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Introduction

The passing fundamental is one of the most important key aspects of the game of

basketball. Throughout the course of a single game between 250 and 350 passes occur on

average, under several di�erent circumstances. Professional coaches embrace their philoso-

phy through plays that involve speci�c patterns and adaptations, in which passing is a core

and crucial element. Great examples are represented by the triangle o�ense by Coach Phil

Jackson, or the Princeton o�ense, which has its roots in college basketball. With the recent

development in optical tracking systems, nearly every single instant of an entire game is

traced and turned into huge multidimensional and complex raw data. Adapting statistical

models, data mining and machine learning techniques it is possible to pre�process such data

to extract several types of information, including passes, team performance, and others.

Since a pass is a connection between two teammates or, under a di�erent perspective,

between two areas of the court, this collection of ties can be naturally translated into a

network�valued observation. The term network analysis refers to the analysis of the rela-

tionships structures among a set of interacting units, called nodes, and their underlying

patterns. In the recent years, network analysis has garnered a substantial interest in di�er-

ent applied �elds covering biostatistics, neuroscience, social science, and also sports. This

type of data representation �ts perfectly with the concept of passing: nodes can be identi-

�ed as players (or possibly positions on the court), while a tie is represented by the pass

itself.

When studying this structured type of data, usual statistical approaches often fail to

capture the important traits of networks. It is therefore necessary to provide speci�c meth-

ods and models that embrace the complexity and the properties typical of a network. This

is particularly true when the focus is on assessing group di�erences in the probabilistic

generative mechanisms associated with groups of multiple network observations. In basket-

ball, as in other sports, games are only won or lost. Coaches, players themselves, but also
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fans and television broadcasters, are always interested in understanding the reasons why a

team performs better in certain situations than in others. Through this work, we want to

inspect di�erences between wins and losses for an NBA team using passing networks data.

The structure of the thesis is de�ned as follows. Chapter 1 features a quick review

of how statistics and basketball are connected, with a focus on research in the �eld of

network analysis. In Chapter 2 we detail the adopted pre-processing procedure to retrieve

the passing networks from the raw tracking data. Some descriptive analyses and classical

statistical models for networks are considered in Chapter 3. Lastly, Chapter 4 features a

recently proposed Bayesian nonparametric model for undirected data, and provides a novel

generalization of it for directed networks. Refer to Table A.1 in the Appendix for all the

basketball-related terms that will be used in this work.



Chapter 1

Statistics and Basketball

The relationship between statistical analysis and basketball has a long history, dating

back to even before the o�cial National Basketball Association was instituted in 1946.

Slowly but steadily the amount of information gathered increased, starting from 1894/1895

with very simple score sheets for the games of the Spring�eld YMCA league (in which the

creator of the game himself Dr. James Naismith played); in late 60s box scores featured the

addition of rebounds, �eld goals made/attempted and other simple statistics, up until the

1996/1997 season when the NBA Stats division (http://nba.com/stats) started collecting

full play-by-play logs. The most recent development is the processing of player tracking data

provided by the company STATS LLC with the recently implemented SportVU R© system

(http://www.stats.com/sportvu-basketball, see Section 2.1 for details).

Researchers and professional statisticians have answered to the evolution in the amount

and richness of data with increasingly complicated analyses, starting from early examples

in literature studying team and individual performance (Elbel and Allen, 1941). This early

paper started questioning the utility of merely tracking scores and considered di�erent

measuring factors for wins/losses such as assists, violations etc, that only a few years later

became part of o�cial box scores. More recently, in the last 20 years the use of possession

statistics started gaining popularity due to their di�erent approach that focuses on o�ensive

and defensive metrics per 100 possessions, adapting for any pace a team can possibly have.

Following the success in baseball statistics represented by Sabermetrics (Grabiner, 1994) by

Bill James, Professor Dean Oliver created APBRmetrics (http://www.apbr.org), named

after the Association for Professional Basketball Research. After publishing various articles

about the topic, his work culminated with his �rst book Basketball on paper (Oliver, 2004),

http://nba.com/stats
http://www.stats.com/sportvu-basketball
http://www.apbr.org
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that illustrates how powerful statistical tools can help in explaining game results, player

and team performance etc., when evaluated per possession or per minute (instead of doing

it per game). Other notable and more recent works on basketball statistics include Bas-

ketball Analytics: Spatial Tracking (Shea, 2014), that uses optical tracking data provided

by SportVU and others to investigate game strategy, player evaluation, player types, and

prospect potential. The author introduces new measures of a player's scoring and play-

making e�ciency, quanti�es the o�ense spacing and defense stretching, and demonstrates

several ways in which the NBA game has changed over the years.

Lately, research has also tried to answer speci�c questions such as "Who is the most

productive player for his team?" or "How do we measure an expected value of an on-going

play?" making use of the powerful optical tracking data. Notably, researchers at Harvard

University have been working profusely on di�erent complex topics. For example, Miller

et al. (2014) proposed methods to extract spatial patterns from NBA shooting data using

Gaussian, Poisson, Log-Gaussian Cox Processes and Non-Negative Matrix Factorization;

they also provided interesting insights on how di�erently shooting frequency and shooting

e�ciency are characterized (Miller et al., 2014). Franks et al. (2015) additionally proposed

new defensive metrics that shed light on this important aspect of the game. Their work

included a Hidden Markov model to recognize defensive�matchups, estimates of percentage

of contested shots, and many other new metrics.

All these works were developed in order to satisfy the growing interest in basketball

analytics requested by teams themselves and a widespread constantly growing fanbase.

For coaching sta�s, it is an extremely powerful tool that helps them to better understand

their team capabilities and �aws, providing a bigger picture that is not observable from

a single possession or even a single game. For players, it can be used to understand their

productivity and consequently upgrade their game. This is the reason why STATS LLC has

been providing teams and players, as well as betting companies, a wide variety of statistical

insights they could work with.

1.1 Network analysis in basketball

The topic of this thesis is to study basketball data from a network perspective. In

particular the overarching goal is to understand how team performance relates to team

passing structures. This type of statistical approach to basketball data is still in its infancy,

although few examples can be found in the literature.
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Gupta et al. (2015) review how network analysis concepts can be used to analyze and

characterize team, and individual behaviors in basketball, making use of SportVU data and

play-by-play logs. The authors build the networks around three di�erent types of nodes:

start of play, that identi�es inbounds, steals, rebounds as in a start of new possession;

end of play, indicating events like shots, turnovers, o�ensive fouls ; players, as players'

ids. The article focuses on the characterization of games in terms of descriptive indices

such as entropy and degree centrality, also comparing college team Ohio State University

games with NBA counterparts. Fewell et al. (2012) provide similar descriptive analyses

this time representing nodes as players' positions instead of individual players, inspecting

teams' di�erences. The data were taken from the �rst round of the National Basketball

Association playo�s of the 2009/2010 season. These two works both focused on single game

networks individually.

As far as we know, at the time we started working on this thesis project no study

had been done on analyzing passing networks' data in professional basketball other than

descriptive analyses. It is therefore of interest to explore this new �eld in order to provide

insights on this key aspect of basketball mechanics through statistical inference.



Chapter 2

The data and the pre�processing procedure

The aim of this thesis is to study the passing behaviour of a basketball team, its

underlying characteristics and how it is related to team performance. To accomplish this

goal the focus is on the data from the �rst half of the 2015/2016 season of the United

States of America basketball pro league, comprising information on more than 600 games.

Refer also to the National Basketball Association o�cial website for more details. The team

under analysis is the Golden State Warriors, for which data on 26 games are available: 23

consecutive wins and 3 losses. A list of the games with opponents, date and outcome is

available in Table 2.1. Because of the incredible amount of information contained in these

�les (around 100 MB per game, for a total of 635 �les) the decision of considering only

one team was made, although the whole procedure can be repeated for any team in the

data. The choice of Golden State lies on the personal interest in �nding di�erences between

quarters where the team performed well or badly during and after the record setting streak

of 24 consecutive wins 1, according to di�erences in score (plus�minus). As only 3 games �

out of 26 � were losses, the passing behaviour is studied on a quarter basis. This allows an

increased amount of information on bad performances, as there were several games whose

result ended up in favor of Golden State where some quarters were lost.

1The second game of the season vs Houston Rockets was not available in the data.
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Table 2.1: The schedule of the 26 analyzed games.

date home visitor result
2015-10-27 Golden State Warriors New Orleans Pelicans W
2015-10-31 New Orleans Pelicans Golden State Warriors W
2015-11-02 Golden State Warriors Memphis Grizzlies W
2015-11-04 Golden State Warriors Los Angeles Clippers W
2015-11-06 Golden State Warriors Denver Nuggets W
2015-11-07 Sacramento Kings Golden State Warriors W
2015-11-09 Golden State Warriors Detroit Pistons W
2015-11-11 Memphis Grizzlies Golden State Warriors W
2015-11-12 Minnesota Timberwolves Golden State Warriors W
2015-11-14 Golden State Warriors Brooklyn Nets W
2015-11-17 Golden State Warriors Toronto Raptors W
2015-11-19 Los Angeles Clippers Golden State Warriors W
2015-11-20 Golden State Warriors Chicago Bulls W
2015-11-22 Denver Nuggets Golden State Warriors W
2015-11-24 Golden State Warriors Los Angeles Lakers W
2015-11-27 Phoenix Suns Golden State Warriors W
2015-11-28 Golden State Warriors Sacramento Kings W
2015-11-30 Utah Jazz Golden State Warriors W
2015-12-02 Charlotte Hornets Golden State Warriors W
2015-12-05 Toronto Raptors Golden State Warriors W
2015-12-06 Brooklyn Nets Golden State Warriors W
2015-12-08 Indiana Pacers Golden State Warriors W
2015-12-11 Boston Celtics Golden State Warriors W
2015-12-12 Milwaukee Bucks Golden State Warriors L
2015-12-30 Dallas Mavericks Golden State Warriors L
2016-01-13 Denver Nuggets Golden State Warriors L

2.1 The SportVU data

As mentioned in Chapter 1, the data processed in this work are the result of the highly

sophisticated SportVU optical tracking system used by STAT LLC. Starting November

2015 the NBA Stats division began hosting the �les regularly on their website (http:

//nba.com/stats). These open data were available until January 23rd, 2016 when the

NBA decided to stop the service due to technical reasons.

The system, originally designed for military use, was developed in 2005 by an Israeli

engineer named Miky Tamir whose background is in missile tracking and advanced optical

http://nba.com/stats
http://nba.com/stats
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recognition. After being used for soccer matches in Israel, the technology was purchased

by STATS LLC in 2008 to provide a similar service for basketball. With its constant

movement and only 11 elements to track (5 home players, 5 away players and the ball)

basketball would make full use of this over�owing stream of data that could possibly provide

much richer insights than the current statistics. In the 2009�2010 season the �rst tests were

carried out with a few teams 2 willing to explore this new �eld in basketball statistics; these

were followed by a couple team in the following year, to eventually reach all 30 teams in

2013. The tracking system works through the use of six computer vision cameras installed

in the rafters of the arenas, equally divided per half court; they collect two�dimensional

coordinates for all players and a third dimension (height) for the ball 3, 25 times per second.

