

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE - DII Corso di Laurea Magistrale in Ingegneria Dell'Energia Elettrica

TESI DI LAUREA

OTTIMIZZAZIONE DI MOTORE SINCRONO A ECCITAZIONE IBRIDA CON CAMBIO DI POLARITÀ

Candidato: Alessio Minichino Matricola 1238232 Relatore: Prof. Nicola Bianchi

Indice

Intro	duzione		7
1 P	rincipio di funzionamento		9
1	l Cambio di polarità		9
1	2 Avvolgimento di statore		10
1	<u> 3 Rotore</u>		14
2 (eometria del motore		15
2	$1 \text{Statore} \dots \dots \dots \dots \dots \dots \dots \dots$		15
	$2.1.1 \text{Geometria} \dots \dots$		15
2	2 Simulazioni		16
2	3 IPM (Interior Permanent M	agnet	16
	2.3.1 Geometria del rotore		16
	2.3.2 Analisi a vuoto medi	ante calcolo agli elementi finiti (8	
	poli)		17
	2.3.3 MTPA e induttanze	(8 poli)	20
	2.3.4 Analisi a carico medi	ante calcolo agli elementi finiti (8	
	poli)		22
	2.3.5 Coppia (8 poli)		24
	2.3.6 Analisi a vuoto medi	ante calcolo agli elementi finiti (4	
	poli)		25
	2.3.7 MTPA e induttanze	(4 poli)	27
	2.3.8 Analisi a carico medi	ante calcolo agli elementi finiti (4	
	poli)		29
	2.3.9 Coppia		31
	2.3.10 Skewing del rotore		32
2	4 SPM (Surface Permanent M	$\operatorname{agnet})$	32
	2.4.1 Geometria del rotore		33
	2.4.2 Analisi a vuoto medi	ante calcolo agli elementi finiti (8	
	poli)	<u> </u>	34
	2.4.3 MTPA e induttanze	$(8 \text{ poli}) \dots \dots$	36
	2.4.4 Analisi a carico medi	ante calcolo agli elementi finiti (8	
	poli		38

		2.4.5	Coppia	40
		2.4.6	Analisi a vuoto mediante calcolo agli elementi finiti (4	
			poli)	41
		2.4.7	MTPA e induttanze (4 poli)	43
		2.4.8	Analisi a carico mediante calcolo agli elementi finiti (4	
			poli)	45
		2.4.9	Coppia	47
		2.4.10	Skewing del rotore	48
	2.5	PS (P	oli salienti)	48
		2.5.1	Geometria del rotore	48
		2.5.2	Analisi a vuoto mediante calcolo agli elementi finiti (8	
			poli)	49
		253	MTPA e induttanze (8 poli)	52
		2.5.4	Analisi a carico mediante calcolo agli elementi finiti (8	
		2.0.1	poli)	54
		255	Coppia	56
		2.5.6	Analisi a vuoto mediante calcolo agli elementi finiti (4	00
		2.0.0	poli	57
		257	MTPA e induttanze (4 poli)	59
		2.5.1	Analisi a carico mediante calcolo agli elementi finiti (4	
		2.0.0	noli	61
		250	Coppia	63
		2.0.5		()()
		25.10	Skewing del rotore	64
		2.5.10	Skewing del rotore	64
3	Ott	2.5.10 imizza	Skewing del rotore	64 65
3	Ott 3.1	2.5.10 imizza IPM	Skewing del rotore	64 65 65
3	Ott 3.1	2.5.10 imizza IPM 3.1.1	Skewing del rotore	64 65 65
3	Ott 3.1	2.5.10 imizza IPM 3.1.1 3.1.2	Skewing del rotore	64 65 65 65 66
3	Ott 3.1	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri	64 65 65 65 66 67
3	Ott 3.1	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4	Skewing del rotore zione	64 65 65 65 66 67 72
3	Ott 3.1	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri Ottimizzatore	64 65 65 65 66 67 72 74
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple magneti	64 65 65 65 66 67 72 74 74 74
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple magneti Ripple magneti Ripple poli salienti Ripple magneti Ripple magneti Ripple magneti Ripple poli salienti	64 65 65 65 66 67 72 74 74 74 75
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri Ottimizzatore Ripple magneti Ripple magneti Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Analisi parametri Analisi parametri Analisi parametrica a 2 parametri	64 65 65 65 66 67 72 74 74 74 75 76
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Ripple magneti Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Analisi parametri Analisi parametri Analisi parametri Analisi parametri Analisi parametrica a 2 parametri Analisi parametrica a 2 parametri	64 65 65 65 66 67 72 74 74 74 75 76 78
3	Ott 3.1 3.2	2.5.10 imizza JPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS .	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Ripple magneti Analisi parametrica a 2 parametri Analisi parametrica a 2 parametri	64 65 65 65 66 67 72 74 74 75 76 78 79
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri Ottimizzatore Ripple magneti Analisi parametrica a 2 parametri Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri	64 65 65 65 66 67 72 74 74 75 76 78 79 79
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.2	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Analisi parametrica a 2 parametri Ottimizzatore Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Ottimizzatore Ottimizzatore Ottimizzatore	64 65 65 65 66 67 72 74 74 74 75 76 78 79 79 82
3	Ott 3.1 3.2	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.1 3.3.2	Skewing del rotore zione Ripple magneti Ripple poli salienti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Ripple poli salienti Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Ottimizzatore Ottimizzatore Ottimizzatore Ottimizzatore Ottimizzatore	64 65 65 65 66 67 72 74 74 75 76 78 79 982
3	Ott 3.1 3.2 3.3	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.2 totipi	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Analisi parametrica a 2 parametri Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Analisi parametrica a 2 parametri Ottimizzatore Ottimizzatore Ottimizzatore Ottimizzatore	64 65 65 65 66 67 72 74 74 75 76 78 79 82 85
3	Ott 3.1 3.2 3.3 Pro 4.1	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.1 UPM 1.3.3 1.3 1.3 1.3 1.4 1.5 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Analisi parametrica a 2 parametri Ottimizzatore Analisi parametrica a 2 parametri Ottimizzatore Ottimizzatore Ottimizzatore	64 65 65 65 66 67 72 74 74 74 75 76 78 79 79 82 85 85
3	Ott 3.1 3.2 3.3 9ro 4.1	2.5.10 imizza JPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.1 3.3.1 3.3.2 totipi IPM 4.1.1	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ripple poli salienti Ripple poli salienti Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Analisi parametrica a 2 parametri Ottimizzatore Ottimizzatore Ottimizzatore Ottimizzatore Disegno prototipo	64 65 65 65 66 67 72 74 74 75 76 78 79 9 82 85 85 87
3	Ott 3.1 3.2 3.3 Pro 4.1	2.5.10 imizza IPM 3.1.1 3.1.2 3.1.3 3.1.4 SPM 3.2.1 3.2.2 3.2.3 3.2.4 PS 3.3.1 3.3.2 totipi IPM 4.1.1 4.1.2	Skewing del rotore zione Ripple magneti Analisi parametrica a 4 parametri Ottimizzatore Ottimizzatore Ripple poli salienti Analisi parametrica a 2 parametri Analisi parametrica a 2 parametri Analisi parametrica a 4 parametri Ottimizzatore Analisi parametrica a 4 parametri Ottimizzatore Ottimizzatore Disegno prototipo Analisi a vuoto mediante calcolo agli elementi finiti (8	64 65 65 66 67 72 74 74 75 76 78 79 82 85 85 87

	4.1.3	$MTPA e mappatura (8 poli) \dots \dots \dots \dots \dots \dots \dots$	90
	4.1.4	Analisi a carico mediante calcolo agli elementi finiti (8	
		poli)	92
_	4.1.5	Coppia	95
	4.1.6	Analisi a vuoto mediante calcolo agli elementi finiti (4	
		poli)	95
	4.1.7	$MTPA e induttanze (4 poli) \dots \dots \dots \dots \dots \dots \dots$	98
	4.1.8	Analisi a carico mediante calcolo agli elementi finiti (4	
		poli)	100
	4.1.9	Coppia	102
	4.1.10	Skewing del rotore	103
	4.1.11	Confronto risultati	103
	4.1.12	Dinamica	104
4.2	PS	<u> </u>	105
	4.2.1	Disegno prototipo	107
	4.2.2	Analisi a vuoto mediante calcolo agli elementi finiti (8	
		<u>poli)</u>	107
	4.2.3	MTPA e mappatura (8 poli)	110
	4.2.4	Analisi a carico mediante calcolo agli elementi finiti (8	
		<u>poli)</u>	112
	4.2.5	Coppia	115
	4.2.6	Analisi a vuoto mediante calcolo agli elementi finiti (4	
		<u>poli)</u>	115
	4.2.7	$MTPA e induttanze (4 poli) \dots \dots$	118
	4.2.8	Analisi a carico mediante calcolo agli elementi finiti (4	
		<u>poli)</u>	120
	4.2.9	Coppia	122
	4.2.10	Skewing del rotore	123
	4.2.11	Confronto risultati	123
	4.2.12	Dinamical	124
Correl	aiori		105
Conclu	SIOIII		121
Ringra	ziamer	nti	129
Bibliog	rafia		131
A Lan	nierino	di statore	133
B Mag	gnete I	\mathbf{PM}	135
			10-
C Mag	gnete S	SPM	137

Introduzione

Il futuro del settore dell'automotive è elettrico e gli attuali protagonisti sono i motori a magneti permanenti a terre rare. Le loro ottime caratteristiche quali l'alta densità di coppia e l'elevata efficienza li rendono difficili da eguagliare. Se a livello prestazionale questi magneti sono ottimi, a livello economicosociale pongono dei limiti. Infatti, essi rappresentano una parte ingente dei costi di realizzazione della macchina e inoltre, sono al centro di questioni sociali legate alla loro estrazione. Una delle principali sfide che ci troviamo ad affrontare è quella di progettare nuovi motori, con caratteristiche simili, che utilizzino sempre meno i magneti a terre rare. Un altro limite legato ai motori elettrici destinati all'automotive è l'impossibilità di avere una curva di coppia ottimale sia per le basse che per le alte velocità (1 e 2). Negli ultimi anni, l'Università degli studi di Padova ha portato avanti la ricerca su un motore sincrono ad eccitazione ibrida con cambio di polarità HEPM (Hybrid Excitation Permanent Magnet) che consente di avere due rapporti a coppia e velocità diverse senza l'utilizzo di un cambio meccanico (4 e 5). Il primo rapporto permette di avere un numero alto di poli che garantisce una coppia elevata alle basse velocità. Il secondo, invece, fornisce coppia alle alte velocità utilizzando un numero di poli dimezzato. Per "eccitazione ibrida" si intende che il rotore è composto da metà poli salienti e metà da magneti permanenti. In questo modo, si riesce a ridurre l'impatto economico-sociale di quest'ultimi. Il cambio di polarità, già noto alle sole macchine asincrone, viene effettuato tramite 2 inverter di potenza (per lo statore) e invertendo la corrente di eccitazione nelle spazzole (per il rotore). Il progetto della geometria del motore è stato effettuato nella tesi precedente 3, analizzando le configurazioni IPM e SPM. Mentre lo statore studiato sarà lo stesso, il progetto dei rotori verrà modificato per risolvere alcuni problemi. Inoltre, verrà preso in considerazione anche un rotore a soli poli salienti indicato, da qui in poi, con la sigla PS. In tale tesi è stata dimostrata la fattibilità dell'HEPM ma è sorto il problema dell'eccessivo ripple di coppia. Questa tesi, dunque, si pone l'obiettivo di ottimizzare la sagomatura del rotore per contenere il più possibile tale problema. Successivamente verranno scelti i due motori migliori per la realizzazione di prototipi. Per lo studio delle varie configurazioni ci si avvale di Matlab e del software agli elementi finiti FEMM. Le condizioni di simulazione verranno specificate di volta in volta.

Capitolo 1

Principio di funzionamento

In questo capitolo verranno esposti i principi di funzionamento del motore sincrono a eccitazione ibrida con cambio di polarità.

1.1 Cambio di polarità

Il Cambio di Polarità è una tecnologia che viene utilizzata nei motori asincroni a gabbia di scoiattolo per poter avere coppia elevata a basse velocità e poter estendere il range di potenza costante a velocità superiori. Questi motori sono perfetti per questa tecnologia in quanto, dopo aver cambiato la polarità dello statore, il rotore si adatta automaticamente. La ricerca dell'Università degli studi di Padova ha portato ad uno studio dell'applicazione di tale tecnologia ai motori sincroni destinati all'automotive. In tal caso, il cambio di polarità dev'essere effettuato sia sullo statore che sul rotore. La soluzione è stata trovata nell'innovativo motore sincrono a eccitazione ibrida con cambio di polarità caratterizzato dall'alternanza di magneti permanenti e poli salienti. La presenza di quest'ultimi consente di avere il controllo sulla polarità del rotore. Infatti, la corretta alternanza con i magneti permanenti permette il cambio della polarità grazie alla semplice inversione della corrente di eccitazione. I magneti permanenti forniscono un flusso costante mentre i poli salienti invertono il flusso in base alla velocità del motore. Si riporta lo schema di un IPM in configurazione 8 poli (1.1a) e 4 poli (1.1b).

