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Abstract

The relentless surge in human-AI interaction in recent years has propelled
Natural Language Processing (NLP) and Computer Vision (CV) to the forefront
of this transformative evolution. The advent of LLMs in the former field has rev-
olutionized the global landscape, while the latter remains a pivotal component
in the ongoing pursuit of automating diverse aspects of our daily lives.

This thesis delves into the exploration of the Vision Language (VL) field,
tracing its evolution from inception and subsequently narrowing its focus to
specific aspects. Specifically chosen for its simplicity and demonstrated compet-
itive results, the ViLT model serves as the starting point for conducting tests and
experiments. The primary aim is to reveal the intricate relationship between
words and images.

The analysis extensively delves into the model, subjecting it to rigorous test-
ing across key downstream tasks characteristic of VLMs. The central focus of
this research involves a comprehensive examination of challenges impacting the
model, with a particular emphasis on the object counting task. Various tech-
niques are employed in the proposed solutions, including leveraging datasets,
modifying phrases to generate new instances, utilizing a zero-shot segmenter
to enhance the model’s inference, adapting the model’s input reception using
a Convolutional Neural Network (CNN) for improved feature extraction, and
culminating in the implementation of an advanced training technique. Each of
these aspects serves as a topic for discussion.

This dissertation serves as a key reference for discussions and further ex-
ploration within the VL domain. It stands as a comprehensive investigation,
highlighting the intricacies of the field by uncovering diverse challenges and
possibilities derived from various obtained results. The findings contribute not
only to the comprehension of potential issues in the VL domain but also lay
the foundation for subsequent investigations and advancements in this evolving
field.





Sommario

L’incessante aumento dell’interazione uomo-IA negli ultimi anni ha spinto il
Natural Language Processing (NLP) e la Computer Vision (CV) in prima linea
in questa evoluzione trasformativa. L’avvento dei LLM nel primo campo ha
rivoluzionato il panorama globale, mentre il secondo rimane una componente
fondamentale nella continua ricerca di automatizzare diversi aspetti della nostra
vita quotidiana.

Questa tesi si addentra nell’esplorazione del campo della VL, tracciandone
l’evoluzione fin dall’inizio e restringendo successivamente l’attenzione ad as-
petti specifici. Scelto appositamente per la sua semplicità e per i risultati com-
petitivi dimostrati, il modello ViLT serve come punto di partenza per condurre
test ed esperimenti. L’obiettivo principale è quello di rivelare l’intricata relazione
tra parole e immagini.

L’analisi approfondisce ampiamente il modello, sottoponendolo a test rig-
orosi su compiti chiave caratteristici dei VLM. L’obiettivo centrale di questa
ricerca è l’esame completo delle sfide che il modello deve affrontare, con parti-
colare attenzione al compito di conteggio degli oggetti. Le soluzioni proposte
utilizzano diverse tecniche, tra cui lo sfruttamento di dataset, la modifica di frasi
per generare nuove istanze, l’utilizzo di un segmentatore zero-shot per miglio-
rare l’inferenza del modello, l’adattamento della ricezione di input del modello
utilizzando una CNN per migliorare l’estrazione delle feature e culminando
nell’implementazione di una tecnica di addestramento avanzata. Ognuno di
questi aspetti costituisce un argomento di discussione.

La presente dissertazione costituisce un riferimento fondamentale per le dis-
cussioni e le ulteriori esplorazioni nell’ambito della VL. Si tratta di un’indagine
completa, che mette in luce le complessità del campo scoprendo diverse sfide e
possibilità derivanti dai vari risultati ottenuti. I risultati contribuiscono non solo
alla comprensione di potenziali problemi nel dominio VL, ma gettano anche le
basi per successive indagini e progressi in questo campo in evoluzione.
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1
Introduction

1.1 Motivations

In the dynamic landscape of modern AI, transformative technologies con-
tinue to reshape the way people interact with technology, especially with its
novel generative aspect. Technologies such as Large Language Models (LLMs)
for text generation or diffusion models for image generation play a central role
in this ongoing revolution. As we move towards an era where artificial intelli-
gence seamlessly integrates into our daily lives, a significant transformation is
underway. This transformation is driving human-machine interaction towards
a harmonious symbiosis that promises to redefine our technological landscape.

This paradigm shift towards increased reliance on machines is already evi-
dent in various aspects of work and daily activities. The rapid evolution of AI
technologies, such as the remarkable progress of medical diagnostics through
image recognition and the nuanced understanding of human language, is fu-
eling a growing dependence on digital tools. As society adapts to this techno-
logical surge, exploring new avenues for the continued evolution of AI becomes
imperative.

The frontier of artificial intelligence has witnessed a wave of attention and
enthusiasm for multimodality on a global scale. Multimodal models, capable
of navigating and comprehending various types of information, represent a
significant advancement in the field. Among the various types of multimodality,
the combination of text and image stands out prominently, immediately raises
thoughts of a hypothetical futuristic AI.

1



1.2. HISTORY OF VISION LANGUAGE

NLP and CV have consistently been focused on grasping the broader context.
NLP specializes in comprehending human language, parsing words, sentences,
and documents. On the other hand, CV concentrates on interpreting visual
information by analyzing pixels in images or videos. Both fields play pivotal
roles in extracting valuable insights from their unique modalities. The synergy
of these two fields enhances the AI’s understanding, enabling individuals to
reason within a broader framework. The impressive capabilities of LLMs, which
provide access to the AI’s “voice”, are now also equipped with the perceptual
ability of “sight”.

This thesis focuses on investigating the collaboration between images and
text in multimodal models and its potential applications. The research aims
to contribute to the evolving landscape of multimodal AI systems by exploring
the dynamic interplay between textual and visual information. The goal is to
uncover the practical implications of image-text collaboration, paving the way
for machines to easily understand the complicated process of human communi-
cation.

1.2 History of Vision Language

Drawing from the insights of Li et al. [21], this introduction contains the
path of evolution of the VL field. Spanning from its origins to contemporary
developments, key advancements are outlined, offering a concise overview of
VL’s transformative journey.

1.2.1 First steps

The period between 2014 and 2018 saw the beginning of the collaboration
between Vision and Language. During this phase, early methods were devel-
oped to address specific tasks by computing global features for both modalities.
These methods utilized datasets that emerged for the first time. Some of these
datasets, like the VQA dataset [3], persist in their utility for testing and training
current models. Notably, this dataset, introduced in 2015, underwent a version
update in 2017 [10], with its development team presenting challenges until 2021.

With this background established, a brief introduction and a illustrative
example of an early solution to the task are presented.

2



CHAPTER 1. INTRODUCTION

Visual Question Answering

The VQA task consists of an image paired with a question in natural lan-
guage. Typically, most models approach VQA as a classification task. The
original VQA dataset paper [3] introduced an approach employing an Long
Short-Term Memory (LSTM) for text component embeddings and the final layer
of the VGG-Net as a visual embedder. This method involved aligning the image
embedding size with the text counterparts via a Fully Connected (FC) Layer,
followed by fusion through a straightforward element-wise multiplication of
the two modalities. Ultimately, classification was executed using an Multilayer
Perceptron (MLP) with two hidden layers.

Figure 1.1: Example of instances from VQA dataset.

1.2.2 Vision language joint representation

Inspired by the good performances of both vision and language models, in
2018 the pre-training and fine-tuning paradigm landed in the VL field, officially
starting the Vision Language Pre-training (VLP) era.

One of the most groundbreaking innovations in recent years is the trans-
former, as developed by Vaswani et al. [40]. With its simple yet highly effective
design, this technology has played a pivotal role in creating more powerful
language models, thereby completely transforming the field of NLP.

The key feature of the transformer lies in its self-attention mechanism, al-
lowing the model to consider every part of the input sequence. This mecha-
nism assigns individual weights to each word during predictions. By stacking
multiple transformers on top of each other, the model establishes meaningful

3



1.2. HISTORY OF VISION LANGUAGE

connections between tokens, extracting increasingly deeper information as it
progresses through the layers. Each layer’s output serves as a representation
of the original tokens, and the depth of the layer corresponds to the level of
abstraction or complexity in the features captured. In essence, the deeper the
layer, the higher level are the features captured in the representation of the input
sequence.

Models based on transformers leverage pre-training on large corpora1 to
learn general language representations that can be fine-tuned for specific tasks.
This contributes to their adaptability and high performance across various NLP
applications.

One of the earliest applications of the transformer architecture is Bidirectional
Encoder Representations from Transformers (BERT), introduced by Devlin et
al. [8]. BERT innovatively introduced a novel task enabling bidirectional com-
munication between each token and others in the sequence. This task, known
as Masked Language Modeling (MLM), involves replacing certain tokens with a
special [MASK] placeholder, which is then predicted using only the information
from the surrounding non-masked tokens. This non-supervised training ap-
proach is a key strength of BERT, making it one of the first foundation models2.

Inspired by language models, VLP models adopt similar training, with the
additional of having two kind of information to distinguish and to make com-
municate. In this regard, the methods for achieving this goal will be explored
in depth, analyzing the main approaches that VLP models have used.

Modality embedding

Text As in NLP field, the analysis of text often involves the essential steps
of tokenization and embedding. Tokenization aims to break down text into
manageable units for analysis, and in this process, simplicity is maintained by
adopting subword tokenization instead of treating each word as an individual
token.

This approach, as proposed by Sennrich et al. [33], leverages Byte Pair Encod-
ing (BPE), resulting in a more contained dictionary. This proves advantageous,
particularly in handling words that may not frequently appear in the dataset.

1Organized collection of texts or spoken language data
2Pre-trained neural network models that is used as starting point for many machine learning

downstream tasks
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CHAPTER 1. INTRODUCTION

After obtaining the dictionary of tokens an embedding is assigned to each of
them. Most of the times embeddings comes from pre-trained BERT [8].

Visual Following the trend in text processing, images also require tokenization
to assign them embeddings. However, this process is complex, particularly
given the typical three-color two-dimensional channel structure. Below, we will
describe the primary solution that has been adopted over the years.

1. CNN features:
CNNs have been and continue to be instrumental in extracting visual
features. Two primary methods can be identified. Grid features involve
applying a convolutional feature extractor over an image to obtain its
characteristics.
On the other hand, Region features are extracted using a pre-trained object
detector, utilizing detections to identify both the position and “class” of
the identified area.

2. Patch features:
Simpler than their CNN-derived counterparts, Patch features involve di-
viding images into patches, followed by a straightforward linear projection.
This method, initially introduced by Dosovitskiy et al. in Vision Trans-
former (ViT) [9], offers a significant efficiency advantage. By bypassing
the need for a CNN, computation time is markedly improved.

Building upon this process, additional positional and modality embeddings
are added. Positional embeddings are essential for comprehending the spatial
interactions between words or visual tokens, while modality embeddings serve
to distinguish the type of data being processed.

Modality fusion

In this section of the model, a distinctive departure from the early Visual
Language Model (VLM) approaches becomes evident. Here, the model estab-
lishes the logical connections between words and visual features, creating a
bridge between the two domains. Two main different type of interaction can be
distinguished.

1. Dual stream:
The two modalities of data are managed separately, with two dedicated
encoders used to learn the embeddings for later feeding into the top layers.
One advantage of this fusion type is that modality management can be
adaptive. The final result can be improved by allowing interaction between
the two encoders.
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1.2. HISTORY OF VISION LANGUAGE

2. Single stream:
Most VLP models use this modality interaction to learn a joint represen-
tation of the input. The sequence of tokens is concatenated and fed into
a series of transformers to compute the representation, learning single-
modality and cross-modality representations without complicating the
architecture with bridges between two encoders.

Training

As happened in NLP, some tasks became the standard choice for the pre-
training of VLMs. More specifically, we can identify three losses that better
achieve the goal of achieving a joint representation between textual and visual
data.

Image Text Matching (ITM) The goal of the ITM task is to determine whether
an image and a text pair are matched. One way to frame ITM involves treating it
as a binary categorization task. Past studies have employed a sigmoid function
on the [CLS] token output to predict if the input image and text are a match.

ℒITM = −𝐸(𝑊,𝑉)∼𝒟 log Pr
(
𝑦 |𝑊,𝑉

)
(1.1)

with 𝑊 and 𝑉 representing a sequence of text tokens and a sequence of visual
tokens, 𝑦 can be 0 or 1 depending if the pair is matched or not.

Masked Language Modeling (MLM) The model is encouraged to learn the im-
plicit relationship between linguistic tokens and visual content by using MLM.
The objective is to use the visual contents and known language tokens to recon-
struct the masked language tokens.

ℒMLM = −𝐸(𝑊,𝑉)∼𝒟 log Pr
(
𝑤𝑖 |𝑊\𝑖 , 𝑉

)
(1.2)

with𝑊\𝑖 representing the sentence without the 𝑖-th word. Note that subword to-
kenisation could mask individual subword tokens, which is conceptually wrong:
a subword can be reconstructed from the other subwords, which together form
a complete word. Masked tokens represent a whole word, achieving the goal of
creating connection between modalities.
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CHAPTER 1. INTRODUCTION

Masked Vision Modeling (MVM) Following along the lines of MLM, acMVM
aims to reconstruct masked visual regions. There are several way to perform
MVM but the most straightforward is Masked Region Prediction (MRP), whose
goal is to predict the features of a region extracted by an object detector.

ℒMRP =
𝑀∑
𝑖=1




ℎ 𝑖𝜃 − 𝑟
(
𝑣 𝑖𝑚

)


2

2
(1.3)

where vm represents the masked regions and ℎ 𝑖𝜃 is the prediction of the 𝑖-th
region after a Region of Interest (RoI) pooling. Reconstructing a missing word
demands a rich understanding, while reconstructing a visual region requires
only knowledge of its visual neighbors, without the necessity for cross-modality.

Although methods for MVM exist and are well-established, research in-
dicates that the MVM task yields marginal additional improvements to VLP
models. Other studies confirmed that the main focus falls on the textual part
instead of exploiting cross-modality.

Vision and Language BERT (ViLBERT)

The ViLBERT model, proposed by Lu et al. [26], much like many other VLP
models, draws heavy inspiration from BERT [8]. Positioned within the dual-
stream category, its primary structure comprises two BERT-like transformer
streams designed to handle text and image. The authors introduce some modi-
fications to facilitate modality interaction.

Figure 1.2: Co-attentional transformer block.
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1.2. HISTORY OF VISION LANGUAGE

The Co-attentional Transformer, depicted in Figure 1.2, is introduced, the
idea behind it is to pass the Key and the Value matrices of each modality to the
other one, creating image-conditioned text features and text-conditioned visual
features.

To obtain the embeddings that will later feed the co-attentional streams text
and image undergo an initial phase of information extraction. Image features
are obtained using an pre-trained object detector, positional embedding is then
added exploiting the bounding box and the segmentation. A special [IMG]
token marks the start of the visual region sequence.

Text is treated as in a standard BERT, but before entering the co-attentional
streams it is first passed through a series of classic transformers to match the
amount of information that the visual features already gathered.

The pre-training process uses Masked Multimodal Modelling, i.e. MLM and
MVM applied simultaneously, and ITM task.

