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Introduction

Category theory plays a central role in the study of ring and module the-
ory; many properties of modules over a ring R are easier to be understood if
viewed in terms of results in the abelian category Mod-R (or R-Mod). In the
last years a new technique in module theory started to be widely studied to
solve or characterize problems that were previously addressed in a classical
way without appreciable results. Moreover, given any ring R (we assume
that R is a ring with unity 1R and that 1R 6= 0R) one may consider the
abelian category ((R-modop),Ab) (the functor category) of contravariant
additive functors from the category of finitely presented left R-modules to
the category of abelian groups. Indeed, the study of functor categories, which
extend Mod-R, represents a further development in the study of ring theory.
An example of the progress in this field is the one of Auslander who, in
1966, proposed to study representation theory of R in terms of the cate-
gory ((R-modop),Ab), obtaining for example that if R-mod is abelian (so
that R is left-coherent) then also fp((R-modop),Ab) (the category of finitely
presented functors in ((R-modop),Ab)) is abelian; Herzog, in [6], describes
the contravariant Gabriel spectrum of R, the set of indecomposable injective
objects of the functor category ((R-modop),Ab), as in bijection with the set
of pure-injective indecomposable left R-modules. In particular, the set of
pure-injective indecomposable left R-modules is in bijection with the points
of the covariant Gabriel spectrum of R, too.
Another important result obtained in the study of the functor category in-
volves, this time, the covariant functor category (R-mod,Ab); Gruson and
Jensen in [13] described the injective functors of (R-mod,Ab) as those iso-
morphic to (M ⊗−) for some M ∈ Mod-R pure-injective module, giving in
this way an important characterization of pure-injective modules in Mod-R;
this application is explained in detail in Section 2.3.

The growing attention given to the functor category motivates this thesis,
whose main objective is to study in detail some aspects of the inclusion of
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Mod-R both in the covariant and in the contravariant functor category. More
precisely, there exists an embedding of Mod-R in ((R-modop),Ab) given by
the functor

M 7−→ (−,M)

which sends M to the contravariant Hom functor (−,M). In Section 2.1,
it is proved that this functor has an exact left adjoint, and Mod-R is a
Giraud subcategory of ((R-modop),Ab), which gives more information about
the behaviour of the inclusion of the module category in the functor category.
On the other hand, in Section 2.2 a dual result is proved: Mod-R turns out
to be a co-Giraud subcategory of (R-mod,Ab), since the inclusion (called
tensor embedding)

M → (M ⊗−)

has an exact right adjoint functor.
So far, the fact that Mod-R embeds as a Giraud (resp. co-Giraud) subcat-
egory in ((R-modop),Ab) (resp. (R-mod,Ab)) has not been considered as a
main subject to focus upon, and it is very difficult to find any reference to it
in the state-of-the-art literature.
Chapter 2 is then devoted to introduce functor categories with the purpose
of investigating the embedding of the module category, both in the covariant
(Section 2.2) and in the contravariant (Section 2.1) case; Section 2.3 is about
pure-injective modules and the aforementioned characterization, given as a
historical motivation to the introduction of functor categories.

In full generality, given a Giraud (resp. co-Giraud) subcategory of any
abelian category, a way to transfer torsion pairs from the ambient category
to the Giraud (resp. co-Giraud) subcategory and vice versa was developed in
[12]. In Section 3.1, Chapter 3, the functioning of this transfer is explained
in full detail, in order to proceed, in Section 3.2, to apply this tool to the
case of the functor categories with their Giraud or co-Giraud subcategory
Mod-R. In Section 3.1, a condition to have a bijective correspondence be-
tween torsion pairs in the ambient category and those in the Giraud (resp.
co-Giraud) subcategory is given; only a part of this condition has been fully
understood when applied to the case of functor categories. In Section 3.2.1 a
full explanation of the few results obtained in the attempt of completing the
characterization of the bijection is given; further developments of the theory,
possibly succeeding in obtaining such a characterization, may be motivated
by the study of (co)tilting torsion pairs. Indeed, tilting torsion pairs, and
in general tilting modules, are widely studied in module theory. It may be
possible that, once gathered information about the bijection between torsion
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pairs in the module category and in the functor category, one could be able
to understand if the transfer keeps the property of being (co)tilting for a
torsion pair. In that case, it would be relevant to understand whether study-
ing (co)tilting torsion pairs in the functor category gives more appreciable
results rather than studying them in the module category or not.

