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Abstract

Recurrent Neural Networks (RNNs) are a powerful tool to shed light on

how brain may work. RNNs can recapitulate different dynamical phases

observed in cortical circuits, such as silent or chaotic state, and provide

a simple explanation of asynchronous rate activity in neural systems and

information processing capabilities. In this thesis, we will exploit ad-

vanced approaches in statistical physics to investigate emergent phases

of RNNs with random coupling. Integrating tools from Dynamical Mean

Field Theory and Random Matrix Theory with numerical simulations,

we analyse the properties of the network with particular focus on its

stability and the effect of quenched external inputs on the dynamical

phases of the network. Finally, we will also study the equivalence of two

frequently used forms of recurrent rate models with random interactions.





Introduction

The brain is one of the most complex systems in the universe. It contains approx-

imately 1011 neurons that receive inputs from thousands of synapses, resulting in

an overwhelmingly high total number of connections. In order to unravel the gen-

eral principles behind brain functions and explain the emergent behaviors of cortical

cirtuits, researchers are constantly challenged by the complexities arising from this

intricate network of interactions.

Within the vast and interdisciplinary field of neuroscience, involving contributions

from biology, psychology, mathematics and physics, theoretical neuroscience in be-

coming increasingly influential. To describe fundamental brain processes such as

learning, memory and perception, this branch employs analytical and computa-

tional tools to understand how neural systems operate, taking advantage of statis-

tical physics to model and analyse their behavior. The large number of degrees of

freedom within neural networks and the non-linearity of the interactions make this

branch of physics an ideal tool for modelling those systems.

By exploiting advanced approaches in statistical physics, the objective of this thesis

is to understand how the underlying structure of the neural network determines its

dynamical behavior and to characterize the different configurations (phases) that

influence how the system responds to external inputs. On general grounds, our aim

is to understand how the brain can flexibly adapt to process information from a

complex environment and whether there is a state in which it is particularly sensi-
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tive to external perturbations.

By treating the brain as a complex system with emergent behaviors, we can justify

the inherent simplifications in modeling. As we focus on grasping the essential prin-

ciples resulting from the interconnections between neurons, it becomes unnecessary

to incorporate all features of isolated neurons or the intricate biological structure of

the network within our models. Instead, we can neglect certain details while still

capturing significant collective aspects.

The choice to model neural network dynamics using Recurrent Neural Networks

(RNNs) composed of firing rate units with randomly distributed synaptic connec-

tions is based on this idea. Importantly, we consider asymmetric couplings because

in this scenario the system cannot be described by an energy function, which is

only possible when they are chosen to be symmetric. Consequently, the model does

not converge to an attractor but instead displays a rich and complex dynamical

behavior. In Chapter 1, we explore how to derive this model from a more biolog-

ically realistic description of spiking neurons. Our aim is to clarify the essential

features while recognizing the simplifications made. Furthermore, we highlight the

distinction between two frequently used forms of firing rate models that derive from

this description. This involves capturing the different roles played by the neuronal

variables involved in each model, a clarification that, to our knowledge, remains

ambiguous in existing literature.

We use Dynamical Mean Field Theory (DMFT), an analytical tool from statisti-

cal physics, to understand the collective behavior of RNNs. DMFT simplifies the

dynamics of a large ensemble of neurons into an equation for a single neuron em-

bedded in a fluctuating field with self-consistent statistics, that accurately describes

the system’s behavior in the limit of the number of neurons approaching infinity.

This equation can be obtained using the Martin-Sigga-Rose-De Dominicis-Janssen

(MSRDJ) path integral formalism or the more intuitive dynamical cavity approach.

In Chapter 2, we derive the DMFT equation and explain the underlying principles
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and methodologies of both approaches.

In Chapter 3, we rigorously analyse the stationary state of the model by employing

the stationary limit of the DMFT equation. In particular, we focus on the evalua-

tion of the Largest Lyapunov Exponent (LLE). Interestingly, when the parameter

regulating the synaptic connection strength increase over a critical threshold, the

network undergoes a phase transition from a fixed point solution to a chaotic state.

This transition bears significant functional implications from an information pro-

cessing perspective.

In driven networks, the introduction of an external input to the neurons has been

observed to stabilize their dynamics. In Chapter 4, we investigate this phenomenon

by introducing a quenched Gaussian-distributed external input to the network. Ana-

lyzing the resulting phase diagram, we uncover bistable phases in which the network

can settle into two distinct attractors based on the initial conditions.

In Chapter 5, we explore two main numerical methods used to investigate the dynam-

ical behavior of RNNs: the Orbit Separation Method (OS) for computing the LLE

through direct simulations, and a method for numerically solving the self-consistent

DMFT equation. Other numerical approaches, such as those used for calculating

the correlation function of neuronal activity and the Lyapunov exponent through

DMFT, are comprehensively discussed in the corresponding chapters.

In the concluding chapter (Conclusions and Outlook), we provide a perspective on

how to advance this research line, based on the critical hypothesis of the brain.

Indeed, in our pursuit of uncovering fundamental principles, we often neglect a

crucial aspect of the brain: its adaptability, essential for operating in a complex

environment. On general grounds, adaptive models of complex living systems tune

themselves close to a critical state, at the borderline between order and disorder,

providing an excellent trade-off between flexibility and accuracy in information pro-

cessing capabilities. Motivated by this insight, we propose a model in which synap-

tic couplings are dynamic variables, undergoing modifications according to a simple
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Hebbian rule, meaning that when two neurons fires synchronously their connection

will get stronger over time. Biologically, this process of enhancing or weakening

the synaptic connection is known as synaptic plasticity and is a well-established

phenomenon. We speculate that this simple mechanism could bring the system to

self-tune close to a critical state. Finally, we emphasize the preparatory nature

of this work, as it provides the crucial analytical and numerical tools to further

exploration.
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Chapter 1

Recurrent Neural Networks

In this chapter, we present the fundamental aspects of the model used in the thesis:

a fully-connected recurrent neural network of firing rate units with random synaptic

couplings. This model provides a simplified alternative to more complicated spiking

models, allowing for a reasonably deep analytical analysis. We explain the reason

for this choice, clarifying the simplifications and underlying assumptions.

However, before proceeding further, it is necessary to provide some insight into the

fundamental biological features of the neuron’s structure ad function. Neurons are

specialized cells that communicate with each other by sending electrical impulses

known as action potentials or, more simply, spikes. From a structural point of view,

neurons are composed of distinct components such as dendrites, soma, and axons,

each of them contributing to their unique functions. Dendrites, branching structures

extending from the soma, receive incoming signals from neighboring neurons through

the exchange of neurotransmitters, such as glutamate, dopamine and serotonin. The

functional role of neurotransmitters is to regulate the opening and closing of ion

channels, that allow the passage of ions across the cell membrane. The accumulation

of ions within the soma modifies the membrane potential, which represents the

voltage difference between the inside and outside of the neuron and, when a critical

threshold is reached, a feedback process triggers the generation of an action potential,
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Figure 1.1: (Left) Schematic representation of the structure of a neuron. Soma (the cell body
which contains the nucleus), dendrites and axon can be clearly distinguished. (Right) Example of
a neuronal action potential, a short voltage pulse of the cell membrane potential of approximately
100 mV and with a typical duration of 1-2 ms. A chain of action potential emitted by a single
neuron is called spike train.

i.e. a rapid fluctuation of the membrane potential (see figure 1.1). This spike,

propagates via the axon, a slender fiber that connects the soma to neighboring

neurons, allowing for intercellular communication. The juction that connect the

terminal part of the axon of the transmitting (pre-synaptic) neuron to a dentrite of

a receiving (post-synaptic) neuron is known as synapse.

1.1 From spikes to firing rate

Large synaptic connectivity represents a defining feature of neural circuits. As an

example, a neuron in our cortex receives thousands of synaptic inputs. With network

models, we can investigate the computational capabilities offered by such connectiv-

ity, employing both analysis and simulations. The most direct approach to simulate
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neural networks involves the synaptical connection of spiking neurons. However, this

method presents important analytical, computational, and interpretative challenges.

For instance, the Hodgkin-Huxley models, which are useful to characterize the dy-

namics of the ion channels and identifying potential mechanisms to understand the

patterns of firing neurons, are described by a complicated system of coupled differ-

ential equations [18]. Moreover, the dynamics of spiking models span a wide range

of timescales, from channel opening that can happen in less than a millisecond, to

collective network processes that may be many orders of magnitude slower.

Instead, we employ a simpler approach by constructing networks of neuron-like units

with outputs represented by firing rates rather than action potentials. Firing rate

models allow to neglect the modelling of short timescale dynamics required for sim-

ulating spike sequences, thereby rendering them considerably easier to simulate.

Meanwhile, firing rate models provide an good alternative to investigate the dy-

namics of neural networks, as they enable us to study the input-output properties

of neurons employing simpler analytical tools, and they can be easily extended to

include interactions among different neurons.

Biological spiking neurons produce predictable spike patterns in response to injected

current or synaptic input. However, deterministic models can produce reliable se-

quences of spikes only in the scenario where all inputs are known, which is unreason-

able in the case of neurons inside a complex network. Consequently, while spiking

models may appear to offer greater precision, this may not be attained in prac-

tice. Furthermore, while cortical neurons receive numerous inputs, the probability

of finding a synaptic connection between randomly selected neurons is relatively

low. To address this problem, network models often use averaging units to repre-

sent the collective response of multiple neurons with similar functional role. These

units allow for denser interconnections and fewer units needed to build the model.

If neural responses are characterized by firing rates, averaging is straightforward,

but if responses are spikes, it’s unclear how to average them.
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Therefore, firing rate models allow us to construct a simplified networks, still cap-

turing significant properties of neural assemblies.

Action potentials vary significantly in length, amplitude, and shape, but because of

their short average duration (approximately 1 ms), we may describe them as point

processes that transfer information through their timing. Mathematically, the se-

ries of spikes produced by a neuron is completely determined by the neural response

function ρ(t), which involves delta function spikes occurring at times ti (i = 1, . . . , n)

when a neuron discharged an action potentials:

ρ(t) =
n∑

i=1

δ(t− ti) (1.1)

Clearly, the neural response function exhibits variability across different trials with

the same stimulus presentation. Because of this it requires a statistical or probabilis-

tic approach. As a consequence, in firing rate models, the accurate representation

of a spike sequence given by ρ(t) is substituted with an approximate description

provided by the firing rate r(t). Moving from spikes to firing rates requires counting

the number of action potential within short time intervals and dividing by the inter-

val duration (obtaining the so-called spike-count). However, for small time intervals

that allows for high temporal resolution, the spike-count on any given trial is likely

to be either 0 or 1, resulting in only two potential firing rate values. To avoid this

issue while maintaining the required temporal accuracy, averaging across different

trials is employed. Therefore, the continuous time firing rate can be defined as:

r(t) =
1

∆t

∫ t+∆t

t

dτ ⟨ρ(τ)⟩ (1.2)

and it represents the probability density that a spike occurs during the time interval

∆t. This approach enables us to switch from a point process to a continuous rate

model. The validity of the latter depends on how well the average firing rate of

the units represents the impact of actual spike sequences on the dynamical behavior
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of the network. Substituting the neural response function with the firing rate can

be justified by large amount of synaptic inputs received by each neuron, and it is

acceptable if the network dynamics is not greatly affected by the variability in spike

sequences from trial to trial. While individual synaptic inputs may vary significantly

between trials, summing inputs from multiple synapses activated by independent

pre-synaptic spike trains leads to a mean total input that increase proportionally

with the number of synapses, while its variability increases only as the square root

of it. Consequently, for uncorrelated pre-synaptic spike trains, the replacement of

action potentials with firing rates is expected not to change the network dynamics in

a relevant way. On the other hand, when a large portion of the inputs to a neuron are

correlated, as when pre-synaptic neurons fires synchronously, a rate model may fail

to accurately describe the system behavior. Moreover, the synaptic input resulting

from a pre-synaptic neuron undergoes a filtering effect due to the propagation of

the current from the synapse to the soma of the of the post-synaptic neuron. Slow

synaptic or membrane dynamics contribute to temporal averaging, which diminishes

the impact of variability in spike trains and supports the use of firing rates. In other

words, when the propagation of the input signal is slow compared to the typical

duration of the interspike intervals, firing rate models provide a better accuracy.

1.2 Synaptic input current

In order to develop a firing rate model, we follow the approach described by Dayan

and Abbot [8]. We first need to understand how the the firing rate of the pre-synaptic

neurons affect the overall synaptic input current received by the post-synaptic neu-

ron. As a typical procedure to determine firing rate response curves (i.e. the neural

response to a given stimulus) is obtained by experimentally injecting current into

the soma, the easiest way to define the total synaptic input is by the total current

reaching the soma due to pre-synaptic action potentials.
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Figure 1.2: The firing rates rj (j = 1, . . . , N) of the pre-synaptic neurons are weighted by the
synaptic coupling Jij and summed to compute the input current Ii to the i-th neuron (see eq.
(1.4)) which then determine its output rate ri.

Therefore, consider the i-th neuron of the model connected to N pre-synaptic neu-

rons with firing rates rj (j = 1, . . . , N) (fig. 1.2). Denote with Ii the total input

current to the i-th neuron and with ri its post-synaptic firing rate. Firstly, it is

necessary to comprehend how the synaptic input Ii is influenced by the pre-synaptic

spikes. When an action potential is generated by the neuron j at time t = 0, we

express the synaptic current produced in the soma of the post-synaptic neuron at

time t as JijKj(t). Here, Jij represents the synaptic weight (or coupling efficacy)

that determines the magnitude and sign of the synaptic current induced by the j-th

neuron. Kj(t) is the (normalized) synaptic kernel, which characterize the temporal

profile of the synaptic current and it depends on the dynamics of the synaptic con-

ductances activated by pre-synaptic spikes [8]. Then, if we consider that the effects

of spikes at a single synapse combine linearly, the cumulative synaptic current at

time t originating from a sequence of pre-synaptic spikes occurring at input j at

times tk can be described as:

ij(t) = Jij
∑
tk,j<t

Kj(t− tk,j) = Jij

∫ t

−∞
dτ Kj(t− τ)ρj(τ) (1.3)
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where ρj(τ) represent the neural response function of the j-th neuron (eq. 1.1) and

the second equality is derived by integrating over the sum of delta functions in its

definition.

Finally, assuming a linear interaction among various synaptic currents, the total

synaptic current originating from all pre-synaptic inputs is straightforwardly ob-

tained by summing:

Ii(t) =
N∑
j=1

Jij

∫ t

−∞
dτ Kj(t− τ)ρj(τ)

≈
N∑
j=1

Jij

∫ t

−∞
dτ Kj(t− τ)uj(τ) (1.4)

Note that in the second line we have substituted the neural response function ρj(τ)

with the firing rate of the j-th neuron uj(τ). This is the crucial step in developing a

firing rate model and, as we have previously underlined, it is a good approximation

when there are many input synapses, so that the trial-to-trial variability of the neural

response function can be neglected (see eq. (1.2) and the consequent discussion).

Let’s denote for the sake of simplicity:

Fj(t) =

∫ t

−∞
dτ Kj(t− τ)uj(τ) (1.5)

Now, we use an exponential kernel equal for all the synapses so that the index j

can be dropped in its definition. This kernel assumes the form K(t) = e−t/τI/τI ,

commonly used in firing rate models. By taking the derivative of equation (1.4)

with respect to t, we obtain:

τI
dIi
dt

=
N∑
j=1

Jij

(
uj(t) +

∫ t

−∞
dτ (− 1

τI
) exp(−t− τ

τI
)uj(t)

)

=
N∑
j=1

Jij (uj(t)− Fj(t)) = −Ii(t) +
N∑
j=1

Jijuj(t) (1.6)

17



where the time constant τI is the characteristic time of changes in synaptic input

current and it is related to the decay of the synaptic conductance. Equation (1.6)

is the differential equation describing the evolution of the total synaptic current

entering the soma of the i-th neuron, depending on the firing rates of pre-synaptic

neuron. We can interpret it from the perspective of Kirchhoff’s laws considering

neurons as an electrical element: the left-hand side represents the average change

in potential; the first term on the right-hand side accounts for the average current

leakage through the membranes of the neronal cells and the last term on the right-

hand side (interaction term) describes the average current resulting from the activity

of all other neurons.

1.3 Firing rate

In order to complete the model we need to determine the post-synaptic firing rate

ri(t) from the knowledge of Ii(t). On general grounds, firing rates do not follow

changes in the total synaptic input current instantaneously. Indeed, as previously

observed, action potentials are induced by the synaptic current affecting the mem-

brane potential of the neuron. Because of the membrane’s capacitance and resis-

tance, its potential essentially acts as a low-pass filtered version of Ii(t) . As a result,

the time-varying firing rate is often described as a low-pass filtered version of the

steady-state firing rate:

τR
dvi
dt

= −vi(t) + ϕ(Ii(t)) (1.7)

where the time constant τR determines how rapidly the firing rate converges to

its steady-state value and how accurately can track rapid fluctuation for a time-

dependent Ii(t). Equivalently, it describes how relevant are the low-pass filtering

properties of the membrane potential for the dynamics of the firing rate.