UNiversal Image-TExt Representation Learning (UNITER)

UNITER, by Chen et al. [5], followed the route of single stream models. The
architecture is straightforward. After computing the embedding for the image
and text, they are concatenated and fed into a series of standard transformers.

CNN extracts visual features in the form of pooled RoI for each region.
Spatial information is also encoded in a vector. These two are then passed
through their own fully connected layers. After summing the two outputs,
they are passed into a Layer Normalization (LN) layer to obtain the final visual
embedding. For the text embedding, BERT is followed, the sentence is tokenized
and then summed with the position embedding to be passed into a LN layer.

For the pre-training MLM, MVM, ITM and Word-Region Alignment are
used. In the latter approach, the model compares each visual token with each
textual token to identify the most suitable pairing

1.2.3 Future of field

In contrast to the field of LLM, which leverages extensive data from diverse
sources such as the internet, books, and articles, VLP models rely on well-
labeled data to establish a robust cross-modality alignment. The effectiveness
of an LLM is closely tied to the quantity of data encountered during the pre-
training phase. Conceptual Captions is the largest dataset used for VLM pre-
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training, comprising three million image-text pairs. However, datasets of this
size are still small compared to LLM pre-training datasets. To achieve enhanced
generalization, it is necessary to take inspiration from these insights.

CLIP

CLIP, as introduced by Radford et al. [31], marked a breakthrough by suc-
cessfully leveraging weakly-labeled data gathered from the internet, 400 million
instances in total. In addition to the classic transformer embedder for the text,
CLIP utilised a ViT for its visual component.

Its key innovation and strength, though, lie in the application of a contrastive
objective: when presented with a batch of 𝑁 (text, image) pairs, CLIP trains to
predict the actual positive matches from the 𝑁×𝑁 possibilities. This is achieved
by developing a multi-modal embedding space, wherein the image and text
encoders are trained to maximize the cosine similarity for the 𝑁 true pairings
and minimize it for the remaining 𝑁2 − 𝑁 pairings.

After pre-training, CLIP demonstrates optimal capacity in ITM. However,
the model is only specialised in this specific task.

1.3 ViLT

Among the multitude of models, Vision and Language Transformer (ViLT),
developed by Kim et al. [17], is a single stream VLP model that achieves com-
petitive results with light computational resources. Its simplicity is found in the
architecture, ViLT completely removes the CNN from its pipeline, achieving a
computational time of one tenth with respect to a model of its size.

1.3.1 ViLT architecture

As illustrated in Figure 1.3, the categorization of VLP models by the author of
ViLT involves four classes. The first category represents the early methods used
to solve the first problems in the field. CLIP [31] can be placed in the second
category, using two robust transformer embedders, but the interaction phase
remains relatively shallow. Both ViLBERT [26] and UNITER [5] fall into the
third category, employing substantial visual embedders along with a substantial
interaction block.
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1.3. VILT

Figure 1.3: Four categories of VLP models.

Contrastingly, ViLT is distinct as the first model to focus entirely on the
modality interaction phase, belonging to the forth category, simplifying modal-
ity embeddings as much as possible.

In the textual domain, the model follows the BERT [8] approach, where sen-
tences are tokenized, and each sub-token receives its embedding from a lookup
table. On the visual side, embeddings are derived through patch embeddings,
utilizing a linear projection that simplifies the computation of embeddings to
the text level.

Embeddings

Normalization

Multi-Head Attention

K QV

Normalization

Feed Forward

(a) Transformer block

Embeddings

Multi-Head Attention

Normalization

K QV

MLP

Normalization

(b) ViT block

Figure 1.4: Comparing Transformer and ViT.

A main difference from classical VLP is the use of pre-trained ViT [9], patch
size of 32, instead of BERT for the interaction module. Below, model equations
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are reported.

𝑡 = [𝑡class; 𝑡1𝑇; ...; 𝑡𝐿𝑇] + 𝑇pos (1.4)

𝑣 = [𝑣class; 𝑣1𝑉 ; ...; 𝑣𝑁𝑉] +𝑉pos (1.5)

𝑧0 =
[
𝑡 + 𝑡type, 𝑣 + 𝑣type] (1.6)

𝑧̂𝑑 = 𝑀𝑆𝐴
(
𝐿𝑁

(
𝑧𝑑−1

))
+ 𝑧𝑑−1, 𝑑 = 1, ..., 𝐷 (1.7)

𝑧𝑑 = 𝑀𝐿𝑃
(
𝐿𝑁

(
𝑧̂𝑑
))

+ 𝑧̂𝑑 , 𝑑 = 1, ..., 𝐷 (1.8)

𝑝 = tanh
(
𝑧𝐷0 𝑊pool

)
(1.9)

As can be seen in figure 1.4, a main difference of ViT from standard trans-
former is the position of the normalization, that comes before the Multiheaded
Self Attention (MSA) and the Feed Forward (FF)/Multilayer Perceptron (MLP).

1.3.2 Pre-training

ViLT, like many other models, undergoes pre-training to establish the link
between textual and visual features. The two tasks chosen are the ITM, which,
as will be seen in a moment, comes with a twist, and the MLM. The dataset used
are Microsoft COCO (MSCOCO) [23], Visual Genome (VG) [20], SBU Caption
(SBU) [28] and Google Conceptual Captions (GCC) [35].

Image Text Matching

For each text-image pair, the associated image is replaced with a random
image from the dataset with a probability of 50%. A simple single linear layer is
used to compute the binary logits3 of the instance. The negative log likelihood
is computed as the ITM loss.

Inspired by UNITER [5], word region alignment is taken into consideration.
The Wasserstein distance is computed using Inexact Proximal Point for Optimal
Transport (IPOT) [43] and later multiplied by 0.1 before being added to the ITM
loss.

3Vector of raw (unnormalized) predictions
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1.3. VILT

Masked Language Modeling

The objective is to predict masked text tokens 𝑡masked from vector 𝑧𝐷masked |𝑡 . To
avoid predicting a token based on its neighbours alone, whole word masking is
employed along with visual information. Words are masked with a probability
of 15%.

Based on 𝑧𝐷masked |𝑡 , the two-layer MLP is used to obtain logits over the vo-
cabulary for each token. The loss function for MLM is calculated by taking the
negative log-likelihood of the masked tokens.

1.3.3 Implementation

The author of ViLT has made available the original model in their Github
repository4. Although the instructions to repeat the different experiments are
clear, for this thesis the implementation of ViLT made by Hugging Face is cho-
sen5.

The decision was made with available resources in mind; not having a dedi-
cated machine, but using a shared cluster6, it was easier and simpler to rely on
Hugging Face’s Transformers library. In addition, as part of the Hugging Face
ecosystem, the Transformers library makes it easy to interact with other models
or methods and to find help.

When working with batches of data, models require inputs of the same size.
It is important to note that sentences and images may not always have equal
lengths, particularly after being tokenized. In the NLP field, to overcome this,
[PAD] tokens are used. They add length to the token to match the maximum
token sequence length in the batch (or a fixed size). An attention mask is
used to determine which tokens to consider. Following this approach, a similar
technique is applied to images by padding them to the maximum size in the
batch instead of resizing them to achieve uniformity. They are then associated
with an attention pixel mask to indicate which part of the image needs to be
considered.

Each experiment followed the original setup. The AdamW optimizer [25]
was used with a base learning rate of 10−4 and a weight decay of 10−2. To

4https://github.com/dandelin/ViLT
5https://huggingface.co/docs/transformers/model_doc/vilt
6Blade computing cluster: https://www.dei.unipd.it/bladecluster
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CHAPTER 1. INTRODUCTION

avoid early overfitting, the learning rate underwent a warming-up phase during
the initial 10% of total training steps, followed by a linear decay to zero for
the remaining training duration. For all downstream tasks tested, the training
duration was set to 10 epochs, with some experiments varying this.

The original implementation employs RandAug, a preprocessing technique
introduced by Cubuk et al. [7], in both training stages (pre-training and fine-
tuning). According to the author, image preprocessing slightly enhances gen-
eralization during inference. However, in this thesis, image preprocessing has
been omitted form training to simplify computation and maintain a straightfor-
ward association between text and image. Another deviation from the original
work lies in the batch sizes used, as limited computing resources force the use
of smaller dimensions than those given in the paper.
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2
The Counting Problem

Using the particular NLVR2 dataset, the first experiment on ViLT is per-
formed in this chapter. The feasibility of using the model is defined by fine-
tuning it on the same task as in the original work, with similar results. Addi-
tionally, the task provides an important route to follow, as error analysis reveals
a common trend of errors, particularly in the counting task. This recurring
challenge throughout the work provides a useful opportunity to test various
techniques aimed at improving the model’s performance.

2.1 NLVR2

Before embarking on ViLT experiments, the initial step was to assess the
feasibility of conducting tests within a different environment. In this disserta-
tion, the ViLT architecture was used, maintaining consistency with the original
work, but implemented in a distinct library. While the theoretical expectation is
for similar functionality, the assumption remains that the correctness of the test
may not be verified in this different environment. To test this hypothesis, it is
necessary to replicate the experiments.

The initial experiment selected focused on the Natural Language for Visual
Reasoning for Real (NLVR2) dataset, chosen for its particular characteristics, as
described in subsequent sections. The task involves evaluating the correctness
of a statements associated with a pair of images. Reasoning over a pair of related
images introduces an additional layer of complexity to the task.
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2.1. NLVR2

2.1.1 Origin of dataset

The VL field has witnessed the establishment of foundational datasets crucial
for evaluating models and algorithms. Among the initial datasets proposed, the
NLVR dataset, curated by Suhr et al. [37], stands out. While most other datasets
follow a standard format comprising text, image, and correct output, NLVR
stands out due to its unique setting.

Each instance within the NLVR dataset features a single image divided into
three distinct boxes, accompanied by an associated sentence. Notably, the im-
ages in NLVR are synthetically generated, constructed through the introduction
of geometric figures with various colors and positions, a process facilitated by
computer algorithms. The accompanying sentences, crucial for task compre-
hension, are provided through human annotators, creating a dynamic interplay
between automated image generation and human linguistic input.

The primary objective of the task set by NLVR is to predict the truth or
falsity of a given statement based on the corresponding images. The inherent
division into boxes necessitates models to engage in intricate reasoning, both
within individual boxes and across them. This distinctive structure deviates
from the conventional task involving a single image and the associated text,
which increase the complexity of the model’s cognitive processes.

Figure 2.1: Example of instance of NLVR dataset.

While the NLVR dataset’s synthetic images serve as a valuable resource,
their inherent limitation lies in constraining the language used to describe them.
Using a limited dictionary in the related sentences, the strict necessity to describe
synthetic images may inadvertently lead to a degradation in models’ language
capability. This problem, combined with the growing need for systems capable
of intricate reasoning in complex environments, has driven advances in dataset
design.

In response to these considerations, the NLVR2 dataset, as introduced by
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Suhr et al. [36], represents a significant upgrade. One improvement lies in
the use of real-world images, transforming the task while maintaining its core
objective. Unlike NLVR, each statement in NLVR2 is now associated with two
separate real images, introducing an increased level of complexity.

The use of real-world images in NLVR2 not only enhances reasoning capabil-
ities but also substantially enriches the textual vocabulary. Compared to NLVR,
NLVR2 exhibits a significant increase in vocabulary, featuring 7457 word types
as opposed to 262. These improvements highlight the dataset’s progress in pre-
senting a more diverse and sophisticated set of visual stimuli while providing a
broader linguistic context, contributing to a more comprehensive evaluation of
models.

Figure 2.2: Example of instance of NLVR2 dataset.

2.1.2 Experiments

As stated in the introduction, the NLVR2 dataset was specifically chosen
for its unique task, requiring models to utilize their full reasoning capabilities.
The task of understanding two images together is more challenging than under-
standing a single image alone. Some models may struggle with this task due to
their design limitations.

To address this, ViLT introduces a reformulation of the problem by creating
two pairs: (question, image1) and (question, image2). Each pair is processed by
the model, and the pooled output of both pairs is concatenated and subsequently
passed to the prediction head.

The NLVR2 dataset was used to fine-tune the model and evaluate the repli-
cability of the results. As detailed in Section 1.3.3, the implementation in this
thesis deviates from the original work. Beyond the reported differences, for
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this task, all images are resized to a fixed dimension due to an issue with the
padding system. For instance, future task will not suffer from this problem. The
cross-entropy loss is used.

With all of these considerations in mind, evaluation of the original weights
and thesis weights are evaluated on different metrics

• Accuracy: measures the overall correctness of the model by calculating the
ratio of correctly predicted instances to the total instances.

• True Positive Rate (TPR): also known as sensitivity, measures the propor-
tion of correctly identified actual positive instances by the model.

• False Positive Rate (FPR): this metric measures the proportion of actual
negative instances that are incorrectly classified as positive by the model.

• Area Under ROC Curve (AUC-ROC): evaluates a model’s ability to distin-
guish between classes by measuring the area under the Receiver Operating
Characteristic (ROC) curve. The ROC curve plots the trade-off between
TPR and FPR at various thresholds.

Evaluations are reported below:

Evaluation Metric Original Work Thesis

Accuracy (%) 74.81 73.25
True Positive Rate (%) 74.93 71.38
False Positive Rate (%) 25.32 24.83
AUC-ROC 0.83 0.81

Table 2.1: NLVR2 Comparison Table.

While the fine-tuning process in this thesis deviates somewhat from the
methodology outlined in the paper, the results, as illustrated in Table 2.1, demon-
strate comparable performance. Notably, the AUC-ROC value remains almost
unchanged. An AUC-ROC above 0.8 is generally considered indicative of a good
classifier, with 1 representing a perfect classifier and 0.5 suggesting randomness.
This consistency validates the viability of the adapted setup.

It is important to clarify that the primary objective of this thesis is not to
push the boundaries of the current State Of The Art (SOTA). Instead, the focus
is on improving the obtained results in terms of absolute values, aiming for a
meaningful improvement within the established framework.
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2.1.3 Errors

ViLT demonstrates a solid performance on the NLVR2 task, showcasing
that its lightweight structure can be leveraged with minimal drawbacks. Post
fine-tuning, the model can handle diverse scenarios, ranging from instances
involving multiple subjects, as illustrated in Figure 2.3a, to situations requiring
nuanced reasoning about two images either jointly or separately, as shown in
Figure 2.3b. ViLT performs consistently and effectively across a range of non-
trivial challenges.

Associated Text: In each image, a circular bunch of green 
bananas is growing on a tree, with a large red bloom growing 

on the stock below them.

Predicted: True

(a) Complex description.

Associated Text: The right image contains one human 
interacting with one dog.


Predicted: False

(b) Distinguishing images.

Figure 2.3: Example of correct predictions.

While the achieved results by this model are commendable given its compact
size, it is important to acknowledge its imperfections. Apart from cases where
the model struggles with unfamiliar words, there are significant errors that offer
valuable insights. Upon analysis, recurring patterns in these errors become
apparent and will be discussed in the following sections.

