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Abstract 

 

Calcium ion (Ca2+) acts as a vital second messenger within living cells and the experimental measurement of 

its concentration is critical in Biology. During muscular contraction, nerve impulse transmission and many 

other physiological events, Ca2+ forms micro- and nano-domains within the cell cytoplasm which can be 

described solving reaction-diffusion equations between Ca2+ and its buffers interacting with cell boundaries. 

Innovative surface and volume subdivision algorithms based on unstructured three-dimensional mesh 

generation can be applied to locally increase or decrease the accuracy of the differential equation solution. This 

thesis work has developed and validated a simple and computationally inexpensive diffusion algorithm to 

simulate diffusion in an arbitrary volume subdivided into tetrahedral voxels. The algorithm was implemented 

into the user-friendly software SimulCell from Bortolozzi lab and utilized to simulate the real calcium 

concentration in cell micro- and nano-domains. 

 

 

Lo ione calcio (Ca2+) svolge una funzione di secondo messaggero nelle cellule, e la misura sperimentale della 

sua concentrazione è estremamente importante in biologia. Durante la contrazione muscolare, la trasmissione 

degli impulsi nervosi e molti altri eventi fisiologici, il Ca2+ forma all’interno del citoplasma cellulare dei micro- 

e nano-domini, che possono essere descritti tramite la risoluzione di equazioni di reazione-diffusione tra il Ca2+ 

e i suoi buffer, mentre interagiscono con le superfici della cellula. Innovativi algoritmi di suddivisione delle 

superfici e dei volumi basati sulla generazione di mesh non strutturate tridimensionali possono essere applicati 

per aumentare o diminuire localmente l’accuratezza della soluzione delle equazioni differenziali. Questo 

lavoro di tesi ha sviluppato e validato un semplice e computazionalmente economico algoritmo di diffusione 

che permette di simulare la diffusione all’interno di un volume arbitrario suddiviso in voxel tetraedrici. 

L’algoritmo è stato inserito in SimulCell, un software user-friendly del laboratorio del professor Bortolozzi, 

ed utilizzato per simulare la concentrazione di calcio reale all’interno di micro- e nano-domini cellulari. 
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1 Introduction 

1.1 Calcium in biological systems 

 

Calcium ions (Ca2+) regulate multiple processes in cells, such as intracellular signal transduction mechanisms, 

ranging from excitation-contraction coupling, to synaptic transmission and genetic transcription. 

It works as a second messenger inside the cell. The canonical way of transmitting messages to cells involves 

the interaction of “first messengers” with plasma membrane receptors. The interaction activates the production 

of diffusible “second messengers” that convey the information to cellular targets.  

It carries messages to virtually all-important functions of cells. Its binding by complex molecules is particularly 

easy. A large group of proteins has evolved to bind or transport calcium. They contribute to buffer it within 

cells, but several also decode its message for the benefit of the target. 

Although essential to the correct functioning of cell processes, if not carefully controlled spatially and 

temporally within cells, it generates variously severe cell dysfunctions, and even cell death. (Carafoli & Krebs, 

2016). 

 

1.2 Calcium imaging 

 

Optical measurement of the intracellular concentration of Ca2+ ([Ca2+]) is paramount to understanding cell 

physiology and function.  

Several molecular probes, namely fluorescent dyes, capable of sensing the local ion concentration with high 

selectivity, have been developed over the last twenty years.  Chelation is the binding or complexation of a bi- 

or multidentate ligand with a single metal ion. The mechanism of Ca2+ chelation by a ligand called BAPTA is 

shown in Figure 1.1. 

 

Figure 1.1  Mechanism of Ca2+ chelation by BAPTA. The presence of four carboxylic acid (usually written as –

COOH) functional groups makes possible the binding of Ca2+ ions 

 

Chelation of Ca2+ by a buffer B, to form a complex CaB, is described by the reaction 

2[ ] [ ] [ ]
B
on

B
off

k

k
Ca B CaB+ ⎯⎯→+ ⎯⎯                                                                      (1.1) 

 

and the corresponding kinetic equation is 
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2[ ]
[ ][ ] [ ]B B

on off

d CaB
k Ca B k CB

dt
+= −

 

where square brackets are used to indicate concentration, B

onk  is the rate constant for Ca2+ binding to B and 
B

offk

is the rate constant for Ca2+ dissociation. At chemical equilibrium  

[ ]
0

d CaB

dt
=  

therefore 

2[ ][ ]

[ ]

B

off B

dB

on

kCa B
k

CaB k

+

=   

In the above equation, which represents an instance of the law of mass action under equilibrium conditions, 
B

dk  is the equilibrium or dissociation constant. 

Ca2+-selective fluorescent probes share a modular design consisting of a metal-binding site (or sensor) A, 

covalently coupled to a fluorophore B, therefore  

[ ] [ ]A B=  

Fluorescent probes are molecules whose spectral properties can altered in a suitable manner by the parameter 

to be measured ([Ca2+]), like a change in fluorescence yield or a shift in the excitation or emission spectrum. 

(Mammano & Bortolozzi, 2010). In Figure 1.2 it is possible to see the typical sigmoid dependence of the 

fluorescence emission on [Ca2+]. 

 
Figure 1.2 (a) Fluo-3 (a single wavelength fluorescence indicator) spectra, excited by the 488-nm line of the Argon 

laser, are shown for different values of the free Ca2+ concentration. (b) Relative fluorescence emission intensity, 

measured at the peak of each spectrum in (a), plotted against the corresponding [Ca2+]. 
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1.2.1 Fluorescence 

Suppose now that we have a system of fluorophores A  at a total concentration Tc , which we excite with light 

of a given intensity and wavelength  , we can summarize the excitation process as 

 

*Ak
A photon A+ ⎯⎯→    

 

Where Ak  is the excitation rate constant (in units of 1s− ) and *A  represents fluorophores in the excited state. 

The system relaxes either non-radiatively (nr), with a rate nrk , or radiatively (r), emitting a photon of longer 

wavelength (i.e. reduced energy 'h ) with a rate constant rk (Figure 1.3). 

 
Figure 1.3: Radiative and nonradiative decay from the excited state 

 

The overall relaxation rate constant Mk  is given by  

 

1
M r nr

ex

k k k


= + =   

 

(in units of 1s− ) where ex  is the excited state lifetime (typically a few ns). Under constant illumination, a 

steady state is rapidly reached such that 

 

( )[ *] [ *]A T Mk c A k A − =   

 

where the dimensionless parameter   represents the fraction of absorbed photons. Therefore, the equilibrium 

(steady state) concentration of excited state fluorophores [ *]eqA  is given by 

 

[ *] T
eq

M A

c
A

k k




=

+
  

 

where, in general, M Ak k . The fluorescence emission intensity ( )f t  is proportional to the number of photons 

emitted in the process of relaxation from the excited state 

 

[ *] rk
A A photon⎯⎯→ +   

 

therefore, its steady state value is 
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[ *] r T
r eq

M A

k c
f k A

k k




= =

+
  

 

where the result is expressed in mols of photons emitted per unit time and unit volume of dye solution. 

For a given Tc ,   is proportional to the product ( ) l   , where ( )   is the molar absorption coefficient (in 

units of  mol-1
 m-1) and l  is the length of the path traversed by the illuminating beam through the absorbing 

medium. The fluorescence quantum yield (sometimes termed quantum efficiency) is a gauge for measuring 

the efficiency of fluorescence emission relative to all of the possible pathways for relaxation and is generally 

expressed as 

 

r
F

M

k

k
 =   

 

Therefore, we conclude that f  depends on factors such as illumination intensity, molar concentration of 

fluorescent probes, fluorescence quantum yield, molar absorption coefficient, and path length. Let us then 

assume that the concentration of Ca2+-selective fluorescent probes is kept low enough that the relationship 

between fluorescence emission intensity and concentration is indeed linear. In general, the concentration [ ]F  

and [ ]CaF  of the Ca2+-free ( b ) and Ca2+-bound ( b ) forms differ with respect to quantum yield and absorption. 

Therefore, we write f  as a linear combination 

 

[ ] [ ]f bf S F S CaF= +  
(1.2) 

 

where the proportionality constants bS  and 
fS  lump all (system-dependent) factors such as illumination 

intensity, F , ( )   and l . We are interested in measuring 2[ ]Ca +  in a closed system (e.g. the cell 

cytoplasm). 

Hence, we must also include the mass balance equation 

 

[ ] [ ]Tc F CaF= +  (1.3) 

 

We then define 

 

max b Tf S c=   (1.4) 

 

as the fluorescence emission under Ca2+
 saturation conditions and 

 

min f Tf S c=  
(1.5) 

 

as the corresponding emission under Ca2+-free conditions. Combining equations (1.5),  (1.4), (1.3) and (1.2), 

we can write 

 

min

max

[ ]

[ ]

f f CaF

f f F

−
=

−
 (1.6) 
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At chemical equilibrium 
2

,

,

,

[ ][ ]

[ ]

off B

d B

on B

kCa F
k

CaF k

+

= = , so 

 

2

,

[ ]
[ ]

[ ]
d B

CaF
Ca k

F

+ =   

 

Therefore, we conclude that 

 

2 min
,

max

[ ] d B

f f
Ca k

f f

+ −
=

−
 

 

(1.7) 

 

 

Equation (1.7) expresses a quantitative relationship between the physiologically relevant equilibrium 2[ ]Ca +  

the dissociation constant 
,d Bk  and optically measurable quantities minf , maxf  and f  for single wavelength Ca2+-

selective probes. However, there are a number of caveats and problems with the practical use of (1.7). First, 

we note that the denominator vanishes as maxf f→ . Consequently, even small fluctuations in the estimate of 

f  (e.g. due to instrumental noise) may cause unacceptably large fluctuations in the estimation of 2[ ]Ca + . 