Note that in equation (1.7) we have introduced the activation function ϕ that de-

fines the input-output relationship for each neuron i.e. it transforms currents to
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firing rates. In this thesis, we will consider an activation function having a sig-

moidal shape i.e. ϕ(·) = tanh(·). The introduction of non-linearity is driven by the

biological functioning of neuronal connections. As previously mentioned, neurons

communicate via action potentials. However, neural signals are not directly shared

but depend on the quantity and type of neurotransmitters released from the axon

terminals of pre-synaptic neurons and absorbed by the dendrites of post-synaptic

neurons. In a linear neural network (i.e. ϕ(x) = x) the current in the model neuron

is influenced by the pre-synaptic currents of other neurons weighted by the coupling

strength. However, the neuron’s output is not simply the sum of all inputs as it

undergoes a nonlinear operation. For instance, neurons integrate inputs until a cer-

tain threshold is reached before an action potential occurs. Moreover, experimental

findings indicate the presence of a saturating non-linearity for large inputs. Conse-

quently, it is reasonable to conclude that the output (i.e. firing rate) of a neuron

represents a nonlinear computation of the inputs from all connected neurons.

In light of our discussion so far, we can characterize the activity of each neuron in

the network using a set of coupled differential equations. Therefore, in general, the

ordinary differential equations (ODEs) describing the total synaptic input current to

the i-th neuron Ii(t) and its firing rate ri(t), which we rewrite here for convenience,

are: 
τR
dri
dt

= −ri(t) + ϕ(Ii(t))

τI
dIi
dt

= −Ii(t) +
∑
j

Jijrj(t)
(1.8)

This model offers quite an accurate description of the dynamical activity exhibited

by neurons within the network. However, its complexity renders it less commonly

employed in the literature. Furthermore, as our focus is to understand the funda-

mental features driving network activity across various dynamic phases, we turn to

simpler models still able to capture the essential dynamics.
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1.4 Quasi-stationary approximations

When of the equations in (1.8) reaches equilibrium significantly faster than the other,

the pair can be reduced to a single equation. This reduction simplifies the analysis

and allow us to deep understanding of the system’s behavior.

The explicit form of the coupled ODEs depends on the relation between the timescale

τI of the synaptic input current dynamics and the firing rate time constant τR [8].

Assuming that τR ≪ τI , we can employ quasi-stationary approximation of the equa-

tion for the firing rate and setting ri(t) = ϕ(Ii(t)). This assumption may be valid

when the neurons in the network fire at a high frequency so that the low-pass filter-

ing properties of the membrane potential are meaningless. Therefore, the dynamics

derives entirely from the input current equation, and the system of equations de-

scribing the neural activity are provided by:
ri(t) = ϕ(Ii(t))

dIi
dt

= −Ii(t) +
∑
j

Jijrj(t)
(1.9)

where, for the sake of simplicity, we have set τI equal to one.

Instead, by assuming that τR ≫ τI we can make the quasi-stationary approximation

of the equation for the current setting Ii(t) =
∑

j Jijrj(t). This assumption leads

to accurate results when the membrane potential stays below the threshold for long

enough periods and its dynamics become relevant for the firing rate of the neuron.

Hence, we can describe the activity of the neuron as:
dri
dt

= −ri(t) + ϕ(Ii(t))

Ii(t) =
∑
j

Jijrj(t)
(1.10)

where, for the sake of simplicity, we have set τR equal to one.

In what follows, we will refer to the models (1.9) and (1.10) as the current model
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Figure 1.3: Comparison of the activity of a neuron in the network obtained by a direct simulation
of the current model (1.9) (left) and the firing model (1.10) (right). In contrast to the firing model,
the firing rate of the current model immediately follows changes of the input current, with no
dampening or delay. Results obtained by simulating a network of N = 1000 neurons, with transfer
function ϕ(·) = tanh(·) and synaptic couplings Jij i.i.d. random variables ∼ N (0, g2/N). The
diagonal element of the connectivity matrix Jii = s = 1.6 ∀i = 1, . . . , N (self-couplings) and the
gain parameter g = 0.7 are chosen such that the network exhibit a bimodal activity (see Section
3.4). Firing rate (dark blue) and input current (light blue) are plotted as a function of time.

and firing model, respectively. It is worth noting that, as is often the case with

rate models, the biological interpretation of the dynamical variables and the time

constant of their dynamics is not always clear in the literature. Our analysis aims to

clarify whether these variables or parameters should be interpreted as characterizing

neurons or synapses.

1.5 Synaptic connectivity

To complete the characterization of the models, we must introduce the network

architecture, namely the synaptic connectivity matrix J . The matrix entries Jij

describe the properties of synaptic coupling between pre-synaptic neuron j and

post-synaptic neuron i, thereby defining the network’s topology.

In this thesis, we consider bidirectional connections between neurons and, in specific

cases detailed later, even connections from a neuron to itself (self-couplings). Such

networks are commonly referred to as recurrent neural networks (RNNs).
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Figure 1.4: Schematic representation of the structures of the feed-forward neural network (left)
and the (fully-connected) recurrent neural network (right). Not all the connections of the RNN
have been drawn. The feed-forward neural network is organized hierarchically in distinct layers
with data flowing from the input layer (through one or more hidden layers) to the output layer.
In contrast, the RNN has not such a layered architecture.

Additionally, we assume a fully-connected network, meaning each of the N neu-

rons can receive input from any other neuron and can transmit output to any other

neuron. While full connectivity is not entirely biologically realistic, it is not com-

pletely unreasonable. Neurons typically receive approximately 104 synaptic inputs

from other neurons, particularly in the cortex, where there are assemblies of densely

interconnected neurons representing basic cortical processing modules. However,

on a larger scale, connectivity becomes much sparser and frequently organized into

layered structures. As previously discussed, we can address this issue by employing

neuron-like units that aggregate neurons with similar properties. These units can

be more densely connected and represent the collective activity of a population of

neurons by averaging their firing rates.

The dynamical behavior of the network depends on the the connectivity matrix J .

Nevertheless, we can distinguish two cases. If the matrix is symmetric (i.e. Jij = Jji)

we can define an energy function that always decrease (or remains constant) as the

system evolves according to its dynamical rule. The attractors are the local minima

of the energy and the dynamics may be understood as the motion of a particle mov-

ing downhill on the energy surface under the effect of gravity, which pushes it down,
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and friction, which prevents it from overshooting and allows it to come to rest at a

minimum. Consider, for the sake of clarity, the differential equation in the current

model (1.9). The appropiate energy (Lyapunov) function can be defined as [17]:

H = −1

2

∑
ij

Jijrirj +
∑
i

∫ ri

0

dr ϕ−1(r) (1.11)

where we remark that ri = ϕ(Ii) and the activation function ϕ(·) = tanh (·). Differ-

entiating H with respect to time (which enters implicitly through ri), we get:

dH

dt
= −1

2

∑
ij

Jij
dri
dt
rj −

∑
ij

1

2
Jij
drj
dt
ri +

∑
i

ϕ−1(ri)
dri
dt

= −
∑
ij

Jij
dri
dt
rj +

∑
i

ϕ−1(ri)
dri
dt

= −
∑
i

dri
dt

(
∑
j

Jijrj − Ii)

= −
∑
i

ϕ′(Ii)(
dIi
dt

)2 ≤ 0 (1.12)

Here we used the symmetry of J in obtaining the second line and we exploited

equation (1.9) for the third line. The result derives from the monotonicity of the

activation function and it is zero only if the system is at an equilibrium point, where

dIi/dt = 0 for every i. This demonstrate that the fixed points are attractors of the

system and there is no other possibility for the long term behavior of the system

rather that reaching one of these equilibrium points. Limit cycles, for example, are

not allowed since the energy cannot decrease continuously around a closed curve.

Assuming symmetry in the connectivity matrix is biologically unreasonable. How-

ever, by considering an asymmetric matrix (Jij ̸= Jji), we cannot define an energy

function and a richer set of steady-state behaviors emerges. In addition to fixed

points, the system can also exhibits limit cycles and chaotic dynamics (fig. 1.5). For

these reasons, this study will focus on asymmetric couplings.

Another important aspect to be taken into account when modelling neural connec-
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(a) Trivial fixed point (b) Fixed points

(c) Chaotic (d) Oscillatory

Figure 1.5: Network dynamics in a non-linear recurrent neural networks obtained from a direct
simulation of the current-model (1.9) with N = 1000 neurons, transfer function ϕ(·) = tanh(·)
and synaptic couplings Jij i.i.d. random variables ∼ N (0, g2/N) where g is the gain parameter.
The diagonal element of the connectivity matrix Jii = s ∀i = 1, . . . , N (self-couplings). With
this choice, the connectivity matrix J is thus asymmetric and a rich set of dynamical behavior is
observed. The input current Ii(t) of a group of neurons is plotted as a function of time. Depending
on the parameters of the model the activity of the network can be stable, chaotic or oscillatory.
Network parameters: (a) g = 0.95, s = 0. (b) g = 0.6, s = 2.5. (c) g = 1.5, s = 0. (d) g = 1.05,
s = 0.
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tions is that accurately mapping them is an overwhelming, if not impossible, task.

The intricacy and the complexity of the synaptic couplings, as well as factors like in-

dividual variability and sensitivity to environmental factors, ruled out the possibility

of their precise measurement, even with the advancements in high-resolution brain

imaging techniques. Moreover, as we are interested in uncovering general principles

underlying brain dynamics and functions, we would like that our model would be

independent on the particular realization of the connectivity matrix J . A general

approach to realize this is the use of random connectivity matrices in neural network

models. By employing randomly generated connectivity patterns, researchers can

effectively capture the statistical properties of neural connections without the need

for precise knowledge of individual ones within a biological network. Random neural

networks can exhibit interesting emergent properties, as the presence of stable activ-

ity states or phase transitions in network dynamics. Investigating them allows us to

shed light on the computational capabilities of biological neural networks and pro-

vides insights into the operational mechanisms underlying their functions. In other

words, instead of focusing on specific values of the parameter, we study classes of

them. From a statistical mechanics point of view, this corresponds to searching for

universality classes of networks.

Effectively, we shall consider each element Jij of the connectivity matrix as inde-

pendent and identically distributed random variable drawn from a Gaussian distri-

bution:

Jij
i.i.d.∼ N (0,

g2

N
) (1.13)

where the gain parameter g regulates the weight variability of the network or, equiva-

lently, as we consider a zero mean value, the recurrent coupling strength. We remark

that the scaling of the variance with N guarantees that the interaction term on the

right hand side of the differential equations in (1.9) and (1.10) is of order O(1) as

we take the thermodynamic limit (N → ∞).
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The assumption of zero average suggests an absence of a preferred synaptic con-

nection type. However, this can be adjusted by introducing a finite average J0/N ,

allowing for the tuning of preferred inhibitory (Jij < 0) or excitatory (Jij > 0) synap-

tic connections. Notably, the random neural network we introduced violates Dale’s

law, which establishes that a neuron can have only excitatory or inhibitory types of

connections. However, this issues can be easily overcame by modelling a network in

which the connection are independently drawn for two different sub-population of

neurons in which are grouped together the exicitatory and the inhibitory ones.
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Chapter 2

Dynamical Mean Field Theory

Analyzing the dynamical behavior of recurrent neural networks (RNN) is neces-

sary to understand the neural information processing capabilities. However, the

numerical simulation of the dynamics of RNNs, that consist of a large number of

interconnected neurons, is computationally challenging. Moreover, our aim is to

describe the complex dynamics of the brain into a more manageable framework,

using minimal parameters to grasp the essential features underlying brain function.

To address this, we turn to Dynamical Mean Field Theory (DMFT), a powerful

analytical tool borrowed from statistical physics, to gain insights into the collective

behavior of RNNs.

The concept of mean field theory for neural networks draws inspiration from the

study of disordered systems, in particular spin glasses [29]. With the influential

work of Sompolinsky et al. [38], this theoretical framework has gained particular

relevance in the field of neuroscience. Their study, which focused on random net-

work of non-linear rate units, has been further developed by future researches, based

on their model to explore different aspects of network dynamics. Many qualitative

features of the emerging properties of neuronal networks, such as correlated activ-

ity, stability, and response to inputs can be understood within this framework. In

particular, large random networks of neuron-like units can display chaotic dynam-
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ics, with significant functional consequences. For instance, these networks exhibit

optimal information processing capabilities when operating at the edge of chaos,

between order and disorder [22].

The DMFT equation reduces the dynamics of a large ensamble of N neurons into an

equation of a single neuron embedded into a fluctuating field, the statistics of which

are described by a time-lag dependent autocorrelation function that is determined

self-consistently. A crucial difference with the standard mean field approximation

is that this theory contains fluctuations, that results from a saddle point approxi-

mation of an auxiliary field that enters in the partition function of the system after

averaging over the quenched disorder introduced by the randomly chosen couplings

Jij, as we will see later. Remarkably, this theory is exact in the limit N → ∞

(thermodynamic limit).

The DMFT equation can be formally derived by using a field-theoretical approach

called Martin-Sigga-Rose-De Dominicis-Janssen (MSRDJ) formalism which intro-

duces the concepts of action and response field into a path-integral which express

the dynamical equations of the system. The MSRDJ formalism bears concise math-

ematics, resulting in the mean field description of the original high dimensional

dynamics. Unfortunately, it is not easy to access the essence of this tool and the

underlying physics. However, the same equation can be derived using a more intu-

itive method, namely the dynamical cavity approach. Essentially, a neuron is added

into the system, and its effects on other neurons are self-consistently determined

using the linear response approximation. The dynamics of this newly added neuron

exhibit similar characteristics to those of the other neurons, thus acting as a repre-

sentative of the original high-dimensional dynamics.

In this chapter, we will first explore the derivation of the DMFT equations using

the dynamical cavity method and then we shift our focus to explain the MSRDJ

formalism.
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2.1 Generic random neural network

We consider a RNN of N fully-connected neurons with random couplings. The

activity of each neuron is described by the synaptic input current, which we will

denote for convenience as xi(t) (i = 1, . . . , N). As previously discussed, this current

obeys the nonlinear dynamical equation in (1.9), i.e.:

dxi
dt

= −xi(t) +
∑
j

Jijϕ(xj(t)) + ξi(t) (2.1)

A Gaussian white-noise, denoted as ξi(t), with zero mean and variance ⟨ξi(t)ξj(s)⟩ =

σ2δijδ(t−s) is introduced in the model as it may represent an external input to each

neuron in the network or the inherently stochastic nature of neural connections, such

as those observed in cortical circuits. The parameter σ represents the strength of

the noise. As mentioned before, the elements Jij of the connection matrix are drawn

from a Gaussian distribution with zero mean and variance g2/N . For generality of

explanation, we now also account for pairwise correlation between Jij and Jji. Con-

sequently, the couplings are independent identically distributed Gaussian random

variables, except for a potential asymmetric correlation characterized as:

E[JijJji] = g2
γ

N
(2.2)

where γ ∈ [−1, 1] describes the degree of asymmetry. More specifically, the wirings

are fully symmetric when γ = 1, allowing for the definition of a Lyapunov function,

while they are fully antisymmetric when γ = −1 and fully asymmetric when γ = 0.

Furthermore, we set Jii = 0 so that all the self-interaction are removed.

The system of equation (2.1) may be interpreted as a N -dimensional stochastic pro-

cess with quenched disorder introduced by the couplings Jij (given that they are

time independent) and thermal disorder introduced by the external inputs ξi(t).

Note that we denote as E[·] (or simply [·] in the following) and ⟨·⟩ the averages with
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respect to the coupling probability distribution P (J)
γ=0
=

∏
ij P (Jij) (or quenched-

disorder average) and the thermal average (over different noise trajectories), respec-

tively.