In order to address functor categories, some basic concepts are introduced
in Chapter 1. Namely, in Section 1.1 the concept of Grothendieck category,
which is a property that all the categories studied in the thesis share, is
introduced, together with the definition of finitely generated objects and
injective envelopes of objects in an abelian category. In Section 1.2 the
definition of torsion pair is given and its characterizations are presented; in
Section 1.4 Giraud subcategories, the main object of interest in the thesis, are
defined and studied in detail; finally in Section 1.5 localizing subcategories
are described, following the work of N. Popescu (see [2]), as they are strictly
linked to Giraud subcategories and torsion pairs (see the characterization of
localizing subcategories in terms of torsion classes given in Theorem 1.5.20).
Section 1.3 contains the definition and main properties of Gabriel topologies,
which play a central role in the proof of the Gabriel-Popescu Theorem given
in Section 1.6. The theorem has been chosen to be included in the thesis
since it establishes an inclusion, as a Giraud subcategory, of any Grothendieck
category in a suitable module category, giving a powerful and clear example of
Giraud subcategory. In detail, any Grothendieck category G with a generator
G can be embedded as a Giraud subcategory in the category Mod-R with
R = End(G). A remarkable corollary of the Gabriel-Popescu Theorem is
that any Grothendieck category is quotient of a module category modulo
a localizing subcategory, and an original proof for both this corollary and
the Gabriel-Popescu theorem is provided. This proof gives, in particular, an
explicit description of the Gabriel filter on R = End(G) associated to the
Grothendieck category G.
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Chapter 1

Preliminaries

Basic elements of abelian categories theory are developed in the first
sections of this chapter, such as the fundamental concept of torsion pair and
that of Giraud subcategory. In the last section a proof of the Gabriel-Popescu
Theorem is given, together with some remarkable corollaries.

1.1 Grothendieck categories, injective envelopes

and finitely generated objects

Grothendieck categories are introduced since they are the object of the
Gabriel-Popescu Theorem, by which they can be embedded in module cate-
gories.

Definition 1.1.1. Given a category A, a set {Ui : i ∈ I} of objects of A is a
family of generators if, for every pair of morphisms α, β : A → B, with
α 6= β, there exists an index i ∈ I and a morphism u : Ui → A such that
αu 6= βu.

Proposition 1.1.2. If C is cocomplete and has a family of generators, then
C has a generator.

Definition 1.1.3. C is a Grothendieck category if:

• C is abelian;

• C is cocomplete;

• lim−→ : (I, C)→ C is exact for any small category I;

• C has a generator.
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1. Preliminaries

If C is cocomplete, direct limits are exact if and only if they preserve
monomorphisms; indeed, the direct limit functor lim−→ : (I, C) → C (for a
small and filtrant category I) is right exact; then it is enough that it preserves
monomorphisms for it to achieve left exactness.
Let us consider, given C ∈ Ob(C), a direct system of subobjects (Ci)i∈I of C.
If direct limits are exact in C, then lim−→Ci is a subobject of C which coincides
with

∑
I Ci and it is called direct union of the subobjects Ci. The exactness

of limits implies that direct unions preserve finite intersections, so for any
subobject B of C one has:

AB5 : (
∑
I

Ci) ∩B =
∑
I

(Ci ∩B).

Proposition 1.1.4. The following assertions are equivalent for C cocomplete
and abelian:

1. direct limits are exact in C.

2. C satisfies AB5.

3. ∀α : B → C and direct system (Ci)i ∈ I of subobjects of C, one has
α−1(

∑
I Ci) =

∑
I α
−1(Ci).

Proof. See ([1], Chapter V, Proposition 1.1).

Proposition 1.1.5. Let I be a small category and C be an abelian category.
Then Fun(I, C) is an abelian category.

Proof. See ([1], Chapter IV, Proposition 7.1).