Object’s attributes

ViLT exhibits challenges when confronted with intricate and detailed object
descriptions, particularly when referring to small details in the photo. This
difficulty is illustrated in Figure 2.4, where the model struggles to comprehend
the specified description. This issue may be related to the model’s pre-training
phase, which does not ensure the necessary text-visual connections, or to the
ViT architecture, which may not extract appropriate features.
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Associated Text: The bananas do not have a produce sticker 
on them.


Predicted: False

(a) Confusion.

Associated Text: A lock has a circle with in a circle on the 
front.


Predicted: False

(b) Not understanding.

Figure 2.4: Example of wrong predictions with specific details description.

Complex description

Errors may arise in images with lengthy descriptions, particularly when ex-
ceeding the average length in the dataset. The attention mechanism in the con-
strained architecture may have difficulty processing extensive details. Another
source of potential confusion could arise from the use of uncommon terms or
compound words that have been rarely encountered during the training phases.

Associated Text: The left image features an older chimp 
with two younger pink-faced chimps, and the right image 

features two similar-sized apes posed sitting close together.

Predicted: False

Figure 2.5: Example of wrong prediction with complex description.

Counting error

An issue that will be consistently addressed throughout the thesis is inaccu-
rate counting. When faced with a sentence involving a numeric description, the
model does not behave properly and gets it wrong. This issue can occur with
both simple and complex images, as seen in Figure 2.6.
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Associated Text: The left image contains one lock with two 
keys.


Predicted: False

(a) Clearly distinguishable objects.

Associated Text: The right image contains exactly one blue 
parrot.


Predicted: True

(b) Not detecting correctly.

Figure 2.6: Example of wrong predictions in counting descriptions.

2.2 Counting in VLM

As documented in the literature, VLMs, including ViLT, often encounter dif-
ficulties in compositional reasoning between objects, as emphasized by Thrush
et al. [38]. The aforementioned errors are frequently linked to this challenge.
Specifically, when tasked with providing detailed descriptions or discussing
specific aspects of a subject, ViLT may struggle to establish the necessary rela-
tionships. The counting task, in particular, is significantly affected by this issue,
requiring robust connections between identified subjects and the numbers de-
scribed in the sentence.

Paiss et al. [29] addressed the counting problem with CLIP, offering insights
into potential reasons for this issue. While the methods discussed in their work
are not directly applicable to this thesis, as CLIP employs a distinct training
approach, the authors’ analysis provides valuable context for understanding
the existence of the counting problem.

Several challenges contribute to the counting problem, primarily due to the
nature of the training datasets. Instances that explicitly specify the precise num-
ber of occurrences are rare, with descriptors like “many” or “a few” commonly
used when referring to quantities. Furthermore, correlating the number of ob-
jects in the image with the number mentioned in the text may not be relevant for
the model. In essence, alternative features may offer more informative results
to better accomplish the specific counting task.

The fact that these challenges continue to exist in CLIP, a model that was
trained on a significantly larger dataset, highlights the seriousness of the prob-
lem. Even with access to an extensive training corpus, the intrinsic difficulties
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in the counting task persist. Furthermore, the absence of instances with ex-
plicit counts in the well-labelled datasets used for training ViLT amplify the
significance of the challenge.

2.2.1 Other approaches

Counting objects in images is not a new concept in CV. Starting with clas-
sic CV techniques such as edge detection and morphological operations, and
transitioning to deep learning, CNNs became the preferred method. Trained on
datasets with object-wise labels, CNNs can learn to extract features associated
with the object and effectively count it.

Recently, transformer-based architectures for counting have emerged. These
models cannot be defined as VLMs due to their training; they are trained only
for that specific task, skipping the creation of a broader “real world” knowledge.
However, they do incorporate components from previously encountered mod-
els. The topology that is most similar, but not necessarily the most efficient, is
CounTX, by Amini-Naieni et al. [2].

The CounTX architecture leverages the visual and textual embeddings of
CLIP to create modalities representation. Similar to the co-attentional block
of ViLBERT [26], this approach employs two transformer decoder layers. The
visual part serves as the Query, while the textual part functions as the Key
and Value. By utilizing the cross-attention mechanism, the model identifies
similarities between patches and tokens, creating a density map of the addressed
object through a decoder. This density map is then used to predict the number
of objects.

While the architecture shares similarities with VLMs, as previously noted, it
cannot be strictly classified as one. Despite the training approach establishing
connections, it does not prioritize achieving a broader sense of general knowl-
edge.

2.2.2 Counting Probe Dataset

To evaluate the counting capabilities of VLP models, Parcalabescu et al. [30]
introduced the Counting Probe dataset. The dataset comprises images and
corresponding answers sourced from Visual7W, a Visual Question Answering
(VQA) dataset that incorporates instances of counting. The data is presented in
two forms:
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1. Standard form: Reflecting the original Visual7W task, each image is asso-
ciated with a question, a correct answer, and foil options.

2. Declarative form: Instances are transformed into sentences describing the
image, rather than being presented as a question with associated answers.

The authors conducted several experiments using various VLP models to
assess the effectiveness of pre-training and acquired knowledge, both in a zero-
shot and fine-tuned manner. Building on this work, ViLT will be subjected to
testing across various tasks to identify potential challenges and discrepancies
arising from different training methods.
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3
Visual Entailment

While NLVR2 served as a valuable dataset for unraveling the mechanisms of
ViLT and gaining insights into the dynamics of VL tasks, its limitations lie not
in complexity but in the number of instances. Recognizing the potential for a
denser dataset to facilitate stronger knowledge and between words and images,
the Visual Entailment (VE) task, introduced by Xie et al. [42], emerged as a valid
option.

Distinguished by its substantial size compared to NLVR2 and novel to ViLT,
as it was not included in the original work, VE offers an opportune opportunity
for additional exploration and experimentation. This chapter discusses the
integration of VE, the creation of a new task, and the exploration of potential
improvements through specific techniques, from adding more training samples
to trying to extract more information from images.

3.1 Dataset and experiments

The VE dataset was conceived out of the necessity for a well-calibrated tool
in the VL field, featuring a correct distribution of answers. As outlined in the
dataset’s paper, the referenced VQA dataset exhibits distribution biases caused
by common responses to questions with a particular format. For example,
questions beginning with “Do you see a...?” frequently result in a “Yes” as a
correct response, constituting 87% of correct answers during training. These
inherent limitations across various datasets prompted the creation of VE.
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3.1.1 Description

The VE task demands a high level of reasoning in real-world settings. At-
tention to detail is crucial, even for the smallest aspects. Like many VL tasks it
draws inspiration from its NLP counterpart, Textual Entailment (TE). In the VE
task, a visual premise, denoted as 𝑃image, and a hypothesis in natural language
form, denoted as 𝐻text, are provided. The objective is to predict whether the
text can be logically inferred from the accompanying image. The output can be
assigned one of three labels:

• Entailment: there is evidence that 𝐻text can be inferred as true by examining
𝑃image.

• Neutral: insufficient information is available to draw a conclusion about
𝐻text from 𝑃image.

• Contradiction: there is evidence that 𝐻text can be inferred as false by exam-
ining 𝑃image.

The addition of the “neutral” label adds a higher level of complexity to the
task. In this way, it differs from a standard binary classification task, such as the
previous NLVR2.

The VE dataset is a combination of two influential sources: the Stanford
Natural Language Inference (SNLI) dataset, presented by Bowman et al. [4],
which is a widely-used TE dataset based on Flickr30k, and the Flickr30k dataset,
proposed by Young et al. [44], which is frequently used for image captioning.
Coming from the same root, this union is natural and provides a wide range of
real-world images. Each image is paired with different hypotheses, generating
different samples with different labels.

A noteworthy consideration arises from the fact that ViLT’s entire pre-
training process involved concatenating the textual part first and the visual
part second. This sequence oppose to the order specified by the VE task, where
the hypothesis is provided visually first, followed by the text. Efforts to modify
the model to respect the format requested by the VE task were unsuccessful,
as ViLT’s weights are now tuned specifically for the original concatenation se-
quence.

While the application of the VE task in this context may be “philosophically”
incongruent with ViLT’s pre-training, it remains technically feasible. The task,
in essence, could be described as a form of “Visual Inference” though for the
sake of simplicity, this definition will remain the same.
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CHAPTER 3. VISUAL ENTAILMENT

3.1.2 Results

After fine-tuning ViLT using Cross Entropy Loss, it did not reach the SOTA
level in the VE task, aligning with expectations, it is crucial to emphasize that the
primary focus of this dissertation does not revolve around achieving the highest
possible results in VE. The obtained ViLT checkpoint in the VE task serves as a
starting point for subsequent tasks and future comparisons, as will be discussed
later in the thesis.

Model Accuracy (%)

EVE 70.81
ViLT 74.77
OFA 91.00

Table 3.1: Comparison between different models over the VE dataset.

As presented in Table 3.1, ViLT is compared with EVE and OFA. EVE, the
initial model proposed for the VE task, originates from the original dataset
paper [42] and is explicitly designed for this task. On the other hand, OFA, pro-
posed by Wang et al. [41], currently the SOTA for numerous VL tasks, surpasses
ViLT in both size and pre-training data volume. In addition to using cross-
modal datasets, OFA also leverages unimodal datasets to gain rich knowledge
and achieve robust performance.
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Figure 3.1: Confusion Matrix of evaluation on VE dev dataset.
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In the context of VE as a multi-label classification task, the use of the con-
fusion matrix proves to be a useful tool for evaluation. Illustrated in Figure
3.1, ViLT demonstrates consistent performance on the VE Dev dataset follow-
ing the standard fine-tuning phase. The diagonal cells with numerically higher
values indicate correct classifications, which aligns with expectations for a non-
random classifier. However, there are additional cells with suboptimal values,
particularly those directly adjacent to the correct ones, suggesting potential for
improvement.

3.1.3 Errors

ViLT demonstrates an aptitude for reasoning in less straightforward situa-
tions, where predicting the answer goes beyond mere recognition of individual
elements. It involves understanding the scene and connecting the acquired
information. While errors are inevitably present, some are attributed to the
complexity of the scene, as illustrated in Figure 3.2. However, errors with a
common underlying cause could not be identified.

Associated Text: The woman is looking up at an airplane.

Correct label: Neutral


Predicted: Contradiction

Figure 3.2: VE error example.

As VE is not designed as a true or false dataset, instances involving counting
are not present in a format similar to that found in NLVR2. The main focus of VE
is to generate descriptions based on visual content. While instances involving
counting could theoretically exist, they were obviously not the primary focus of
the dataset author.
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3.2 Counting Probe VE

The absence of counting instances in the VE dataset is likely due to the nature
of the task, where the “neutral” label may not be as meaningful for counting
scenarios. The number of objects is often definitive and less open to debate.
However, the reasoning capabilities acquired by ViLT during the training phase
on this dataset enable it to handle more complex associations. This capability
could certainly be further exploited.

To leverage counting probe, a counting dataset in the style of VE is created.
This is achieved by utilizing its declarative sentences. As recommended pre-
viously, the “neutral” label is excluded from consideration, as being “neutral”
is not applicable in a counting context. The current dataset content designates
foil sentences as “contradiction”, while correct ones are labeled as “entailment”.
Numbers inside the phrases are switched from digits to words to keep a more
consistent flow with the pre-training datasets.

Associated Text: Nine people can be seen. 
Correct label: Entailment

Figure 3.3: Example of instance of VE dataset.

This novel dataset is used in two ways:

• To test how the starting weights trained on VE behave on the counting
dataset. This serves to understand the implicit logic acquired during the
first fine-tune, resembling a zero-shot1 setting.

• To fine-tune ViLT on the counting dataset. This assesses the adaptability

1In Deep Learning, “zero-shot” refers to a model’s capacity to handle tasks or inputs not
seen during training, highlighting its adaptability and generalization prowess.
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of the model, considering the constraint on the “neutral” label, and tests
how much information is lost during this second round of training.

3.2.1 Results

The following table displays all the achieved results. The VE checkpoint,
specifically ViLT not fine-tuned on the counting probe VE, will be referred to as
ViLT VE. The fine-tuned checkpoint will be denoted as ViLT VE counting.

Checkpoint Accuracy (%) TPR (%) FPR (%) AUC-ROC

ViLT VE 37.65 71.87 62.10 0.58
ViLT VE Counting 77.50 45.51 11.76 0.76

Table 3.2: ViLT checkpoints evaluated on the dev set of VE counting.

As observed from Table 3.2, without a proper fine-tuning, It seems that ViLT
is not making full use of its prior training. Many errors arise due to a lack of
consideration for the exact number of objects, which is not the desired outcome.
Conversely, after fine-tuning, notably improved results are achieved.

The AUC-ROC score is reasonable, but signs of issues arise from TPR, which
is notably low. This is probably due to imbalances in the distribution of the
dataset. Specifically, for each “entailment” instance, there are three “contra-
diction” instances. Given the well-known challenges that ViLT, and VLMs in
general, face in counting, the model may tend to choose the “contradiction”
answer as an easier route to achieve high accuracy.

One of the challenges encountered when fine-tuning a neural network is
known as “catastrophic forgetting”. This phenomenon describes the model’s
tendency to unintentionally discard previously acquired knowledge when ex-
posed to new data. As the model adapts itself to new tasks, there exists a risk of
overwriting existing information, resulting in a degradation of performance on
tasks previously mastered.

When testing ViLT VE counting on the development set of VE, an analysis
of the results indicates the occurrence of catastrophic forgetting. The model
achieves an accuracy of 64.78%, providing clear evidence of its occurrence. This
outcome was expected, primarily due to the challenge posed by the “neutral”
label. The absence of this label in the counting dataset resulted in confusion
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Figure 3.4: ViLT VE counting catastrophic forgetting confusion matrix.

within the model regarding its interpretation and application, as evident in the
middle row of Table 3.4.

To address the class imbalance in the dataset, modifications have been im-
plemented to achieve a more equitable distribution of classes across different
categories.

3.2.2 Balanced dataset

A straightforward approach involves retaining only a single foil instance
for each image. This adjustment aims to achieve a more balanced distribution
between “contradiction” and “entailment”, resulting in a model that is evenly
exposed to both classes. However, it’s important to note that this will nearly
halve the number of instances during the training phase.

Following the training of the model on this balanced dataset, evaluations
were conducted on both a balanced development set and the standard, unbal-
anced counterpart.

Dataset Accuracy (%) TPR (%) FPR (%) ROC-AUC

Balanced dev set 63.24 61.75 35.26 0.69
Standard dev set 67.27 61.75 30.87 0.72

Table 3.3: Evaluation of ViLT VE counting balanced.
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Table 3.3, shows a decrease in Accuracy and AUC-ROC metrics compared
to previous results. However, this is due to trade-offs involving TPR and FPR,
which now have better values. This indicates a more accurate differentiation
between the two labels learned.

With the data now correctly balanced, these results may accurately reflect
ViLT’s capabilities on the task. The metrics now accurately represent how well
the model reasons on the counting task without the influence of unbalanced
data, as distribution biases have been eliminated.

