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Abstract (IT)

Nella simulazione di flussi turbolenti, le Wall-Modeled Large-Eddy Simulations (WMLES)
sono una soluzione eccellente grazie al loro equilibrio tra accuratezza e costo computazionale,
così come le RANS supportate da modelli specifici. Tuttavia, sia le RANS che le WMLES
mostrano alcune difficoltà nell’emulare il comportamento del flusso in prossimità delle pareti,
a causa della risoluzione non sufficientemente elevata per risolvere direttamente l’intero strato
limite. Questo problema si aggrava quando si introduce il trasporto di particelle inerziali, per-
ché in una turbolenza wall-bounded, a parete i corpi sono particolarmente influenzati dalle
forze di taglio e dall’anisotropia.

In questo contesto, il presente lavoro mira a implementare un modello stocastico per il
trasporto di particelle inerziali in flussi turbolenti non risolti. Partendo da un flusso turbo-
lento medio dato da un modello, il comportamento delle particelle è derivato da un modello
che implementa un’equazione differenziale stocastica basata sul Continuous Random Walk
(CRW) normalizzato di Langevin, che simula le fluttuazioni del fluido viste dalle particelle
utilizzando un modello ibrido lagrangiano-euleriano, aggirando completamente il problema
della risoluzione. In questo lavoro di tesi, l’attenzione si concentra sul comportamento del
flusso turbolento carico di particelle in un canale piatto e sulmodo in cui le particelle si deposi-
tano sulle pareti. I risultati di questo modello saranno poi confrontati con lavori precedenti
e con i dati di Direct Numerical Simulation(DNS) legati ai parametri iniziali in cui è stato
sviluppato il modello, cioè a Reτ=150. Una volta dimostrata la validità del modello, questo
verrà applicato a contesti più vicini alla realtà, aumentando il numero di Reynolds, per val-
utare se il modello è ancora efficace in casi più complessi.
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Abstract (EN)

When simulating turbulent flows, Wall-Modeled Large-Eddy Simulations (WMLES) are an
excellent solution due to their balance between accuracy and computational cost, as well as
RANS aided from proper models. However, RANS andWall-Modeled LES shows some dif-
ficulties in emulating the flow behaviour near the walls, due to the resolution being not high
enough to directly resolve the entire boundary layer. This problem is aggravated when the
transport of inertial particles is introduced, because in a wall-bounded turbulence the bodies
are particularly affected by the shear and the anisotropy near the walls.

In this context, the presentwork aims at implementing a stochasticmodel for the transport
of inertial particles in unresolved turbulent flows. Starting from amean turbulent flow given
by amodel, the particle behaviour is derived by amodel that implements a stochastic differen-
tial equation based on the normalised Langevin continuous randomwalk (CRW),which sim-
ulates the fluid fluctuations seen by the particles using a hybrid Lagrangian-Eulerian model,
completely bypassing the resolution problem. In this framework the focus is on how this
particle-laden turbulent flow behaves in a flat channel, and on how the particles deposit on
the walls. The results of this model will then be compared with previous work and also Di-
rect Numerical Simulation (DNS) data, linked to the initial parameters in which the model
was developed, i.e. at Reτ=150. Once the consistency of the model has been demonstrated,
the model will be applied to contexts closer to reality, i.e.increasing the Reynolds number, to
assess whether the model still holds in more complex cases.
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1
Introduction

Something that is often ignored in daily life is that gas itself is a fluid, like water or any other

liquid.

In this light, it is clear howmuch fluids are present anywhere you look.

These two categories are grouped together when explaining their physics, due to their similar

behaviour.

Their study is vast and wide-ranging, spanning various fields of science and engineering, as-

pects of everyday life and beyond. For fluid dynamics, the study of fluids motion, some of

these aspects are more complicated to study and reproduce, either experimentally or artifi-

cially.

One of them is the subject of this thesis: turbulence is one of the most common phenomena

in fluids, characterised by the interaction of many vortex structures of different sizes, result-

ing in chaotic and multiscale processes.
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(a) (b) (c)

Figure 1.1: Some turbulence examples.

Ranging from mostly natural domains, such as the swirls in a flowing river, the puffs of a

volcano or even themovement ofweather disturbances, tomoreman-dependent phenomena,

like the flow of wind between buildings in a city, turbulence is virtually omnipresent.

Even in the engineering field turbulence is relevant: the plumes from a rocketmotor, the flow

of the air after it has passed the wing of aircraft, and so on. Many of these phenomena are the

subject of very active field of research, characterised by analysis done using numerical simula-

tion.

For this kind of problem, Large Eddies Simulation (LES) is the most widely used numeri-

cal tool today. In a nutshell, LES directly resolves the largest scales of the turbulent motion

on the computational grid, enabling the most crucial phenomena to be captured.

On the downside, all the smallest scales of the motion cannot be simulated and are are there-

fore modeled via ad-hoc closure models, reducing the computational cost and the required

grid solution.

Another problem, more relevant in the context of this work, is the numerical treatment of

the boundary layer.

There are twoways to address this issue: Wall-Resolved LES andWall-Modeled LES. The for-

mer uses a grid resolution small enough to resolve the boundary layer up to the wall. This

allows much more reliable simulations, but at the cost of being computationally very expen-

sive,making it implausible at highReynolds numbers evenwith today’s computer capabilities.
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Instead, the wall-modeled LES employs a wall model to describe the velocity profile within

the boundary layer. This way a less dense grid is required, making high Reynolds simulations

feasible.

However, what characterises the work carried out in this thesis is something else.

In many of the situations already described, there is a ubiquitous agent that has not yet been

considered: particles.

Unless a sterile and completely sealed environment is established, particles will inevitably be

present in the fluid under examination. Despite their seemingly minimal significance, there

exists a phenomenon called turbophoresis that certifies the importance of their presence.

Turbophoresis refers to the migration of a suspended particle in a fluid towards a decreasing

turbulence level. This accumulation of particles can lead to a ”remodelling” of the wall shape.

in fact, particles tend to accumulate in the wall region and can adhere to the wall, resulting in

wall shape remodeling.

Undoubtedly, such a phenomenon can be very important in many engineering applications,

especially in the aerospace sector: the behaviour of the particles in the exhaust of a rocket

engine in relation to the nozzle wall; the presence of particulate matter in the ACS of any

satellite’s propellant; the suspended dust in a martian devil dust.

Such phenomena cannot be underestimated, which is why efforts are now being made to ex-

tend the simulation library. Especially in the modeling of suspended particles in a turbulent

channel flow, which is the most simple and adaptable case study, and therefore is the one that

will be analyzed in this work .

Simulating the presence of particles and turbulent phenomena in any kind of simulation

proves challenging as the models developedmay not be valid for all turbulence values (which

can be represented by a variable, the Reynolds number, explained later). The Reynolds num-

ber closely correlates to simulation complexity, and turbulent flows have highReynolds num-

bers, which causes simulation difficulties. As turbulence increases, simulation issues become

more and more pronounced.
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However, frequently themodels utilized to aidwithLESorRANSare created at lowReynolds

numbers, which simplifies its development, but this does not ensure their efficacy when im-

plemented in practical conditions.

The purpose of this thesis is to determine a model that can assist in both LES and RANS

and evaluate its accuracy by comparing its outcomes with those present in the existing liter-

ature. The aim is also to extend the model to higher Reynolds values to assess whether the

selectedmodel is still operational. The Continuos RandomWalk(CRW)model based on the

normalized Langevin equation was selected. The use of the edition used here started with

Marchioli’s work in 2006 and has continued since then to validate its effectiveness.

This dissertation will be structured as follows: Chapter 2 provides a brief introduction to all

the subjects studied at a physical level; Chapter 3 offers an overview of fluid-dynamic simula-

tions, both from a fluidic and particle perspective; Chapter 4 focuses on the implementation

and verification of themodel compared to the original work; Chapter 5will extend themodel

to a higher Reynolds number, and evaluate the obtained results; Chapter 6 will conclude the

thesis with a brief analysis on the effectiveness and goodness of the model, and outline poten-

tial future advancements.
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2
Background

To better understand the kind of work conducted in this thesis, a brief review of its funda-

mental physics will be provided: Section 2.1 will focus on the treatment of turbulence, in

Section 2.2motion scales will be examined, while Section 2.3 analyses wall-bounded flows be-

haviour, finally in Section 2.4 the characteristics of particles and turbophoresis are explored.

2.1 Turbulence

Turbulence is awidespreadphenomenon: from thewater in awaterfall, to the dust in a strong

wind, to the exhaust plume from a solid rocket motor and many more, turbulent flows can

be observed all around us.

Something it is possible to catch on by these examples is that the flow exhibits an unpre-

dictable nature, which is evident from the presence of vortex structures of different sizes, and

the overall chaotic nature of the flow, which appears unsteady and irregular, both in position

and time.

These features render this flow type significantly more efficient in mass transportation and
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mixing capacity than laminar flows.

This and the presence of turbulence in numerous engineering applications deems it a impor-

tant study field. Unfortunately, studying this subject is not an easy feature, given that its

mathematical models are so complex that sometimes they introduce new problems in the

whole system equation [20].

That’s due to the fact that analytical solutions tofluiddynamics equations are typically straight-

forward only in the laminar flow regime; in a turbulent regimes, there’s no such thing, as ex-

perimentation and/or numerical models need to be applied. That turns the whole process in

a way more complex and time-consuming matter.

Thus, it is essential to define a parameter that allows to differentiate between the two scenar-

ios, and this can be achieved through the Reynolds number (Re), defined as:

Re =
uL
ν

=
ρuL
µ

(2.1)

This definition ofRe describes it as the ratio between inertial and viscous forces: in turbulent

flows, the former dominates over the latter, while in laminar flows the opposite is true. How-

ever, there is no exact value of Re at which this distinction is made, even though a generic

separation value is put at Re=1500.

When approaching turbulence, the deterministic chaos problem comes into play, as small

variations in initial conditions can lead to significantly different outcomes. This sensitivity

of the system to small fluctuations can cause significant differences in the final solution.

Still, when considering the average, the outcome will be unchanged.

Therefore, even though the mean solution is not affected by deterministic chaos, the instan-

taneous one is, thus requiring a statistical approach. To achieve this, a large number of instan-

taneous fields N need to be analysed, upon which a Reynolds or ensemble average is applied:

< Un(t) >=
1
N

N∑
1

un(t) =< U > (2.2)
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Here the vectorU represents themean velocity field. When examining any velocity field, such

as for example U(x,t), it is always possible to utilise a Reynolds decomposition:

U(x, t) =< U(x, t) + u′(x, t) > (2.3)

where the first component is the above mentioned mean velocity field, and the other one is

the fluctuation component.

From this operation a velocity profile like the one represented in Figure 2.1 is obtained.

Figure 2.1: Velocity fluctuation obtained through Reynolds decomposition [15].

2.2 Kolmogorov Scales

A turbulent flow will always display 3D non-stationary vortex structures spanning a great

range of size orders: this means that in structures like clouds, vortexes of sub-millimetre di-

mensions exist along with kilo-metre ones, meaning that there can be a six orders of magni-

tude difference.

And, as the Reynolds number increases, the dimension of the vortex achievable gets smaller

and smaller.

To understand the behaviour of turbulent flows, an explanation by Lewis Fry Richardson

can be used: when observing a fountain jet flowing into a pool, it is possible to observe var-

ious turbulent formations propagating on the surface of the water; while the behaviour of

large scales is affected by the system’s geometry, smaller scales remain unaffected by it, and
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they can always complete their motion cycle without encountering physical obstacles; there-

fore they have an universal behaviour; still, smaller scales formations seem to stem frombigger

ones.

This is well synthesised in a poem written written by the scientist:

Big whorls, little whorls

Big whorls have little whorls

that feed on their velocity,

And little whorls have lesser whorls

and so on to viscosity.

Lewis Fry Richardson (1922)

Richardson introduces the concept of energy cascade to explain these behaviours objectively.

The first concept he introduced is that the turbulent flow is made up of eddies: there is no

precise definition, but an eddy is conceived as a turbulent motion within a certain area, that

is at least moderately coherent over that region. Additionally, a single large eddy’s region can

comprise several smaller eddies.

Eddies can be of any size: they will have a characteristic dimension l, a characteristic velocity

u(l) and a characteristic time τ(l) = l/u(l).

In addition, an homogeneity and isotropic property is verified for any eddy.

According toRichardson’s theory, the scales that are the largest possess themaximumamount

of kinetic energy. These bigger eddies are unstable, and as they break up the energy will grad-

ually transfer to smaller and smaller eddies. At the end of the cycle, the energy is dissipated in

the smallest eddies by viscosity agents, resulting in the generation of the energy cascade. [21].

This happens because at larger scales, where l ∼ l0 ∼ L0, L0 being the system dimension,

both the eddy viscosity and the eddy velocity will be comparable to the system ones.

By definingRel =
ul0 l0
ν
, which in this case will be large, it is highlighted that the direct effects

of viscosity are negligible, while inertial ones are dominant, therefore no energy is lost there.
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Instead the smaller scales are such that l << L0, thus the dimensional analysis shows that

Reη ∼ 1, meaning that the viscous terms there are relevant, resulting in energy dissipation.

This explainswhy the eddies energy is simply transferred in every single larger scale, remaining

constant until a certain small scale is reached.

The scale where dissipation occurs is called Kolmogorv Scale η, defined as the scale small

enough to make the eddy motion stable in the turbulent flow. At that point the energy cas-

cade ends, as eddies can not get much smaller before dissolving.

A proper schematic representation of all the scales and dimensions described is given in Fig-

ure 2.2

Figure 2.2: Eddies lenghtscales and ranges in Richardson’s theory[20].

The concept expressed by Richardson needs some clearer definitions, especially from a di-

mensional point of view. This is comprehensively done by Kolmogorov’s K41 theory. The

Russian mathematician summarizes the fundamental principles in three hypothesis[20]:

• Hypothesis ”0”, or Local isotrophy hypothesis: whenRe >> 1 e l << l0, the fluid

is locally homogeneous and isotropic, thus the properties will be universal and at most

depend on ϵ, ν

• First similarity hypothesis: every single statistics of the small-scale motion (l < lη)

has a universal form that is uniquely determined by ν and ϵ, in every turbulent flow at

sufficiently high Reynolds number

• Second similarity hypothesis: in every turbulent flow with Re » 1, the statistics of

the eddies of scale l in the range η << l << l0 are universal and dependant only on ϵ

not on ν

9



In the presented hypothesis ν is the fluid viscosity, ϵ is the fluid energy dissipation rate. Us-

ing the energy dissipation rate it is possible to define the characteristic velocity scales and

timescales of an eddy, given its dimension l:

u(l) = (ϵl)1/3 = uη (l/η)
1/3 ∼ u0 (l/l0)

1/3

τ(l) = (l2/ϵ)
1/3
= τη (l/η)

2/3 ∼ τ0 (l/l0)
2/3

Also, by doing a dimensional analysis of the rate at which the energy is transferred in the in-

ertial sub-range, it can be assumed to be equal to the energy dissipation rate ϵ.