With a rough calculation, given that NBA games last at least 48 minutes without counting

important moments when the clock is not running that are usually tracked, this means

that for each game the technology collects at least 48∗60∗25 = 72000 di�erent "pictures".

Although still not perfect, either in the tracking or in the collecting step, SportVU is now

able to correctly gather data for more than the 99.9% of the total moments (as they are

called in the �les) for the whole game; unfortunately from time to time weird and sometimes

very funny behaviors are registered, such as a player running 50 feet in less than half a

second. Therefore it is fundamental to carefully pre�process the raw data in order to avoid

corrupted information substantially a�ecting the �nal analyses. Due to the large amount

of information, this pre�processing step should be automatic and use state-of-the-art data

mining and �ltering procedures.

2.2 Structuring and �ltering the data

We acquired the tracking data available from the o�cial website of the NBA 4 in

JSON (JavaScript Object Notation, http://json.org/) format, and parsed it using the

software R (R Core Team, 2014). The structure of the data is represented by several nested

lists with various info about the game, stored as double or character class. The detailed

list is provided in Figure 2.1. The list named events contains a number em of items that

correspond to play-by-play elements such as a shot, a rebound, a turnover etc, and comprise

all the time units (in 25ths of seconds) that are relevant for that speci�c event. This means

2Namely Dallas Mavericks, Houston Rockets, Oklahoma City Thunder and San Antonio Spurs.
3Height will be probably provided for players in the near future as well.
4As of January 23rd, 2016 the data are no longer available.

http://json.org/
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• json object: List of 3 items:

� gameid : the unique id of the match

� game date: complete date of the match in YYYY-MM-DD format

� events: List of E items:

? eth element: List of 4 items:

· eventid : e, event progressive identi�er (numeric)

· visitor/home: List of 4 items:

� name: complete name of the team, as in "Golden State Warriors"

� teamid : the numeric id of the team

� abbreviation: as in "GSW"

� players: List of Pt (t is the team index) items:

on ptht element: List of 5 items:

· lastname, �rstname, playerid, jersey, position

· moments: List of M items:

� mth element: List of 6:

1. - a numeric var. for the period

2. - a numeric var. for the time in Unix format1

3. - a numeric var. for the game clock (from 720.00 to 0)

4. - a numeric var. for the shot clock (from 24.00 to 0)

5. - always NULL

6. List of Jm (usually Jm = 11):

(a) - teamid

(b) - playerid

(c) - x: the coordinate relative to the longer side of the court (0,94) in feet

(d) - y: the coordinate relative to the shorter side of the court (0,50) in feet

(e) - z (only for the ball): distance from the ground (in feet)

1the Unix format counts the milliseconds from January 1st, 1970

Figure 2.1: The complete indexing of the JSON object for a single example game. (1) The Unix
format counts the amount of milliseconds from January 1st, 1970.
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that many of these elements, like a missed shot and the relative rebound that follows, have

overlapping time units. Hence, the variable containing the time in Unix format is being

used to only select all the unique single moments so that there are no repeated datapoints.

While doing so, we are also interested in storing relevant moments where the ball is not

necessarily alive (the ball is alive if the game clock is running), like the case of inbounds.

To do so a variable checking for inbound status is created for each moment, so that it is

1 if the ball is being inbounded, that is when it's coming from outside the court and the

game clock is not running (otherwise we would count as inbound also a dribble or a pass

that is temporarily out of the imaginary plane that cuts the air vertically rising from the

boundary lines, e.g. when a player is diving out of bounds to maintain possession), and 0

otherwise. Unfortunately, a couple of unmanageable inconveniences might still occur and

make inbound data irretrievable: a player could be inbounding the ball while being out of

bounds with his feet, but close to the line so that the ball is inside the court rectangle;

alternatively, the tracking system could possibly be o� until the ball is alive.

After these checks, if the moment is not in the list of unique Unix times and the clock

is running, or the ball is being inbounded, we update the list containing all moments

information. This features a list itself with: a dataframe with players and ball coordinates

and ids, plus all the time�related variables. This way, we have a �exibly manageable set

of data to be processed later. It is also important to note that in order to treat all the

games the same, all the points have been "mirrored" if necessary so that every match

would have Golden State attacking from the left (corresponding to x = 0) to the right

side (corresponding to x = 94), for each of the four quarters. At this stage, we have clean

data regarding the positions of players and ball and several other features that allow us to

visualize interesting traits such as the heatmaps presented in Figure 2.2; these plots display

the distribution of the movements by two di�erent players in the 4 di�erent periods of a

sample game, both in the defensive end (left) and o�ensive end (right). Warmer colors

correspond to a higher concentration.

At the same time, we need other types of data that are not stored in the JSON �les

to obtain additional important information. This group comprises the features that will

serve as the di�erencing variable for the networks later in the analyses, and some other

details that can help in the human pass�recognizing step that will be explained later in this

section. These infos are stored in what is called the play-by-play of the game, which can be

directly grabbed or scraped from the NBA o�cial website via a quick function in R, simply

knowing the o�cial gameid of the game. Out of all the data stored in the play-by-play, we
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mp: 11:59 mp: 7:33

mp: 11:46 mp: 5:17

1 2

3 4

0.0005

0.0010

0.0015

Curry Stephen

mp: 6:10 mp: 8:26

mp: 5:18 mp: 9:14

1 2

3 4

0.0004

0.0008

0.0012

0.0016

Iguodala Andre

Figure 2.2: An example movements heatmap o� the cleaned data from one game. The four rect-
angles refers to game quarters; "mp" stands for minutes played in that quarter in this
case by point guard Stephen Curry and guard/forward Andre Iguodala respectively.



2.2 Structuring and �ltering the data 12

are interested in the partial scores for each period (to characterize the periods in terms of

plus�minus) and the description of events. The latter contain numerical ids that specify

the type of event happening, such as left side three�point shot or alley�oop pass5; they will

be used in the next step to help recognizing possession and passes in the human�regulated

classi�cation stage that will provide training and test sets to obtain the data later used in

the analyses.

Figure 2.3: An example image used for human
classi�cation.

In order to be able to classify the data

into possession (1 if the Golden State War-

riors have the ball, 0 otherwise) and recog-

nize passes, including the moments where

a change of possession or a pass is hap-

pening, a set of around 21000 images (one

image per 25th of a second, meaning this

roughly corresponds to a little more than

one period of one game) was produced so

that manual human classi�cation could be

performed. These images featured the posi-

tions of all players identi�ed by their jersey

number and colored di�erently according to

the team. The aforementioned time data,

moment id, and additional event labels were

also provided in the images to help distin-

guish critical plays such as alley�oops and shots, or made and missed shots etc. Speci�cally,

with the term manual human classi�cation we mean the procedure with which we man-

ually classi�ed all moments by looking at sequences of images like the example in Figure

2.3. The data were stored in .csv �les, whose single lines contained: the jersey number of

the player involved in the action; an event label, e.g. "RE" for received the ball, "H" for

having the ball (as in possession) etc.; the moment when the new event started happening.

All events concerning the opponent team were marked with an "X" so that they could be

easily distinguished from the ones when Golden State had the ball, and �ltered out. The

black number at the bottom is the unique moment of the game based on Unix time; the

5To understand which numbers corresponded to what event, a sample game was inspected while checking
the explicit description available in the play-by-play data.
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two green numbers directly above are respectively the event and the moment number as

in the JSON �les (see Figure 2.1); Golden State Warriors are always displayed with a blue

color while opponents are colored in red; the ball is identi�ed as orange and changes its size

accordingly to its height; the bright red number on top shows the shot clock while crimson

red indicates the game clock.

2.3 From clean data to passes

The aim of this project is to analyze passing networks. Therefore, all the passes hap-

pening in every game need to be retrieved out of the whole stream of data for all 26 games.

In order to do so, after collecting the human�classi�ed data, a 2-step procedure is carried

out. Firstly, a statistical model is �t to select only the moments in which Golden State

has the ball, to consequently decrease the number of possessions to process in the next

stage. This step is fundamental since by doing so we avoid processing data that we are

not interested in (we are only focusing on one team), saving a considerable amount of time

and memory space while �tting the models. Secondly, a pass recognizing model is designed

to ultimately get data on when and where the act of passing started and ended, and who

were the players involved 6. To �t the models, some useful additional variables are created

speci�cally to deal with the two di�erent problems (see details below).

In accomplishing the above goals, we estimate several di�erent types of models with

di�erent sets of variables to perform a majority vote classi�er; this improved signi�cantly

the performance of single models. The models we used are: Random Forests (Breiman,

2001) with varying tuning parameters such as number of variables to possibly split at each

node; Generalized Linear Models (Nelder and Baker, 1972), with forward stepwise variable

selection; adaBoost (Freund and Schapire, 1996), extreme gradient Boosting (Friedman,

2001) and Bagging (Breiman, 1996), with tuning parameters on the growth of trees; k�

nearest neighbours (Altman, 1992), with tuning parameter k. In the two steps the response

variables are going to be, respectively: possession, that equals 1 when Golden State has

possession in that speci�c moment (as in 25ths of a second), and 0 otherwise; pass, that is

1 if any Golden State player is in the act of passing the ball or has just received it, and 0

otherwise.

6This last information is not being used for the analyses in the next chapters, but throughout the data
pre�processing step we gathered as many details as possible for possible future applications that would
still not impact too much on the processing time.
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2.3.1 Detecting possession

In this �rst step we focused on selecting all moments in which Golden State appears

to be in possession of the ball, �ltering away everything else (that is both when opponent

team has possession and when the ball is loose). This way we will only deal with the time

when any player of the Warriors' team is potentially able to be in the act of passing. To do

this, we design the majority vote classi�er previously mentioned for a total of 11 di�erent

models that feature, in addition to information already obtainable from the clean data

(ball's x and z coordinates, and the game clock):

• the average of the x coordinates of Golden State players on the court and the oppo-

nents respectively (two di�erent variables), since usually defenders are closer to the

basket and therefore to the baselines;

• the distance from the ball by the closest Warrior, and the closest opponent, as usually

who is closer to the ball also has possession in that moment. In some models the

di�erence of these two quantities was also considered;

• convex hull area: a dichotomous variable having value 1 when the area of the polygon

formed by Golden State players is bigger than the one formed by the opponents.

Usually when the area is bigger, this means most players are outside the three�point

line, suggesting that they are on o�ense;

• a di�erenced shot clock variable with lag = 5, since the shot clock is mainly a

possession clock (when there are no o�ensive rebounds). A small lag is applied because

usually shot clock operators take some time before actually assessing the possession

by one of the two teams.

Since these models treat each moment as independent from all other moments, they

sometimes predict consecutive moments to have di�erent values. We then decided to use a

minimum cuto� of 25 moments (corresponding to a whole second), that means that at least

a second has to pass between a double change of possession. This operation is done on both

the single predictions and the majority vote prediction, to provide robustness. This also

turned out to improve performance signi�cantly. In addition to test set performance, the

predictions were visually tested with the help of images identical to the ones provided for

human classi�cation. After these operations, the �nal �t turned out to be close to perfect
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with just a few situations where possession to Golden State was assigned 1�2 seconds later

than the actual moment when it happened.