Figura 1.1: Cambio polarità IPM

1.2 Avvolgimento di statore

Per l'avvolgimento di statore si opta per un doppio strato a 36 cave. Il cambio di polarità permette di passare da una configurazione a 8 poli ad una a 4 poli. Il progetto del motore è fatto con p=4. Le cave per polo e per fase sono:

$$q_s = \frac{Q_s}{m \cdot 2p} = \frac{36}{3 \cdot 8} = 1.5 \tag{1.1}$$

L'avvolgimento è dunque a cave frazionarie. L'angolo meccanico vale:

$$\alpha_s = \frac{360}{Q_s} = 10^\circ \tag{1.2}$$

mentre quello elettrico è:

$$\alpha_s^e = p\alpha_s = 4 \cdot 10 = 40^\circ \tag{1.3}$$

Il passo di cava è:

$$y_q = \frac{Q_s}{2p} = \frac{36}{8} = 4.5 \tag{1.4}$$

che viene raccorciato
a $y_q=4$ con $\beta^e_r=0.5\cdot\alpha^e_s=20^\circ$ riducendo la settima armonica.

Il coefficiente di distribuzione corrispondente è:

$$k_d = \frac{\sin(q_s \frac{\alpha_s^e}{2})}{q_s \sin(\frac{\alpha_s^e}{2})} = 0.975 \tag{1.5}$$

Il coefficiente di passo è:

$$k_p = \cos(\frac{\beta_r^e}{2}) = 0.985$$
 (1.6)

Il coefficiente di avvolgimento complessivo è:

$$k_w = k_p \cdot k_d = 0.96 \tag{1.7}$$

La periodicità dell'avvolgimento vale:

$$t = MCD\{Q_s, p\} = MCD\{36, 4\} = 4$$
(1.8)

La stella di cava è pertanto composta da $\frac{Q_s}{t} = \frac{36}{4} = 9$ raggi da t = 4 vettori ciascuno come riportato in figura 1.2. Per alimentare gli avvolgimenti si usano 2 inverter. Il primo alimenta la prima e la terza periodicità e il secondo alimenta la seconda e la quarta. Tuttavia, per potersi adattare alla stella di cava del 4 poli, la fase B (alimentata dal primo inverter) viene sfasata di 360° (le fasi B1 e B2 si scambiano). In questo modo, quando si cambia la polarità, le fasi B e C si scambiano in entrambi gli inverter mentre le correnti si invertono solo nel secondo (vedi tabella 1.1).

Figura 1.2: Stella di cava

Come anticipato, per effettuare il cambio polarità, si utilizzano 2 inverter che forniscono ciascuno parte della corrente delle tre fasi. Per questo motivo, vengono utilizzate 2 matrici di cava per fase. Si riportano i valori corrispondenti alla sola fase A. (le matrici di cava di una fase sono composte da una sola riga e per poterle rappresentare si è deciso di andare a capo in corrispondenza dei puntini "...").

$$k_{A'} = \begin{bmatrix} 0.5 & 0 & 0 & 0 & -1 & -0.5 & 0 & 0 & 0.5 & 0.5... \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0.5... \\ 0 & 0 & -1 & -0.5 & 0 & 0 & 0.5 & 0.5 & 0 & 0... \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0.5... \\ 0 & 0 & 0 & -1 & -0.5 & 0 & 0 & 0.5 & 0.5 & 0... \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0.5 & 0... \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 & 0 & 0... \\ 0 & -1 & -0.5 & 0 & 0 & 0.5 & & & & \end{bmatrix}$$

Allo stesso modo si compongono le matrici $k_{B'}, k_{B''}, k_{C'} \in k_{C''}$. La matrice di cava totale K vale:

$$K = \begin{bmatrix} k_{A'} + k_{A''} \\ k_{B'} + k_{B''} \\ k_{C'} + k_{C''} \end{bmatrix}$$

Per chiarezza, in figura 1.3 si evidenzia l'avvolgimento della fase A (A' e A") nelle cave di statore (le fasi ABC sono rappresentate come UVW).

Figura 1.3: Avvolgimento fase A (A'= U1 e A''= U2)

Fase	8 poli	4 poli
A'	i_{A1}	i_{A1}
В'	i_{B1}	i_{C1}
C	i_{C1}	i_{B1}
A"	i_{A2}	$-i_{A2}$
В"	i_{B2}	$-i_{C2}$
C"	i_{C2}	$-i_{B2}$

Il controllo delle correnti nelle 2 configurazioni viene mostrato nella seguente tabella.

Tabella 1.1: Correnti degli inverter

Come si può notare, il cambio di polarità richiede lo scambio tra le fasi B e C e l'inversione della corrente nel secondo inverter. L'alimentazione passa dunque da una terna diretta ad una terna inversa.

Si riporta in figura 1.4 lo schema dell'avvolgimento nella configurazione a 8 poli.

Figura 1.4: Schema avvolgimento 8 poli

Quando si inverte il segno delle correnti nel secondo inverter il motore passa alla configurazione a 4 poli. Le cave per polo e per fase sono:

$$q_s = \frac{Q_s}{m \cdot 2p} = \frac{36}{3 \cdot 4} = 3 \tag{1.9}$$

L'avvolgimento è dunque a cave intere. L'angolo meccanico vale:

$$\alpha_s = \frac{360}{Q_s} = 10^\circ \tag{1.10}$$

mentre quello elettrico è:

$$\alpha_s^e = p\alpha_s = 2 \cdot 10 = 20^\circ \tag{1.11}$$

Il passo di cava è:

$$y_q = \frac{Q_s}{2p} = \frac{36}{4} = 9 \tag{1.12}$$

ma non può essere modificato. Perciò lo si porta
a $y_q=4$ con $\beta_r^e=5\cdot\alpha_s^e=100^\circ.$

Il coefficiente di distribuzione corrispondente è:

$$k_d = \frac{\sin(q_s \frac{\alpha_s}{2})}{q_s \sin(\frac{\alpha_s}{2})} = 0.96 \tag{1.13}$$

Il coefficiente di passo risulta molto minore:

$$k_p = \cos(\frac{\beta_r^e}{2}) = 0.643 \tag{1.14}$$

Il coefficiente di avvolgimento complessivo è:

$$k_w = k_p \cdot k_d = 0.62 \tag{1.15}$$

Si riporta infine, in figura 1.5 lo schema dell'avvolgimento nella configurazione a 4 poli.

> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 **BUD D BUD D B**UD D BUD D

Figura 1.5: Schema avvolgimento 4 poli

1.3 Rotore

Nei tre tipi di motore analizzati (IPM, SPM e PS) l'alimentazione dell'eccitazione viene effettuata tramite spazzole. Quando la macchina deve cambiare polarità la corrente viene invertita. Nonostante questo metodo sia efficace, la presenza di tale spazzole porta ad usura meccanica e perdite joule che nei motori classici a magneti permanenti non sono presenti.

Per quanto riguarda il motore a soli poli salienti (PS), l'eccitazione va scomposta in due parti. Infatti, sono presenti poli salienti ad eccitazione variabile, che utilizzano le spazzole citate, e poli salienti ad eccitazione fissa, che richiedono corrente costante. Per semplicità, si potrebbe optare per una seconda spazzola (accettando ulteriore usura) oppure, si potrebbe utilizzare un trasformatore rotante come fatto nel motore elettrico Mahle (IEEE).

Capitolo 2

Geometria del motore

2.1 Statore

In questo progetto di tesi verranno valutate le configurazioni IPM, SPM e PS mantenendo la stessa geometria di statore.

Per quanto riguarda l'alimentazione, si utilizzano nc = 100 conduttori.

Considerando un $k_{fill} = 0.33$, la sezione dei conduttori risulta dc = 0.56mm. L'area della cava è $Ac = 67.3mm^2$ e la sezione per i conduttori è $Sc = 67.3 \cdot 0.33 = 22.2mm^2$.

Imponendo una densità di corrente pari a $J = 5A/mm^2$, la corrente di alimentazione risulta $In = 5 \cdot 0.222 = 1.11A$.

2.1.1 Geometria

In tabella 2.1 vengono riportati i dati geometrici dello statore progettato. In appendice A ne è riportata la lamiera.

PARAMETRO	$\mathbf{Simbolo}$	Valore	Unità di misura
Diametro esterno	D_e	150	mm
Diametro interno	D_s	96	mm
Numero di cave	Q_s	36	-
Larghezza dente	w_t	4.5	mm
Altezza della corona	h_{bi}	13.14	mm
Altezza cava	h_s	13.86	mm
Altezza apertura di cava	h_{so}	0.66	mm
Larghezza apertura di cava	w_{so}	2.6	mm
Sezione cava	S_{slot}	67.3	mm^2
Poli	2p	8	-
Lunghezza pacco	L_{stk}	40	mm
Traferro	g	0.4	mm

Tabella 2.1: Parametri geometrici dello statore

2.2 Simulazioni

Al fine di semplificare il futuro controllo della macchina, si decide di sommare in valore assoluto i flussi abc e dq dei due inverter nella configurazione a 4 poli, ottenendo così una sola coppia di induttanze. Infatti, quando si cambia la polarità, i flussi abc e dq generati dai due inverter si trovano in opposizione di fase. La loro somma sarebbe matematicamente nulla rendendo necessario uno studio a induttanze separate sia per il controllo che per il calcolo della coppia.

Di fatto, il motore verrà controllato con un gruppo di mappe per la configurazione a 8 poli e con un altro gruppo di mappe per il controllo del 4 poli.

2.3 IPM (Interior Permanent Magnet)

In questa sezione andremo ad analizzare la configurazione IPM ossia un rotore con magneti permanenti interni.

2.3.1 Geometria del rotore

In tabella 2.2 vengono riportati i dati geometrici del rotore progettato. I magneti permanenti utilizzati sono di tipo NdFeB N35UH (vedi appendice B). In fase di progettazione, i parametri magnetici sono stati riportati alla temperatura di esercizio di 120°.

Nella figura 2.1 viene mostrata la geometria del motore.

PARAMETRO	Simbolo	Valore	Unità di misura
Diametro rotore	D_s	95.2	mm
Spessore magnete	tm	4.23	mm
Lunghezza magnete	tm	27.72	mm
Distanza magnete-traferro	Dgm	3	mm
Lunghezza tot eccitazione	h_{ecc}	25	mm
Larghezza ingresso cava ecc.	w_{ecc}	2	mm
Altezza ingresso cava ecc.	h_{iecc}	3	mm
Ampiezza max ecc alta	l_{eccu}	8.5	mm
Ampiezza max ecc bassa	l_{eccd}	0.5	mm
Poli	2p	8	-
Lunghezza pacco	L_{stk}	40	mm
Traferro	g	0.4	mm

Tabella 2.2: Parametri geometrici del rotore IPM

Figura 2.1: Motore IPM

2.3.2 Analisi a vuoto mediante calcolo agli elementi finiti (8 poli)

Il processo di simulazione è gestito da uno script MatLab che interagisce automaticamente con il software FEMM. Nella figura 2.2 è possibile vedere le linee di campo del motore IPM nella configurazione a 8 poli (rotore non allineato).

Figura 2.2: Linee di campo a vuoto (8 poli)

Induzione al traferro

Nelle figure 2.3a e 2.3b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.86T$ per i poli salienti e $\hat{B}_{g1,mg} = 0.78T$ per i magneti.

Figura 2.3: Induzione al traferro a vuoto (IPM 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a vuoto è stata eseguita una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (90° meccanici) con passo di 1° (meccanico). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.4a

Figura 2.4: Flussi concatenati a vuoto (IPM 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.4b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza della fondamentale è $\Lambda_0^1 = 0.48Vs$

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.5a, mentre i flussi dq risultanti sono in figura 2.5b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.45 Vs$.