It is now evident that smaller vortex structures are unaffected by geometry or perspective,

and that is attributable to their isotropic property.

Smaller scales exhibit an universal behaviour, determined by the transfer of kinetic energy

and viscosity. There will be a range, smaller than l0 and larger than η where the energy is

transferred from vortex to vortex; the upper limit represents the point where all the energy is

stored, while the lower limit represents the point at which the energy is dissipated.

A relation between these two scales can be obtained through dimensional analysis:

l0
η
∝ Re3/40

u0
uη

∝ Re1/40
τ0
τη

∝ Re1/20

From these relations, in this study case of interest, whichmeans turbulent flow and higherRe,

this will provide an increasingly larger inertial range, while time scales and velocities decrease

gradually: froma computational point of view, that is completely detrimental since it requires

more of every resource.

2.3 Wall-Bounded Flows

In most nature and engineering applications, turbulent flows are usually bounded between a

couple of solid surfaces at least. Therefore the focus of this thesis will be on a channel flow,
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and for this reason a brief review on the subject is required.

The classical theory case, which is pretty similar to the one analyzed later, will be described:

the channel has rectangular section of heigth h = 2δ, lengthL/δ >> 1 andwidth b/δ >> 1,

as depicted in Figure 2.3.

The flowmain direction follows the X-axis, the mean cross-stream velocity is equal to zero.

Figure 2.3: Sketch of the channel flow [9].

Also, once the flow is fully developed, the channel enters a full-development region, where

velocity statistics will not change in the X direction.

Hence the fully developed channel flow is considered statistically stationary andone-dimensional

(depending only on the Y coordinate).

The Reynolds number in the channel is defined as:

Re =
2δUb

ν
(2.4)

whereUb is the bulk velocity, expressed as:

Ub =
1
δ

∫ δ

0
⟨U⟩dy (2.5)

Regarding thebalanceofmean forces, starting fromReynolds-AveragedNavier-Stokes (RANS):

• the mean continuity equation reduces to:

∂⟨V⟩
∂y

= 0 (2.6)
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• the lateral mean-momentum equation reduces to:

∂

∂y
(p+ ρ⟨v′2⟩) = 0 (2.7)

• the axial mean-momentum reduces to:

−pw
dx

+ µ
∂2U
∂y ∂y

− ρ
∂

∂y
⟨u′v′⟩ = 0 (2.8)

When the boundary condition ⟨v2⟩y=0 = 0 is applied, from Equation (2.7) derives that the

mean axial pressure gradient is uniform across the flow, giving back ∂p
∂x =

dPw
dx for every y.

Instead, Equation (2.8) can be rewritten as:

dPw

dx
=

d
dy

(
µ
du
dy

− ρ⟨u′v′⟩)
)

(2.9)

and therefore:
dτ
dy

=
dpw
dx

(2.10)

Where the term τ(y) is the total shear stress, given by the sum of the viscous stresses and

Reynolds stresses:

τ(y) = µ
d⟨U⟩
dy

− ρ⟨u′v′⟩ (2.11)

In this type of flow there is no mean acceleration so the mean momentum Equation (2.10) is

basically a balance between the axial normal stress gradient and the cross-stream shear-stress

gradient.

Still from Equation (2.10) it is apparent that τ and pw derivatives in the y and x directions

respectively are constant, thus solutions for τ(y) and pw/x can be written explicitly using wall

shear stress τw ≡ τ(0).
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As stated before, τ(y) is antisymmetric about the midplane, so the solutions will be:

−dpw
dx

=
τw
h

(2.12)

τ(y) = τw(1−
y
h
) (2.13)

Close to thewall allReynolds stress are equal to zero, due to theboundary conditionU(x, t) =

0, therefore the wall shear stress is fully due to the viscous input:

τw = ρν

(
d⟨U⟩
dy

)
ν=0

(2.14)

At this point it is possible to obtainprofiles of the shear stresses along theheight of the channel

(Figure 2.4). It is clear that viscous stress are dominant at thewall, while the situations reverses

in free shear flows: at highReynolds number, the viscous contribution is negligible compared

to Reynolds stresses. Speaking of, since at the wall the viscosity is important, the velocity

profile is related to Re.

Figure 2.4: Profiles of the viscous shear stress, and the Reynolds shear stress in turbulent channel,the dotted
lines represents Re=5600, the continuos one Re=13750 [20].

One other major point is that in the wall region, ν and τw are important parameters, as

from them appropriate scales for the fluid motion in the near-wall region can be defined:

• Friction velocity:

uτ =

√
τw
ρ
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• Viscous lengthscale:

δν = ν

√
ρ

τw
=

ν

uτ

• Friction Reynolds number:

Reτ =
uτδ
ν

• Wall unit:

y+ =
y
δν

=
uτy
ν

Something useful to notice is that y+ is similar to the localReτ , so its magnitude can be used

to determine the relative importance of viscous and turbulent processes. By plotting the two

type of stresses in relation to y+, the assertions made till now are clear: the viscous contribu-

tion drops from 100% at the wall to 10% by y+ = 50 (Figure 2.5).

Figure 2.5: Profiles of the fractional contributions of the viscous and Reynolds stresses to the total stress.
Dashed lines: Re=5600; Continuos lines:Re=13750[20].

The wall unit is also used to defined different regions in the near-wall flow, the main di-

vision being: viscous wall region y+ < 50 where shear stress is influenced by the molecular

viscosity; outer layer y+ > 50 where they are almost irrelevant.

Due to the variety of phenomena influencing the flow as the distance from the wall increases,

the laws regulating the velocity profile change multiple times (their demonstration won’t be
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reported): using them as starting point, another set of flow sections can be defined.

Starting from the wall: viscous sub-layer, buffer layer, log-law region, defect law. The latter

are named after the trend of the velocity profile.

• In the viscous sublayer the velocity profile can be assumed equal to y+

• In the log-law layer the velocity profile is defined by:

U+ =
1
k
lny+ + B (2.15)

where B is equal to 5.2, and k is the Von Karman constant (=0.41)

• In the defect law layer the profile is defined by:

U0 − ⟨U⟩
uτ

= B− 1
k
ln
y
h

(2.16)

with B now equal to 0.3.

All of this regions can be grouped in two macro-regions, the inner layer and the outer layer,

and the log-law and defect law regions together are the overlap between them.

Every region is represented in Figures 2.6 and 2.7 and then summarized in Table 2.1.

Figure 2.6: Wall regions defined in terms of y+.
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Figure 2.7: Wall regions as a function of the Reynolds number.

Region Location Defining property
Inner layer y

δ
< 0.1 ⟨U⟩ depends only on utau and y+

Outer layer y
δν

> 100 Direct effects of viscosity are negligible
Viscous wall region y+ < 50 Viscous contribution to τw is significant
Viscous sublayer y+ < 5 Viscous stress totally overcome Reynolds’s
Buffer layer 5 < y+ < 30 Between viscous sublayer and log-law region
Log-law region y+ > 30, y

δ
< 0.3 Region where log-law applies

Defect-law region 0.3 <
y
δ
< 0.5 Region where defect law applies

Overlap region y+ > 50, y
δ
< 0.1 Overlap between inner and outer layers

Table 2.1: Wall regions and layers and their defining properties.
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2.4 Inertial Particles

It is now time to address the particle element of the problem. When particles are present in

a stream, such flow is defined as a particle-laden flow. This refers to a type of two-phase fluid

flux where one phase, known as the carrier phase, is continuously connected while the other

component is made up of small, immiscible, diluted particles called the particle phase.

The modelling of these types of flows has an incredible variety of scientific applications, in-

cluding aerosol and pollution in the atmosphere, dust storms, pharmaceutical processes, in-

jection in the combustion process and many others.

To examine them, it is helpful to outline the primary physical properties added in the system

by the introduction of particles into the study.

Before beginning, it is important to note that when studying particle-laden flows, there are

two potential approaches available. The first approach, one-way coupling, considers only the

fluid’s influence on the behavior of the particles, which have no effect on the fluid’s propaga-

tion. The second approach, two-way coupling, acknowledges the coexistence of fluid and par-

ticles and requires a revision of the fluid’s governing equations (later presented in Section 3.1)

to account for external inertial bodies’ presence. When the mass fraction of the dispersed

phase is sufficiently small, the assumption of one-way coupling may be considered reason-

able, otherwise two-way coupling must be considered.

In the case of this study, given the computational and modelling difficulties that would oth-

erwise arise, the first method is chosen. Now, before looking at any motion equation, an

introduction to the physical quantities related to particles is necessary (using Varaksin [26] as

source).

To start it is necessary to name the intensive quantities, namely the particle diameter dp and

their physical density ρp.

After that, a dynamic inertial parameter of particles can be introduced, defined by the time
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of their relaxation τp, obtained as:

τp =
ρpd2p
18µ

(2.17)

where µ is the dinamic viscosity, also named fluid molecular viscosity.

The relaxation time is a measure of the time it takes for a particle to approach a steady state.

This time characterises the time it takes for a particle to adjust or ’relax’ its velocity to a new set

of forces. It indicates the particle’s agility in adjusting to new environmental or conditional

changes. The value is dependent on the mass and mechanical mobility of the particle and is

not affected by the external forces acting on the particle.

As the size of particles increases, relaxation time grows in proportion to the square of particle

diameter. Small particles typically adapt to new environments quickly by following the flow

patterns, while larger particles tend to remain on their original course and be less adaptable.

If a particle is introduced into amoving airstream, it will converge to the velocity of the stream

with the characteristic relaxation time τ . The characteristic time formost particles of interest

to achieve steady motion in air is extremely short. A particle’s velocity in a fluid rapidly ad-

justs to a stable state at which the drag force is in equilibrium with the other forces acting on

the particle.

However, the expression presented above is a simplification of a more complicated one, that

is valid only whenRep < 1, parameter defined as:

Rep =
dp|U− Up|

ν
(2.18)

ν being the kinematic viscosity andU andUp being respectively the fluid velocity and particle

velocity.

This parameter, the particle Reynolds number, is a non-dimensional measure of a particle’s

relative velocity with respect to the surrounding fluid. It has an important role in parameter-

izing the momentum exchange between the particle and fluid phases.

When Rep < 1 the flow around the particle is considered to be in the Stokes regime. As the

Rep increases, the flow separates to form a recirculating eddy in the wake of the particle. With
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time, the wake of an isolated particle will become time-dependent and begin to shed vortices.

Rep values greater than 500 will result in turbolent flow. However, in this particular study,

Rep will leave the Stokes regime without reaching values significantly greater than 1.

The particle Reynolds number is a key factor in determining the amount of turbulence gen-

erated or dissipated by the particles, thus modulating the effect of turbulence. One example

is that below a critical particle Reynolds number, the presence of particles tends to dissipate

fluid phase turbulence, whereas at higher particle Reynolds numbers, turbulence is enhanced

in particle-laden flows due to the vortex shedding mechanism [25].

It is advisable not to underestimate this issue by implementing a revised formula forRep > 1.

This is done by introducing a correction factor C:

τp =
ρpd2p
18µC

(2.19)

where:

C = 1+
Re2/3p

6
(2.20)

This is valid for Rep < 1000, thus is a pretty generic form that can be tweaked for specific

cases. By introducing this expression, it is noticeable that the ”Stokesian” particle depends

on the characteristics of the carrier phase where it moves. Instead the correction factor takes

into account the effect of inertial forces on the time relaxation of a ”non-Stokesian” particle.

Therefore, in the case of a ”non-Stokesian” particle motion, its inertia depends also on the

Rep as described.

Another fundamental parameter for particles in turbulent flows is the Stokes number (Stk),

which is an adimensional term that characterizes the particle inertia with respect to some or

other scales of the flow. To deal with particle motion in a flow of gas with a gradient of aver-

aged velocity along the longitudinal direction, it is necessary to take into account the inertia

of particles when analyzing the process of relaxation of the flow. For this reason Stk is intro-

duced.

There are various definitions of this number, given that its definition is the ratio between
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the particle relaxation time scale and the most appropriate fluid timescale based on the type

of flow. In this case the parameter of dynamic inertia of particles in large-scale fluctuation

motion is needed:

Stk = τp
vf
L

=
τp

τl
(2.21)

with τl the characteristic time of the carrier phase, dependent on the fluid velocity vf and char-

acteristic length of the flow L.

It should bementioned that this equation is valid only for Stokesian particles. WhenRep > 1

the Stokes values obtained underestimates the impact of the fluid drag force on the parti-

cle. Anyway, given the fact that in this work the limit will not be surpassed by much, Equa-

tion (2.21) is considered valid in any case.

2.4.1 Turbophoresis

Without getting too deep into the derivation of particle parameters, which will be continued

later, it’s better to give a little insight into the key phenomenon of thewhole thesis: migration

of particles.

An intriguing aspect of particle-laden flows is the preferential migration of the particles to

certain areas within the fluid flow, which is often characterized by the Stokes number (Stk)

allocated to each particle. At low Stk values, particles function as tracers and are distributed

uniformly. At high Stk, particles are heavy and are influenced less by the fluid andmore by its

inertia. At intermediate St values, the particles are impacted by both the fluid’s motion and

its inertia, leading to several interesting behaviours. This is particularly noticeable in wall-

bounded flows where there is a velocity gradient in close proximity to the wall.

One of the earliest studies discussing the phenomenon of preferential migration is the exper-

iment conducted by Segre and Silberberg. Their findings indicate that a neutrally buoyant

particle, placed in a laminar pipe flow, eventually reaches an equilibriumposition between the

wall and axis. This occurrence is commonly known as the Segré-Silberberg effect. Saffman
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provided an explanation for this phenomenon in terms of the force exerted on the particle

when it encounters a velocity gradient.

Even non-neutrally buoyant particles exhibit comparable preferential migration. At low Stk,

the particles tend to settle at an equilibriumposition, while at high Stk, they begin to oscillate

about the centre of the channel.

The phenomenon is particularly interesting in turbulent flows. Here the turbophoretic force

causes a high concentration of particles near the walls. Studies conducted through both ex-

perimental and particle-resolved DNS means offer insight into the mechanism behind this

process, in terms of the Saffman lift and the turbophoretic force.

Small, heavy particles in an in-homogeneous turbulent flow tend to migrate from regions of

high turbulence intensity towards lower intensity regions. This is what its called turbophore-

sis, and it is driven by a differential in turbulent dispersion rates between the different regions

of the flow.

Figure 2.8: Example of turbophoresis; the blue region has low turbulence, the red one high turbulence[12].

Turbophoresis is the force exerted on particles when there is a gradient in turbulent kinetic

energy (TKE).

There are two types of turbophoresis: global and local. When the diameter of the particle, is

greater than theKolmogorov scale of length η , such that it encounters a gradient in TKE, the

particle ”feels” a resultant force in the direction of the lower TKE.
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Turbulent fluctuations transfer momentum to the particle on one side faster than on the

other side, resulting in a net force on the particle in the direction of decreasing TKE. The

force’s magnitude depends on the gradient of the TKE across the particle and on the size of

the particle.This just described is the local turbophoresis.