We then proceed to estimating possession for all 26 games, to ultimately �lter away all

datapoints for which the majority vote adjusted prediction is equal to 0. These moments

are the only ones we will feed the passes' recognition model with.

2.3.2 Detecting passes

In this step, we extract some other variables that might help in recognizing the moments

when passes and receptions happen. Among these are:

• ball's speed and di�speed : using consequent moments we track the space covered by

the ball in a 25th of second, without considering changes in height. Since the optical

tracking system is not 100% reliable, extremely high values are capped, together

with values that have an unlikely big di�erence with respect to the previous moment.

di�speed is the di�erentiated version of this variable, since we expect a big variation

in speed to be a possible warning for a pass happening;

• di�erence in ball's height (di�z ): since passes can be performed in many di�erent ways

(chest pass, lob, bounce pass, alley�oop etc.), they also feature di�erent variation in

distance from the ground;

• angle and di�angle: we measure the angle that the trajectory of ball is tracing with

respect to the lower sideline. Although similar to the speed variable in terms of in-

formation provided, this also accounts for quick passes that do not change speed

considerably but change direction. This value is also smoothed (with a moving av-

erage) to regularize shaky optical mistracking. di�angle features a lagged version of

angle;

• other variables used for the possession model.

Our goal is therefore to predict if a single moment has the "passing status". Similarly

to what has been done for possession, we wanted to combine the classi�ers to improve the

total accuracy; although passes are harder to predict because they happen quite fast and

sometimes comprehend challenging situations like an alley�oop that might be intended a

shot (even to the human eye), the models surprisingly almost never presented critical false

positives. This means that when they were predicting a pass was happening, it was indeed
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happening. Moreover, we applied a "continuity" correction as for possession predictions,

but this time for a much shorter period since passes can happen quite quickly, so for

each single classi�er the threshold value was 3/25ths of a second. Because of the models'

particular trait of very high speci�city (TN/(TN + FP )7), we did not opt for a majority

vote classi�er. Instead, the "passing moment" (that is a moment when we predict a pass is

happening) response variable is set to 1 whenever even just one model predicts passm = 1,

where m indicates the m-th moment considered. Although initially this might not make

sense, it is reasonable from a combining classi�er perspective: imagine we have 11 people

looking at a video trying to spot the instant in which a particular event happens. Since

they might be focusing on di�erent parts of the screen or might not consider that event

to be happening, it is reasonable to think that at some point even just one of them will

be pointing a di�erence out while the others will not. As a matter of fact, this approach

granted a high performance in passes recognition close to 95%. The only situation in which

all models seemed to hobble was in the case of hand�o� passes. However, these very delicate

situations almost always result in a pass that does not heavily impact on the play 8, and

most importantly they do not imply a substantial movement of the ball in the court. Hence,

we decided not to focus on this �aw. Also, as we will explain later, we will not consider

passes happening in the same court area.

A reality correction

Unfortunately, the aforementioned models still had some critical de�ciency. In fact,

after �tting a solid base set for all quarters in every game, there were some situations that

the models could not handle well. Among these we found that, in few occasions:

• a model was predicting pass = 1 when the same player was responsible for both the

passing and the receiving act. For example this might happen in the case of a near

turnover where the ball is later recollected. Clearly this should not be considered, so

we used the tracked player id variable to �lter all these passes away;

• a model had a prediction that lasted for too much, e.g. the pass was received after 5

seconds. We did not want it to consider these as passes even though there might be

7Here TN denotes "true negatives", as the number of observations for which the model correctly predicts
a non�passing moment, while FP ("false positives") indicates the number of true non�passing moments
that the model actually labels as passing.

8If a hand�o� pass opens up a higher chance at a shot it is usually not due to the pass but possibly a
screen or a quick reaction by the receiver.
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situations in which this could possibly be the case, so these were deleted;

• a pass was predicted to be happening while no player was in the range of 5 feet: this

situation was mainly due to mishandled optical tracking, so we decided to �lter these

away as well.

Finally, we had a su�ciently reliable passes dataset that we could use to create the

passing networks. A �rst look at the players' positions at the moment of initiating or

receiving a pass is available in Figures 2.4 and 2.5 respectively. These heatmaps measure

the activity concentration in the court divided for quarters for which the resulting plus�

minus was favorable (at least +0) or non�favorable (negative, at least −1). As far as we

can judge, we cannot make any assumptions on the di�erence between wins a losses and

therefore a more structured and focused analysis is needed. As it provides a valid option for

this project, we decided to use statistical network analysis as a tool to answer the question

"Is there a di�erence in passes networks between wins and losses?".

2.4 Building the networks

As a �nal step of the data pre�processing procedure, we want to actually turn the passes

data into networks. Previous works available in the literature consider the interactions

between single players (Clemente et al., 2015) or positions such as point guard, shooting

guard, forward, center etc (Fewell et al., 2012), but they both have �aws in a bigger picture

perspective, especially in aligning the nodes when multiple passes networks are considered.

In fact, not everyone happens to play every quarter due to injuries or coaches decisions,

and moreover some of the players might be considered as �lling the same positions while

having often very di�erent personal traits. To avoid these issues and facilitate alignment of

nodes in multiple networks, the players should be replaced with other types of nodes. This

is also motivated by the fact that in the NBA coaches are famous for establishing "systems"

that are not entirely built around single players, but rather follow a philosophy that takes

advantage of di�erent aspects of the game. A few examples could be Lakers' triangle o�ense

by Coach Phil Jackson, of Spurs' continuous ball movement by Coach Gregg Popovich. The

�nal court division used is available in Figure 2.6.

To make the problem more tractable, we also decided to treat the networks as binary:

this means that a tie is registered if at least one pass was observed between two di�erent

areas of the court. As stated earlier, we do not include self�loops in the analysis, because
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Figure 2.4: Heatmap displaying the kernel estimated density of the positions of players initiating
the act of passing the ball for quarters with at least +0 plus�minus (TOP) and a
negative plus�minus (BOTTOM). These plots refer to all the 26 analyzed games.
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Figure 2.5: Heatmap displaying the kernel estimated density of the positions of players receiving
the pass for quarters with at least +0 plus�minus (TOP) and a negative plus�minus
(BOTTOM). These plots refer to all the 26 analyzed games.
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usually passes happening in the same area do not have an impact on the play. At �rst, we

will considered this connection as undirected, while in Section 4.2 networks will feature the

information of pass direction. As for the time units, since dividing in single plays would

result in extremely sparse networks, and an entire match would collapse a lot of di�erent

nuances in passing dynamics, games are divided into quarters (or equivalently periods).

This way, our �nal dataset comprises 4 networks for each one of the 26 games, resulting in

a total number of 104. To avoid complications, overtime periods are omitted in the creation

of the �nal dataset, since their duration is of a reduced time of 5 minutes compared to

a normal period lasting 12 minutes. In the next chapters, we will take a look at these

networks with descriptive measures and consider di�erent statistical models to answer our

research question.
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Chapter 3

Passing networks: a �rst look and classical models

The focus of this chapter is on providing a �rst study of the passing networks described

in Chapter 2. This is accomplished via descriptive analyses and inference under classical

statistical models for networks. Commonly used descriptive statistics are computed for

each network in the two groups, positive/neutral plus�minus quarters and negative ones.

At this stage, the networks are considered binary and undirected, meaning that a tie is

formed when in that particular quarter at least one pass was made between two di�erent

areas of the court, no matter what the direction. This means that the edges' value is either

0 (no pass between two areas) or 1 (one or more passes).

A �rst insight is given by the distribution of passes that happened in each quarter,

computed for the two groups of networks; the resulting plot is presented in Figure 3.11.

Apart from the third quarter di�erences in the passes distributions are more evident, no

sensible group variations are displayed in general. In both cases the fourth quarter is also

the one characterized by highest variability with an almost �at distribution from 50 to over

90. Table 3.1 presents the number of networks observed for the two groups per quarter. Out

this simple contingency table, we are able to see that usually in the �rst quarter Golden

State prevails on the opponent, while the fourth quarter is generally more balanced. This

last insight should not surprise since Oakland's team has won a great number of games

by a sensible margin that was already established at the end of the third quarter. This

situation allows the coach to take superstars out and let them rest, while sending in bench

players to get some minutes that they probably wouldn't have had in a close game. This

1An important note: when checking the distribution of passes every pass is being counted, even if
repeated between the same pair of nodes; from Section 3.1 onwards a binary structure is considered.
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Figure 3.1: Distribution of the number of passes performed per quarter; color indicates posi-
tive/neutral plus�minus networks (dark yellow) and negative (blue).

is often referred to as garbage time since it does not impact on the win/loss result.

Table 3.1: Positive/negative plus�minus partitioning of networks for each quarter.

q1 q2 q3 q4 total
Negative 7 11 10 12 40
Positive/Neutral 19 15 16 14 64

Before moving to statistical modeling and inference, we study the undirected binary

networks from a descriptive perspective through the use of some of the many statistics

available to characterize the properties of this nonstandard type of data.
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3.1 Networks' descriptive analyses

In order to provide a �rst assessment of potential di�erences in the passing networks

across won and lost periods, the initial focus is put on networks' descriptive statistics.

These measures are computed for each network and their empirical distribution is shown

separately for the won and lost quarters to highlight potential group di�erences. The type of

descriptive statistics considered a described below. These measures are divided into global,

i.e. considering the networks as a whole, and local measures, that consider the features of

the single nodes.

3.1.1 Global measures

Global measures are quantities that consider each network as a whole and therefore

result in one single index per network.

• Density : the relative frequency of the total number of ties in the network. Its range is

(0, 1), with 0 corresponding to no ties and 1 to "every node is connected with every

other node".

• Transitivity : the percentage of observed closed triangles out of all the possible trian-

gles (both open and closed). A triangle or triplet consists of three connected nodes.

This quantity is also known as clustering coe�cient.

• Average path length: the average of all the shortest path lengths, where the shortest

path is a local measure at the edge level that indicates the minimum number of

observed ties that need to be traversed to connect node u to node v.

• Diameter and radius : respectively the maximum and the minimum distance between

all the nodes. Distance is de�ned as geodesic distance, the length of the shortest path

between two nodes u and v. These two measures can also be de�ned as maximum

and minimum eccentricity.

• Degree variance: the variance of the local measure degree de�ned below. Gives a

rough idea on how di�erently nodes interact in terms of number of ties.
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3.1.2 Local measures

Local measures focus on single nodes and are sometimes averaged to be transformed

into the global scale.

• Degree of node v : the sum of nodes u 6= v that are connected to node v, v = 1, . . . , V .

For undirected network, it can be interpreted as an "activity" measure.