Next result is a well-known result, usually called Yoneda lemma:

Lemma 1.1.6. Let I be a small preadditive category. For every object i ∈ I
and every additive functor T : Iop → Ab there is an isomorphism:

Nat(hi, T ) ' T (i)

which is natural both in i and T (here hi is contravariant Hom functor
Hom(−, i)).

Proof. See ([1], Chapter IV, Proposition 7.3).

Corollary 1.1.7. A small preadditive category I is equivalent to the full
subcategory of Hom(Iop,Ab) consisting of the representable functors.
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1.1 Grothendieck categories, injective envelopes and finitely generated
objects

Since a sequence 0→ T ′ → T → T ′′ → 0 in Hom(Iop,Ab) is exact if and
only if 0→ T ′(i)→ T (i)→ T ′′(i)→ 0 is exact for each i ∈ I, we also get:

Corollary 1.1.8. The family (hi)i∈I is a family of projective generators for
Hom(Iop,Ab).

Proposition 1.1.9. If I is a small preadditive category, then the functor
category C = Hom(Iop,Ab) is a Grothendieck category.

Proof. The category C is abelian thanks to Proposition 1.1.5. Furthermore,
for colimits in C are computed point-wise, the exactness of direct limits in
Ab implies their exactness in C. Finally, the objects in I form a family of
generators for C as proved in Corollary 1.1.7 and Corollary 1.1.8.

The following few results are used to develop some useful tools about
injective envelopes in abelian categories.

Definition 1.1.10. A category C is:

• locally small if the class of subobjects of any object is a set;

• pseudo-complemented if the lattice L of subobjects of any object is
pseudo-complemented, namely if for any a ∈ L there exists c ∈ L such
that c 6= a and a ∧ c = 0, with c maximal for this property.

From now on we assume that C is abelian, locally small and pseudo-
complemented.

Definition 1.1.11. We say that a subobject B ↪→ C is essential in C if
B ∩ C ′ 6= 0 ∀0 6= C ′ ⊆ C. Slightly more generally, we call a monomorphism
α : B → C essential if Imα is an essential subobject of C.

Lemma 1.1.12. If α : B → C and β : C → D are monomorphisms, βα is
essential if and only if both α and β are essential.

Lemma 1.1.13. If α : C → E is a monomorphism and E is an injective
object, then for every essential monomorphism β : C → C ′ there exists a
monomorphism γ : C ′ → E such that γβ = α.

Proof. E is injective⇒ ∃γ : C ′ → E with γβ = α. Therefore Ker γ ∩ Im β =
Ker(γβ) = Kerα = 0; being β essential, Ker γ = 0 so γ is a monomorphism.

11



1. Preliminaries

Definition 1.1.14. An injective envelope of an object C is an essential
monomorphism C ↪→ E where E is injective.

Proposition 1.1.15. If α : C → E and α′ : C → E ′ are two injective
envelopes of C, then there is an isomorphisms γ : E → E ′ such that γα = α′.

Proof. By Lemma 1.1.13, there exists a monomorphism γ : E → E ′ such
that γα = α′. Furthermore γ is essential by Lemma 1.1.12, and being E
injective Im γ splits off as a direct summand of E ′, so Im γ = E ′.

This proposition implies that the injective envelope of a given object is
unique up to isomorphisms.

Proposition 1.1.16. An object E is injective if and only if any essential
extension of E is and isomorphism.

Proof. Let E be injective. Every monomorphism α : E → C splits; if α is
essential, it must be an isomorphism.
Vice versa, if every essential extension of E is an isomorphism, given a
monomorphism α : C → C ′, and a morphism ϕ : C → E, we have the
following push-out diagram:

C α //

ϕ

��

C ′

ϕ′

��

E
β
// P

β is a monomorphism since α is a monomorphism. If now we denote with
K a pseudo-complement of E in P , and with π : P → P/K the canonical
morphism, since K ∩ E = 0 we obtain that πβ : E → P → P/K is a
monomorphism. Moreover it is essential, since every non-zero subobject of
P/K can be written as L/K with K ⊂ L, and being K maximal with
respect to K ∩ E = 0, it follows that L ∩ E 6= 0, so Im(πβ) ∩ L/K 6= 0. By
hypothesis, πβ is an isomorphism. So the morphism (πβ)−1πϕ′ : C ′ → E
realizes an extension of ϕ to C ′. Therefore E is injective.