Figura 2.5: Flussi dq a vuoto (IPM 8 poli)

In figura 2.6 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.6: Fem a vuoto (IPM 8 poli)

Coppia di cogging

La periodicità della coppia di impuntamento, come si potrà vedere nei capitoli successivi, è difficile da ottenere e non rispetta sempre l'equazione classica. Di conseguenza, in questa analisi, come periodicità è stata presa in considerazione quella del ripple di coppia (15 gradi per l'8 poli). In figura 2.7 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.7: Coppia di impuntamento/cogging a vuoto (IPM 8 poli)

Si può notare, che in questo caso, l'equazione per la periodicità della coppia di cogging è pressochè rispettata:

$$\theta_{\tau_{cog}} = \frac{360}{mcm\{Q, 2p\}} = \frac{360}{mcm\{36, 8\}} = 5 \tag{2.1}$$

2.3.3 MTPA e induttanze (8 poli)

Ricerca dell'MTPA

Con l'aiuto del Matlab e del FEMM si simula l'andamento della coppia al variare delle correnti I_d e I_q . Il punto di lavoro a coppia massima per le macchine IPM si trova nel secondo quadrante. Viene imposta la corrente nominale con con picco $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ e si valuta la coppia tramite

l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.8).

Figura 2.8: Ricerca MTPA (IPM 8 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 102^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = -0.33A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.54A \end{cases}$$
(2.2)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. Si noti che le analisi sono state fatte senza deenergizzare i magneti in modo da mantenere i ponticelli magnetici in saturazione. I risultati, riportati nelle figure 2.9a e 2.9b (flussi) e figura 2.10(induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}) :

Figura 2.9: Flussi dq (IPM 8 poli)

Figura 2.10: Induttanze L_d e L_q (IPM 8 poli)

Si ottengono: $\lambda_m = 0.45 Vs$; $L_{d,mean} = 75.9 mH$; $L_{q,mean} = 143.3 mH$; $\xi = 1.89$.

2.3.4 Analisi a carico mediante calcolo agli elementi finiti (8 poli)

Si riporta in figura 2.11 una simulazione della macchina a carico.

Figura 2.11: Linee di campo a carico (8 poli)

Induzione al traferro

Nelle figure 2.12a e 2.12b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.77T$ per i poli salienti e $\hat{B}_{g1,mg} = 0.83T$ per i magneti.

Figura 2.12: Induzione al traferro a carico (IPM 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (90° meccanici) con passo di 1° (meccanico). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.13a.

Figura 2.13: Flussi concatenati a carico (IPM 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.13b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza dell'onda è $\Lambda_0^1 = 0.47Vs$.

I flussi dq dei 2 inverter sono rappresentati in figura 2.14a, mentre i flussi dq risultanti sono in figura 2.14b.

Figura 2.14: Flussi dq concatenati a carico (IPM 8 poli)

In figura 2.15 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.15: Fem a carico (IPM 8 poli)

2.3.5 Coppia (8 poli)

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (15° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.16) si riportano i risultati.

Figura 2.16: Coppia a carico (IPM 8 poli)

Il valore medio risulta essere $T_N = 4.19Nm$. Il suo ripple risulta essere $\Delta T = 30.71\%$. Il valore del ripple di coppia risulta essere sopra la media dei motori IPM.

2.3.6 Analisi a vuoto mediante calcolo agli elementi finiti (4 poli)

Si procede effettuando le stesse simulazioni sul motore in configurazione 4 poli. Nella figura 2.17 è possibile vedere le linee di campo.

Figura 2.17: Linee di campo a vuoto (4 poli)

Induzione al traferro

Nella figura 2.18 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.73T$.

Figura 2.18: Induzione al traferro a vuoto (IPM 4 poli)

Flussi concatenati e fem

L'andamento dei flussi concatenati e delle fem a vuoto è stata ottenuta tramite una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (180° meccanici) con passo di 2° (meccanici). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.19a

Figura 2.19: Flussi concatenati a vuoto (IPM 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.19b

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.20a, mentre i flussi dq risultanti sono in figura 2.20b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.40Vs$.

Figura 2.20: Flussi dq a vuoto (IPM 4 poli)

In figura 2.21b si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.21: Fem a vuoto (IPM 4 poli)

Coppia di cogging

In questa analisi, come periodicità è stata presa in considerazione quella del ripple di coppia (30 gradi per il 4 poli). In figura 2.22 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.22: Coppia di impuntamento/cogging a vuoto (IPM 4 poli)

Si può notare, che anche in questo caso, l'equazione per la periodicità della coppia di cogging è rispettata:

$$\theta_{\tau_{cog}} = \frac{360}{mcm\{Q, 2p\}} = \frac{360}{mcm\{36, 4\}} = 10 \tag{2.3}$$

2.3.7 MTPA e induttanze (4 poli)

Ricerca dell'MTPA

Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ (come per l'8 poli) e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.23).

Figura 2.23: Ricerca MTPA (IPM 4 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 90^{\circ}$ (Il primo tratto è a coppia costante). Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.57A \end{cases}$$
(2.4)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. É possibile notare che le analisi sono state fatte senza deenergizzare i magneti in modo da mantenere i ponticelli magnetici in saturazione. I risultati, riportati nelle figure 2.24a e 2.24b (flussi) e figura 2.25 (induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}):

Figura 2.24: Flussi (IPM 4 poli)

Figura 2.25: Induttanze $L_d \in L_q$ (IPM 4 poli)

Si ottengono: $\lambda_m = 0.4Vs$; $L_{d,mean} = 59.4mH$; $L_{q,mean} = 78.2mH$; $\xi = 1.32$.

2.3.8 Analisi a carico mediante calcolo agli elementi finiti (4 poli)

Si riporta in figura 2.26 una simulazione della macchina a carico (rotore non allineato).

Figura 2.26: Linee di campo a carico (4 poli)

Induzione al traferro

Nella figura 2.27 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.76T$.

Figura 2.27: Induzione al traferro a carico (IPM 4 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (180° meccanici) con passo di 2° (meccanici). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.28a

Figura 2.28: Flussi concatenati a carico (IPM 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.28b.

I flussi dq dei 2 inverter sono rappresentati in figura 2.29a, mentre i flussi dq risultanti sono in figura 2.29b.

Figura 2.29: Flussi dq concatenati a carico (IPM 4 poli)

In figura 2.30 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.30: Fem a carico (IPM 4 poli)

2.3.9 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.31) si riportano i risultati.

Figura 2.31: Coppia a carico (IPM 4 poli)

Il valore medio risulta essere $T_N = 1.90Nm$. Il suo ripple risulta essere $\Delta T = 59.46\%$. Il valore del ripple di coppia risulta troppo elevato. É necessario sagomare il rotore.

2.3.10 Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo mentre i magneti vengono divisi in 4 parti. Si effettua una simulazione del caso peggiore in cui anche i lamierini subiscono lo step-skewing. Si riportano i risultati in figura 2.32 e tabella 2.3

Figura 2.32: IPM con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{Mxw}$	Ripple
8 poli 4 poli	97° 02°	4.14Nm	4.89%
4 pon	93	1.88Nm	21.93%

Tabella 2.3: Risultati skewing del rotore

I valori di MTPA differiscono da quelli trovati precedentemente perchè questa analisi è stata fatta con uno script diverso (EDLab), necessario per poter fare un confronto con i prototipi.

2.4 SPM (Surface Permanent Magnet)

In questa sezione andremo ad analizzare la configurazione SPM ossia un rotore con i magneti permanenti montati sulla superficie del rotore.

2.4.1 Geometria del rotore

In tabella 2.4 vengono riportati i dati geometrici del rotore progettato. I magneti permanenti utilizzati sono di tipo NdFeB N30UH (vedi appendice C). In fase di progettazione, i parametri magnetici sono stati riportati alla temperatura di esercizio di 120°.

PARAMETRO	Simbolo	Valore	Unità di misura
Diametro rotore	D_r	95.2	mm
Traferro	g	0.4	mm
Poli	2p	8	-
Lunghezza pacco	L_{stk}	40	$\mathbf{m}\mathbf{m}$
Percentuale di magnete dell'angolo polare	k_{pm}	80	%
Spessore magnete	tm	4.23	mm
Lunghezza orizzontale magnete	Lm	29.5	mm
Lunghezza tot eccitazione	h_{ecc}	25	mm
Larghezza ingresso cava ecc.	w_{ecc}	2	mm
Altezza ingresso cava ecc.	h_{iecc}	3	mm
Ampiezza max ecc alta	l_{eccu}	8	mm
Ampiezza max ecc bassa	l_{eccd}	0.5	$\mathbf{m}\mathbf{m}$

Tabella 2.4: Parametri geometrici del rotore SPM

Nella figura 2.33 viene mostrata la geometria del motore.

Figura 2.33: Motore SPM

2.4.2 Analisi a vuoto mediante calcolo agli elementi finiti (8 poli)

Nella figura 2.34 è possibile vedere le linee di campo del motore SPM nella configurazione a 8 poli (rotore non allineato).

Figura 2.34: Linee di campo a vuoto (8 poli)

Induzione al traferro

Nelle figure 2.35a e 2.35b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.86T$ per i poli salienti e $\hat{B}_{g1,mg} = 1.03T$ per i magneti.

Figura 2.35: Induzione al traferro a vuoto (SPM 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a vuoto è stata eseguita una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (90° meccanici) con passo di 1° (meccanico). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.36a

Figura 2.36: Flussi concatenati a vuoto (SPM 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.36b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza della fondamentale è $\Lambda_0^1 = 0.54Vs$

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.37a, mentre i flussi dq risultanti sono in figura 2.37b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.51 Vs$.

Figura 2.37: Flussi dq a vuoto (SPM 8 poli)

In figura 2.38 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.38: Fem a vuoto (SPM 8 poli)

Coppia di cogging

In questa analisi, come periodicità della coppia di impuntamento è stata presa in considerazione quella del ripple di coppia (15 gradi per l'8 poli). In figura 2.39 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.39: Coppia di impuntamento/cogging a vuoto (SPM 8 poli)

2.4.3 MTPA e induttanze (8 poli)

Ricerca dell'MTPA

Con l'aiuto del Matlab e del FEMM si simula l'andamento della coppia al variare delle correnti I_d e I_q . Il punto di lavoro a coppia massima per le macchine SPM si trova tipicamente a 90°. Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.40).

Figura 2.40: Ricerca MTPA (SPM 8 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 96^{\circ}$. Si noti tuttavia, che il valore di coppia resta pressochè costante tra i 90° ed i 102°. Di fatto, per precisione di macchina, si utilizzerà il valore trovato con MatLab (96°). Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = -0.16A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.56A \end{cases}$$
(2.5)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. I risultati, riportati nelle figure 2.41a e 2.41b (flussi) e figura 2.42(induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}):

Figura 2.41: Flussi dq (SPM 8 poli)

Figura 2.42: Induttanze $L_d \in L_q$ (SPM 8 poli)

Si ottengono: $\lambda_m = 0.51 Vs$; $L_{d,mean} = 55.8 mH$; $L_{q,mean} = 90.1 mH$; $\xi = 1.62$.

2.4.4 Analisi a carico mediante calcolo agli elementi finiti (8 poli)

Si riporta in figura 2.43 una simulazione della macchina a carico.

Figura 2.43: Linee di campo a carico (8 poli)

Induzione al traferro

Nelle figure 2.44a e 2.44b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.84T$ per i poli salienti e $\hat{B}_{g1,mg} = 1.02T$ per i magneti.

Figura 2.44: Induzione al traferro a carico (SPM 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (90° meccanici) con passo di 1° (meccanico). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.45a.

Figura 2.45: Flussi concatenati a carico (SPM 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.13b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza dell'onda è $\Lambda_0^1 = 0.53Vs$.

I flussi dq dei 2 inverter sono rappresentati in figura 2.46a, mentre i flussi dq risultanti sono in figura 2.46b.

Figura 2.46: Flussi dq concatenati a carico (SPM 8 poli)

In figura 2.47 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.47: Fem a carico (SPM 8 poli)

2.4.5 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (15° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.48) si riportano i risultati.

Figura 2.48: Coppia a carico (SPM 8 poli)

Il valore medio risulta essere $T_N = 4.71 Nm$. Il suo ripple risulta essere $\Delta T = 15.34\%$.

2.4.6 Analisi a vuoto mediante calcolo agli elementi finiti (4 poli)

Si procede effettuando le stesse simulazioni sul motore in configurazione 4 poli. Nella figura 2.49 è possibile vedere le linee di campo.

Figura 2.49: Linee di campo a vuoto (4 poli)

Induzione al traferro

Nella figura 2.50 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.78T$.

Figura 2.50: Induzione al traferro a vuoto (SPM 4 poli)

Flussi concatenati e fem

L'andamento dei flussi concatenati e delle fem a vuoto è stata ottenuta tramite una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (180° meccanici) con passo di 2° (meccanici). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.51a

Figura 2.51: Flussi concatenati a vuoto (SPM 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.51b

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.52a, mentre i flussi dq risultanti sono in figura 2.52b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.42Vs$.