• Betweenness centrality of node v : de�ned in Freeman (1977) by the following expres-

sion:

Cb(v) =
∑

u6=v 6=w

nuw(v)

nuw

where nuw is the total amount of shortest paths between nodes u and w, and nuw(v)

is the number of shortest paths between u and w that pass through v. In words, it

corresponds to the importance of a node in e�ciently connecting other nodes that

are not directly tied together.

• Closeness centrality of node v : de�ned in Sabidussi (1966) by the following expression:

Cc(v) =
1∑

w 6=u d(u,w)

where d(·, ·) is the aforementioned geodesic distance. It roughly corresponds to how

close a node is to the others in terms of path.

Figure 3.2 shows no clear di�erences in the distribution of the selected descriptive statistics

with the only exception of diameter. These plots are not surprising, since we are considering

two groups that are not clearly distinct. In general we can observe these traits:

• the density distribution is concentrated around the values 0.20 and 0.25, stating that

roughly only 20− 25% of all the possible 136 ties are observed in each network.

• given the spatial structure of the networks, a relatively high level of transitivity is

observed on average compared to the relatively low level of density. This makes sense
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Figure 3.2: The selected descriptive statistics for the two groups. Positive plus�minus quarters
are identi�ed by the dark yellow line while negative quarters by the blue line.
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when considering the fact that most passes happen between adjacent areas, and a

third area is generally close to both.

• average path length's distribution is set at around 1.9 and 2.4, meaning that on

average it takes around 2 passes to get from any zone to any other one. For positive

quarters this seems to be a little bit higher, suggesting that sometimes extrapasses

are more e�ective to reach more distant areas.

• diameter shows the biggest di�erence although it might not be as signi�cant as it

looks; for positive quarters the longest path is mostly 4, while for positive ones there

is more variability. However, the range is between 3 and 6 for both groups.

• degree's most frequent value is set between 2 and 3, with a variability mostly between

5 and 6.

• betweenness plots presents a very skewed distribution, which is coherent with the

heatmaps shown in Chapter 2, where a sensible concentration of passes was shown

to be going through the central outer areas while many others only had a few.

• similarly to the other plots, closeness is no exception as far as di�erences are con-

cerned.

3.2 Exponential Random Graph Models

A �rst simple approach to network analysis is represented by Exponential Random

Graph Models (ERGM, Erdös and Rényi (1959), Holland and Leinhardt (1981) and more

recently Snijders et al. (2006) and Robins et al. (2007b)). This class of models charac-

terizes the probability of a given network as function of its summary measures, under an

exponential family representation.

Many di�erent models fall under the wide class of ERGMs. Among these stand Markov

graphs (Frank and Strauss, 1986), based on the Markov assumption that in terms of net-

works translates into the following statement: two or more edges are considered independent

if they do not share any node, conditioned to the rest of the network. Wasserman and Pat-

tison (1996) generalized this concept with p∗ (p-star) models, whose speci�cation is shown

in (3.1).

Pr(A = A; θ) = exp{θTg(A)− k(θ)} (3.1)
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This equation indicates the general characterization for the probability distribution

of these models, where A is the network random variable of which the network A is a

realization, with total number of nodes V and edges denominated Auv (in the undirected

case |A| = V · (V − 1)/2); θ is a set of p parameters; g(A) is a vector of arbitrary statistics;

k(θ) is a normalizing constant.

In order to estimate the parameters we would have to know k(θ). Since generally this

value is hard to compute, other methods are used to get an approximation the likelihood.

Among them areMarkov Chain Monte Carlo Bayesian methods, simulated maximum likeli-

hood and lastly pseudo-likelihood, who has several di�erent speci�cations. We can maximize

the pseudo-likelihood function (3.2) to obtain θ̂.

pseudo− L(θ) =
∏
u<v

P (Auv = Auv|A−uv = A−uv; θ) (3.2)

Since each element of this product is a Bernoulli variable, and its conditional probability

can be reformulated as a logistic regression problem, 3.2 is equivalent to �tting a simple

GLM with response A = {A21, . . . , AV 1, . . . , Auv, . . . , AV,V−1} and matrix of covariates

∆ = {g(1, A(−uv))− g(0, A(−uv))}u>v. The obtained estimate holds asymptotic consistency

when V → ∞, even though the standard errors are only an approximation. As the name

suggests, the pseudo-likelihood function is not exactly a likelihood function. However, it

holds similar properties such as consistency, asymptotic distributions etc., so we use it as

we would do with usual likelihoods, hopefully getting the same results.

Since ERGM models can only deal with single networks, a �rst glimpse at the di�erence

between quarters in which the Golden State Warriors had a positive/neutral and negative

plus�minus is provided by the comparison of the most extreme results. These are repre-

sented by the third quarter of the November, 2nd game vs. Memphis (Golden State ended

up winning by an astonishing 50 points di�erential) which had a positive +25 di�erential,

and the fourth quarter of the December 8th game at Indiana where the plus�minus was

−20, even though this game still resulted in a win for Oakland's team on the road.

The analysis carried out here is provided by the some interesting aspects of the networks'

relationships features such as: density, node type di�erences in terms of side of the court

(left, right, central, or in-out of the three point line), homophily, reciprocity and particular

structures such as alternating k-stars or triangles. See Robins et al. (2007a) for a detailed

review on such e�ects for p∗ models. The selected approach is forward stepwise, starting

from the simple standard density e�ect up until court area homophily, other node attributes
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Table 3.2: Coe�cients for the maximum positive margin (+25) network in the chosen ERGM.

parameter Estimate Std. Error p-value
edges -2.4973 1.0758 0.0218 *
kstar2 5.4482 1.8899 0.0046 **
kstar3 -1.4537 0.5223 0.0062 **
altkstar -6.5025 2.3862 0.0073 **
nodefactor.in3.out 1.0131 0.4583 0.0288 *
triangle -0.3311 0.4612 0.4741

Table 3.3: Coe�cients for the maximum negative margin (−20) network in the chosen ERGM.

parameter Estimate Std. Error p-value
edges -1.5592 1.5322 0.311

kstar2 1.0133 0.62080 0.105

kstar3 -0.17025 0.10425 0.105

altkstar -1.76391 1.08801 0.107

nodefactor.in3.out -0.01237 0.41462 0.976

triangle 0.65214 0.32519 0.047 *

and more complicated networks structures' e�ects whose addition entails an easier and

more accurate estimation, and therefore interpretation of the other simpler parameters

(e.g. inside/outside three-point line).

Tables 3.2 and 3.3 present the results for the two networks regarding e�ects for: den-

sity (edges), which was the only common signi�cant e�ect, classical k-star structures, i.e.

number of ties from the same node (kstar), alternating k-star, that consider all k-stars in

one take but with a decay factor λ = 2 discounting the e�ect as k grows (altkstar), insid-

e/outside the three-point line node attribute (nodefactor.in3.out) and a triangles' e�ect;

these were estimated for both models in order to better compare them and correspond in

order to the quantities displayed in (3.3).

Pr(A = A; θ) = exp

{ 3∑
k=1

θkSk(A) + θ4

V−1∑
k=2

(−1)k
Sk(A)

λk−2
+ θ5xin3 + θ6T (A)− k(θ)

}
(3.3)



3.2 Exponential Random Graph Models 30

.

These results are showing quite a clear di�erence between the networks, both in the

distinction between inside and outside the three-point line passing and in the tested network

structures. Interpretability of the parameters is given in terms of conditional odds ratio

similarly to Generalized Linear Models; the edges term corresponds to a GLM's intercept

and consequently acts as a reference point for further terms (and is equivalent to a kstar1

parameter). Ergo, considering the triangle coe�cient, relative to the amount of triangular

structures in the network, implies a positive e�ect of around +20% chance of resulting

in a tie if two nodes have in common one or more connected areas of the court they are

tied to in the +25 network, while it's non signi�cant for the −20 one. Moreover, for the

in3 coe�cient, the probability of having a tie happening outside the arc is 14% higher

than a pass inside for the �rst "better" network, while reduced to non signi�cant di�erence

for the second "negative" one. The remarkably positive value that refers to the 2-star

composition together with the fact that the triangle e�ect is not signi�cant for the positive

margin network, implies that two areas that share a common node are not more likely to

be communicating with each other. Lastly, regarding the altkstar parameter, a negative

value is observed: this means that, given that the weights for consecutive k-stars decreases

when k increases because of the λ set to the value 2, networks with high degree nodes are

improbable, so that nodes tend not to be hubs, with a smaller variance between the degrees

(Robins et al., 2007a).

What does this mean in terms of passing dynamics? For example, even though this is an

ambitious interpretation, it might suggests that the highly negative margin quarter case

lightly presents relevant triangular structures between di�erent areas of the court, even

though nothing can be said about which zones this holds for, while for positive margin

quarters passes interacting with the outside the three point line area are less likely to

happen. An important note is to be made about the density of the two analyzed cases: the

"negative" one seems to have a higher density implying a higher number of passes. This

could possibly imply that in big wins, passing is more e�cient. Other covariates e�ects

such as left-right side, or other typical networks' structures and characteristics ended up

not being signi�cant in either cases.

Although capable of giving powerful insights for small networks, especially when char-

acterized by categories and multiple node covariates, ERGMs fail in this case under many

aspects: only one quarter can be considered at a time unless multiple networks are col-

lapsed into one, leading to a loss of information and infeasible interpretation of the results
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in view of the purpose of the thesis. Therefore nothing but a coe�cients' comparison is

possible to examine the win/loss contrast; the overwhelming number of di�erent e�ects

that can be included makes the choice of the model a muddled process that can wind up

in a continuous trial-and-error game. Most importantly, it does not take advantage of the

fact that several observations of passing networks for wins and losses are available, at least

not in a convenient way.

3.3 Latent space models

One possibility to account for multiple network observations is to consider latent space

models (Ho� et al., 2002). This widely used and studied class of models (Handcock et al.

(2007), Ho� (2003) and Krivitsky et al. (2009) to cite a few) relies on the idea that each

node v ∈ N can be represented as a point zv in a low-dimensional latent space Z ∈ <k,
with k adequately small. The probability of a tie between two nodes is higher the closer

these two points are in the Z space, given the covariates. A popular choice for the distance

measure is the Euclidean one, although di�erent measures are possible. In latent space

models for networks, each potential tie has a value modeled by a GLM, with a distribution

whose density is f . This density is parameterized by its expected value, which is a func-

tion of the linear predictor ηu,v, as shown in (3.4). Estimating the quantities of interest is

conveniently achieved using a Bayesian approach, choosing non�informative di�use priors

and MCMC methods to sample from the posterior distribution.