Figure 2.9: Gradient of turbulent kinetic energy in the channel [11].

Anotherway inwhich turbophoresis can act, evenwhenparticles arenot resolved, is through

”global” turbophoresis. Turbulent flows will randomly disperse particles through turbulent

eddies. If a particle possesses no inertia, signifying Stk = 0 (tracer particles), turbulence will

guarantee homogenous particle concentration. Nevertheless, if particles have finite inertia,

flow eddiesmust overcome the particles’ inertia tomove them. Areaswith higherTKEwould

disperse particles more effectively, whereas areas with lower TKE would experience slower

particle dispersion.

This can result in the concentration of particles in regions with low turbulence, causing them

to aggregate in the proximity of the wall or the center. The randommovement of turbulence

will continuously transfer particles to either the wall area or the centre, where they will accu-

mulate.
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The global turbophoresis is dominant only on particles with moderate Stokes, since they re-

spond well to turbulent fluctuations , while near 0 or at very high values it vanishes. Also, if

the particles are bigger than the length scale, only the local one is relevant [11].

Back to the thesis case, when in wall-bounded turbulent flows, no-slip and no-penetration

conditions cause turbulence intensities to vanish at solid boundaries resulting in sharp gra-

dients of turbulence intensity in the viscous sublayer and buffer region. As a consequence,

particles tend to accumulate in the viscous sublayer, at high concentrations relative to the sur-

rounding flow. This can influence many of the physical process happening in the fluid, such

as deposition, collision, thermal or radiation transmission and absorption.

This itself explains the importance of understanding this kind of phenomenon.
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3
Methodology

This chapter discusses the methodology employed to study a turbulent particle-laden flow.

Specifically, it focuses on an incompressible, wall-bounded flow analysed via RANS or LES

techniques, which is later enrichedwith a range of rigid spherical particles, analysed via hybrid

Langrangian-Eulerian approach. In Sections 3.1 to 3.3 it will be provided a short overview

of the Navier-Stokes equations, simulation techniques andWall Models. Following this, Sec-

tions 3.4 and3.5will provide a swift explanationofparticle diffusionmodels and theLangevin

model.
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Figure 3.1: Velocity distribution for a turbulent jet using RANS, LES, and DNS[23].

3.1 Navier-Stokes Equations

To analyze and describe the behaviour of a flow, the Navier-Stokes equations are needed. In

the case of an incompressible ( ρ =cost) turbulent flow, the resultant continuity and momen-

tum equations are [14, 2]:

∇ · u = 0 (3.1)

Du
Dt

= − 1
ρ
∇p+∇ · (2νE) (3.2)

Here u is velocity vector of the fluid, ν is the kinematic viscosity, p is the pressure and E is a

3x3 tensor called the ”strain-rate tensor”. E is defined as:

E =
1
2
(∇u+∇uT) (3.3)

The set of equations just defined is valid in any case, both turbulent and non-turbulent flow.

Since turbulence comprises a fluctuating component, asmentioned earlier, implementing the

Reynolds decomposition again is advisable. This will ensure that the symmetry properties

remain observable, particularly in the context of mean fields. What is obtained is this system:

∇ · ⟨u⟩ = 0 (3.4)
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D⟨u⟩
Dt

= − 1
ρ
∇p+∇ · (2ν⟨E⟩)−∇ · τR (3.5)

τR = ⟨u’ · u’T⟩ (3.6)

The equations are quite alike, with some alterations, such as the inclusionof fluctuating terms

(indicated by the superscripts), and the presence of the mean fields, within the ⟨⟩ symbols, in-

stead of the velocity vectors.

But there actually is an additional term, the Reynolds stress tensor τR: this one depends only

from the fluctuation components in respect to themean field, so that in a non-turbulent flow,

when u’ is zero, also τR will be, thus Equation (3.5) will be equal to Equation (3.2)

This additional stress tensor does not actually represent stresses, but instead symbolize the

additional effect of the turbulence on the flux, including factors such as diffusivity and fluid

mixing. In fact its value is never actually equal to zero and it is also usually greater than the

viscous counterpart, except for in the wall region.

At this stage, the system is still not solvable: in fact the Reynolds stress tensor introduces

a closure problem due to the auto-correlation of the u’ terms. The only way to solve and use

the RANS (the set of Equations (3.4) to (3.6)) is by introducing a mathematical model, of

which there are various types. They will now be explained briefly.

3.2 ResolutiveMethods

As already described, a mathematical barrier exists that renders this problem not resolvable

using any analytical process, thus numerical approaches are necessary. Multiple methods are

available for implementation, all of which fall under three categories. The choice of category

primarily depends on computational cost and required accuracy.

It is evident that the more accurate process is needed, the more time it will take to achieve it.

The same goes for the complexity of the geometry and the type of simulation. Frequently,

there is no alternative but to strike a balance between time and these considerations.
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3.2.1 DNS

The most straightforward resolutive method consists in discretizing the integration domain

and subsequently solving the Navier-Stokes equations (Equations (3.1) and (3.2)) for each

segment. This technique is known as Direct Numerical Simulation (DNS), because it en-

ables the simulation of all processes in the turbulence by directly solving the Navier-Stokes

equations, capturing all motion scales from the domain size to the Kolmogorov scale η. To

be able to describe every phenomenon, the cellsize must be equal to that particular scale.

Consequently, DNS often becomes infeasible due to its computational costs.

To give a scale of this problem, let’s suppose that the domain scale lenght is L, while the

grid spacing is∆x. The number of points in the x direction will beNx = L/∆x.

From Kolmogorov’s theory, the Kolmogorov scale and the turbulent kinetic energy are de-

fined as:

ϵ ∝ U3

L
η ∝ ν3

ϵ
1
4

Considering the scale needed for∆x, the number of points needed in the three axis is:

Np ∝ N3
x ∝

(
L
η

)3

=

(
L

ν3/ϵ1/4

)3

∝

((
L4U3

Lν3

)3/4
)3

∼ Re9/4

Meanwhile, the frequency at which the simulation is needed to obtain a median field is given

from:

N∆t =
T
∆t

∼ T
τη

=
L/U
τη

∝ Re1/2

where τη = η
uη = (ν/ϵ)1/2 is the Kolmogorv characteristic time.

Concluding, the total simulation time will be:

Ttot ∝ Np ·N∆t ∝ Re11/4 ≃ Re3

As evident as it is, the computional time is directly dipendent from the Reynolds number,
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therefore DNS can be employed only in low Re cases, to avoid generating impractical times

and costs. It’s truly a pity, cause DNS would perfect to simulate large-scale flows with a high

Re, where turbulence is dominant, with high reliability in the results.

In fact, DNS results are comparable to actual experimental ones.

3.2.2 RANS

A second possibility is to focus solely on the mean-field of the flow. This occurs with the

RANS methods, whereby velocity fluctuations are not taken in consideration, if not for the

introduction of models that describe them.

This means that the boundary conditions symmetries are restored, therefore in stationary

conditions a 2D simplification is allowed. On the other hand, this kind of simulation can no

longer be considered an experiment, and needs to be validated with reference data.

The major advantage derived from this technique is the reduced resolution needed to resolve

the phenomena in the simulated flux, due to the fact that the quantity it is being referred to

now isU and not u. Therefore RANS simulations are several magnitudes lighter in terms of

computational time.

Still, to solve RANS equations the Reynolds stress tensor is to be determined, and this intro-

duces more variables in the system: there are 4 equations in 10 unknowns, due to the tensor

being symmetrical (u, v,w, p, τxx, τyy, τzz, τxy, τxz, τyz).

This leads to the already cited closure problem, because the tensor can not be determined an-

alytically, but also not be ignored.

To get out of this impasse, the Boussinesq hypothesis on Turbulent viscosity (νt) is intro-

duced:

T = −pI+ 2µE (3.7)

τR = −2
3
KI+ 2νt⟨E⟩ (3.8)

Starting from the viscous stress tensor T, τR can be modeled in a similar way, replacing the

molecular viscosity µ with Turbulent viscosity νt. Clearly this two properties are different
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from each other, the first one being a property of the fluid, the other one a motion property.

To complete the picture K and E are the turbulent and kinetic tensor.

At this point, the RANS equations are simplified to having just 5 unknowns; it is then intro-

duced a model for νt.

For this purpouse there are many options: the most common ones are k − w,k − ϵ or else

some of the blends between the main types, like k − w − BSL or k − w − SST, as they are

either efficient in the bulk or at the wall.

3.2.3 LES

The last technique, LES, tries to find an halfway between DNS and RANS, by solving only

a certain part of the fluid.

While the larger scales are completely simulated like in DNS, as they are anisotropic and de-

pend on geometry, the behaviour of the smaller scales are modeled, as they are actually uni-

versal. Also, as in the DNS case, the problem is still 3D and non stationary. This way LES

represents a valid option in terms of computational cost, accuracy, and surely is most recom-

mended in high Reynolds number cases.

To start, a threshold scale∆ needs to established, over which turbulence and non stationary

effects will be simulated. Usually the procedure employed in LES techniques consists of three

steps:

1. Defining the filtering operation, which means to determine the scale where the ve-

locity field will separate in large or small scales. It is then defined the LES filtering

operator (G∆), of which it’s only needed to know that it allows the decomposition of

velocity ui = ũi + u′i. The first component is the filtered velocity, which is related to

the motion of larger scales, while the other is the residual, or subgrid, one.

2. Filtered Navier-Stokes equations. Applying the filter gives us this system:

∂ũ
∂t

+∇ · ũũ = − 1
ρ
+∇p̃+∇ · (2µẼ)−∇ · τ̃R (3.9)
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τ̃R = ũiuj − ũiũj (3.10)

The last equation defines the Residual Stress Tensor, and similar to the RANS case, it

is linked to turbulent structures effects, in particular it represents the effect of the un-

resolved structures of the flow on the filtered ones. The found system is actually very

similar to the RANS one (except for first one actually representing 3D flow). Unfor-

nately this means that as for the Reynolds stress tensor (τR), also the Residual stress

tensor (τR̃) needs a closure model.

3. LES ClosureModel. As in the RANS case, there are still 10 unknowns in only 4 equa-

tions. Firstly, the tensor trace is introduced, which equals 2k̃r for τR̃, and is substituted

inside the equations, leaving only 9 unknowns: ũi,p̃ and five independent τr compo-

nents.

Now a model to describe the deviatoric part of the tensor needs to be introduced, the

Smagorinksi Model: it introduces the eddy viscosity concept, and consequently the

Residual viscosity (νr); this approach treats dissipation of kinetic energy at sub-grid

scales as analogous to molecular diffusion, where the deviatoric part of τr is now ex-

pressed as:

−τr = 2νrS̃ij (3.11)

where S̃ij is the residual strain rate tensor. Now only an expression for νr is needed:

νr = (CS∆)2|S| (3.12)

Therefore, in the Smagorinski Model the eddy viscosity is proportional to the sub-

grid characteristic length scale ∆, and to the module of the local strain-of-rate. The

Smagorinski constant CS is determined so as to dissipate the appropriate level of en-

ergy at the grid spacing utilized: the value found is 0.12± 0.06.

After these passages the filtered equations can be solved for the filtered velocity.

The results obtained using this classical Smagorinski approach are not actually very true to

the actual phenomena happening in the flux.
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Tobemore precise, it becomes problematic in the flownearwalls and solid boundaries, where

quasi-streamwise vortices becomemore andmoredominant: thesenear-wall eddies span from

approximately l ∼ O(102) and grow with the increase of the distance to the wall; as Friction

Reynolds number (Reτ ) increases, these eddies will decrease in size relative to the boundary-

layer thickness, risking a conflict with the resolution requirements[6].

This problem, and some other inconsistencies between νr never being null and the fact that

turbulence should be completely damped at the wall, makes it necessary to find a better solu-

tion for a study focused on the near-wall region.

Figure 3.2: Grid resolution for the main cited methods [1].

3.3 Wall-Modeled LES

To improve the results of LES in the boundary layer, there are two possible methods:

• Wall-Resolved LES (WRLES): where near-wall eddies are resolved on the computa-

tional grid

• Wall-Modeled LES (WMLES): where near-wall eddies are modeled on the computa-

tional grid
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Between the two options, WRLES is significantly similar to a DNS approach. Therefore a

Wall Model is preferred: in this kind of approach, to properly replicate the near-wall eddies

effect, an eddy viscosity ντ will be added close to the wall.

One of the possible formulations, the Wall-Adapting Local-Eddy viscosity (WALE), is:

ντ = (Cw∆)2

(
SdijSdij

)3/2

(
Sij¯ Sij¯

)5/2
+
(
SdijSdij

)5/4
(3.13)

As explained by Nicoud [17], here ∆ is still the grid spacing, Cw is a different constant, ob-

tained assuming that the WALE model gives the same ensemble-average subgrid kinetic en-

ergy dissipation as the classical Smagorinsky model, and Sij¯ is the symmetric velocity part of

the velocity gradient.

The values of νt computed this way still have to let u mantain the correct velocity profile,

which in the case of this work will be:

u
uτ

=
1
k
log(1+ ky+) + Ck

(
1− e−y+/11 − y+

11
e−0.33y+

)
(3.14)

This profile interpolates the log-law along the whole boundary layer. The two new constants

are k=0.41 and Ck=7.8.

At this point the obtained eddy viscosity can be added to the physical viscositywhen required:

νtot = ν + νt. Thus obtaining a more realistic model regarding the wall boundary layer.

3.4 Particle Diffusion

After examining the fluid aspect of the system, it is important to introduce the methods by

which the behaviour of the particles will be addressed in the course of this work.

When studying the motion of a flow, two kind of approaches can be taken: Eulerian ap-

proach, where the flow properties are probed at fixed locations of the spatial domain, and

the Lagrangian approach, that on the contrary deals with every single particle while calculat-
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ing their trajectories individually.

While it is simpler tomeasure flowproperties at fixed locations, it is more intuitive to describe

a flow by examining at the trajectories of fluid tracers. So, in the case of this work, when

comparing fluid tracers to the particles studied, it is appropriate to discuss the Lagrangian

approach. This choice is also supported from the fact that the Lagrangian approach becomes

heavy from a computational point of view only when treating a particularly large number of

elements.

In this situation, it is logical to employ a Lagrangian approach, given the already imposed

condition on the number of particles due to the necessity of using a one-way approach simu-

lation.

Figure 3.3: Eulerian and Lagrangian representation of fluid flow equations[24].

Having established this, it is possible to move on to the treatment of particles.

Theparticles suspended in the turbulent floware consideredhard rigid spherical bodies,which

behave elastically when hitting other elements of the environment.