2.2 DMFT for uncorrelated couplings

The DMFT equation of this generic model can be readily obtained when the cor-

relation between the couplings is absent (i.e. γ = 0). The derivation is acquired

by relying on the so called local chaos hypothesis initiated by Amari in the field of

neural networks [2]. This hypothesis suggests that within a complex system, such

as a neural network, there may be localized regions or components, like the neurons,

exhibiting chaotic behaviors. Consequently, small variations in initial conditions or

parameters can lead to vastly different outcomes over time. This translates into

the assumption that the components of the system may be considered uncorrelated

from each other and therefore, in a macroscopic (coarse-grained) description of the

system, we can rely on simpler models. We remark the strong analogy with the

molecular chaos hypothesis in the kinetic theory of gases that leads to the famous

Boltzmann equation. Mathematically, it assumes that when N is large the system

behaves as if the random variables ϕ(xi(t)) (i.e., the firing rates of the neurons) were

independent of each other and of the random variables Jij (∀ i, j = 1, . . . , N). In

this scenario, as we approach the thermodynamic limit N → ∞, the input current

received by each neuron through the coupling
∑

j Jijϕ(xj(t)) converges to a Gaus-

sian field according to the central limit theorem. Hence, the basic idea of the mean

field description is to replace the network interaction term in (2.1) with a Gaussian

random variable η, as:

ẋi(t) = −xi(t) + ηi(t) + ξi(t) (2.3)
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Then, we need to require that the moment of the η match the average over the

coupling distribution of the synaptic input. Easily, exploiting the fact that [Jij] = 0

and the correlation between the couplings and the firing rate are assumed to be zero

thanks to the local chaos hypothesis, the mean of η vanishes:

⟨ηi(t)⟩ =
∑
j

[
Jijϕ(xj(t))

]
= 0 (2.4)

In a similar way (recalling that we assume γ = 0 here), for the second moment of η

we have:

⟨ηi(t)ηj(s)⟩ =
[∑

l

Jilϕ(xl(t))
∑
k

Jjkϕ(xk(s)
]

=
∑
l,k

[
JilJjkϕ(xl(t))ϕ(xk(s)

]
= δij

g2

N

∑
k

[
ϕ(xk(t))ϕ(xk(s))

]
= δijg

2C(t, s) (2.5)

where we have used the independence of Jij and [J2
ij] = g2/N in deriving the third

line. In the last line we have introduced the (averaged) autocorrelation function of

the firing rates C(t, s) which measures the similarity between the state of the system

at time t and the state at time s, given by:

C(t, s) =
1

N

∑
j

[
ϕ(xj(t))ϕ(xj(s))

]
(2.6)

Given that each neuron becomes statistically identical due to averaging over the

coupling probability distribution, the index i becomes irrelevant in the mean field

approach. Consequently, we can omit it and express the equations using a generic

variable x. Therefore, the complex dynamics of the network can be reduced to an
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effective single-neuron dynamics:

ẋ(t) = −x(t) + η(t) (2.7)

where we have incorporated also external input ξ(t) in the effective Gaussian noise

η(t). The temporally correlated variance of the latter is therefore determined by:

⟨η(t)η(s)⟩ = g2C(t, s) + σ2δ(t− s) (2.8)

Finally, we additionally require that the autocorrelation C(t, s) converges to the its

path average (with respect to the noise trajectories) in the large N limit, i.e.:

C(t, s) = ⟨ϕ(x(t))ϕ(x(s)⟩ (2.9)

thereby closing the self-consistent DMFT equation.

However, the local chaos hypothesis has been found to be inaccurate in models with

symmetric couplings [4]. This discrepancy is due to the fact that the mean field

equation for the i-th neuron, derived under this assumption, fails to consider the

so-called reaction term, which accounts for the influence of the i-th neuron on the

others. Essentially, when considering the sum of the afferent currents, a significant

correlation between Jij and ϕ(xj(t)) arises through Jji when γ ̸= 0, leading to the

breakdown of the central limit theorem. The symmetry of the coupling distribution

gives rise to feedback effects that introduce a non-Gaussian contribution to the local

field distribution. Therefore, from a general point of view, the main limitation of

the local chaos hypothesis lies in its neglect of these feedback effects. Nevertheless,

this assumption yields accurate results when the couplings are asymmetric, as the

feedback effect vanishes in the thermodynamic limit.

In the general scenario, when the correlation between the couplings is present (i.e.

γ ̸= 0) to tackle this challenge one can rely on the dynamical cavity approach to
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efficiently obtain the mean field description of the system.

2.3 Dynamical cavity approach

The main idea of the dynamical cavity approach, initially proposed by Onsanger for

studying spin systems, is to remove a spin from the model (hence the name cavity)

and examining how this perturbation affects the dynamical properties of the system

[29]. Following a similar principle, our method involves the inclusion of an additional

neuron into the model and analyzing how it responds to such a perturbation.

Firstly, we introduce an external field ji(t) to the original dynamical equation (2.1):

ẋi(t) = −xi(t) +
∑
j

Jijϕ(xj(t)) + ξi(t) + ji(t) (2.10)

that will be necessary to determine the response of the system to a perturbation.

Hereafter, we define the abbreviated notation ϕ(xi(t)) = ϕi(t).

Now, we add a neuron into the original system (denoted by the zero index) which

clearly provides a new synaptic current x0(t) along with the associated synaptic con-

nections J0i and Ji0 for i = 1, . . . , N . As a consequence, this new neuron influences

all the neurons in the original system. Considering this impact as a small perturba-

tion in the limit of a large network (N → ∞), we can employ linear response theory

for the firing rates ϕ̃i(t) in the presence of the added neuron as follows:

ϕ̃i(t) = ϕi(t) +
∑
k

∫ t

0

ds
δϕi(t)

δjk(t)

∣∣∣∣
j=0

jk(s)

= ϕi(t) +
∑
k

∫ t

0

ds Rik(t, s) (Jk0 ϕ0(s)) (2.11)

where we have defined the linear response function Rik(t, s) =
δϕi(t)
δjk(t)

∣∣
j=0

(the partial

derivatives should be interpreted in a functional sense) and the small perturbation

as jk(s) = Jko ϕ0(t). Subsequently, we can substitute the perturbed firing rates in
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the dynamical equation for the input current x0(t):

ẋ0(t) = −x0(t) +
∑
j

J0jϕ̃j(t) + ξ0(t) + j0(t)

= −x0(t) +
∑
j

J0j

(
ϕj(t) +

∑
k

∫ t

0

ds Rjk(t, s) Jk0 ϕ0(s)
)
+ ξ0(t) + j0(t)

= −x0(t) +
∑
j

J0jϕj(t) +

∫ t

0

ds
∑
j,k

J0jRjk(t, s)Jk0 ϕ0(s) + ξ0(t) + j0(t)

(2.12)

where the third term accounts for how the correlation between the couplings influ-

ences the state of the added neuron through the response function.

By taking the thermodynamic limit (N → ∞), we investigate the statistical proper-

ties of all terms. The underlying concept is that, by construction, the input currents

xi(t) are independent of Ji0 and J0i for i = 1, . . . , N , allowing us to employ central-

limit-like arguments. Firstly, we isolate the field without the influence of synaptic

correlation as follows:

η0(t) =
∑
j

J0jϕj(t) + ξ0(t) (2.13)

which, similarly to what we have seen in the previous section, converges to a centered

Gaussian field with variance given by:

⟨η0(t)η0(s)⟩ = g2C(t, s) + σ2δ(t− s) (2.14)

where C(t, s) is the averaged autocorrelation function of the firing rates.

Now we focus on the third term in equation (2.12) and in particular we want to give a

statistical estimate of
∑

ij J0iRij(t, s)Jj0, which requires some additional attention.

We assume that the response functions Rij(t, s) are random variables dependent on

the synaptic connections Jij for i, j = 1, . . . , N but are otherwise independent from

J0i and Jj0. We first consider the diagonal part
∑

i J0iRii(t, s)Ji0 that, according to

the central limit theorem, converges to its mean because of negligible variance (of
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the order O( 1
N
)):

∑
i

J0iRii(t, s)Ji0
N→∞−−−→ N

[
J0iRiiJi0

]
= N

[
J0iJi0

][
Rii

]
= g2γ

[
Rii

]
(2.15)

Next, we examine the off-diagonal component
∑

i ̸=j J0iRij(t, s)Jj0. Clearly, its mean

is zero given that [J0iJj0] = 0 for i ̸= j and thus we should consider the fluctua-

tion. Let’s introduce the random variable Z distributed as to a standard Gaussian

distribution (i.e. Z ∼ N (0, 1)). According to the central limit theorem, we get:

∑
i ̸=j

J0iRij(t,s)Jj0
N→∞−−−→ N(N − 1)

[
J0iRijJj0

]
i ̸=j

+
√
N(N − 1)

√[
J2
0iR

2
ijJ

2
j0

]
i ̸=j
Z

= N(N − 1)
[
J0iJj0

]
i ̸=j

[
Rij

]
i ̸=j

+
√
N(N − 1)

√[
J2
0iJ

2
j0

]
i ̸=j

√[
R2

ij

]
i ̸=j
Z

≈ 0 +N
g2

N

1√
N
Z (2.16)

In deriving the last line we have assumed that Rij(t, s) is of the order O( 1√
N
) for

i ̸= j. Indeed, in the equilibrium limit, the response function has exactly the same

order of magnitude of the correlation function (O( 1√
N
) in fully-connected mean field

models). A proof employing perturbation theory in the strength of the interaction

is provided in Roy et al. [34]. Therefore, the contribution of the off-diagonal part

can be neglected in the thermodynamic limit.

Now, considering all the contributions, the dynamical equation for x0(t) can be

simplified as follow:

ẋ0(t) = −x0(t) + η0(t) + g2γ

∫ t

0

ds [Rii]ϕ0(s) + j0(t) (2.17)

Since the added neuron is not special with respect to the others, its dynamics can be

regarded as representative of the typical behavior of the components of the system.

Thus, we can drop the subscript 0 and express the mean field dynamical equation
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as:

ẋ(t) = −x(t) + η(t) + g2γ

∫ t

0

R(t, s)ϕ(s)ds+ j(t) (2.18)

where η(t) is the effective Gaussian noise with zero mean and correlation g2C(t, s)+

σ2δ(t − s) (see eq. 2.14), which includes also the external input ξ(t). To close the

DMFT equation, we assume that in the large N limit, the correlation C(t, s) and

the response function R(t, s) are self-consistently determined by:

C(t, s) = ⟨ϕ(t)ϕ(s)⟩ (2.19)

R(t, s) = ⟨δϕ(t)
δj(s)

∣∣∣
j=0

⟩ (2.20)

and hence they converges to theit path average (with respect to the noise trajectories

η and the initials conditions). In summary, we began with an N -dimensional system

of differential equations and arrived at a single stochastic differential equation with

statistics that are self-consistently determined. It can be demonstrated that in

the thermodynamic limit these two descriptions are equivalent, meaning there is a

convergence in law between their statistic. It is worth noting that the influence of

synaptic correlations among neurons in the N -dimensional system are transformed

into an accumulated interaction term of the dynamical history within the one-neuron

(mean field) description.

2.4 Path-integral approach

As we have seen, the dynamic of large size random neural network can be analysed

relying is heuristic arguments based on Gaussian assumptions regarding the fluctu-

ation of the system in the thermodynamic limit. This approach, however, is unable

to give a systematic justification of the underlying assumptions, and extending it

to more complex network architectures or dynamics results in a challenging task.

Moreover, and most importantly, is not amenable in deriving in general important
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properties like, for instance, the stability of the mean field equation and finite-size

corrections [21]. In this section, we introduce the generating functional formalism,

a systematic method that overcame this limitations. The main idea is to recast

an high-dimensional dynamical equation into a path integral framework, which is

helpful to reduce the dynamics to a low-dimensional mean field description. Again,

the motivation that push us to recast into this general setting is the form of the

interaction term in equation (2.1), namely:

∑
j

Jijϕ(xj(t)) := [Jϕ(x(t)]i (2.21)

which involves the sum of many weakly correlated contributions and, as we know,

it converges toward a Gaussian random variable the better the larger the N . This

phenomenon, known as concentration of measure, describes how the probability

distribution becomes sharply focused around its mean value. By considering now

the randomness of the couplings Jij, which are referred to frozen or quenched dis-

order (due to their time independence), we are interested in determine how much

the parameters of this Gaussian distribution vary across different realizations of the

matrix J . If this variability diminishes as N grows, it suggest that also the vari-

ability between different neurons under the same J is small. This property, called

self-averaging, allows us to obtain a simplified, low-dimensional description of the

statistical behavior of a typical unit. It is implicitly assumed in neural network

with random connectivity enabling us to expect that the observables (like firing rate

and autocorrelation function) are independent of the particular realization of the

connectivity matrix J in the large N limit. Therefore, their expected value can be

computed by averaging over different network realizations.

For simplicity, we detailed the procedure to derive the DMFT equation for uncor-

related synaptic connections (γ = 0), although we remark that the result of the

previous section can be equivalently obtained in this general framework.
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To start, we recognize that the system of equations in our model, as written in (2.1),

lacks rigorous meaning. It takes the form of what is known as a quasi-equation (Van

Kampen) being the trajectories of a Wiener process (Brownian motion) never differ-

entiable. Thus we should rewrite it in the form of N coupled stochastic differential

equations (Langevin equation) as:

dx(t) =
(
− x(t) + Jϕ(x(t))

)
dt+ σdB(t) (2.22)

where B(t) is aN -dimensional Brownian motion with independent increments B(t)−

B(s) ∼ N (0, I(t − s)) where I denotes the identity matrix. Note that we have in-

troduced an additive noise σ to be consistent with the previously defined system of

equations (2.1).

Our objective now is to write the probability associated with the trajectory followed

by the stochastic variable x(t) (input currents) that will be used to construct a

moment-generating functional (a generalization of the generating function for ran-

dom variable), represented as a functional path integral. Through this functional

approach, we can readily compute moments of the paths, including correlation and

response functions.

Firstly, we consider the dynamics on a discrete time lattice by partitioning the time

interval [0, T ] into M segments of length ∆t (the discrete index a = 0, 1, . . . ,M will

be used to indicate the time). For the discretization we follow the Ito convention,

which in our case results simply in evaluating the deterministic drift in (2.22) at the

beginning of the time interval. We remark that, in the continuum limit (∆t → 0),

the deterministic contribution is independent on the choice of the discretization

procedure. However, attention should be paid when considering multiplicative noise

instead of an additive one, as different behavior of the stochastic term are possible.

The discretized Langevin equation for the i-th neuron of the network can be written
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as:

∆xai := xi(ta)− xi(ta−1) = fa
i δt+ σ∆Ba

i (2.23)

with:

fa
i = −xi(ta) +

[
Jϕ(x(ta))

]
i

∆Ba
i = Bi(ta)−Bi(ta−1)

Now, the joint probability distribution of a Brownian motions (denoted by the i-th

index) to visit positions in the intervals (B1
i , dB

1
i ) at time t1, (B2

i , dB
2
i ) at time

t2, . . . , (BM
i , dB

M
i ) at time tM can be easily obtained by exploiting the Markovian

property of the process:

dP(B1
i , . . . , B

M
i

∣∣B0
i ) = W (BM

i , tM
∣∣BM−1

i , tM−1)W (BM−1
i , tM−1

∣∣BM−2
i , tM−2)

. . .W (B1
i , t1

∣∣B0
i , t0) dB

1
i dB

2
i . . . dBM

i

=
∏
a

dBa
i√

2π∆t
exp

(
−
∑
a

(Ba
i −Ba−1

i )2

2∆t

)
(2.24)

where W (Bi, t
∣∣B0

i , t0) =
1√

2π∆t
exp

(
− (Bi−B0

i )
2

2∆t

)
is the propagator of the Brownian

motion and it satisfies the Chapman-Kolmogorov relation that we have used to

derive (2.24). The generalization to the multidimensional case is straightforward

due to the independence of the N Brownian motions Bi with i = 0, . . . , N , we get:

dP(B1, . . . ,BM
∣∣B0) =

∏
a

∏
i

dBa
i√

2π∆t
exp

(
−

∑
a

(Ba
i −Ba−1

i )2

2∆t

)
(2.25)

As our interest is to have the corresponding probability measure in the x-space, we

need to transform the probability given in the last equation. By looking at equation

(2.23) we can simply evaluate the Jacobian of the transformation as:

J =
∣∣ ∂(x11, . . . , xMN )

∂(B1
1 , . . . , B

M
N )

∣∣ = ∏
a

∏
i

σ (2.26)
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and therefore we obtain:

dP(x1, . . . ,xM
∣∣x0) = J −1dP(B1, . . . ,BM

∣∣B0)

=
∏
a

∏
i

dxai√
2πσ2∆t

exp
(
−
∑
a

∑
i

(∆xai − fa
i−1∆t)

2

2σ2∆t

)
(2.27)

Now, we move back to the continuous setting by taking the limit M → ∞ and

∆t→ 0 with ∆tM = T fixed. By recognizing that:

∑
a

∆t→
∫ T

0

dt
∆a

i

∆t

→ ∂txi (2.28)

and defining:

Dx := lim
M→∞

∏
a

∏
i

dxai√
2πσ2∆t

(2.29)

we can express the probability measure in a formal way as:

dP
(
{x(t)}

∣∣x(0)) = Dx exp
(
− SOM [x]

)
(2.30)

where:

SOM [x] := − 1

2σ2

∫
dt

∑
i

(
∂txi(t)− fi(x(t)

)2 (2.31)

is the so called Onsanger-Machlup action (or stochastic Lagrangian).

