in every discipline that is strongly involved with
any kind of learning, there is always the possibility that the algorithm is
missing a crucial aspect of the environment that had never manifested it

35

Control with Unknown Dynamics 4. Current Approaches

self before, and thus a slight change in the setting might result in very poor
performances or even dangerous behaviour.
Since these two fields share the same aim to design systems that use richly
structured perception, perform planning and control that adequately adapt
to environmental changes, and exploit safeguards when surprised by a new
scenario, it could be useful to consider both perspective and how they ad
dress the same problem. Indeed, understanding how to properly analyse,
predict and certify such systems require insight from currentmachine learn
ing practice and from the applied mathematics of optimization, statistics
and control theory.
The same Reinforcement Learning framework presented in Chapter 2, Sec
tion 2.5 can be restated with the shape of a classical optimal control prob
lem.
The system is represented by a dynamical system governed by the difference
equation:

xt+1 = ft (xt, ut, et) (4.1)

whit xt as the state of the system, ut as the control action, and et as a random
disturbance. ft is the rule that maps the current state, control action, and
disturbance to the next state for the agent. The cost is a function of the
state and the input, C(xt, ut), that is generated by the system and it is sent
to the agent.
As it has been previously illustrated, the goal of the learner is to minimize
the cost. This formally corresponds to solving the problem:

minimize Eet

[
T∑

t=t0

Ct (xt, ut)

]
subject to xt+1 = ft (xt, ut, et)

(4.2)

That is, the aim is to minimize the expected reward over T time steps with
respect to the control sequence ut, subject to the dynamics specified by the
statetransition rule ft.
It is assumed that ut is to be chosen having the knowledge of states xt0
through xt and previous input ut0 through ut−1.
The term trajectory will be referred to as a sequence of states and control

36

4. Current Approaches Control with Unknown Dynamics

actions generated by a dynamical system, defined as:

τt
.
= (ut0 , . . . , ut−1, xt0 , . . . , xt) (4.3)

Note that, being the cost a function of the state and input at a certain time,
the only way in which the agent can affect it is through the control input,
that is in fact the only free variable.
Since the environment is uncertain, the dynamics ft are stochastic, and
the agent should be able to observe the state before deciding upon the next
action, in order to mitigate the unreliability of the model. In a more gen
eral framework, the agent has access to the whole trajectory, to improve
its decisionmaking. Therefore, rather than optimizing over deterministic
sequences of controls ut, the minimization is carried out over policies.
A control policy π is a function that takes a trajectory from a dynamical sys
tem and outputs a new control action. Hence, in the statement (4.2), the
input control will take the form of ut = πt(τt).
Policies πt are the only decision variables of the problem.
As it has already been highlighted, the challenging part comes from the un
certainty about the model. This is often the case, and it could be the result
of a system that is too difficult to model, or it could refer to an actual lack
of knowledge of inner dynamics. In any case, it is impossible to solve Prob
lem (4.2) using standard optimization methods: it is first necessary to learn
something about the system, and then exploit this knowledge in order to
choose the best policy.
The main paradigm in Reinforcement Learning suggest to decide on a pol
icy π and a time horizon L; then the policy is implemented on the real sys
tem and it returns a trajectory τL and a sequence of costs {Ct(xt, ut)} for
t = t0, . . . , L. The aim is to find the policy that minimizes the cost with
the fewest total number of samples computed by the oracle, that is, by ques
tioning the system. By running m queries with horizon length L, the total
cost, in terms of samples, would be mL. This is the oracle model and the
procedure falls within the context of the episodic Reinforcement Learning.
The tradeoff between exploration and exploitation that has been introduced
in Chapter 2, Section 2.4 becomes now clearer: the aim is to obtain an high

37

State of the Art 4. Current Approaches

expected reward for the derived policy, while keeping the number of oracle
queries as small as possible.
Each episode returns a complex feedback signal of states and costs: this
kind of oracle it is considerably more complicated than the ones typically
considered in oracle models for optimization.
The problem of finding the best policy is still illposed, since there is no
clear definition of the optimality measure that should be satisfied. It is pos
sible to evaluate the cost given a fixed number of samples, or evaluating the
number of samples necessary to reach a certain threshold for the cost: one
algorithm could be better than another in one case and worse in the other.

4.2 State of the Art

Nowadays two different viewpoints have become the cornerstones in dealing
with the statetransition function uncertainty, differing from each other for
the way in which they exploit the interaction with the real system: Model
Based andModelFree Reinforcement Learning.
Themodelbased approach aims at learning amodel of the system dynamics,
fitting it to previously observed data, and then use strategies from optimal
control theory to solve Problem (4.2).
In modelfree Reinforcement Learning the model is neglected, eschewing
the need for learning the statetransition function, and it is directly sought
a map from observation to actions.
The latter methodology aims to solve optimal control problem only by prob
ing the system and improving strategies based on past rewards and states.
These are in some sense more direct methods, since they deal with the true
system itself, trying to reach the goal. Indeed the knowledge of the model
is not required for learning the task and often complex details are involved
in order to simulate a dynamical system. Moreover, different models of the
system can lead to the same policy, therefore retrieving a rich and detailed
model might not be a good approach, if it does not improve the resulting
policy.

38

4. Current Approaches ModelBased Reinforcement Learning

4.3 ModelBased Reinforcement Learning

The main obstacle in dealing with the problem is represented by the uncer
tainty in the statetransition function, therefore the most obvious strategy
would be to come up with an estimate of the system dynamics and to rely on
this predictive model to find a solution for the prescribed control problem.
The estimate of the statetransition function is called nominal model, and
the input control designed assuming the estimated model is true is referred
to as nominal control.
System Identification is the branch of Automation Engineering that aims
at estimating models for dynamical systems from data, addressing the prob
lem posed by the lack of knowledge of the statetransition function. It is a
wide field, that differs from conventional estimation in many aspects. Dis
tinctive features are the need for a careful design of the training inputs,
in order to excite various degrees of freedom and at the same time avoid
nonlinear phenomena; and correlation over time of the dynamical outputs
with the parameters to be estimated, the inputs fed to the system and the
stochastic disturbances. A further insight in System Identification can be
found in Chapter 3, while in the following is considered a very simple strat
egy just to set up the modelbased framework.
All is required is a predictor of xt+1 built from the trajectory history. The
simplest approach would be to inject a random probing sequence ut for con
trol and then measure how the state responds. Up to stochastic noise, the
sought function should satisfy:

xt+1 ≈ g (xt, ut) (4.4)

where g is some model aiming to approximate the true dynamics.
Clearly g might be a parametric function based on firstprinciples physical
model or it may arise from a neural network as a nonparametric approx
imation. This generic statetransition function can then be made suitable
through supervised learning using collected data. The trained function will
be denoted as ĝ.
Clearly the predictor will not match exactly the true dynamical system,

39

ModelBased Reinforcement Learning 4. Current Approaches

therefore a random variable et is taken into account as a model for the noise
process.
Relying on the estimated function, it is possible to solve the optimal control
problem:

minimize Eet

[
T∑

t=t0

Ct (xt, ut)

]
subject to xt+1 = φ̂ (xt, ut) + wt, ut = π (τt)

(4.5)

However the solution will not be an optimal control policy π∗
t , as 4.5 is not

the initial problem that had to be addressed: the model is incorrect, and
moreover this formulation requires some plausible model of the noise pro
cess.
The main drawback of this approach is indeed model bias: the algorithm
needs to rely on the estimated model in order to search for the best policy,
thus claiming the correctness of the estimated statetransition function and
neglecting possible approximations or errors introduced by the system iden
tification procedure.
Nonetheless, if ĝ and f are close, this approach might work well in practice.