The particles can also be considered diluted as that particle-particle interactions are not sig-

nificant. The dispersed phase can be considered as point-wise spherical particles which are

entrained in a turbulent flow at isothermal conditions.
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As summarized byDehbi [7], if no simplifications are made, a series of different forces will be

acting on every single particle: other than the flow itself, there will be the drag force and the

lift force action, due to the spherical shape of the particle, and also the gravity can be taken

into consideration. Usually the lift force is neglected, because most of the times the particle

is much heavier than the carrier phase.

The vector force balance obtained is written as follows:

dUp

dt
= FD(U− Up) + g

(
1−

ρf

ρp

)
(3.15)

with FD being the drag force per unit mass, also expressed as:

FD =
18µ
ρpd2p

CD
Rep
24

(3.16)

In the above equations, U is the fluid velocity,Up the particle velocity, ρp the particle density,

ρf the fluid density, dp the particle diameter, g the gravity acceleration, µ the fluid molecular

viscosity, andRep the particle Reynolds number, defined as:

Rep =
dp|U− Up|

ν
(3.17)

The drag coefficient can be computed via analytical equations, by introducing a series of con-

stants that apply to spherical particles for wide ranges ofRep. An example of these equations

is:

CD = β1 +
β2

Rep
+

β3

Re2p
(3.18)

To conclude, the trajectory x(x1, x2, x3, t) of the particle is obtained by integration of the fol-

lowing velocity vector equation with respect to time:

Up =
dx
dt

(3.19)

This expressions alone are enough to compute the trajectory of individual particles in lami-

35



nar flows. The particle concentration and deposition rates are deduced in a deterministic way.

Particle dispersion is accurately predicted.

When turbulence is considered in the equation, the computation of particle dispersion be-

comes significantly more involved as the random velocity fluctuations do not permit a deter-

ministic knowledge of particle trajectories. It is then necessary to resort to stochastic compu-

tations to address the ”average” particle dispersion. There is not only a single way to resolve

this issue.

There are therefore models that attempt to simulate turbulence using complementary equa-

tions, and calculate the instantaneous turbulent velocities starting from local quantities, like

the mean turbulent kinetic energy, the time scale and the distance to the wall.

These techniques, called random walk models, are relatively easy to implement and also rea-

sonable computationally wise. One of them is theDiscrete RandomWalk (DRW), where the

turbulent dispersion of particles is modeled as a succession of interactions between a particle

and eddies which have specific lengths and lifetimes. The particle is captured from an eddy

that has velocity produced by the sum of the mean flow and a random ”instantaneous” ve-

locity, which is at times constant in time. When the lifetime of the eddy is over, the particle

”jumps” to a new eddy, and so on.

Amore physically accurate depictionof fluid turbulence is givenbyContinuosRandomWalk

(CRW) models, as they represent the instantaneous velocities in a continuous way. CRW

models, which are usually based on the Langevin equation, show more realistic predictions

of turbulent particle dispersion in flows where inhomogeneous effects are important, like in

this thesis case.

Before explaining how the model is implemented, it is necessary to explain the concept at its

basis, the one just cited above: the Langevin equation.
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3.5 LangevinModel

All the information reported in this section is taken from Rodean [22].

In physics, a Langevin equation is a stochastic differential equation which describes a sys-

tem evolution when subjected to a combination of deterministic and fluctuating forces. The

former ones have a behaviour of changing slowly in comparison to the latter ones. The mi-

croscopic, fast variables are the ones responsible for the stochastic nature of the Langevin

equation. One of its applications is to Brownian motion, particularly relevant to the case

study, given it models the fluctuating motion of a small particle in a fluid.

Theuse of this equation as amodel for turbulent diffusion is done on thebasis that the Fokker-

Planck equation is the Eulerian equivalent of the Langevin equation, which is Lagrangian.

The most basic form of the Langevin model resulting from it, is this:

dui = ai(x, u, t)dt+ bij(x, u, t)dWj(t) (3.20)

dx = udt (3.21)

Here u is the Lagrangian velocity of anymarked particle, a is the deterministic term, the drift,

b is a stochastic term, the diffusion and dW is a Gaussian distribution.

The basic form of the Langevin equation can be derived relatively easily through physical rea-

soning. Specifically, the particle’s time-dependent velocity in space is a function of the drift

and diffusion, which correspond to the first and second moments of Equation (3.20), com-

bined with the characteristics of the incremental process that is modelled using a Gaussian

distribution.

Also, each timestep only depends on the previous one, making this model a Markov chain.

Therefore, this stochastic model describes a sequence of possible events where the probabil-

ity of any event solely relies on its preceding event. As a result, the particle motion’s ”story”

is eliminated from any given instant’s influence.

The process to obtain the two components of the equation is pretty verbose, so their deriva-
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tion will be kept as simple as possible.

Startingwith the stochastic term, b is kept independent from the velocity u, to keep themodel

simple.

To obtain the expression that describes it, the first step is the introduction of the Lagrangian

structure function, which is the ensemble average of the square of the change in the La-

grangian velocity in the time interval∆t:

D(∆t) = ⟨|v(t+∆t)− v(t)|2⟩ = ⟨(∆v)2⟩ (3.22)

For Kolmogorv’s inertial subrange τη ≪ ∆t ≪ τ where τη is the Kolmogorov time scale and

τ is the fluid time scale:

D(∆t) = C0ϵ∆t (3.23)

where C0 is a universal constant, with value between 2 and 5 for turbulence in the boundary

layer, while ϵ is the ensemble-average rate of dissipation of turbulent kinetic energy. The coef-

ficient b, or the stochastic component, can be related toC0 by taking the ensamble average of

Equation (3.20). Assuming a and b constant during a single timestep∆t applying a Wiener

process the result is:

⟨(∆v)2⟩ = b2∆t = |C0ϵ(y)|
1/2 (3.24)

This equivalence is then used in the first form of the Langevin equation, giving:

dw = a(y, v)dt+ |C0ϵ(y)|
1/2dW(t) (3.25)

To satisfy the well-mixed condition, which means that the if the particles are initially well-

mixed, they will stay that way, a certain condition on the Fokker-Planck equation equivalent

of Equation (3.25) has to be respected. This condition concerns the probability density func-

tion Pa in the y-v space of the particles of the fluid. This leads to the condition:

a(y, v) =
C0ϵ(z)
Pa(y, v)

∂Pa(y, v)
∂v

+
Φ(y, v)
Pa(y, v)

(3.26)
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where the distributionΦ satisfies:

∂Φ(y, v)
∂v

= − ∂

∂y
|vPa(y, v)| (3.27)

The process to obtain this distribution is here skipped as it exhudes the thesis scope.

What is obtained is:

dv =
(
−C0ϵQ

Pa
+

Φ

Pa

)
dt+ (C0ϵ)

1/2dW(t) (3.28)

whereΦ andQ are expressed via terms enclosed in the process skipped just before.

In Equation (3.28) the first component of the a term is a ”fading memory”, while the second

component is a drift term to account for the vertical inhomogeneity of the turbulence. This

is much clearer in the case of a Gaussian inhomogeneous turbulence:

C0ϵQ
Pa

=
C0ϵ

2σ2
v
v (3.29)

Φ

Pa
=

1
2

(
1+

v2

σ2
v

)
∂σ2

v

∂y
(3.30)

giving:

dw =

[
−C0ϵ

2σ2
v
v+

1
2

(
1+

v2

σ2
v

)
∂σ2

v

∂y

]
dt+ (C0ϵ)

1/2 dW(t) (3.31)

The fading memory term in Equation (3.29) comes very naturally from the use of the use of

the Fokker-Planck equation and the Lagrangian structure function used to solve the a and b

terms at the beginning.

When in stationary, homogeneous Gaussian turbulence conditions, the above mentioned

fluid timescale τ can be written as:

τ = 2σ2
v/C0ϵ (3.32)
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This can be substituted inside Equation (3.29) to give a simpler form for the ”fading” term,

and from that Equation (3.31) can be written as:

dv = − v
τL
dt+

(
2σ2

v

τL

)1/2

dW(t) (3.33)

where v is now the vertical velocity, σ us the variance of the updraft or downdraft velocities

and τL is the fluid time scale.

This form is valid forhighReynoldsflowswith three-dimensional turbulence, and for timestep

values higher than the Kolmogorov time scale τk. Also the random forcing dW(t) is Gaus-

sian.

It is possible to give a reinterpretation of the physical meaning of the Langevin equation as

model for turbulent diffusion, which is relevant to the thesis case:

du
dt

= −αu+ βξ(t) (3.34)

As already seen, u will be the Lagrangian velocity fluctuation from the mean motion of the

particle, theα coefficient is not related to fluid viscosity for Brownianmotion, but it is rather

a measure of the abovementioned ”fadingmemory” of the particle velocity. As for, the prod-

uct of the coefficientβ and the random function ξ(t)does not represent irregular acceleration

from molecular bombardment as in Brownian motion, instead it represents the random ac-

celeration from pressure forces with short correlation times on the order of the Kolmogorv

time scale τk.

The equation just described is still a differential equation, and canbe solved as itwas already

done with the generic case. By introducing theWiener process:

W(t) =
∫ t

0
ξ(s)ds (3.35)

and some other steps similar to the ones already done, Equation (3.33) is obtained. This

40



form is obtained with the assumption that the turbulence is both stationary and homoge-

neous. This does not apply to all cases: it is not unusual that the velocity variance profile is

non-uninform. A drift correction term is required. Its presence gives a new version of the

equation:

du =

(
− u
τL

+ 2σu
2σu

dz

)
dt+ σu

(
2
τL

)1/2

dξ(t) (3.36)

A better explanation on this derivation and its implications will be given along the model

implementation, in Chapter 4.
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4
Implementation

It is now time to implement themodel chosen to reproduce the particle behaviour. Likemany

models, this one also necessitates an ad-hoc formulation for the specific circumstances.

The starting points for its developmentwere three papers: Dehbi [8],Marchioli et al. [16] and

Dehbi [7]. These three papers deal with practically the same problem, as they all start from

exactly the same DNS data of a turbulent flow, and then implement some sort of Langevin

equation approach to integrate the particle behaviour in the system.

It all stems fromMarchioli et al. work, which was the result of an international collaborative

test case related to the production of a direct numerical simulation and Lagrangian particle

tracking database for turbulent particle dispersion at low Re.

The idea was to provide a homogeneous source of data relevant to the general problem of

particle dispersion in wall-bounded turbulent flows. In that work, many different numerical

approaches and computational codes have been used to simulate the flow.

Others have since extended the study, first Dehbi [7] with the derivation and integration of

the Langevin model, and again Dehbi [8] with the implementation of a hybrid Lagrangian-
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Eulerian approach and a simplification of the model.

All of this is meant to validate and integrate the dataset of DNS simulation and the simplified

models.

In this context, the present work aims at replicating the original results with less powerful

means to determine if the model can still be considered valid in simpler applications and, hy-

pothetically, if themodel canwithstand other complications evenwith simpler initial assump-

tions.

Section 4.1 will outline the features of the system to be simulated. Section 4.2 will detail

how to derive some of the required Eulerian parameters, while Section 4.3 will present the

executed version of Langevin’s model. Section 4.4 will showcase all the essential code adapta-

tions. Finally, Section 4.5 will present the obtained outcomes, compared to both the original

DNS and Debhi’s outcomes.

4.1 SystemDefinition

Theobjective of this chapter is to reproduce the findings from the literature accurately. There-

fore, it is appropriate to reproduce the simulated system correctly.

Particles are dispersed within a fully developed turbulent flow of air. The fluid flows between

two parallel walls that extend infinitely. The governing equations for the fluid, in dimension-

less form, are:
∂ui
∂xi

= 0 (4.1)

∂ui
∂t

= −uj
∂ui
∂xj

+
1

Reτ
∂2ui
∂xj ∂xj

− ∂p
∂xi

+ δ1,i (4.2)

Here ui are the components of the dimensionless velocity vector, δ1,i is the mean dimen-

sionless pressure gradient that drives the flow, p is the fluctuating kinematic pressure, and

Reτ = uτh/ν is the shear Reynolds based on the friction velocity and on the half channel

height, that from now onwill be called h. The shear velocity derives from uτ =
√

τw/ρwith

τw being the wall shear stress.
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Theperiodic channel simulating the infinite parallelwall channel has a half-heighthof 0.02m,

a width of 2h and a length of 4h. Anyway, the simulation will consider dimensions as dimen-

sionless quantities, allowing for the obtained solutions to be rescaled according to the specific

case. The density of air is taken to be 1.3 kg/m3 and it’s kinematic viscosity 15.7×10−6m2s−1.

There will be periodic boundary conditions enforced in the axial and spanwise directions.

The geometry of the channel consists of two infinite flat parallel surfaces, the origin of the

channel is found at the center of the system: the x-,y- and z- axes correspond to the stream-

wise, wall-normal and spanwise directions. No-slip boundary conditions are applied at the

walls.

This characteristics of cyclic motion should allow the manifestation of all the phenomena

that are expected to show.

Figure 4.1: Particle-laden turbulent gas-flow in a flat channel: computational domain[16].

The mean axial fluid velocity is Ub = 1.65m/s with a corresponding friction velocity

uτ = 0.11775m/s. The Reynolds number based on the bulk velocity is thus Reb = 2280,

whereasReτ = 150. The channel height will correspond to 300 wall units.

The particles injected in the flow have density of ρp = 1000kg/m3 (suspended water par-

ticles), and are at a density low enough to consider dilute system conditions, as described in
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Section 3.4.

Therefore one-way coupling approach is sufficient todescribe theproblem, andparticle-particle

interactions are insignificant. As stated, particles are assumed to be rigid, spherical and point-

wise.

The particle motion is described by ordinary differential equations for particle velocity and

position at each time step. It is shown that for particles much heavier than the fluid, the only

significant force is the Stokes drag.

The particle velocity Equation (3.15) is thus reduced to:

dUp

dt
= FD(U− Up) (4.3)

In fact, the Brownian diffusion, mentioned here only for completeness, is ignored due to

the particles diameters being greater than µm, the lift force is neglected due to the high ratio

between particle and fluid density, but also the buoyancy, or the gravity factor, will not be

considered.

All the other elements featured in the equations derived from Equation (4.3) will remain the

same as described in Section 3.4, which means:

FD =
18µ
ρpd2p

CD
Rep
24

(4.4)

Rep =
dp|U− Up|

ν
(4.5)

In this implementation the drag coefficient CD will be given by:

CD =
24
Rep

(
1+ 0.15Re0.687p

)
(4.6)

This coefficient contains the formulation saw in Section 2.4 for the correction C on the τp
definition.
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4.2 Specification of Eulerian rms and time scales

To integrate theLangevin equations, someEulerian statistics are needed to complete the prob-

lem.

First of all, it is necessary to have the Eulerian standard deviation σ of velocity: these are ob-

tained from fits of the DNS data obtained by Marchioli et al.. This fits are given by ratios of

polynomials of order of 3 or 5, and agree to the original data with a correlation coefficient

greater than 0.99 [8].

In the figures y+ is the wall distance in dimensionless units, defined as y+ =
yuτ
ν
, where y is

the particles distance to the nearest wall.