Adding the term
∑

i

∫
dt ji(t)xi(t) (source field) to the action and integrating over

all paths we obtain the moment generating functional Z[j]:

Z[j] :=

∫
Dx exp

(
SOM [x(t)] +

∑
i

∫
dt ji(t)xi(t)

)
(2.32)

Moments of the paths can be formally expressed as functional derivatives with re-

spect to j(t) of the generating functional. For instance, we have:

〈
xi(t) · · ·xi(s)

〉
=

∫
Dx exp

(
SOM [x(t)]

)
xi(t) · · ·xi(s)
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=
δ

δji(t)
· · · δ

δji(s)
Z[ j ]

∣∣∣
j=0

(2.33)

It’s crucial to understand that the integral notation is meant symbolically. For con-

crete computations of the path integral, it’s necessary to use the discrete version

with finite sums and the finite dimensional probability distribution (2.27). Integra-

tion should be carried out using this discrete approach, and the continuous limit has

to be taken only afterwards.

Practical computations within the Onsager-Machlup formalism are complicated due

to the square in the action (2.31) that introduces analytical challenges, especially

when computing averages over the quenched disorder. We can remove this quadratic

dependence by performing a Hubbard-Stratonovich transform (Gaussian integral),

i.e. by using the identity:

exp
(
− a

2
y2
)
=

1

i
√
2πa

∫ i∞

−i∞
dx̃ exp

( x̃2
2a

+ x̃y
)

(2.34)

with x̃ an auxiliary field, the so called response field. Employing this identity with

yi =
1
σ
(∂txi − fi−1) leads to the MSRDJ action, that reads:

S[x, x̃] = x̃T (∂t + 1)x− x̃TJϕ(x) +
σ2

2
x̃T x̃ (2.35)

where we have used the explicit form of the deterministic drift (f) and we have

introduced the notation xTy =
∑

i

∫
dt xi(t)yi(t) for denoting the scalar product in

time and in neuron space.

We remark that an alternative approach to derive the MSRDJ action involves ex-

pressing the joint probability distribution of the path as a product of δ functions

enforcing the fulfillment of the stochastic differential equation, averaged over the

noise. Representing these δ functions as Fourier integrals with the response fields as

integration variables one arrives at the same expression obtained with the Hubbard-

Stratonovich transform [16].
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Finally, we can write the moment generatic functional in the MSRDJ formalism as:

Z[j](J) =

∫
Dx

∫
Dx̃ exp

(
S0[x, x̃]− x̃TJϕ(x) + jTx

)
(2.36)

where we have isolated from the action the term that couples the neurons (x̃TJϕ(x))

and explicitly expressed the dependence on the interaction matrix J. The measures

are defined as:∫
Dx := lim

M→∞

∏
a

∏
i

∫ ∞

−∞
dxai

∫
Dx̃ := lim

M→∞

∏
a

∏
i

∫ i∞

−i∞

dx̃ai
2πi

(2.37)

Note the change in the definition of Dx as a result of the Hubbard-Stratonovich

transform. With such a measures, the moment generating functional is properly

normalized independently of the realization of J . This property allow us to introduce

the disorder-averaged generating functional. Indeed, by assuming that the system

shows self-averaging behavior, we expect that the moment generating functional

shows concentration of measure as well. Therefore, in the limit of large network,

observables that can be computed from Z[j](J) can also be (approximately) obtained

from its average over the coupling distribution ⟨Z[j](J)⟩J . Following the derivation

described by Helias [16], we define:

Z̄[j] := ⟨Z[j](J)⟩J =
( N

2πg2

)N/2
∫ ∏

i,j

dJij exp
(
− N

2g2
J2
ij

)
Z[j](J) (2.38)

where we have used that Jij ∼ N (0, g
2

N
) are independently distributed, and thus

the joint distribution over the couplings factorizes into the product of their indi-

vidual distributions. Now, notice that the only term in the generating functional

(2.36) that depends on Jij is the coupling term (x̃TJϕ(x)). It appears linearly

in the action, allowing for factorization as well (exp
(
−
∫
dt

∑
i x̃i

∑
j Jijϕ(xj)

)
=∏

i,j exp
(
− Jij

∫
dt x̃iϕ(xj)

)
). Therefore, we can separately integrate over the dif-
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ferent Jij identical contributions of the from:√
N

2πg2

∫
dJij exp

(
− N

2g2
J2
ij − Jij

∫
dt x̃iϕ(xj)

)
= exp

( g2

2N

( ∫
dt x̃iϕ(xi)

)2)
(2.39)

where we have simply completed the square. Regrouping together all the contribu-

tion (i.e. product of exponentials as (2.39)) we are left with evaluating:

g2

2N

∑
i,j

( ∫
dt x̃i(t)ϕ(xj(t))

)2
=

=
g2

2N

∑
i,j

∫
dt ds x̃i(t)ϕ(xj(t))x̃i(s)ϕ(xj(s))

=
1

2

∫
dt ds

(∑
i

x̃i(t)x̃i(s)
)(g2
N

∑
j

ϕ(xj(t))ϕ(xj(s))
)

(2.40)

Here, we have used
( ∫

dt f(t)
)2

=
∫ ∫

dt ds f(t)f(s) in the second line and
∑

ij xiyj =∑
i xi

∑
j yj in the third. Collecting these observations, we can write the disorder-

averaged moment generating functional as:

Z̄[j] =

∫
Dx

∫
Dx̃ exp

(
S0[x, x̃] + jTx

)
(2.41)

× exp
(1
2

∫
dt ds

(∑
i

x̃i(t)x̃i(s)
)(g2
N

∑
j

ϕ(xi(t))ϕ(xi(s))
))

In view of the fact that in the coupling term the sums run over all indices, the system

represents a set of N neurons coupled with the others in an identical manner. Thus,

as a result of the average over all possible realization of the connection matrix J , all

neurons are treated identically. Now, our aim is to decouple the interaction term,

which depends on four fields, into the product of pairs of fields. To this end, let’s

define:

Q(t, s) =
g2

N

∑
j

ϕ(xj(t))ϕ(xj(s)) (2.42)
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This field represents an empirical average over N contributions that, in the large

N limit and in the case of weak correlation, will converge to a Gaussian random

variable by the central limit theorem. This heuristic argument can be made more

rigorous: performing a saddle point approximation allows us to replace Q by its

(self-consistent) expectation value. To this aim, we firstly enforce the constraint

represented by the definition (2.42) by multiplying the disorder averaged moment

generating functional by the following identity:

1 =

∫
DQ δ

(
Q(t, s)− g2

N

∑
j

ϕ(xj(t))ϕ(xj(s))
)

(2.43)

=

∫
DQ

∫
DQ̃ exp

(∫
dt ds Q̃(t, s)

(
− N

g2
Q(t, s) +

∑
j

ϕ(xj(t))ϕ(xj(s))
))

Here, the conjugate field Q̃ is purely imaginary and the normalization factor ( N
2πg2

)

is implicitly absorbed in the integral measure DQ̃. Now, we consider the problem

as a field theory for the auxiliary fields Q and Q̃. Thus, by introducing the notation

QQ̃T =
∫
dt ds Q(t, s)Q̃(t, s) and x̃TQx̃ =

∫
dt ds x̃(t)Q(t, s)x̃(s) we can rewrite the

moment generating functional (2.41) as:

Z̄[k] =

∫
DQ

∫
DQ̃ exp

(
− N

g2
QT Q̃+N lnΩ[Q, Q̃] + kTQ

)
(2.44)

Ω[Q, Q̃] :=

∫
Dx

∫
Dx̃ exp

(
S0[x, x̃] +

1

2
x̃TQ x̃+ ϕ(x)T Q̃ ϕ(x)

)
where we have dropped the original source term jTx and introduced the source

term k for the auxiliary field Q. Moreover, by looking at the equations (2.41) and

(2.43) it is readily apparent that the auxiliary fields depend only on sums of fields

(
∑

i xi(t)xi(s) and
∑

j ϕ(xj(t))ϕ(xj(s)) for Q and Q̃, respectively). So, by writing

N lnΩ[Q, Q̃] we have exploited the factorization of the generating functional for the

fields x and x̃ into the product of N identical factors Ω[Q, Q̃]. Therefore, we have

decoupled the interaction term in (2.41) and reduced the problem of N interacting
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units to that of a single unit subject to external fields Q and Q̃.

The N dependence of the action for the auxiliary fields Q and Q̃ in equations

(2.44) implies that, in the thermodynamic limit, a saddle point approximation can

be employed. This approximation entails disregarding fluctuations in the auxiliary

fields and setting them to their expectation value, which corresponds to the point

in the (Q, Q̃) space that yields the most significant contribution to the probability

mass. In the saddle point approximation we search for the stationary point of the

action by requiring that the two following conditions are attained:

0 =
δS[Q, Q̃]
δ{Q, Q̃}

=
δ

δ{Q, Q̃}

(
− N

g2
QT Q̃+N lnΩ[Q, Q̃]

)
(2.45)

from which we obtain a pair of equations:

0 = −N
g2
Q∗(t, s) +

N

Ω

δΩ[Q, Q̃]

δQ̃(t, s)

∣∣∣
(Q∗,Q̃∗)

⇐⇒ Q∗(t, s) = g2⟨ϕ(x(t)ϕ(x(s))⟩ := g2C(t, s) (2.46)

0 = −N
g2
Q̃∗(t, s) +

N

Ω

δΩ[Q, Q̃]

δQ(t, s)

∣∣∣
(Q∗,Q̃∗)

⇐⇒ Q̃∗(t, s) =
g2

2
⟨x̃(t)x̃(s)⟩ ≡ 0 (2.47)

where C(t, s) is the autocorrelation function of the firing rates. We remark that the

average ⟨·⟩ has to be intended over all the paths of the dynamical process (different

realization of x) evaluated at the saddle points (Q∗, 0). It has to be computed self-

consistently because the values of the saddle points, by equation (2.44), affect the

statistics of the fields x and x̃, which, in turn, determine the function Q∗ by (2.46).

Finally, inserting back the saddle point solutions in the generating functional (2.44),

we can write:

Z̄∗ ∝
∫

Dx
∫

Dx̃ exp
(
S0[x, x̃] +

g2

N
x̃TCx̃

)
(2.48)
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Hence, the replacement of Q in (2.41) with the saddle point Q∗ (which depend only

on the statistic of x, and not on its particular realization) allow us to decouple the

system into non-interacting neurons driven by a common field with self consistently

determined statistic. It is easy to prove that the second term in (2.48) represent a

Gaussian field with correlation function g2C(t, s) that has to be interpreted as the

input each neuron receive from the other units.

Thus, in the thermodynamic limit, the problem can be described by the effective

dynamics of a single unit:

ẋ(t) = −x(t) + η(t) (2.49)

where η(t) is the effective Gaussian noise of the process (that incorporates also the

external input) with autocorrelation ⟨η(t)η(s)⟩ = g2C(t, s) + σ2δ(t − s). Note that

this is the same result that we have derived in the previous section with heurist

arguments.
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Chapter 3

Chaotic activity in RNN

The brain processes information through the dynamics of large neural networks.

Interestingly, cortical circuits exhibit intricate temporal patterns of spiking and dis-

play a high sensitivity to even weak disturbances in their ongoing activity, as the

displacement of a single spike may have a significant impact on the timing of sub-

sequent ones. These characteristics, coupled with analyses of single-cell recordings

and electroencephalography data, suggest a chaotic dynamic within these circuits.

Theoretical investigations have shown that chaos provides neural circuits with excep-

tional computational capabilities, influencing how incoming information is processed

and received. Models of local cortical circuits that exhibit a chaotic dynamics can

flexibly adapt to changes in external input and to explore a wide range of states en-

coding forthcoming stimuli, such as limit cycles and fixed points. Leveraging recent

neurophysiological discoveries, the study of chaos in neural networks offers a great

opportunity for understanding cognitive processes, motivating the appearance of

spontaneous irregular patterns of activity in neural assemblies and the development

of new technologies that take advantage of neural network parallel computing capac-

ity and chaos control. From a biological point of view, intricate models have been

used to simulate temporal phenomena in the brain, including oscillation synchro-

nization for feature linking and the transitions between coherent states and chaos.
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However, these models are complicated to analyse mathematically and have lacked

a theoretical underground explaining network behavior in terms of a few crucial con-

trol parameters. One possibility to overcame these issues is to develop a model that,

while potentially oversimplified in comparison to biological circuits, still captures

essential features. The benefit of such a model is the analytical and computational

control, providing accurate analysis of the time series of activity patterns.

In this section we will investigate the stationary (long time) behavior of a recurrent

neural network with asymmetric coupling whose dynamics obey the input current

model. Despite its simplicity, this model displays an astonishing variety of dynam-

ical behaviors and a relatively deep mathematical analysis can be performed com-

bining concepts and methods from dynamical systems theory, statistical physics and

random matrix theory. As previously mentioned, the symmetry of synaptic connec-

tions ensures the existence of a Lyapunov function and, consequentely, a convergent

dynamics. Instead, neural network with asymmetric synaptic weights exhibit a com-

plex dynamics with a variety of dynamical regimes. In particular, in the limit of

large network there is a sharp transition from a stationary to a chaotic state as a

function of the gain parameter g.

3.1 Mean field and autocorrelation function

In the previous chapter, we have shown that in the thermodynamic limit a RNN

with randomly coupled rate neurons behaves statistically identical to a model of an

effective single neuron dynamics driven by a Gaussian noise with self consistently

determined statistics. In what follows, we will conduct an analytical examination of

the autocorrelation function of the network. To start, we consider an autonomous

system (i.e. without the external input ξ that drives the network) and with no self-

couplings si (the diagonal of the connection matrix J is set to zero). In the limit
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N → ∞, the effective mean field dynamics of this network is given by:

ẋ(t) = −x(t) + η(t) (3.1)

where the autocorrelation of the Gaussian noise η is determined by ⟨η(t)η(s)⟩ =

g2C(t, s). Following [38], our aim is to represent the autocorrelation function of the

system as the motion of a particle in a self consistent potential. To see this, we

firstly apply the Fourier transform on both sides of equation (3.1). Thus, we get:

(1 + iw)x̂(w) = η̂(w) (3.2)

(1− iw)x̂(−w) = η̂(−w) (3.3)

where we have denoted as f̂(w) is the Fourier transform of a function f(t) and

f̂(−w) is the conjugated quantity of f̂(t). By multyplying both sides of equations

(3.2) and (3.3), we obtain:

(1 + w2)x̂(w)x̂(−w) = η̂(w)η̂(−w) (3.4)

Now, perfroming an inverse Fourier transform of the right hand side of equation

(3.4), we have:

1

2π

∫
dw eiwτ η̂(w)η̂(−w) = 1

2π

∫
dw eiwτ

∫
dt η(t)e−iwt

∫
ds η(s)eiws

=
1

2π

∫ ∫
dt ds η(t)η(s)

∫
dw eiw(s+τ−t)

=

∫ ∫
dt ds η(t)η(s)δ(t− s+ τ)

= ⟨η(t)η(t+ τ)⟩ (3.5)

A similar inverse Fourier transform to the left hand side reads:

1

2π

∫
dw (1 + w2)x̂(w)x̂(−w)eiwτ
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=
1

2π

∫
dw

(
1− (iw)2

)
x̂(w)x̂(−w)eiwτ

=
(
1− d2

dτ 2
)
∆(τ) (3.6)

where we have defined the local field autocorrelation function ∆(τ) which measures

the similarity between the synaptic input current at time t and after a temporal

separation of τ , i.e.:

∆(τ) = ⟨x(t)x(t+ τ)⟩ (3.7)

It’s worth noting that, given our focus on the stationary statistics of the system, the

autocorrelation depends only on the time lag τ , i.e. ∆(t, s) = ∆(τ) where clearly

t − s = τ . In other words, in the long time limit, the dynamics is time-translation

invariant. Now, collecting the results of equations (3.5) and (3.6) and explointing

our knowledge of the noise statistics, we obtain:

∆̈(τ) = ∆(τ)− g2C(τ) (3.8)

where we have used the fact that the autocorrelation of the firing rates C(t, s) is also

time-traslation invariant and thus C(t+τ, t) is only a function of τ . We remark that

we could have obtained this equation alternatively by multiplying equation (3.1) for

time points t and s, taking the expectation with respect to the noise η on both sides,

and then exploiting the time-translation invariance of the dynamics in the long time

limit [16].