4.3.1 PILCO

In recent literature, one of the most effective algorithms that works under
the modelbased perspective and still addresses the problem of model bias,
is PILCO.
The main idea in the work proposed by Deisenroth & Rasmussen [2] is to
learn a probabilistic dynamicsmodel and explicitly incorporatemodel uncer
tainty into longterm planning. Instead of relying on the estimated model,
a posterior distribution over transition functions is considered, allowing to
reduce model bias and to quantify the level of uncertainty about the model.
By maintaining the framework presented above, with the state space be
ing RD and the input space RF , the aim of the algorithm is to minimize the

40

4. Current Approaches ModelBased Reinforcement Learning

expected return averaged on the initial state, over policies π(τt, θ):

Jπ (θ) =
T∑

t=t0

Ext [C (xt, ut)] , x0 ∼ N (µ0,Σ0) (4.6)

The probabilistic dynamics model is implemented as a Gaussian Process,
where tuples (xt−1, ut−1) ∈ RD+F are used as training inputs and ∆t = xt −
xt−1 + ϵ ∈ RD, ϵ ∼ N (0,Σϵ), Σϵ = diag([σϵ1, . . . , σϵD]) as training targets.
The Gaussian Process yields onestep predictions

p (xt |xt−1, ut−1) = N (xt |µt,Σt)

µt = xt−1 + Ef [∆t]

Σt = varf [∆t]

(4.7)

Since minimizing and evaluating Jπ in Eq. (4.6) requires longterm predic
tion of the state evolution, the state distributions p(x1), . . . , p(xT) are ob
tained by cascading onestep predictions in Eqs. (4.7). This requires map
ping uncertain test inputs through the Gaussian Process dynamics model.
For predicting xt from p(xt−1), it is required the joint distribution p(x̃t−1) =

p(xt−1, ut−1). Taking the control input as a function of the state alone and the
parameter, i.e. ut−1 = π(xt−1, θ), the necessary joint distribution is computed
by approximating the input as a Gaussian random variable, and again con
sidering the Gaussian approximation of the desired joint distribution.
Assuming then the knowledge of p(x̃t−1) = N (x̃t−1 | µ̃t−1, Σ̃t−1), it is possible
to predict the distribution:

p (∆t) =

∫
p (f (x̃t−1) | x̃t−1) p (x̃t−1) dx̃t−1 (4.8)

where the transition probability p(f(x̃t−1) | x̃t−1) is obtained from the Gaus
sian Process distribution.
Finally, aGaussian approximation to the distribution p(xt) is given asN (xt |µt,Σt)

41

ModelFree Reinforcement Learning 4. Current Approaches

with
µt = µt−1 + µ∆

Σt = Σt−1 + Σ∆ + cov[xt−1,∆t] + cov[∆t, xt−1]

cov[xt−1,∆t] = cov[xt−1, ut−1]Σ
−1
u cov[ut−1,∆t]

(4.9)

Both µt and Σt are functionally dependent on the mean µu and the covari
ance Σu of the control signal, and so on θ, through µ̃t−1 and Σ̃t−1. Hence, it is
possible to analytically compute the gradient of the expected return Jπ with
respect to the policy parameter θ, and thus update its value following the
gradient descent direction in order to get every step closer to the minimum
of Jπ.
The analytic gradient computation of Jπ should be much more efficient than
estimating policy gradient through sampling.
The overall procedure is sketched in Algorithm 1.

Algorithm 1 PILCO
1: init: Sample controller parameters θ ∼ N (0, I). Apply random control

signals and record data;
2: repeat
3: Learn probabilistic dynamics model, using all data;
4: Modelbased policy search;
5: repeat
6: Approximate inference for policy evaluation: get Jπ(θ);
7: Gradientbased policy improvement: get dJπ(θ)/dθ;
8: Update parameters θ;
9: until convergence;
10: return θ∗;
11: Set π∗ ← π(θ∗);
12: Apply π∗ to system and record data;
13: until task learned.

4.4 ModelFree Reinforcement Learning

Every algorithm that does not search for a model of the environment but
addresses the problem of minimizing the cost by taking actions falls under

42

4. Current Approaches ModelFree Reinforcement Learning

this category.
This paradigm is focused on directly learning a policy function from episodic
experiences, ignoring the statetransition function and relying only on re
wards as outcomes of a specific action taken into a specific state. These
policy driven methods turn the problem of Reinforcement Learning into
derivativefree optimization.
First of all it is reviewed a general paradigm for exploiting random sam
pling in order to solve optimization problem.
Consider in this regard the general unconstrained optimization problem:

maximizez∈Rd R (z) (4.10)

This can also be rewritten as an optimization problem over probability dis
tributions on z:

maximizep(z) Ep [R (z)] (4.11)

Indeed if z∗ is the optimal solution to (4.10), then (4.11) will return the same
value when placing a δfunction around z∗.
Moreover, being p a probability distribution, it is obvious that the expected
value of the reward function can never be higher than the maximal reward
achievable by a fixed z. Therefore it it possible to optimize over z or simi
larly over distribution functions over z.
Of course an optimization over the space of all probability densities would
be illposed and therefore intractable, hence it is necessary to restrict the
class of function over which the optimization is performed.
Considering a family of densities parametrized by a parameter vector θ,
p(z; θ), the problem becomes:

maximizeθ Ep(z;θ) [R (z)] (4.12)

As already noticed, if the family of distribution does not contain all the δ
functions, the resulting optimization problem only provides a lower bound
on the optimal value, no matter how good is the distribution that has been
found.
However, this representation provides a powerful ad general algorithmic

43

ModelFree Reinforcement Learning 4. Current Approaches

framework for optimization. Indeed by defining J(θ) .= Ep(z;θ) [R (z)] it is pos
sible to compute its derivative by using the so called ”loglikelihood trick”:

∇θJ (θ) =

∫
R (z)∇θp (z; θ) dz

=

∫
R (z)

(
∇θp (z; θ)

p (z; θ)

)
p (z; θ) dz

=

∫
(R (z)∇θlogp (z; θ)) p (z; θ) dz

= Ep(z;θ) [R (z)∇θlogp (z; θ)]

(4.13)

This derivation reveals that the gradient of J with respect to ϑ is the ex
pected value of the function:

G (z; θ) = R (z)∇θlogp (z; θ) (4.14)

Therefore, by sampling z from the distribution p(z;ϑ), it is possible to com
pute G(z, ϑ) thus retrieving an unbiased estimate of the gradient of J . A
common strategy to solve an optimization problem is provided by Stochastic
Gradient Descent, that is exactly given by updating the parameter following
the direction computed above.
This method is very simple to implement: the pseudocode is given in Algo
rithm 2.