Pr(A = A|β, x, Z) =
∏
(u,v)

Pr(Au,v = Au,v|β, x, Z)

Pr(Au,v, = Au,v|β, x·,u,v, |Zu − Zv|) = f(Au,v|µ) =

(
t

Au,v

)
µAu,v(1− µ)t−Au,v

µ = g−1
(
ηu,v(β, x·,u,v, |Zu − Zv|)

)
ηu,v(β, x·,u,v, |Zu − Zv|) =

p∑
k=1

x·,u,vβk − |Zu − Zv|

(3.4)

According to the purpose stated at the beginning of this section, two di�erent sets were

created through the sum of all the positive plus�minus and all the negative plus�minus

networks, respectively represented by 64 and 40 single quarters. In order to model win�loss

group di�erences using the above formulation, the networks associated to wins are modeled
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Table 3.4: Summary for parameters' posteriors, positive margin networks' Latent Space model.

parameter Estimate 2.5% 97.5% Pr(outsideCI)
(Intercept) -0.11084 -0.18461 -0.0450 < 2.2e-16 ***
nodefactor.in3.out 1.48620 1.41408 1.5666 < 2.2e-16 ***

separately from those relative to losses, using a di�erent latent space model for each group.

Within each group, the multiple observed networks are assumed to be independent and

identically distributed from the corresponding latent space model. As a result, leveraging

the conditional independence of the ties in (3.4), inference for each of the two latent space

models can be accomplished under a binomial speci�cation for f(·), letting yuv be the sum
of the ties from u to v observed for the networks associated with the group under analysis.

This also means that, probably unrealistically, we assume that all positive/neutral and all

negative plus�minus periods respectively come from the same f1 and f2 distribution.

The performance of di�erent models was tested, with varying latent space dimension

d ∈ {1, 2, 3} using the classical latent space model proposed in Ho� et al. (2002); the

inclusion of the in/out the three point line covariate (whose parameter is β1) was also

tested, considerably improving in terms of BIC performance reducing it by about 200 (from

1070 to 880) and 700 (from 1760 to 1010) for the "wins" and "losses" models respectively.

Models were estimated via the latentnet package (Krivitsky and Handcock, 2009) run

through the software R (R Core Team, 2014), via MCMC. Posterior inference under each

model, relies on two chains of 20000 MCMC samples after a burn�in of 15000. In order

to improve mixing a thinning of 15 was additionally considered. These settings granted

satisfactory convergence for each of the parameters, with a good mixing and negligible au-

tocorrelation. Note that the coordinates of the latent space Z are invariant under rotations

and re�ections. Following this property, the plots have been adapted so that they could be

compared side by side with the same reference points.

The �rst thing that leaps out from Figure 3.3 is the ability of the latent space Z to

resemble the spatial disposition of the areas presented in Chapter 2 (Figure 2.6). The

left/right disposition is arguably clear, in both representations. Being the closeness of the

points in the graph, and hence the Z coordinates, directly proportional to the estimated

probability of two nodes being tied together, a �rst remark is that in both cases, the further
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Figure 3.3: Minimum Kullback-Leibler Latent Positions of the two separate models built on pos-
itive and negative plus/minus networks with the node covariate e�ect "inside/outside
three-point line".

Table 3.5: Summary for parameters' posteriors, negative margin networks' Latent Space model.

parameter Estimate 2.5% 97.5% Pr(outsideCI)
(Intercept) -0.21657 -0.27459 -0.1539 < 2.2e-16 ***
nodefactor.in3.out 1.43327 1.28664 1.5727 < 2.2e-16 ***
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the areas are in the court, the lower the probability of a pass being made between these

zones, as common sense would suggest. However, this rule has some slight exceptions. For

example in the "positive" network the two mid-bottom areas(MIDBL and MIDBR) seem

to have a di�erent role between left and right: the �rst one is closely tight to the OUTL

section, implying an important role in the connection of these two, while this doesn't

hold for the right side. On the other hand the "negative" network does not present this

behaviour. This remark is con�rmed by the "yellow cross" displayed in Figure 3.4, that

shows the distances' di�erences in the latent spaces between the two models. First the

distance matrix is built from the latent space coordinates of the "positive" and "negative"

networks, separately; then the di�erence between these two matrices is computed (losses

distances � wins distances). If a tile is colored in blue it means that there is a smaller

distance between that particular pair of nodes for the losses model compared to the win

model, while yellow denotes the opposite. Therefore the general "blue-ish" color of the plot

states that areas are usually closer (more likely to be tied) in the negative model than in the

positive one; this also points out a higher density. However, unsurprisingly, the di�erences

in the two models are quite small, as it is also stated by the coe�cients shown in Tables

3.4 and 3.5.

After analyzing single networks with ERGMs and groups of networks with Latent Space

models, we are still uncertain about whether or not there is a di�erence between quarters

when the Golden State Warriors prevailed and the ones where they lost. Motivated by this

need, we move on to the next chapter to consider a joint model for testing this di�erence.
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Figure 3.4: Heatmap displaying the di�erences between the euclidean distances among the nodes
arising from the latent spaces in the two groups.



Chapter 4

A joint Bayesian nonparametric model

In Chapter 3 we �rstly presented simpler models that took into consideration only single

networks at a time, providing insu�cient validity and ine�ciency for testing group di�er-

ences (ERGMs). Secondly, latent space models allowed to account for multiple observations

of passing networks associated with lost and won quarters. However, the assumption of a

unique latent space model underlying the multiple networks associated with each group,

may be unrealistic, collapsing network variability around an averaged structure. Therefore

we are looking for a model that is more �exible in characterizing the joint distribution of

the random variable generating the multiple passing networks and allows for formal testing

of di�erences between lost and won quarters.

4.1 Undirected networks model

4.1.1 The general idea

A recent development that ful�lls these characteristics is represented by the Bayesian

nonparametric model proposed in Durante et al. (2016). In their work, the authors wanted

to provide a valid tool for modeling replicated binary undirected network data via the

use of a mixture of low�rank factorizations. Durante and Dunson (2016) generalized the

previous model to include global and local testing to assess evidence of group di�erences,

adjusting for multiplicity.

Maintaining the notation previously used in Chapter 3, we de�ne/recall the following

quantities:



4.1 Undirected networks model 37

• yi is the membership variable that indicates to which group the i�th network belongs

to, with 1 representing positive margin quarters and 2 the negative ones. It is the

realization of the random variable Y

• Ai indicates the adjacency matrix of i�th network, generated from random variable

A

• operator L extracts the lower triangle vector of matrix Ai so that:

L(Ai) = (Ai[21], Ai[31], . . . , Ai[V 1], Ai[V 2], . . . , AV (V−1))
T

with each edge Ai[uv] taking values in {0, 1}, for v = 2, . . . , V , u = 1, . . . , V − 1 and

Ai[uv] = Ai[vu]

• indicator l maps the pair of nodes v = 2, . . . , V , and u = 1, . . . , V −1 to 1, . . . , V (V −
1)/2

• pY,L(A)(y,a) = pr(Y = y,L(A) = a) is the joint probability mass function for the

random variable {Y ,L(A)}

As the number of nodes grows, even for small values of V any parametric model seems

unsuitable unless a comparable number of subjects, in this case quarters, is available; this

scenario is fairly impossible. A nonparametric approach is chosen in order to maintain

�exibility when de�ning the network�valued random variable density. However, a fully

nonparametric model is not viable due to dimension of the sample space being 2V (V−1)/2

for random variable L(A). Hence, to decrease the dimensionality, a dependent mixture of

low�rank factorizations is considered while latent space models are used as kernels. This

speci�cation also allows to exploit the fact that network con�gurations share a common

underlying structure with respect to edge probabilities; this mixture thus envelops informa-

tion for the whole network, e�ciently borrowing information across networks and within

each network (Durante et al., 2016).

In evaluating evidence of a global dependence between the group membership and

the networks' related generating random variable L(A), we are formally testing the null

hypothesis:

H0 : pY,L(A)(y,a) = pY(y)pL(A)(a) (4.1)
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for all y ∈ {1, 2} and a ∈ {0, 1}V (V−1)/2, versus

H1 : pY,L(A)(y,a) 6= pY(y)pL(A)(a) (4.2)

for at least some y and a; pY(y) identi�es the marginal probability mass function of the

membership variable and pL(A)(a) the unconditional pmf for the network random variable

L(A). This way, the tests are not performed on networks' structural properties or summary

statistics such as density, transitivity etc, but directly on their probability mass function. As

far as our example of basketball networks is concerned, H0 corresponds to no di�erences in

passing dynamics between periods in which Golden State won/tied the score and when they

lost; however, this only tests for global di�erences and does not accommodate for speci�c

edges diversities. To provide this, after assessing a global dependence, areas connections

denoted as L(A)l ∈ {0, 1}, l = 1, . . . , V (V − 1)/2, are inspected via multiple local tests

that lead to the null hypothesis

H0l : pY,L(A)(y, al) = pY(y)pL(A)(al) (4.3)

for all y ∈ {1, 2} and al ∈ {0, 1}, versus

H1l : pY,L(A)(y, al) 6= pY(y)pL(A)(al) (4.4)

for at least some y and al.

These tests are made possible by a �exible speci�cation that is able to maintain the im-

portant traits of the networks while reducing dimensionality and simplifying the derivation

of the probabilities needed for (4.1) � (4.2) and (4.3) � (4.4).

4.1.2 Model speci�cation

To perform the aforementioned test, a convenient expression for pY,L(A) is needed. It is

derived from the following factorization:

pY,L(A)(y,a) = pY(y)pL(A)|y(a) = pr(Y = y)pr(L(A) = a|Y = y) (4.5)

as it is always possible to derive the joint pmf as product of the marginal for the grouping

variable Y and the conditional pmfs pL(A)|y. This way, hypotheses (4.1) � (4.2) can be

reformulated as



4.1 Undirected networks model 39

H0 : pL(A)|1(a) = pL(A)|2(a) (4.6)

for all network con�gurations a, versus

H1 : pL(A)|1(a) 6= pL(A)|2(a) (4.7)

for some a.

To provide a �exible representation of the conditional pmf for the networks given the

group, while reducing dimensionality and allowing simple testing, Durante and Dunson

(2016) de�ne

pL(A)|y(a) = pr(L(A) = a|Y = y) =
H∑
h=1

νhy

V (V−1)/2∏
l=1

(π
(h)
l )al(1− π(h)

l )1−al (4.8)

where νhy denotes the group speci�c mixture probabilities for the h�th component, with∑H
h=1 νhy = 1, νhy ∈ (0, 1) for all y ∈ {1, 2} and h ∈ 1, . . . , H; H is the total number of

mixture components and π(h) = (π
(h)
1 , . . . , π

(h)
V (V−1)/2) is the edge probability vector relative

to the h�th component. Its formal de�nition is

π(h) = {1 + exp(−Z−D(h))}−1, D(h) = L(X(h)Λ(h)X(h)T ) (4.9)

where Z ∈ <V (V−1)/2 is a vector that indicates a shared similarity e�ect that conveys

easier centering of di�erent mixture components and improve computational performance

(Durante et al., 2016); X(h) ∈ <V×R is a matrix whose rows are node�speci�c latent

coordinate vectors, weighted for Λ(h), a diagonal matrix with R non�negative elements

λ
(h)
r . Typically, R� V . After (4.9) it is simple to note that the probability of an edge l for

the pair of nodes u and v in the h�th component increases with Zl and L(X(h)Λ(h)X(h)T )l =∑R
r=1 λ

(h)
r X

(h)
vr X

(h)
ur . This characterization is an adaptation of existing concepts in literature

with regards to latent variable modeling for single networks (Nowicki and Snijders (2001),

Airoldi et al. (2008) and Ho� et al. (2002) as seen in Chapter 3).