3.2.3 Augmented dataset

An alternative strategy to achieve a balanced dataset involves adding positive
instances to the existing data. This method is intricate and can be implemented
through various means. The selected method involves using a prompt-like
approach: taking the correct sentence and concatenating it with a foil one, for-
mulated as “Not foil but correct”. This method generates new instances of “en-
tailment”, achieving the goal of a more balanced representation in the dataset.

Associated Text: Not there are two people but there are 
three people.


Correct label: Entailment

Figure 3.5: Example of augmented VE counting instance. The sentence is delib-
erately not in fluent English; refer to the explanation below for the motivation
behind this choice.

As noticeable from Figure 3.5, these newly introduced instances may not
strictly follow the conventional norms of communication. As previously men-
tioned, the approach was centered around utilizing a basic prompt format, not
aiming at sentences with fluid and natural language. This experimental effort
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primarily served as a test to assess the viability of such an augmentation. The
subsequent results are detailed below.

Dataset Accuracy (%) TPR (%) FPR (%) ROC- AUC

Augmented dev set 81.87 71.60 11.23 0.87
More augmented dev set 69.78 46.38 12.59 0.76

Table 3.4: Evaluation of ViLT VE counting augmented.

ViLT was fine-tuning on two variations of the augmented dataset. The first
version involved the addition of a single positive instance to each set follow-
ing the previously mentioned method. While this approach showed promising
results, improving every computed statistic, a detailed analysis of the outputs
revealed that the model had essentially learned to classify the new “long” sen-
tence as consistently positive without developing any form of reasoning. In
essence, this dataset proved ineffective, as it ended up further perplexing the
model instead of improving its capabilities.

In the final attempt to take advantage of the augmented dataset, a more ex-
pansive augmentation strategy was employed, involving the addition of more
sentences. Based on the available foils per image, up to three new positive
instances and up to two new negative instances were created. The negative
instances were generated by combining two foils, ensuring that the “long” sen-
tences did not exclusively classify under the “entailment” class. Despite the
effort, as indicated in Table 3.4, all metrics exhibited a deterioration compared to
the previous state. Both augmentation methods were considered inappropriate
and rejected.

3.3 Segmentation

Evidently, expanding the dataset did not yield the desired results. It appears
that addressing the counting problem in ViLT requires more than just augment-
ing the dataset. As will be discussed in subsequent analyses, the impact of
providing additional data is likely more pronounced in the pre-training phase,
where the foundational connections between textual and visual features are es-
tablished. Motivated by this consideration, the focus shifted towards providing
more information rather than simply increasing the amount of data.
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A noteworthy advantage of VLMs employing region visual features is the
involvement of a CNN trained for object detection. Its extracted features are
employed for the positional embedding of each region, which definitely im-
proves the model’s capability to extract specific features in contrast to the global
features extracted by a ViT. Taking inspiration from this, exploring ways to
make it easier to individuate objects in an image could potentially help with the
counting task.

3.3.1 Improving with zero-shot segmentators

In deep learning, semantic segmentation is the process of classifying each
pixel in an image into predetermined categories, providing a comprehensive
understanding of the scene. Unlike object detection, which outlines bounding
boxes around objects, semantic segmentation assigns a unique label to each
pixel, enabling more detailed and precise image analysis. In the work presented
by Nanni et al. [27], the efficiency of well established semantic segmentator is
improved with the use of a zero-shot one. The paper introduces two different
zero-shot models for experimentation, and in this thesis, Segment Anything
Model (SAM), proposed by Kirillov et al. [18], is selected as the chosen model.

Skipping the architectural details, SAM is categorized within the class of
promptable segmentator models. Drawing inspiration from well-established
practices in NLP, where prompting has proven effective after intensive pre-
training on general knowledge, a similar approach is proposed for promptable
segmentation tasks. The objective is to generate a valid segmentation mask
based on a provided specification, analogous to a prompt in NLP.

While the central theme of the paper involves the use of the segmentation
mask generated by a mainstream model as a prompt for zero-shot models, an
additional significant contribution involves the fusion of logits from both mod-
els. This aspect provides an interesting opportunity to investigate its potential
application to the counting task. To be more specific, using ViLT with both
a standard image and its segmented counterpart produced by SAM, and then
summing their output logits, could potentially improve the overall classification
performance. When processing segmented images, ViLT can focus on different
aspects of the image, which may help obtain a better output.

Positive outcomes from this examination could suggest the feasibility of a
dual-branch model. In deep learning, a dual-branch model utilizes two parallel
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neural network pathways that operate independently on input data. This de-
sign enables the model to acquire diverse and complementary representations,
resulting in a more complete understanding of the input and often leading to
improved overall performance.

3.3.2 Counting with segmented images

SAM comes in different sizes. Given that this method is applied only at
inference time, the initial configuration involved segmenting the image only
when required. The choice of SAM Base was motivated on the need for quick
computation times. However, it became clear that this configuration would lead
to longer inference times, making testing and debugging impractical. While
acknowledging that an architecture like this could be technically viable, for the
purposes of this thesis, the decision was made to pre-segment the images to
ensure more feasible and efficient experimentation.

With time constraints no longer a concern, the largest version of SAM, re-
ferred to as SAM Huge, was used. The model and its weights were obtained
directly from the original GitHub repository2. The segmented image is then
generated from the raw masks using the Supervision library (see Appendix B
for details).

(a) Original image. (b) Segmented image.

Figure 3.6: Counting probe segmentation example.

In Figure 3.6, an example of a segmented instance is provided. The funda-
mental concept behind this approach is that ViLT could potentially concentrate

2https://github.com/facebookresearch/segment-anything
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more effectively on the requested subjects when the entire image is segmented.
If successful, this could represent a significant enhancement, particularly in
visually complex images.

Logits fusion was performed with different sum rules in an attempt to adjust
the weights of the original and segmented parts. In the first scenario, both were
given equal weight, while in the second scenario, the standard image was given
twice the weight of the segmented one. Results on the standard VE counting
dataset are presented below, omitting TPR, FPR and AUC-ROC but instead
providing the number of correct and wrong predictions for each class. The
explanation for this decision will be provided shortly.

Checkpoint Sum Rule Accuracy (%) TP TN FP FN

ViLT VE No 37.65 1451 2209 3619 568
ViLT VE Counting No 77.50 1110 6425 856 1329

ViLT VE 1 ∗ 𝑁 + 1 ∗ 𝑆 44.21 1385 2913 3327 737
ViLT VE Counting 1 ∗ 𝑁 + 1 ∗ 𝑆 78.28 761 6849 433 1678

ViLT VE 2 ∗ 𝑁 + 1 ∗ 𝑆 40.94 1420 2560 3497 653
ViLT VE Counting 2 ∗ 𝑁 + 1 ∗ 𝑆 78.43 982 6643 639 1457

Table 3.5: ViLT evaluated on VE counting dev set with different sum rules. 𝑁
and 𝑆 stands, respectively, for Normal and Segmented logits.

Table 3.5 provides the True Positive (TP), True Negative (TN), False Posi-
tive (FP), and False Negative (FN) predictions for each checkpoint under dif-
ferent sum rules. At first glance, it may appear that ViLT performs better with
segmented features. However, the accuracy improvement is primarily attributed
to an increase in “contradiction” predictions. Given the highly unbalanced na-
ture of the VE counting dataset, particularly biased towards negative instances,
predicting more of them naturally leads to apparent improvements in results.
It appears that ViLT may struggle to reason effectively with segmented images,
encountering confusion. This is supported by the observations under the sec-
ond sum rule. By assigning less significance to the segmented logits, positive
predictions revert to their initial values, with an increase in TP and a decrease
in TN.

To further validate the observed issue, segmented images are also evaluated
on ViLT VE counting balanced using the VE counting balanced dataset. As
indicated in Table 3.6, the tendency to predict more “contradiction” is main-

36



CHAPTER 3. VISUAL ENTAILMENT

Sum Rule Accuracy (%) TP TN FP FN

No 63.24 1506 1577 859 933

1 ∗ 𝑁 + 1 ∗ 𝑆 62.40 1225 1817 619 1214

2 ∗ 𝑁 + 1 ∗ 𝑆 63.69 1389 1716 720 1050

Table 3.6: ViLT VE counting balanced evaluated on VE counting balanced dev
set with different sum rules.

tained, and assigning less weight to the segmented images continues to alleviate
this confusion. Although the results showed some improvement by a certain
percentage, it becomes apparent that this methodology is inherently flawed.

3.3.3 Errors

In summary, it appears that ViLT does not extract useful information from
segmented images. This behavior is likely rooted in how the model learned to
perceive visual data during its pre-training phase, being accustomed to “normal
color objects”. Using the example in Figure 3.6, the fact that the zebras in the
segmented images have different colors compared to their real counterparts
could indeed induce confusion. As mentioned in the previous section, ViLT
appears to struggle with image comprehension, resulting in confusion and a
higher than normal tendency to make negative predictions.

The idea of a dual-branch architecture, subjected to a fine-tuning phase where
one of the ViLTs learns from segmented instances, could potentially address
the problem. However, the current indications do not strongly suggest this
approach. The colored mask overlay on standard images represents a high level
of abstraction, and expecting a VLM of ViLT’s magnitude, designed to possess a
broad knowledge base, to interpret it accurately might be overly ambitious. Even
with fine-tuning on segmented instances, the challenges of proper interpretation
and learning may persist.
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4
Visual Question Answering

After an extensive exploration of the VE task, valuable insights into ViLT’s
reasoning capabilities were gained. While the exploration proved satisfactory,
the limitation of classifying between only three classes may still be perceived as
too restrictive. To overcome this limitation, the VQAv2 dataset is used. This
dataset allows to directly answer questions related to the given image without
the previous constraint of three classes.

To improve results, a different approach has been taken compared to previous
attempts. In Chapter 3, the main focus was on the data, trying to extract more
information from it. This chapter focuses on modifying the structure of the
model itself in order to extract better features using a CNN. Various versions of
the ViLT-CNN hybrid were tested to explore their potential.

4.1 Experiments

To further deepen into experiments, the VQA task was used. Choosing from
more than two or three classes could reveal other aspects of ViLT’s reasoning
capabilities. Another motivation for undertaking experiments with this task
is to have a more practical interaction with the model. This task is important
in applications where it is necessary to comprehend visual content along with
natural language queries.

The VQA task is tested for the same reasons that led to the use of the VE
dataset. VQA requires specific answers for each sample, unlike general classifi-
cations such as NLVR2 and VE, which it tries to deviate from. This adds another
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layer of complexity to ViLT’s comprehension and response capabilities.

4.1.1 VQAv2

VQA draws inspiration from the Question Answering (QA) task in NLP.
The goal of QA is to create systems that can understand the context of a given
question and extract or generate the most appropriate answer from a given set
of documents or knowledge sources. In VQA, differently, the model is provided
with an image, and users can ask questions related to the content of the image.
The challenge for models is to understand the visual context, recognize objects
and relationships within the image, and interpret the semantics of the question
to respond in a meaningful way.

In the original paper [17], ViLT is fine-tuned using the VQAv2 dataset pro-
posed by Goyal et al. [10]. This dataset extends the previously cited VQA dataset
by Antol et al. [3], nearly doubling the number of real-world scenario samples.
The creation of the VQAv2 dataset is motivated by addressing a fundamental
challenge in VE, specifically the imbalance in its answer distribution.

As previously discussed in Section 1.2.1, despite the original annotations
being in free-form natural language, most VLMs approach the VQA task as a
classification task. ViLT maintains this strategy by approaching the task with
a classifier head of 3129 answers, typically representing the most common an-
swers. This is a significant deviation from the two or three classes seen in
previously tested tasks.

In contrast to providing a single correct output for each instance, the VQAv2
dataset presents ten human-collected answers for each question. This approach
allows models to undergo training in a manner distinct from a simple multi-
class classification. The scores for each provided response, called soft scores,
are calculated according to the guidelines outlined on the original dataset site1
and are elaborated in Equation 4.1. Consequently, this setup handles situations
where more than one answer may be correct due to ambiguity. The loss function
employed during the training phase is a Binary Cross Entropy multiplied by the
number of classes of the classifier. This approach enables optimization for

1https://visualqa.org/evaluation.html
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multiple answers by capturing the uncertainty in ground truth annotations.

𝑆(𝐴𝑛𝑠) = min
(
#human that said 𝐴𝑛𝑠

3 , 1
)

(4.1)

The author of ViLT fine-tuned the model using both the training and devel-
opment sets of VQAv2, achieving an accuracy of 71.26% on the test set. Similar
to other results obtained, ViLT distinguishes itself with commendable scores
and notably short inference times. Unfortunately, the test set in question does
not publicly provide its answers, making it impractical to replicate the exper-
iment. While using the training set for training and the development set for
testing with the obtained checkpoint was a potential alternative, an unexpected
error occurred. It appears that ViLT fails to learn effectively from the dataset.
Consequently, the decision was made to abandon this approach.

4.1.2 Counting probe VQA

To avoid abstaining from experiments in the VQA task, the well-known
counting probe dataset was used. As previously elucidated, the VQA task
constitutes one of the two original representations of the dataset, making it
straightforward to test pre-existing weights for ViLT on VQA. In alignment
with the strategy adopted for the VE task, a fine-tuning process was conducted,
commencing with ViLT VQA weights2 on the counting probe training set. The
obtained results are presented below.

Checkpoint Accuracy (%)

ViLT VQA 55.64
ViLT VQA FT on counting probe 50.35

Table 4.1: Evaluation of ViLT weights on counting probe VQA dev set.

The concept of fine-tuning from a more broadly oriented task, such as VQA,
to a more specific one, like counting, is a standard procedure. As depicted in
Table 4.1, it is evident that in this case, the fine-tuning process failed to achieve
its intended outcome. This failure is likely attributed to the manner in which the
original training was conducted, as counting probes do not utilize soft scores

2Weights provided by original author
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like VQAv2, potentially leading to confusion. Despite the negative outcome, not
all efforts were in vain. Using ViLT’s VQA weights to analyze how the model
reasons in this scenario can offer valuable insights.

Errors

Considering only the non-fine-tuned model, the number of predictions for
each label, whether correct or incorrect, was carefully noted. Monitoring these
counts has enabled the extraction of valuable information. Up to this point, the
experiments have focused on determining whether the model can count, but an
exploration of how the model performs counting has not been conducted. The
relevant data is presented below.

Label Predicted Correct Predictions Wrong Predictions

0 154 77
1 474 203
2 483 261
3 128 186
4 64 134
5 14 60
6 20 54
7 1 11
8 7 25
9 2 7
10 4 24
11 - 1
12 5 7
13 - 1
15 1 10
20 - 12
30 - 1
50 - 1
100 - 2
many - 5

Table 4.2: Number of prediction for each label.

From Table 4.2, it is easy to see how quickly the counting abilities deteriorate.
Only the first three labels have positive Correct/Wrong rates. It is also interesting
how the number of predictions drops significantly after the number six.
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One possible explanation for the model’s inaccuracies is its difficulty in ac-
curately counting a large number of objects. A more comprehensive exploration
of this issue is presented in the literature by Kajic et al. [15]. Their study, among
other insightful investigations into how different modalities handle counting
tasks, reveals that VLMs trained on VQAv2, similar to the case with ViLT, en-
counter difficulties when dealing with large numbers (greater than 4). This
aligns with the observations made for ViLT. In the VQAv2 dataset, small num-
bers (1-4) constitute 83.6% of the numeric instances, indicating a significant
imbalance that likely contributes to these subpar results.