Algorithm 2 REINFORCE
1: Hyperparameters: Stepsizes αj > 0.
2: init: θ0 and k = 0;
3: while ending condition not satisfied do
4: Sample zk ∼ p(z; θk);
5: Set θk+1 = θk + αkR(zk)∇θlogp(zk; θk)
6: Set k ← k + 1;
7: end

The benefits of this approach are the ease of implementation and as long as
it is possible to efficiently sample from p(z; θ), this algorithm can tackle any
problem.
However, this method operates on stochastic gradients of the sampling dis

44

4. Current Approaches ModelFree Reinforcement Learning

tribution, while the quantity to be maximized, R(z) can be only accessed
through function evaluations. Direct search approaches using loglikelihood
trick are necessary derivative free optimization methods and therefore are
less effective than methods that compute actual gradients, especially when
the function evaluations are noisy. Moreover, the choice of distribution can
lead to very high variance in stochastic gradients, resulting in the need for
many samples to be drown in order to find a stationary point.

4.4.1 Policy Gradient

The optimal policy for Problem (4.2) is always deterministic, nonetheless
the main idea behind policy gradient is to use probabilistic policies. These
are optimal for other optimization problems such as control of partially ob
served Markov decision processes or zerosum games.
By considering a parametric and randomized policy, the control input ut will
be sampled from a distribution p(u | τt, θ) that is a function of the currently
observed trajectory and the parameter vector θ.
A probabilistic policy induces a probability distribution over trajectories:

p (τ ; θ) =
T−1∏
t=t0

p (xt+1 |xt, ut) p (ut | τt; θ) (4.15)

Moreover, defining the reward of a trajectory as:

R (τ) =
T∑

t=t0

Rt (xt, ut) (4.16)

the optimization problem for Reinforcement Learning takes in fact the form
of Problem (4.12).
Policy Gradient thus proceeds by sampling a trajectory using the probabilis
tic policy with parameters θk, and then updating using Algorithm 2.
Following this approach, it should be remembered that the gradient of J
with respect to θ, computed with the loglikelihood trick, is not an explicit
function of the underlying dynamics: by shifting to distribution over poli

45

ModelFree Reinforcement Learning 4. Current Approaches

cies, the burden of optimization is left to the sampling procedure.

46

5
A Mixed Approach

This Chapter is focused on illustrating the main contribution of this work,
that is a mixed approach that exploit ideas from the two wellestablished
paradigms analysed before.
As it has been explained in Chapter 4, both modelbased and modelfree Re
inforcement Learning perspectives have their merits and defects, making
them suitable for different scenarios.
Modelbased Reinforcement Learning can be seen as a standard approach
in Control Engineering, since the main framework is based on a classical
optimal control problem, with the difference that the statetransition func
tion is at least partially unknown, and should be estimated through System
Identification. Once the datadriven model has been built, the best policy
can be found by resorting to optimal control techniques. It is then possible
to further improve the retrieved policy by relearning the model every time
as in PILCO (see Chapter 4, Section 4.3.1), that however significantly slows
down the algorithm.
Modelfree methods seem entirely different approaches, completely neglect
ing the role of the model and considering instead only the map from pair
stateaction to reward. Without looking for a whole knowledge of the sys
tem it is dealing with, this kind of perspective is much more committed

47

5. A Mixed Approach

to the idea of trying a new input, though based on previous history, and ob
serving if the reward improves or not, leading to a less safe search paradigm.
Indeed the selection of the policy for the very first trials on the systemmust
be almost completely random, since there is no information available on the
system. This can lead to the choice of a policy that jeopardises the proper
functioning of a mechanical system, or any other system that has precise
working regions.
Although it is true that the same problem affects the System Identification
procedure that needs to be carried out following the modelbased perspec
tive, in this latter case it is considered a wellestablished framework where
it is possible to proceed with caution. Therefore modelbased approaches
guarantee a safer interaction with the unknown system, though leading to
the need for learning a detailed model of the environment, which can be an
unnecessary step. Indeed sometimes only some characteristic features of
the model are useful to point towards a good policy: in such a scenario a
very detailed model and a simple one may carry the same amount of useful
information, resulting in a waste of data in the first case. Surely having
a straight interaction with the system through a certain policy is a much
more direct way of querying the system at hand, and return a more reliable
point estimate of the overall cost.
The idea from which the main contribution of this Master Thesis was orig
inated is to mix the two approaches in order to exploit the benefits of both
of them, while attenuating their drawbacks. In particular the core thought
is to run the modelbased procedure with only a few samples in order to re
trieve a raw model of the dynamical system and to use this knowledge as
a regularizer. As second step, following the modelfree perspective, some
policies are tried over the real system generating punctual estimates of the
cost, in order to provide samples that should be fitted by the reconstructed
function.
This method therefore provides a way to merge the two class of Reinforce
ment Learning algorithms in awhole paradigm, that should bemore flexible
than following just one of the single approaches.

48

5. A Mixed Approach Formalization

5.1 Formalization

In order to better understand how the aforementioned idea can be stated in
a more formal framework, the main elements of a Reinforcement Learning
paradigm are placed in a mathematical contest.
As far as the system to be addressed is concerned, the following model is
considered: xt+1 = f (xt, ut)

yt = h (xt) + et
(5.1)

where f is the unknown statetransition function representing the environ
ment, xt is the state in which the agent is located at time t, ut is the control
input, yt is the output of the system, et represents the noise disturbance at
the output channel and h is the output function of the system, which models
the fact that the whole state variable may be not accessible and so the only
information about the state of the system is the measurable output. This
choice has been made for the sake of clarity, however the output function
can bemerged together with the statetransition function as yt = h◦f(ut)+et
so everything can be thought in terms of state, which becomes equivalent
to the output.
As it is well known from Chapter 2 the goal of a Reinforcement Learning
algorithm is set by defining the cost function c(yt) that here depends on the
observable variables. By fixing a time interval T the return J is given by:

J (t0) =

t0+T−1∑
t=t0

λt−t0c (yt) (5.2)

where λ is the discount factor.
However, as it has been explained in the refined framework for control (see
Chapter 4, Section 4.1), the policy is the real decision variable of the prob
lem, providing the input that excites the system as a function of the past
trajectory. Dealing with a system of the form in (5.1), the only available
quantities are the outputs, which can be measured and thus be collected.