Furthermore, (1.7) is difficult to apply to imaging experiments where maxf , minf  and f  change rapidly over 

time due to photo-bleaching. 
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2 Simulation 

To understand complex biological systems such as cells, tissues, or even the human body, it is not enough to 

identify and characterize the individual molecules in the system. It also is necessary to obtain a thorough 

understanding of the interaction between molecules and pathways.  

Modeling approaches are essential for biologists, enabling them to analyze complex physiological processes. 

Computational models help investigators to systematically analyze systems perturbations, develop hypotheses 

to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as 

novel therapeutic targets.  

Mathematical models allow researchers to investigate how complex regulatory processes are connected and 

how disruptions of these processes may contribute to the development of disease. Numerous mathematical 

methods have been developed to address different categories of biological processes, such as metabolic 

processes or signaling and regulatory pathways. (Fischer, 2008) 

To study the dynamics of Ca2+, imaging techniques are used to observe temporal and spatial dynamics of Ca2+ 

ions. Typically, these techniques combine Ca2+-sensitive fluorescent dyes, patch clamp and optical microscopy 

together with various stimulation protocols. (Rispoli, 2001; Lelli, et al., 2003; Issa, 1994; Tucker, 1995 ) 

Simulation and mathematical methods are necessary, both to calculate the expected time course of calcium 

concentration increase and their spatial extent in the presence of multiple buffers (Nowycky, 1993) and to 

extrapolate the cytosolic calcium concentration from fluorescent measurements.  

 

For example, simulations in Figure 2.1 indicate that free Ca2+ concentration estimate, based on equilibrium of 

the reactants (1.7) is seriously in error: the F/F0 signal is a compressed and low pass filtered version of the 

real [Ca2+]i. Because of the speed of  Ca2+influxes, non-equilibrium conditions are fundamental. 

 

 
Figure 2.1 Fluorescence signals vs. cytosolic free Ca2+ concentration. (A) Pseudo-line-scan representation of 0f f  

signals obtained from the experiment; (B) Simulated 0f f  signals for a model. (C) 2[ ]iCa +  changes corresponding 

to the simulation in (B). (D) Time course of the simulated 2[ ]iCa + , integrated over the entire cell (red trace) and 

2[ ]iCa +  values derived either from the simulated (blue trace) or from the experimental (black trace) 0f f  whole 

cell signals, based on the law of mass action at equilibrium. 
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2.1 SimulCell  

SimulCell is a user-friendly simulation software from Bortolozzi lab. It allows the user to solve arbitrary 

systems of differential equations, typically reaction-diffusion equations, in a 1-dimensional and 3-dimensional 

geometry. Furthermore, it is possible to simulate the fluorescence signals of the dye, provided it is inserted as 

a variable in the equations. 

In this thesis work, we added a new feature to SimulCell, and used it to perform simulations. 

 

2.1.1 Define Equations 

In SimulCell “Define equations” panel, the user has to define the equations, parameters and eventual input 

statements or input functions. 

Equations are written in a user-friendly language, and later turned into code by a parser. 

 

 

Figure 2.2 System of 

reaction-diffusion 

equations involving 

calcium (Ca), a buffer 

molecule B, and the 

buffer bounded with 

calcium (CaB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Geometry 

 

“Geometry 1D” panel allows the creation of a one-dimensional object. The user can choose the cell length 

and the number of voxel to discretize it. One or more voxels can be selected by specifying their indexes, and 

be set as a pattern. Pattern can be chosen according to simulation purposes.  

For instance, it is possible to create a 100µm long cell and divide it into one hundred voxels. Useful patterns 

may be central voxel, border voxels, internal voxels, all the voxels… 

 

In “Geometry 3D” panel, the user can choose a three-dimensional shape between box, ellipsoid, cylinder and 

cone and set objects physical dimensions. He can set the number of points used to shape the object. Given two 

or more objects, it is possible to make set operations, like union, intersection and difference.  

The software allows to discretize the object using a regular grid of cubic voxels. Cubic voxels are the domains 

in which equations are solved. 
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Part of the work of this thesis was the implementation of the discretization with a tetrahedral mesh. (See 

paragraph 2.2) 

In three-dimensional case, it is possible to choose between a number of given patterns: volume, external 

surface, center, planes parallel to coordinate-axis, lines parallel to axis and their extremes. 

 

 

 
 

Figure 2.3 Box created with Geometry3D. Volume, external surface, internal volume and center are the selected 

patterns. In the picture, we can see the whole object (yellow) and the selected pattern ‘box Internal Volume’ (blue). 

 

 

 

2.1.3 Initial Conditions 

“Initial condition” panel allows to set the value of every variable at t = 0. A variable can have a different initial 

value in each pattern defined in Geometry section. Patterns must not intersect, to avoid multiple definition of 

a variable in a single voxel. All the voxels must have a starting value for the variables. To make it possible 

with the available patterns, “Rest of voxels” pattern is automatically defined in the list of the patterns. 

To simulate the diffusion terms of the equations, we have to define voxels permeability. For each pattern, the 

permeability with other patterns selected in “Geometry” must be specified, and also the permeability with the 

external space. 

The initial value of every parameter must be set using patterns as well, and function or statements must be 

referred to voxels belonging to a pattern. 
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Figure 2.4 Initial Condition panel: 

starting value of ‘Ca’ variable is defined 

in the pattern “boxCenter” and in the 

“Rest of voxels”. Value for Dca 

coefficient is defined in the whole box 

volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Compile and run the model 

After defining the model, the user can choose between several ordinary differential equation solvers and set 

some parameters like error tolerance, size of time step, maximum number of time steps. Compilation consists 

in writing expressly all the equations in every voxel of the mesh. A parser recognises equation terms written 

by the user in “Equation” section, and the equations are interpreted for the solver. It is possible to set the final 

time (in seconds) for the simulation, and the intermediate timesteps to be saved. 

 

 

Figure 2.5 Main interface of SimulCell. After 

designing the model, the user can compile and 

run it, having set several solver parameters. 
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2.1.5 Analyse Results 

“Analyze Results” panel is provided in order to visualize the solution of the equation system. The user can 

select a pattern and visualize the time course of a variable in the voxels belonging to the pattern. It is possible 

to make time and spatial averages of variables. There are also some features that allow to calculate the 

fluorescence emitted by a dye buffer, starting from the solution of reaction-equations. 

 
Figure 2.6 Evolution of concentration of a diffusive substance from a central point of source in a sphere discretized 

with regular cubes. Every line represents one voxel. The voxel with the higher concentration is the central one. 

Concentration in the adjacent voxels increases from zero and then diffuses to peripherical voxels. The picture on the 

right is a zoom of the same plot. 

 

In this thesis work, we added to SimulCell the possibility of discretizing any object using a mesh composed 

by tetrahedral voxels instead of cubic voxels. All the software sections were modified in order to support the 

new feature. 

 

2.2 Mesh 

A mesh is a network formed of cells and points. It can have almost any shape and any size.  

Meshes can be used to discretize domains for solving Partial Differential Equations. Each cell of the mesh 

represents an individual solution of the equation. These solutions, combined for the whole network, result in a 

solution for the entire mesh. 

Solving the entire object without dividing it into smaller elements can be impossible because of its geometrical 

complexity. Holes, corners and angles can make it extremely difficult for solvers to obtain a solution. Small 

cells are comparably easy to solve and therefore the preferred strategy. 

 

Mesh types can be classified as structured or unstructured.  

Structured meshes, commonly called grids, have a structure allowing for easy identification of neighbouring 

cells. In fact, structured meshes are applied over analytical coordinates systems (rectangular, elliptical, 

spherical, etc.) and form a regular grid. Each mesh element can be directly mapped into a three-dimensional 

array, making computations easier. This is the case of objects cubic discretization in SimulCell. 

Unstructured meshes are more general and can arbitrarily approximate any geometry shape. They require 

special data structures, such as an adjacency matrix and the node coordinates list. The unstructured mesh 

node/cell numbering can be arbitrary and sparse since it does not require any analytical form of adjacency 

query. 
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Complex geometries that would be impractical to generate a structured mesh within, can be discretized using 

unstructured meshing techniques. Mesh can be thickened in border regions whose boundary has a high 

curvature (Figure 2.7) (SimWiki)   

The tetrahedral meshing implemented in SimulCell is an example of unstructured mesh generation.  

Because of the extreme variety of elements shape, it may be necessary to determine elements quality. Higher-

quality (better-shaped) elements have better numerical properties. A mesh is considered to have higher quality 

if a more accurate solution is calculated more quickly. Increasing the mesh elements number always increases 

the accuracy but also increases computational cost. 

One of these parameters is smoothness. It is the maximum volume ratio between two neighbouring elements.  

Sudden jumps in the size of the cell may cause erroneous results. 