Figura 2.52: Flussi dq a vuoto (SPM 4 poli)

In figura 2.53b si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.53: Fem a vuoto (SPM 4 poli)

Coppia di cogging

In questa analisi, come periodicità è stata presa in considerazione quella del ripple di coppia (30 gradi per il 4 poli). In figura 2.54 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.54: Coppia di impuntamento/cogging a vuoto (SPM 4 poli)

Si può notare, che in questo caso, l'equazione per la periodicità della coppia di cogging è pressochè rispettata:

$$\theta_{\tau_{cog}} = \frac{360}{mcm\{Q, 2p\}} = \frac{360}{mcm\{36, 4\}} = 10 \tag{2.6}$$

2.4.7 MTPA e induttanze (4 poli)

Ricerca dell'MTPA

Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ (come per l'8 poli) e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.55).

Figura 2.55: Ricerca MTPA (SPM 4 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 90^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.5698A \end{cases}$$
(2.7)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. I risultati, riportati nelle figure 2.56a e 2.56b (flussi) e figura 2.57(induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}):

Figura 2.56: Flussi dq (SPM 4 poli)

Figura 2.57: Induttanze $L_d \in L_q$ (SPM 4 poli)

Si ottengono: $\lambda_m = 0.41 Vs$; $L_{d,mean} = 45.3 mH$; $L_{q,mean} = 50.7 mH$; $\xi = 1.12$.

2.4.8 Analisi a carico mediante calcolo agli elementi finiti (4 poli)

Si riporta in figura 2.58 una simulazione della macchina a carico (rotore non allineato).

Figura 2.58: Linee di campo a carico (4 poli)

Induzione al traferro

Nella figura 2.59 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.89T$.

Figura 2.59: Induzione al traferro a carico (SPM 4 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (180° meccanici) con passo di 2° (meccanici). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.60a

Figura 2.60: Flussi concatenati a carico (SPM 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.60b.

I flussi dq dei 2 inverter sono rappresentati in figura 2.61a, mentre i flussi dq risultanti sono in figura 2.61b.

Figura 2.61: Flussi dq concatenati a carico (SPM 4 poli)

In figura 2.62 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.62: Fem a carico (SPM 4 poli)

2.4.9 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.63) si riportano i risultati.

Figura 2.63: Coppia a carico (SPM 4 poli)

Il valore medio risulta essere $T_N = 1.95Nm$. Il suo ripple risulta essere $\Delta T = 56.97\%$. Il valore del ripple di coppia risulta troppo elevato. É necessario sagomare il rotore.

2.4.10 Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo mentre i magneti vengono divisi in 4 parti. Si effettua una simulazione del caso peggiore in cui anche i lamierini subiscono lo step-skewing. Si riportano i risultati in figura 2.64 e tabella 2.5

Figura 2.64: SPM con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{Mxw}$	Ripple
8 poli	92°	$4.65\mathrm{Nm}$	$2.82\%\ 30.32\%$
4 poli	90°	$1.95\mathrm{Nm}$	

Tabella 2.5: Risultati skewing del rotore

I valori di MTPA differiscono da quelli trovati precedentemente perchè questa analisi è stata fatta con uno script diverso (EDLab), necessario per poter fare un confronto con i prototipi.

2.5 PS (Poli salienti)

In questa sezione andremo ad analizzare la configurazione di un rotore composto da soli poli salienti.

2.5.1 Geometria del rotore

In tabella 2.6 vengono riportati i dati geometrici del rotore progettato.

PARAMETRO	$\mathbf{Simbolo}$	Valore	Unità di misura
Diametro rotore	D_s	95.2	$\mathbf{m}\mathbf{m}$
Lunghezza tot eccitazione	h_{ecc}	25	mm
Larghezza ingresso cava ecc.	w_{ecc}	2	mm
Altezza ingresso cava ecc.	h_{iecc}	3	mm
Ampiezza max ecc alta	l_{eccu}	8.5	mm
Ampiezza max ecc bassa	l_{eccd}	0.5	mm
Poli	2p	8	-
Lunghezza pacco	L_{stk}	40	mm
Traferro	g	0.4	mm

Tabella 2.6: Parametri geometrici del rotore a poli salienti

Nella figura 2.65 viene mostrata la geometria del motore.

Figura 2.65: Motore a poli salienti

2.5.2 Analisi a vuoto mediante calcolo agli elementi finiti (8 poli)

Nella figura 2.66 è possibile vedere le linee di campo del motore PS nella configurazione a 8 poli (rotore non allineato).

Figura 2.66: Linee di campo a vuoto (PS 8 poli)

Induzione al traferro

Nella figura 2.67 sono riportati gli andamenti dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.86T$.

Figura 2.67: Induzione al traferro a vuoto (PS 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a vuoto è stata eseguita una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (90° meccanici) con passo di 1° (meccanico). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.68a

Figura 2.68: Flussi concatenati a vuoto (PS 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.68b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza della fondamentale è $\Lambda_0^1 = 0.5Vs$

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.69a, mentre i flussi dq risultanti sono in figura 2.69b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_E = 0.47Vs$.

Figura 2.69: Flussi dq a vuoto (PS 8 poli)

In figura 2.70 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.70: Fem a vuoto (PS 8 poli)

Coppia di cogging

In questa analisi, come periodicità è stata presa in considerazione quella del ripple di coppia (15 gradi per l'8 poli). In figura 2.71 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.71: Coppia di impuntamento/cogging a vuoto (PS 8 poli)

Si può notare, che in questo caso, l'equazione per la periodicità della coppia di cogging è pressochè rispettata:

$$\theta_{\tau_{cog}} = \frac{360}{mcm\{Q, 2p\}} = \frac{360}{mcm\{36, 8\}} = 5 \tag{2.8}$$

2.5.3 MTPA e induttanze (8 poli)

Ricerca dell'MTPA

Con l'aiuto del Matlab e del FEMM si simula l'andamento della coppia al variare delle correnti I_d e I_q . Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.72).

Figura 2.72: Ricerca MTPA (PS 8 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA}=90^\circ.$ Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.57A \end{cases}$$
(2.9)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. I risultati, riportati nelle figure 2.73a e 2.73b (flussi) e figura 2.74(induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}):

Figura 2.73: Flussi dq (PS 8 poli)

Figura 2.74: Induttanze $L_d \in L_q$ (PS 8 poli)

Si ottengono: $\lambda_m=0.47Vs;\ L_{d,mean}=86.8mH;\ L_{q,mean}=139.4mH;$
 $\xi=1.61.$

2.5.4 Analisi a carico mediante calcolo agli elementi finiti (8 poli)

Si riporta in figura 2.75 una simulazione della macchina a carico.

Figura 2.75: Linee di campo a carico (PS 8 poli)

Induzione al traferro

Nella figura 2.76 sono riportati gli andamenti dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.94T$.

Figura 2.76: Induzione al traferro a carico (PS 8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (90° meccanici) con passo di 1° (meccanico). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.77a.

Figura 2.77: Flussi concatenati a carico (PS 8 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.77b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza dell'onda è $\Lambda_0^1 = 0.49Vs$.

I flussi dq dei 2 inverter sono rappresentati in figura 2.78a, mentre i flussi dq risultanti sono in figura 2.78b.

Figura 2.78: Flussi dq concatenati a carico (PS 8 poli)

In figura 2.79 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.79: Fem a carico (PS 8 poli)

2.5.5 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (15° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.80) si riportano i risultati.

Figura 2.80: Coppia a carico (PS 8 poli)

Il valore medio risulta essere $T_N = 4.16Nm$. Il suo ripple risulta essere $\Delta T = 39.88\%$.

2.5.6 Analisi a vuoto mediante calcolo agli elementi finiti (4 poli)

Si procede effettuando le stesse simulazioni sul motore in configurazione 4 poli. Nella figura 2.81 è possibile vedere le linee di campo.

Figura 2.81: Linee di campo a vuoto (PS 4 poli)

Induzione al traferro

Nella figura 2.82 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.68T$.

Figura 2.82: Induzione al traferro a vuoto (PS 4 poli)

Flussi concatenati e fem

L'andamento dei flussi concatenati e delle fem a vuoto è stata ottenuta tramite una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (180° meccanici) con passo di 2° (meccanici). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 2.83a

Figura 2.83: Flussi concatenati a vuoto (PS 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.83b

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 2.84a, mentre i flussi dq risultanti sono in figura 2.84b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_E = 0.36Vs$.

Figura 2.84: Flussi dq a vuoto (PS 4 poli)

In figura 2.85b si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.85: Fem a vuoto (PS 4 poli)

Coppia di cogging

In questa analisi, come periodicità è stata presa in considerazione quella del ripple di coppia (30 gradi per il 4 poli). In figura 2.86 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell.

Figura 2.86: Coppia di impuntamento/cogging a vuoto (PS 4 poli)

Si può notare, che in questo caso, l'equazione per la periodicità della coppia di cogging è pressochè rispettata:

$$\theta_{\tau_{cog}} = \frac{360}{mcm\{Q, 2p\}} = \frac{360}{mcm\{36, 4\}} = 10 \tag{2.10}$$

2.5.7 MTPA e induttanze (4 poli)

Ricerca dell'MTPA

Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ (come per l'8 poli) e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 2.87).

Figura 2.87: Ricerca MTPA (PS 4 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 102^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = -0.33A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.54A \end{cases}$$
(2.11)

Induttanza calcolata mediante gli elementi finiti

Per calcolare le induttanze sono state eseguite delle simulazioni con la sola componente diretta della corrente per l'induttanza L_d e poi con la sola componente in quadratura per l'induttanza L_q . L'analisi è stata effettuata tramite il calcolo dei flussi concatenati. I risultati, riportati nelle figure 2.88a e 2.88b (flussi) e figura 2.89(induttanze), non tengono conto dell'induttanza di dispersione in testata (L_{ew}):

Figura 2.88: Flussi dq (PS 4 poli)

Figura 2.89: Induttanze $L_d \in L_q$ (PS 4 poli)

Si ottengono: $\lambda_m = 0.36Vs$; $L_{d,mean} = 68.1mH$; $L_{q,mean} = 141.2mH$; $\xi = 2.08$.

2.5.8 Analisi a carico mediante calcolo agli elementi finiti (4 poli)

Si riporta in figura 2.90 una simulazione della macchina a carico (rotore non allineato).

Figura 2.90: Linee di campo a carico (PS 4 poli)

Induzione al traferro

Nella figura 2.91 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.86T$.

Figura 2.91: Induzione al traferro a carico (PS 4 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (180° meccanici) con passo di 2° (meccanici). I flussi concatenati prodotti dai due inverter sono rappresentati in 2.92a

Figura 2.92: Flussi concatenati a carico (PS 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 2.92b.

I flussi dq dei 2 inverter sono rappresentati in figura 2.93a, mentre i flussi dq risultanti sono in figura 2.93b.

Figura 2.93: Flussi dq concatenati a carico (PS 4 poli)

In figura 2.94 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 2.94: Fem a carico (PS 4 poli)

2.5.9 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 2.95) si riportano i risultati.

Figura 2.95: Coppia a carico (PS 4 poli)

Il valore medio risulta essere $T_N = 1.73Nm$. Il suo ripple risulta essere $\Delta T = 96.53\%$. Il valore del ripple di coppia risulta troppo elevato. É necessario sagomare il rotore.

2.5.10 Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo. Si effettua una simulazione del caso peggiore in cui i lamierini subiscono lo step-skewing. Si riportano i risultati in figura 2.96 e tabella 2.7

Figura 2.96: PS con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{Mxw}$	Ripple
8 poli	90°	4.12Nm	7.27%
4 poli	104	1.72Nm	29.97%

Tabella 2.7: Risultati skewing del rotore

I valori di MTPA differiscono da quelli trovati precedentemente perchè questa analisi è stata fatta con uno script diverso (EDLab), necessario per poter fare un confronto con i prototipi.

Capitolo 3

Ottimizzazione

Per ridurre il ripple di coppia dei motori in entrambe le configurazioni (4 e 8 poli) è necessario studiare e ottimizzare la sagomatura del rotore. Nei seguenti paragrafi si riportano le possibili soluzioni confrontate per mezzo di analisi parametrica e di ottimizzatore (EDLab). Lo script MatLab dell'analisi parametrica si avvia disegnando il motore (disegno automatico) con i parametri iniziali. Successivamente lo allinea, ricerca l'angolo di MTPA con precisione di 1 grado e calcola coppia e ripple. Salva i dati in una tabella e ripete l'operazione con dei nuovi parametri. Il tutto è gestito da un ciclo for. L'analisi parametrica in questione è da considerarsi a step "discreti" in quanto utilizza numeri interi multipli di 5. L'ottimizzatore, invece, si basa su una ricerca randomica di individui con parametri a step "continui" in quanto utilizza numeri casuali fino alla terza cifra decimale. Le generazioni seguenti producono individui randomici che imparano dai risultati delle generazioni precedenti in modo da ottenere risultati sempre migliori. Questa ottimizzazione si basa sulla ricerca di due obiettivi: Coppia e Ripple di coppia.