Proposition 1.1.17. If C is a subobject of some injective object, then C has
an injective envelope.

Proof. Suppose that C is a subobject of E, with E injective, and that C ′ is
a maximal essential extension of C in E. Every essential extension of C ′ can
be embedded in E by Lemma 1.1.13, and the inclusion is an isomorphism due
to the maximality of C ′. It follows that C ′ is injective, so it is the injective
envelope of C.
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1.1 Grothendieck categories, injective envelopes and finitely generated
objects

Proposition 1.1.18. The monomorphism C1⊕...⊕Cn → E(C1)⊕...⊕E(Cn)
induces an isomorphism:

E(C1 ⊕ ...⊕ Cn)
∼−→ E(C1)⊕ ...⊕ E(Cn).

This proposition is an immediate consequence of the following lemma:

Lemma 1.1.19. If Ci → C ′i (i = 1, ..., n) are essential monomorphisms,
then C1 ⊕ ...⊕ Cn → C ′1 ⊕ ...⊕ C ′n is essential.

Proof. See ([1], Chapter V, Lemma 2.7).

Definition 1.1.20. • An object B of C is called indecomposable if it
cannot be written as a direct sum of two non-zero subobjects.

• A subobject B of C in C is called irreducible if it cannot be written as
the intersection of two subobjects of C in which B is properly contained.

• A subobject B of C in C is irreducible if C/B is coirreducible, i.e.
any pair of non-zero subobjects of C/B has non-zero intersection.

Proposition 1.1.21. The following assertions are equivalent for an injective
object E:

1. E is indecomposable;

2. any subobject of E is coirreducible;

3. E is the injective envelope of a coirreducible object;

4. E is the injective envelope of each one of its non-zero subobjects.

The following proposition extends Baer’s criterion for module categories
to any Grothendieck category.

Proposition 1.1.22. If C is a Grothendieck category with a family of gener-
ators (Ui)i∈I , an object E is injective if and only if for every monomorphism
α : C → Ui and morphism ϕ : C → E there exists a morphism ϕ′ : Ui → E
such that ϕ′α = ϕ.

Proof. See ([1], Chapter V, Proposition 2.9).

The last part of the section is a brief exposition of results about finitely
generated objects in Grothendieck categories.

13



1. Preliminaries

Definition 1.1.23. Let C be a Grothendieck category. An object C ∈ Ob(C)
is called finitely generated if the lattice L(C) of its subobjects is compact,
i.e. if ∀ C =

∑
I Ci with (Ci)i∈I direct family of subobjects of C, there exists

i0 ∈ I such that C = Ci0.

Lemma 1.1.24. Let 0→ C ′ → C → C ′′ → 0 be an exact sequence in C.

1. If C is finitely generated, then C ′′ is finitely generated;

2. if both C ′ and C ′′ are finitely generated, then C is finitely generated.

Proof. 1) Let C ′′ =
∑
C ′′i . Every C ′′i can be written as C ′′i = Ci/C

′ for a
unique subobject Ci of C with C ′ ⊆ Ci. The family (Ci)i∈I is also directed,
so C = Ci0 and then C ′′ = Ci0/C

′ = C ′′i0 .
2) If C =

∑
Ci, being C ′ finitely generated one has that C ′ ⊆ Ci0 for some

i0. It follows that C ′′ =
∑

i≥i0 Ci/C
′, and since C ′′ is finitely generated,

one has that C ′′ = Ci1/C
′ for some i1. It follows, by the five lemma, that

C = Ci1 .

Proposition 1.1.25. An object C is finitely generated if and only if the
functor HomC(C,−) preserves direct unions, namely if Φ : lim−→Hom(C,Di)→
Hom(C,

∑
I Di) is an isomorphism for any direct system (Di)i∈I of subobjects

of an object D.

Proof. Of course such morphism is a monomorphism. If C is finitely gen-
erated, and α : C →

∑
I Di, Imα is finitely generated by Lemma 1.1.24.