(a) Rms of fluid velocities[8]. (b) Rms of streamwis drift correction factor[8].

Figure 4.2: Fits derived fromMarchioli DNS data.

The quantity τL, the Lagrangian fluid time scale, used in the velocity fluctuation equations,

is defined in terms of the Lagrangian integral time scaleTL. If in the streamwise direction,TL

can be computed in terms of Lagrangian fluid autocorrelations:

R1(τ) =
u1(t) · (t+ τ)

u1(t) · u1(t)
(4.7)

This term is the autocorrelation factor for the streamwise component, evaluated for every
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time step by ensemble averaging over a large number of particles. The step to get TL is:

TL =

∫ T

0
R1(τ)dτ (4.8)

This would be extremely complicated to use in the simulation, so a series of fits obtained from

DNS calculations in the boundary layer showed that the Lagrangian integral time scales in all

directions can be described by these analytical equations:

T+
L = 10 for y+ ≤ 5 (4.9)

T+
L = 7.122+ 0.5731 · y+ − 0.00129 · y+2 for 5 < y+ < 200 (4.10)

and from these derive the quantity:

TL = T+
L · ν

(uτ )2
(4.11)

Now all the quantities needed to compute the Lagrangian fluid time scale τL seen by a particle

have been calculated. It is peculiar how the particle inertia needs to be taken into considera-

tion to calculate a fluid time characteristics:

τL =
TL

β

1− (1− β)

(
1+

τp

TE

)−0.4
(
1+0.01

τp
TE

) (4.12)

In this formulaβ is the ratioTL/TE, with the latter being the fluid Eulerian integral time scale.

The ratio is taken to be 0.356. From this last equation, it can be noted that τL tends to TL

for particles with low values of the Stokes number, while for very inertial particles, it tends to

TE.
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4.3 Langevin Implementation

The adaptation of the Langevin model is very well explained in Dehbi [7], thus most of the

thesis version is based on Dehbi’s work.

As previously said, the time history of the fluctuations in the carrier fluid that a particle sees

as it moves in a flow, determines to a large extent its dispersion and deposition characteristics

in turbulent fields. The most used method to describe fluid velocity fluctuations in homoge-

neous turbulence is the Langevin equation.

The change in particle velocity with time is assumed to be composed of a damping term,

which is proportional to the velocity, and of a random forcing term with zero mean.

This concept is then extended to fluid velocity fields, transforming the Langevin equation

into a stochastic differential equation which uses Markov chains to specify a possible incre-

ment dui in the fluid velocity fluctuation:

dui = −ui(t)
dt
τi

+ σi

√
2
τi
· dξi (4.13)

This will be added in the usual incremental displacement dxi:

dxi = (Ui + ui) dt (4.14)

Here τi is a timescale, σi the fluctuating standard deviation of velocity (=
√

u2i¯ ), and dξi a

succession of uncorrelated random numbers with zeromean and variance dt. Usually the dis-

tribution is a Gaussian.

What is known is that thismodel is not entirely accurate and requires correction to validate its

utility. Specifically, while the Langevin equation can model homogeneous turbulence where

all values are position-independent, it falls short in the context of a wall-bounded flow, where

the turbulence is highly inhomogeneous and anisotropic in the boundary layer, necessitating

modifications.
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Numerous attempts confirmed that the wall-normal equation of the velocity fluctuations re-

quires the inclusion of a certain δui mean drift correction to ensure that particles, on average,

follow streamlines in the flow. Without this factor, DRW and CRW simulations exhibit er-

rors up high as 550%.

The correction can be shown to be necessary with an analysis based on the decomposition of

the instantaneous acceleration ai:

ai = Uj
∂Ui

∂xj
(4.15)

where the Einstein convention of summing up over repeated indices is used. Expressing the

instantaneous velocity as the sum of the mean and fluctuating parts, remembering ui = 0:

Ui = Ui + ui (4.16)

By unifying these last two equations, and averaging over time, after algebraic manipulation,

the result is:

ai = ai,mean + ai,drift = Uj
∂Ui

∂xj
+ uj

∂ui
∂xj

(4.17)

The mean acceleration of a fluid particle can therefore be broken down into a components:

one is due to the mean flow, and the other is due to random turbulent fluctuations in an

inhomogeneous flow field. The acceleration of drift produces a corresponding drift velocity

which must be incorporated into the Langevin equation (Equation (4.13)) to account for

turbulence inhomogeneities:

δui = uj
∂ui
∂xj

· dt =
∂uiuj
∂xj

· dt (4.18)

The last equality requires the assumption of a divergency-free fluctuating velocity field, which

is rational for this type of incompressible flows.

The kind of correction will depend on the specific flow conditions. Looking at the wall-

normal direction of the boundary layer, the fully-developed flow assumption results in the

wall normal derivate of σ2 = u2u2 being the drift correction in the Langevin equation.
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What has just been described needs a little more adjustment to apply to all particles, not just

tracer particles, because as alreadymentioned they do not follow the fluid streamlines exactly.

The easiest way to do that is described by Iliopoulos et al. [10]: by assuming that the fluid ve-

locity seen by inertial particles is the same as the one seen by fluid particles, it is possible to say

that the drift correction derived in Equation (4.18) apply to them at least to a first approxima-

tion.

However, a more rigorousmethod can be used, that applies to particles with arbitrary inertia:

using the instantaneous acceleration of a fluid particle along the path of an inertial particle,

the drift correction for the inertial particle can be obtained from the simpler drift correction

of the fluid particle through a multiplicative factor:

δui =
∂uiuj
∂xj

·
(

1
1+ Stk

)
dt (4.19)

Where Stk is the parameter already defined beforehand, Stk = τp/τl.

Here τl will be obtained as described in Section 4.2, while τp is obtained as described in Sec-

tion 2.4. In this particular case the formulation will be:

τp =
ρpd2p
18µ

if Rep ≤ 1 (4.20)

and:

τp =
4
3
ρp

ρf

d2p
CD
∣∣U− Up

∣∣ if Rep > 1 (4.21)

Theoretically, it follows from this equation that the particle drift correction behaves cor-

rectly at the extremes, which means that for very large Stokes numbers the fluctuations and

the particle motion result more decoupled, hence the drift correction tends to zero, while

when Stokes tends to 0, the correction tends to the Equation (4.18) format.
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4.3.1 Langevin in the boundary layers

In this section the Langevin model will be adapted to the boundary layer conditions.

The domain is assumed to be entirely comprised in the boundary layer. Turbulence is thus

inhomogeneous in the wall normal direction, and hence the normalized Langevin equation

is better suited than the classical formulation. The generic form will be:

d
(
ui
σi

)
= −

(
ui
σi

)
· dt
τL

+ dηi + Aidt (4.22)

Here ui is the fluid fluctuating velocity component, σi the rms of velocity, τL the Lagrangian

time scale, dηi a succession of uncorrelated random forcing terms and Ai the mean drift cor-

rection that ensures thewell-mixed condition (well-mixed particles will remain so as time goes

by). In Equation (4.22) the increment represents the change in value of the fluctuations

around the average, not the increment in the instantaneous velocity. To get the change in

instantaneous velocity, it is required to include the term due to the mean velocity gradient,

that is: −ujδUi/δxj, where Ui is the time averaged velocity in the ith direction. Since it is

considered a boundary layer flow, the last term is non-zero only in the streamwise direction.

The term −u2
(
δU1/δx2

)
is thus added in that direction after u1 is computed from Equa-

tion (4.22).

As shown in Dehbi [8] the obtained normalized Langevin equations are:

d
(
u1
σ1

)
= −

(
u1
σ1

)
· dt
τL

+

√
2
τL

· dξ1 +
∂ u1u2

σ1

∂x2
· dt
1+ Stk

d
(
u2
σ2

)
= −

(
u2
σ2

)
· dt
τL

+

√
2
τL

· dξ2 +
∂σ2

∂x2
· dt
1+ Stk

d
(
u3
σ3

)
= −

(
u3
σ3

)
· dt
τL

+

√
2
τL

· dξ3

(4.23)

where the dξis are modeled as a series of uncorrelated Gaussian random numbers with zero

mean and variance dt.
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4.4 Code Realization

Now that all the most important segments of the code have been described, it is possible to

illustrate some of the particularities of the algorithm.

The code is implemented using theGFortran compiler, using Fortran 90 as language: Fortran

90 is a compiled imperative programming language, which is the basis of a large number of

numerical simulation software used today. The algorithm will be structured like this:

Particle Definition and Positioning

In the first step a number of particles is generated in random positions of the fluid domain,

making sure that noparticles is positioned at its edges, to avoid anyproblemwith the compiler.

Every single particle property and characteristic has to be brought to zero before the start of

the main block.

Figure 4.3: First iteration of the simulation: the particles are starting to gain velocity (red=fast, blue=slow, but
not yet to migrate.

Main Block: Wall coordinate and Turbulent velocity

Every single particle has to be simulated individually for each time step. The first step for each

of themwill be the attribution of the corresponding wall coordinate, necessary in basically all

the steps of the algorithm. Also important is the attribution of the local fluid velocity seen by

the particle, obtained through Equation (3.14).
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Figure 4.4: Velocity profile inside the channel in function of y+.

Eulerian Parameter Derivation

The next step is the derivation of all the Eulerian Parameter as seen in Section 4.2.

Langevin Block

In this section it will be necessary to obtain all the particle velocity parameters outlined in

Section 4.3.1. Lookup tables fromDNS simulations carried out byMarchioli will be applied

at this point. Consequently, the functionswill require vectorised lookup tables, which supply

precise values of σx, σy, σz,
∂σy
∂y ,

∂
u1u2
σ1
∂y through an interpolator. Also dξs values are calculated

in this section using a function that obtains a Gaussian distribution by applying two random

numbers and logarithmic distributions. The function is assigned a mean of 0 and a variance

equal to the square root of dt.
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Fluctuation andMotion Derivation

All the parameters derived are now used to obtain the fluid velocity fluctuations, as seen in

Section 4.3.1, to then compute the new particle velocity and position.

1 rhs_fvel_x=sqrt(2.0_rp/tau_l)*dcsi_1+duudy*dt/(1.0_rp+Stk)
2 rhs_fvel_y=sqrt(2.0_rp/tau_l)*dcsi_2+s_p*dsdy*dt/(1.0_rp+Stk)
3 rhs_fvel_z=sqrt(2.0_rp/tau_l)*dcsi_3
4 !
5 if(y_p<=150.0_rp) then
6 !
7 vel_r_x=u_p*u_tau+fvel_x(p)*sigma_x-vel_x(p)
8 vel_r_y= fvel_y(p)*sigma_y-vel_y(p)
9 vel_r_z= fvel_z(p)*sigma_z-vel_z(p)
10 !
11 else
12 !
13 vel_r_x=u_p*u_tau-vel_x(p)
14 vel_r_y= -vel_y(p)
15 vel_r_z= -vel_z(p)
16 !
17 endif
18 !
19 vel_r=sqrt(vel_r_x**2+vel_r_y**2+vel_r_z**2)
20 tau_p=2.0_rp/9.0_rp*rho_r*rad(p)**2/nu
21 Re_p=2.0_rp*vel_r*rad(p)/nu
22 f_p=1.0_rp+0.15_rp*Re_p**0.687_rp
23 !
24 rhs_vel_x=f_p*vel_r_x/tau_p
25 rhs_vel_y=f_p*vel_r_y/tau_p
26 rhs_vel_z=f_p*vel_r_z/tau_p
27 !
28 rhs_pos_x=vel_x(p)
29 rhs_pos_y=vel_y(p)
30 rhs_pos_z=vel_z(p)
31 !
32 pos_x(p)=pos_x(p)+vel_x(p)*dt
33 pos_y(p)=pos_y(p)+vel_y(p)*dt
34 pos_z(p)=pos_z(p)+vel_z(p)*dt
35 !
36 vel_x(p)=vel_x(p)+rhs_vel_x*dt
37 vel_y(p)=vel_y(p)+rhs_vel_y*dt
38 vel_z(p)=vel_z(p)+rhs_vel_z*dt
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39 !
40 if(y_p<=150.0_rp) then
41 !
42 fvel_x(p)=(fvel_x(p)+rhs_fvel_x)/(1.0_rp+dt/tau_l)
43 fvel_y(p)=(fvel_y(p)+rhs_fvel_y)/(1.0_rp+dt/tau_l)
44 fvel_z(p)=(fvel_z(p)+rhs_fvel_z)/(1.0_rp+dt/tau_l)
45 !
46 else
47 !
48 fvel_x(p)=0.0_rp
49 fvel_y(p)=0.0_rp
50 fvel_z(p)=0.0_rp
51 !
52 endif

Particle Repositioning

At the end of process, it is necessary to make sure that the particle has not gotten out of the

bounds of the simulation domain, and if that happens, boundary conditions will be applied

with the use of the functionReposPart shown here.

1 subroutine ReposPart
2 implicit none
3 integer :: p
4 !
5 do p=1,N_P
6 !
7 if(pos_x(p)<0.0_rp) pos_x(p)=pos_x(p)+L_x
8 if(pos_x(p)>L_x ) pos_x(p)=pos_x(p)-L_x
9 !
10 if(pos_z(p)<0.0_rp) pos_z(p)=pos_z(p)+L_z
11 if(pos_z(p)>L_z ) pos_z(p)=pos_z(p)-L_z
12 !
13 if(pos_y(p)<rad(p)) then
14 !
15 pos_y(p)=2.0_rp*rad(p)-pos_y(p)
16 vel_y(p)=-vel_y(p)
17 !
18 endif
19 !
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20 if(pos_y(p)>L_y-rad(p)) then
21 !
22 pos_y(p)=2.0_rp*L_y-2.0_rp*rad(p)-pos_y(p)
23 vel_y(p)=-vel_y(p)
24 !
25 endif
26 !
27 enddo
28 !
29 return
30 end subroutine ReposPart

4.5 Results

In this section are presented the results obtained by the simulations described in Chapter 4.

These were carried out using the Fortran 90 compiler, as well as the post-simulation opera-

tion. As for visual simulation, the go to software was Paraview, a open-source application

for visualization of scientific data of various nature. The graphs are obtained with the aid of

Matlab.

4.5.1 Particle Statistics

When computing particle statistics, it is necessary to define precisely the computational pro-

cedure to ensure the reproducibility of the results, but also it is necessary to define a ”grid”

on which the statistic will be observed.

Wanting to validate previous data, the same process of Marchioli et al. [16] will be used.

All the statistic are computedoverNs = 193wall-parallel fluid slabs distributednon-uniformly

along thewall-normal direction. The thickness of any sth slab,∆y+(s), is obtainedviahyperbolic-

tangent binning, with a stretching factor γ=1.7:

∆y+(s) =
Reτ

tanh(γ)

(
tanh

(
γ

s
Ns

)
− tanh

(
γ
s− 1
Ns

))
(4.24)
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This way, the smallest thickness is at the wall, where the largest particle concentration gradi-

ent is expected, while the largest thickness is at the channel centerline. The laminar and the

buffer layer near the wall, which are the regions where anisotropic effects are strongest, will

be well resolved. A particle belongs to a particular slabs when its center is located inside the

slab.