49

Formalization 5. A Mixed Approach

Therefore a more suitable version of the concept of trajectory is given by:

φt = [yt−1, . . . , yt−T , ut−1, . . . , ut−T , ut−T−1] (5.3)

that is related to the past behaviour of the system, being the statetransition
function unknown thus making impossible to formulate hypotheses on fu
ture states. yt−T represent the initial condition of the system, before any
input is applied.
In order to set up a search for the best policy with the goal of minimizing the
return, it is necessary to define a class to look in, otherwise the problem is
illposed: in the following it will be considered a general parametrization of
policies depending on the trajectory and the current output π(φt, θ, yt), with
θ being a parameter vector belonging to Θ ⊂ Rd.
The input at time t will then be given by ut = π(φt, θ, yt).
Fromnow on, following themodelbased approach, the statetransition func
tion should be reconstructed and then used to find the best value for θ rely
ing on the model retrieved. This can be done by using Nmb ∈ N inputoutput
pairs in order to run the estimation procedure, that are the only envisaged
interaction with the unknown environment.
The return, as a function of the parameter, will be then given by:

J (t0, θ) =

t0+T∑
t=t0

λt−t0c (yt)

subject to

xt+1 = f̂ (xt, π (φt, θ, yt))

yt = h(xt)

(5.4)

where f̂ is the learned statetransition function. In this way the return can
be analytically computed for any θ.
The best policy is then simply given by π(φt, θ

∗, yt), where θ∗ is the minimum
point of the return:

θ∗ = argminθ∈Θ J (t0, θ) (5.5)

On the other hand, modelfree methods suggest to fix a certain θ = θk, ap
ply the corresponding control, and then to perturb θ along the Stochastic

50

5. A Mixed Approach Formalization

Gradient Descent direction computed with the support of collected data. In
this case is not important to have a fully featured function for the return,
nonetheless a reconstruction based on point measures will be given by:

Ĵ (t0, θ) = argminJ∈J
1

Ntr

Ntr∑
k=1

∥J (t0, θ)− J (t0, θk)∥2 (5.6)

for example relying on a least squares estimate of the return function. J is a
space of functions that is needed to keep the problemwellposed, fromwhich
it should be selected the function that best fit the collected data. These are
given by J(t0, θk), for k = 1, . . . , Ntr, which represent actual values of the
return for the corresponding values of θ.
Clearly in order to get a single reliable point estimate of the return func
tion there is the need to interact with the system more than once: indeed
every value is obtained by summing T terms for the cost. Therefore system
queries are carried out at a higher cost, since the total number of interac
tions with the system is Nmf = NtrT ∈ N.
The proposed method rely on both modelbased and modelfree perspective:
instead of following a single procedure, these two approaches can be mixed
together in a regularized framework. The reconstruction carried out fol
lowing modelfree methods can indeed be seen as a fitting term, since this
approach provide actual samples from the return; while the procedure of
modelbased Reinforcement Learning can supply some knowledge about the
statetransition function and so about the shape of the return, in order to
improve the generalization capabilities of the estimated return function,
thus allowing to choose a better θ in term of rewards. In fact, following
the idea suggested in PILCO, by considering a probability distribution of
statetransition function instead of relying just on the simple estimate, it is
possible to avoid model bias and to build a regularization term that prefers
more plausible models. This however leads to a slight change in the model
based paradigm.
The overall reconstruction of the return as a function of the parameter fol

51

Formalization 5. A Mixed Approach

lowing the combined approach leads to:

Ĵ (t0, θ) = argminJ∈J

{
1

Ntr

Ntr∑
k=1

∥J (t0, θ)− J (t0, θk)∥2 + ρ ∥J∥2H

}
(5.7)

where H is a suitable space of functions inducting a particular norm based
on the model dynamics, and ρ is an hyperparameter that tunes the weight
between the two terms.
In standard regularization the penalty term has the effect of shifting the
minimum point towards a simpler model, that explains data sufficiently
well. Indeed if the function to be retrieved can take on an arbitrary degree
of complexity, and if solely the fitting term is considered for the reconstruc
tion, then the resulting function would interpolate all data fitting also noise
and ending uo having poor generalization capabilities and instability of the
solution to sample perturbations.
Nonetheless, by weighting models with the aim of expressing a preference
over more stable functions it is possible to balance the effect of data fitting
and to induce the reconstruction to perform better over fresh samples of the
sought distribution.
However in Problem (5.7) the role of the penalty term is different: it should
reflect a preference for models that are contained in a specific class, built ac
cording to the knowledge gained from the identification procedure applied
to the system. In order to follow such an approach, it would be necessary to
dispose of a distribution of J over θ, estimated by data at hand.
Suppose for themoment that the estimation procedure for the statetransition
function returned a probability distribution of J , describing how much vari
ability the model can have based on data collected. Than the norm induced
by the spaceH should have a value inversely proportional to the probability
of the model, which indeed reflect a preference over a more plausible model.
That is, a model fitting data coming from the modelfree approach perfectly
but having a very low probability in the distribution retrieved by the system
identification procedure will be discarded in favour of a model fitting data
slightly worse but having a higher probability of being the true model.
Therefore themain issue now is how to build such a functional space, retriev

52

5. A Mixed Approach A First Theoretical perspective

ing a probability distribution over return functions according to the mea
sured density over statetransition functions, thanks to the System Identi
fication procedure.
In what follows a very simple framework will be considered, in order to
better understand how this procedure might work and to introduce a theo
retical approach for the solution of the problem above.

5.2 A First Theoretical perspective

This first attempt is based on propagating the distribution resulting from
the system identification procedure thus obtaining a distribution over fu
ture states and future rewards, which should allow to compute an approxi
mation for the return density.
To keep this scenario as simple as possible, consider a Finite Impulse Re
sponse filter for the system identification procedure, given by:

yt = [h ∗ u]t−1 + et (5.8)

that can be seen as a simplified version of the OutputError model with
F (q) = 1, where et ∼ N (0, σ2) is themodel for the noise at the output channel
and h ∈ Rn is the FIR filter with practical length equal to n.
Suppose to excite the systemwith the input vector u = [u1, . . . , uNmb

] yielding
the following measurements:

y1

y2
...

yNmb

 = Φ

h1

h2
...
hn

+

e1

e2
...

eNmb

 , Φ =

u0 0 . . . 0

u1 u0 . . . 0
...

uNmb−1 uNmb−2 . . . uNmb−n

 (5.9)

where Φ is a Toeplitz matrix belonging to RNmb×n, considering the input pre
ceding 0 as zeroes. u0 is the input generated by the initial condition y0.
By running a kernelbased PredictionErrorMinimization processwith Tuned
Correlated kernel as regularizer, it is possible to obtain the distribution over

53

A First Theoretical perspective 5. A Mixed Approach

models as:
h ∼ N

(
ĥ,Σ

)
(5.10)

In order to keep the framework as simple as possible, a quadratic cost is
considered, expressing the goal of following a given reference rt for the sys
tem:

c (yt) = (yt − rt)2 (5.11)

The control law is governed by the policy, that depends on the previous
trajectory, the parameter θ and the current output yt:

ut = π (ϕt, θ, yt) (5.12)

Finally, by taking the discount factor as λ = 1 the return to be minimized
is given by:

J
(
θ, φ+

t

)
=

t0+T−1∑
t=t0

(yt − rt)2 (5.13)

where φ+
t is the future trajectory of the system.