Therefore Imα ⊆ Di0 for some i0. It follows that Φ is an epimorphism. Vice
versa is straightforward.

Definition 1.1.26. A category C is called locally finitely generated if it
has a family of generators which are finitely generated.

Lemma 1.1.27. Let C be locally finitely generated. If α : B → C is an
epimorphism, and C is finitely generated, then there exists a finitely generated
subobject B′ ⊆ B such that α(B′) = C.

Definition 1.1.28. An object C is called finitely presented if it is finitely
generated and every epimorphism B → C (with B finitely generated) has a
finitely generated kernel.

Proposition 1.1.29. Let C be locally finitely generated. An object C is
finitely presented if and only if HomC(C,−) preserves direct limits, i.e. the
morphism Φ : lim−→Hom(C,Di)→ Hom(C, lim−→Di) is an isomorphism for any
direct system (Di)i∈I in C.

14



1.2 Torsion theory

Proof. Let us assume that Φ is an isomorphism; then C is finitely generated
by Proposition 1.1.25.
If now 0→ K → B → C → 0 is an exact sequence with B finitely generated,
and (Ki)i∈I is a family of finitely generated subobjects of K, then C '
lim−→B/Ki. By hypothesis, this isomorphism factors over some B/Ki0 , i.e.
the sequence 0 → K/Ki0 → B/Ki0 → C → 0 splits. Therefore K/Ki0

is finitely generated, so K is finitely generated by Lemma 1.1.24, and C is
finitely presented.
Let now C be finitely presented. The morphism Φ is a monomorphism:
let C → Di such that C → Di → lim−→Di is zero. Then, being C finitely
generated, C → Di → Dj is zero for some j ≥ i, and this implies that Φ is a
monomorphism.
It is also an epimorphism: let α : C → lim−→Di. Let D′i be the image of Di

in lim−→Di, so that lim−→Di =
∑
D′i. Being C finitely generated, α factors over

some D′i with α′ : C → D′i. Consider the following pull-back diagram:

0 // K

∼
��

// P

��

// C

α′

��

// 0

0 // K // Di
// D′i // 0.

By Lemma 1.1.27, there exists a subobject P ′ ⊆ P finitely generated, such
that P ′ → P → C is an epimorphism. Its kernel K ∩ P is finitely generated
since C is finitely presented. By Lemma 1.1.30, it follows that K ∩ P ′ ⊆
Ker(Di → Dj) for some j ≥ i. Moreover P ′ → P → Di → Dj factors over C
giving the morphism C → Dj, that shows that Φ is an epimorphism.

Lemma 1.1.30. Let C be a category which satisfies AB5, and (Ci)i∈I a direct
system. Then ∀k ∈ I one has

Ker(Ck → lim−→Ci) =
∑
j≥k

Ker(Ck → Cj).

Proof. See ([1], Chapter V, Lemma 1.2).

1.2 Torsion theory

In this section we assume that C is a complete, cocomplete, locally small
and abelian category.

Definition 1.2.1. A preradical r of C assigns to each object C a subob-
ject r(C) in such a way that every morphism C → D induces a morphism
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1. Preliminaries

r(C) → r(D) by restriction. In other words, a preradical is a subfunctor of
the identity functor on C.

The class of preradicals on C forms a complete lattice, with partial order
defined by the following relation: r1 ≤ r2 if r1(C) ⊆ r2(C) for each C ∈
OB(C). Moreover any family (rI)i∈I of preradicals has a least upper bound,∑

I ri, and a greatest lower bound,
⋂
I ri. If r1 and r2 are preradicals, one

defines the following operations:

r1r2(C) = r1(r2(C))

r1 : r2(C)/r1(C) = r2(C/r1(C)).

Moreover one says that r is idempotent if rr = r, and it is a radical if
r : r = r, i.e. if r(C/r(C)) = 0 for each C ∈ C.

Lemma 1.2.2. If r is a radical, D ⊆ r(C) ⇒ D ⊆ r(C/D) = r(C)/D.