By solving the motion equation (3.8) governing the dynamics of ∆(τ), we can de-

termine the autocorrelation C(τ) of the firing rates of neurons separated by a time

interval τ , depeding on the initial condition determined by the variance ∆0. To solve

equation (3.8), we need to express C(τ) as a function of ∆(τ). We start by recog-

nizing that both of these functions depends on x(t). Furthermore, as demonstrated

in the preceding chapter, the variable x(t) can be effectively modeled as a Gaussian
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random variable. This approximation stems from the fact that the expression in

(2.48) corresponds to the moment generating functional of a Gaussian theory. Al-

ternatively, one can heuristically justify this approximation by invoking the central

limit theorem. The statistics of x(t) are given by:

⟨x(t)⟩ = ⟨x(t+ τ)⟩ = 0 (3.9)

⟨x(t)x(t+ τ)⟩ = ∆(τ) (3.10)

Now, we can exploit the following parametrization of the synaptic input current:

x(t) = αy + βz (3.11)

x(t+ τ) = αy′ + βz (3.12)

where y, y′ and z are independent Gaussian random variable with zero mean and

unit variance and the coefficients α and β need to be determined in agreement to

the relations (3.11) and (3.12). Indeed, we have:

0 = ⟨x(t)⟩ = ⟨αy + βz⟩ =⇒ ⟨y⟩ = ⟨z⟩ = 0 (3.13)

0 = ⟨x(t+ τ)⟩ = ⟨αy′ + βz⟩ =⇒ ⟨y′⟩ = 0 (3.14)

Therefore:

∆(0) := ∆0 = ⟨(αy + βz)2⟩ = α2 + β2 =⇒ α =
√

∆0 − |∆(τ)| (3.15)

∆(τ) = ⟨(αy + βz)(αy′ + βz′)⟩ =⇒ β =
√
|∆(τ)| (3.16)

In terms of the random Gaussian variables, we can express C(τ) as a function of

∆(0) and ∆(τ) as:

C(τ) =

∫
DzDyDy′ ϕ(αy + βz)ϕ(αy′ + βz) =

∫
Dz

(∫
Dy ϕ(αy + βz)

)2
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=

∫
Dz

(∫
Dy ϕ(

√
∆0 − |∆|y +

√
|∆|z)

)2

(3.17)

where we have denoted as Dz the standard Gaussian measure, i.e.:

Dz =
dz√
2π
e−

z2

2 (3.18)

likewise for Dy and Dy′. Substituting the expression for C(τ) into equation (3.8)

we get a closed system of equations for determining ∆(τ) and C(τ). However, the

latter expression for C(τ) is valid only in the case in which ∆(τ) > 0. Actually,

a generalization of the equation (3.17) valid also for negative ∆(τ) can be easily

obtain by simple algebric manipulation, and reads:

C(τ) = fϕ(∆(τ),∆0) (3.19)

where the function fu is given by:

fu(∆,∆0) =

∫
Dz1Dz2 u

(√
∆0 −

∆

∆0

z1 +
∆√
∆0

z2

)
u
(√

∆0z2
)

(3.20)

with z1 and z2 standard Gaussian random variables. This expression will be ad-

vantageous for the subsequent development and has been utilized in the numerical

simulations.

3.2 Regimes of the network dynamics

Given the obtained result, it is worth to revisit equation (3.8). Conceptually viewing

τ as a distinct time rather than merely a time lag, the mathematical structure of the

equation resembles that governing the motion of a classical particle with unit mass

subject to a force derived from the right-hand side. However, a slight complication

arises. In classical Newtonian mechanics, ∆0 would represent the particle’s initial

position and, in this context, the dependence of C(τ) on ∆0 as indicated in equation
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(3.19) suggests a subtle mechanical scenario. Here, the force acting on the particle

not only depends on its instantaneous position (∆(τ)) but also on its initial state

(∆0). Nevertheless, it is useful to define a potential V that takes the form:

V (∆,∆0) := −∆2

2
+ g2fΦ(∆,∆0)− g2fΦ(0,∆0) (3.21)

where Φ(·) = ln cosh(x) is the integral of the transfer function ϕ(·) = tanh(·) and

the last term is an arbirtary constant that ensures that V (0,∆0) = 0. Therefore, in

terms of the potential V the equation of motion (3.8) takes the form:

∆̈(τ) = −∂V (∆,∆0)

∂∆
(3.22)

We emphasize that in the derivation of the potential, we employed the Price’s theo-

rem (i.e. the property ∂
∂∆
fΦ(∆,∆0) = fΦ′(∆,∆0) = fϕ(∆,∆0)) and that the depen-

dence of fu(∆,∆0) on τ arises only through ∆(τ). The equation has to be solved

self-consistently, as the initial position of the particle ∆0 determines the shape of

the effective potential V (·,∆0) through equation (3.21).

Nevertheless, we can gain analytical insight. First of all, being a correlation function,

∆(τ) must satisfy two physical constraint:

• ∆(τ) is bounded i.e. ∆(0) ≥ |∆(τ)| and ∆(0) ≥ 0

• ∆(τ) is a differentiable and even function i.e. ∆(τ) = ∆(−τ) due to the time-

traslation invariance in the long time limit. Hence, the initial kinetic energy

must be zero i.e. ∆̇(0) = 0.

Now, if we are able to characterize the form of the potential V (∆,∆0) for any

given value of g and initial condition ∆0, we are can describe the evolution of

∆(τ) over time (or lag), utilizing equation (3.22) along with the imposed physical

constraints. Thus, to estimate its shape, we examine its derivatives, which can be
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Figure 3.1: Self-consistent potential V (∆,∆0) as a function of the autocorrelation of the input
current ∆(τ) (see eq. (3.21)) for gain parameter g = 2 at increasing values of the variance ∆0 =
1.6, 1.8, 1.924, 2, 2.2 (following the black arrow). We observe that the shape of the potential changes
from a single-well (blue) to a double-well with the height of the barrier that increases as ∆0 is
increased. The green potential is the one derived for the value of ∆0 self-consistently determined
by imposing V (∆0,∆0) = 0 (see main text). Results obtained from the DMFT of the current
model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings Jij ∼ N (0, g2/N),
with Jii = 0 ∀i = 1, . . . , N .

readily evaluated using Price’s theorem, yielding:

∂V (∆,∆0)

∂∆
= −∆+ g2fϕ(∆,∆0) (3.23)

∂2V (∆,∆0)

∂∆2
= −1 + g2fϕ′(∆,∆0) (3.24)

Firstly, it’s evident that ∂V
∂∆

∣∣∆ = 0 = 0 holds for an odd transfer function (ϕ(·) =

tanh(·)). Additionally, considering that 0 < ϕ′ ≤ 1, the integral denoted by

fϕ′(∆,∆0) (see the expression (3.20)) has to be smaller than one, implying ∂2V
∂∆

≤

g2 − 1. Consequently, if g < 1, ∂2V
∂∆

will always be negative, and the potential

V (∆,∆0) strictly concave. Conversely, for g > 1, two scenarios arise, as the second

derivative depends on ∆0. By analyzing ∂2V
∂∆

∣∣
∆=0

= −1 + g2
( ∫

Dz ϕ′(
√
∆0)

)2, we

observe that the potential exhibits either a positive or negative curvature for small

and large values of ∆0. In the intermediate regime, the potential assumes a double-

well shape.
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Therefore, the characteristic of the network dynamics can be classified depending

on the shape of the potential into the following types:

• Concave potential (for g < 1): the only bounded solution (respecting the phys-

ical constraints) is the vanishing solution ∆(τ) = ∆(0) = 0. This implies that

the steady state of the network flows to the zero fixed point solution (xi = 0 ∀i)

for (almost) all the initial conditions.

• Convex potential (for g > 1 and small ∆0): the trajectory of ∆(τ) oscillates

from ∆0 to −∆0 indicating a limit-cycle solution.

• Double well potential (for g > 1 and relatively large ∆0): a lot of solutions

exist in this case (static, oscillating and decaying solutions) depending on the

initial value of ∆. However, the only stable solution is the one characterized

by a decay to 0 of the autocorrelation for τ → ∞, that exhibit a positive

Lyapunov exponent (chaotic solution) [19]. It’s worth noting that, consistently

with numerical simulations, finite-size networks exhibit oscillatory solutions

near above the critical value of the gain parameter (g = 1). However, as

the network size increases, these oscillations diminish, indicating a sharper

transition to chaos with increasing N.

In order to determine the shape of the autocorrelation function ∆(τ) we need to

solve equation (3.22). The analogy with a mechanical system involving a particle

in a potential well suggests a reciprocal conversion between kinetic and potential

energy, ensuring the conservation of the particle’s total energy. Let’s denote with E

this energy, we have:

E =
∆̇

2
+ V (∆,∆0) =

∆̇

2
− 1

2
∆2 + g2fΦ(∆,∆0)− g2fΦ(0,∆0) (3.25)
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Now, at τ = 0, we have seen that ∆̇ = 0. Therefore, the initial energy is given by:

E = V (∆0,∆0) = −∆2
0

2
+ g2fΦ(∆0,∆0)− g2fΦ(0,∆0)

= −∆2
0

2
+ g2

∫
Dz

(
Φ(

√
∆0z)

)2

− g2
(∫

Dz Φ(
√
∆0z)

)2

(3.26)

where in deriving the second line we have used the explicit expression of fΦ(·,∆0)

(eq. (3.20). By the argument of energy conservation, solutions to equation (3.22)

must satisfy equation (3.25). Thus, substituting the value of E with the previous

expression (3.26), it is evident that one solution is given by ∆(τ) = ∆(0) = 0 ∀τ ≥ 0

(trivial fixed point solution of the network dynamics). To obtain the other solution,

we impose the conditions ∆(τ) → 0 and ∆(τ) → 0 as τ → ∞, which are typical for

an autocorrelation function measured for a chaotic state of the network. Thus, in

the limit τ → ∞, we can write:

E → g2fΦ(0,∆0)− g2fΦ(0,∆0) = 0 (3.27)

and substituting again this value in equation (3.26), we get:

V (∆0,∆0) = 0 (3.28)

The value of the initial position of the particle (∆0) as a function of the gain param-

eter g can be numerically obtain as the root of equation (3.28) (for example by using

a bisectioning algorithm). Finally, the corresponding shape of the autocorrelation

function ∆(τ) can be readily derived by integrating equation (3.22). This task can

be accomplished numerically by reformulating the second order differential equation

as a coupled set of first order equations, given by:
ẏ(τ) = ∆− g2fϕ(∆,∆0)

∆̇(τ) = y(τ)

(3.29)
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Figure 3.2: (Normalized) self-consistent solution of the autocorrelation function of the input current
∆(τ) for different value of the gain parameter g as a function of the time lag τ in the chaotic regime
of the network. The result is derived by solving (3.28) for the initial value ∆0 and then integrating
(3.29). We observe that the decay time of the autocorrelation function decreases as g is increased,
indicating that the network activity becomes more and more chaotic. Results obtained from the
DMFT of the current model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings
Jij ∼ N (0, g2/N), with Jii = 0 ∀i = 1, . . . , N .

with initial conditions: 
y(0) = 0

∆(0) = ∆0

(3.30)

The solution of this equation is shown in figure 3.2 for different values of the gain

paramenter g. The decay of the autocorrelation function ∆(τ) for g > 1 is indicative

of a chaotic flow. Indeed, the activity of the neurons in the network (i.e. the synaptic

input current) becomes uncorrelated as the temporal separation (τ) is increased and

the network lose memory of its initial state. Notably, the decay is faster as the gain

parameter is increased. It is worth noting that the autocorrelation of the firing rates

C(τ), easily obtained by means of the relation (3.19), bares strong similarities with

∆(τ). As illustrated in figure 3.3, C(τ) closely matches the results obtained from

direct numerical simulations. The agreement improves with increasing size of the
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Figure 3.3: Left: autocorrelation function of the firing rate C(τ) (eq. 3.19) as a function of the
time lag τ for gain parameter g = 2 (chaotic activity) multiplied by a scaling factor g2 (blue) and
the result obtained from a direct numerical simulation of a network with N = 5000 neurons (red
stars). The theoretical result is derived by substituting in (3.19) the self consistent solution for
∆(τ) (light-blue). Right: example of network activity for the same value of the gain parameter.
Results obtained for the current model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic
couplings Jij ∼ N (0, g2/N), with Jii = 0 ∀i = 1, . . . , N .

simulated network, confirming the validity of the mean field description as N → ∞.

3.3 Largest Lyapunov exponent

To investigate the stability of the network, we examine how small perturbations

evolve during the dynamics. Mathematically, we evaluate the Largest Lyapunov

Exponent (LLE) of the system, which allows us determine the conditions for tran-

sitioning from a silent to a chaotic regime. The LLE measures the sensitivity of the

dynamics to initial conditions: a positive LLE indicates that nearby trajectories (i.e.

starting from nearly identical initial conditions) diverge exponentially over time. On

the other hand, if the LLE is negative, trajectories with infinitesimally close initial

conditions converge and the dynamics is stable.

The maximum Lyapunov exponent can be derived in the framework of Dynamical

Mean Field Theory by considering two copies (replicas) of the network with iden-

tical coupling matrix J . In such a case, the LLE can be defined as the asymptotic
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growth rate of the Euclidean distance between trajectories of the two replicas [16].

However, we consider here a slightly simpler approach. Our aim is to evaluate the

time evolution of an infinitesimal perturbation δxi(t) from its original trajectory

xi(t). To this end, we add the fluctuation δxi(t) to the input current model (eq.

(1.9)), we get:

dxi(t)

dt
+
dδxi(t)

dt
= −

(
xi(t) + δxi(t)

)
+
∑
j

Jij
(
ϕ(xj(t)) + ϕ′(xj(t))δxj(t)

)
(3.31)

where in the last term we have used the first order Taylor expansion of the transfer

function ϕ(xi(t)+ δxi(t)). Subtracting the evolution equation of xi(t) we obtain the

equation describing the dynamics of the perturbation, i.e:

(
∂t + 1

)
δxi(t) =

∑
j

Jijϕ
′(xj(t))δxj(t) (3.32)

In order to understand the evolution of the deviation over time, we analyse its

autocorrelation function. To this aim, we make a time translation of τ to equation

(3.32) i.e. considering the time point s = t− τ , we can write:

(
∂s + 1

)
δxk(s) =

∑
l

Jklϕ
′(xl(s))δxl(s) (3.33)

Multiplying side by side equations (3.32) and (3.32), we get:

(
∂t + 1

)(
∂s + 1

)
δxi(t)δxk(s) =

∑
jl

JijJklϕ
′(xj(t))ϕ

′(xl(s))δxj(t)δxl(s) (3.34)

Now, averaging the above equation over the coupling probability distribution P (J)

and performing a similar reasoning to the one that allowed us to derive the DMFT

equation in Section 2.2, we can write:

(
∂t + 1

)(
∂s + 1

)
∆δ(t, s) = g2Cϕ′(t, s)∆δ(t, s) (3.35)
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where we have defined the autocorrelations:

Cϕ′(t, s) = ⟨ϕ′(x(t))ϕ′(x(s))⟩ (3.36)

∆δ(t, s) = ⟨δx(t)δx(s)⟩ (3.37)

Note that we have dropped the neuronal indices (i, k) since averaging over J makes

all the neuron statistically identical. Moreover, it is worth mentioning that in this

scenario the autocorrelation function of the perturbations ∆δ(t, τ) depends on time

(and not only on the time lag τ), as it is relative to the time when the initial

perturbation causing the deviation occurred (e.g. t = 0). Conversely, the autocor-

relation Cϕ′(t, s) is time translation invariant and in the stationary limit it can be

exclusively represented as a function of the time lag τ . Similarly to what we have

done with the autocorrelation C(τ) (see eq. (3.19)), we recognize that Cϕ′(τ) can

be expressed as a function of ∆(τ). Mathematically, this corresponds to writing

Cϕ′(τ) = fϕ′(∆(τ),∆0) =
∂C(τ)
∂∆(τ)

(the second equality being another instance of the

Price theorem). Moreover, it is advantageous to represent Cϕ′(τ) in terms of the

potential V (∆(τ),∆0). By recalling equation (3.24), we can state:

g2Cϕ′(τ) =
∂2V (∆,∆0)

∂∆2
+ 1 (3.38)

To proceed with the analytical developments, we can introduce the coordinate trans-

formation T = t + s and τ = t − s on the left-hand side of (3.35). Using the chain

rule of differentiation i.e. ∂tf(T, τ) = ∂Tf(T, τ)
∂T
∂t

+ ∂τf(T, τ)
∂τ
∂t

(and similarly for

the derivative with respect to s), we get:

∂t → ∂T + ∂τ ∂s → ∂T − ∂τ (3.39)

Therefore, the differential operator
(
∂t+1

)(
∂s+1

)
on the left hand side of equation

(3.35) can be reformulated in the new coordinates into the form
(
(1 + ∂T )

2 − ∂2τ
)
.
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Finally, collecting all the results, we can write the equation of motion for the auto-

correlation of the deviation ∆δ(T, τ) as:

(
(1 + ∂T )

2 − ∂2τ
)
∆δ(T, τ) =

(∂2V (∆,∆0)