Another parameter is aspect ratio. It is the ratio of longest to the shortest side in a cell. Adjacent cell sizes 

should not vary by more than 20%. (Wikipedia, 2019) 

 

 
Figure 2.7 Structured and unstructured meshing of a solid (a). Two-dimensional mesh local refinement (b). 

Tetrahedral meshing with various elements size (c). 

Another mesh feature (very important for PDE solving), is the possibility of thickening mesh size in regions 

requiring a more accurate solution. For example, in cells like sensory cells, Ca2+ concentration increases 

abruptly following opening of voltage-dependent channels (Lewis, 1983). These channels show a cooperative 

behaviour and cluster, creating “hotspots”,  microdomains of elevated 2[ ]iCa +  (Figure 2.8)  (Bortolozzi, Lelli, 

& Mammano, 2008). A more precise meshing of the space near the hotspot would allow to give a more precise 

description of concentration gradient. 

 

 

 

Figure 2.8 Simulated and experimental fluorescence 

for Calcium hotspots in a hair cell 

 

  



 

17 

 

3 Diffusion 

Diffusion is a phenomenon that can be described by Fick’s laws, partial differential equations which describe 

the temporal and spatial change in concentration of the diffusing solute. Fick’s laws can be used to study 

diffusion of molecules inside the cell cytoplasm and their transport through biological membranes. 

Fick's first law relates to the diffusive flux of a substance inside a fluid, to its concentration. It postulates that 

the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is 

proportional to the concentration gradient. 

j D C= −                                                                                (3.1)                                                                             

Inserting the ((3.1) in the mass conservation law ((3.2) 

 

dC
j

dt
= −                                                                               (3.2) 

we obtain Fick’s second law (3.3). It is a non-linear parabolical partial differential equation. 

 

2dC
D j

dt
= 

                                                                            (3.3) 

 

 

If we consider diffusion of N identical particles from a point of source in an infinite isotropic and homogeneous 

medium, the initial condition for Fick’s equation is equivalent to:  

( 0, ) ( )C t x M x= = , where M is the number of moles of the diffusing substance. 

The solution of Fick’s second law is 
2 2 2

4
3/ 2

( , , , )
(4 )

x y z

Dt
M

C x y z t e
Dt

+ +
−

=                                                         (3.4) 

 

Imposing M=1 in ((3.4), we obtain a probability density function, whose mean square displacement from the 

initial position is 
2 2x Dt= , and variance: 

2 2Dt = . 

 

3.1 Diffusion equation discretization 

In order to simulate diffusion, we need to discretize the Fick’s second law: 

The Laplacian operator
2

( )C x  in a one-dimensional grid can be discretized in the following way. 

Grid points ix  are spaced by x  and their concentrations are indicated as ( )i iC C x= . 

 

Using the third order Taylor series of C  we can write 

2 3
2 3 4

1 2 3

1 1
( )

2 6
i i i i i

C C C
C C x x x O x

x x x




+

 
= +  +  +  + 

 
| | |  

2 3
2 3 4

1 2 3

1 1
( )

2 6
i i i i i

C C C
C C x x x O x

x x x




−

 
= −  +  −  + 

 
| | |  

 

By adding them and inverting the final equation, we obtain: 

https://en.wikipedia.org/wiki/Flux
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2

21 1

2 2

2
( )i i i

i

C C CC
O x

x x

+ −+ −
= + 

 
|                                                          (3.5) 

                                            

To obtain the Laplacian discretization in a three-dimensional grid, we can repeat for y and z coordinates and 

sum the expressions found for the second derivatives: 

2 1 1 1 1 1 1

2 2 2

2 2 2i jk i jk ijk i jk ij k ijk ijk ijk ijk

ijk

C C C C C C C C C
C

x x z

+ − + − + −+ − + − + −
 = + +

  
|                                            (3.6) 

       

The temporal at the n-th step of the simulation can be discretized by the forward derivative: 

1n n

i iC CC

t t





+ −
=


 

Where ( , )n

i i nC C x t= , 0nt t n t= +   and t  is the time step. 

The diffusion equation can be re-written by substituting the operators with their discretized expressions: 

2C
D C

t




= 

 
In one dimension: 

 

 
1

1 12
2

n n

i i
i i i

C C D
C C C

t x

+

+ −

−
= + −

 
                                                  (3.7) 

                                                                                              

In three dimensions: 

 
1

1 1 1 1 1 12 2 2
2 2 2

n n

ijk ijk

i jk i jk ijk ij k ij k ijk ijk ijk ijk

C C D D D
C C C C C C C C C

t x y z

+

+ − + − + −

−
     = + − + + − + + − =        

 

(With :x y z r =  =  =  ) 

1 1 1 1 1 12
6i jk i jk ij k ij k ijk ijk ijk

D
C C C C C C C

r
+ − + − + −

 = + + + + + − 
                                                                                 (3.8) 

                                                                                

This is called FTCS algorithm (forward time centred space derivates). 

 

3.2 Random walk 

It is possible to get to the same results starting from the concept of Brownian motion and random walk. 

Brownian motion is the stochastic motion of particles induced by random collisions with water molecules. 

(Metcalfea, Speetjensb, Lesterc, & Clercxd, 2012) 

At equilibrium, the average velocity of the particles over a long period of time is zero, which is a consequence 

of the particles moving in all directions with equal probability. The key mathematical concept to model 

Brownian motion is the random walk model. Einstein used the random walk model to relate Brownian motion 

to the self-diffusion coefficient in the limit of sufficiently long time. 

Let’s consider a one-dimensional random walk problem. A Brownian particle starts at 0x = and each step is 

of the same size x  and has a probability p to be on the right and a probability q to be on the left. (Rudin & 

Choi, 2013) 

After N steps, the probability to have done m steps on the right and N-m steps on the left is the binomial 

distribution: 

https://www.sciencedirect.com/topics/engineering/average-velocity
https://www.sciencedirect.com/topics/materials-science/self-diffusion
https://www.sciencedirect.com/topics/engineering/brownian-particle
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( ) n N m
N

P m p q
m

− 
=  

 
 

The mean of binomial probability density function is m Np= ,  

and its variance is 
22var( )m m m Npq= − =  

The relation that links x and m is   

 

x=(2m-N) x                                                                                      (3.9) 

 

Then, considering 0.5p q= = , we have 

 

           0x =                                                                                            (3.10) 

and                                                         
22 2var( )x x x x= − =  

 

Inserting (3.9) in the previous expression, and using 0.5p q= =  we obtain 

2 2 2 2 2var( ) (4 4 ) ...
t

x x m N Nm x N x
t

=  + − = =  = 


 

 

Defining 

2

2

x
D

t


=


, the value we find for   is 

var( ) 2x Dt = =                                                                           (3.11) 

 

According to central limit theorem, as N approaches infinite, the binomial distribution tends to a gaussian with 

mean (3.10) and variance as in (3.11). Noticing that (3.10) and (3.11) are equivalent to mean and variance of 

the gaussian function (3.4). 

This shows the equivalence between particle motion due to random walk and diffusion process. 

 

 

3.3 Diffusion and random walk comparison 

 

For a random walk step, forcing the particle to move left or right at each time step (Einstein-Smoluchowski 

algorithm) is less accurate than including the third possibility that the particle remains at the same position.  

 

 

2

p
is the probability of the particle step to be towards the right, and the probability to be towards the left.1 p−

is the probability to remain in the central voxel.  

In the limit of a very big number of particles, p/2 represents the percentage of mass moving to the left or to the 

right after a time step.  

The concentration variation in voxels ( 1)l th−  and ( 1)l th+  due to diffusion from the l-th voxel will be  

1 1
2

l l l

p
dC dC C− += =   
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The concentration variation of the l-th voxel can be obtained by considering both the lost mass and the positive 

contribution from the adjacent voxels:   1 1
2 2

l l l

p p
dC C C− += + . 

The updated concentration of the l-th voxel after a time step t will be then: 

1

1 1
2 2

n n n n n

l l l l l

p p
C C pC C C+

+ −= − + +  

Dividing both members by t, the equation can be rewritten as: 

1 1 1
2 2

n n n
n n l l l
l l

p p
pC C C

C C

t t

+ − +− + +
−

=
 

, 

This equation gives Fick’s second law discretization if 
2

2D t
p

x


=


. 

The same result can be obtained in three dimensions considering p/6 as the percentage of mass moving by 

random walk to each one of the six orthogonal neighbours of point ijk. The temporal derivative can be written 

as: 

1
1 1 1 1 1 1... 6 ...

6 6 6 6

n n n n n n n n
n n

ijk i jk i jk ijk ijk i jk i jk ijk
ijk ijk

p p p p
pC C C C C C C CC C

t t t

+
+ − − + − −

 − + + + + − + + + + −
= =

  
 

Comparing it with Fick’s temporal derivative: 

1 2 1 1 1 1 1 12
6 ... 6

6

n n n n

l l l lK ijk i jk i jk ij k ij k ijk ijk

p D t
C C C C C C C C C C C

r

t t

+ − + − + −


   − + + + + − + + + + + +   =

 
                 (3.12)           

 

This equation gives Fick’s second law (3.8) if 
2

6D t
p

x


=


 and x y z =  =  . 