Proof. The morphism C → C/D induces r(C)→ r(C/D) with kernel D, so
r(C)/D ⊆ r(C/D).
On the other hand, α : C/D → C/r(C), again defined in the canonical way,
induces the zero morphism on r(C/D), so r(C/D) ⊆ Kerα = r(C)/D.

If r is a preradical of C, we define r−1 of Cop by setting r−1(M) = M/r(M).
It is clear that r is idempotent if and only if r−1 is a radical, and vice versa.
Given a preradical r one can associate two classes of objects of C:

Tr = {C : r(C) = C}

Fr = {C : r(C) = 0}.

Note that Fr = Tr−1 .

Proposition 1.2.3. The class Tr is closed under quotients and coproducts;
the class Fr is closed under subobjects and products.

Proof. Let us consider a family (Ci)i∈I of objects in Tr. Since r(Ci) = Ci, one
has that the image of the morphisms Ci →

⊕
I Ci is contained in r(

⊕
I Ci),

and using the definition of coproduct it is clear that r(
⊕

I Ci) =
⊕

I Ci.
Let now α : C → D be an epimorphism, so that Imα = D. Moreover
Imα ⊆ r(D) since C is contained in Tr, and clearly r(D) ⊆ D = Imα. An
analogous proof can be shown for the class Fr, using the duality mentioned
above.

Corollary 1.2.4. If C ∈ Tr and D ∈ Fr then HomC(C,D) = 0.
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1.2 Torsion theory

Any class of objects of C which is closed under quotients and coproduct is
called pretorsion class; if the class is instead closed under subobjects and
products, it is called pretorsion-free class.
Given a pretorsion class A, if C ∈ OB(C), one can denote with t(C) the sum
of all the subobject of C contained in A. In particular, t(C) ∈ A.
Therefore each object C contains a subobject t(C) contained in A, and t(C)
is maximal with respect to this property. Combining this information with
the definition of Tr, and considering r idempotent, one obtains:

Proposition 1.2.5. There exists a bijection between idempotent preradicals
of C and pretorsion classes of C. Dually, there exists a bijection between
radicals of C and pretorsion-free classes of C.

In particular, if r is a preradical of C, and r̂ is the preradical corresponding
to Tr (i.e. r̂(C) is the largest subobject D of C such that r(D) = D), then r̂
is the largest idempotent less or equal to r).

Proposition 1.2.6. For every preradical r, there exists a largest idempotent
preradical r̂ ≤ r, and there exists a smallest radical r̄ ≥ r.

Note that r̄(C) is the smallest subobject D of C such that r(C/D) = 0.

Proposition 1.2.7. 1. If r is idempotent, then so is also r̄.

2. If r is a radical, then so is also r̂.

Proof. It suffices to prove (2); we attempt to prove that r̂(C/r̂(C)) = 0∀C,
i.e. that C/r̂(C) has no non-zero subobjects in Tr. Let D ⊇ r̂(C) be a
subobject of C, r(D/r̂(C)) = D/r̂(C). Then r̂(C) ⊆ r(D) = D, so D ⊆ r̂(C)
and D/r̂(C) = 0.

Proposition 1.2.8. The following assertions are equivalent for a preradical
r:

a) r is a left exact functor;

b) if D ⊆ C, then r(D) = r(C) ∩D;

c) r is idempotent and Tr is closed under subobjects.

Proof.

(a⇔ b) Since the kernel of the morphism r(C) → r(C/D) induced by C →
C/D is equal to r(C) ∩D, b is equivalent to left exactness of r;

17



1. Preliminaries

(b⇒ c) r(C) ⊆ C, and using b we obtain r(r(C)) = r(C) ∩ r(C) = r(C), i.e.
r is idempotent. If furthermore C ∈ Tr, and D ⊆ C, then r(D) =
C ∩D = D, so D ∈ Tr;

(c⇒ b) r(D) ⊆ r(C) ∩D ⊆ D is obvious. Moreover r(C) ∩D belongs to Tr as
a subobject of r(C); r is idempotent, so r(C) ∩D = r(D).

Definition 1.2.9. A pretorsion class is called hereditary if it is closed
under subobjects.

Corollary 1.2.10. There is a bijection between left exact preradicals and
hereditary pretorsion classes.