∂∆2
+ 1

)
∆δ(T, τ) (3.40)

Next, we are going to evaluate the LLE of the network analysing the growth of the

perturbation dynamics. Firstly, we note that if |δx(t)| ∼ |δx(0)|eλt and the largest

exponent λ = max(λ) is positive, the divergence between the original trajectory and

the trajectory influenced by the infinitesimal initial perturbation will be magnified,

resulting in a chaotic state. Assuming that the perturbation at t = 0 has unit norm

(i.e. ∥δx(0)∥ = 1) the LLE can be computed as:

λ = lim
t→∞

1

t
log

( ∥δx(t)∥
∥δx(0)∥

)
= lim

t→∞

1

2t
log

(∑
i

(
δxi(t)

)2)
= lim

t→∞

1

2t
log

(
N∆δ(T, τ = 0)

)
= lim

t→∞

1

2t
log

(
∆δ(T, τ = 0)

)
(3.41)

where in deriving the second line we have assumed that the population-averaged

square distance of the perturbation converges to the (equal-time) autocorrelation

∆δ(T, 0) (i.e. 1
N

∑
i

(
δxi(t)

)2 → ∆δ(T, 0)). Considering the equation of motion for

the autocorrelation of the perturbation (3.40) and the Lyapunov Exponents (3.41),

we further assume a time-separation ansatz to express the former as:

∆δ(T, τ) = e
k
2
Tψ(τ) (3.42)

and therefore λ = k/2. Substituting this expression into equation (3.40), we obtain

the eigenvalue equation:

(
− ∂2τ −

∂2V (∆,∆0)

∂∆2

)
ψ(τ) =

(
1−

(
1 +

k

2

)2)
ψ(τ) (3.43)
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Figure 3.4: Quantum mechanical potential of the Schrödinger equation (3.43) as a function of the
time lag τ for different values of the gain parameter g (solid lines) and the respective ground state
energy E0 (dashed lines) from which the LLE is computed as in (3.45). Results obtained from the
DMFT of the current model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings
Jij ∼ N (0, g2/N), with Jii = 0 ∀i = 1, . . . , N .

which we recognize as the one-dimensional time-independent Schrödinger equation

(with τ interpreted as the spatial coordinate). Drawing upon this analogy, W (τ) =

−∂2V (∆,∆0)
∂∆2 represents the quantum potential (plotted in figure 3.4) for different

values of the gain parameter g), while
(
1−

(
1+ k

2

)2) is the energy E. The eigenvalues

(or energies) En of the Schrödinger operator determines the exponential growth rate

kn of the perturbation (∆δ(2t, 0) = ekntψn(0)), and they are given by:

k±n = 2
(
− 1±

√
1− En

)
(3.44)

The fastest growing mode is clearly given by the ground state energy E0 and choosing

the plus sign in equation (3.44). Therefore, the LLE of the network can be estimated

as:

λ =
k+0
2

= −1 +
√
1− E0 (3.45)

It is worth noting that in the case of silent activity of the network (zero fixed point

solution), the quantum potential is constant (W (τ) = E0 = 1−g2) as can be readily
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obtained by substituting the solution ∆(τ) = ∆(0) = 0 in its definition. Thus, the

trivial fixed point solution looses its stability as the critical value of the coupling

strength (g = 1) is exceeded, and it is replaced by a chaotic state. Indeed, by looking

at equation (3.45), when the lowest energy E0 transitions to a negative value, the

Lyapunov Exponent become positive, leading to the emergence of a chaotic solution,

which is highly sensitive to small variations in the initial conditions.

The LLE obtained from the mean field theory described above as a function of the

coupling strength g are depicted in figure 3.5, highlighting the remarkable agreement

with a direct numerical simulation using an Orbit Separation (OS) algorithm (see

Chapter 5). Moreover, we confirm the theoretically predicted linear growth for g < 1

(substituting E0 = 1 − g2 in (3.45) we get λ = g − 1). In the limits g → 1+ and

g → ∞ the leading behavior of λ(g) becomes quadratic and logarithmic, respectively.

This prediction can be theoretically proven by expanding the quantum potential in

these limit [6].

We are now able explore the differences in the dynamical behavior between the

two rate models (1.9) and (1.10): the input current model and the firing model,

respectively. A comparison of the Lyapunov Exponents (LLE) as a function of the

gain parameter g for the two models is depicted in figure 3.6. Surprisingly, both

models exhibit identical behavior (or an equivalent degree of chaoticity), despite

the distinct role of the non-linear transfer function in each case. To delve into the

origin of this analogy, we numerically simulated the complete model (1.8), from

which both the current and firing models emerge through different quasi-stationary

approximations. Remarkably, we observed the same chaotic behavior for the LLE

in the complete model, suggesting that the other two models derive their chaotic

dynamics from the full model, making them equivalent in this sense.
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Figure 3.5: LLE of the network as a function of the gain parameter g. The theoretical (DMFT)
prediction derived by computing the lowest eigenvalue (E0) of the Schrödinger operator according
to equation (3.45) (blue) is compared to a direct numerical simulation acquired through the Orbit
Separation method (OS) of the network with N = 5000 neurons and 10000 time steps (red stars)
(see Chapter 5). Results obtained for the current model (1.9) with transfer function ϕ(·) = tanh(·)
and i.i.d synaptic couplings Jij ∼ N (0, g2/N), with Jii = 0 ∀i = 1, . . . , N .

Figure 3.6: LLE as a function of the gain parameter g obtained from a direct numerical simulation
with the Orbit Separation method (same parameters of figure 3.5) of the input current model (1.9)
(red stars) and the firing rate model (1.10) (yellow circle). The theoretical DMFT prediction (eq.
(3.45)) is presented for comparison (grey). Results derived for both models with transfer function
ϕ(·) = tanh(·) and i.i.d synaptic couplings Jij ∼ N (0, g2/N), with Jii = 0 ∀i = 1, . . . , N .
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3.4 Self-couplings

To further characterize the potential dynamical behaviors of RNNs, we introduce

the possibility for the connectivity matrix J to contain non-zero diagonal elements

(self-couplings si). As previously noted, firing rate models often group together

neurons with similar properties into clusters, with the collective activity of these

neurons described by the output of a single unit. From this perspective, interactions

among neurons within a cluster are captured by self-couplings, i.e., feedback con-

nections from a unit to itself, while interactions between clusters are represented by

connections between units. RNNs with heterogeneous self-couplings offer a simple

explanation for the hierarchy of timescales of the neural activity (typically quan-

tified by the decay time of the autocorrelation function) as observed in cortical

circuits [40]. In this section, we consider a RNN with homogeneous self-couplings

(i.e. si = s ∀ i = 1, . . . , N), obeying the equation (1.9):

dxi
dt

= −xi(t) + sϕ(xi(t)) +
∑
j

Jijϕ(xj(t)) (3.46)

where we have explicitly written the diagonal element of the connectivity matrix

J . Note that in this manner, the matrix J is the same as before, i.e. with Jii = 0

and the off-diagonal elements are independent and identically distributed Gaussian

random variables with zero mean and variance g2/N .

By varying the parameters g and s, a rich set of dynamical behaviors of the network

emerges: a zero fixed point state, a chaotic state, and a transient chaotic activity

that converges to a non-trivial fixed point. The phase diagram in parameter space,

along with examples of the network dynamics, is depicted in figure 3.7. Following

[41], an intuitive understanding of how these different types of activity emerge can

be provided by considering two special cases. We have already seen that when s = 0,

the network exhibits chaotic activity above the critical coupling g = 1 and silent ac-

tivity when it is below. Now, let’s consider a specific case where the gain parameter
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Figure 3.7: Network phase diagram obtained by a direct numerical simulation of the LLE (with
Orbit Separation method) as a function of the gain parameter g and the self-coupling s. The phase
space in divided into three regions: below the blue line the activity of the network decays to the
zero fixed point solution. Above the red curve the network exhibit transient chaotic activity that
eventually settles into a non zero stable fixed point solution (increasing the value of g results in
a longer time required for convergence to a fixed point). Between the two curves, the activity
is chaotic. Examples of network dynamics are shown in the insets. Results obtained from the
DMFT of the current model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings
Jij ∼ N (0, g2/N), with Jii = s ∀i = 1, . . . , N . Figure reproduced from Sompolinsky et al. [41].
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vanishes (g = 0). In this scenario, the units become uncoupled and, at stationarity,

the solution to equation (3.46) is determined by xi = sϕ(xi). When s < 1, the

only stable solution is xi = 0, leading to the decay of all unit activity to zero from

any initial state. Conversely, when s > 1, two stable solutions exist (while the zero

solution is unstable) with equal magnitude and opposite signs. This implies that

the units exhibit bistability, and the network dynamics converge to a non-zero fixed

point solution. When both s and g are non zero, an interesting interplay between

chaos and bistability emerges.

In order to obtain the critical condition that separates a stable to a chaotic re-

gion in the phase space, we can analyse how the different fixed point solutions are

destabilized by changing the parameters of the network. To describe the general

approach, we focus on simple example of the network in the trivial fixed point state.

We already know that xi = 0 ∀ i = 1, . . . , N is a stationary solution of the system

of equation (3.46). To analyse its stability, we compute the Jacobian matrix D of

the system and study its eigenvalues. Let’s call Fi the right hand side of equation

(3.46), we get:

Dij =
∂Fi

∂xj
=

(
− 1 + sϕ′(xi)

)
δij + Jijϕ

′(xj) (3.47)

where δij is the Kronecker delta and ϕ′(·) = sech2(·). Evaluating the Jacobian at

the trivial fixed point solution we obtain:

Dij = (−1 + s)δij + Jij (3.48)

since sech2(0) = 1. Now, in order to determine the phase boundary that separates

silent activity from chaotic regime, we can exploit the (generalized) circular law

from Random Matrix Theory [37, 31] by employing the statistical properties of the

connectivity matrix J . The eigenvalues of the stability matrix D are uniformly

distributed as a disk in the complex plane with center in (−1+ s) in the x-axis and

radius g. The real part of the eigenvalues needs to be negative in order to ensure the
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Figure 3.8: Real (x-axis) and imaginary (y-axis) parts of the eigenvalues of the stability matrix D
for the trivial fixed point solution (eq. (3.48)) obtained from a direct numerical simulation of a
network with N=1000 neurons and s = 0.5. The gain parameter is g = 0.45 (left) and g = 0.75
(right). The eigenvalues (blue dots) are distributed as a disk in the complex plane with center
in (s − 1) in the x-axis (red dot) and radius g. As the real part of the eigenvalues grows above
zero (dotted line) the fixed point solution loses stability and is replaced by a chaotic solution.
Examples of the network activity are shown in the insets. Results obtained for the current model
(1.9) with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings Jij ∼ N (0, g2/N), with
Jii = s ∀i = 1, . . . , N .

stability of the zero fixed-point solution, a condition that is satisfied by the simple

inequality (−1 + s) + g < 0. Consequently, the phase boundary is given by the

condition s = 1− g, that is represented by the blue line in figure 3.7. For s > 1− g,

the eigenvalues exhibit a real positive part (see figure 3.8), and the zero fixed point

solution loses its stability and it is replaced by a chaotic activity. It’s worth noting

that in the scenario of vanishing self-coupling (s = 0), we retrieve the previously

determined critical gain parameter value of g = 1 that governs the transition.

When dealing with non-trivial fixed points, computing the eigenvalue distribution

of the stability matrix (3.48) is not as straightforward as in the case of trivial fixed

points. A detailed derivation strategy using Random Matrix Theory is outlined by

Ahmadian et al. [1], while Stern et al. [41] have also investigated the results. The

boundary separating chaotic and non-zero fixed points corresponds to the red line

in figure 3.7.

To further understand the nature of chaotic activity, we simulated the network

in regions where both transient and persistent chaotic behavior occur. In these
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Figure 3.9: Bimodal activity neurons in the transient chaotic region (parameters of the simulation:
s = 1.6, g = 0.7, N = 1000). Left: firing rate a neuron in the network for the input current
model (1.9) (blue) and the firing rate model (1.10) (red). Right: the characteristic time in a state
(τ) follows a log-normal distribution with average ⟨τ⟩ = 198.6ms for the input current model
(blue bars) and ⟨τ⟩ = 194.5ms for the firing rate model (red bars). Results obtained from a
direct simulation of both models with transfer function ϕ(·) = tanh(·) and i.i.d synaptic couplings
Jij ∼ N (0, g2/N), with Jii = s ∀i = 1, . . . , N .

regions, the firing rate of neurons exhibits a bimodal pattern, beginning in the

persistent chaotic region and becoming more pronounced where fixed points exist.

Bimodality is characterized by intermittent switches between states that fluctuate

near the values ϕ(xi) = ±1 (figure 3.9). The average time between these switches, τ ,

follows a log-normal distribution. Interestingly, the firing rate model (1.10) exhibits

the same behavior, suggesting again an equivalence between the two models.
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Chapter 4

External input to a RNN

In the previous chapter we have studied the convergence of the dynamics of RNNs

in absence of a signal. Autonomous systems indeed can exhibit a diverse range of

steady-state behaviors, including the interesting emergence of chaotic states. On

general grounds, neural activity results from the interplay between spontaneous

firing within neural circuits and responses to external stimuli. In this context, Free-

man et al. conducted a notable experiment on the olfactory bulb of rabbits [12, 13].

They proposed that spontaneous activity in the cortical circuit might exhibit chaos.

However, they observed that recognizing a previously learned smell led to a tem-

porary reduction in chaotic activity. In other words, retrieving a previously stored

pattern was interpreted as the reduction of the chaotic (strange) attractor to an

attractor of lower dimension (fixed point solutions). In this scenario, during the

alert waiting state, the network explores a wide range of its phase space through

chaotic dynamics. Then, when a stimulus is introduced, the dynamics shift to a

lower-dimensional attractor that was formed during the learning process. Building

on these concepts, our objective is to explore how a neural network that inherently

produces chaotic activity patterns can maintain sensitivity to external inputs and

what are the implications for its dynamics and information processing capabilities.
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4.1 Baseline control of RNN

To explore these ideas, let’s once again turn to a simplified model of biologically

plausible cortical circuits. As usual, we consider a fully-connected RNN with ran-

domly distributed synaptic connections between neurons. Additionally, each neuron

in the network receives an external input ξi, drawn from a Gaussian distribution

with mean µ and variance σ2. In this setting, the discrete-time version of the input

current model (1.3) reads:

xi(t+ 1) =
∑
j

Jijϕ(xj(t)) + ξi (4.1)

where we’ve employed a simple Euler discretization of the continuous-time equation

for the input current. Note that the external input ξi does not explicitly depend on

time, as we treat the input received by each neuron as quenched (time-independent).

This can be understood as follows: if we consider the RNN as a model of the cortical

circuit, the external input in this context can be interpreted as a synaptic current

originating from areas like the thalamus and other subcortical regions (e.g. locus

coeruleus), which send a widespread signal to cortical areas and modulate their

dynamics, as shown by intracellular recordings [30, 27]. In this scenario, changes in

the mean and variance of the input ξi reflects alterations in this baseline signal which

represent changes in behavioral states or other contextual modulations [42, 23]. For

instance, baseline modulation can represent arousal or movements that enhance the

visual and gustatory capabilities of the sensory circuits responsible for processing

information from stimuli [25, 20]. Because the timescale of behavioral modulation

is typically much slower than the intrinsic timescale of cortical circuit dynamics, we

can approximate the effect of baseline modulation as quenched inputs.

The advantage of working in a discrete-time setting lies in the ease of estimating

the Largest Lyapunov Exponent (LLE) of the network. In this context, simple self-

consistent equations for the order parameters of the model (mean m and variance
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q of the single neuronal activity) can be rigorously derived using Dynamic Mean

Field Theory, allowing for a straightforward calculation of the LLE. An heuristic

argument (similar to the one used in Section 2.2) to obtain those equations could be

outlined as follow. Averaging equation (4.1) with respect to the quenched disorder

(joint probability distribution for the couplings and the baseline input), we get:

⟨xi(t+ 1)⟩ =
∑
j

⟨Jijϕ(xj(t))⟩+ µ (4.2)

Assuming that in the thermodynamic limit we can neglect the correlation between

the random variables xi(t) from each other and from the random variables Jij (local

chaos hypothesis), we obtain ⟨x(t+ 1)⟩ = J0⟨ϕ(x(t))⟩+ µ. Note that, as previously

observed in Chapter 2, we have dropped the neuronal indices since averaging over

J makes all the neuron statistically identical. Moreover, we allow the synaptic

connection to have a non vanishing mean J0 (i.e. Jij ∼ N (J0
N
, g

2

N
)). In the stationary

regime, the distributions of xi(t + 1) and xi(t) are identical, and according to the

central limit theorem, they follow a Gaussian distribution with mean m and variance

q. Therefore, we can write:

m = µ+ J0

∫
Dx ϕ

(√
qx+m

)
(4.3)

where we denoted with Dx the standard Gaussian measure (i.e. Dx = dx√
2π
e−

x2

2 ).