Figure 4.5: Slab thickness with increasing distance from the wall.

The point of the simulation is to reach a statistically steady-state for the particle distribu-

tion, so a certain time is needed to allow the concentration close to the wall to get to its steady

state, given that its the one that will take longer.

After a significant initial fluctuation lasting approximately 100 wall time units and a subse-

quent gradual convergence towards a steady state, the system reaches stability at t+=1,200.

Since the non-dimensional bulk velocity in the channel is approximately equal to U+
x = 18,
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this time threshold corresponds to a developing-length of around 1000 channel heights.

This figure highlights the challenges, both in numerical and experimental contexts, of acquir-

ing data on particle-laden channel flows that have developed fully. The length of particle

development can exceed the length of hydrodynamic development, thereby necessitating ex-

cessively long computational simulation times and extended channels (or pipes) in physical

experiments.

4.5.2 Concentration Profiles

The particle concentration profiles are studied in this section in order to better understand

the interactions between turbulence and particle inertia. To compare results, the same four

class of particles used in Dehbi [8] are considered.

Stk (τ+p ) dp (µm) d+p τp(s)
0,2 9, 59 7, 2 · 10−2 2.4 · 10−4

5 48, 0 0, 360 5, 97 · 10−2

25 107, 33 0, 805 2, 99 · 10−2

125 239, 99 1, 8 0, 149

Table 4.1: Particle classes and parameters.

In each simulation 25000 particles are generated randomly in the fluid domain: larger sam-

ples do not show significant difference in the results.

The data presented compares the results acquired from the thesis simulator with those ob-

tained fromDebhi’s research andMarchioli’s DNS. The objective is to obtain results similar

to that of Debhi’s rather than to achieve DNS-level accuracy. For each particle class there will

be a graph showing the concentrations taken after ∼ 35 and ∼ 60 seconds, the same time

taken by Debhi.
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Figure 4.6: Particle Concentration at t+ = 675.

Generally speaking:

• The stochastic Langevin model predictions are in excellent agreement with the DNS

results, both in terms of trends and magnitudes. The results from this this work are

not perfectly the same as in Dehbi [8], but that can traced back to the fluid motion

being simulated from a simple profile instead than from a complete simulation. Also

the number of bins is determinant on the exact values obtained. So, looking only at

the trends, the result can be considered satisfying;

• Particles with very low inertia tend to remain approximately well mixed in the channel

regardless of the time spent;

• Particles with medium and high inertia develop substantial concentration peaks well

inside the laminar layer. These peaks increase as time evolves, indicating that steady

state concentrations require very long times to be reached;
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Figure 4.7: Particle Concentration at t+ = 1125.

• The largest peaks are recorded for mid-range inertia particles. These particles are thus

themost affected by turbulence. Particles with the highest inertia display smaller peaks

because their motion is less affected by fluid fluctuations.

Overall, the obtained concentrations are satisfying. Although the graphs are not a perfect

match, Debhi’s trends are closely followed. Specifically, the concentrations appear to be

slightly more uncertain, which may be attributed to simulating only half as many particles

as in Debhi’s study or to a smaller timestep being required.

In any way, these uncertainties only become more apparent in the case of Stk=0.2, i.e. parti-

cles that are practically comparable to tracers and therefore have a concentration profile that

is basically traceable to a white noise profile.
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4.5.3 Mean Velocities

The particle velocities are computed using the same process of the data it is compared to: at

selected time steps, the bin containing the particle is determined, the instantaneous ensemble-

averaged velocity for the bin is computed, and then these mean velocities are averaged over

time for a prescribed sample of time steps.

Both for velocity in the axial and in wall-normal direction, the time period over which these

quantities are calculated is from∼ 40 seconds to∼ 60 seconds.

Figure 4.8: Mean axial velocity for the four particles classes.

Looking at the axial velocity, in the original model there where only slight differences be-

tween the particle axial velocities and the fluid velocity. The two profiles are essentially iden-

tical up to Stk=25. For Stk=125 the particles are faster than the fluid in the laminar sublayer,

but slightly lag the fluid in the logarithmic region.

The results from this work are in agreement with this trend. There’s only a slight difference

in the Stk=125, where the particles lag less then the Dehbi result. The ”spike” present after
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y+ = 100 is due to the difference between the channel velocities in this thesis work and the

ones in the nomenclature. Instead of the data from a DNS, the simpler profile shown in Sec-

tion 4.4 was used, resulting in a significant difference when looking at this particular statistic.

Anyway, this does not result in a problem for the simulation, since particles are very quickly

drawn away from the center of the channel.

It is also very important to observe the mean wall-normal particle velocities, because they

are direclty linked to the rate of deposition. The normal velocities from theDNS profiles and

the Langevin model are compared. The positive normal direction is away from the wall. For

Stk=0.2 the wall normal velocity is essentially at noise level. For higher inertia particles, the

Langevin model and DNS profiles match almost perfectly. The maximum velocity is largest

for particles with St=k25 and decrease for larger particles, as they are bigger and less sensitive

to turbulent fluctuations.

Figure 4.9: Mean wall-normal velocity for the four particles classes.

Focusing on comparing the results of bothmodels, the outcome here is satisfactory despite
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the challenge in gathering data for this statistic. Themagnitude of this parameter is small and

requires abundant initial data to ensure convergence of the average velocity. Even a slightly

higher timestep can cause the results to be inaccurate. The convergence of statistics necessi-

tates significant data, resulting in a large, challenging simulation. Even minor variations in

the time frame can cause significant differences in results.

Nonetheless, the trend is significantly consistent, and the outcomes are mostly coincident.

The less precise results are for the Stk=0.2 scenario, but this is because the average velocity

magnitude is similar to noise level. As a result, even minor adjustments in the integration

time can result in entirely distinct profiles each time.

As far as the z-axis is concerned, nothing is reported, because cyclic conditions are applied in

this direction and because Langevin’s model in this case only implements random elements,

so any result has no specific meaning other than to give an average velocity oscillating around

0.
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4.5.4 Rms of Velocities

Another parameter that can be useful when examining the results is the root mean square.

Essentially, it provides an insight into the average activity level of particles compared to the

mean motion in that segment of the channel. By doing so, it enables us to identify where

particles are affected by inhomogeneities, but also where they tend to stop.

The parameter is evaluated in the same time frame in which the mean velocities were calcu-

lated.

Figure 4.10: Rms of axial velocities.

The thesis results are perfectly consistent with the Langevin ones. Both are quite close to

the DNS profiles, but tend to deviate from it as the particle inertia increases, both in heigth

and peak position (speaking of the axial velocity).
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Figure 4.11: Rms of wall-normal velocities.

For the mean wall-component the same can be said, thesis and Debhi are in perfect agree-

ment. Compared to the DNS profile, the more the particle inertia increases, the more the

model overpredicts this quantity.

The deviations from the DNS data can be linked to the assumption of Gaussian turbulent

scales done in the stochastic part of the Langevin equations.

As in Section 4.5.3, the z-component will not be reported.

4.5.5 Importance of the Stokes parameter in the drift correc-

tion term

Asdiscussedpreviously in this paper, numerous authors havederived thedrift correction term

Ai for fluid particles in the normalized Langevin equation.

However, particles with sufficient inertia will not experience the same turbulence as fluid par-

ticles. Researchers have attempted to address this issue by, for example, implementing the

fluid correction while modifying the time scales in the stochastic equation. Although this
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method gave good results compared toDNS, the simulated particles were not inertial enough

to deviate significantly from fluid particles.

In the studies carried out by Debhi, the good results obtained by the stochastic model over

the range of particle inertia are largely due to the fact that the particle inertia is included in

the formulation of the drift correction term in the Langevin equation.

As discussed previously, it has been demonstrated that the correction for the drift of a heavy

inertial particle can be obtained from the drift correction of a fluid particle, multiplied by a

factor that incorporates the particle’s Stokes number. This is achieved by analysing the total

differential of the fluid velocity fluctuation along the inertial particle’s path:

Ai =
∂

ujui
σi

∂xj
· 1
1+ Stk

(4.25)

This value is derived by simplifying the equation of motion for particles under locally ho-

mogeneous conditions and assuming a typical exponential decorrelation of turbulence that

corresponds to the integral time scale of the fluid for a large number of particles.

This equation is accurate at the limits: when the particle has extremely low inertia (Stk=0),

the drift correction decreases to the value necessary for a fluid particle, while when the particle

has high inertia (Stk»1), the drift correction reduces to zero. Consequently, the particles are

not affected by the turbulent fluctuations.

To demonstrate how the non-inclusion of the Stokes number affects the predictions, the

same test performed by Debhi was carried out: the same two simulations for Stk=25 were

conducted. In the first simulation, the Stokes number was set to 0, whereas in the second

simulation, it was set to infinity. In the latter case the factor 1/(1+Stk) is thus equal to 0.

Particle with this inertia possess Stokes numbers that actually fluctuate within the boundary

layer, ranging from 0.41 in the outer edge, to 2.65 in the laminar sublayer. Therefore, accord-

ing to Equation (4.25), the drift correction for these particles should be within the range of

0.27 to 0.71 times the correction required for a fluid particle. To prove what has been said,

67



just 2 statistics are needed: the predicted concentration profiles after∼ 40 seconds, and the

mean normal velocity taken between∼ 35 and∼ 60 seconds.

(a)OwnModel. (b)Debhi’s Model.

Figure 4.12: Comparison between Debhi and own results.

Once again the results from the thesis simulator and Debhi’s are presented. They are over-

all in agreement, even if one can notice a bitmore uncertainty from the data of this work. The

explanation resides once again in the timestep and in the different velocity profile applied.

If the Stokes number is set to 0, the computed concentration widely underpredicts the DNS

data in the laminar sublayer significantly since particles are kept from the wall by a correc-

tion that is too large. The velocity towards the wall is significantly lower compared to the

DNS results. However, for large Stokes numbers resulting in zero drift correction, the par-

ticle concentration is artificially increased near the wall, causing a substantial increase in the

wall-normal velocity compared to the DNS data.
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(a)OwnModel. (b)Debhi’s Model.

Figure 4.13: Comparison between Debhi and own results.

To achieve precise results for particle dispersion, it is therefore crucial to include the Stokes

number effect in the drift correction term of the normalised Langevin equation.

It is worth noting that there is a PDF analysis conducted by Arcen et al. [3], that indicates

that there is a decline in the accuracy of the predictions, particularly at high inertia, by disre-

garding the impact of inertia on particle fluctuations as observed in the latter simulations.

Therefore, it can be concluded that the Langevin model implemented by Debhi has been

accurately replicated. In the following chapter, the model developed will be tested to see if it

is still valid under other conditions, at what level it is still valid and, if necessary, what correc-

tions need to be made to improve the results obtained.
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5
Higher Reynolds Cases

In the previous chapter the model developed by Dehbi, a Continuos Random Walk model

based on the Langevin equation, has been implemented and validated through confronta-

tion.

Now that the simulator developed in this thesis has been validated, it is necessary to investi-

gate whether this model remains valid in all circumstances or to what extent it deviates from

reality. It should be noted thatmany of thesemodels have a limited range of applicability, and

certainly the Reynolds number at which this model was developed is far from representing

the Reynolds number of any realistic atmospheric simulation.

Anattemptwill thereforebemade to implement the samemodel but atmore realisticReynolds

values, making the appropriate modifications to the velocity standard deviations and analyt-

ical formulas that the model requires. Therefore in Section 5.1 there will be a show case of

these necessary adjustments, in Section 5.2 all the results will be presented, and finally in Sec-

tion 5.3, the outcome will be commented, evaluating criticities and possible solutions.
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5.1 Data Adjustments

During the model implementation, fluid behaviour statistics from a DNS performed exter-

nally to this thesis were utilized several times. However, these statistics are only applicable to

a simulation where the fluid has a Reτ = 150, and altering this property results in inconsis-

tent statistics for the new simulation. In this study, there was no DNS of its own, so it was

necessary to find additional data to that of the original model, in order to have a source for

the necessary statistics, such as the σi’s of the velocities, but also results on the concentration

distributions to compare with.

This kind of data was found in the work of Bernardini et al. [5], who conducted a study on

velocity statistics in a turbulent channel flow, with a Reτ of up to 4000. Bernardini et al.’s

research shares the general objective presented at the beginning of this thesis, i.e. to extend the

knowledge of turbulent flows at high Reynolds numbers, but here it is limited to the study

of fluid properties without the addition of inertial particles. This is not an issue since the

simulation results still offer the necessary statistical data to update the model currently being

implemented.

To assess the situation , the elements that need to be updated or checked are: the profile of

the flow velocity in the channel, the flow velocity variances, and the quantity τl.

They require re-evaluation due to their derivation from a fit based on DNS data or their de-

pendence on the y+ wall coordinate, which has the same magnitude Reτ , as explained in

Chapter 2. Therefore in this new simulation, it will also be increased requiring new fits or

adaptations.

Fluid Velocity Profile

As presented in Section 3.3 the fluid velocity profile is obtained from:

u
uτ

=
1
k
log(1+ ky+) + Ck

(
1− e−y+/11 − y+

11
e−0.33y+

)
(5.1)
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This profile, can be considered still valid at higher Reynolds, as the log distribution in lower

coordinates is still respected, as well as the linear region [5]. The obtained profile is presented

in Figure 5.1.

Figure 5.1: Velocity profile forReτ = 550.

Fluid velocity deviations

Contrary to the speed profile, this parameter undergoes a strong modification as the Reτ in-

creases. In fact, as the Reynolds number increases, so does the generic Reynolds number,

causing a chain of changes in the radius of the particle, since all other properties are consid-

ered dimensionless or, more importantly, constant: the flow velocity, the materials and con-

sequently the density remain constant, leaving only the size of the particle to vary.

This alters the particle’s interaction with the fluid and modifies the degree of deviation from

the mean particle velocity. This can be clearly seen in these graphs.
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Figure 5.2: The four statistics needed for the model: a)σx b)σz c)σy d)Reynolds stresses, for various Reτ :
red=550, green=1010, blue=1956, black=4000.

These changes will directly affect the computation off the Langevin equations required to

compute the velocity fluctuations that are added to mean velocity profile.

Lagrangian Fluid Time Scale

This is perhaps themost complicated issue to deal with. InDebhi’s discussion, τL is defined in

terms of the Lagrangian integral time scale TL. To obtain these quantities some assumptions

are made, that may no longer hold true for higher Reynolds number:

• The Lagrangian integral time scale TL is notoriously challenging to measure. There

is empirical data that indicates a proportional correlation between Eulerian and La-

grangian time scale of the type: TL = βTE, the same relation seen in Section 4.2. So

to simplify the process,TL can be estimated fromEulerian statistics [13]. This assump-

tion is proven valid for low Reynolds and y+ values, so a different β factor being nec-
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essary for higher Reynolds is not excluded, but also finding out if that is true is out of

the capacities of the tools being used in this work.