Recall that the main purpose is to find a distribution over the return func
tion for a fixed value of θ = θ̄, exploiting the knowledge of past trajectory
and the distribution over h, i.e.:

J
(
θ̄, φ+

t |φt

)
∼ ? (5.14)

By propagating the probabilistic dynamics of the model, it is possible to re
trieve a probabilistic description of the future outputs yt+1, . . . , yt+T−1 from
which it can be derived an accurate characterization of the final return func
tion.
Following this perspective the expectation and the variance of yt given φt are
respectively denoted as ŷt and Σy

t , and relying on a Gaussian approximation
of the output variable it is possible to write:

yt |φt ∼ N (ŷt,Σ
y
t) (5.15)

54

5. A Mixed Approach A First Theoretical perspective

An elementary computation then yields:

ŷt = E
[
[h ∗ u]t−1 + et

]
= E

[
uT[t−1,t−n]h

]
= uT[t−1,t−n]ĥ (5.16)

since u[t−1,t−n] is completely determined from φt.

Σy
t = Var

[
[h ∗ u]t−1 + et

]
= Var

[[
uT[t−1,t−n]h

]]
+Var [et]

= uT[t−1,t−n]Σu[t−1,t−n] + σ2
(5.17)

The key fact that make the derivation of these quantity so easy is that the
past input is known and thus the variability on yt+1 is due only to the prob
ability distribution of h.
The computations in fact become more cumbersome as the time index pro
gresses:

yt+1 |φt = [h ∗ u]t + et+1 = uT[t,t−n−1]h+ et+1

= uth1 + uT[t−1,t−n−1]h[2,n] + et+1

(5.18)

that is not easy to be handled, since

ut = π
(
φt, θ̄, (yt |φt)

)
(5.19)

where yt |φt is a random variable.
As it can be seen from (5.19), the uncertainty on the output variable yt makes
the input at the same time ut a random variable as well. Therefore, with
out a meaningful description of the distribution of the input variable, it is
impossible to advance further in computing yt+1|φt. By assuming again a
Gaussian distribution for ut, is then necessary to determine E[ut]

.
= ût and

V ar[ut]
.
= Σu

t .
This can be done by resorting to a Taylor expansion of the first order, which
considerably simplifies the problem at the price of introducing another sig
nificant approximation in the framework:

ut = π
(
φt, θ̄, yt

)
≈ π

(
φt, θ̄, yt

)∣∣
yt=ŷt

+
∂π

∂yt

(
φt, θ̄, yt

)∣∣∣∣
yt=ŷt

(yt − ŷt)
(5.20)

55

A First Theoretical perspective 5. A Mixed Approach

thus retrieving a complete yet approximate description of the density of ut
as

ut ∼ N
(
π
(
φt, θ̄, ŷt

)
,ΠT

t Σ
y
tΠt

)
(5.21)

where
Πt =

∂π

∂yt

(
φt, θ̄, yt

)∣∣∣∣
yt=ŷt

(5.22)

It is now possible to proceed with the computation related to yt+1|φt that
yield, for the expectation:

E [yt+1 |φt] = E
[
uth1 + uT[t−1,t−n−1]h[2,n] + et+1

]
= E [uth1] + E

[
uT[t−1,t−n−1]h[2,n]

]
+ E [et+1]

= E [ut]E [h1] + uT[t−1,t−n−1]ĥ[2,n]

(5.23)

where in the last step it has been assumed that ut and h1 were uncorrelated,
i.e. cov(ut, h1) = 0. The variance is approximated as:

Var [yt+1 |φt] = Var
[
uth1 + uT[t−1,t−n−1]h[2,n] + et+1

]
= Var [uth1] + Var

[
uT[t−1,t−n−1]h[2,n]

]
+Var [et+1]

= (E [ut])
2Var [h1] + (E [h1])

2Var [ut] + Var [ut] Var [h1] +

+uT[t−1,t−n−1]Σh[2,n]
u[t−1,t−n−1] + σ2

=
(
π
(
φt, θ̄, ŷt

))2
Σh1,1 + ĥ21Π

T
t Σ

y
tΠt +ΠT

t Σ
y
tΠtΣh1,1+

+uT[t−1,t−n−1]Σh[2,n]
u[t−1,t−n−1] + σ2

(5.24)

where Σh[i,j]
is the square matrix retrieved form Σ from position (i, i) to po

sition (j, j).
By iterating this process, all future output variables can be characterized by
the Gaussian approximation of their distributions. However the true quan
tity of interest in order to retrieve a probability distribution for the return
are the costs, since its value is given by the lump sum of the latter over the
time horizon T .
The computation of the expectation is straightforward, while for the vari
ance can be helpful to resort again to a firstorder Taylor expansion, result

56

5. A Mixed Approach A First Theoretical perspective

ing in:
ct ≈ (yt − rt)2

∣∣
yt=ŷt

+
∂ct
∂yt

∣∣∣∣
yt=ŷt

(yt − ŷt) (5.25)

that yields the approximation for both mean and variance:

E [ct] = (ŷt − rt) (5.26)

Var [ct] = 4 (ŷt − rt)2Σy
t (5.27)

Being this derivation easy to be generalized for future time instants by iter
ating the procedure above, the final expectation for the return will be given
by:

E [J |φt] =

t0+T−1∑
t=t0

E [ct] (5.28)

Finally, assuming all the costs at different time instants as uncorrelated
from each other, an approximation of the variance of the return is given by:

Var [J |φt] = Var

[
t0+T−1∑
t=t0

ct

]
≈

t0+T−1∑
t=t0

Var [ct] (5.29)

completing the secondorder description of its distribution.
If this density is approximated as a Gaussian, then the computed quantities
are enough to have a full picture of the sought probability distribution, that
can be used in order to weight models as a penalty term. However, the true
density of the return is quite far from being a Gaussian, given for instance
that it is always positive being a quadratic form.