3.1 IPM

3.1.1 Ripple magneti

Per verificare l'incidenza della sagomatura del ferro davanti ai magneti si riporta una simulazione del motore senza corrente di eccitazione (3.1).

Figura 3.1: IPM senza corrente di eccitazione

Si riportano grafico, valori di coppia e ripple nella figura 3.2 e nella tabella 3.1

Figura 3.2: Coppia IPM senza corrente di eccitazione

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$1.00 \mathrm{Nm}$	$1.01 \mathrm{Nm}$	92.75%

Tabella 3.1: Risultati IPM senza eccitazione

3.1.2 Ripple poli salienti

Per verificare l'incidenza della sagomatura dei poli salienti si riporta una simulazione del motore senza magneti permanenti (3.3).

Figura 3.3: IPM senza magneti permanenti

Si riportano grafico e valori di coppia e ripple nella figura 3.4 e nella tabella 3.2

Figura 3.4: Coppia IPM senza magneti permanenti

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$0.84 \mathrm{Nm}$	0.84Nm	100.01%

Tabella 3.2: Risultati IPM senza magneti

In entrambi i casi il ripple di coppia risulta elevato. E dunque necessario sagomare entrambe le componenti.

3.1.3 Analisi parametrica a 4 parametri

Per l'analisi parametrica è stato usato il metodo seguente. Sono stati usati i parametri R_ps_sx e R_ps_dx per la sagomatura dei poli salienti e i parametri R_mg_sx e R_mg_dx per la sagomatura del ferro davanti ai magneti. Tali parametri modificano la posizione del centro della circonferenza (O) rispetto al quale viene tracciato l'arco del polo saliente e del ferro

davanti ai magneti. Si mantiene il punto centrale del polo A alla distanza fissa g=0.4 mm e si tracciano i 2 archi.

Gli archi destro e sinistro, di uno stesso polo, sono costruiti in modo indipendente per permettere l'asimmetria. Per questo motivo i parametri si distinguono in "dx" e "sx". Parametri di sagomatura (3.5):

Figura 3.5: Parametri sagomatura

I magneti e i poli salienti vengono poi specchiati in modo da garantire una sagomatura favorevole al 4 poli. Nella figura 3.6 viene mostrata la geometria del motore sagomato con compromesso tra coppia e ripple (soluzione 2). Entrambi i metodi di ottimizzazione sono applicati al caso peggiore, ossia la configurazione a 4 poli. In seguito, sono state effettuate le simulazioni per le configurazioni a 8 poli corrispondenti alle soluzioni migliori.

Figura 3.6: Motore IPM sagomato 4 parametri

Variazione dei parametri:

PARAMETRO	Val. iniziale	\mathbf{Step}	Val. finale
R_ps_sx	0	5	15
R_ps_dx	0	5	15
R_mg_sx	0	5	15
R_mg_dx	0	5	15

Tabella 3.3: Variazione parametri

Le soluzioni migliori risultano essere:

PARAMETRO	Sol. 1	Sol. 2	Sol. 3
R_ps_sx	15	10	5
R_ps_dx	15	5	10
R_mg_sx	5	0	0
R_mg_dx	15	10	15

Tabella 3.4: Valori ottimali

Nelle tabelle seguenti vengono mostrate le coppie e i ripple di queste 3 soluzioni: 1) ripple minore; 2) Compromesso coppia-ripple; 3) Compromesso con coppia più elevata.

Soluzione 1

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli 4 poli	90° 90°	$3.81\mathrm{Nm}$ $1.76\mathrm{Nm}$	$3.81\mathrm{Nm}$ $1.79\mathrm{Nm}$	$\frac{13.65\%}{19.84\%}$

Tabella 3.5: Risultati soluzione 1: ripple minore

Soluzione 2

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	$4.05\mathrm{Nm}$	$3.97\mathrm{Nm}$	21.95%
4 poli	90°	$1.9\mathrm{Nm}$	$1.92\mathrm{Nm}$	26.34%

Tabella 3.6: Risultati soluzione 2: compromesso

Soluzione 3

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	4.06Nm	4.01Nm	24.55%
4 poli	90°	1.99Nm	2.02Nm	32.42%

Tabella 3.7: Risultati soluzione 3: compromesso coppia elevata

Partendo dal presupposto che il rotore subirà uno skewing, i risultati raggiunti sono accettabili. Questo dimostra che i parametri scelti per l'analisi sono ben correlati al ripple di coppia.

Ripple magneti con sagomatura

Si riporta una simulazione del motore sagomato (sol. 2) senza corrente di eccitazione (figura 3.1).

Figura 3.7: IPM sagomato senza corrente di eccitazione

Si riportano grafico e valori di coppia e ripple nella figura 3.8 e nella tabella 3.8

Figura 3.8: Coppia IPM sagomato senza corrente di eccitazione

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$1.08 \mathrm{Nm}$	$1.09 \mathrm{Nm}$	49.42%

Tabella 3.8: Risultati IPM sagomato senza eccitazione

Ciò dimostra che la sagomatura del ferro davanti ai magneti è efficace.

Ripple poli salienti con sagomatura

Si riporta una simulazione del motore sagomato (sol. 2) senza magneti permanenti (3.9).

Figura 3.9: IPM sagomato senza magneti permanenti

Si riportano grafico e valori di coppia e ripple nella figura 3.10 e nella tabella 3.9

Figura 3.10: Coppia IPM sagomato senza magneti permanenti

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$0.73 \mathrm{Nm}$	$0.73\mathrm{Nm}$	62.17%

Tabella 3.9: Risultati IPM sagomato senza magneti permanenti

Ciò dimostra che la sagomatura dei poli salienti e quella del ferro davanti ai magneti sono equamente importanti al fine di abbassare il ripple di coppia.

Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo mentre il magnete viene "diviso" in 4 parti. Si riportano i risultati riferiti alla soluzione 2 in figura 3.11 e tabella 3.10.

Figura 3.11: IPM sagomato con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	3.92Nm	3.93Nm	3.85%
4 poli	90°	1.82Nm	1.83Nm	10.96%

Tabella 3.10: Risultati skewing del rotore

I risultati raggiunti sono accettabili. Si procede dunque con la ricerca della sagomatura migliore tramite l'ottimizzatore dell'Università di Padova (EDlab).

3.1.4 Ottimizzatore

Si riportano i dati per la simulazione del motore IPM sagomato all'ottimizzatore (tabella 3.11). Gli obiettivi dell'ottimizzatore sono Coppia e Ripple (di
coppia). L'ottimizzatore è fatto per trovare i punti di minimo delle funzioni obiettivo e per questo motivo il segno della coppia viene invertito durante la ricerca.

PARAMETRO	Valore
N. individui	20
N. Generazioni	20
R_ps_sx	da 0 a 15
R_ps_dx	da 0 a 15
R_mg_sx	da 0 a 15
R_mg_dx	da 0 a 15

Tabella 3.11: Parametri per l'ottimizzatore

La simulazione si conclude mostrando il fronte di Pareto i cui punti rappresentano le migliori soluzioni trovate. Nella figura 3.12, il fronte, è rappresentato dai rombi neri.

Figura 3.12: Fronte di Pareto IPM sagomato

Si riportano le soluzioni migliori (configurazione 4 poli) in tabella 3.12

Soluzione	Coppia	\mathbf{Ripple}	R_mg_sx	R_mg_dx	R_ps_sx	R_ps_dx
Ripple minore	1.72Nm	17.78%	12.132	14.619	12.286	10.686
Coppia max	2.04Nm	44.82%	0.29474	14.805	0.078657	13.105

Tabella 3.12: Risultati ottimizzatore

3.2 SPM

3.2.1 Ripple magneti

Per verificare l'incidenza della sagomatura del ferro davanti ai magneti si riporta una simulazione del motore senza corrente di eccitazione (3.13).

Figura 3.13: SPM senza corrente di eccitazione

Si riportano grafico e valori di coppia e ripple nella figura 3.14 e nella tabella 3.13

Figura 3.14: Coppia SPM senza corrente di eccitazione

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$1.13 \mathrm{Nm}$	$1.13 \mathrm{Nm}$	76.86%

Tabella 3.13: Risultati SPM senza eccitazione

3.2.2 Ripple poli salienti

Per verificare l'incidenza della sagomatura dei poli salienti si riporta una simulazione del motore senza magneti permanenti (3.15).

Figura 3.15: SPM senza magneti permanenti

Si riportano grafico e valori di coppia e ripple nella figura 3.16 e nella tabella 3.14

Figura 3.16: Coppia SPM senza magneti permanenti

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$1.01 \mathrm{Nm}$	1.01Nm	76.37%

Tabella 3.14: Risultati SPM senza magneti

In entrambi i casi il ripple di coppia risulta elevato. E dunque necessario sagomare entrambe le componenti.

3.2.3 Analisi parametrica a 2 parametri

Nella figura 3.17 viene mostrata la geometria del motore sagomato con compromesso tra coppia e ripple. Per l'analisi parametrica è stato usato il seguente metodo. Parametri R_ps_sx e R_ps_dx per la sagomatura dei poli salienti come per l'IPM (3.5a). La sagomatura asimmetrica dei magneti permanenti innalzerebbe troppo i costi di realizzazione e perciò si mantiene la forma fissa. Di fatto, una variazione simmetrica del magnete non porta a miglioramenti di ripple.

Figura 3.17: Motore SPM sagomato 2 parametri

Variazione dei parametri:

PARAMETRO	Val. iniziale	Step	Val. finale
R_ps_sx	0	5	15
R_ps_dx	0	5	15

Tabella 3.15: Variazione parametri

La soluzione migliore risulta essere:

PARAMETRO	Valore
R_ps_sx	10
R_ps_dx	5

Tabella 3.16: Valori ottimali

Nella tabella seguente vengono mostrate le coppie e i ripple della soluzione migliore.

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	$4.53 \mathrm{Nm}$	4.59Nm	$8.08\%\ 46.75\%$
4 poli	90°	$1.92 \mathrm{Nm}$	2.11Nm	

Tabella 3.17: Risultati soluzione migliore

Nonostante il fatto che il rotore subirà uno skewing, il risultato raggiunto dal 4 poli non è accettabile. Questo dimostra che i parametri scelti per l'analisi sono ben correlati al ripple di coppia ma che sarebbe necessaria anche la sagomatura asimmetrica dei magneti superficiali (la sagomatura simmetrica non porta miglioramenti considerevoli).

Ripple poli salienti con sagomatura

Si riporta una simulazione del motore sagomato senza magneti permanenti (3.18).

Figura 3.18: SPM sagomato senza magneti permanenti

Si riportano grafico e valori di coppia e ripple nella figura 3.19 e nella tabella 3.18

Figura 3.19: Coppia SPM sagomato senza magneti permanenti

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
Valore	90°	$0.82 \mathrm{Nm}$	$0.82 \mathrm{Nm}$	42.35%

Tabella 3.18: Risultati SPM sagomato senza magneti permanenti

Come visto nell'analisi del motore completo, la sagomatura dei poli salienti risulta fondamentale al fine di abbassare il ripple di coppia.

Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo mentre il magnete viene "diviso" in 4 parti. Si riportano i risultati in figura 3.20 e tabella 3.19.

Figura 3.20: SPM sagomato con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	4.4329Nm	4.4189Nm	0.93%
4 poli	90*	1.8354Nm	1.8305Nm	26.07%

Tabella 3.19: Risultati skewing del rotore

I risultati raggiunti non sono accettabili per il 4 poli. Si procede ora con la ricerca della sagomatura migliore tramite l'ottimizzatore dell'Università di Padova (EDlab).

3.2.4 Ottimizzatore

Si riportano i dati per la simulazione del motore SPM sagomato all'ottimizzatore (tabella 3.20). Gli obiettivi dell'ottimizzatore sono sempre Coppia e Ripple (di coppia).

PARAMETRO	Valore
N. individui	20
N. Generazioni	10
R_ps_sx	da 0 a 15
R_ps_dx	da 0 a 15

Tabella 3.20: Parametri per l'ottimizzatore

La simulazione si conclude mostrando il fronte di Pareto i cui punti rappresentano le migliori soluzioni trovate. Nella figura 3.21, il fronte, è rappresentato dai rombi neri.