The diffusion process at distance r from a point source is described by the Gaussian function  
2

4
3/ 2

( , )
(4 )

r

Dt
M

C r t e
Dt

−

=  

                   

If 
0

ijkC is the concentration in the point source ijk at t=0, after a time step, the concentration of a point at 

distance r from the point source can be written, in first approximation, as 
0

ijkpC , where  
2

6D t
p

r


=  due to 

the spherical symmetry of the concentration profile, which is equivalent to say that the x-axis can be oriented 

along r , so that x r = . 

If we consider N neighbouring nodes connected to a given node of the grid, the simplest criterion to 

determine the overall contribution from the N nodes is to average their single contributions.  

 

 

 

 

 

 

 

 

3.4 Diffusion algorithm validation 
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3.4.1 2D Mesh generation and simulation 

 

The first step in our work was validating the diffusion algorithm in 2 dimensions, by comparing it with the 

known analytical solution for diffusion equation, with diffusion starting from a central point of source.  

The triangular mesh was built starting from a regular grid of points, using MATLAB DelaunayTriangulation 

function. This function, starting from the N points coordinates, generates a structure containing a Nx3 array, 

whose rows are the indexes of the three vertices of each triangle. (A triangulation is a meshing process which 

uses only given points as elements vertices). 

To simulate free diffusion from a point source, it is necessary to calculate centre and area of each voxel of the 

mesh. The centre of a voxel is defined as the centre of mass of the mesh element, supposing a uniform density 

of the voxel. 

Using the “neighbors” function, the indexes of the three triangles adjacent to each voxel are identified. The 

indexes are referred to the triangles represented by their vertices in the triangulation rows. Some triangles have 

less than three neighbours because they are located at the borders of the discretized region. In this case the 

missing indexes of the neighbours are replaced with “NaN”. 

Also, the distances between the centre of each triangle and its neighbours are calculated and saved in a Nx3 

array. 

Lastly, the voxel whose centre is the nearest to the geometrical centre of the meshed object was identified. 

This is required to simulate diffusion starting from a central point of source.  

 

As a first test, vertices coordinates generated equilateral triangles, in order to work with the most regular mesh. 

 

 
Figure 3.1 Equilateral triangular mesh. Vertices are connected by lines, whereas centers are indicated as small dots. 
 

Diffusion was simulated using the discretization of Laplacian with three neighbours: 

1 1 2 3 1 2 3
1 2 31

3 3 3 3 3 3

n n v v v v v v
v v v v v

p p p p p p
C C C C C+  

= − − − + + + 
 

 

vip  must represent probabilities, ergo simulation timestep t must be chosen little enough to have: 

2
4 1

vi

D t

d


       for every vi                                                                   (3.13) 

As initial condition, concentration is set to zero in every voxel except for the central one.  

For the boundary absorbing boundary conditions were used, imposing 0C = in the boundary voxels. 
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Simulated concentration was compared with theorical prediction for diffusion from a point of source in an 

infinite space:                   

2

( , ) exp
4 4

M d
C d t

Dt Dt

 
= − 

 
 

Where d is the distance with the centre of the central voxel and M is the number of moles. 

 
Figure 3.2 Simulation in equilateral triangular mesh 
 

We can see the agreement between simulated and predicted concentration. 

 

The algorithm was tested with a “deformed” grid: the coordinates of the points are varied by adding a random 

number from a uniform distribution multiplied by a deformation factor. When the mesh becomes very irregular, 

there is a deviation from the predicted curve, as shown in Figure 3.3 and Figure 3.4. Anyway, a mesh similar 

to the one in Figure 3.4 is extremely low quality. It is possible to avoid dealing with it by using an appropriate 

meshing software. 

 
Figure 3.3 Left: Zoom of a Triangular mesh with deformation factor 0.5. Right: Simulation in triangular mesh with 

deformation factor 0.5  
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Figure 3.4 Left: 5 Triangular mesh with deformation factor 1. Right: Simulation in triangular mesh with 

deformation factor 1 

 

 

3.4.2 3D Mesh generation and simulation 

 

Similarly, the mesh was generated in a three-dimensional space. A three-dimensional grid of points was 

created, and their coordinates were varied using a deformation factor.  

It was not possible to create a mesh composed by regular tetrahedra, because regular tetrahedra don’t fill the 

space. (Senechal, 1981) 

Mesh were created with DelaunayTriangulation function by deforming a regular grid of points. 

 
Figure 3.5 Grid of points triangulated with a tetrahedral mesh. This grid was deformed with a factor 0.5, re-meshed, 

and the performed simulation is in Figure 3.6 Simulation in a grid of points (deformation factor: 0.5) discretized 

with tetrahedral mesh generated with Matlab. 
 

The algorithm for bulk voxels is the following: 

1 1 2 3 4 1 2 3 4
1 2 3 41

4 4 4 4 4 4 4 4

n n v v v v v v v v
v v v v v v

p p p p p p p p
C C C C C C+  

= − − − − + + + + 
 

 

The simulated concentration is compared with the theorical diffusive gaussian: 

( )

2

3/ 2
( , ) exp

44

M d
C d t

DtDt

 
= − 
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Figure 3.6 Simulation in a grid of points (deformation factor: 0.5) discretized with tetrahedral mesh generated with 

Matlab 
 

The lack of agreement can be attributed to the lack of mesh quality. To solve this problem, we created the 

mesh with Jigsaw, a free Matlab plugin. (Engwirda, 2014) 

Jigsaw accepts as input the triangulation of the surface of the object to be discretized, and builds the three-

dimensional mesh approximating the surface with the voxels. Surface triangulation is obtained from the 

coordinates of grid points using Matlab “boundary” function. 

It generates elements of high shape-quality, provides a good geometrical and topological approximation to the 

underlying surface, and satisfies a set of user-specified sizing constraints, like mesh maximum size and quality 

constraints, such as smoothness. To build the meshes, it uses both a Delaunay-refinement algorithm, and a 

frontal scheme. The first one starts from a coarse mesh and iterates a process of correction until the mesh 

satisfies all the constraints. The second one proceeds towards the internal, “filling” the volume with new 

elements (Engwirda, 2014). 

 

 
Figure 3.7 Example of deformed grid discretization with Jigsaw and a section of the object 
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Concentration in Figure 3.8 Simulation in a grid of points (deformation factor 0.5) discretized with tetrahedral 

mesh generated with was simulated using a Jigsaw mesh, maintaining the same parameters set for the 

simulation in Figure1. It is possible to see a better agreement with theorical prediction and a minor dispersion 

of concentration values. 

 
Figure 3.8 Simulation in a grid of points (deformation factor 0.5) discretized with tetrahedral mesh generated with 

Jigsaw 

 

The simulation was also performed in a spherical region, in order to get the most regular mesh pattern.  

The sphere is created using “meshgrid” function. The image of the cartesian equation for the sphere 
2 2 2V x y z= + +  is defined in the points of the meshgrid. Then with “isosurface” function, the surface 

triangulation is created as a given value of V. The triangulation is the input for Jigsaw. 

 

The comparison shows the agreement with the theorical prediction. 

 

 
Figure 3.9 Section of a spherical tetrahedral mesh generated with Jigsaw and simulation performed in such domain. 
 

To test diffusion speed, we compared sigma parameter for theorical and simulated distributions in Figure 3.8 

and Figure 3.9. 
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Figure 3.10 Comparison between theorical and simulated sigma for the box (left) and for the sphere (right) 

 

Simulated sigma is slightly smaller than theorical sigma. This was also visible from concentration 

distribution plot, as simulated curves are usually slightly more narrow and higher.  

From Figure 3.10 Comparison between theorical and simulated sigma for the box (left) and for the sphere 

(right)we can say that simulated diffusion in the sphere is slightly slower than theorical diffusion.  

Anyway, the relative error between simulated and predicted concentration is not greater than 5%.  

 

 

 

 

3.4.3 Boundary conditions and permeability 

The previous comparisons are valuable until border effects are negligible. Once considered the interaction with 

borders, the two simplest situations are completely absorbing and reflecting boundary conditions. The first 

condition is obtained by setting the concentration in the border as zero. 

The second condition is realized modifying the diffusion algorithm:  

11 2 3 4 2 3 4
1 2 3 4

11
4 4 4 4 4 4 4 4

n n v v v v v v
v v

v
v v v v

vp p p p p p p
C C C

p
C C C+  

= − − − − + + + + 
 

 

Let’s assume that voxel v lacks neighbour v1: 1vp  must be equal to zero. It means that the probability of 

diffusion through the border face of the voxel towards the external one is equal to zero (
1vp ), and also the 

probability of diffusion from the outside to the inside (
1vp ). This condition expresses the impermeability of 

tetrahedra border faces.   

The concept of permeability of tetrahedra faces can be generalized to a value between zero (impermeability) 

and one (total permeability). 

 

3.4.4 Infinite cylinder 

At last, Diffusion interface allows to test diffusion in a cylinder.  

A cylinder is created, as for the sphere, using “meshgrid” and “isosurface” functions. Equations for cylinder 

bases must be considered too, in order to create a closed surface. 

The theorical curve describing diffusion in a cylinder with infinite height and initial concentration equal to 

zero everywhere except for plane 0z =  is (Mammano & Bortolozzi, 2010):       



 

27 

 

2

( , ) exp
44

M z
C z t

DtDt

 
= − 

 
 

For the simulation, cylinder height must be much greater than its radius. Initial concentration is set to a given 

positive value in the voxels whose vertices have two z-coordinates greater than zero and two z-coordinates 

less than zero, in order to approximate diffusion starting from a plane with uniform concentration. 