Associated Text: How many boats do you see? 
Correct label: 14 

Predicted label: many

Figure 4.1: Example of “many” label prediction.

One noteworthy aspect is the predictions associated with the many label,
example shown in Figure 4.1. While these predictions may not be technically
incorrect, they do not align with the intended objective. ViLT relies on its pre-
defined dictionary, which includes numerous possible answers to accommodate
various situations and types of questions. This extensive dictionary enables the
model to generate labels that may seem plausible but do not necessarily fulfill
the specific requirements of the task at hand.

4.1.3 VQAv2 counting

To conduct more in-depth experimentation on the VQA task, a practical
solution was formulated, given the inability to use the full VQAv2 dataset.
Drawing inspiration from the counting probe methodology and leveraging the
well-labeled nature of VQAv2, a subsection of the dataset was carefully selected.
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VQAv2 includes questions and answers categorized by their types. By restrict-
ing the dataset to instances where the Question type is “how many” and the
Answer type is “number”, the creation of VQAv2 counting became feasible.

The primary distinction between utilizing the entire dataset and the subset
lies in the scale of the number of classes. For counting, this number is signif-
icantly reduced. Predicting precise counts for very large numbers of objects is
nearly impossible for a VLM and is also not useful. To mitigate the use of imprac-
tical labels, numbers exceeding a specified threshold are constrained. For this
purpose, labels larger than a certain number 𝑛 are relabeled as “> 𝑛”. Smaller
numbers remain unchanged. Two different training scenarios were tested, set-
ting 𝑛 to 20 and 10, respectively.

By adopting this approach, the number of classes is reduced from over three
thousand to either 22 (numbers from zero to 20 plus the “> 20” class) or 12
(numbers from zero to 10 plus the “> 10” class). This adjustment appears to
influence the outcome of fine-tuning, as ViLT demonstrates a more confident
prediction of classes.

However, the results on the development set align with the outcomes ob-
served in the counting probe, showing suboptimal performance. Challenges in
achieving satisfactory results in this specific task seem to persist. The detailed
results are presented below.

Checkpoint Accuracy (%)

ViLT VQAv2 counting 20 46.46
ViLT VQAv2 counting 10 48.65

Table 4.3: Evaluation of ViLT weights on VQAv2 counting on two different
threshold.

Errors

Table 4.3 highlights the expected suboptimal results arising from an unbal-
anced dataset. Examining the confusion matrix, represented in Figure 4.2, of
predictions reveals a concentration in the 0-1-2 range, consistent with the find-
ings from the VQA counting probe. For a clearer interpretation, the confusion
matrix for the 𝑛 = 10 threshold is presented, which reflects similar outcomes
obtained with the 𝑛 = 20 threshold.
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Figure 4.2: VQAv2 counting 10 confusion matrix.

Apart from the recognized issue of an imbalanced distribution, as discussed
in Chapter 3, it appears that the model is not effectively focusing on the targets.
To improve the finetuning for the counting task, this aspect should be addressed
similarly to Chapter 3. This chapter does not focus on the data, so the dataset
remains unchanged.

4.2 CNNs

Rather than simply drawing inspiration from them, future experiments will
fully exploit the capabilities of CNNs. Instead of using images in their raw form,
they will be processed through a pre-trained CNN using various methods. The
CNN-ViT hybrid is well-established in the CV literature. As outlined in the
work of Khan et al. [16], these architectures can be intricate, but the fundamental
concept involves utilizing the image representation obtained from specific inner
layers of a CNN to feed into the ViT. This approach ensures that the features
contain more carefully selected and richer information than the simple linear
projection used by ViT.

Since ViLT is based on ViT, it is technically reasonable to apply a CNN
encoder to its images. The following section presents various experiments aimed
at incorporating a CNN encoder into ViLT, involving different parameter settings
and different architectures. The counting 20 task is used for testing, with the aim
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of utilizing the more complex features extracted by the CNN in the challenging
task of counting.

4.2.1 Linear projection

The initial version of CNN-ViLT tested was kept simple. In the original ViT
paper by Dosovitskiy et al. [9], a CNN hybrid is mentioned and tested. The key
difference from the standard architecture lies in applying the patch embedding
projection to patches extracted from a CNN feature map instead of directly on
the linearized image. Hugging Face’s Transformers library provides implemen-
tations for both ViT3 and ViT-hybrid4. Inspiration for the implementation was
drawn from the source code of the latter.

The implementation by Hugging Face specifically utilizes Big Transfer (BiT),
as proposed by Kolesnikov et al. [19], which provides a straightforward approach
to facilitate transfer learning for CNNs. In this context, the chosen CNN is
ResNetV2, by He et al. [11]. ResNetV2, short for Residual Networks Version
2, is a deep neural network architecture known as one of the first deep neural
networks to eliminate the problem of vanishing gradient descent, as Li et al.
point out in [22]. It has become a cornerstone in CV applications, consistently
delivering optimal results in various image classification challenges thanks to
its new method of extracting richer features.

As previously stated, a particular internal layer is selected to extract feature
maps for each image. The use of the Hugging Face environment simplifies this
process by providing convenient access to hidden layers (see the Appendix C
for more information).

In this instance, the penultimate layer is selected, providing feature maps
of size [1024, 28, 28] for each image. Similar to BERT, ViLT uses an embedding
size of 768 for each token. To handle the linear projection, a convolutional
layer is employed to transform the number of channels from 1024 to 768. The
kernel size and stride of this convolutional layer define the patch size. Although
ViLT typically uses a patch size of 32 × 32 for standard images, the size of each
channel in the CNN’s feature map is 28×28, meaning patches of that size cannot
be directly utilized. However, this should not pose an issue, as these patches do

3https://huggingface.co/docs/transformers/model_doc/vit
4https://huggingface.co/docs/transformers/main/en/model_doc/vit_hybrid
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not represent actual parts of images but serve as informative features.
The initial test involves using a convolutional layer with a kernel size and

stride of 16. Employing this approach on a feature map of [1024, 28, 28] results
in a single token, which is too limited to convey useful information to the
model. Nonetheless, an evaluation was conducted to comprehend the dynamics.
Subsequent attempts involved experimenting with different kernel sizes and
stride values to increase the number of features. The results are presented
below.

Kernel size Stride Number of tokens Accuracy (%)

16 16 1 30.94
4 4 49 33.17
4 2 169 34.77

Table 4.4: Evaluation of ViLT-CNN-v1 with different parameters.

In the latest test, the adherence to the concept of patches is no longer main-
tained. With a stride smaller than the kernel size, the convolution operation uses
certain elements more than once to compute the final result. This was attempted
to further increase the number of tokens, it can be viewed as an exchange of in-
formation between them. The results in Table 4.4 are generally suboptimal, but
a noticeable trend can be observed. As the number of tokens increases, the
accuracy tends to improve.

Figure 4.3: 10 epochs fine-tuning.

Observing the loss plots in Figure 4.3, it appears that the loss did not reach
a plateau in the standard 10 epochs. Increasing the number of epochs was a
logical next step to try to obtain improvements. After 20 epochs, the loss began
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to stabilize, as shown in Figure 4.4. However, extending the training time did
not improve the results. The longer trained model achieved an unsatisfactory
accuracy of 33.94%. Similar tests were conducted for subsequent versions, but
better performance was not reached. One hypothesis is that more epochs may
result in overfitting5 on the data, leading to worse results.

Figure 4.4: 20 epochs fine-tuning.

4.2.2 Reshaping

As per ViLT’s paper [17], the maximum number of tokens created for each
image is set at 200. With a kernel size of 4 and a stride of 2, 169 tokens are
achieved, a substantial amount in terms of information conveyed. However,
the method to obtain these tokens is somewhat vague. As mentioned earlier,
the patch mechanism characterizing ViT is absent, employing different sizes
from the 32 × 32 used to train the model. Certainly, ViLT demonstrates its
ability to interpret the provided information, showcasing improved accuracy as
the number of features increases. Nevertheless, employing a more structured
method might offer the potential for better feature extraction.

A novel method, distinct from a simple linear projection, has been devised.
Incorporating custom features into ViLT requires a complex process that involves
changing the way the model generates the intended features. Currently, features
are crafted through a form of downsampling to produce tokens of the required
hidden size. Instead of compressing the information, an alternative approach

5In machine learning refers to a model learning the training data too precisely, leading to
poor performance on new, unseen data.
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involves the opposite process. The new method incorporates an upsampling
component to restore features to the size of the original image. This way, ViLT
autonomously operates, creating the features required in the correct format.

To accomplish this upsampling, a series of transposed convolutional layers
is employed. These layers contribute to enhancing the spatial resolution of
the input data. This approach could facilitate the network’s understanding of
counting feature extraction, a task that requires refined and detailed features.
Using a sequence of transposed convolutional layers, the network could learn a
hierarchical representation and be used as a decoder for tasks such as segmen-
tation [32].

This method is tested with two different CNNs. The first is still ResNetv2
implemented in the Hugging Faces library. The second one is SqueezeNet,
proposed by Iandola et al. [14], from the PyTorch library. The decision to test
a different network from a different library is made to validate the obtained
results and avoid the risk of having inaccurate evaluations due to potential
implementation discrepancies. The results outlined in Table 4.5 indicate that
even with this method, meaningful results are not achieved.

CNN Accuracy (%)

ResNetv2 33.50
SqueezeNet 33.60

Table 4.5: Evaluation of ViLT with different CNNs and upsampling.

4.2.3 Errors

Both the fields of CV and NLP demonstrate that models can be fine-tuned on
tasks different from their original pre-training objectives. In CV, a model pre-
trained on a classification task can be fine-tuned for an object detection task [34].
Similarly, in NLP, a model initially pre-trained for language modeling can be
fine-tuned for sentiment analysis [12]. Notably, both of these examples may
involve inputs different from their original scope.

It’s common practice in Machine Learning to modify inputs for different
tasks. However, introducing a drastic change like the integration of CNN fea-
tures could potentially overload the model. The input data could deviate sig-
nificantly from the distribution learned during the pre-training phase, making
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it difficult for fine-tuning to produce significant improvements.
Another potential factor contributing to the model’s inability to effectively

utilize the newly provided features is the alteration in how the image is presented
to the model. This modification could disrupt the current relationships between
vision and text, leading to unpredictable or random behavior in the model.

The main cause of the suboptimal results should be investigated by examin-
ing these hypotheses.
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5
Generative VLMs

Generative AI served as a primary motivation for this thesis’s development.
However, ViLT, due to its limited size and the different objectives pursued in its
original development, does not provide a suitable framework to properly test
this aspect.

The Language Modeling (LM) head in ViLT represents the closest mechanism
for generating responses. Using the counting probe dataset once again, it is
possible to test this aspect of ViLT. The original paper [30] proposes experiments
of this type by masking the number in declarative sentences. After finding
this exploration of generation unsatisfactory, further investigation into VLMs
better suited for this task was conducted. Large Language and Vision Assistant
(LLaVA), a model much larger and with ad hoc training, has been chosen to
delve into this field.

5.1 Counting via MLM

In another experiment conducted in the counting probe paper [30], the LM
head of models was tested. As previously mentioned, MLM is one of the main
tasks in VL, indispensable for creating associations between text and image.
The creative component of LM is particularly intriguing as it represents a step
towards the realm of generative AI. Additionally, the fact that the answers are not
limited to a dictionary, as in classification tasks, is particularly interesting and
could provide an assessment of counting skills at a different level of reasoning.
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5.1.1 Dataset and experiments

Declarative sentences from the counting probe dataset are utilized. Typically,
in the MLM task, words are masked with a certain probability; however, in
this case, only the number defining the quantity is masked. The masking of
numbers in sentences is straightforward, as they are represented as digits, and
a simple script is employed. Once detected, the numbers can be substituted
with a [MASK] token and with the number in words. The generation of both
the ground truth annotations and input sentences can be accomplished through
this approach.

Associated Text: There is [MASK] yellow trucks. 
Correct label: There is one yellow trucks.

Figure 5.1: Example of instance of counting probe LM dataset.

The instances follow a format similar to that of other tasks, consisting of
an image paired with a descriptive sentence in both the masked and regular
versions. An illustration of this format is presented in Figure 5.1.

ViLT undergoes two experiments: one evaluating its LM head in its original
form, and the other assessing it after fine-tuning on the training dataset. This
shift is interesting as the task transforms from a classification-oriented one to
a more generative nature. While not a true generative AI task, it represents a
reasonable compromise to explore this domain. The LM head is one of the two
primary pre-training tasks. It is expected to have extensive general knowledge
that can be leveraged.

As evident from Table 5.1, a significant improvement is observed through
fine-tuning. It is logical to presume that the non-fine-tuned model has a diverse
set of logits in its dictionary to handle a broad range of cases. On the other
hand, the fine-tuned model prioritizes numbers, resulting in noticeably better
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Model Accuracy (%)

Not fine-tuned 29.64
Fine-tuned 61.17

Table 5.1: Evaluation of ViLT counting probe LM dev set.

performance.

5.1.2 Errors

The most frequent mistakes arise from the final observation. The non-fine-
tuned model replaces the masked token with words that are technically correct
but deviate, or fail to comprehend, the actual goal of the task. As illustrated in
Figure 5.2, the model generates tokens that form a grammatically correct phrase
but fail to capture the essence of the task. On the other hand, almost all correct
predictions have a number of objects falling in the range [1, 3], with the majority
being two. This is likely influenced by the distribution of numbers encountered
during the pre-training phase.

Associated Text: Five cows have some brown fur. 
Correct label: The cows have some brown fur.

(a) Definite article.

Associated Text: There are three hanging baskets. 
Correct label: There are many hanging baskets.

(b) Adjective.

Figure 5.2: Example of technically not wrong errors in ViLT LM not Fine-tuned.

Figure 5.3 illustrates some errors for the fine-tuned model. A recurring error
pattern emerges with a high number of objects, which is a well-known challenge
for VLMs. Errors with a low number almost always occur in close proximity to
the actual number.

The LM task is set aside, as it seems inappropriate to constrain its vocabulary
trained for a general context in this manner. The focus has shifted towards
exploring ways to achieve a more authentic generative output. However, due
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Associated Text: There are fourteen bike riders. 
Correct label: There are six bike riders.

(a) High number error.

Associated Text: There are two people. 
Correct label: There are three people.

(b) Low number error.

Figure 5.3: Example of errors in ViLT LM fine-tuned.

to the computational limitations outlined earlier, the study is confined to the
documentation of such methods.

5.2 Visual Instruction Tuning

Generative tasks for VLMs can span various applications, ranging from gen-
erating image descriptions to VQA. However, one of the most intricate gen-
erative tasks is conversation. The development of a chat-bot system that not
only understands textual inputs but also incorporates visual understanding, as
discussed in Chapter 1, is an example that is often cited, particularly for those
who are not experts.