• To obtain the TL values, Debhi utilizes fits obtained by Kallio and Reeks [13]. These

fits are quite well accurate for lower Reynolds, but are obtained from quite old data

and also are derived from dissipation rate data that were considered limited at the time

already.

Figure 5.3: Fits for the wall normal rms fluid velocity and the Lagrangian integral time scale[13].

• τL is considered equivalent in the 3 directions, but that’s actually true only at low

Reynolds. Over a certain value, these 3 timescales show a marked difference, that can

prove problematic in the simulation.

As a result of the problems presented, the changesmade are as follows. The newReτ at which

the simulations will be performed is 550.

First of all the fluid velocity deviations are updated with the data extracted from Bernardini

et al. [5], shown here.
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(a) Fluid velocity deviations forReτ = 550.

(b) Reynolds stresses forReτ .

All the parameters required for the CRWmodel can be derived directly or by somemathe-

matical derivation from the graphs provided.

It is evident, particularly from the velocity fluctuations, that considerably greater values exist
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than those forReτ = 150.

This can be attributed to the flow becoming more turbulent as Reynolds increases, leading

to larger vortex phenomena, especially in the viscous sub-layer. The peaks in the various de-

viations occur exactly in this region.

These peaks represent the areas within the flow where there is significant variation in the ve-

locity of individual particles compared to the average flow velocity due to the predominance

of vortex structures.

In regard to τL, the new data is derived from the value Tl interpolated from Figure 5.5. This

data is from a DNS way more recent than the fits used by Debhi.

Figure 5.5: Lagrangian integral time scale in wall time units[18].

As one can see, the three values are pretty similar to each other for low y+ values, and can

also be compared to the fits of Kallio and Reeks [13], but from a certain point onward, the

profiles become erratic with respect to each other, the most critical point being y+ = 100,

the region where typically there is a transition, from describing the velocity profile with the

logarithmic law to the outer region, which has a much more linear profile.
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To obtain τL, different calculations are now required for the three axes, as each axis needs

a separate lookup table. This makes the code more laborious, and also more slow in general.

1 if(y_p<10.0_rp) then
2 !
3 T_lpx=10.0_rp
4 T_lpy=11.0_rp
5 T_lpz=14.0_rp
6 !
7 elseif((y_p>=10.0_rp).and.(y_p<550.0_rp)) then
8 !
9 call CmptT_lx(y_p,T_lpx)
10 call CmptT_ly(y_p,T_lpy)
11 call CmptT_lz(y_p,T_lpz)
12 !
13 endif
14 !
15 T_lx=T_lpx*nu/u_tau**2.0_rp
16 T_ly=T_lpy*nu/u_tau**2.0_rp
17 T_lz=T_lpz*nu/u_tau**2.0_rp
18 !
19 T_ex=T_lx/beta
20 T_ey=T_ly/beta
21 T_ez=T_lz/beta
22 !
23 tau_lx=T_lx/beta*(1.0_rp-(1.0_rp-beta)\\
24 *(1.0_rp+tau_p/T_ex)**(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ex)))
25 tau_ly=T_ly/beta*(1.0_rp-(1.0_rp-beta)\\
26 *(1.0_rp+tau_p/T_ey)**(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ey)))
27 tau_lz=T_lz/beta*(1.0_rp-(1.0_rp-beta)\\
28 *(1.0_rp+tau_p/T_ez)**(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ez)))

This concludes the modifications required for the simulator.

5.2 Results

The results obtained under these new conditions will be compared with those obtained by

Bernardini in a subsequent study to the one presented before, that further investigates the

behaviour of inertial particles in a turbulent channel with aReτ of up to 4000[4].
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Bernardini’s simulation method differs slightly from Debhi’s, requiring minor adjustments

to the initial conditions:

• The one that has themost impact on the simulation is that in Bernardini’s simulations

the subject is sand suspended in air, as opposed to water particles. This alteration in-

creases the density of the suspended body to 3500kg/m3, which subsequently alters

the density ratio and, in turn, influences particle behaviour. This modification invol-

untarily provides an avenue for assessing if the model can also accommodate this vari-

ation.

• In Bernardini’s work the slab division of the domain is uniform instead of incremental.

The number of slabs is set at 450. To obtain a similar distribution, the samemethod is

applied here.

• Contrary to Debhi, Bernardini doesn’t state after how much time the statistics are

taken. Therefore the concentration statistics will here be taken when steady state con-

ditions are obtained for the smaller class of particles, while for the velocity the data will

be taken at circa half of that time.

Concentration, mean velocity and velocity deviations data will be presented for 3 types of

particles: Stk=25, Stk=100 and Stk=500.

This increase is made both to enable comparison with available data and due to the current

higher particle density and also the new bulkReynolds number being now 20000. Given the

same velocity in the channel, the particle size is drastically reduced for the same Stokes num-

ber. To avoid computational issues, it is necessary to increase the Stokes number.

In addition, there will be a comparison between the two simulations at different Reτ for

Stk=25, since there is available data.

Particle Statistics

Each graph shows the comparison between the thesis model and the DNS of Bernardini[4].
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Figure 5.6: Particle concentration for three classes of particles.

What can be seen is that results are not as precise as in the previous case. The trend any-

way is still pretty much replicated correctly, with concentration reducing with the increase
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of the Stokes number. The model seems not capable of replicating the massive peak of con-

centration at the wall, presenting around 10-15% less particles in the peak, and also having a

less steep slope. Things are different for Stk=500, where the concentration is overpredicted

instead, by around the same percentage.

Velocity statistics

For these statistics no results are provided from Bernardini [4], so instead a comparison with

the velocity profile is applied.
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Figure 5.8: Mean Axial Velocities for the three classes of particles.

It can be seen that the particles pretty much respect the velocity imposed by the profile. It

also can be seen that as Stokes increases, particle start to lag ahead of the profile, same as what

was happening forReτ = 150.

As for the wall-normal velocity there is nothing to compare it to, so a comparison between all

the Stokes cases will be shown.

Figure 5.9: MeanWall-Normal Velocities Comparison.

It is clear that the more the particles grow bigger, the least they are influenced to move per-
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pendicularly to the wall, in agreement with what was shown in Chapter 4.

To conclude the particle velocity analysis, it remains to look at the deviations both in the x

and y directions.
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Figure 5.11: Deviations for the Axial Velocity.

In the x direction an expectedbehaviour canbe seen: themore the Stokes number increases,

themore theσx of the particle can not follow the fluid one. The peak gets smaller and smaller,

starting already only at∼ 5 for Stk=25, as opposed to the fluid∼ 8. It can also be noticed a

slight shift to the left of he whole statistic.
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(a)Deviations for Wall-Normal Velocities.

The pattern here is the same as in the axial velocity, with the difference that the shift to the

left is less pronounced.

Overall the behaviour seen in these graphs indicates that with the increase of the size of the

particle, the mobility respect the mean flow gets smaller and smaller, and the particles are less

influenced from the flow in the zone where there should be more vortexes, represented with

the peaks in the graphs.

85



FromReτ = 150 toReτ = 550

Afurther analysis required is to compare the behaviour of particleswith identical Stokes num-

bers but at variousReτ values.

What is expected is that as Reτ increases, the turbophoretic phenomen becomes more and

more pronounced.

A comparison for the particle concentration and the mean wall-normal velocity at Stk=25

will be shown.

(a) Concentration Comparison.

(b)Wall-Normal Velocity Comparison.

Even if the data was collected in different ways for the analysis in Chapter 4 andChapter 5,
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the expected pattern is evident.

It is clear how the particle segregation is increased, going from a normalized concentration of

∼ 60 to∼ 180. Also for the wall-normal velocity that is true, with the peak for Reτ = 550

being∼ 2.5 times bigger than the one forReτ = 150.

5.3 Comments and issues

The purpose of this second part of the thesis was to evaluate the model’s validity at higher

Reynolds numbers.

The theorypredicts a universal behaviour for the turbophoretic phenomenonas theReynolds

number of the flow increases. For any given Reτ number, there is a phenomenon of particle

segregation in thewall region of the channel. This phenomenon ismore prevalent in particles

with intermediate Stokes number values (between 10 and 1000), which have a τp of the same

order of magnitude as the time scale of the vortex structures present in the buffer layer[4].

This is exactly the behaviour that was achieved with the implementation of this CRWmodel.

Still, it is clear that the results shown do not replicate exactly the DNS of Bernardini.

This issue can initially be attributed to the same factors that prevented Debhi’s model from

accurately replicating DNS simulations - namely, its dependence on a correction factor that

is essentially ’arbitrary’, and many other simplifications.

Many other factor in the work of this thesis can produce imprecisions, that once added up,

can produce an error on the particle concentration of up to 20%:

• The use of lookup tables is a crucial element in this thesis. The study did not employ

its own DNS, but instead obtained some required data by interpolating graphs based

on pre-existing DNS data as described earlier. This approach may introduce errors

because of inaccuracies, which may be magnified if the data undergoes intermediate

derivations or if the values are very small (e.g. Reynolds stresses or the derivative of

σy).

• In Section 4.2 a series of formulas was presented in the process of the derivation of

some required parameters for the implementation of this CRWmodel. In the switch
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to a higherReτ various adaptations were presented for these formulas.

Unfortunately, one of the formulas could not be updated.

τL =
TL

β

1− (1− β)

(
1+

τp

TE

)−0.4
(
1+0.01

τp
TE

) (5.2)

Its validity is uncertain as it appears ad hoc and has a constant β that could need adjust-

ing when altering the Reynolds value.

• It is alsopossible to speculate about the correction factorusedbyDebhi for theLangevin

equations.

An equation related to fluid fluctuations contains an arbitrary element, incorporated

to accurately portray the particle’s behaviour based on its inertia. This approach has

proven effective for the Stokes ranges examined byDebhi, but is surely a pretty singular

one.

However, an issue couldbe the fact that the correction factor in questionhas the Stokes

number at its denominator. As detailed in Section 4.5.5, this results in a cancellation

of the term and an overestimation of particle segregation when the Stokes number is

assumed infinite. It can be speculated that a similar phenomenon occurs with high

Stokes numbers, such as those observed in this thesis for Stokes=500. The large iner-

tia is not enough to counterbalance the nearly zeroed correction factor, therefore the

predicted concentration is overstimated to the actual one.

However, this hypothesis lacks specific data or analysis to support it, as it was not

within the original scope of the study. Thus there is no intention to present as a valid

argument.
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6
Conclusions

This dissertation aimed to replicate and then extend an existing stochastic model for the sim-

ulation of inertial particles in turbulent flows.

A Lagrangian continuous random walk (CRW) model is used to predict particle dispersion

in a channel flow with anisotropic, inhomogeneous turbulence in the wall normal direction.

The initial particle trackingmodel employs 3Dmean flow data from the CFD code and Eule-

rian statistics from DNS databases. The single variation in the thesis model is that the CFD

code is replaced by a simpler mean velocity profile.

The normalized Langevin equation is used to obtain the time-dependent fluid velocity fluc-

tuations, which is better equipped for addressing turbulence inhomogeneities. The CRW

model includes a correction for drift velocity in random inertia particles.

The model predictions are compared to the DNS data of Marchioli[16], who produced de-

tailed statistics of velocity and transfer rates for four classes of particles having Stokes numbers

of 0.2 to 125 and dispersed in a parallel channel flow withReτ = 150.

The model is in very good agreement with the DNS data for the various measures of disper-

sion parameters, i.e.: instantaneous particle concentration profiles andmean and rms profiles
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of streamwise and wall-normal particle velocities. It also reproduces well established results

such as the build-up of particles in the laminar sublayer, as well as the gradual de-correlation

between particles and turbulence with increasing inertia.

In addition, the ’well mixed’ criterion is achieved so that tracer particles maintain approxi-

mately uniform concentrations when uniformly introduced into the domain and their depo-

sition velocity is vanishingly small.

All of this applies to both the original model and the one implemented in this study.

The second half of the thesis was devoted to the application of the model to higher Reynolds

numbers, a test that can be very severe for many models.

A satisfactory result is achieved by comparing themeasurements with the data obtained from

Bernardini’s DNS, specifically with three categories of particles having Stokes number 25,

100, and500. The expectedbehaviour is verified thoroughly– the turbo-phoretic phenomenon

is universal, as Reynolds number varies, replicating all behaviour observed in the original

model application.

However, it is generally observed that some results may be underestimated, such as the con-

centration near the wall, which is seen to fluctuate up to values of 10-20%.

Based on this investigation, along with previous studies, it is advocated that the normalized

Langevin equation should be used to predict particle dispersion accurately in general inho-

mogeneous flows when the mean field and turbulence statistics are computed or prescribed

with a high degree of confidence.

It is clear that the turbophoretic phenomen can be accurately replicated with this model.

However, achieving results thatmirror reality requires extremely precise data about themean

field and turbulent statistics.

Future and improvements

All the results inaccuracies shown in this work can be attributed to imprecisions in the collec-

tion of the necessary data for the model.
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To avoid this issue, one possible solution is to create a custom DNS that can provide all the

necessary information with the required level of accuracy instead of relying on external data.

However, some may argue that this approach would contradict the overall purpose of the

model.

To prevent this inconsistency, a more faithful improvement could be simply to increase the

quality of the used data. It would be beneficial to have access to highly accurate data on flow

and turbulence rather than having to digitise imprecise graphs from prior studies.

Additionally, a more thorough study of some of the analytical formulas used to calculate the

fluid Lagrangian time scale could be advantageous.

Still, overall, this type of model and general approach to the investigation of particle motion

in turbulent flows has been shown to be effective and efficient. Therefore, a development

that focuses on more detailed premises could be a viable option for advancing the study of

particle-laden turbulent flows.
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7
Appendix

7.1 Integral Version of the Code

To give complete access to the work done in this thesis, the integral version of the code will

be reported. The functions defined as lookup tables however will be represented by just an

example, that will not present the vectors containing the data derived from the graphs about

the σs.