Taking the second order moment of equation (4.1) and applying the same assump-

tions, we get that the variance of the synaptic input current distribution can be

expressed as:

q = σ2 + g2
∫
Dx ϕ

(√
qx+m

)2 (4.4)

Solutions to the self-consistent equations (4.3) and (4.4) can be easily obtained

numerically by employing a bisectioning algorithm (root-finding).

With these expressions for the mean and variance, the Lyapunov exponent can
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then be easily obtained by considering the evolution of the mean quadratic distance

between two trajectories (replicas) of the system in the phase space. In this setting,

the LLE is defined as:

λ = lim
t→∞

lim
|x1(0)−x2(0)|→0

1

2t
log

(
x1(t)− x2(t)

)2(
x1(0)− x2(0)

)2 (4.5)

where x1(t) and x2((t) are two initially arbitrary closed trajectories (orbit). In the

thermodynamic limit, the LLE can be estimated as [9]:

λ =
1

2
ln
(
g2

∫
Dx ϕ′(

√
qx+m

)2) (4.6)

where ϕ′ denotes the derivative of the transfer function and m and q are the self-

consistent solutions to equations (4.3) and (4.4). Compared to the continuous setting

(see Section 3.3), the above formula can be easily implemented in numerical sim-

ulations, providing us with a faster computational approach for investigating the

chaotic behavior of the network and define its the phase diagram.

To understand how the external input ξi affects the phase boundary between the

network’s fixed point and chaotic solutions, we numerically computed the LLE by

solving equation (4.6) for different values of the mean µ of the external input distri-

bution and vanishing quenched variance (fig. 4.1). In contrast to the autonomous

case (i.e. without external inputs), we observed an increase in the critical coupling

strength g that leads to the phase transition. Specifically, in the autonomous sys-

tem, g is critical at 1, while with an external input, the critical value of g increases.

Moreover, as the mean µ of this external input increases, so does the critical value.

In general, external input drives the network response, leading to a suppression of

ongoing activity and ultimately eliminating chaos through a phase transition [32].

This behavior can be explained through a mean field approach, by analyzing the

interaction between the quenched baseline and the recurrent synaptic inputs with

the single neuron transfer function. Chaotic behavior often occurs when a substan-
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Figure 4.1: Left: LLE of the network obtained from DMFT (eq. (4.6)) with transfer function
ϕ(·) = tanh(·) as a function of the gain parameter g for different values of the quenched mean µ.
The critical coupling g leading to the transition to chaos (LLE>0) increases for increasing µ. Right:
transfer function tanh(·) (blue) and Gaussian activity distribution of the network with mean m
(eq. (4.3)) and variance q (eq. (4.4)) (red). The highlighted area represents the high gain region of
the transfer function (see main text). Results obtained from the discrete-time current model (4.1)
with i.i.d. synaptic couplings Jij ∼ N (J0/N, g2/N) and quenched external input ξi ∼ N (µ, σ2).
Network parameters: (left) J0 = 0, σ2 = 0; (right) g = 1, J0 = 0, µ = 0.

tial portion of the synaptic input distribution is concentrated in the region where

the gradient of ϕ is large. This region is commonly referred to as the high-gain re-

gion of the transfer function. Indeed, typical random RNN models use a activation

function with a slope at the inflection point determined by the gain parameter (i.e.,

ϕ(x) = tanh(gx)), and the variance of the recurrent coupling is simply given by

1/N . We remark that this representation of the model is equivalent to the one con-

sidered here. In the high-gain region of the transfer function ϕ′(·)2 ∼ O(1), resulting

in a large Lyapunov exponent (see eq. (4.6)). The distribution of synaptic inputs

(which matches the activity distribution) has a mean m and variance q that can

be computed self-consistently by solving equations (4.3) and (4.4). In the absence

of quenched input, a significant portion of synaptic inputs accesses the high-gain

region, inducing chaotic activity in the network. By increasing the mean of the

quenched input µ, the mean of the activity distribution shifts proportionally to µ,

and the fraction of synaptic inputs in the high-gain region gradually decreases, sup-

pressing chaos. Generally, decreasing the variance of the quenched input σ2 (see eq.
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(4.4)) narrows the activity distribution, ensuring a significant portion of synaptic

inputs is in the high-gain region, thus restoring chaotic activity.

4.2 Bistability and ergodicity breaking

So far, we have only considered the input current model (both in discrete and con-

tinuous versions) with the hyperbolic tangent transfer function, ϕ(·) = tanh(·). In

the discrete case (similarly to the continuous one), the self-consistent solution of

the equations (4.3) and (4.4) has several solutions corresponding to attractors in

phase space (silent solution, fixed points, chaotic activity). In this scenario, we

have observed that regardless of the value of the gain parameter, there is always

one attractor. Now, following the work of Ogawa et al. [28], we introduce a more

biologically plausible transfer function, namely:

ϕ(x) =
1

2

(
tanh(x− θ) + 1

)
(4.7)

which is positive definite and includes a soft rectification (non-linearity) as well as

thresholding (neurons become active if the synaptic input signal exceeds a certain

threshold θ). Surprisingly, this transfer function results in interesting patterns of

neural activity. To explore this behavior, we performed numerical simulations of

the LLE across various mean µ values (assuming variance σ2 = 0) as a function

of the gain parameter g (see fig. 4.2). Initially, we note that for low µ values,

the LLE does not show a monotonic relationship with g, unlike what we observed

with ϕ(·) = tanh(·). Moreover, at low g values, the order parameter stabilizes at

a single value, and neural activity converges to a single attractor. With increasing

g, a bifurcation occurs for specific µ values. This suggests the existence of regions

of the phase space where two different LLE values can emerge for a fixed g and

the same values of the recurrent and external synaptic inputs, resulting in neural

activity converging to two different attractors based on initial conditions in with
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Figure 4.2: Left: LLE of the network obtained from DMFT (eq. (4.6)) with transfer function
ϕ(x) = 1

2

(
tanh(x−θ)+1

)
as a function of the gain parameter g for different values of the quenched

mean µ. For certain values of µ, at a critical point of g, the LLE exhibits a saddle-node bifurcation
(orange and green curves), indicating bistable network activity (see main text). Right: transfer
function ϕ(x) = 1

2

(
tanh(x− θ) + 1

)
(blue) and Gaussian activity distribution of the network with

mean m (eq. (4.3)) and variance q (eq. (4.4)) (red). The highlighted area represents the high
gain region of the transfer function. Results obtained from the discrete-time current model (4.1)
with i.i.d. synaptic couplings Jij ∼ N (J0/N, g2/N) and quenched external input ξi ∼ N (µ, σ2).
Network parameters: (left) θ = 1, J0 = 0.5, σ2 = 0; (right) θ = 1, g = 1, J0 = 0, µ = 0.5.

the network is initiated. In other words, crossing this bifurcation point leads to a

breakdown of system ergodicity, where different solutions coexist, and their basin

of attraction divides the phase space. Clearly, the other order parameters of the

network (the mean activity m and the variance q) shows a similar behavior.

To further investigate this phenomenon and get a clear representation of the system

behavior, we analyse the phase diagram of the network in the (µ, σ) space (see fig.

4.3). By varying the parameters of the baseline external input distribution µ and

σ2 the system can access multiple phases. In addition to the monostable phases

(fixed points and chaos) encountered previously, there are also bistable phases with

coexistence of chaos and fixed points, two fixed points, or, for large values of the

gain parameter g, two different chaotic phases with two different positive Largest

Lyapunov Exponents (weak and strong chaos) (see fig. 4.4).

As observed in the original work by Mazzuccato et al. [28], these bistable phases

can be utilized for various binary decision-making tasks without modifying the re-
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Figure 4.3: Phase diagram in the (µ, σ) space obtained by computing the LLE according to
equation (4.6) with transfer function ϕ(x) = 1

2

(
tanh(x− θ) + 1

)
. The network have access to four

different phases reported in the legend (colorbar): fixed point (FP), chaos (C), bistable phases
with coexistence of either chaos and fixed points (C-FP) or two fixed point solutions (FP-FP)
highlighted by a zoom (right) on the critical point where the three previous phases merge together.
The root-finding algorithm for the self-consistent solutions of the mean activity m (see eq. (4.3))
was initialized with large positive and negative values of m to obtain different solutions in the
bistable phases. Results obtained from the discrete-time current model (4.1) with i.i.d. synaptic
couplings Jij ∼ N (J0/N, g2/N) and quenched external input ξi ∼ N (µ, σ2). Network parameters:
θ = 1, g = 5, J0 = 0.5. Figure reproduced from Mazzuccato et al. [28].
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Figure 4.4: LLE of the network as a function of the baseline mean µ. The two branches are
obtained by solving the DMFT equation (4.6) for different values of the initial conditions. The
highlighted regions represent the different phases of the network: fixed points (purple), chaos
(yellow), coexistence of fixed points and chaos (blue) and coexistence of weak and strong chaos
(red). Results obtained from the discrete-time current model (4.1) with transfer function ϕ(x) =
1
2

(
tanh(x − θ) + 1

)
, i.i.d. synaptic couplings Jij ∼ N (J0/N, g2/N) and quenched baseline input

ξi ∼ N (µ, σ2). Network parameters: θ = 1, g = 15, J0 = 0.5, σ = 0.2.

current couplings, and thus without actual training. The potential outcomes of this

binary decision are represented by the two different branches of a bistable phase, in

which the network’s activity settles after stimuli have been presented. By varying

the statistics of the baseline, the network can access different bistable phases that

can perform different tasks. Additionally, as we will see in the next section, near a

phase boundary between chaotic and fixed point phases, the network exhibits ex-

cellent memory capacity, demonstrating the benefit of baseline control in terms of

information processing capabilities.

It is worth remarking that there is an excellent agreement between the LLE results

obtained with the mean field theory and those obtained from a direct numerical

simulation of the network. Additionally, both the input current model (1.9) and the

firing model (1.10) produce equivalent results, as observed earlier. However, in this

scenario, there is a slight complication. Indeed, when the system is in a phase space
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Figure 4.5: LLE of the network as a function of the quenched mean µ obtained by a direct
numerical simulation of the input current model (1.9) (left) and firing rate model (1.10) (right)
in discrete time with the Orbit Separation method (N = 1000, 10000 time steps) for different
values of the initial conditions (orange and blue dots). The theoretical DMFT prediction (eq.
(4.6)) is presented for comparison (grey). Results obtained for both models with transfer function
ϕ(x) = 1

2

(
tanh(x− θ) + 1

)
, i.i.d. synaptic couplings Jij ∼ N (J0/N, g2/N) and quenched external

input ξi ∼ N (µ, σ2). Network parameters: θ = 1, g = 5, J0 = 0.5 σ = 0.1.

region where two different solutions exist (bistability), it is crucial to judiciously

select the initial conditions to obtain the same behavior, given their importance in

determining which of the two solutions the system will reach at steady state. To un-

derstand how to choose the initial conditions for the firing model, we first highlight

the following observation. We start from the firing model equation, that we rewrite

here for simplicity:

ṙi(t) = −ri(t) + ϕ
(∑

j

Jijrj(t) + bi
)

(4.8)

Now, by defining the variable Ii(t) =
∑

j Jijrj(t) + bi (i.e. the input current), we

have that it satisfies the input current model (1.9). Indeed, by taking the time

derivative of Ii(t) and using equation (4.8), we get:

İi(t) =
∑
j

Jij ṙj(t) =
∑
j

Jij

(
− rj(t) + ϕ

(∑
k

Jjkrk(t) + bj
))

= −Ii(t) +
∑
j

Jijϕ(Ij(t)) + bi (4.9)
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Therefore, to ensure equivalent steady-state solutions for the system in both de-

scriptions, the initial conditions for the firing model must be chosen based on the

definition of Ii(t), as follows:

r(0) = J−1
(
I(0)− b

)
(4.10)

where J−1 represents the inverse of the matrix J . We note that, however, from a

computational point of view, this is impractical as the inversion of the connectivity

matrix J results in a full matrix, and both the numerical costs of inversion and

storing are overwhelmingly high (especially for very large systems). Moreover, and

most importantly, in real biological networks the inverse operation can seldom be

performed due to the often singular nature of J .

4.3 Optimal sequence memory

The dynamical state of a neural network influence its ability to process informa-

tion. As we have seen, a neural network of randomly and recurrently interconnected

neurons produces complex dynamics which is suitable for various computational

tasks. It has been demonstrated that the performance of the network peaks near

the boundary between stationary and chaotic states [36]. This boundary depends

on the parameters and characteristics of the inputs, and keeping the network near

this boundary requires careful adjustment of the recurrent connections, which is

biologically costly and slow as it usually requires synaptic plasticity. As shown by

Mazzuccato et al. [28], it is possible to set the network near a transition boundary

simply by modifying the statistics of the baseline external input, without the need

of fine tuning the recurrent connections. In the following, we examine these ideas

by computing the memory capacity of the system.

The sequential memory of a neural network refers to its ability to retrieve informa-

tion from a previous input at a later time. Essentially, it indicates the capacity of the
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Figure 4.6: (Normalized) memory capacity M of the network obtained accordingly to equation
(4.12) as a function of the baseline mean µ. M is optimal at the edge of chaos (see fig. 4.3) where
the LLE crosses zero (inset). Results obtained from the discrete-time current model (4.1) with
transfer function ϕ(x) = 1

2

(
tanh(x − θ) + 1

)
, i.i.d. synaptic couplings Jij ∼ N (J0/N, g2/N) and

quenched external input ξi ∼ N (µ, σ2). Network parameters: θ = 1, g = 5, J0 = 0.5 σ = 0.16.

network to remember sequences of inputs and use this information for subsequent

tasks. Mathematically, it is defined as the capability of the system to reconstruct

an input signal z(t) at a later time t+ τ based on the network state, using a sparse

linear readout
∑K

j=1wjxj(t + τ), where K is the number of readout neurons and

O(K) ≪ O(
√
N). To assess how accurately the input signal is reconstructed by the

readout neurons, one can calculate the memory curve m(τ). For optimal readout

weights wi minimizing the error between the input and the readout, m(τ) can be

evaluated as in reference [7]:

m(τ) =
⟨x(t+ τ)z(t)⟩T ⟨x(t)x(t)T ⟩−1⟨x(t+ τ)z(t)⟩

⟨z(t)2⟩
(4.11)

where ⟨·⟩ denotes the (discrete) time average. In the thermodynamic limit N → ∞

one can perform a field-theoretical calculation using an approach similar to the one

utilized in Section 2.4. Thus, the memory capacity of the system, defined as the as
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the integral of the memory curve m(τ), can be estimated as [36]:

M =

∫ ∞

0

dτ m(τ) ∼ σ2√
1− g2⟨ϕ′(x)2⟩

(4.12)

As shown in figure 4.6, the memory capacity of the system peaks at the phase bound-

ary between fixed point solutions and chaotic phase, where the Largest Lyapunov

Exponent crosses zero. At this critical point, the network achieves optimal balance

between stability, which is important to mantain information over time, and sensi-

tivity to external inputs. Therefore, the control of the baseline statistics in order to

settle the system at the edge of chaos allows for the maximization of information

processing capabilities without the need to alter the recurrent couplings.
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Chapter 5

Numerical methods

In this chapter, we describe the numerical methods used to investigate the dynamical

behavior of random recurrent neural networks. Numerical methods are fundamental

to explore the complexities of systems with large number of interacting units. More-

over, they provide insights that are often difficult to derive analytically and allow for

comparisons with theoretical results, when available. Our aim is to introduce two

distinct approaches: one for computing the Largest Lyapunov Exponent through

direct simulations, and another for solving the self-consistent Dynamic Mean Field

Theory equations.

The first method we discuss is the Orbit Separation Method (OS), a simple and stan-

dard numerical technique used to compute the LLE of dynamical systems. Through-

out this thesis, we have widely employed it to compare theoretical predictions with

numerical simulations.

The second method we focus on is the solution of the self-consistent equations of the

DMFT. Although this approach has not been commonly used in the thesis since we

primarily focus on steady state analysis, we describe it because it is essential to un-

derstand the theoretical background underlying our research and helps to illustrate

the nature of the DMFT equations.
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Figure 5.1: Schematic representation of the OS method for computing the LLE.

5.1 Orbit Separation Method

The Lyapunov exponents of a dynamic system are frequently computed using nu-

merical methods. The OS method is a flexible numerical technique for calculating

the LLE that can be applied to any system in any dimension and it does not require

the explicit evaluation of the Jacobian (monodromy) matrix of the system. We re-

mark that a Jacobian-based method for computing the full spectrum of Lyapunov

exponent that allows us to study interesting physical properties, such as dynamical

entropy rate and attractor dimensionality, is presented in [11].