Instruction Tuning (IT) is a technique designed to guide a LLM towards
generating correct responses. As outlined in the paper by Zhang et al. [45],
the primary challenge lies in the mismatch between the model’s training objec-
tive, which aims to minimize contextual word prediction errors, and the user’s
objective, which is to obtain an answer that adheres to their instructions.

By fine-tuning a pre-trained model on a dataset with a format of (𝐼 , 𝑂), where
𝐼 denotes human instructions for the model and 𝑂 denotes the desired output
aligning with the instruction, this technique helps the model quickly adapt to
producing the required answers. It even allows for domain-specific knowledge
restriction, paving the way for the development of an effective virtual assistant.

One of the primary challenges of the IT technique lies in the creation of
high-quality data. Since it is a supervised task, leveraging vast unannotated
corpora, as done in the pre-training of LLMs, is not feasible. This issue has also
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been encountered in the pre-training of VLMs. To streamline the process and
ease the data collection burden, outputs from other Language Models, such as
GPT-4, are employed instead of manually gathering them.

5.2.1 LLaVA

In a straightforward understanding, IT enhances the zero-shot capabilities of
models. To build an effective virtual assistant, these capabilities are essential, but
this idea is less explored in the multimodal field. In the work presented by Liu
et al. [24], the first visual instruction tuning dataset is introduced. With the help
of this dataset, the training of LLaVA, an end-to-end large multimodal model
for general visual and language understanding, is successfully accomplished.

Datasets such as GCC [35] and MSCOCO [23], where an image is associated
with text, are well-known in the multimodal field and are typically used for
conventional pre-training tasks. However, by utilizing models from the GPT
family, multimodal instruction datasets can be created using these established
datasets, leveraging the annotation capabilities of these models. For an image
𝑋v and its associated caption 𝑋c, a set of questions 𝑋q can be generated to train
the virtual assistant in describing the image. Through various techniques to
address issues such as lack of diversity and limitations in in-depth reasoning
(refer to the original paper [24] for detailed insights), The authors were able to
produce a dataset of 158K unique speech-image instruction-following samples.

Figure 5.4: LLaVA architecture.

As shown in Figure 5.4, the architecture of LLaVA utilizes the power of a pre-
trained LLM by utilizing a visual model to “translate” images to be understood
by it. The LLM used in LLaVA is Vicuna, an open-source chat-bot achieved
by fine-tuning LLaMA [39], which currently performs exceptionally well in the
SOTA [6]. Visual features are obtained by leveraging the visual encoder of
CLIP [31] ViT-L/14, known for its robustness due to extensive training data.
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These grid features are then converted into the word embedding space using a
simple linear layer, specifically a trainable projection matrix.

For each image 𝑋v, a multi-turn conversation data
(
𝑋1

q , 𝑋
1
a , ..., 𝑋

𝑇
q , 𝑋

𝑇
a

)
is

generated, where 𝑇 is the total number of turns. To perform IT, the original
auto-regressive objective for token predictions is selected:

Pr (𝑋a |𝑋v, 𝑋instruct) =
𝐿∏
𝑖=1

Pr
𝜃
(𝑥𝑖 |𝑋v, 𝑋instruct,<1, 𝑋a,<𝑖) (5.1)

Here, 𝜃 represents the set of trainable parameters, and 𝑋instruct,<1 and 𝑋a,<𝑖 de-
note the instruction and answer tokens in all turns before the current prediction
token 𝑥𝑖 . Following this established paradigm, LLaVA undergoes a two-stage
IT phase.

Stage 1: Features alignment A filtered version of the CC3M dataset, contain-
ing images with associated descriptions, is utilized to create the instruction-
following data. Language instructions requesting the description of the image
are utilized as questions, while the description of the image itself serves as the
prediction ground-truth. During training, all components are frozen except for
the projection matrix. This approach ensures that visual features are aligned
with the pre-trained LLM, effectively resembling the training of a compatible
visual tokenizer.

Stage 2: Fine-tune The visual encoder weights remain frozen, while the
weights updated during training include those of the LLM and the projection
matrix. A chatbot is developed using the instruction-following data described
earlier, incorporating both single-turn and multi-turn conversation samples.
Additionally, the pre-trained model is trained on ScienceQA, which is the first
large-scale multimodal science question dataset that annotates answers with
detailed lectures and explanations.

Thanks to these training settings, LLaVA achieves significant reasoning capa-
bilities. As illustrated in Figure 5.5, the model demonstrates optimal instruction-
following ability, satisfactorily and correctly respond to every aspect of user
requests. The model’s understanding of what is unusual in the photo high-
lights its strong reasoning abilities, outperforming GPT-4 and other concurrent
models (See the paper for more details). LLaVA exhibits extensive knowledge
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User What is unusual about this image?
LLaVA The unusual aspect of this image is a man 

ironing clothes on the back of a minivan or van. 
This is not a typical place to perform this 
activity, as one would usually iron clothes in a 
more stationary and safe location, such as a 
home, using a regular ironing board. The scene 
depicted in the image is peculiar as it involves a 
makeshift ironing setup on a vehicle, which can 
be both unsafe and unconventional. 
Additionally, it is not clear how the man is able 
to maintain balance and stability while ironing 
clothes in such an unstable environment.

Figure 5.5: LLaVA Example.

coverage and multilingual understanding capabilities, and it is capable of pro-
cessing high-resolution images, enabling it to reason about individual elements
of images as well as their overall context.

Comparisons with ViLT are not meaningful, as LLaVA leverages the power
of two pre-trained models (Vicuna and the CLIP visual encoder) and employs
a completely different training method. Furthermore, differences extend to the
number of parameters, with ViLT consisting of a modest 111 million parameters
compared to the substantial 175 billion parameters of LLaVA. This discrepancy
is analogous to comparing models such as BERT with GPT-4. As previously
stated in Chapter 1, it was not feasible for this dissertation to use a model of
LLaVA’s size, but it is important to recognize its potential for future research.
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6
Low-Rank Adaptation

Following numerous tasks and attempts to improve results, where satisfac-
tory outputs were not achieved, a decision was made to shift focus towards
optimizing the training process rather than concentrating solely on the model
or the data. This decision was partly influenced by the limited computational
resources available. One method that combines both observations is Low Rank
Adaptation (LoRA), a training technique capable of yielding comparable or
superior results while reducing the required computational resources. LoRA
operates by initiating constrained adaptations from pre-trained model weights,
effectively achieving the desired outcomes without diverging significantly from
the initial state. When applied to the VE task, LoRA yielded intriguing results.

6.1 What is LoRA

In the realm of NLP, there is a growing emphasis on developing techniques
for efficient model training. These approaches aim to maximize performance
while minimizing computational resources. Parameter-efficient training meth-
ods in NLP focus on optimizing model architecture, parameter utilization, and
training algorithms to achieve high accuracy with reduced computational com-
plexity. These methods are particularly crucial for deploying NLP models in
resource-constrained environments, as is the case in this thesis.

While these methods are not novel in the machine learning domain, their
application has been particularly encouraged in the NLP field due to the compu-
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tational complexity inherent in its tasks. Recent advancements have predomi-
nantly centered around transformer-based architectures. Given that most VLMs
are based on transformers, including ViLT, the application of these techniques
to them is straightforward.

Most of the techniques proposed, while achieving their intended goals, come
with some drawbacks. One such example is Adapters, which are modular
neural network components inserted between layers of a pre-trained model.
Adapters enable efficient fine-tuning for specific tasks by adding task-specific
parameters while keeping the majority of the pre-trained model parameters
frozen. However, a notable increase in latency can be observed during inference
time, posing a challenge in real-time applications.

LoRA, proposed by Hu et al. [13], introduces a method that achieves compa-
rable, if not superior, performance to classical fine-tuning while addressing the
main issues associated with the aforementioned methods. One of the primary
benefits of LoRA, aside from its simple design, is its applicability to any dense
layer of a model, although it is common practice to apply it to specific weights of
the transformer. LoRA, thanks to the way weights are updated, is also capable
of reducing catastrophic forgetting during fine-tuning.

6.1.1 Method

A neural network is composed of multiple layers that perform matrix multi-
plication, where the weights of these layers are typically represented by full-rank
matrices. It is known that pre-trained language models exhibit low ”intrinsic
dimension” [1], allowing them to efficiently learn even after random projection
to a smaller subspace. The authors hypothesize that weights also possess low
“intrinsic rank” during fine-tuning.

For a pre-trained weight matrix 𝑊0 ∈ R𝑑×𝑘 , the authors constrain its update
by representing it with a low-rank decomposition 𝑊0 + Δ𝑊 = 𝑊0 + 𝐵𝐴, where
𝐵 ∈ R𝑑×𝑟 and 𝐵 ∈ R𝑟×𝑘 , with rank 𝑟 ≪ min(𝑑, 𝑘). During training, only 𝐴 and 𝐵

are unfrozen, serving as the parameters capable of changing.
Figure 6.1 visualizes the modified forward pass. For input 𝑥, the output is

obtained as ℎ = 𝑊0𝑥 +Δ𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥. 𝐴 is initialized following a Gaussian
distribution, and 𝐵 is set to zero. The final step involves rescaling Δ𝑊 by a
factor of 𝛼

𝑟 , where 𝛼 is a constant factor in 𝑟. 𝛼 is the variable that scales the
contribution of LoRA to the original weights during the training phase.
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Figure 6.1: Visualization of LoRA’s functioning.

During the inference phase, the final weight matrix can be explicitly com-
puted as 𝑊 = 𝑊0 + 𝐵𝐴, where both 𝑊0 and 𝐵𝐴 are of the same size. Thanks
to this, the inference phase does not take longer to compute than the standard
model, as there is no extra layer introduced in the model.

6.1.2 Results

In the Transformer architecture, the self-attention module consists of four
weight matrices: Query, Value, Key, and Output, while the MLP module in-
cludes two additional weight matrices. The original paper on the application
of LoRA in Transformers restricts its use to the attention weights, specifically
the Query and Value matrices. This targeted application significantly reduces
VRAM usage by 2/3 and results in a smaller checkpoint size by a factor of 10,000.
Consequently, this optimization enables training on fewer GPUs. Additionally,
the training process experiences a notable speedup compared to full fine-tuning,
as it eliminates the need to compute gradients for the majority of parameters.

Model and Method # Trainable Parameters BLEU

GPT-2 M (FT) 354.92M 68.2
GPT-2 M (LoRA) 0.35M 70.4±0.1

GPT-2 L (FT) 774.03M 68.5
GPT-2 L (LoRA) 0.77M 70.4±0.1

Table 6.1: Comparison of fine-tuning and LoRA on the E2E NLG, a dataset for
natural language generation, on GPT-2.

Referring to Table 6.1, the comparison using GPT-2 as an example clearly
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demonstrates that despite a significant reduction in the number of parameters,
the results achieved with LoRA surpass those of full standard fine-tuning. For
further comparisons and detailed results, please refer to the original paper [13].

6.2 Experiments

Addressing the counting problem raises concerns about ViLT’s potential lack
of essential foundational information required for task handling. Its subpar per-
formance may suggest that the model did not acquire the requisite capabilities
during pre-training to accurately distinguish and enumerate selected entities.
Another possibility is that important knowledge is lost during fine-tuning due
to the significant adjustment of the weight matrices. It’s evident that the task is
inherently challenging, yet focusing on improving either of these aspects could
potentially yield better results.

Not being able to re-perform the entire pre-training process, given the low
resources available, the decision on which approach to undertake becomes log-
ical. To mitigate catastrophic forgetting, LoRA is employed. As introduced
before, the authors hypothesize the low “intrinsic rank” of pre-trained language
model weights. Given that ViLT is essentially a ViT, it is reasonable to make the
same hypothesis for it as well. If true, LoRA could help mitigate the catastrophic
forgetting of ViLT, potentially improving its results.

LoRA was initially designed for models much larger than ViLT, primarily
to address computational costs. However, its other qualities could be exploited
without any issues. Given the scarcity of literature on using LoRA with mul-
timodal models, testing its impact on ViLT in terms of training time, resource
usage, and performance improvements could provide insights into how larger
VLMs could benefit from it.

To apply LoRA on ViLT, the Parameters Efficient Fine Tuning (PEFT) library
from Hugging Face was chosen. This library offers various techniques to train
models efficiently while conserving resources. Since ViLT is a model available
in the Hugging Face Transformers library, the application of LoRA is straight-
forward. More details about the application can be found in the appendix D.

In all experiments, the parameters were set to rank 𝑟 = 16 and 𝛼 = 16.
These values proved to be effective, and no adjustments were made during the
testing phase. However, there is potential for further improvements by tuning
these parameters. The learning rate schedule and AdamW settings remained
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unchanged to maintain consistency and closely resemble the full fine-tuning
setup.

6.2.1 Visual Entailment

To thoroughly evaluate the improvements brought by LoRA, a suitable task
must be selected. This task should consider not only classical evaluation metrics
and computational resources but also a consistent training time to accurately
identify any differences. Choosing the VE task, introduce in Chapter 3, for this
evaluation is appropriate, as it offers a dataset with more than 400K samples,
making it optimal for these tests. Below, an evaluation that takes into account
these aspects is provided.

Model # Trainable Parameters Training Time Accuracy (%)

ViLT VE- 114,562,566 98.2 hours 74.77
ViLT VE+ 1,778,691 60.4 hours 75.51

Table 6.2: Comparison of results achieved on ViLT through fine-tuning alone
(denoted by -) and results obtained with LoRA (denoted by +).

Applying LoRA to the Query and Value weight matrices, as in the original
paper, significantly reduced the number of trainable parameters from over 114M
to less than 1.8M, as demonstrated in Table 6.2. This represents only 1.55%
of the total parameters, resulting in a substantial reduction in the number of
parameters adjusted during training. Consequently, ViLT required significantly
less memory for storage, allowing the batch size used in ViLT VE+ to increase
from 64 to 128, doubling it compared to ViLT VE-.

The experimental results demonstrate a significant reduction in training time.
ViLT VE+ completed training in 60.4 hours (approximately 2.5 days), a 38%
speedup compared to full fine-tuning, which took 98.2 hours for ViLT VE-
(equivalent to over 4 days). The doubling of batch size could be the cause of this
difference. Additionally, ViLT VE+ achieved a higher accuracy percentage than
ViLT VE-. These findings confirm the validity of the hypothesis.

Indeed, the modest improvement in accuracy is encouraging. Upon exam-
ining the predicted answer percentages by ViLT VE+, it becomes apparent that
they exhibit less certainty compared to the full fine-tuning approach. While full
fine-tuning often yields almost 100% certainty in its top prediction, LoRA results
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in smoother probabilities across the classes. This could be attributed to the mit-
igated effects of catastrophic forgetting enabled by LoRA. Further investigation
is needed to delve deeper into this aspect.

6.2.2 Visual Entailment Counting

The logical progression of testing LoRA on VE involves further fine-tuning
the model on the VE counting task, as extensively described in Section 3.2. Given
the already established and persistent challenges in the counting task, exploring
whether LoRA can enhance the learning process is of considerable interest. For
each experiment detailed in the tables, a batch size of 128 is utilized.