Figura 3.21: Fronte di Pareto SPM sagomato

Si riportano le soluzioni migliori in tabella 3.21.

Soluzione	Coppia	Ripple	R_ps_sx	R_ps_dx
Ripple minore Coppia max	2.00Nm 1.81Nm	$56.94\%\ 46.01\%$	$0.03996 \\ 13.707$	$14.865 \\ 11.745$

Tabella 3.21: Risultati ottimizzatore

3.3 PS

3.3.1 Analisi parametrica a 4 parametri

Nella figura 3.22 viene mostrata la geometria del motore sagomato con compromesso tra ripple e coppia (soluzione 2). Per l'analisi parametrica è stato usato il seguente metodo. Parametri R_ps_sx e R_ps_dx per la sagomatura dei poli salienti a eccitazione variabile e i parametri $R_ps_fixed_sx$

e $R_ps_fixed_dx$ per la sagomatura dei poli salienti a eccitazione fissa. Il metodo è lo stesso di quello utilizzato per l'IPM (3.5a). Semplicemente, i due tipi di polo si sagomano in modo diverso.

Figura 3.22: Motore PS sagomato 4 parametri

τ	τ.	•	1.	
v	aria	zione	det	parametri
•	0110	210110	aor	paramouri

PARAMETRO	Val. iniziale	Step	Val. finale
R_ps_sx	0	5	15
R_ps_dx	0	5	15
$R_ps_fixed_sx$	0	5	15
$R_ps_fixed_dx$	0	5	15

Tabella 3.22: Variazione parametri

Le soluzioni migliori risultano essere:

PARAMETRO	Sol. 1	Sol. 2	Sol. 3
R_ps_sx	5	5	0
R_ps_dx	15	10	10
$R_ps_fixed_sx$	10	5	5
$R_ps_fixed_dx$	10	10	10

Tabella 3.23: Valori ottimali

Nelle tabelle seguenti vengono mostrate le coppie e i ripple delle 3 soluzioni: 1) ripple minore; 2) Compromesso coppia-ripple; 3) Compromesso con coppia più elevata.

Soluzione 1

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	$3.59\mathrm{Nm}$	$3.59\mathrm{Nm}$	$16.93\%\ 18.39\%$
4 poli	100°	$1.55\mathrm{Nm}$	$1.55\mathrm{Nm}$	

Tabella 3.24:	Risultati	soluzione	1:	ripple	e minore

Soluzione 2

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	3.77Nm	3.77Nm	21.57%
4 poli	100°	1.63Nm	1.62Nm	21.84%

Tabella 3.25: Risultati soluzione 2: compromesso

Soluzione 3

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	3.84Nm	3.82Nm	35.85%
4 poli	101°	1.71Nm	1.7Nm	32.78%

Tabella 3.26: Risultati soluzione 3: compromesso coppia elevata

Partendo dal presupposto che il rotore subirà uno skewing, le soluzioni 1 e 2 sono accettabili. Questo dimostra che i parametri scelti per l'analisi sono ben correlati al ripple di coppia.

Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore (soluzione 2). Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo. Si effettua una simulazione del caso peggiore in cui i lamierini subiscono uno step-skewing diviso in 4 parti (come per i casi IPM e SPM). Si riportano i risultati in figura 3.23 e tabella 3.27.

Figura 3.23: PS sagomato con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{dq}$	$ au_{Mxw}$	Ripple
8 poli	90°	$3.68 \mathrm{Nm}$	$3.69\mathrm{Nm}$	$4.17\% \\ 15.64\%$
4 poli	102°	$1.59 \mathrm{Nm}$	$1.58\mathrm{Nm}$	

Tabella 3.27:	Risultati	skewing	del	rotore
---------------	-----------	---------	-----	--------

I risultati raggiunti sono accettabili. Si procede ora con la ricerca della sagomatura migliore tramite l'ottimizzatore dell'Università di Padova (EDlab).

3.3.2 Ottimizzatore

Si riportano i dati per la simulazione del motore PS sagomato all'ottimizzatore in tabella 3.28. Gli obiettivi dell'ottimizzatore sono sempre Coppia e Ripple (di coppia).

PARAMETRO	Valore		
N. individui	20		
N. Generazioni	10		
R_ps_sx	da 0 a 15		
R_ps_dx	da 0 a 15		
$R_ps_fixed_sx$	da 0 a 15		
$R_ps_fixed_dx$	da 0 a 15		

Tabella 3.28: Parametri per l'ottimizzatore

La simulazione si conclude mostrando il fronte di Pareto i cui punti rappresentano le migliori soluzioni trovate. Nella figura 3.24, il fronte, è rappresentato dai rombi neri.

Figura 3.24: Fronte di Pareto PS sagomato

Si riportano le soluzioni migliori in tabella 3.29 (i nomi dei parametri sono stati accorciati per compattare la tabella).

Soluzione	Coppia	Ripple	R_sx	R_dx	R_f_sx	R_f_dx
Ripple minore	$1.53~\mathrm{Nm}$	17.53%	3.9219	12.558	14.572	10.721
Coppia max	$1.80 \ \mathrm{Nm}$	47.51%	0.34882	11.621	0.22476	10.651

Tabella 3.29: Risultati ottimizzatore

Capitolo 4

Prototipi

A seguito dei risultati ottenuti con l'ottimizzatore si opta per la costruzione di un prototipo IPM e di un prototipo PS. L'ottimizzazione del motore SPM ha dimostrato che l'assenza di sagomatura asimmetrica sui magneti permanenti implica un ripple di coppia troppo elevato.

Per quanto riguarda l'alimentazione dell'eccitazione di rotore, si sceglie di distribuire le 300 Aspire in Nc = 160 conduttori. Considerando un $k_{fill} = 0.37$, la sezione dei conduttori risulta dc = 0.56mm. L'area della cava è $Ac = 107.7mm^2$ e la sezione per i conduttori è $Sc = 107.7 \cdot 0.37 = 39.4mm^2$. La corrente di eccitazione è dunque Ie = 300/160 = 1.875A.

La densità di corrente corrispondente è $Jrot = 300/39.4 = 7.61A/mm^2$. Essendo un prototipo da testare in laboratorio si riuscirà a raffreddarlo a sufficienza. In caso negativo, si può ridurre la corrente.

4.1 IPM

Per scegliere effettivamente la sagomatura migliore si ripete l'ottimizzazione valutando coppia e ripple nel periodo di 30° con step di 0.5° . Si riporta il fronte di Pareto nelle nuove condizioni (4.1):

Figura 4.1: Fronte di Pareto IPM sagomato (periodo 30°, step 0.5°)

Si opta per il motore IPM con ripple minore. Si riportano i parametri corrispondenti.

PARAMETRO	Valori
R_ps_sx	11.955
R_ps_dx	12.947
R_mg_sx	7.2899
R_mg_dx	13.338

Tabella 4.1: Valori ottimali

Si riporta ora l'analisi a vuoto e a carico del motore rispettivamente nelle configurazioni a 8 e 4 poli.

Nella figura 4.2 viene mostrata la geometria del motore ottimizzato.

Figura 4.2: Motore IPM scelto

PARAMETRO	MTPA	$ au_{MxwSB}$	Ripple
8 poli	90°	3.87Nm	$9.46\%\ 19.02\%$
4 poli	90°	1.75 Nm	

Tabella 4.2: Coppia e ripple IPM ottimizzato

4.1.1 Disegno prototipo

Per ridurre la fragilità meccanica, si effettuano degli accorgimenti al disegno del rotore. Si riporta il progetto definitivo (figura 4.3) con i raccordi delle parti appuntite.

Figura 4.3: Motore IPM prototipo

4.1.2 Analisi a vuoto mediante calcolo agli elementi finiti (8 poli)

Nella figura 4.4 è possibile vedere le linee di campo del motore IPM nella configurazione a 8 poli (rotore non allineato).

Figura 4.4: Linee di campo a vuoto (8 poli)

Induzione al traferro

Nelle figure 4.5a e 4.5b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.67T$ per i poli salienti e $\hat{B}_{g1,mg} = 0.84T$ per i magneti.

Figura 4.5: Induzione al traferro a vuoto (8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a vuoto è stata eseguita una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (90° meccanici) con passo di 1° (meccanico). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 4.6a

Figura 4.6: Flussi concatenati a vuoto (8 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.6b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza della fondamentale è $\Lambda_0^1 = 0.42Vs$

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 4.7a, mentre i flussi dq risultanti sono in figura 4.7b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.41 Vs$.

Figura 4.7: Flussi dq a vuoto (8 poli)

In figura 4.8 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.8: Fem a vuoto (8 poli)

Coppia di cogging

La periodicità della coppia di impuntamento risulta essere 10° diversa dai 5° previsti dall'equazione classica. In figura 4.9 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell per sliding band (step di 0.5°).

Figura 4.9: Coppia di impuntamento/cogging a vuoto (8 poli)

4.1.3 MTPA e mappatura (8 poli)

Ricerca dell'MTPA

Con l'aiuto del Matlab e del FEMM si simula l'andamento della coppia al variare delle correnti I_d e I_q . Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 4.10).

Figura 4.10: Ricerca MTPA (8 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 90^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.57A \end{cases}$$
(4.1)

Mappatura

Si riportano le mappe dei flussi e delle induttanze apparenti e differenziali del prototipo rispettivamente nelle figure 4.11, 4.12 e 4.13.

Figura 4.11: Mappe flussi d
q $(8\ {\rm poli})$

Figura 4.12: Mappe induttanze apparenti d
q $(8\ {\rm poli})$

Figura 4.13: Mappe induttanze differenziali dq (8 poli)

4.1.4 Analisi a carico mediante calcolo agli elementi finiti (8 poli)

Si riporta in figura 4.14 una simulazione della macchina a carico.

Figura 4.14: Linee di campo a carico (8 poli)

Induzione al traferro

Nelle figure 4.15a e 4.15b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti e magneti permanenti. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.64T$ per i poli salienti e $\hat{B}_{g1,mg} = 0.86T$ per i magneti.

Figura 4.15: Induzione al traferro a carico (8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (90° meccanici) con passo di 1° (meccanico). I flussi concatenati prodotti dai due inverter sono rappresentati in 4.16a.

Figura 4.16: Flussi concatenati a carico (8 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.16b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza dell'onda è $\Lambda_0^1 = 0.43Vs$.

I flussi dq dei 2 inverter sono rappresentati in figura 4.17a, mentre i flussi dq risultanti sono in figura 4.17b.

Figura 4.17: Flussi dq concatenati a carico (8 poli)

In figura 4.18 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.18: Fem a carico (8 poli)

4.1.5 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell (sliding band) e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 120° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 4.19) si riportano i risultati.

Figura 4.19: Coppia a carico (8 poli)

Il valore medio risulta essere $T_N = 3.88Nm$. Il suo ripple risulta essere $\Delta T = 9.89\%$.

4.1.6 Analisi a vuoto mediante calcolo agli elementi finiti (4 poli)

Si procede effettuando le stesse simulazioni sul motore in configurazione 4 poli. Nella figura 4.20 è possibile vedere le linee di campo.

Figura 4.20: Linee di campo a vuoto (4 poli)

Induzione al traferro

Nella figura 4.21 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla

presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.69T$.

Figura 4.21: Induzione al traferro a vuoto (Scelto 4 poli)

Flussi concatenati e fem

L'andamento dei flussi concatenati e delle fem a vuoto è stata ottenuta tramite una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (180° meccanici) con passo di 2° (meccanici). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 4.22a

Figura 4.22: Flussi concatenati a vuoto (Scelto 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.22b

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 4.23a, mentre i flussi dq risultanti sono in figura 4.23b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_M = 0.37 Vs$, tale valore sarà utile per la stima della velocità base della macchina.

Figura 4.23: Flussi dq a vuoto (Scelto 4 poli)

In figura 4.24b si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.24: Fem a vuoto (Scelto 4 poli)

Coppia di cogging

La periodicità della coppia di cogging risulta essere 10° e coincide con quella ricavata dall'equazione classica. In figura 4.25 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell (sliding band).

Figura 4.25: Coppia di impuntamento/cogging a vuoto (4 poli)

4.1.7 MTPA e induttanze (4 poli)

Ricerca dell'MTPA

Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ (come per l'8 poli) e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 4.26).

Figura 4.26: Ricerca MTPA (Scelto 4 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 90^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.57A \end{cases}$$
(4.2)

Mappatura

Si riportano le mappe dei flussi e delle induttanze apparenti e differenziali del prototipo rispettivamente nelle figure 4.27, 4.28 e 4.29.