The generating process for {yi,L(Ai)} is outlined in the following steps:

1. the grouping variable yi is sampled from pY

2. given yi = y, the latent indicator Gi ∈ {1, . . . , H} is obtained
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3. following (4.9) the edges denoted as L(Ai)l for network L(Ai) are sampled from

conditionally independent Bernoulli variables given yi, h and consequently π(h).

This way, networks that are in the same mixture component h share the same probability

vector, with the probability assigned to each component being speci�c to each group.

In case of global group di�erences these mixing probabilities are di�erent across groups,

whereas these mixing probabilities are equal when no group di�erences are found.

4.1.3 Global and local testing procedures

It is then almost straightforward to uniquely de�ne global testing. Formally, the null

hypothesis will be

H0 : (ν11, . . . , νH1) = (ν12, . . . , νH2) versus H1 : (ν11, . . . , νH1) 6= (ν12, . . . , νH2)

(4.10)

This leads to a unique characterization of the global hypotheses displayed in (4.1) � (4.2).

To provide a local testing procedure, the authors make use of the model�based version

of Cramer's V proposed in Dunson and Xing (2009), that measures the association between

two variables similarly to Pearson's χ2. This results into the quantity ρ to be computed for

each pair of nodes l:

ρ2l =
2∑
y=1

1∑
al=0

{pY,L(A)(y, al)− pY(y)pL(A)(al)}2
pY(y)pL(A)(al)

=
2∑
y=1

pY(y)
1∑

al=0

{pL(A)|y(al)− pL(A)(al)}2
pL(A)(al)

(4.11)

Being ρl ∈ (0, 1), the local association is absent when ρl = 0, denoting no di�erence across

the groups in terms of edge l probabilities, and it is therefore stronger when closer to 1.

Computation of ρ is available from posteriors' derivation of the quantities of interest in the

following way:

• pL(A)|y(1) = 1− pL(A)|y(0) =
∑H

h=1 νhyπ
(h)
l

• pL(A)(1) = 1− pL(A)(0) =
∑2

y=1 pY(y)
∑H

h=1 νhyπ
(h)
l

4.1.4 Priors speci�cation and posterior derivation

Since working in a Bayesian setting, priors' distributions need to be set. The authors

specify independent priors for pY , Z, X(h), λ(h), with h = 1, . . . , H; plus, the mixture
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components νy = (ν1y, . . . , νHy), y ∈ {1, 2}, in order to induce a prior Π on the joint pmf

pY,L(A)(y,a) that leads to easy posterior derivation, allows for testing and has pro�table

asymptotic behaviour. The selected priors therefore maintain the �exibility that character-

izes the dependent mixture model. As for pY being the pmf of a categorical variable with

two levels, let pY(2) = 1− pY(1) ∼ Beta(a, b), with a and b properly chosen hyperparame-

ters. Following Durante et al. (2016), Gaussian priors are chosen for Z, as well as X(h), and

multiplicative inverse gammas for λ(h) ∼ MIG(a1, a2) for each component with a1, a2 being

hyperparameters. This choice provides a convenient adaptive shrinkage. Priors for mixtures'

probabilities are induced as follows, with v = (v1, . . . , vH) and vy = (v1y, . . . , vHy):

νy = (1− T )v + Tvy, y ∈ {1, 2} (4.12a)

v ∼ Dir(1/H, . . . , 1/H), vy ∼ Dir(1/H, . . . , 1/H) y ∈ {1, 2} (4.12b)

T ∼ Bern{pr(H1)} (4.12c)

Here T denotes the test result being T = 0 in the case of H0 and T = 1 for H1; hence,

under H1 di�erent mixture probabilities are independently generated, whereas they are

equal across groups in the H0 setting. As for the Dirichlet priors, small values are chosen in

order to allow for automatic deletion of redundant components (Rousseau and Mengersen,

2011). To get pr(H1), the full conditional for pr(T = 1|−) = pr(H1|−) = 1 − pr(H0|−) is

retrieved:

pr(H1|−) =
pr(H1)

∏2
y=1

∫
(
∏H

h=1 v
nhy

hy )dΠvy

pr(H0)
∫

(
∏H

h=1 v
nh
h )dΠv + pr(H1)

∏2
y=1

∫
(
∏H

h=1 v
nhy

hy )dΠvy

=
pr(H1)

∏2
y=1{B(α+ n̄y)/B(α)}

pr(H0)B(α+ n̄)/B(α) + pr(H1)
∏2

y=1{B(α+ n̄y)/B(α)}

(4.13)

with nhy =
∑

i:yi=y
I(Gi = h), nh =

∑n
i=1 I(Gi = h), n̄y = (n1y, . . . , n1Hy), n̄ = (n1, . . . , nH),

α = (1/H, . . . , 1/H) and B(·) being the multivariate Beta function. The second part of

(4.13) is obtained exploiting the Dirichlet�multinomial conjugacy.

Despite being an excellent setting for global testing, (4.12) is impractical to characterize

local null hypotheses H0l : ρl = 0 versus H1l : ρl 6= 0 for each l ∈ {1, . . . , V (V − 1)/2}; it
is then necessary to reformulate the hypotheses as H0l : ρl ≤ ε versus H1l : ρl > ε with ε
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usually chosen to be around 0.1. This allows for simple estimation of p̂r
(
H1l |{y,L(A)}

)
as

the proportion of Gibbs samples for which ρl > ε.

Lastly, to compute the posterior a Gibbs sampler is designed as follows:

1. pY(1) is sampled from the full conditional pY(1)|− ∼ Beta(a + n1, b + n2), being

ny =
∑n

i=1 I(yi = y).

2. update the mixture grouping variable Gi for each i = 1, . . . , n from the probabilities:

pr(Gi = h) =
νhyi

∏V (V−1)/2
l=1 (π

(h)
l )L(Ai)l(1− π(h)

l )1−L(Ai)l∑H
q=1 νqyi

∏V (V−1)/2
l=1 (π

(q)
l )L(Ai)l(1− π(q)

l )1−L(Ai)l

for h = 1, . . . , H and each π(h) characterized as in (4.9).

3. conditioning on Gi, Z,X
(h) and λ(h) for each h are updated through the use of Pólya�

gamma data augmentation scheme for Bayesian logistic regression (see note below

for details) developed in Polson et al. (2013), as detailed in Durante et al. (2016).

4. sample the testing indicator T from a Bernoulli distribution with parameter p equal

to probability (4.13).

5. based on the result of T :

• if T = 0, let νy = v for both groups, with v updated from the full conditional

Dirichlet (v1, . . . , vH)|− ∼ Dir(1/H + n1, . . . , 1/H + nH)

• else if T = 1, update each νy independently from (v1y, . . . , vHy)|− ∼ Dir(1/H +

n1y, . . . , 1/H + nHy).

Since we do not know in advance how many components H or latent space dimensions

R will be needed, these dimensions are set in the algorithm at conservative upper bounds

allowing the shrinkage priors on these quantities to adapt to the dimensions required to

characterize the observed data.

A note on Pólya�gamma data augmentation scheme

A key tool to derive the Gibbs sampler described above, is the Pólya�Gamma data

augmentation. This method was developed by Polson et al. (2013) and provides a reliable
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way to perform posterior inference in the case of Bayesian logistic regression using a data

augmentation step.

Given a binomial likelihood on yi (like in our case), with a p�dimensional input Xi and

a vector of weights β with a Gaussian prior as in (4.14)

Likelihood : yi|Xi, β ∼ Binom
(
ni, (1 + exp(−xTi β)−1

)
Prior : β ∼ N (b, B)

(4.14)

we want to sample the posterior for β. This can be done via the use of a Pólya�gamma

distributed latent variable, through these two steps:

Pólya�gamma : ωi|β ∼ PG(ni, x
T
i β)

Posterior : β|y, ω ∼ N (µω,Σω)
(4.15)

where Σω = (XTdiag(ω)X+B−1)−1 and µω = Σω(y−1Nn/2−B−1b), being 1N = 11, . . . , 1N

a N�length vector of 1s.

This is made possible by the representations of logodds�parameterized binomial likeli-

hoods in terms of mixtures of Gaussians with respect to a Pólya�gamma distribution p(ω).

With X ∼ PG(b, c), b > 0, c ∈ <:

p(ω) =
1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

with gk ∼ Γ(b, 1) being independent gamma random variables. This leads to the following

integral identity:

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω

where κ = a − b/2, ω ∼ PG(b, 0) with b > 0, and ψ = xTi β is a linear function of

predictors. Given these conditions, the integrand is the kernel of a Gaussian likelihood in

β. Moreover, the implied conditional distribution for ω given ψ, also follows the Pólya�

gamma distribution. This way, a Gibbs sampler is able to get these quantities with a

Gaussian distribution that draws for the main parameters, and the Pólya�gamma draws

for a single layer of latent variables (Polson et al., 2013).
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4.1.5 Application to passing networks

In this section the model just presented is being �t on the Golden State Warriors passing

networks and testing is performed to evaluate the di�erence between positive and negative

margin quarters, i.e. periods with a plus�minus of at least +0 in the �rst case, and at least

−1 in the second as we did in the previous chapter.

As mentioned, the case of positive/neutral and negative margin quarter networks com-

prises 104 units, with all four quarters for each game (overtimes are omitted). Also, the

networks are considered as binary and undirected with no self�loops, as the model re-

quires. To evaluate global dependence we run the Gibbs sampler as provided in Section 4

in Durante et al. (2016) for 10000 iterations and reject the �rst 2000 as burn�in to grant

satisfactory convergence. Note that because of the range of ρ being (0, 1), in case of zero

evidence of local di�erences, ρ = 0; it may look like the posterior distribution is stuck

and therefore implies high autocorrelation, but it actually is a stable indication that there

is practically no evidence of diversity across the groups. Relative convergence plots are

available in Appendix B as we assessed convergence via Potential Scale Reduction Factors

(Gelman and Rubin, 1992) and mixing via traceplots and e�ective sample sizes. The pa-

rameters H and R are both set at 10 to allow for su�cient �exibility and dimensionality

reduction in the model.

As a result, we accept the null hypothesis since the estimated posterior probability of

the alternative is p̂r
(
H1|{y,L(A)}

)
= 0.5134; although not exactly being close to 0, this

value expresses that there is no strong evidence of dependence between the groups and the

networks generating variable. Such a statement is con�rmed by the analyses on the quartiles

of ρl shown in Figure 4.1: the overall pure white color in all three frames implies that most of

the whole distribution of each ρl lies below the suggested threshold 0.1 denoting no change

in edge probability. Accordingly, Figure 4.2 does not display any stable pattern for the

computation of the di�erence between the estimated edge probabilities in the two groups.