Model Accuracy (%) TPR (%) FPR (%) AUC-ROC

ViLT VE-- 77.50 45.51 11.76 0.76
ViLT VE-+ 76.31 20.59 5.02 0.74
ViLT VE+- 77.92 51.90 13.38 0.80
ViLT VE++ 81.55 45.96 6.54 0.84

Table 6.3: Comparison of evaluation metrics obtained on ViLT through various
combinations of training methods. The - symbol denotes standard fine-tuning,
while the + symbol indicates the use of LoRA. In strings of the form ViLT VExy
with x = -,+ and y = -,+, the symbol x represents how ViLT was trained on VE,
and the symbol y represents how ViLT was trained on VE counting.

Table 6.3 clearly illustrates the significant improvement provided by LoRA
in enhancing the model’s performance. Beyond accuracy, TPR, and FPR, the
most crucial metric is the AUC-ROC, which determines the effectiveness of a
classifier. Setting aside ViLT VE-+, which evidently does not leverage the benefits
of LoRA, applying LoRA in the initial training phase results in improvements
or comparable performance across all metrics compared to ViLT VE--. Focusing
on the AUC-ROC scores, both models show enhancement, indicating promising
results. However, further in-depth analysis is necessary to confirm the observed
improvements definitively.

Table 6.4 provides the values for TP, TN, FP, and FN for each model. It
is evident that ViLT VE+- and ViLT VE++ maintain or reduce the number of
misclassified answers, confirming that the improvement in the AUC-ROC score
is a valid result. The table confirms that ViLT VE-+ yields poor results, as the
model attempts to achieve its objective by maximizing the number of correct
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Model TP TN FP FN

ViLT VE-- 1110 6425 856 1329
ViLT VE-+ 502 6917 365 1935
ViLT VE+- 1266 6309 974 1173
ViLT VE++ 1121 6807 476 1318

Table 6.4: Comparison of right and wrong classification obtained on ViLT
through various combinations of training methods.

classifications. Given the dataset’s imbalance, the quickest route to achieve this
is by making numerous negative predictions, a behavior previously observed in
the task.

To address this behavior, LoRA was also applied to the Key weight matrix
on ViLT VE-+. However, this adjustment increased the number of parameters,
necessitating a return to a batch size of 64. Consequently, there was a slight
improvement in critical metrics: Accuracy and AUC-ROC are now comparable
to ViLT VE--, while the TPR increased to 25.63% due to an increase in TP and a
decrease in FN. However, this approach was not further explored to maintain a
batch size of 128.

Model Accuracy (%)

ViLT VE-- 64.78
ViLT VE-+ 67.80
ViLT VE+- 43.89
ViLT VE++ 46.07

Table 6.5: Catastrophic forgetting test on ViLT through various training methods.

The last test, the results of which are reported in Table 6.5, focuses on catas-
trophic forgetting. After adapting on VE counting, models are tested on the VE
dataset. Despite its poor results, ViLT VEE-+ is the model that performs the best,
while ViLT VE+- and ViLT VE++ exhibit notably worse performance. LoRA, by
not altering the pre-trained weights, is expected to mitigate catastrophic forget-
ting in models. However, the difference in performance may stem from how
pre-trained weights are defined. Applying LoRA on both VE and VE counting
maintains the base ViLT as the starting point, while applying LoRA solely on
VE counting considers ViLT VE as the initial state.

LoRA makes slight adjustments from the pre-trained base, and applying it
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Figure 6.2: ViLT VE++ catastrophic forgetting confusion matrix.

twice in a row could almost completely eliminate the effects of the first appli-
cation. This hypothesis is supported by the confusion matrix of ViLT VE++,
as shown in Figure 6.2, where it’s evident that ViLT VE++ almost completely
removes the possibility of the “neutral” class.

66



7
Conclusions and Future Works

In this thesis, an exploration of the Vision Language field is conducted, delv-
ing into the functioning of various models. The study involves an understand-
ing of the evolution of Visual Language Models, spanning from their origins to
their anticipated future developments. Among numerous options, the choice
was made to focus on ViLT. Working in an environment with limited computa-
tional resources, the model’s simple architecture and short computation times
appeared to be the optimal choice for initiating exploration in this domain.

The initial experimentation involved reproducing a result obtained in the
original work. Despite differences in the training setup, comparable results
were achieved on the Natural Language for Visual Reasoning for Real (NLVR2)
task in relation to the author’s findings, confirming the viability of working
with the model. Throughout the dissertation, a common challenge encountered
in every experiment is identified: the counting task in VLMs. As extensively
documented in the literature, the counting problem poses a significant challenge
for this type of models. Various tasks and methods are explored in an attempt
to improve results.

To fine-tune ViLT on a task not addressed in the reported paper, the Visual
Entailment (VE) dataset was utilized. The results obtained were mediocre;
however, the primary focus of this dissertation is not to achieve the SOTA, but
rather to enhance the baseline performance of the experiments. The VE dataset
lacks sufficient counting samples to thoroughly test this aspect of the fine-tuned
model. To address this limitation, the counting probe dataset is employed to
augment the VE dataset, specifically focusing on the counting task. Through
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this approach, the subpar performance of the model on the counting task is
confirmed. Various data-handling techniques were explored in an attempt to
improve performance, addressing both the textual and visual components of the
data.

Various manipulations were applied to the textual part in an attempt to
balance the distribution, but this only resulted in more confusion and worse
results. The techniques employed were quite rudimentary, suggesting that a
more sophisticated approach to textual augmentation, such as using GPT to
generate synthetic data, could potentially improve the output. As for the visual
component, the Segment Anything Model (SAM) (a zero-shot segmenter) was
used to try to increase the focus on the subjects, but ViLT did not seem to extract
any additional information from these segmented images.

It is hypothesized that training a dual-branch ViLT model with both stan-
dard and segmented images could yield more promising results. Additionally,
SAM can be utilized with an initial prompt to assist in restricting segmenta-
tion to the desired subject, extracted from the associated caption. This approach
could render segmented images much more relevant in terms of the information
provided. Both of these experiments are left for future investigations.

To establish a more direct interaction with the model, the task was shifted to
utilize the VQAv2 dataset, which is known for its free-form answers. The dataset
was adapted for the counting task and employed to fine-tune ViLT, reaffirming
the previously identified challenges. While in the previous task, data was the
primary focus for improvement, in the VQA context, attention was focused on
the model itself.

Drawing inspiration from the Vision Transformer (ViT), various CNN-ViLT
hybrids were designed and tested. The underlying concept was that pre-trained
CNNs could extract more “rich” features to aid ViLT. Despite initially poor yet
encouraging results in the first version, subsequent versions led to the abandon-
ment of the experiment. One hypothesis for these subpar performances is that
the model struggled to interpret the feature maps extracted by the CNN, which
deviated from the input distribution. Another hypothesis proposes that mod-
ifying the visual characteristics disturbed the established connections between
images and text, making them unidentifiable.

One possible solution may be to use the CNN during the pre-training phase.
This would enable ViLT to learn how to effectively use this type of information.
However, due to limited computational resources, this was not possible.
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Generative AI was a central theme in the development of this thesis; however,
ViLT lacks real text generation capabilities. To explore its generative potential,
the Language Modeling head was tested by adapting the well-known counting
probe dataset for this purpose. While MLM is not a true generative task, it pro-
vides insights into how ViLT might perform in such scenarios. As anticipated,
the results aligned with those of previous tasks.

To address this issue, more advanced models and training methods have
been investigated. In order to extend ViLT’s text generation capabilities, the
addition of a simple decoder head is considered a potential solution, although
this route remains unexplored and is reserved for future experiments.

After exploring techniques to enhance results through data and model ma-
nipulation, a decision was made to investigate the training phase. Low Rank
Adaptation (LoRA), a technique designed for efficient fine-tuning in LLMs, was
selected for this purpose. It was applied to the tasks of VE and VE counting,
facilitating standard evaluation and estimation of catastrophic forgetting.

Different combinations of standard training and LoRA were tested, resulting
in improved (or at least comparable) outcomes. Although the evaluation of
catastrophic forgetting did not yield the expected results, it provided valuable
insights into its functioning.

Although LoRA is primarily developed to conserve resources in larger mod-
els, its application on ViLT demonstrates the potential for its utilization in VLMs
with comparable results.

In conclusion, ViLT serves as an optimal starting point for delving into the
vast field of VLMs, providing valuable insights and knowledge. However, it
also reveals a significant problem of the models: their weak pre-training phase.
LLMs are trained on large amounts of raw data, which gives them significant
reasoning power. In contrast, VLMs require well-labeled datasets and do not
achieve the same number of samples as LLMs, resulting in various biases, as
seen with the counting task. In addition, the size of ViLT is a limitation; while it
provides sufficient reasoning for basic tasks, its small size limits its effectiveness
for more complex and demanding tasks.

Models such as LLaVA, explored in Section 5, with its extensive pre-training
and large number of parameters, represent the future of the field. These models
have the promise of addressing the weaknesses observed in ViLT and paving
the way for advances in VLM capabilities.
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A
Datasets management

In this appendix, the management of datasets in PyTorch is discussed. When
initializing a dataset several arguments are passed:

• annotations: This argument consists of a list of dictionaries containing
information like image ID and ground truth, necessary for creating dataset
instances.

• processor: This refers to the method utilized for preparing image and text
inputs for ViLT.

• id2path: This is a dictionary where image IDs serve as keys, mapping to
their respective paths where the images are stored.

• config: This stores all the requisite details for instantiating a ViLT model.
It’s important to note that each element’s fields are squeezed to remove the

batch dimension, as these elements will later be grouped into batches using a
DataLoader.

1 import torch

2 from PIL import Image

Code A.1: Necessary libraries to create the datasets.

A.1 Image paths

To obtain the dictionary associating image IDs to image paths, you can use
the following simple nested for loop. Here, root is a string representing where
the images are stored, and the ID of each image is simply the name of the file
without the file type extension.
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1 import os

2

3 def image_path(root):

4 id2path = {}

5 for images_root , dirs, files in os.walk(root):

6 for file in files:

7 file_path = os.path.join(images_root , file)

8 id2path[file[:-4]] = file_path

9

10 #path2id = {v: k for k, v in id2path.items()}

11 return id2path

12

13 images_path = "image/folder/path"

14 id2path = image_path(images_path)

Code A.2: Standard association.

The provided code snippet can be applied to process datasets, except for
VQAv2, which requires a different approach due to its unique image naming
format. To handle this, regular expressions are employed, a method sourced
from the Allen Institute GitHub repository1.

1 import re

2 import sys

3

4 from typing import Optional

5 from os import listdir

6 from os.path import isfile, join

7

8 filename_re = re.compile(r".*(\d{12})\.((jpg)|(png))")

9

10 def id_from_filename(filename: str) -> Optional[int]:

11 match = filename_re.fullmatch(filename)

12 if match is None:

13 return None

14 return int(match.group(1))

15

16 images_path = "image/folder/path"

17 file_names = [f for f in listdir(images_path) if isfile(join(

images_path , f))]

18

1https://github.com/allenai/allennlp-models/blob/main/allennlp_models/
vision/dataset_readers/vqav2.py
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19 path2id = {images_path + "/" + file: id_from_filename(file) for file

in file_names}

20 id2path = {v: k for k, v in path2id.items()}

Code A.3: VQAv2 association.

Following both scenarios, the dictionary id2path encompasses all the ID-
path associations crucial for the proper operation of the datasets described
subsequently.

A.2 NLVR2

1 class NLVR2Dataset(torch.utils.data.Dataset):

2 def __init__(self, annotations , processor , id2path):

3 self.annotations = annotations

4 self.processor = processor

5 self.id2path = id2path

6

7 def __len__(self):

8 return len(self.annotations)

9

10 def __getitem__(self, idx):

11 annotation = self.annotations[idx]

12

13 image_id = annotation[’identifier’]

14

15 sentence = annotation[’sentence’]

16

17 label = torch.tensor(annotation[’label’])

18 left_image = Image.open(self.id2path[image_id]+’-img0.png’)

19 right_image = Image.open(self.id2path[image_id]+’-img1.png’)

20

21 if left_image.mode != ’RGB’:

22 left_image = left_image.convert(’RGB’)

23 if right_image.mode != ’RGB’:

24 right_image = right_image.convert(’RGB’)

25

26 left_image = left_image.resize((400, 400))

27 right_image = right_image.resize((400, 400))

28

29 encoding = self.processor([left_image , right_image], sentence

, padding="max_length", truncation=True, return_tensors="pt")

73



A.3. VE

30

31 # simple binary tensor

32 encoding[’labels’] = label

33

34 for k, v in encoding.items():

35 encoding[k] = v.squeeze()

36

37 return encoding

Code A.4: NLVR2 dataset

A.3 VE

1 class VEDataset(torch.utils.data.Dataset):

2 def __init__(self, annotations , processor , id2path):

3 self.annotations = annotations

4 self.processor = processor

5 self.id2path = id2path

6

7 def __len__(self):

8 return len(self.annotations)

9

10 def __getitem__(self, idx):

11 annotation = self.annotations[idx]

12

13 image_id = annotation[’image_id’]

14 print(image_id)

15

16 sentence = annotation[’sentence’]

17

18 label = torch.zeros(3)

19 index = annotation[’label’]

20 label[index] = 1

21

22 image = Image.open(self.id2path[image_id])

23

24 if image.mode != ’RGB’:

25 image = image.convert(’RGB’)

26

27 encoding = self.processor(image, sentence , padding="

max_length", truncation=True, return_tensors="pt")

28
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29 # one-hot encoding tensor

30 encoding[’labels’] = label

31

32 for k, v in encoding.items():

33 encoding[k] = v.squeeze()

34

35 return encoding

Code A.5: VE dataset.

A.4 LM

1 class LMDataset(torch.utils.data.Dataset):

2 def __init__(self, annotations , processor , id2path, training=

False):

3 self.training = training

4 self.annotations = annotations

5 self.processor = processor

6 self.id2path = id2path

7

8 def __len__(self):

9 return len(self.annotations)

10

11 def __getitem__(self, idx):

12 annotation = self.annotations[idx]

13

14 image_id = annotation[’image_id’]

15

16 print(image_id)

17

18 sentence = annotation[’masked_sentence’]

19

20 label = self.processor.tokenizer(annotation[’sentence’],

padding="max_length", truncation=True, return_tensors="pt")

21

22 # to ignore special tokens different from [MASK] during loss

calculation

23 if self.training:

24 label[’input_ids’] = torch.where(label[’input_ids’] == 0,

torch.tensor(-100), label[’input_ids’])

25 label[’input_ids’] = torch.where(label[’input_ids’] ==

101, torch.tensor(-100), label[’input_ids’])
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26 label[’input_ids’] = torch.where(label[’input_ids’] ==

102, torch.tensor(-100), label[’input_ids’])

27

28 image = Image.open(self.id2path[image_id])

29

30 if image.mode != ’RGB’:

31 image = image.convert(’RGB’)

32

33 encoding = self.processor(image, sentence , padding="

max_length", truncation=True, return_tensors="pt")

34

35 # non-masked sequence of tokens

36 encoding[’labels’] = label.input_ids.clone()

37

38 for k, v in encoding.items():

39 encoding[k] = v.squeeze()

40

41 return encoding

Code A.6: LM dataset.