Figura 4.27: Mappe flussi d
q $(4~{\rm poli})$

Figura 4.28: Mappe induttanze apparenti d
q $(4~{\rm poli})$

Figura 4.29: Mappe induttanze differenziali d
q $(4~{\rm poli})$

4.1.8 Analisi a carico mediante calcolo agli elementi finiti (4 poli)

Si riporta in figura 4.30 una simulazione della macchina a carico (rotore non allineato).

Figura 4.30: Linee di campo a carico (4 poli)

Induzione al traferro

Nella figura 4.31 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.83T$.

Figura 4.31: Induzione al traferro a carico (Scelto 4 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (180° meccanici) con passo di 2° (meccanici). I flussi concatenati prodotti dai due inverter sono rappresentati in 4.32a

Figura 4.32: Flussi concatenati a carico (Scelto 4 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.32b

I flussi dq dei 2 inverter sono rappresentati in figura 4.33a, mentre i flussi dq risultanti sono in figura 4.33b.

Figura 4.33: Flussi dq concatenati a carico (Scelto 4 poli)

In figura 4.34 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.34: Fem a carico (Scelto 4 poli)

4.1.9 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell (sliding band) e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 4.35) si riportano i risultati.

Figura 4.35: Coppia a carico (4 poli)

Il valore medio risulta essere $T_N = 1.75 Nm$. Il suo ripple risulta essere $\Delta T = 17.53\%$.

4.1.10 Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo. Si effettua una simulazione del caso peggiore in cui i lamierini subiscono uno step-skewing diviso in 4 parti. Si riportano i risultati in figura 4.36 e tabella 4.3

Figura 4.36: Prototipo IPM sagomato con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{Mxw}$	Ripple
8 poli	90°	$3.8~\mathrm{Nm}$	2.66%
4 poli	90°	$1.74 \mathrm{Nm}$	12.46%

Tabella 4.3: Risultati skewing del rotore

4.1.11 Confronto risultati

Per concludere l'analisi dell'IPM, si riporta, in tabella 4.4, il confronto tra il motore non sagomato e il prototipo analizzato.

	Poli	Non sagomato		Sagomato	
		$\mid \tau_{Mxw}$	Ripple	$\mid \tau_{Mxw}$	Ripple
IPM	$\frac{8}{4}$	4.19Nm 1.90Nm	$30.71\%\ 59.46\%$	3.88Nm 1.75Nm	9.89% 17.53%
IPM Skewed	$\frac{8}{4}$	4.14Nm 1.88Nm	4.89% 21.93%	3.8Nm 1.74Nm	$2.66\% \\ 12.46\%$

Tabella 4.4: Confronto IPM

Come previsto, la combinazione di sagomatura e skewing ha permesso di ottenere un motore con delle buone performance e con ripple contenuto. Tuttavia, si può notare che l'applicazione dello skewing alla soluzione 2, trovata in analisi parametrica, porta a un motore con coppia maggiore e ripple minore di quelle del prototipo. Ciò conduce all'inattesa scoperta che l'incidenza dello skewing varia in base alla sagomatura. Un motore sagomato male con skewing potrebbe avere meno ripple di un motore skewato con ottima sagomatura. Se si volesse indagare e trovare un prototipo migliore si dovrebbe lanciare l'ottimizzatore dei disegni sagomati (parametri variabili) con skewing.

4.1.12 Dinamica

Coppie

Si riporta la caratteristica meccanica del prototipo IPM (fig. 4.37). Il punto di cambio polarità è dato dall'intersezione delle due curve di coppia. In base ai dati della macchina, il motore lavora in MTPA e non in MTPV.

Figura 4.37: Caratteristica meccanica IPM

Potenze

Si riportano le potenze corrispondenti alle due configurazioni (fig. 4.38).

Figura 4.38: Potenze IPM

Efficienze

Infine si riportano le efficienze (fig. 4.39). Non conoscendo la tensione del circuito rotorico, il grafico, non tiene conto della potenza di eccitazione ($Ve \cdot Ie$).

Figura 4.39: Efficienze IPM

4.2 PS

Anche in questo caso, per scegliere effettivamente la sagomatura migliore, si ripete l'ottimizzazione valutando coppia e ripple nel periodo di 30° con step di 0.5° (15 individui e 10 generazioni). Si riporta il fronte di Pareto nelle nuove condizioni (4.40):

Figura 4.40: Fronte di Pareto PS sagomato (periodo 30°, step $0.5^\circ)$

Si opta per il motore PS con ripple minore. Si riportano i parametri corrispondenti.

PARAMETRO	Valori	
R_ps_sx	12.221	
R_ps_dx	9.4678	
$R_ps_fixed_sx$	5.3261	
$R_ps_fixed_dx$	13.537	

Tabella 4.5: Valori ottimali

Si riporta ora l'analisi a vuoto e a carico del motore rispettivamente nelle configurazioni a 8 e 4 poli.

Nella figura 4.41 viene mostrata la geometria del motore ottimizzato.

Figura 4.41: Motore PS scelto

PARAMETRO	MTPA	$ au_{MxwSB}$	Ripple
8 poli	90°	$3.61 \mathrm{Nm}$	12.88%
4 poli	95°	$1.53 \mathrm{~Nm}$	18.06%

Tabella 4.6: Coppia e ripple PS ottimizzato

4.2.1 Disegno prototipo

Per ridurre la fragilità meccanica si effettuano degli accorgimenti al disegno del rotore. Si riporta il progetto definitivo (figura 4.42) con i raccordi delle parti appuntite.

Figura 4.42: Motore PS prototipo

4.2.2 Analisi a vuoto mediante calcolo agli elementi finiti (8 poli)

Nella figura 4.43 è possibile vedere le linee di campo del motore IPM nella configurazione a 8 poli (rotore non allineato).

Figura 4.43: Linee di campo a vuoto (8 poli)

Induzione al traferro

Nelle figure 4.44a e 4.44b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti a flusso variabile e dei poli salienti a flusso fisso. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.70T$ per i primi e $\hat{B}_{g1,psf} = 0.72T$ per i secondi.

Figura 4.44: Induzione al traferro a vuoto (8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a vuoto è stata eseguita una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (90° meccanici) con passo di 1° (meccanico). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 4.45a

Figura 4.45: Flussi concatenati a vuoto (8 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.6b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza della fondamentale è $\Lambda_0^1 = 0.39 V s$

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 4.46a, mentre i flussi dq risultanti sono in figura 4.46b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_E = 0.39Vs$, tale valore sarà utile per la stima della velocità base della macchina.

Figura 4.46: Flussi dq a vuoto (8 poli)

In figura 4.47 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.47: Fem a vuoto (8 poli)

Coppia di cogging

La periodicità della coppia di impuntamento risulta essere 10° diversa dai 5° previsti dall'equazione classica. In figura 4.48 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell per sliding band (step di 0.5°).

Figura 4.48: Coppia di impuntamento/cogging a vuoto (8 poli)

4.2.3 MTPA e mappatura (8 poli)

Ricerca dell'MTPA

Con l'aiuto del Matlab e del FEMM si simula l'andamento della coppia al variare delle correnti I_d e I_q . Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 4.49).

Figura 4.49: Ricerca MTPA (8 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA}=90^\circ.$ Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = 0A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.57A \end{cases}$$
(4.3)

Mappatura

Si riportano le mappe dei flussi e delle induttanze apparenti e differenziali del prototipo rispettivamente nelle figure 4.50, 4.51 e 4.52.

Figura 4.50: Mappe flussi d
q $(8\ {\rm poli})$

Figura 4.51: Mappe induttanze apparenti dq (8 poli)

Figura 4.52: Mappe induttanze differenziali dq (8 poli)

4.2.4 Analisi a carico mediante calcolo agli elementi finiti (8 poli)

Si riporta in figura 4.53 una simulazione della macchina a carico.

Figura 4.53: Linee di campo a carico (8 poli)

Induzione al traferro

Nelle figure 4.54a e 4.54b sono riportati gli andamenti delle induzioni al traferro e delle relative fondamentali in un periodo elettrico rispettivamente di poli salienti a flusso variabile e poli salienti a flusso fisso. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1,ps} = 0.67T$ per i primi e $\hat{B}_{g1,psf} = 0.69T$ per i secondi.

Figura 4.54: Induzione al traferro a carico (8 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (90° meccanici) con passo di 1° (meccanico). I flussi concatenati prodotti dai due inverter sono rappresentati in 4.55a.

Figura 4.55: Flussi concatenati a carico (8 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.16b. Come si può vedere le forme d'onda sono praticamente sinusoidali. L'ampiezza dell'onda è $\Lambda_0^1 = 0.41 V s$.

I flussi dq dei 2 inverter sono rappresentati in figura 4.56a, mentre i flussi dq risultanti sono in figura 4.56b.

Figura 4.56: Flussi dq concatenati a carico (8 poli)

In figura 4.57 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.57: Fem a carico (8 poli)

4.2.5 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell (sliding band) e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 120° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 4.58) si riportano i risultati.

Figura 4.58: Coppia a carico (8 poli)

Il valore medio risulta essere $T_N = 3.61 Nm$. Il suo ripple risulta essere $\Delta T = 12.9\%$.

4.2.6 Analisi a vuoto mediante calcolo agli elementi finiti (4 poli)

Si procede effettuando le stesse simulazioni sul motore in configurazione 4 poli. Nella figura 4.59 è possibile vedere le linee di campo.

Figura 4.59: Linee di campo a vuoto (4 poli)

Induzione al traferro

Nella figura 4.60 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla

presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.61T$.

Figura 4.60: Induzione al traferro a vuoto (4 poli)

Flussi concatenati e fem

L'andamento dei flussi concatenati e delle fem a vuoto è stata ottenuta tramite una simulazione per diverse posizioni del rotore. In particolare è stata effettuata una rotazione di 360° elettrici (180° meccanici) con passo di 2° (meccanici). Per evidenziare l'utilizzo dei 2 inverter, flussi e fem verranno illustrati sia separati (prodotti dai due inverter) sia accoppiati (somma risultante).

I flussi concatenati prodotti dai due inverter sono rappresentati in 4.61a

Figura 4.61: Flussi concatenati a vuoto (4 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.61b

Applicando la trasformazione dq alla terna di flussi concatenati si sono ricavati gli andamenti dei flussi di asse d e di asse q. I flussi dq dei 2 inverter sono rappresentati in figura 4.62a, mentre i flussi dq risultanti sono in figura 4.62b (nelle figure vengono rappresentati insieme al flusso di asse a). Come prevedibile, il valore medio di asse q risulta essere nullo. Il valore medio del flusso di asse d è pari a $\Lambda_E = 0.33 Vs$, tale valore sarà utile per la stima della velocità base della macchina.

Figura 4.62: Flussi dq a vuoto (Scelto 4 poli)

In figura 4.63b si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.63: Fem a vuoto (4 poli)

Coppia di cogging

La periodicità della coppia di cogging risulta essere 10° e coincide con quella ricavata dall'equazione classica. In figura 4.64 è riportato l'andamento della coppia di impuntamento τ_{cog} calcolata con il tensore degli sforzi di Maxwell (sliding band).

Figura 4.64: Coppia di impuntamento/cogging a vuoto (4 poli)

4.2.7 MTPA e induttanze (4 poli)

Ricerca dell'MTPA

Viene imposta la corrente nominale con picco pari a $I_N = 1.11 \cdot \sqrt{2} = 1.57A$ (come per l'8 poli) e si valuta la coppia tramite l'equazione dei flussi. Di seguito viene riportato il grafico dell'MTPA (figura 4.65).

Figura 4.65: Ricerca MTPA (4 poli)

L'angolo di MTPA risulta essere $\alpha_{MTPA} = 95^{\circ}$. Le correnti corrispondenti sono:

$$\begin{cases} I_{d_{MTPA}} = I_N \cdot \cos(\alpha_{MTPA}) = -0.14A\\ I_{q_{MTPA}} = I_N \cdot \sin(\alpha_{MTPA}) = 1.56A \end{cases}$$
(4.4)

Mappatura

Si riportano le mappe dei flussi e delle induttanze apparenti e differenziali del prototipo rispettivamente nelle figure 4.66, 4.67 e 4.68.

Figura 4.66: Mappe flussi d
q $(4~{\rm poli})$

Figura 4.67: Mappe induttanze apparenti d
q $(4~{\rm poli})$

Figura 4.68: Mappe induttanze differenziali d
q $(4~{\rm poli})$

4.2.8 Analisi a carico mediante calcolo agli elementi finiti (4 poli)

Si riporta in figura 4.69 una simulazione della macchina a carico (rotore non allineato).