These quantities correspond to the vectors π̄y whose elements are π̄yl = pL(A)l|y(1) =

pr{L(A)l = 1|Y = y}, for y ∈ {1, 2}, re�arranged in matrix form. In case of complete

independence, these plots would show an overall pure white coloration as the di�erence is

almost always 0; since we obtain very lightly colored representations, we con�rm the initial

conjecture of no dependence.
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Figure 4.1: Mean and quartiles of the posterior distribution of ρl for the +0/ − 1 dataset. Here
pairs of court areas identi�ed by l are arranged in matrix form.
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Figure 4.2: Mean and quartiles of the posterior distribution of π̄2 − π̄1 for the +0/ − 1 dataset.
Here pairs of court areas identi�ed by l are arranged in matrix form.

4.2 Generalizing the model for directed networks

Until now, all networks ties have been considered to be undirected, so that a connection

is made if between two areas at least one pass occurred, no matter what the direction. This

is of course a simpli�cation of reality where we know exactly from which area of the court a

certain player started the act of passing and where his teammate received the ball, implying

a direction.
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In order to do this, a new operator that vectorizes matrices into the joining of lower and

upper triangles is de�ned as V(A) = (L(A),U(A)), with L(·) being the function selecting

the lower triangle of a matrix and U(·) the upper triangle. This corresponds to the vec(·)
operator without diagonal elements. The length of this vector will be V (V − 1), being V

the number of nodes in the network, so that for a general matrix Ai:

V(Ai) = (Ai[21], Ai[31], . . . , Ai[V 1], Ai[V 2], . . . , AV (V−1), Ai[12], Ai[13], . . . , Ai[1V ], Ai[2V ], . . . , A(V−1)V )T

with Ai[uv] not necessarily equal to Ai[vu].

By replacing L(A) with V(A) we can generalize the method displayed in the previ-

ous section, with some additional adaptations and observations noted below. The indi-

cator l now maps each pair (u, v) for which u 6= v. The joint pmf is now denoted by

pY,V(A)(y,a) = pr(Y = y,V(A) = a). The data now lie in a much bigger space, since the

network con�gurations a ∈ Adir
V have 2V (V−1) possible representations instead of 2V (V−1)/2;

this is an important note as the sample space increases considerably. In our passing networks

example with just 17 nodes, this means going from |Aundir
17 | = 8.7 ·1040 to |Adir

17 | = 7.6 ·1081.

Although being both gigantic numbers, there is a sensible increased sparsity that the model

has to deal with. Similarly to (4.8) and (4.9), the model is hence de�ned via the following

equations:

pV(A)|y(a) = pr
(
V(A) = a|Y = y

)
=

H∑
h=1

νhy

V (V−1)∏
l=1

(π
(h)
l )al(1− π(h)

l )1−al

π(h) = {1 + exp(−Z−W(h))}−1, W(h) = V(X(h)Λ(h)Q(h)T )

(4.16)

where Q(h) ∈ <V xR is a matrix that allows for the di�erentiation in direction to be included

in the latent space coordinates for each node and Z has now length equal to V (V − 1).

The single l�th element of vector W(h), W
(h)
l is hence implied by:

V(X(h)Λ(h)Q(h)T )l =
R∑
r=1

Q(h)
vr λ

(h)
r X(h)

ur

With respect to priors, Q(h) follows the same speci�cation ofX(h) in Section 4.1.4, with

multivariate Gaussian priors for each row v ∈ {1, . . . , V }, for each h ∈ {1, . . . , H}. However,
the Gibbs sampler needs some adjustments. Before detailing the procedure, we de�ne two
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matrices that will be needed in the sampler to maintain conjugacy, X̄(h) = X(h)Λ(h)1/2 and

Q̄(h) = Q(h)Λ(h)1/2, so that W (h) = V(X̄(h)Q̄(h)T ). It is hence delineated below, adapting

from Section 4 in Durante et al. (2016) and 3.2 in Durante and Dunson (2016) to the

directed networks case.

1. Sample pY(1) from the full conditional:

pY(1)|− ∼ Beta(a+ n1, b+ n2), being ny =
∑n

i=1 I(yi = y)

2. Allocate vectorized networks V(Ai), i ∈ {1, . . . , n} to one out of the H mix-

ture components:

Sample the group indicator variable Gi:

pr(Gi = h|−) =
νhyi

∏V (V−1)
l=1 (π

(h)
l )V(Ai)l(1− π(h)

l )1−V(Ai)l∑H
q=1 νqyi

∏V (V−1)
l=1 (π

(q)
l )V(Ai)l(1− π(q)

l )1−V(Ai)l
, for each h ∈ {1, . . . , H}

Consequently create Binomial matrices:

Y (h) =
∑
i:Gi=h

V(Ai), for each component h

3. If a mixture component is not empty, the Pólya�gamma augmented data

is updated from the full�conditional:

ω
(h)
l |− ∼ PG

{
nh, Zl + V(X(h)Λ(h)Q(h)T )l

}
where PG is the Pólya�gamma distribution with parameters b > 0 and c ∈ <

4. For each component h, block�sample each row v of X̄ conditionally on all

other parameters and Q̄(−v), which corresponds to Q̄ without the v�th row

and viceversa for Q̄ and X̄(−v).

To do so, this step can be interpreted as a Bayesian logistic regression on Y
(h)
(v) so

that, being Ω
(h)
(v) the diagonal matrix with v − 1 elements with the corresponding

Pólya�gamma augmented data, the full conditionals are:

X̄(h)
v |− ∼ NR

{(
Q̄

(h)T
(−v)Ω

(h)
(v)Q̄

(h)
(−v) + Λ(h)−1)−1

η(h)
vX
,
(
Q̄

(h)T
(−v)Ω

(h)
(v)Q̄

(h)
(−v) + Λ(h)−1)−1}
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where η
(h)
vX = Q̄

(h)T
(−v)(Y

(h)
(v) − 1V−1nh/2−Ω

(h)
(v)Z(v)),

Q̄(h)
v |− ∼ NR

{(
X̄

(h)T
(−v) (Ω

(h)T )(v)X̄
(h)
(−v)+Λ(h)−1)−1

η(h)
vQ
,
(
X̄

(h)T
(−v) (Ω

(h)T )(v)X̄
(h)
(−v)+Λ(h)−1)−1}

where η
(h)
vQ = X̄

(h)T
(−v) ((Y

(h)T )(v) − 1V−1nh/2− (Ω(h)T )(v)(Z
T )(v)).

Particular attention has to be payed here since we have to feed the right quantities for

Y ,Z and Ω, that di�er between X̄ and Q̄ because of the directionality information

contained in the networks.

5. Update component�speci�c weight parameters for each h.

Being λ(h) ∼ MIG(a1, a2) the multiplicative inverse gamma distributed weights, de-

note λ
(h)
r =

∏r
m=1

1

ϑ
(h)
m

r = 1, . . . , R and sample ϑ(h) = (ϑ
(h)
1 , . . . , ϑ

(h)
R ):

ϑ
(h)
1 |− ∼ Γ

(
a1 + V ·R, 1 +

1

2

R∑
m=1

θ(−1)m

V∑
v=1

(X̄(h)
vm)2 +

1

2

R∑
m=1

θ(−1)m

V∑
v=1

(Q̄(h)
vm)2

)

ϑ
(h)
r≥2|− ∼ Γ

(
a1 + V · (R− r + 1), 1 +

1

2

R∑
m=1

θ(−r)m

V∑
v=1

(X̄(h)
vm)2 +

1

2

R∑
m=1

θ(−r)m

V∑
v=1

(Q̄(h)
vm)2

)
where θ

(−r)
m =

∏m
t=1,t6=r ϑ

(h)
t for r = 1, . . . , R

Since we added a new term in the model that is directly tied to Λ, Q̄ has to be

included in the calculation of these multiplicative inverse gamma weights, similarly

to X̄.

6. Update the shared similarity vector Z

Z|− ∼ NV (V−1)(µZ ,ΣZ)

where ΣZ has diagonal elements σ2
Zl

= 1/(σ−2l +
∑H

h=1 ω
(h)
l ) and µZl

= σ2
Zl
{σ−2l µl +∑H

h=1[Y
(h)
l − nh/2− ω(h)

l V(X(h)Λ(h)Q(h)T )l]} for each l.

7. Update component�speci�c edge probabilities vectors for each h:

π(h) =

(
1 + exp{−Z − V(X̄(h)Q̄(h)T )}

)−1
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8. Sample the testing indicator T from a Bernoulli distribution with param-

eter p equal to probability (4.13)

9. Update mixture probabilities vector v:

• if T = 0, let νy = v for both groups, with v updated from the full conditional

Dirichlet (v1, . . . , vH)|− ∼ Dir(1/H + n1, . . . , 1/H + nH)

• else if T = 1, update each νy independently from (v1y, . . . , vHy)|− ∼ Dir(1/H +

n1y, . . . , 1/H + nHy)

4.2.1 Simulation studies

To check the performance of the aforementioned Gibbs sampler, a set of simulations

is considered. The number of nodes V is always set at 20. For what concerns the model,

mixture components and latent space dimensions are set at H = R = 10. The study is

composed of:

1. global and local independence scenarios for populations of 50 networks equally divided

into two groups.

2. a global dependence scenario where the group di�erences are on the joint probability

mass function, but not on the edge probabilities. This simulation is based on 40

networks equally.

3. two local dependence settings where 30 edges out of 380 change across groups. In the

�rst case posterior computation conditions on 46 networks observations, while in the

second the focus is on 100 networks.

Global and local independence

For this case, we provide a simple setting where edges in the groups are generated with

about the same probabilities (only randomly jittered by 1%), with a total of 50 networks

equally divided in two groups.
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Figure 4.3: The proportion of ρl > 0.1 out of
the Gibbs samples for the global and
local independence simulation case,
with l ∈ {1, . . . , V (V − 1)}.

The model correctly rejects the alterna-

tive hypothesis H1 of dependence between

the groups and the networks generating

process with an estimated probability of

0.0847 out of 5000 Gibbs samples. All pa-

rameters granted highly satisfactory con-

vergence and mixing according to PSRF,

traceplots and e�ective sample sizes. As one

would expect in case of independence, Fig-

ure 4.3 shows an overall white color even

with a coloring scale restricted to (0, 0.1),

while ρl ∈ (0, 1) for each l. In fact, the

model is structured so that when the null

hypothesis is accepted there is no change in

the probabilities, and hence no ρ is system-

atically bigger than 0.1.

Global dependence and local independence
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Figure 4.4: The proportion of ρl > 0.1 out of the
Gibbs samples for the global depen-
dence / local independence simula-
tion case, with l ∈ {1, . . . , V (V −1)}.

For this setting we created two groups

of 20 networks each that have di�erent

joint probability mass functions, but the

edge probabilities � characterizing the

marginals � do not change across groups.