5.2.1 Setting and Simulations

As it has been highlighted, in order to carry on the procedure outlined above
it is necessary to first fix a value for θ, since there is the need to compute the
input ut given the output yt through the policy, that is θdependent. There
fore the result is an approximation of the probability distribution for J fol
lowing a fixed policy π̄ = π(φt, θ̄, yt).

57

A First Theoretical perspective 5. A Mixed Approach

Recall that the main goal of the overall algorithm is to find the optimal pa
rameter θ∗ that achieve the lowest possible cost in the time horizon T con
sidered. However, in this first stage it is just required that the distribution
of J is well approximated for any value of θ. If this is the case, it is possible
to run the procedure for a fine grid of values for θ and thus retrieve a rea
sonable prior to set up the regularization framework previously described.
Themost important thing is that this procedure does not involve any further
interactions with the unknown system, apart from those already carried out
for the estimation of the statetransition function. Therefore the cardinality
of the set of values for θ in which the distribution of J will be evaluated is
just a computational matter.
Simulations are needed to validate the meaningfulness of the derivation
outlined above. Indeed, despite its formal correctness, the computations
rely on strong assumptions and approximations that may heavily affect the
final outcome, hence there are no guarantees to obtain a suitable descrip
tion of the real distribution. Nonetheless, it would be enough to character
ize the main shape of this distribution, in order to make it useful in actual
implementations of the algorithm. Clearly it is possible that the practical
relevance of this approach depends highly on the considered setting.
In what follows a very simple framework will be considered, consisting of a
first test to validate the procedure.
For the true system it is considered an inputoutput relation with discrete
transfer function equal to:

G(z) =
0.28261z−3 + 0.50666z−4

1− 1.41833z−1 + 1.58939z−2 − 1.31608z−3 + 0.88642z−4
(5.30)

which is BIBO stable.
The function is estimated as a FIR filter

yt = F (z)ut−1 + et (5.31)

by means of kernelbased PEM method using the TC kernel.
500 realizations of a Gaussian white noise are used as inputs to obtain the
inputoutput pairs for the system identification procedure. The variance of

58

5. A Mixed Approach The main procedure

the noise at the output channel is set to σ2 = 0.1.
The policy under study is a simple proportional controller given by

π (ϕt, θ, yt) = θ (rt − yt) = ut (5.32)

while the time horizon is set to T = 10, and the initial condition is fixed at
0.
The controller should try to stabilize the system to a Heaviside step func
tion, i.e. rt = δ−1(t).
The distribution of the overall cost J is assumed to be Gaussian, with its
mean and variance computed as previously described, and it is compared
with the discrete distribution obtained by several Monte Carlo trials. In ev
ery trial it is considered a different realization of the statetransition func
tion and the system is propagated assuming that realization as the true
model: the resulting overall cost is seen as a realization of the distribution
of J . By extracting many samples it is possible to gain a reasonable descrip
tion of the underlying distribution.
From Fig. 5.1 it is possible to see that the Gaussian approximation of the
cost function does not yield good performances for any value of θ.
However the Monte Carlo sample reveal that the shape of the distribution
is not Gaussian at all, as one could expect.
Given the quadratic form of the cost, another assumption on the shape of
the distribution has been considered: by taking a noncentral X2 distribu
tion the results get better (Fig. 5.2).
However for many values of the parameter θ the approximation is still very
poor. Therefore in proposing the mixed approach between modelbased and
modelfree perspective, the Monte Carlo approximation will be considered.

5.3 The main procedure

In this section the actual algorithm will be proposed in its entirety, and it
will be then compared with both modelbased and modelfree perspectives.
With the purpose of eluding the issues raised by the computation and use

59

The main procedure 5. A Mixed Approach

-10 0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

Figure 5.1: In figures above are depicted the Monte Carlo distribution in blue, its best Guas‐
sian approximation in red and the actual Gaussian approximation from the procedure in green,
for θ = [−1,−0.5, 0, 1]

of an approximation of the distribution of J , another approach is here pre
sented, that exploit Monte Carlo principle.
Monte Carlo methods are a broad class of computational algorithm that rely
on repeated sampling in order to obtain numerical results. The central idea
is to collect enough data to have a good understanding of the distribution
from which they have been generated, or at least one of its specific features.
The simplest example of aMonte Carlo method is given by the sample mean,
which is the most intuitive estimator for the expectation of a distribution,
that consist in averaging all collected samples. The law of large numbers
ensures that the sample mean converges to the true value of the expectation
as the number of samples tends to infinity.
Monte Carlo approach can be used as an alternative to approximate the
distribution of J coming from the model estimated through system identifi

60

5. A Mixed Approach The main procedure

0 10 20 30 40 50 60 70
0

5

10

15

20

25

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

-1 0 1 2 3 4
0

5

10

15

0 5 10 15 20 25
0

5

10

15

20

25

30

Figure 5.2: In figures above are depicted the Monte Carlo distribution in blue and the actual
X2 approximation from the procedure in green, for θ = [−1,−0.5, 0, 1]

cation. That is, instead of computing the probability density of the return
as a function of the policy parameter θ, that result in a poor approximation
of the true distribution, the latter is sampled a large number of times and
these samples are used as a regularizator.
Indeed the regularization term should reflect an inductive bias over a re
turn function that is likely to match the statetransition mapping learned
from data collected exiting the system: this can be done either through a
penalty term that penalizes return function that do not represent a good
match for the estimated model, or through data sampled from the return
function built over the estimated model that should be fitted by the recon
structed function. This results in the same bias towards a certain class of
models, as required by the problem.
The samples from the return distribution can be obtained by extracting a
realization of the model following the learned density, and using that model

61

The main procedure 5. A Mixed Approach

to compute the return value for a fixed θ in a deterministic way. This leads
to a wrong bias of the framework towards the sampled model, but extract
ing many samples the results will reflect the true distribution and so the
real behaviour of the return.
This is the main contribution of this Master Thesis, i.e. an algorithm that
mixes both approaches and avoid cumbersome computation exploiting reg
ularization.
Keeping the same framework as in the previous section, the model is given
by (5.1) and the goal is to minimize the final cost over the time horizon T ,
given by (5.2), for a generic policy depending on the parameter vector θ.
Consider then having the possibility of querying the system only for a cer
tain number of times, Ntot: these should be devoted either to run the sys
tem identification procedure following the modelbased perspective, or to
interact with the system through a specific policy and evaluating its perfor
mance, as required by modefree methods. The proposed approach instead
suggests to split the interactions with the real system and to obtain two
different dataset: one will be used for retrieving a rough knowledge of the
system and the other to test some particular values of interest for the pa
rameter that defines the policy.
Hence it is required to assign to the system identification procedure a fixed
number of samples, Nmb, while leaving to the policy evaluation strategy the
other Nmf = Ntot −Nmb. Again it should be noticed that obtaining the punc
tual estimate for a specified policy involves interactions over the entire time
horizon considered. When the number of data is very limited this leads to
the constraint of having just a few samples to rely on when trying to retrieve
the cost function over θ.
As a further matter, by keeping the initial condition fixed, the framework
considered becomes too restrictive: what should be required instead is that
performances are satisfactory for a large set of initial states of the system
under study. In order to generalize the analysis for a random initial posi
tion, a very long time horizon is taken into account, and every sequential
subset of length T is regarded as a different outcome from the true system
driven by the same policy, with different initial conditions.