 

 
Figure 3.11 : Portion of the meshed cylinder and simulation in a meshed cylinder with height = 100*radius 
 

3.4.5 Mass estimation 

To compare concentration evolution in space and time with a theorical functions (equation (1), (2), (3)), it is 

necessary to know the number of diffusing moles M. 

If voxels have a similar volume or area, or the mesh is good quality, it is sufficient to calculate M as the initial 

concentration in the central voxel, and multiplying it by its volume or its area.  

Otherwise, if voxels sizes are very different from each other, the previous estimation may be incorrect. In fact, 

our diffusion algorithm doesn’t consider voxels volume. In a single step, the number of moles diffusing from 

i-th voxel to its j-th neighbour with a different volume is not conserved.  

A possible solution is to calculate M at every iteration of the algorithm as 
1

( ) ( , ) ( )
N

i

M t C i t Vol i
=

=  , where N 

is the number of voxels. 

To improve this estimation, the mesh has been divided into concentric shells with a given width dx. In each 

shell, concentration is calculated as shell volume multiplied by the mean concentration of the voxels belonging 

to the shell. To each shell corresponds a fixed middle distance from the source. 

This estimation doesn’t always lead to a perfect estimation, but it works quite fine with very irregular mesh.  
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4 Implementation in SimulCell 

We implemented tetrahedral mesh discretization and the new diffusion algorithm in SimulCell and then we 

adapted other software features. 

4.1 Geometry 

In “Geometry 3D” section, the first step was generating the mesh using JigSaw.  

The object is created like before, defining its volume in a regular grid of points. For mesh discretization, it is 

possible to smooth the object previously created, to obtain a more regular surface. This way the meshing 

software will not be forced to generate a bad quality mesh in order to approximate the surface curvature. 

Then centres, neighbours list, distance with neighbours centres were implemented. This kind of information 

cannot be found a priori in an unstructured mesh, differently from the cube discretization. 

 

Patterns definition could not use the same method as for cubes, because of the various connectivity between 

the mesh voxels.  

• External surface was found selecting tetrahedra lacking at least one neighbour. 

• Internal volume was found selecting tetrahedra belonging to volume and not belonging to external 

surface 

• Centre was found using geometrical conditions 

• Plane perpendicular to x-axis (with equation
centery y= ) was found selecting the voxels whose 

vertices had two x-coordinates greater than 
centerx  and two x-coordinates smaller than 

centerx .                                    

The other planes were found analogously. 

• Line parallel to x-axis (with equation 
center centery y z z=  = ) was found selecting the voxels whose 

vertices had two y-coordinates greater than 
centery  and two y-coordinates smaller than 

centery and two 

z-coordinates greater than 
centerz  and two z-coordinates smaller than 

centerz .  

The other lines were found analogously. 

 

4.2 Laplacian discretization  

For Laplacian discretization, matrix representing permeabilities, defined as the permeability of each voxel with 

its four neighbours, was extended by adding the permeabilities of the neighbours with the central voxel. In 

general, these permeabilities are different, as expressed by Laplacian discretization in equation (3.9) and 

described in (3.4.3). SimulCell “Initial Conditions” panel allows to define permeability from a pattern to 

another, so this distinction is necessary (also for cubes discretization).  

The coefficients of the Laplacian term for each voxel were modified in order to consider the right distance 

with the neighbouring voxels and multiplied by their corresponding permeability. 

It was also added an option to calculate the size of the maximum timestep executable by the equation solver, 

to avoid negative concentrations, as explained in (3.15).  

To check the right implementation of the code, diffusion in the same sphere with reflecting border was 

simulated both in SimulCell and outside the software. The following picture is the superposition of the plots 

at three different values for the time. 
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Figure 4.1 Comparison between diffusion performed outside SimulCell (red) and inside SimulCell (blue). Diffusion 

in a sphere with radius 1.8 µm and reflecting boundaries. In the third picture we can see the effect of reflecting 

boundary becomes relevant and concentration is approaching stationary conditions. 

 

4.3 Analyze results 

In “Analyze Results” panel, a function to visualize the meshed object and its patterns was implemented. 

When showing a pattern, the remaining voxel are set to become transparent. Pattern definition was explained 

in paragraph 4.1 and can be found in the Appendix (7). 

 

 
Figure 4.2 Example of patterns definable in SimulCell. The sphere is roughly discretized in order to allow 

visualizing the single voxels belonging to a pattern.  

 

At last, several adjustments were done in the software code, in order to add new features and to fix some 

bugs of the previous version.  
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5 Diffusion in a sphere with calcium influx 

 

We simulated the following reaction in SimulCell: 

2[ ] [ ] [ ]
B
on

B
off

k

k
Ca B CaB+ ⎯⎯→+ ⎯⎯ . 

It represents chelation of calcium Ca from a buffer molecule B to form the complex CaB (see paragraph 1.1). 

We added diffusion terms for calcium and buffer to the corresponding kinetic equations for the three variables: 

2* *on off Ca

Ca
k Ca B k CaB D Ca

t




= − + +   

2* *on off B

B
k Ca B k CaB D B

t




= − + +   

*on off

CaB
k Ca B k CaB

t




= −  

Simulation was performed in a sphere with radius 15 µm discretized with a tetrahedral mesh until t = 1 s.  

As initial condition, we set equilibrium values of concentration for Ca, B and CaB, uniform in the volume. 

 

Ca(t=0) = 0.1 µM B(t=0) = 33.66 µM CaB(t=0) = 16.34 µM  

Kon = 930 s-1 Koff = 930 s-1 DCa = 200 µm2/s DB = 200 µm2/s 

Table 5.1 Initial values for variables and parameters used in the simulation. 

 

Between t = 0.1 s and t = 0.2 s we set a calcium influx from a point of the sphere. The influx was defined as 

follows: 

 
%Please write BELOW your statement by using variable and parameter names (no inputs). 

if t>0.1 && t<0.2 

    INFL =1000; 

else 

    INFL = 0; 

end 

 

To realize it in SimulCell, we defined the influx statement in “point along x1” pattern. 

 

 
Figure 5.1 Entire volume pattern. The sphere is 

discretized in about 4000 voxels.  

 

 

 
Figure 5.2 “Line along x1” pattern. It is the voxel 

with calcium influx at  t= 0.1 s 
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Figure 5.3 Time course of equations variables. 

Voxel receiving calcium influx is easily 

identifiable  

 

 

 

 

 

 

 

 

 

 

 

Simulation results are shown in Figure 5.3. 

We can see that for t < 0.1 s, the system is at dynamic equilibrium, as foreseen. Right after the influx, calcium 

starts to diffuse, its concentration in the source voxel decreases, while it increases in the other voxels.  

We can also notice calcium buffer recombination. As a high calcium concentration is available, it binds with 

the buffer, whose concentration abruptly decreases during the influx.  

Instead, CaB concentration increases during the influx. Its concentration decrease, in the source voxel after the 

impulse, is not due to diffusion towards other voxels, as, in the reaction diffusion equations, CaB diffusive 

term was neglected. As calcium and buffer leave the central voxel, for t > 0.2 s, the complex concentration 

starts to be greater than the equilibrium value, so a fraction gets unbound into calcium and buffer. 

 

This simulation was designed to approximate an event of calcium influx into a living cell from a channel 

opened for calcium signalling.  

For instance, in cells like sensory cells, Ca2+ concentration increases abruptly because of opening of voltage-

dependent channels. The cell localizes calcium signals in time and space to achieve a high bandwidth of signal 

transmission at specific sites, so it is reasonable to simulate an influx from a single voxel. 

These channels create “hotspots”, microdomains of elevated calcium ion concentration. (Bortolozzi, Lelli, & 

Mammano, 2008)  
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6 Conclusions 

This thesis work has developed a new simple algorithm for simulating diffusion in volumes described by 

unstructured tetrahedral (3D) and triangular (2D) meshes. The algorithm was derived starting from the concept 

of random walk and from the discretization of Fick’s second law in a structured grid, and then generalized to 

a mesh with an arbitrary number of neighbouring voxels. In respect to other widely used algorithms developed 

by Finite Elements Methods (FEM), such as the Galerkin method, our algorithm does not require the solution 

of a linear system, so it is extremely fast and simple to be implemented in the equation solver code. On the 

other hand, the computational accuracy is intrinsically limited by the mesh geometry. 

The diffusion algorithm was validated simulating a central point of source in a 2D or 3D space meshed by a 

large number of voxels. The result was compared to the analytical solution of the diffusion equation in an 

infinite isotropic medium. We obtained a good agreement with the theoretical prediction, especially using 

regular meshes. 

The algorithm was validated also considering the interaction of the diffusing solute with the volume boundary. 

In particular, we simulated the case of an infinite cylinder with totally reflecting boundaries as the analytical 

solution is known. The good agreement with the theory allowed to validate the diffusion algorithm. 

Tetrahedral mesh generation and simulation features were implemented in SimulCell software, which 

previously worked with structured cubic meshes. To validate the implemented algorithm, diffusion  

simulations were performed with identical conditions inside and outside SimulCell software.  