In particular, the group marked with y = 1

comprises a subset of 10 networks with

overall tie probability p1a = 0.3. The second

subset has instead networks having edges

with a tie probability p1b = 0.6. The sec-

ond group, identi�ed by y = 2, contains

20 networks characterized by edges with

a tie probability of p2 = 0.45. This way,

the generative mechanism di�ers in the two

groups, but the edge probabilities do not
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display group di�erences. The results show

that overall some changes are globally happening, as p̂r
(
H1|{y,L(A)}

)
= 0.996, but these

changes are due to higher�level variations and not to di�erences in edge probabilities across

groups, as seen in Figure 4.4; although there is a di�use sky blue coloring, no points get

close to the 90% proportion. In case of great evidence, a square would be marked as bright

red in case the proportion of Gibbs samples with a ρl > ε is greater than 0.9, with l again

addressing all pairs of di�erent nodes and ε a threshold usually chosen to be around 0.1. No

particular edge is hence being indicated as evidently di�erent across groups, consistently

with the setting of the simulation.

Global and local dependence

To assess performance of our newly proposed method in more complex scenarios, i.e.

in presence of global and local dependence, we simulate di�erent edges probability for

selected ties in the �rst and in the second group, for a total of 30 ties changing across

groups. These are accounted to be 15 per group, with a distinctive direction: for a pair of

selected nodes (u∗, v∗), p(u∗ → v∗) is high and p(v∗ → u∗) is small (→ implies a connection).

The null hypothesis is rejected following a strong evidence in favor of the alternative 0.998.

The matrix of true di�erences is presented in Figure 4.5 along with the estimated edge

probability di�erences in the two groups for the 46 and 100 networks settings. As it can

be seen from the second and third frame, probabilities are better estimated as the number

of networks increases, as common sense would suggest; this is revealed by the decreasing

amount of uncertainty (i.e. more de�ned colors for single squares where the true probability

is actually not di�erent) in these plots.

Figure 4.6 displays the true probability and estimated proportions of Gibbs samples

for which a tie shows great evidence of being di�erent in the two groups. Consistently

with what is observable for Figure 4.5, increasing the number of simulated networks also

increases precision in distinguishing the ties that truly change across groups from random

results. This trait is shown by the lighter coloring (i.e. proportion of signi�cant ρl closer to

0) of the third frame for n = 100 compared with the second one for n = 46.

4.2.2 Application to directed passing networks

After studying the performance of the newly proposed method for directed networks,

we �t the model to our passing data, that now feature the added information about the
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Figure 4.5: A comparison between the true di�erence in probabilities and the posterior means of
the estimated di�erence of probabilities for the simulations respectively with n = 46
and n = 100, with n being the number of networks simulated.
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Figure 4.6: A comparison between the true probability of ρl > 0.1, l ∈ {1, . . . , V (V − 1)} and
posterior means of the corresponding estimated proportion of the Gibbs samples for
the simulations respectively with n = 46 and n = 100, with n being the number of
networks simulated.

direction of the pass. Since the original data already had this information, the new networks

are obtained by getting the area of the court from where the act of passing started and

where the ball was received; we are still treating the tie as binary, hence an edge is 1 if in

that particular quarter at least one pass was made between area v and u (and not from u

to v).
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Consistently with previous results, no evidence in favor of H1 is found after obtaining

an estimated probability of 0.0475 in the directed ties case. Such a small value implies

that probabilities almost never change across groups in all Gibbs samples (after burn�in),

yielding a di�erence of 0. This statement is con�rmed by the complete white coloration of

the frames in Figure 4.7 (even when displaying values in a very small range). A similar result

would be displayed for the type of plot presented in Figure 4.1 that shows the distribution

of the values of ρl, as it features an overall white color for 1st and 3rd posterior quartiles

and posterior mean; it is here omitted due to redundancy.

25th quantile Posterior mean 75th quantile

−0.010

−0.005

0.000

0.005

0.010

Figure 4.7: Mean and quartiles of the posterior distribution of π̄2 − π̄1 for the +0/ − 1 directed
networks dataset. Here pairs of court areas identi�ed by l are arranged in matrix form.

Comparing this result with what was obtained for the undirected case, we could assume

that the small evidence of 0.5134 (still to be considered as no evidence) is induced by the

forcing of some ties to be reciprocal while in reality they are not. While this may hold for

passes right outside the three point line, that is between areas OUTR, OUTCR, OUTCL and

OUTL, using the tags shown in Figure 2.6, this is probably not the case for cross�side passes

(from the left side to right side with non�adjacent areas). The smaller evidence might then

be induced by the fact that while using undirected networks the tie can occur for either

connection, i.e. u→ v or v → u, contributing more to the observed ties among all quarter

networks. In the directed case these are treated separately, and in case these ties happen

a comparable amount of times, they do not di�er too much from a possible group that

has less observations for the passes between those areas. We can therefore conclude that

there is no evidence of a di�erence between the positive/neutral and negative plus�minus

quarters passing binary networks for the Golden State Warriors team.



Discussion

In this thesis project we analyzed the passing networks of an NBA team from a new

perspective, considering the connections between di�erent areas of the court. Speci�cally,

we wanted to inspect if there were di�erences in these passing networks when comparing

won and lost quarters by the Golden State Warriors. To do so, we considered the networks

to be binary and undirected. Firstly, in Chapter 3 we used single networks models (ERGM),

choosing two extreme examples for the biggest positive plus�minus and the biggest neg-

ative plus�minus quarters; secondly, we considered a latent space model that allowed to

account for all the observed networks by modeling their structure via shared latent space

representation. Chapter 4 provided a joint analysis of all networks via a Bayesian nonpara-

metric model that allows joint inference on the di�erences in these networks, treated as

undirected, between won an lost quarters. Lastly, we proposed a new method that gener-

alized Durante and Dunson (2016) to the directed case. Accordingly to the results, there

is no substantial evidence of di�erences in the passing networks for the two groups. This

result might be caused by several factors: �rst of all, there is probably no actual di�erence

in passing networks when considering edges as binary. Additionally, many factors such as

the opponent team, the current lineup for the team on o�ense, etc., might be introducing

uncertainty that we do not account for.

Although tested on win/loss group di�erences, the proposed method o�ers �exibility

in terms of which grouping variable to take into consideration. For example: di�erences in

�eld goal percentage, �eld goals made, and many others could be explored. Moreover, since

we are using court areas and not single players or positions, the analysis can potentially

be extended to inspect di�erences between two teams, or the same team in the �rst and

second part of the season (e.g. when a new coach is hired, or after important trades are

involved).

Other possible extensions involve considering batch of possessions instead of �xed time
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quarters, to better characterize all the nuances that a usual basketball game presents. This

would imply an even more intense pre�processing procedure than the one proposed in

Chapter 2, and a very precise model to recognize exactly o�ensive rebounds and extrapos-

sessions that would otherwise bias the passes' counts.

An important further development of the joint Bayesian nonparametric model would

feature the generalization to non�binary networks. This would allow the passing networks

to retain its original characterization of counts of passes happening between two areas

of the court in a quarter. Incorporating the information on weighted edges, data take

the form of multivariate counts, again with network�structured dependence (Durante and

Dunson, 2016). A possibility is represented by including latent variables in Poisson factor

models as in Dunson and Herring (2005), among others. However, the latent variable is now

responsible for both managing over�dispersion in the marginal distributions and controlling

the degree of dependence, making the problem even more complicated. Canale and Dunson

(2012) propose a solution via a rounded kernel method to better characterize the count

variables.



Appendix A

Basketball related technical terms
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Table A.1: Basketball-related terms and de�nitions used in this work.

term de�nition

alley oop a particular type of pass where the ball is thrown near the basket to a teammate
jumping towards the rim that catches the ball in the air and scores, with a
dunk or a lay-up

assist a successful pass resulting in a �eld goal or a drawn foul leading to at least one
scored free throw by the player who receives the ball

box score an o�cial table that contains points, minutes, rebounds, assists, steals ,
turnovers etc for each single player and team

bounce pass a type of pass that bounces on the �oor

chest pass a type of pass where a player starts the pass from his chest and delivers it
directly to the chest of the receiver

dunk the act of scoring the ball directly with one or two hands usually making
contact with the rim

fastbreak on o�ense, the act of trying to score the ball as fast as possible before defense
is able to recover

�eld goal a shot with the intention of scoring from anywhere in the court. It's "at-
tempted" if missed, and "made" if the shot is successful

free throw an uncontested throw attempt at the basket worth one point. It is usually result
of a drawn foul while attempting a shot or the result of a foul committed when
the o�ensive team is in the bonus (i.e. the defensive team has committed at
least 4 fouls in the quarter)

game clock the main time tracking clock. It starts at 12 each quarter (5 in the case of
overtimes) and ticks progressively whenever the ball is alive

inbound the act of passing the ball from outside the boundary lines, after a deviation
out of bounds, a turnover or a made basket. The game clock restarts only when
the player actually receives the ball (a touch is su�cient).

lob a slow, high-arching pass, performed in order to avoid the defense usually in
the post positions

play-by-play the collection of relevant events of the game in temporal order, with information
on things such as the players involved, the game clock time, the progressive
score etc

rebound the act of collecting the ball after a missed shot in the defensive or o�ensive
end

shot clock a secondary clock that limits the time that teams are allowed to take shots
in. It starts at 24 and is reset each time a new team gets possession, or an
o�ensive rebound is collected after the shot has touched the rim

rim the orange-colored metallic part of the basket, to which a net is attached

steal the act of stealing the ball actively

three-point line a circular line whose distance from the basket varies from 22 (in the corners)
to 23.75 feet (everywhere else)

transition the act of moving up the court after a team has just gained possession and the
other squad has not established positions

turnover an action that ends up in losing possession. The following fall under this cate-
gory: bad pass, mishandle, 24-seconds violation, 8-seconds violation, 5-seconds
violation, 3-seconds violation, traveling, carrying, palming, o�ensive foul

violation an infraction of the rules
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Figure B.1: Traceplots for 9 randomly selected ρl, l ∈ {1, . . . , 136} for the undirected data. After
burn�in, the chain is divided in 4 parts which are being compared.
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Figure B.2: Potential Scale Reduction Factors for π̄1l , l ∈ {1, . . . , 136} for the undirected data.
Values below 1.15 grant satisfactory convergence.
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Figure B.3: Potential Scale Reduction Factors for π̄2l , l ∈ {1, . . . , 136} for the undirected data.
Values below 1.15 grant satisfactory convergence.
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Figure B.4: Potential Scale Reduction Factors for ρl, l ∈ {1, . . . , 136} for the undirected data.
Values below 1.15 grant satisfactory convergence.
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Figure C.1: Traceplots for 9 randomly selected ρl, l ∈ {1, . . . , 272} for the directed data. After
burn�in, the chain is divided in 4 parts which are being compared.
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Figure C.2: Potential Scale Reduction Factors for π̄1l , l ∈ {1, . . . , 272} for the directed data.
Values below 1.15 grant satisfactory convergence.
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Figure C.3: Potential Scale Reduction Factors for π̄2l , l ∈ {1, . . . , 272} for the directed data.
Values below 1.15 grant satisfactory convergence.
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Figure C.4: Potential Scale Reduction Factors for ρl, l ∈ {1, . . . , 272} for the directed data. Values
below 1.15 grant satisfactory convergence.
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