Figura 4.69: Linee di campo a carico (4 poli)

Induzione al traferro

Nella figura 4.70 è riportato l'andamento dell'induzione al traferro e della relativa fondamentale in un periodo elettrico. La dentellatura è dovuta alla presenza delle cave di statore. Il valore di picco della fondamentale risulta essere $\hat{B}_{g1} = 0.78T$.

Figura 4.70: Induzione al traferro a carico (4 poli)

Flussi concatenati e fem

Per determinare l'andamento dei flussi concatenati e delle fem a carico è stata effettuata una rotazione del rotore di 360° elettrici (180° meccanici) con passo di 2° (meccanici). I flussi concatenati prodotti dai due inverter sono rappresentati in 4.71a.

Figura 4.71: Flussi concatenati a carico (4 poli)

I flussi concatenati risultanti sono mostrati nella figura 4.71b.

I flussi dq dei 2 inverter sono rappresentati in figura 4.72a, mentre i flussi dq risultanti sono in figura 4.72b.

Figura 4.72: Flussi dq concatenati a carico (4 poli)

In figura 4.73 si possono vedere le forze elettromotrici ricavate dai flussi concatenati.

Figura 4.73: Fem a carico (4 poli)

4.2.9 Coppia

La coppia è stata calcolata mediante il tensore degli sforzi di Maxwell (sliding band) e mediante la relazione flusso-correnti. L'andamento della coppia è stato valutato per una rotazione del rotore di 60° elettrici (30° meccanici) con passo di 0.5° (meccanici). Di seguito (figura 4.74) si riportano i risultati.

Figura 4.74: Coppia a carico (4 poli)

Il valore medio risulta essere $T_N = 1.53Nm$. Il suo ripple risulta essere $\Delta T = 18\%$.

4.2.10 Skewing del rotore

Infine, si riportano i risultati corrispondenti allo skewing del rotore. Angolo di una cava = 10° . I lamierini subiscono uno skewing continuo. Si effettua una simulazione del caso peggiore in cui i lamierini subiscono uno step-skewing diviso in 4 parti. Si riportano i risultati in figura 4.75 e tabella 4.7

Figura 4.75: Prototipo PS sagomato con skewing del rotore (4 step)

PARAMETRO	MTPA	$ au_{Mxw}$	Ripple
8 poli	90°	$3.53 \mathrm{Nm}$	$2.65\% \\ 11.24\%$
4 poli	95°	$1.52 \mathrm{Nm}$	

Tabella 4.7: Risultati skewing del rotore

4.2.11 Confronto risultati

Per concludere l'analisi del PS, si riporta, in tabella 4.8, il confronto tra il motore non sagomato e il prototipo analizzato.

	Poli	Non sagomato		Sagomato	
		$\mid \tau_{Mxw}$	Ripple	$\mid \tau_{Mxw}$	Ripple
PS	$\frac{8}{4}$	4.16Nm 1.73Nm	39.88% 96.53%	3.61Nm 1.53Nm	$12.9\%\ 18\%$
PS Skewed	$\frac{8}{4}$	4.12Nm 1.72Nm	7.27% 29.97%	3.53Nm 1.52Nm	2.65% 11.24%

Tabella 4.8: Confronto PS

Anche in questo caso, sagomatura e skewing hanno permesso di abbassare drasticamente il ripple.

4.2.12 Dinamica

Coppie

Si riporta la caratteristica meccanica del prototipo IPM (fig. 4.76). Il punto di cambio polarità è dato dall'intersezione delle due curve di coppia. In base ai dati della macchina, il motore lavora in MTPA e non in MTPV.

Figura 4.76: Caratteristica meccanica PS

Potenze

Si riportano le potenze corrispondenti alle due configurazioni (fig.4.77).

Figura 4.77: Potenze PS

Efficienze

Infine si riportano le efficienze (fig. 4.78). Non conoscendo la tensione o la resistenza del circuito rotorico, il grafico, non tiene conto della potenza di eccitazione ($Ve \cdot Ie$).

Figura 4.78: Efficienze PS

Conclusioni

In questo progetto di tesi sono state considerate tre tipologie di motori per valutare la fattibilità del cambio di polarità nei motori sincroni. Una volta analizzati e riscontrato il problema dell'elevato ripple (in particolare nella configurazione a 4 poli) si è deciso di ottimizzare la geometria dei rotori. Per farlo, sono state intraprese due vie: analisi parametrica e ottimizzatore. I parametri studiati hanno consentito di variare la sagomatura del ferro di fronte ai magneti e sulla scarpa polare dei poli salienti. I risultati ottenuti hanno dimostrato che IPM e PS risultano essere le soluzioni più fattibili. Infatti, per ottenere risultati analoghi con l'SPM sarebbe necessario sagomare in modo asimmetrico i magneti permanenti, incrementando costi e difficoltà costruttive. A partire dai motori a ripple minore, ne sono stati tratti dei prototipi raccordando le punte meccaniche. Per attenuare ulteriormente il ripple, i rotori hanno subito uno skewing ottenendo dei buoni risultati. Dal punto di vista teorico, il cambio di polarità nei motori sincroni risulta fattibile facendo un compromesso coppia-ripple. La scoperta della relazione tra skewing e sagomatura potrebbe, tuttavia, portare a risultati migliori. Il prossimo passo sarà quello di progettare il controllo degli inverter di potenza. Per farlo, ci si servirà delle mappe delle induttanze ottenute. Nel frattempo, verrà realizzato il prototipo e infine si testerà la dinamica con particolare attenzione al punto di cambio polarità (intersezione tra le caratteristiche di coppia a 4 e 8 poli).

Ringraziamenti

Oggi si conclude il mio percorso universitario. È l'ultimo giorno di un viaggio durato 5 anni nei quali gli ostacoli da superare sono stati molti.

Ci tengo a ringraziare il mio relatore, il professor Nicola Bianchi, che mi ha offerto la possibilità di trattare un argomento così bello e innovativo. In lui ho avuto il piacere di riconoscere un leader sempre disponibile ad aiutare gli altri.

Ringrazio Chiara, dottoranda EDLab, che mi ha supportato nella risoluzione dei problemi anche quando non era tenuta a farlo.

Ringrazio la mia famiglia, per avermi permesso di seguire questo percorso accademico, sostenendomi da tutti i punti di vista. Mi siete stati vicini nelle vittorie e nelle sconfitte e mi avete insegnato dei valori che oggi rispecchio con orgoglio.

Ringrazio i miei migliori amici: Martina, Bianca e Simone. Coloro che mi hanno sostenuto dal primo momento in cui ci siamo conosciuti e che darebbero l'anima per la nostra amicizia. Questo risultato è anche merito vostro. Ringrazio tutti i miei amici, coi quali ho avuto il piacere di divertirmi con spensieratezza.

Ringrazio il gruppo Energy, l'insieme dei miei compagni di corso con cui ho affrontato ogni lezione ed ogni esame, sostenendoci a vicenda fino alla fine. Ringrazio tutti i professori di Padova, perchè hanno lavorato nel miglior modo possibile per garantire la mia preparazione professionale.

Infine, ringrazio te che stai leggendo, perchè significa che, in un modo o nell'altro, sei stato parte di questo grande risultato.

Bibliografia

- C.-H. Chen; M.-Y. Cheng. «Design of a multispeed winding for a brushless DC motor and its sensorless control». In: *IEE Proc.-Electr. Power Appl.* Vol.153, No. 6 (2006).
- [2] M. C. Tsai; M. C. Chou; C. L. Chu. «Control of a Variable-Winding Brushless Motor with the Application in Electric Scooters». In: *IEEE* (1999).
- [3] Chiara Contò. *Motore sincrono a eccitazione ibrida con cambio di polarità*. Padova, 2021.
- [4] Bianchi Nicola; Cinti Luca; Michieletto Daniele. «Hybrid Excitation PM Synchronous Motors: Part I — Per Unit Analysis». In: *IEEE Transac*tions on Energy Conversion Vol. 14, No. 8 (2015).
- [5] Bianchi Nicola; Cinti Luca; Michieletto Daniele. «Hybrid Excitation PM Synchronous Motors: Part II - Finite Element Analysis». In: *IEEE Transactions on Energy Conversion* Vol. 1, No. 1 (2021).

Appendice A Lamierino di statore

Appendice B

Magnete IPM

N35UH

Sintered Neodymium-Iron-Boron Magnets

These are also referred to as "Neo" or NdFeB magnets. They offer a combination of high magnetic output at moderate cost. Please contact Arnold for additional grade information and recommendations for protective coating. Assemblies using these magnets can also be provided.

	Characteristic	Units	min.	nominal	max.	í I	à
	Pro construction of the second s	Gauss	11,700	12,100	12,500		
es	DI, Residual Induction	mT	1170	1210	1250		4
te .	u	Oersteds	10,800	11,400	12,000		
ğ	H _{cB} , Coercivity	kA/m	860	907	955	Iſ	
2		Oersteds	25,000				
gne	ricj, intrinsic Coercivity	kA/m	1,990				륲
ž Du	Blimay	MGOe	33	36	38		0
	Driman, Maximum Energy Product	kJ/m ³	263	283	302		

	Characteristic	Units	С //	ст
	Reversible Temperature Coefficients (1)			
ties	of Induction, a(Br)	%/°C	-0.12	
per	of Coercivity, a(Hcj)	%/°C	-0.51	
Pre	Coefficient of Thermal Expansion (2)	ΔL/L per °Cx10 ⁻⁶	7	-1
a a	Thermal Conductivity	kcal/mhr ^e C	5.3	5.8
The	Specific Heat (3)	cal/gºC	0.11	
	Curie Temperature, Tc	°C	310	
	Flowers Strength	psi 41,30		300
Other Properties	Plexular Strength	MPa	MPa 285	
	Density	g/cm ³	7.6	
	Hardness, Vickers	Hv	6	620
	Electrical Resistivity, p	μΩ•cm	150 // 130 ⊥	
Notes:	(1) Coefficients measured between 20 and	180 °C		

(1) Coefficients measured between 20 and 180 $^{\circ}{\rm C}$ (2) Between 20 and 200 $^{\circ}{\rm C}$. Values are typical and can vary (3) Between 20 and 140 $^{\circ}{\rm C}$

1 kA/m = 12.566 Oe 1 kOe = 79.577 kA/m

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and minimum Hci. Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications. Additional grades are available. Please contact the factory for information.

236 © Arnold Magnetic Technologies Corp. 770 Linden Avenue, Rochester, NY 14625 Ph: (+1) 585-385-9010 E-mail: info@arnoldmagnetics.com www.arnoldmagnetics.com Rev. 210607

Appendice C

Magnete SPM

N30UH

Sintered Neodymium-Iron-Boron Magnets

These are also referred to as "Neo" or NdFeB magnets. They offer a combination of high magnetic output at moderate cost. Please contact Arnold for additional grade information and recommendations for protective coating. Assemblies using these magnets can also be provided.

Characteristic	Units	min.	nominal	max.
D- -	Gauss	10,800	11,250	11,700
DF, Residual Induction	mT	1080	1125	1170
H _{cB} , Coercivity	Oersteds	10,200	10,700	11,200
	kA/m	812	852	891
H _{cJ} . Intrinsic Coercivity	Oersteds	25,000		
	kA/m	1,990		
Dilmon .	MGOe	28	31	33
DITITION, Maximum Energy Product	kJ/m ³	223	243	263

	Characteristic	Units	С //	ст
	Reversible Temperature Coefficients (1)			
501	of Induction, a(Br)	%/°C	-0.12	
	of Coercivity, a(Hcj)	%/°C	-0.51	
Ĕ	Coefficient of Thermal Expansion (2)	ΔL/L per °Cx10 ⁻⁶	7	-1
Ē	Thermal Conductivity kcal/mhr ^e C		5.3	5.8
2	Specific Heat (3)	cal/gºC	0.11	
	Curie Temperature, Tc	°C	310	
	Flavoural Strength	psi	41,	300
Properties	Flexulai Sueligui	MPa	285	
	Density	g/cm ³	7.6	
	Hardness, Vickers	Hv	620	
	Electrical Resistivity, p	μΩ•cm	150 //	130⊥
	(1) Coefficients measured between 20 and	180 °C		

(2) and 180 °C
(2) Between 20 and 200 °C. Values are typical and can vary.
(3) Between 20 and 140 °C

1 kA/m = 12.566 Oe 1 kOe = 79.577 kA/m

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and minimum Hci. Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications. Additional grades are available. Please contact the factory for information.

	138	
	© Arnold Magnetic Technologies Corp.	
	770 Linden Avenue, Rochester, NY 14625	E-mail: info@arnoldmagnetics.com
Rev. 210607	Ph: (+1) 585-385-9010	www.arnoldmagnetics.com