Using SimulCell, a reaction-diffusion equation involving a calcium influx at the membrane and an exogenous 

fluorescent buffer (OGB1) was simulated in a meshed sphere with typical cell dimensions. Parameters and 

initial conditions for the simulation were set in order to reproduce the Ca2+ influx through a calcium channel 

in a living cell. 
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7 Appendix 

Function for computing concentrations in two or three dimensional space with absorbing or reflecting 

borders 

 
function A3(Nplot,T,D,c,n,IND,DIST,coord,areas,centers,b_c) 

  

%The function simulates for T seconds m1 multi-dimensional diffusion process, 

%where m1 concentration c (mols) is present at time t=0 in the n-th 

%point of the grid (indexed by ind array) composed by N points. 

%- dt is the suggested time step (in s) while D is the diffusion 

%coefficient (micron^2/s). 

%- ind is m1 NxM matrix containing the M neighbouring points of each point. 

%- dist is m1 NxM matrix containing the M neighbouring distances of each point from its neighbours. 

%- coordinates is the array containing the point coordinates in the 1,2,or 

%3 dimensional space. 

% centers is the N x n_d matrix containing the coordinates of the center of 

% each voxel. 

  

% Ac is m1 N-vector containing, for the n-th voxel, the surface of the triangle whose vertices 

% are the centers of the neighbours of the n-th voxel. 

  

ind = IND; 

dist = DIST; 

  

N=size(ind,1); 

M=size(ind,2); 

n_d=size(coord,2); 

  

%We introduce virtual distances and neighbours for border voxels. This 

%would not change results, but will allow to perform a matricial 

%computation 

  

if M==4 

    ind_NaN3 = isnan(ind(:,2)); 

    ind(ind_NaN3,2)=ind(ind_NaN3,1); 

    dist_NaN3=isnan(dist(:,2)); 

    dist(dist_NaN3,2)=dist(dist_NaN3,1); 

end 

  

ind_NaN2 = isnan(ind(:,M-1)); 

ind(ind_NaN2,M-1)=ind(ind_NaN2,M-2); 

dist_NaN2=isnan(dist(:,M-1)); 

dist(dist_NaN2,M-1)=dist(dist_NaN2,M-2); 

  

ind_NaN=isnan(ind(:,M)); 

ind(ind_NaN,M)=ind(ind_NaN,M-1); 

dist_NaN=isnan(dist(:,M)); 

dist(dist_NaN,M)=dist(dist_NaN,M-1); 

  

%Initialize the simulation 

C=zeros(N,1); 

C(n)=c; 

  

% Adsorbing or reflecting conditions 

  

if b_c ==1  

C(dist_NaN)=0;  

end 

  

if n_d==1 

    R=sqrt((centers(:)-centers(n)).^2); 

elseif n_d==2 

    R=sqrt((centers(:,1)-centers(n,1)).^2+(centers(:,2)-centers(n,2)).^2); 

elseif n_d==3 

    R=sqrt((centers(:,1)-centers(n,1)).^2+(centers(:,2)-centers(n,2)).^2+(centers(:,3)-

centers(n,3)).^2); 

end 

C_near=zeros(N,M); 

C3=C_near; 

for k=1:M 

    C3(:,k)=C; 

end 

C_near=C3(ind); 
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%find dt 

  

p_max = 0.99; 

  

dist_inv = zeros(N,1);   %somma degli inversi dei quadrati delle distanze con i vicini,  

%ne cerco il massimo, che corrisponde m1 p_max 

  

for i=1:M 

dist_inv = dist_inv + 1./(dist(ind(:,i))).^2; 

end 

  

dt = p_max*M/(2*n_d*D)/max(dist_inv); 

%dt=dt/10; 

  

%calculate p matrix 

  

p=2*n_d*D*dt./dist.^2/M; 

if b_c == 1 

elseif b_c == 2 

      p(ind_NaN,M)=0; 

      p(ind_NaN2,M-1)=0; 

    if n_d == 3 

      p(ind_NaN3,M-2)=0; 

    end 

end 

p_sum=sum(p,2); 

p0=1-p_sum; 

  

%Perform diffusion simulation until time T 

t=dt; 

r=0:max(R)/1e4:max(R); 

count=1; 

  

%Calculate rounded distances 

%Find the best dx 

% dx=max(R)/length(R)*100; 

dx=0.5; 

rounded_R = dx*round(R/dx); 

[sorted_R,ind_sort] = sort(rounded_R);    %ascendig order 

[uniq_R,ind1] = unique(sorted_R);         %find unic elements and their indexes in sorted_R 

total_masses = zeros(1,length(ind1)); 

  

%Check for homogeneity of uniq_R 

diffR=diff(uniq_R); 

diffR=dx*round(diffR/dx); 

if sum(diffR~=dx)>1 

    disp('Warning! Increase dx to obtain a better estimate of the total mass!'); 

end 

  

if (n_d == 2) 

    vol = pi*(((uniq_R+dx/2).^2)-((uniq_R-dx/2).^2)); 

    vol(1) = pi*((uniq_R(2)-(dx/2)).^2); 

end 

if (n_d == 3) 

    vol = 4/3*pi*(((uniq_R+dx/2).^3)-((uniq_R-dx/2).^3)); 

    vol(1) = 4/3*pi*((uniq_R(2)-(dx/2)).^3); 

end 

  

%%%%%%%% 

  

while t<T 

    C=p0.*C+sum(C_near.*p,2); 

     

    if b_c == 1  

       C(dist_NaN)=0;  

    end 

     

    %Plot results 

    if mod(count,Nplot)==0 

        pause(0.1); 

        if count == Nplot      

            %Plot the concentrations 

            figure 

            h=plot(R,C,'ro','MarkerSize',6,'DisplayName','Simulated'); 

            %set(gca,'xlim', [0 ]); 

            %set(gca,'ylim',[0 max(C)]); 

            xlabel('Distance (microns)'); 

            ylabel('Concentration (micromolars)'); 
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            h_tit=title(['Time=' num2str(t) ' s']); 

             

            %Plot the Gaussian curve 

            hold on 

            C_sort = C(ind_sort); 

            for i = 1:length(ind1) 

                if i == 1 

                    total_masses(1) = mean(C_sort(1:ind1(2)-1))*vol(i); 

                elseif i==length(ind1) 

                    total_masses(i) = mean(C_sort(ind1(i):end))*vol(i); 

                else 

                    total_masses(i) = mean(C_sort(ind1(i):ind1(i+1)-1))*vol(i); 

                end 

            end 

            m=sum(total_masses); 

            G = m/((sqrt(4*pi*D*t))^n_d)*exp((-r.^2)/(4*D*t)); 

            h2=plot(r,G,'g','LineWidth',2,'DisplayName','Predicted'); 

            set(h_tit,'string',['Time=' num2str(t) ' s']); 

        else 

            C_sort = C(ind_sort); 

            for i = 1:length(ind1) 

                if i == 1 

                    total_masses(1) = mean(C_sort(1:ind1(2)-1))*vol(i); 

                elseif i==length(ind1) 

                    total_masses(i) = mean(C_sort(ind1(i):end))*vol(i); 

                else 

                    total_masses(i) = mean(C_sort(ind1(i):ind1(i+1)-1))*vol(i); 

                end 

            end 

            m=sum(total_masses); 

            G = m/((sqrt(4*pi*D*t))^n_d)*exp((-r.^2)/(4*D*t)); 

            set(h2,'xdata',r,'ydata',G); 

            set(h_tit,'string',['Time=' num2str(t) ' s']); 

            set(h,'xdata',R,'ydata',C); 

        end 

    end 

    if mod(count,Nplot) == 0 

        count=count+1 

    else 

        count=count+1; 

    end 

    t=t+dt; 

    %Update values 

    for k=1:M 

        C3(:,k)=C; 

    end 

    C_near=C3(ind); 

end 

 

 

Function for 3D mesh generation 

 
function [n,ind,dist,coord,areas,centers] = mesh3d_griglia(Nx,Ny,Nz,fact,radiobut) 

 

%given the number of points along x,y,z, the function builds a regular grid of points and 

%triangulates it with matlab, or it finds the object surface triangulation and generates mesh with 

%JigSaw. It calculates centers, volumes, neighbours, distances etc. 