7.1.1 Reτ=150 Version

1 program ParticleWallModel
2 !
3 use,intrinsic :: iso_fortran_env,only: rp => real64
4 !
5 !======================================================================
6 !Parameters Definition
7 !
8 implicit none
9 !
10 integer,parameter :: N_P=25000
11 integer,parameter :: stampa=100
12 integer,parameter :: schermo=10000
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13 !
14 real(rp),parameter :: L_x=6.0_rp
15 real(rp),parameter :: L_y=1.0_rp
16 real(rp),parameter :: L_z=3.0_rp
17 !
18 real(rp),parameter :: rey=4583.44222032_rp
19 real(rp),parameter :: rho_p=1000.0_rp
20 real(rp),parameter :: rho_f=1.3_rp
21 real(rp),parameter :: rho_r=rho_p/rho_f
22 !
23 real(rp),parameter :: St=25.0_rp
24 !
25 real(rp),parameter :: beta=0.356_rp
26 real(rp),parameter :: vk_c=0.41_rp
27 real(rp),parameter :: C_k=7.8_rp
28 real(rp),parameter :: nu=1.0_rp/rey
29 real(rp),parameter :: mu=nu*1.2_rp
30 !
31 real(rp),parameter :: rey_tau=0.09_rp*rey**0.88_rp
32 real(rp),parameter :: u_tau=rey_tau*nu/(L_y/2.0_rp)
33 real(rp),parameter :: l_tau=nu/u_tau
34 real(rp),parameter :: radius=sqrt(9.0_rp/2.0_rp/rho_r*nu**2/u_tau**2*St)
35 !
36 real(rp),parameter :: pi=acos(-1.0_rp)
37 !
38 real(rp),dimension(1:N_P) :: pos_x,pos_y,pos_z
39 real(rp),dimension(1:N_P) :: vel_x,vel_y,vel_z
40 real(rp),dimension(1:N_P) :: fvel_x,fvel_y,fvel_z
41 real(rp),dimension(1:N_P) :: rad
42 !
43 integer :: p
44 !
45 integer :: it,it_min,it_max
46 real(rp) :: t,dt,t_p
47 !
48 real(rp) :: y_p,u_p,s_p
49 real(rp) :: T_lp,T_l,T_e
50 real(rp) :: Stk
51 real(rp) :: vel_r_x,vel_r_y,vel_r_z,vel_r
52 real(rp) :: Re_p,tau_p,f_p,tau_l
53 real(rp) :: dsdy,duudy
54 real(rp) :: dcsi_1,dcsi_2,dcsi_3
55 real(rp) :: sigma_x,sigma_y,sigma_z
56 real(rp) :: rhs_pos_x,rhs_pos_y,rhs_pos_z
57 real(rp) :: rhs_vel_x,rhs_vel_y,rhs_vel_z
58 real(rp) :: rhs_fvel_x,rhs_fvel_y,rhs_fvel_z
59 !
60 character(32) :: fileres
61 character(256) :: open_file
62 !
63 character(32),parameter :: open_path="./data/"
64 character(32),parameter :: fileres_01="prt_data_1234567.bin"
65 !
66 !======================================================================
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67 !Initial Conditions
68 !
69 call srand(1)
70 !
71 do p=1,N_P
72 !
73 rad(p)=radius
74 !
75 pos_x(p)=(L_x-1.0d-10)*rand()+0.5d-10
76 pos_y(p)=(L_y-1.0d-10)*rand()+0.5d-10
77 pos_z(p)=(L_z-1.0d-10)*rand()+0.5d-10
78 !
79 vel_x(p)=0.0_rp
80 vel_y(p)=0.0_rp
81 vel_z(p)=0.0_rp
82 !
83 fvel_x(p)=0.0_rp
84 fvel_y(p)=0.0_rp
85 fvel_z(p)=0.0_rp
86 !
87 enddo
88 !
89 it_min=0
90 !
91 it_max=7000000
92 !
93 dt=1.0d-5
94 !
95 t=0.0_rp
96 !
97 fileres=fileres_01
98 !
99 call PrintStep(it_min)
100 !
101 call PrintPath
102 !
103 call SaveData
104 !
105 !Main Block
106 do it=it_min+1,it_max
107 !
108 t=t+dt
109 t_p=t*u_tau**2.0_rp/nu
110 !
111 if(mod(it,schermo)==0) then
112 !
113 print*,"It = ",it," t = ",t,t_p
114 !
115 endif
116 !
117 !Adimensional Coordinate Definition
118 do p=1,N_P
119 !
120 if(pos_y(p)>L_y/2.0_rp) then
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121 !
122 y_p=abs((L_y-pos_y(p))/l_tau)
123 !
124 s_p=-1.0_rp
125 !
126 else
127 !
128 y_p=abs(pos_y(p)/l_tau)
129 !
130 s_p=+1.0_rp
131 !
132 endif
133 !
134 u_p=1.0_rp/vk_c*log(1.0_rp+vk_c*y_p)+C_k*(1.0_rp-exp(-y_p/11.0_rp)\\
135 -y_p/11.0_rp*exp(-0.33_rp*y_p))
136 !
137 !Particle Statistics Computation
138 call CmptSigmaX(y_p,sigma_x)
139 call CmptSigmaY(y_p,sigma_y)
140 call CmptSigmaZ(y_p,sigma_z)
141 !
142 call CmptdSigmadY(y_p,dsdy)
143 !
144 call CmptdUUdY(y_p,duudy)
145 !
146 call GenGaussian(sqrt(dt),0.0_rp,dcsi_1)
147 call GenGaussian(sqrt(dt),0.0_rp,dcsi_2)
148 call GenGaussian(sqrt(dt),0.0_rp,dcsi_3)
149 !
150 if(y_p<5.0_rp) then
151 !
152 T_lp=10.0_rp
153 !
154 elseif((y_p>=5.0_rp).and.(y_p<200.0_rp)) then
155 !
156 T_lp=7.122_rp+0.5731_rp*y_p-0.00129_rp*y_p**2
157 !
158 else
159 !
160 T_lp=70.142_rp
161 !
162 endif
163 !
164 T_l=T_lp*nu/u_tau**2
165 T_e=T_l/beta
166 !
167 tau_p=1.0_rp/18.0_rp*rho_r*(2.0_rp*rad(p))**2/nu
168 tau_l=T_l/beta*(1.0_rp-(1.0_rp-beta)*(1.0_rp+tau_p/T_e)\\
169 **(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_e)))
170 !
171 Stk=tau_p/tau_l
172 !
173 !Fluctuation Component Computation
174 rhs_fvel_x=sqrt(2.0_rp/tau_l)*dcsi_1+duudy*dt/(1.0_rp+Stk)
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175 rhs_fvel_y=sqrt(2.0_rp/tau_l)*dcsi_2+s_p*dsdy*dt/(1.0_rp+Stk)
176 rhs_fvel_z=sqrt(2.0_rp/tau_l)*dcsi_3
177 !
178 if(y_p<=150.0_rp) then
179 !
180 vel_r_x=u_p*u_tau+fvel_x(p)*sigma_x-vel_x(p)
181 vel_r_y= fvel_y(p)*sigma_y-vel_y(p)
182 vel_r_z= fvel_z(p)*sigma_z-vel_z(p)
183 !
184 else
185 !
186 vel_r_x=u_p*u_tau-vel_x(p)
187 vel_r_y= -vel_y(p)
188 vel_r_z= -vel_z(p)
189 !
190 endif
191 !
192 !Particle Motion Computation
193 vel_r=sqrt(vel_r_x**2+vel_r_y**2+vel_r_z**2)
194 !
195 tau_p=2.0_rp/9.0_rp*rho_r*rad(p)**2/nu
196 !
197 Re_p=2.0_rp*vel_r*rad(p)/nu
198 !
199 f_p=1.0_rp+0.15_rp*Re_p**0.687_rp
200 !
201 rhs_vel_x=f_p*vel_r_x/tau_p
202 rhs_vel_y=f_p*vel_r_y/tau_p
203 rhs_vel_z=f_p*vel_r_z/tau_p
204 !
205 rhs_pos_x=vel_x(p)
206 rhs_pos_y=vel_y(p)
207 rhs_pos_z=vel_z(p)
208 !
209 pos_x(p)=pos_x(p)+vel_x(p)*dt
210 pos_y(p)=pos_y(p)+vel_y(p)*dt
211 pos_z(p)=pos_z(p)+vel_z(p)*dt
212 !
213 vel_x(p)=vel_x(p)+rhs_vel_x*dt
214 vel_y(p)=vel_y(p)+rhs_vel_y*dt
215 vel_z(p)=vel_z(p)+rhs_vel_z*dt
216 !
217 if(y_p<=150.0_rp) then
218 !
219 fvel_x(p)=(fvel_x(p)+rhs_fvel_x)/(1.0_rp+dt/tau_l)
220 fvel_y(p)=(fvel_y(p)+rhs_fvel_y)/(1.0_rp+dt/tau_l)
221 fvel_z(p)=(fvel_z(p)+rhs_fvel_z)/(1.0_rp+dt/tau_l)
222 !
223 else
224 !
225 fvel_x(p)=0.0_rp
226 fvel_y(p)=0.0_rp
227 fvel_z(p)=0.0_rp
228 !
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229 endif
230 !
231 enddo
232 !
233 !End Cycle
234 call ReposPart
235 !
236 if(mod(it,stampa)==0) then
237 !
238 fileres=fileres_01
239 !
240 call PrintStep(it)
241 !
242 call PrintPath
243 !
244 call SaveData
245 !
246 endif
247 !
248 enddo
249 !
250 contains
251 !
252 !======================================================================
253 !
254 subroutine SaveData
255 implicit none
256 integer :: fid
257 integer :: p
258 !
259 open(newunit=fid,file=open_file,status="replace")
260 !
261 write(fid,*) N_P
262 !
263 do p=1,N_P
264 !
265 write(fid,*) pos_x(p),pos_y(p),pos_z(p),vel_x(p),vel_y(p),vel_z(p)
266 !
267 enddo
268 !
269 close(fid)
270 !
271 return
272 end subroutine SaveData
273 !
274 !======================================================================
275 !
276 subroutine ReposPart
277 implicit none
278 integer :: p
279 !
280 do p=1,N_P
281 !
282 if(pos_x(p)<0.0_rp) pos_x(p)=pos_x(p)+L_x
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283 if(pos_x(p)>L_x ) pos_x(p)=pos_x(p)-L_x
284 !
285 if(pos_z(p)<0.0_rp) pos_z(p)=pos_z(p)+L_z
286 if(pos_z(p)>L_z ) pos_z(p)=pos_z(p)-L_z
287 !
288 if(pos_y(p)<rad(p)) then
289 !
290 pos_y(p)=2.0_rp*rad(p)-pos_y(p)
291 vel_y(p)=-vel_y(p)
292 !
293 endif
294 !
295 if(pos_y(p)>L_y-rad(p)) then
296 !
297 pos_y(p)=2.0_rp*L_y-2.0_rp*rad(p)-pos_y(p)
298 vel_y(p)=-vel_y(p)
299 !
300 endif
301 !
302 enddo
303 !
304 return
305 end subroutine ReposPart
306 !
307 !======================================================================
308 !
309 subroutine GenGaussian(var,mean,sigma)
310 implicit none
311 real(rp),intent(in) :: var,mean
312 real(rp),intent(out) :: sigma
313 !
314 real(rp) :: uni_1,uni_2
315 real(rp) :: rnd_1,rnd_2
316 !
317 call random_number(rnd_1)
318 call random_number(rnd_2)
319 !
320 uni_1=(1.0_rp-1.0d-14)*rnd_1+1.0d-14
321 uni_2=(1.0_rp-1.0d-14)*rnd_2+1.0d-14
322 !
323 sigma=var*sqrt(-2.0_rp*log(uni_1))*cos(2.0_rp*pi*uni_2)+mean
324 !
325 if(sigma>mean+5.0_rp*var) sigma=mean+5.0_rp*var
326 if(sigma<mean-5.0_rp*var) sigma=mean-5.0_rp*var
327 !
328 return
329 end subroutine GenGaussian
330 !
331 !======================================================================
332 !
333 subroutine CmptSigmaX(y_plus,sigma)
334 implicit none
335 real(rp),intent(in) :: y_plus
336 real(rp),intent(out) :: sigma
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337 !
338 integer :: i_c,i_m,i_p
339 !
340 real(rp) :: m,q
341 !
342 real(rp),dimension(1:152),parameter :: x=[&
343 ........]
344 !
345 real(rp),dimension(1:152),parameter :: y=[&
346 ........]
347 !
348 if(y_plus<=150.0_rp) then
349 !
350 i_c=minloc(abs(y_plus-x),1)
351 !
352 if(x(i_c)<y_plus) then
353 !
354 i_m=i_c
355 i_p=i_c+1
356 !
357 else
358 !
359 i_m=i_c-1
360 i_p=i_c
361 !
362 endif
363 !
364 m=(y(i_p)-y(i_m))/(x(i_p)-x(i_m))
365 q=y(i_m)-m*x(i_m)
366 !
367 sigma=(m*y_plus+q)*u_tau
368 !
369 else
370 !
371 sigma=0.0_rp
372 !
373 endif
374 !
375 return
376 end subroutine CmptSigmaX
377 !
378 !======================================================================
379 !
380 subroutine PrintStep(iostep)
381 implicit none
382 integer,intent(in) :: iostep
383 !
384 write(fileres(10:16),1) iostep
385 1 format(1I7.7)
386 !
387 return
388 end subroutine PrintStep
389 !
390 ! =======================================================================
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391 !
392 subroutine PrintPath
393 implicit none
394 !
395 open_file=trim(open_path)//trim(fileres)
396 !
397 return
398 end subroutine PrintPath
399 !
400 ! =======================================================================
401 !
402 end program ParticleWallModel

7.1.2 Reτ=550Modifications
1 !Particle Statistics Computation
2 call CmptSigmaX(y_p,sigma_x)
3 call CmptSigmaY(y_p,sigma_y)
4 call CmptSigmaZ(y_p,sigma_z)
5 !
6 call CmptdSigmadY(y_p,dsdy)
7 !
8 call CmptdUUdY(y_p,duudy)
9 !
10 call GenGaussian(sqrt(dt),0.0_rp,dcsi_1)
11 call GenGaussian(sqrt(dt),0.0_rp,dcsi_2)
12 call GenGaussian(sqrt(dt),0.0_rp,dcsi_3)
13 !
14 !
15 if(y_p<10.0_rp) then
16 !
17 T_lpx=10.0_rp
18 T_lpy=11.0_rp
19 T_lpz=14.0_rp
20 !
21 elseif((y_p>=10.0_rp).and.(y_p<550.0_rp)) then
22 !
23 call CmptTaux(y_p,T_lpx)
24 call CmptTauy(y_p,T_lpy)
25 call CmptTauz(y_p,T_lpz)
26 !
27 endif
28 !
29 T_lx=T_lpx*nu/u_tau**2
30 T_ly=T_lpy*nu/u_tau**2
31 T_lz=T_lpz*nu/u_tau**2
32 T_ex=T_lx/beta
33 T_ey=T_ly/beta
34 T_ez=T_lz/beta
35 !

101



36 tau_p=1.0_rp/18.0_rp*rho_r*(2.0_rp*rad(p))**2/nu
37 tau_lx=T_lx/beta*(1.0_rp-(1.0_rp-beta)*(1.0_rp+tau_p/T_ex)\\
38 **(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ex)))
39 tau_ly=T_ly/beta*(1.0_rp-(1.0_rp-beta)*(1.0_rp+tau_p/T_ey)\\
40 **(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ey)))
41 tau_lz=T_lz/beta*(1.0_rp-(1.0_rp-beta)*(1.0_rp+tau_p/T_ez)\\
42 **(-0.4_rp*(1.0_rp+0.01_rp*tau_p/T_ez)))
43 !
44 Stk=tau_p/((tau_lx+tau_ly+tau_lz)/3.0_rp)
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