A.5 VQAv2

A.5.1 Standard

1 class VQAv2Dataset(torch.utils.data.Dataset):

2 def __init__(self, annotations , processor , id2path, config=None):

3 self.annotations = annotations

4 self.processor = processor

5 self.id2path = id2path

6 self.config = config

7

8 def __len__(self):

9 return len(self.annotations)

10

11 def __getitem__(self, idx):

12 annotation = self.annotations[idx]

13

14 image_id = annotation[’image_id’]

15

16 sentence = annotation[’question’]

17
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18 labels = torch.zeros(len(self.config.id2label))

19 for label, score in zip(annotation["labels"], annotation["

scores"]):

20 labels[label] = score

21

22 image = Image.open(self.id2path[image_id])

23

24 if image.mode != ’RGB’:

25 image = image.convert(’RGB’)

26

27 encoding = self.processor(image, sentence , padding="

max_length", truncation=True, return_tensors="pt")

28

29 # one-hot encoding tensor

30 encoding[’labels’] = labels

31

32 for k, v in encoding.items():

33 encoding[k] = v.squeeze()

34

35 return encoding

Code A.7: VQAv2 standard dataset.

A.5.2 ResNetV2 features

1 class VQAv2DatasetCNN(torch.utils.data.Dataset):

2 def __init__(self, annotations , vilt_processor , cnn_processor ,

id2path, config=None):

3 self.annotations = annotations

4 self.vilt_processor = vilt_processor

5 self.cnn_processor = cnn_processor

6 self.id2path = id2path

7 self.config = config

8

9 def __len__(self):

10 return len(self.annotations)

11

12 def __getitem__(self, idx):

13 annotation = self.annotations[idx]

14

15 image_id = annotation[’image_id’]

16

17 sentence = annotation[’question’]
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18

19 labels = torch.zeros(len(self.config.id2label))

20 for label, score in zip(annotation["labels"], annotation["

scores"]):

21 labels[label] = score

22

23 image = Image.open(self.id2path[image_id])

24

25 if image.mode != ’RGB’:

26 image = image.convert(’RGB’)

27

28 encoding = self.vilt_processor.tokenizer(sentence , padding="

max_length", truncation=True, return_tensors="pt")

29

30 encoding[’pixel_values’] = self.cnn_processor(image,

return_tensors="pt")[’pixel_values’]

31

32 encoding[’labels’] = labels

33

34 for k, v in encoding.items():

35 encoding[k] = v.squeeze()

36

37 return encoding

Code A.8: VQAv2 dataset with ResNetV2 features.

A.5.3 SqueezeNet features

1 class VQAv2DatasetCNNV3(torch.utils.data.Dataset):

2 def __init__(self, annotations , vilt_processor , cnn_processor ,

id2path, config=None):

3 self.annotations = annotations

4 self.vilt_processor = vilt_processor

5 self.cnn_processor = cnn_processor

6 self.id2path = id2path

7 self.config = config

8

9 def __len__(self):

10 return len(self.annotations)

11

12 def __getitem__(self, idx):

13 annotation = self.annotations[idx]

14
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15 image_id = annotation[’image_id’]

16

17 sentence = annotation[’question’]

18

19 labels = torch.zeros(len(self.config.id2label))

20 for label, score in zip(annotation["labels"], annotation["

scores"]):

21 labels[label] = score

22

23 image = Image.open(self.id2path[image_id])

24

25 if image.mode != ’RGB’:

26 image = image.convert(’RGB’)

27

28 encoding = self.vilt_processor.tokenizer(sentence , padding="

max_length", truncation=True, return_tensors="pt")

29

30 encoding[’pixel_values’] = self.cnn_processor(image)

31

32 encoding[’labels’] = labels

33

34 for k, v in encoding.items():

35 encoding[k] = v.squeeze()

36

37 return encoding

Code A.9: VQAv2 dataset with SqueezeNet features.

A.6 DataLoader

1 from torch.utils.data import DataLoader

2

3 def collate_fn(batch, processor):

4 input_ids = [item[’input_ids’] for item in batch]

5 pixel_values = [item[’pixel_values’] for item in batch]

6 attention_mask = [item[’attention_mask’] for item in batch]

7 token_type_ids = [item[’token_type_ids’] for item in batch]

8 labels = [item[’labels’] for item in batch]

9

10 # create padded pixel values and corresponding pixel mask

11 encoding = processor.image_processor.pad(pixel_values ,

return_tensors="pt")
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12

13 # create new batch

14 batch = {’input_ids’: torch.stack(input_ids), ’attention_mask’:

torch.stack(attention_mask),

15 ’token_type_ids’: torch.stack(token_type_ids), ’

pixel_values’: encoding[’pixel_values’],

16 ’pixel_mask’: encoding[’pixel_mask’], ’labels’: torch.

stack(labels)}

17

18 return batch

19

20 # example of use

21 dataloader = DataLoader(train_dataset , collate_fn=lambda batch:

collate_fn(batch, processor), batch_size=batch_size , shuffle=True)

Code A.10: DataLoader to train ViLT in batches.
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B
Use of SAM

In Chapter 3, SAM were utilized for image segmentation. Detailed installa-
tion instructions for SAM can be found on the original GitHub repository1.

To leverage the power of SAM without suffering from long computational
times, segmented images were precomputed. These precomputed segmented
images served as inputs for subsequent processes.

The Supervision library was employed to facilitate the creation of instances.
More comprehensive information regarding the usage of this library can be
found in the original documentation2. Utilizing this library, the raw outputs of
SAM were gathered and consolidated to generate the final segmented image.

Below is an example demonstrating the segmentation of a single image:

1 import torch

2 import cv2

3 from PIL import Image

4 import supervision as sv

5 from segment_anything import sam_model_registry

6 from segment_anything import SamAutomaticMaskGenerator

7

8 # path to sam weights

9 weights = "sam/weights/path"

10 # path to image to segment

11 image_path = "original/image/path"

12

1https://github.com/facebookresearch/segment-anything
2https://supervision.roboflow.com/latest/detection/core
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13 device = torch. device(’cuda:0’ if torch. cuda.is_available() else ’

cpu’)

14 # size of SAM used, have to be the same as the weights

15 MODEL_TYPE = "vit_h"

16

17 # loading the model

18 sam = sam_model_registry[MODEL_TYPE](checkpoint=weights)

19 sam.to(device)

20

21 mask_generator = SamAutomaticMaskGenerator(sam)

22

23 image_bgr = cv2.imread (image_path)

24 image_rgb = cv2.cvtColor(image_bgr , cv2. COLOR_BGR2RGB)

25 result = mask_generator.generate(image_rgb)

26

27 mask_annotator = sv.MaskAnnotator(color_lookup = sv.ColorLookup.

INDEX)

28

29 detections = sv. Detections.from_sam(result)

30

31 annotated_image = mask_annotator.annotate(scene=image_bgr.copy(),

detections=detections)

32

33 with sv.ImageSink(target_dir_path=segmented/image/path) as sink:

34 sink.save_image(image=annotated_image , image_name=

segmented_image_name)

Code B.1: SAM use example.
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C
ViLT-CNN hybrid models

In this appendix, code snippets for the ViLT-CNN hybrid models are pro-
vided. These models are designed to work specifically with the architectures
outlined but can serve as a baseline if different components are desired.

C.1 Linear Projection

Using linear projection custom features are created. To pass them directly to
ViLT image_embeds are used instead of pixel_values.

1 import torch

2 import torch.nn as nn

3 from transformers import ViltConfig , ViltProcessor ,

ViltForQuestionAnswering

4 from transformers import AutoImageProcessor , BitModel

5

6 class ViLTwithCNNfeatures(nn.Module):

7 def __init__(self, cnn, vilt):

8 super(ViLTwithCNNfeatures , self).__init__()

9

10 self.cnn = cnn

11

12 self.vilt = vilt

13

14 # change kernel_size and stride to change the number of

features obtained
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15 self.projection = nn.Conv2d(1024, 768, kernel_size=16, stride

=16)

16

17 def forward(self, input_ids , token_type_ids , attention_mask ,

pixel_values , labels):

18 # to obtain the internal layer’s output

19 cnn_outputs = self.cnn(pixel_values , output_hidden_states=

True)

20 cnn_features = cnn_outputs.hidden_states[3]

21

22 image_embeds = self.projection(cnn_features).flatten(2).

transpose(1, 2)

23 # to use custom features a pixel_mask have to be created

manually

24 pixel_mask = torch.ones(image_embeds.size()[:2]).to(

image_embeds.device)

25

26 output = self.vilt(input_ids = input_ids , token_type_ids=

token_type_ids , attention_mask=attention_mask ,

27 image_embeds = image_embeds , pixel_mask =

pixel_mask , labels=labels)

28

29 return output

30

31 vilt = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-

mlm", config=config)

32 cnn = BitModel.from_pretrained("google/bit-50")

33

34 model = ViLTwithCNNfeatures(vilt=vilt, cnn=cnn)

Code C.1: Vilt-CNN v1.

C.2 Reshaping

The internal layer feature maps of the CNN are extracted and reshaped using
an upsampling block, resulting in an input size equivalent to an image, which
can then be passed to ViLT as pixel_values.

C.2.1 ResNetV2

1 import torch
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2 import torch.nn as nn

3 from transformers import ViltConfig , ViltProcessor ,

ViltForQuestionAnswering

4 from transformers import AutoImageProcessor , BitModel

5

6 class ViLTwithCNNfeaturesV2(nn.Module):

7 def __init__(self, cnn, vilt):

8 super(ViLTwithCNNfeaturesV2 , self).__init__()

9

10 self.cnn = cnn

11

12 self.vilt = vilt

13

14 # upsampling block

15 self.up = nn.Sequential(

16 nn.ConvTranspose2d(in_channels=1024, out_channels=512,

kernel_size=4, stride=2, padding=1),

17 nn.ReLU(),

18 nn.ConvTranspose2d(in_channels=512, out_channels=256,

kernel_size=4, stride=2, padding=1),

19 nn.ReLU(),

20 nn.ConvTranspose2d(in_channels=256, out_channels=128,

kernel_size=4, stride=2, padding=1),

21 nn.ReLU(),

22 nn.ConvTranspose2d(in_channels=128, out_channels=3,

kernel_size=4, stride=2, padding=1),

23 nn.ReLU(),

24 )

25

26 def forward(self, input_ids , token_type_ids , attention_mask ,

pixel_values , labels):

27 # to obtain the internal layer’s output

28 cnn_outputs = self.cnn(pixel_values , output_hidden_states=

True)

29 cnn_features = cnn_outputs.hidden_states[3]

30

31 image_embeds = self.up(cnn_features)

32

33 output = self.vilt(input_ids=input_ids , token_type_ids=

token_type_ids , attention_mask=attention_mask ,

34 pixel_values=image_embeds , labels=labels)

35

36 return output
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37

38 vilt = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-

mlm", config=config)

39 cnn = BitModel.from_pretrained("google/bit-50")

40

41 model = ViLTwithCNNfeaturesV2(vilt=vilt, cnn=cnn)

Code C.2: Vilt-CNN v2.

C.2.2 SqueezeNet

1 import torch

2 import torch.nn as nn

3 from transformers import ViltConfig , ViltProcessor ,

ViltForQuestionAnswering

4

5 class ViLTwithCNNfeaturesV3(nn.Module):

6 def __init__(self, cnn, vilt):

7 super(ViLTwithCNNfeaturesV3 , self).__init__()

8

9 # to obtain the internal layer’s output

10 self.cnn_features = nn.Sequential(

11 *list(cnn.features.children())[:-2]

12 )

13

14 # upsampling block

15 self.up = nn.Sequential(

16 nn.ConvTranspose2d(in_channels=512, out_channels=256,

kernel_size=4, stride=2, padding=1),

17 nn.ReLU(),

18 nn.ConvTranspose2d(in_channels=256, out_channels=128,

kernel_size=4, stride=2, padding=1),

19 nn.ReLU(),

20 nn.ConvTranspose2d(in_channels=128, out_channels=64,

kernel_size=4, stride=2, padding=1),

21 nn.ReLU(),

22 nn.ConvTranspose2d(in_channels=64, out_channels=3,

kernel_size=4, stride=2, padding=1),

23 nn.ReLU(),

24 )

25

26 self.vilt = vilt

27
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28 def forward(self, input_ids , token_type_ids , attention_mask ,

pixel_values , labels):

29 cnn_outputs = self.cnn_features(pixel_values)

30

31 image_embeds = self.up(cnn_outputs)

32

33 output = self.vilt(input_ids=input_ids , token_type_ids=

token_type_ids , attention_mask=attention_mask ,

34 pixel_values=image_embeds , labels=labels)

35

36 return output

37

38 vilt = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-

mlm", config=config)

39 cnn = torch.hub.load(’pytorch/vision:v0.10.0’, ’squeezenet1_0’,

weights=True)

40

41 model = ViLTwithCNNfeaturesV3(vilt=vilt, cnn=cnn)

Code C.3: Vilt-CNN v3.
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D
Use of LoRA

In Chapter 6, the implementation of LoRA is explored using Hugging Face’s
PEFT library1, which simplifies its application. This library offers various meth-
ods for efficient training and includes the LoRA implementation2 for ease of use.
An example of its usage is provided along with a list of its main parameters:

• r and lora_alpha: specify the values of the two parameters.

• target_modules: a list of module names to which LoRA will be applied.

• bias: determines whether model biases can be updated during training.

• modules_to_save: specifies which modules without LoRA are allowed to
update during training.

1 import torch

2 from transformers import ViltConfig , ViltProcessor ,

ViltForQuestionAnswering

3 from peft import LoraConfig , get_peft_model

4

5 # To obtain ViLT with pretrained weights

6 model = ViltForQuestionAnswering.from_pretrained(

pretrained_model_name_or_path="dandelin/vilt-b32-mlm")

7

8 config = LoraConfig(

9 r=16,

10 lora_alpha=16,

1https://huggingface.co/docs/peft/index
2https://huggingface.co/docs/peft/package_reference/lora
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11 target_modules=["query", "value"],

12 lora_dropout=0.1,

13 bias="none",

14 modules_to_save=["classifier"],

15 )

16

17 lora_model = get_peft_model(model, config)

Code D.1: LoRA use example.

With the PEFT library, applying LoRA is straightforward. It’s worth noting
that Hugging Face’s models are well-suited for this library’s application, but
custom models can also be used following the guide provided3. To determine
the correct module name for applying LoRA, one can refer to models similar to
the one being used, as demonstrated in this thesis with ViT, or print a list of
parameter names using the method outlined below.

1 print([(n, type(m)) for n, m in MLP().named_modules()])

Code D.2: Printing name of modules.

3https://huggingface.co/docs/peft/developer_guides/custom_models
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