  

Nxyz = Nx*Ny*Nz; 

  

x1 = zeros(1, Nx*Ny); 

y1 = x1; 

z = zeros(1, Nxyz); 

  

for i=0:(Ny-1) 

    x1(1, (1+Nx*i): ((i+1)*Nx)) = 0:(Nx-1); 

end 

  

for i=0:(Ny-1) 

    y1(1, (1+Nx*i): ((i+1)*Nx)) =i*ones(1,Nx); 

end 

  

z(1, 1: Nx*Ny) = zeros(1,Nx*Ny); 

x = x1; 

y = y1; 

for j=1:(Nz-1) 

    x = [x,x1]; 
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    y = [y,y1]; 

    z(1, (1+j*Nx*Ny):(j+1)*Nx*Ny) = j*ones(1,Nx*Ny); 

     

end  

  

%% 

for i=1:Nxyz 

    x(i) = x(i) + rand*fact; 

end 

  

for i=1:Nxyz 

    y(i) = y(i) + rand*fact; 

end 

  

for i=1:Nxyz 

    z(i) = z(i) + rand*fact; 

end 

%% 

coord = [x',y',z']; 

%% 

if radiobut==1,   %matlab mesh 

    DT = delaunayTriangulation(x.',y.',z.'); 

    tri = DT.ConnectivityList; 

    figure; 

    [K,v] = convexHull(DT); 

    trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3)); 

     

    [tri_row, ~] = size(tri); 

     

    % triangles centers 

     

    centers = zeros(tri_row,3); 

         

    centers(:,1) = (x(tri(:,1))+x(tri(:,2))+x(tri(:,3))+x(tri(:,4)))/4; 

    centers(:,2) = (y(tri(:,1))+y(tri(:,2))+y(tri(:,3))+y(tri(:,4)))/4; 

    centers(:,3) = (z(tri(:,1))+z(tri(:,2))+z(tri(:,3))+z(tri(:,4)))/4; 

       

    %triangles neighbours 

    ind = neighbors(DT); 

     

    for i=1:tri_row 

        ind(i,:) = sort(ind(i,:)); 

    end 

     

    %distances 

     

    dist = NaN(tri_row,4); 

     

    vicini_NaN = isnan(ind); 

     

     

    for i=1:tri_row 

         

        if (vicini_NaN(i,2)==1) 

            dist(i,1) = sqrt( ( centers(ind(i,1),1) - centers(i,1) )^2 + ( centers(ind(i,1),2) - 

centers(i,2) )^2 + ( centers(ind(i,1),3) - centers(i,3) )^2 ); 

             

        elseif (vicini_NaN(i,3)==1 ) 

            dist(i,1) = sqrt( ( centers(ind(i,1),1) - centers(i,1) )^2 + ( centers(ind(i,1),2) - 

centers(i,2) )^2 + ( centers(ind(i,1),3) - centers(i,3) )^2 ); 

            dist(i,2) = sqrt( ( centers(ind(i,2),1) - centers(i,1) )^2 + ( centers(ind(i,2),2) - 

centers(i,2) )^2  + ( centers(ind(i,2),3) - centers(i,3) )^2 ); 

           

        elseif (vicini_NaN(i,4)==1 ) 

            dist(i,1) = sqrt( ( centers(ind(i,1),1) - centers(i,1) )^2 + ( centers(ind(i,1),2) - 

centers(i,2) )^2 + ( centers(ind(i,1),3) - centers(i,3) )^2 ); 

            dist(i,2) = sqrt( ( centers(ind(i,2),1) - centers(i,1) )^2 + ( centers(ind(i,2),2) - 

centers(i,2) )^2  + ( centers(ind(i,2),3) - centers(i,3) )^2 ); 

            dist(i,3) = sqrt( ( centers(ind(i,3),1) - centers(i,1) )^2 + ( centers(ind(i,3),2) - 

centers(i,2) )^2 + ( centers(ind(i,3),3) - centers(i,3) )^2 ); 

             

        elseif(ind(i,4)>0) 

            dist(i,1) = sqrt( ( centers(ind(i,1),1) - centers(i,1) )^2 + ( centers(ind(i,1),2) - 

centers(i,2) )^2 + ( centers(ind(i,1),3) - centers(i,3) )^2 ); 

            dist(i,2) = sqrt( ( centers(ind(i,2),1) - centers(i,1) )^2 + ( centers(ind(i,2),2) - 

centers(i,2) )^2  + ( centers(ind(i,2),3) - centers(i,3) )^2 ); 

            dist(i,3) = sqrt( ( centers(ind(i,3),1) - centers(i,1) )^2 + ( centers(ind(i,3),2) - 

centers(i,2) )^2 + ( centers(ind(i,3),3) - centers(i,3) )^2 ); 
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            dist(i,4) = sqrt( ( centers(ind(i,4),1) - centers(i,1) )^2 + ( centers(ind(i,4),2) - 

centers(i,2) )^2 + ( centers(ind(i,4),3) - centers(i,3) )^2 ); 

        end 

         

    end 

     

    %volumes 

     

    areas = zeros(tri_row,1); 

     

    for i=1:tri_row 

        areas(i) = 1/6*abs(det([x(tri(i,2))-x(tri(i,1)), y(tri(i,2))-y(tri(i,1)), z(tri(i,2))-

z(tri(i,1)); 

            x(tri(i,3))-x(tri(i,1)), y(tri(i,3))-y(tri(i,1)), z(tri(i,3))-z(tri(i,1)); 

            x(tri(i,4))-x(tri(i,1)), y(tri(i,4))-y(tri(i,1)), z(tri(i,4))-z(tri(i,1));])); 

    end 

     

    center = [Nx/2,Ny/2,Nz/2]; 

     

    d1 = zeros(tri_row,1); 

     

    for i=1:tri_row 

        d1(i) = sqrt( (center(1)-centers(i,1))^2 + (center(2) - centers(i,2))^2 + (center(3)-

centers(i,3))^2); 

    end 

     

    [~, n] = min(d1); 

     

    msgbox('Done!');   

 

else % JigSaw meshing 

    k = boundary(coord,0.1); 

 

    %% Use JigSaw 

    geom.point.coord = coord; 

    geom.tria3.index = k; 

     

    geom.point.coord(:,4) = 0; 

    geom.tria3.index(:,4) = 0; 

   

    try 

        savemsh('prova1.msh',geom);%New function 

    catch 

        makemsh('prova1.msh',geom);%Old function was makemsh 

    end 

        

    opts.geom_file = 'prova1.msh'; % file specifying the geom 

    opts.mesh_file = 'prova1.msh'; % file for the output mesh 

    opts.jcfg_file = 'prova1.jig'; % file for JIGSAW's config. 

     

     

    %opts.hfun_kern = 'constant';     %OLD PARAMETER 

    opts.hfun_hmax = 0.12/(Nx+Ny+Nz)*3*10; 

    %opts.hfun_hmin = opts.hfun_hmax / 20; 

    %     -- setup the mesh-config for JIGSAW 

        opts.mesh_kern = 'delfront';        % use the "frontal" kernal 

        opts.mesh_dims = 3;                 % produce tetra output 

%     opts.mesh_vol3 = 0.001; 

     

%         opts.geom_feat = true ; 

     

    mesh = jigsaw(opts);                % call JIGSAW 

     

    figure 

    drawmesh(mesh); 

 

[.…] 
 

end 

 

Patterns definition in SimulCell, Geometry3D 
%Patterns need to be re-defined with indexes referred to mesh 

  

%%% Whole volume = Pat1 

dataM.geometry.patterns.Pat1.V = ones(length(dataF.MeshedObjects.tria4.index),1); 

dataM.geometry.patterns.Pat1.indexes = find(dataM.geometry.patterns.Pat1.V==1); 
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%%% Surface = Pat2 

dataM.geometry.patterns.Pat2.indexes = find(neighbours(:,4)==0); 

dataM.geometry.patterns.Pat2.V = (zeros(length(dataF.MeshedObjects.tria4.index),1)); 

dataM.geometry.patterns.Pat2.V(dataM.geometry.patterns.Pat2.indexes) = 1; 

  

%%% Internal volume = Pat3 

dataM.geometry.patterns.Pat3.V = (ones(length(dataF.MeshedObjects.tria4.index),1)); 

dataM.geometry.patterns.Pat3.V = dataM.geometry.patterns.Pat3.V - dataM.geometry.patterns.Pat2.V; 

dataM.geometry.patterns.Pat3.indexes = find(dataM.geometry.patterns.Pat3.V==1); 

  

%%% Center = Pat4 

center = zeros(tri_row,3); 

for i=1:tri_row 

    center(i,:) = center_geom; 

end 

d1 = sqrt ( (center(:,1)-centers(:,1)).^2 + (center(:,2) - centers(:,2)).^2 + (center(:,3)- 

centers(:,3)).^2); 

[~, n] = min(d1); 

dataM.geometry.patterns.Pat4.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

dataM.geometry.patterns.Pat4.V(n) = 1; 

dataM.geometry.patterns.Pat4.indexes = find(dataM.geometry.patterns.Pat4.V==1); 

  

%%% 'Line along x' = Pat5 

dataM.geometry.patterns.Pat5.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

diffy(:,1) = mesh.point.coord(tria4(:,1),2)-centers(n,2); 

diffy(:,2) = mesh.point.coord(tria4(:,2),2)-centers(n,2); 

diffy(:,3) = mesh.point.coord(tria4(:,3),2)-centers(n,2); 

diffy(:,4) = mesh.point.coord(tria4(:,4),2)-centers(n,2); 

diffz(:,1) = mesh.point.coord(tria4(:,1),3)-centers(n,3); 

diffz(:,2) = mesh.point.coord(tria4(:,2),3)-centers(n,3); 

diffz(:,3) = mesh.point.coord(tria4(:,3),3)-centers(n,3); 

diffz(:,4) = mesh.point.coord(tria4(:,4),3)-centers(n,3); 

  

for i=1:length(diffy) 

diffy(i,:) = sort(diffy(i,:)); 

diffz(i,:) = sort(diffz(i,:)); 

   if diffy(i,1)*diffy(i,4)<0 && diffz(i,1)*diffz(i,4)<0 

   dataM.geometry.patterns.Pat5.V(i)=1;        

   end 

end 

dataM.geometry.patterns.Pat5.indexes = find(dataM.geometry.patterns.Pat5.V==1); 

  