Essentially, the OS method relies on numerically integrating and repeatedly com-

paring two orbits (trajectories) of the system with very close initial conditions, and

evaluating the average logarithm of the distance between these two orbits in phase

space. According to [39], the numerical procedure, illustrated in figure 5.1, can be

described as follows:

• Initialize two orbits of the system x(t) and x̃(t) with the same initial conditions

(i.e. x(0) = x̃(0)). Next, perturb the second orbit by a small constant ϵ in any

86



(random) direction, as:

x̃(0) = x(0) + ϵ
∆(0)

∥∆(0)∥
(5.1)

where ∆(0) is a random vector of dimension N . The perturbation magnitude

ϵ should be much smaller than the time scale on which the flow changes, but

several orders of magnitude larger than the numerical precision. We use ϵ =

10−10 in double precision.

• Apply a numerical method (e.g. Runge Kutta 4th order) to integrate once the

equation describing the evolution of the system for each initial condition and

determine x(t1) and x̃(t1). We may consider the first orbit as the reference one

and the second as the perturbed one.

• Determine the distance vector ∆(t1) = x(t1) − x̃(t1) and evaluate (and store)

the natural logarithm of the relative separation λ1:

λ1 = ln
(∥∆(t1)∥

ϵ

)
(5.2)

• Apply a normalization procedure to ensure that at every time-step the orbits

are ϵ apart while maintaining the direction oriented to the one of maximum

expansion. In other words, readjust the second orbit as follows:

x̃(t1) = x(t1) + ϵ
∆(t1)

∥∆(t1)∥
(5.3)

• Iterate the procedure outlined above by considering at each time-step the initial

conditions x(tk) and x̃(tk) given by (5.3) for the reference and perturbed orbit,

respectively.
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Figure 5.2: Convergence off the LLE of the network gain parameter g = 5 obtained by applying
the Orbit Separation method with N = 1000 and averaging over 10 different initial conditions and
realization of the connectivity matrix J . Total simulation time T = 15000 with ∆t = 0.01 (1/5
of the total iteration were discarded to allow the system reach the attractor). The LLE value,
λ = 0.4529, is in excellent agreement with the DMFT prediction of λ = 0.4534. Result obtained
for the input current model (1.9) with transfer function ϕ(·) = tanh(·) and i.i.d. synaptic couplings
Jij ∼ N (0, g2/N).

• Compute the LLE exponent of the system as:

λ =
1

∆t

( 1
n

n∑
i=1

λi

)
(5.4)

where n represent the total number of iterations, and the division by the time-

step size ∆t ensures that the units are correct (as the system is a flow rather

than a map).

It is worth remarking that for a more accurate value of the Lyapunov exponent, this

numerical procedure is performed for several initial conditions of the system and

realizations of the connectivity matrix J . The LLE is then calculated by averaging

those obtained with these different realizations. Additionally, in order to improve

the convergence of the method, it is recommended to exclude from the calculation
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of the mean in equation (5.4) the initial iterations where the orbit is not sufficiently

close to the (strange) attractor.

The convergence of the LLE with respect to the number of iterations of the OS

method is illustrated in figure 5.2, demonstrating excellent agreement with the LLE

obtained analytically through DMFT.

5.2 Numerical solution of DMFT equation

As we have demonstrated in Chapter 2, the DMFT equation for the the generic

random neural network (2.1), which we rewrite here for convenience, are given by:

ẋ(t) = −x(t) + η(t) + g2γ

∫ t

0

R(t, s)ϕ(s)ds (5.5)

where η(t) is the effective Gaussian noise with zero mean and variance ⟨η(t)η(s)⟩ =

g2C(t, s) + σ2δ(t − s) and R(t, s) is the response function arising from correlated

couplings (γ ̸= 0). Clearly, the DMFT equation lacks an analytical solution in

closed form and needs to be solved numerically. However, solving the self-consistent

DMFT equation is a challenging task compared to solving systems in equilibrium

or steady state. This difficulty primarily arises from the presence of time-dependent

functions in the self-consistent iterations of the numerical scheme, such as the two-

point autocorrelation of the firing rate C(t, s) and the response function R(t, s).

We describe the numerical procedure used to solve the DMFT equation for the

generic neural network model, based on the method outlined in [34]. Essentially,

this procedure involves the simulation of a large number of trajectories of the DMFT

equation. The observables of the system (e.g. autocorrelation C(t, s) and mean

activity m(t)) are computed in each iteration by averaging over different paths,

until convergence. Clearly, the numerical scheme operates in discrete time and

requires defining a total simulation time T as well as the time-step ∆t for numerical

integration. In this setting, the autocorrelation C(t, s) and the response function
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R(t, s) become squared matrices of dimension T/∆t, initialized as identity matrices.

However, to avoid excessive notation, we will still refer to the entries of these matrices

as (t, s), noting that these variables take values in the discrete time lattice (i.e.

t, s = 0,∆t, . . . , T ).

In each iteration of the algorithm, the operations can be described as follows:

• Sample M effective noise trajectories {ηi(t = 0, . . . , T )}Mi=1, each of them from

a multivariate Gaussian distribution N (0, g2C(t, s) + σ2/∆t), where the dis-

cretization of the Dirac delta function leads to the appearance of ∆t.

• Apply a numerical method to integrate the DMFT equation for each the noise

paths, obtaining M current trajectories {xi(t = 0, . . . , T )}Mi=1. By using a

simple Euler scheme, we have:

xi(t+∆t) = (1−∆t)xi(t) + ∆t ηi(t) + g2γ∆t2
t∑

s=0

R(t, s)ϕ(xi(s)) (5.6)

The initial conditions {xi(0)}Mi=1 are drawn randomly (e.g. from an uniform

distribution U(0, 1)).

• Compute the new autocorrelation matrix C(t, s) and the response matrixR(t, s)

by averaging over the paths. In particular, the self consistent functions are

evaluated by:

C(t, s) =
1

M

M∑
i=1

ϕ(xi(t))ϕ(xi(s)) (5.7)

R(t, s) =
1

M

M∑
i=1

χi(t, s)ϕ
′(xi(t)) (5.8)

where χi(t, s) represents the response function of the input currents xi(t). This

function can be determined by solving the following integro-differential equation
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that can be derived in the MSRDJ formalism [43] and, in discrete time, reads:

χi(t+∆t, s) = (1−∆t)χi(t, s) + δt s + g2γ∆t2
t∑

t′=s

Rold(t, t′)Ri(t
′, s) (5.9)

Here, Rold(t, s) represent the response function estimated in the last iteration

of the algorithm, and Ri(t, s) = ϕ′(xi(t))χi(t, s).

• Update the autocorrelation function C(t, s) and the response function R(t, s)

and start a new iteration of the algorithm. The updating rule is based on soft

reinjection, as follows:

Cupdated(t, s) = (1− α)Cold(t, s) + αC(t, s) (5.10)

where α is the reinjection parameter (we use α = 0.3). The same updating

applies to R(t, s). This method is essential to ensure the convergence of the

algorithm, preventing it from jumping unpredictably from one function to an-

other.

It is worth noting that in the DMFT setting, each noise trajectory ηi(t) is inde-

pendent from the others. A simple strategy to generate them all is to start from

a random (noise) matrix A of dimension (T/∆t,M), where the entries are inde-

pendent identically distributed random variables drawn from a standard Gaussian

distribution. Next, we diagonalize the covariance matrix Γ(t, s) = g2C(t, s)+σ2/∆t

and multiply it with the orthogonal basis matrix of Γ(t, s) to obtain the matrix B.

The trajectories are then given by the rows of the product matrix AB.

The comparison between the observables obtained from a direct numerical simula-

tion of the network and the DMFT solution, obtained with the algorithm described

previously (with γ = 0), is shown in figure 5.3 for two different values of the gain

parameter g: one above the critical coupling (g = 1) and one below it. We observe

an excellent agreement between the two sets of data. Additionally, in the chaotic
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Figure 5.3: Mean activity m(t) and same-time autocorrelation function of the firing rate C(t, t) as a
function of time for g = 0.5 (top) and g = 2 (bottom). Observables obtained from a direct numerical
simulation of a network with N = 10000 averaged over 100 different realization of the connectivity
matrix J and initial conditions (drawn from an uniform distribution U(0, 1)) are compared with the
DMFT results (dotted line) obtained by averaging over 100000 trajectories. The network dynamics
is shown in the insets. Results obtained for generic current model (2.1) with transfer function
ϕ(·) = tanh(·), synaptic couplings Jij ∼ N (0, g2/N) with a potential asymmetric correlation
⟨JijJji⟩ = g2γ/N and Gaussian white noise with zero mean and variance ⟨ξi(t)ξj(s)⟩ = σ2δijδ(t−s).
Network parameters: γ = 0, σ = 0.
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Figure 5.4: Relative error between direct numerical simulation and DMFT results as a function of
N the for the mean activity m(t) (blue) and same-time autocorrelation function C(t, t) (orange)
for g = 0.5 (left) and g = 2 (right) computed according to eq. (5.11). Simulations results
are obtained by averaging over 100 different realization of the connectivity matrix J and initial
conditions. Results obtained for generic current model (2.1) with transfer function ϕ(·) = tanh(·),
synaptic couplings Jij ∼ N (0, g2/N) with a potential asymmetric correlation ⟨JijJji⟩ = g2γ/N
and Gaussian white noise with zero mean and variance ⟨ξi(t)ξj(s)⟩ = σ2δijδ(t − s). Network
parameters: γ = 0, σ = 0.

phase of the network, there is an emergence of a non-zero same-time autocorrelation

function of the firing rate C(t, t) at stationarity, conistently with what we observed

in Chapter 3. In order to investigate further on the differences, we evaluate the rel-

ative error between the simulation results (variables with tilde) and DMFT results,

computed by:

err(m) =
∥m− m̃∥2

∥m∥2
err(C) =

∥C − C̃∥F
∥C∥F

(5.11)

where the vector m = m(t = 0, . . . , T ) is the mean firing rate activity and ∥ · ∥2 and

∥ · ∥F are the L2 norm and Frobenious norm, respectively. As illustrated in figure

5.4, the relative error decreases as the number of neurons N in the direct numerical

simulation of the network increases. This confirms the hypothesis that the DMFT

equation describes the characteristic behavior of the system in the large N limit.

93



94



Conclusions and Outlook

In this thesis, we investigated the dynamical behavior of a fully-connected Recur-

rent Neural Network with randomly Gaussian-distributed couplings. Despite rep-

resenting an interesting physical systems, their analysis is complicated due to the

inherent stochastic activity, the non linearity of the input-output transfer function

of a single neuron and the strong interaction effects deriving from densely recurrent

connections. To grasp the collective behaviors emerging from these complexities,

we reformulated the stochastic differential equations in a path integral formalism.

Leveraging the large number of synaptic inputs and the self-averaging properties of

the system (the value of an observable in a single realization of the quenched dis-

order converges to its average over the disorder), we applied Dynamic Mean Field

Theory (DMFT) to reduce the interacting system to an effective equation of a single

neuron embedded in a fluctuating field with self-consistently determined statistics.

In the case of an autonomous system, the mean-field perspective enabled us to anal-

yse the time-lag dependent autocorrelation function of a typical unit through the

motion of a particle in a self-consistent potential. As the gain parameter g is in-

creased beyond unity, an emergent non-zero autocorrelation function is observed

with a decay time inversely proportional to the value of g, indicating that neuronal

activity becomes uncorrelated at subsequent times and loses memory of its initial

state. Correspondingly, a phase transition from a fixed-point solution to a chaotic

state of the network is observed at the critical value g = 1. Accordingly, the Largest
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Lyapunov Exponent (LLE) of the network, calculated by determining the ground

state energy of a quantum mechanical problem (time-independent Schrödinger equa-

tion), shifts from negative to positive values. The same critical condition is predicted

by Random Matrix Theory. In particular, according to the circular law, the transi-

tion to chaos arises when the spectral radius of the stability matrix exceeds unity.

Interestingly, for finite size systems, numerical simulations reveal that the transition

from a stationary to a chaotic state passes through intermediate stages of limit-

cycles, oscillatory behavior with increasing complexity. In the limit N → ∞, a

sharp transition emerges as predicted by DMFT.

Significantly, the numerical results obtained through a direct simulation of the net-

work show excellent agreement with the theoretical predictions. Moreover, surpris-

ingly, both the input current model and the firing rate model, display the same

behavior. In particular, they both draw from the complete model the same critical

condition for the chaotic transition.

In the case of a stochastically driven network, chaotic activity emerges at higher

coupling parameter g. This input driven suppression of chaos can be understood in

a mean-field perspective by considering how the activity distribution interact with

the single-neuron transfer function. We argued that chaos emerges when the ac-

tivity distribution is concentrated around the saddle point of the transfer function.

Turning on a external input alters this distribution, thus stabilizing the dynamics.

Surprisingly, by changing the mean µ and variance σ of the quenched external in-

put a rich set of dynamical behavior is observed. We delineated the phase diagram

of the network in the (µ, σ) space by computing the LLE through DMFT. Rather

than fixed point and chaotic states, several bistable phases emerge as the network

activity breaks ergodicity. Depending on the initial conditions, for the same values

of µ and σ, the network can settle into a fixed point or a chaotic state, two different

fixed points or two chaotic states (weak and strong chaos). This bistable phases

can be harnessed to perform multiple tasks (binary decision-making) without any

96



weight optimization, simply by changing the statistics of the baseline quenched input

[28]. Overall, the impact of this baseline modulation can be understood in terms of

changes in the slope of an effective transfer function Φeff(r) =
∫
Dx ϕ(

√
qx+m+r),

where m and q are the self-consistent mean and variance of the activity distribu-

tion, andDx the standard Gaussian measure. This observation reflects experimental

findings which suggest that changes in behavioral states are influenced by gain mod-

ulation, which allow organisms to adapt their responses to changing environmental

conditions and behavioral demands [42]. An intuitive understanding of this phe-

nomenon is given by examining the effective potential E(r) =
∫
dr

(
r − Φeff(r)

)
,

derived from an effective mean-field theory [25]. This potential exhibits a double-

well shape, and the height of the barrier separating the two energy minima, which

represent two distinct attractors for the network, is directly proportional to the

slope of the effective transfer function. Increasing the variance of the quenched in-

put reduces this slope, thereby decreasing the barrier height and allowing for quicker

transitions between different states and faster encoding of upcoming stimuli.

To investigate on the information processing capabilities, we evaluated the sequen-

tial memory of the network. Interestingly, it peaks in the edge of chaos, where the

network achieves an optimal balance between stability and flexibility. Indeed, at

the borderline between order and disorder, the network is very sensitive to external

perturbation. At this critical state, it is able to explore a wide range of dynamic

states and respond flexibly to external inputs. Despite this sensitivity, the system

maintains enough stability to store and retrieve information consistently over time.

While baseline modulation offers a straightforward mechanism to bring the network

close to a critical point, the fundamental question of how living systems dynami-

cally tune themselves in the proximity of a critical state remains open. Indeed, this

requires a deep understanding of the intricate mechanisms of neural circuits respon-

sible for the transmission and the modulation of these signals. As an alternative,

we propose a model based on synaptic plasticity, where the synaptic connections
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are dynamic variables subject to a Hebbian updating rule. A straightforward im-

plementation, in discrete time, is given by:

Jij(t+ 1) = Jij(t) +
α

N

(
ϕi(t+ 1)− θ

)(
ϕj(t)− θ

)
H
(
ϕj(t)− θ

)
Here, the parameter α > 0 represents the intensity of the Hebbian plasticity, H(·)

denotes the Heaviside step function, and we used abbreviated notation to indicate

the neuronal firing rate (ϕ(xi(t)) = ϕi(t)). Additionally, the parameter θ defines a

threshold that allows us to determine if a neuron is active at time t (ϕi(t) > θ) or

silent. From a biological perspective, the effect of the plasticity rule is to enhance

the synaptic connection Jij if the pre-synaptic neuron j is active at time t and the

post-synaptic neuron i is active at time t+ 1. On the other hand, if the neuron j is

active and the neuron i is inactive the synaptic connection is weakened.

This process is related to the ability of the brain to reinforce neural connections

associated with correlated and relavant activity patterns, while weakening those

associated with uncorrelated activity. On general grounds, we expect this dynamical

modification of the synaptic couplings to drive the neural network towards the edge

of chaos, where it achieves a delicate balance between order and disorder. This idea

is supported by the following intuitive reasoning. When the network is initialized

in the chaotic phase, increasing the connections between active neurons induces the

emergence of correlated activity patters, that could bring the network closer to an

ordered phase. On the other hand, if the initial condition is chosen to be in a stable

state, the modification of the synaptic connections could introduce variability on the

dynamics of the network, eventually pushing the system towards a more disordered

state. We leave the investigation of this phenomenon for future research.
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