62

5. A Mixed Approach The main procedure

Therefore the cost generated for a certain policy would be:[
ct0 ct1 ct2 . . . ctL

]
(5.33)

with L >> T thus providing a total of L−T +1 different system trajectories
relying on the same policy but starting every time from a different initial
condition.
This procedure allows to mediate over initial states, while keeping as small
as possible the number of interaction with the system.
In the end the splitting will yield Nmb inputoutput pairs for the system
identification procedure to estimate the statetransition function, andNtr =

Nmb/L punctual evaluation of the cost in correspondence with different val
ues of the parameter θ.
The result of the estimation process is a a probability distribution over input
output mappings h ∼ (ĥ,Σh), here taken as Gaussian. This distribution is
then sampled NMC times, with NMC large enough in order to explore widely
the density of model. For each realization ȟ, the corresponding return J(θ̄)
is then computed for a given value of the policy parameter θ̄ ∈ Θ, averaging
over initial condition as explained above. Having removed all the random
ness by relying on a certain realization for the statetransition function, all
the computation can be carried out in a deterministic framework. This is it
erated for all the values of interest of the parameter θ. Hence, for each value
of θ on a grid that should be chosen beforehand, NMC different estimates of
J are found, already averaged over the initial condition, that represent the
discrete distribution of the cost for that specific θ. Therefore it is possible
to compute the sample mean and the sample variance of that distribution:
these two values will represent the punctual estimation of the cost and its
reliability, respectively.
In summary:

Ĵmb
(
θ̂
)
=

1

NMC

NMC∑
i=1

J̃ȟ

(
θ̂
)

Σmb
J

(
θ̂
)
=

1

NMC − 1

NMC∑
i=1

(
Ĵmb − J̃ȟ

)2 (5.34)

63

The main procedure 5. A Mixed Approach

where

J̃ȟ =
1

L− T + 1

L−T+1∑
i=1

ti−1+T−1∑
t=ti−1

cȟt

(
θ̂
)

(5.35)

being ȟ a realization of the distribution h over models.
The second part is related to the modelfree approach, and indeed consists
in fixing θ = θ̄ and acting on the real systemwith the control drawn from the
policy π(φ, θ̄, yt) for the whole time horizon L. The resulting values for the
return are the most reliable data for the later reconstruction of the return
function, in which the only uncertainty comes from the noise at the output
channel et. The estimates of the cost are given by averaging the obtained
costs over the initial conditions, and a measure of the reliability is given
again by the sample variance.

Ĵmf
(
θ̂
)
=

1

L− T + 1

L−T+1∑
i=1

ti−1+T−1∑
t=ti−1

ch0
t

(
θ̂
)

Σmf
J

(
θ̂
)
=

1

L− T

L−T+1∑
i=1

Ĵ − ti−1+T−1∑
t=ti−1

ch0
t

(
θ̂mf
)2 (5.36)

where h0 represent the true model.
Finally, the reconstruction of the cost function over θ should rely on both
kind of data. Since it is reasonable to assume that by continuously varying
the parameter, the cost will also vary continuously, a Gaussian process is
considered for the reconstruction. Moreover Gaussian process models al
lows to weight every punctual reconstruction in a different way, according
to its measure of reliability.
Depending on the problem at hand, different splitting ad different choices
of the grid of values for θ can be adopted, making the proposed approach
more flexible with respect to both procedures taken individually.
In the next section, an example is presented, which highlights the benefits
of the new method.

64

5. A Mixed Approach The main procedure

5.3.1 A prototypical example

In this section the comparison between the strategies discussed so far will
be analysed, with reference to a particular example.
Consider as the true model a fourthorder system, given by:

G(z) =
0.28261z−3 + 0.50666z−4

1− 1.41833z−1 + 1.58939z−2 − 1.31608z−3 + 0.88642z−4
(5.37)

which is BIBOstable.
The total number of interactions available to deal with the system is fixed
to Ntot = 200.
Considering a time horizon of T = 10 timesteps and the length of the
whole trajectory of costs generated when querying the system as L = 50,
is straightforward to see that modelfree strategies are disadvantaged be
cause they can operate on the system a maximum of 4 times. Although
precise, having so few estimates can not lead to a good reconstruction of the
cost function. Indeed the aim of modelfree perspective is not to gain a full
reconstruction of the cost, but just to improve iteratively the policy param
eter.
On the other hand, modelbased perspective is not affected by the choice of
T and L. Once the model has been determined, every further computation
can be carried out no longer by looking at the true system, but just at the
estimated one. This can be a successful approach, provided the system iden
tification procedure outputs a good model, and that is not always the case.
The policy considered in this example is a simple integrator given by

π (ϕt, θ, yt) = θ (ut−1 + rt − yt) = ut (5.38)

and the reference is still taken constant and equal to a Heaviside step func
tion, i.e. rt = δ−1(t).
The variance of the noise at the output channel is equal to σ2 = 0.01.
The true cost function depicted in Fig. 5.3 is evaluated by querying the ac
tual system with a fine grid of values for θ.
As it can be verified through standard computations, the interval for θ that
guarantees the BIBO stability of the system in closed loop is given by ap

65

The main procedure 5. A Mixed Approach

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

Figure 5.3: The true cost function evaluated for values of θ around the stability interval

proximately θ ∈ [0, 0.5]. In order to make the comparison more understand
able, both the values of θ for the modelbased approach and the ones for the
modelfree perspective have been taken within that interval.
As it has been said before, only four different kind of splitting are possible:

• Modelbased: 200 data are used to retrieve the model, and no direct
interaction with the system is considered

• Mixed approach 1: 150 inputoutput pairs for the model, and just 1
query on the real system

• Mixed approach 2: 100 data for the model, and 2 different values of θ
actually tested on the system

• Mixed approach 3: 50 data assigned to the model, 3 queries on the true
system

• Modelfree: No model is considered, only 4 direct interaction with the
system

66

5. A Mixed Approach The main procedure

Models are estimated as ARXmodel bymeans of kernelbased PEMmethod
using the TC kernel. The input is always taken as a Gaussian white noise.
For the comparison, the grid of values for θ in the modelbased approach is
set to [0 : 0.1 : 0.5] while the queries on the system are performed sampling
θ from a uniform distribution in [0, 0.5].
The reconstruction is performed by resorting to a Gaussian Process model,
with a high prior mean in order not to allow the minimum point to fall far
apart from the expected location.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