%%% 'Line along y' = Pat6 

dataM.geometry.patterns.Pat6.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

diffx(:,1) = mesh.point.coord(tria4(:,1),1)-centers(n,1); 

diffx(:,2) = mesh.point.coord(tria4(:,2),1)-centers(n,1); 

diffx(:,3) = mesh.point.coord(tria4(:,3),1)-centers(n,1); 

diffx(:,4) = mesh.point.coord(tria4(:,4),1)-centers(n,1); 

diffz(:,1) = mesh.point.coord(tria4(:,1),3)-centers(n,3); 

diffz(:,2) = mesh.point.coord(tria4(:,2),3)-centers(n,3); 

diffz(:,3) = mesh.point.coord(tria4(:,3),3)-centers(n,3); 

diffz(:,4) = mesh.point.coord(tria4(:,4),3)-centers(n,3); 

for i=1:length(diffx) 

diffx(i,:) = sort(diffx(i,:)); 

diffz(i,:) = sort(diffz(i,:)); 

   if diffx(i,1)*diffx(i,4)<0 && diffz(i,1)*diffz(i,4)<0 

   dataM.geometry.patterns.Pat6.V(i)=1;        

   end 

end 

dataM.geometry.patterns.Pat6.indexes = find(dataM.geometry.patterns.Pat6.V==1); 

  

%%% 'Line along z' = Pat7 

dataM.geometry.patterns.Pat7.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

diffx(:,1) = mesh.point.coord(tria4(:,1),1)-centers(n,1); 

diffx(:,2) = mesh.point.coord(tria4(:,2),1)-centers(n,1); 

diffx(:,3) = mesh.point.coord(tria4(:,3),1)-centers(n,1); 

diffx(:,4) = mesh.point.coord(tria4(:,4),1)-centers(n,1); 

diffy(:,1) = mesh.point.coord(tria4(:,1),2)-centers(n,2); 

diffy(:,2) = mesh.point.coord(tria4(:,2),2)-centers(n,2); 

diffy(:,3) = mesh.point.coord(tria4(:,3),2)-centers(n,2); 

diffy(:,4) = mesh.point.coord(tria4(:,4),2)-centers(n,2); 

for i=1:length(diffx) 

   diffx(i,:) = sort(diffx(i,:)); 

   diffy(i,:) = sort(diffy(i,:)); 

   if diffx(i,1)*diffx(i,4)<0 && diffy(i,1)*diffy(i,4)<0 

   dataM.geometry.patterns.Pat7.V(i)=1;        

   end 

end 
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dataM.geometry.patterns.Pat7.indexes = find(dataM.geometry.patterns.Pat7.V==1); 

  

%%% 'point along x1' = Pat8 e Pat9   (Pat8 = intersection between Pat2 and Pat5) 

dataM.geometry.patterns.Pat8.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

dataM.geometry.patterns.Pat9.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

[~,p] = min(centers(dataM.geometry.patterns.Pat5.indexes,1)); 

dataM.geometry.patterns.Pat8.indexes = dataM.geometry.patterns.Pat5.indexes(p); 

[~,p] = max(centers(dataM.geometry.patterns.Pat5.indexes,1)); 

dataM.geometry.patterns.Pat9.indexes = dataM.geometry.patterns.Pat5.indexes(p); 

dataM.geometry.patterns.Pat8.V(dataM.geometry.patterns.Pat8.indexes) = 1; 

dataM.geometry.patterns.Pat9.V(dataM.geometry.patterns.Pat9.indexes) = 1; 

%%% 'point along y1' = Pat10 e Pat11    

dataM.geometry.patterns.Pat10.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

dataM.geometry.patterns.Pat11.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

[~,p] = min(centers(dataM.geometry.patterns.Pat6.indexes,2)); 

dataM.geometry.patterns.Pat10.indexes = dataM.geometry.patterns.Pat6.indexes(p); 

[~,p] = max(centers(dataM.geometry.patterns.Pat6.indexes,2)); 

dataM.geometry.patterns.Pat11.indexes = dataM.geometry.patterns.Pat6.indexes(p); 

dataM.geometry.patterns.Pat10.V(dataM.geometry.patterns.Pat10.indexes) = 1; 

dataM.geometry.patterns.Pat11.V(dataM.geometry.patterns.Pat11.indexes) = 1; 

  

%%% 'point along z1' = Pat12 e Pat13    

dataM.geometry.patterns.Pat12.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

dataM.geometry.patterns.Pat13.V = zeros(length(dataF.MeshedObjects.tria4.index),1); 

[~,p] = min(centers(dataM.geometry.patterns.Pat7.indexes,3)); 

dataM.geometry.patterns.Pat12.indexes = dataM.geometry.patterns.Pat7.indexes(p); 

[~,p] = max(centers(dataM.geometry.patterns.Pat7.indexes,3)); 

dataM.geometry.patterns.Pat13.indexes = dataM.geometry.patterns.Pat7.indexes(p); 

dataM.geometry.patterns.Pat12.V(dataM.geometry.patterns.Pat12.indexes) = 1; 

dataM.geometry.patterns.Pat13.V(dataM.geometry.patterns.Pat13.indexes) = 1; 

 

Laplatian coefficients definition in SimulCell, formatOdeMEX3D 

 
for k=1:L_var 

    perm = dataM.variables.laplacian{k}; 

    perm_new = zeros(L_vox,8); 

    for j=1:L_vox 

        perm_new(j,1) = perm(j,1); %neighbour 1 

        perm_new(j,2) = perm(j,2); %neighbour 2 

        perm_new(j,3) = perm(j,3); %neighbour 3 

        perm_new(j,4) = perm(j,4); %neighbour 4 

        %bisogna distinguere tra la permeabilità del voxel centrale verso i 

        %vicini (perm1, perm2, perm3, perm4) e la permeabilità dei vicini 

        %verso il centrale perm1_n, perm2_n, perm3_n, perm4_n) 

        perm_new(j,5) = perm(neighbours(j,1),find(neighbours(neighbours(j,1),:)==j)); 

        if neighbours(j,2)~=0 

        perm_new(j,6) = perm(neighbours(j,2),find(neighbours(neighbours(j,2),:)==j)); 

        else 

        perm_new(j,6) = 0.0; 

        end 

        if neighbours(j,3)~=0 

        perm_new(j,7) = perm(neighbours(j,3),find(neighbours(neighbours(j,3),:)==j)); 

        else 

        perm_new(j,7) = 0.0; 

        end 

        if neighbours(j,4)~=0 

        perm_new(j,8) = perm(neighbours(j,4),find(neighbours(neighbours(j,4),:)==j)); 

        else 

        perm_new(j,8) = 0.0; 

        end 

        %distances between voxel centers 

        coeff1 = num2str(perm_new(j,5)/dist(j,1)^2*1.5); 

        coeff2 = num2str(perm_new(j,6)/dist(j,2)^2*1.5); 

        coeff3 = num2str(perm_new(j,7)/dist(j,3)^2*1.5); 

        coeff4 = num2str(perm_new(j,8)/dist(j,4)^2*1.5); 

        coeff5 = num2str((perm_new(j,1)/dist(j,1)^2 + perm_new(j,2)/dist(j,2)^2 + 

perm_new(j,3)/dist(j,3)^2 + perm_new(j,4)/dist(j,4)^2)*1.5); 

        coeff_str{j} = {coeff1 coeff2 coeff3 coeff4 coeff5};   

    end 

    dataM.variables.laplacian_new{k} = coeff_str; 

end 

[.…] 

 

 



 

40 

 

Writinig string coefficients and variables for Laplacian discretization 
 

if neighbours(j,1) == 0   %vicino mancante: non viene aggiunto il termine del laplaciano 

                s_add1 = '0.0'; 

                else 

                s_add1=['s(' NumToStr{L_vox*(k-1)+ neighbours(j,1) } ')']; % neighbor 1 

                end 

                 

                if neighbours(j,2) == 0     

                s_add2 = '0.0'; 

                else 

                s_add2 = ['s(' NumToStr{L_vox*(k-1)+neighbours(j,2)} ')']; % neighbor 2 

                end  

                 

                if neighbours(j,3) == 0 

                    s_add3 = '0.0';    

                else 

                    s_add3 = ['s(' NumToStr{L_vox*(k-1)+ neighbours(j,3) } ')']; % neighbour 3 

                end 

                 

                if neighbours(j,4) == 0 

                    s_add4 = '0.0';    

                else 

                    s_add4=['s(' NumToStr{L_vox*(k-1)+neighbours(j,4)} ')']; % neighbour 4 

                end 

                 

                s_add = [ s_add1 '*' coeff1 '+' s_add2 '*' coeff2 '+' s_add3 '*' coeff3 '+' s_add4       

'*' coeff4 '-' s_add12 '*' coeff5 ]; 

                     

           end 

                     

        %Insert Laplacian in the equation            

              if dataM.cubes == 1                       

                for kk = flipdim(int_str,2), 

                    eq(kk:(kk+length(Lapl)-1))=[]; 

                    eq=[eq(1:(kk-1)) '(' s_add ')/' num2str(dx2) eq(kk:end)]; 

                end 

              elseif dataM.mesh == 1 

                for kk = flipdim(int_str,2), 

                    eq(kk:(kk+length(Lapl)-1))=[]; 

                    eq = [eq(1:(kk-1)) '(' s_add ')' eq(kk:end)]; 

                end 

              end 

[.…] 
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