Figure 5.4: In figures above are depicted three different reconstructed cost function: the first
is related to model‐based, the second resulted from mixed approach 3 and the last one from
model‐free

Three different reconstructed cost function taken from the same run are
shown in Fig. 5.4 The result shown in Fig. 5.5 confirms the benefits of get
ting a rough idea of the model of the cost function, and then directly interact
with the system in order to have reliable punctual measure to build a better
estimate of the sought cost.
Indeed the modelfree perspective here is voluntarily penalised since there
is no real strategy behind the choice of the values of θ with which to query
the system. However this framework allows for a fair comparison between
different approaches. It is indeed clear how relying on just a few cost values
makes the estimate unstable.
In any strategy that instead exploits an estimate of the model, it is possi
ble to see that reconstructions from different runs of the whole procedure do
not differ much from each other. This stable behaviour is guaranteed by the
presence of the model. Moreover it is also clear that there is no need for an
accurate estimate of the statetransition function: it is much more effective
to leave most of the interactions for directly query the system, while having

67

The main procedure 5. A Mixed Approach

MB MIX1 MIX2 MIX3 MF

0.7

0.8

0.9

1

1.1

1.2

Figure 5.5: Boxplot of the performances of the different strategies. Values are obtained run‐
ning a query on the true system with the value of θ that resulted the minimum point for the
reconstruction with each method. The boxplots are the result of more iterations for the same
procedure. It is clear how the model‐free perspective has a larger variability, and how mixing
the two paradigm results in a improvement from both the two perspectives

some prior knowledge over the shape of the cost function.
Indeed one of the best strategy to exploit this mixed approach would be to
sample the values for θ that should be used to address the system directly
from a custom distribution built upon the model estimated from the model
based step. This would allow the function to be refined more likely where
the cost is low.

68

6
Conclusions

The different perspectives ofModelBasedReinforcement Learning andModel
Free Reinforcement Learning have been deeply analysed and reviewed. Al
though the two framework seem very different as Reinforcement Learning
paradigm, restating the problem in the Optimal Control framework pro
vided a tool for mixing the two opposed scenarios.
Modelfree methods completely neglect the model of the environment, while
searching for a direct mapping form policy to reward. Modelbased strate
gies instead put all of their efforts in trying to retrieve the best possible
model for the environment, in order to move the learning paradigm into
System Identification.
However this two approaches can be linked through regularization. Indeed
from the model of the environment it is possible to generate data for the
estimation of the cost function by means of Monte Carlo procedures. This
kind of data are part of the same framework that involves punctual evalua
tions from modelfree perspective.
Restated in this perspective, the two different approaches seem now comple
mentary, since one provide a stable prior function of the cost that should be
estimated, and the other gives reliable estimate which however do not yield
an extensive description of the shape of the function. This leads modelfree
perspective to attain both good and bad scores, while modelbased methods

69

6. Conclusions

never go below a certain level of performance, but cannot improve much
their behaviour either.
In the example proposed, the mixed approach proved to be a promising way
towards an algorithm that can benefit as much as possible from the peculiar
features of both methods.
However, many questions remain still unanswered. First of all it would be
necessary a further study on how it is possible to best exploit the knowl
edge of a prior shape for the cost function in order to refine the estimate in
regions where the cost is low. This can be obtained by extracting θs with
which to query the system from a distribution shaped accordingly to the re
ward function (or inversely to the cost). However this strategy should be
validated through simulation, and it lacks the fundamental component of
exploration in RL. Moreover, the prototypical example suggested the need
for a lot of queries and the help of a lowaccuracy model: it would be inter
esting to understand whether it was possible to have an indication of the
best splitting based only on a part of the available interactions, and then
to distribute the remaining ones more effectively. Lastly, it is required to
evaluate the effectiveness of the presented approach in a multidimensional
framework.

70

Bibliography

[1] F. Berkenkamp, M. Turchetta, A. P. Schoellig, A. Krause. Safe
Modelbased Reinforcement Learning with Stability Guarantees.
31st Conference on Neural Information Processing Systems (NIPS),
Long Beach, CA, USA, 2017.

[2] M. P. Deisenroth, C. E. Rasmussen. PILCO: A ModelBased and
DataEfficient Approach to Policy Search. In Proceedings of the 28th

International Conference on Machine Learning. Bellevue, WA, USA,
2011.

[3] E. Ipek, O. Mutlu, J. F. Martinez, R. Caruana. Selfoptimizing
memory controllers: A reinforcement learning approach. In
ISCA’08:Proceedings of the 35th Annual International Sympo
sium on Computer Architecture, pp. 39–50. IEEE Computer Society
Washington, DC, USA, 2008.

[4] G. Picci. Filtraggio Statistico (Wiener, Levinson, Kalman) e appli
cazioni. Edizioni Libreria Progetto Padova, 2007.

[5] B. Recht. A Tour of Reinforcement Learning: The View from Contin
uous Control. arXiv:1806.09460v2, 2018.

[6] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, A. Chiuso.
Derivativefree online learning of inverse dynamics models.
arXiv:1809.05074, 2018.

71

BIBLIOGRAPHY BIBLIOGRAPHY

[7] U. Rosolia, F. Borrelli. Learning Model Predictive Control for Itera
tive Tasks. A DataDriven Control Framework. In IEEE Transaction
on Automatic Control, Vol. 63, no. 7, pp 18831896, 2018.

[8] S. ShalevShwartz, S. BenDavid. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press, New York,
NY, USA, 2014.

[9] R. S. Sutton, A. G. Barto. Reinforcement Learning An Introduction.
The MIT Press, Cambridge, Massachusetts, MA, II edition, 2018.

[10] M. Zorzi. Lecture Notes in System Identification, 2011.

72

	Listing of figures
	Introduction
	Outline of the Thesis

	Reinforcement Learning
	Introduction
	Introductory Examples
	Key Elements of RL
	Reinforcement Learning
	A First Formalization
	Applications

	System Identification Synopsis
	Basics
	Gaussian Process Models
	Regression with Normal Noise

	Dynamic Models
	Box-Jenkins Models
	Output-Error Models
	ARMAX Models
	ARX models

	PEM method
	Kernel-based PEM Method

	Current Approaches
	Control with Unknown Dynamics
	State of the Art
	Model-Based Reinforcement Learning
	PILCO

	Model-Free Reinforcement Learning
	Policy Gradient

	A Mixed Approach
	Formalization
	A First Theoretical perspective
	Setting and Simulations

	The main procedure
	A prototypical example

	Conclusions
	Bibliography