Definition 1.2.11. A torsion pair in C is a pair (T ,F) made by classes
of objects of C such that:

• HomC(T, F ) = 0 ∀T ∈ T , F ∈ F ;

• if HomC(C,F ) = 0 ∀F ∈ F , then C ∈ T ;

• if HomC(T,C) = 0 ∀T ∈ T , then C ∈ F .

If this occurs, T is called torsion class, and its objects are called torsion
objects; F is called torsion-free class, and its objects are called torsion-
free objects. In this case, any object C ∈ C is the middle term of a short
exact sequence 0→ T → C → F → 0 with T ∈ T and F ∈ F .

A class of objects A generates a torsion pair in the following way:

F = {F : Hom(C,F ) = 0 ∀C ∈ A}

T = {T : Hom(T, F ) = 0 ∀F ∈ F}

in this case (T ,F) is a torsion pair, and T is the smallest torsion class
containing A. Dually, a class A cogenerates a torsion pair in the following
way:

T = {T : Hom(T,C) = 0 ∀C ∈ A}

F = {F : Hom(T, F ) = 0 ∀T ∈ T }

and F is the smallest torsion-free class containing A.

Proposition 1.2.12. The following assertions are equivalent for a class T :

a) T is a torsion class for some torsion pair;
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1.2 Torsion theory

b) T is closed under quotients, coproducts and extensions.

Proof.

(a⇒ b) Let (T ,F) be a torsion pair. T is closed under quotients, and it is
closed under coproducts since Hom(

⊕
I

Ti, F ) '
∏
I

Hom(Ti, F ).

Let 0 → C ′ → C → C ′′ → 0 be an exact sequence with C ′ and C ′′ in
T . If F is torsion-free, and there exists α : C → F , then α is zero on
C ′, so α factors over C ′′, but there exist no non-zero morphisms from
C ′′ to F ; then α = 0 and C ∈ T .

(b⇒ a) Vice versa, if T is closed under quotients, coproducts and extensions,
let us denote with (T ′,F) the torsion pair generated by T . To show
that T = T ′, consider C such that Hom(C,F ) = 0 ∀F ∈ F . Since
T is a pretorsion class, there exists a subobject T of C belonging to
T , maximal with respect to this property. Actually, C/T ∈ F ; in
fact, if α : T ′′ → C/T for T ′′ ∈ T , Imα ∈ T , and if α 6= 0, one
would get a subobject of C strictly larger than T and contained in T ,
in contradiction with what was defined above. Therefore α = 0 and
C/T ∈ F , from which one has C = T .

By duality one has:

Proposition 1.2.13. The following assertions are equivalent for a class F :

a) F is a torsion-free class for some torsion pair;

b) F is closed under subobjects, products and extensions.

If (T ,F) is a torsion pair, then T is in particular a pretorsion class, so each
object C contains a maximal subobject t(C) contained in T called torsion
subobject of C. An object C is torsion-free if and only if t(C) = 0, since
C ∈ F if and only if Hom(T,C) = 0∀T ∈ T . The idempotent preradical t
is actually a radical, as one can prove from the fact that T is closed under
extensions. Conversely, if t is an idempotent preradical, one achieves a torsion
pair (Tt,Ft) with

Tt = {C : t(C) = C}

Ft = {C : t(C) = 0}.

Proposition 1.2.14. There exists a bijection between torsion pairs and idem-
potent radicals.
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1. Preliminaries

Corollary 1.2.15. If r is an idempotent preradical, then r̄ is the idempotent
radical corresponding to the torsion pair generated by Tr.

Proof. Since r̄ is the smallest idempotent radical containing r, it must cor-
respond to the smallest torsion class containing Tr.

Proposition 1.2.16. Let A be a class of objects closed under quotients. The
torsion class generated by A consists of the objects C such that every non-zero
quotient of C has a non-zero subobject in A.

Proof. Let (T ,F) be the torsion pair generated by A. Since A is closed
under quotients, an object belongs to F if and only if it has no non-zero
subobject in A. Therefore the assertion becomes that C belongs to T if and
only if it has no non-zero quotient in F , which is an obvious property for any
torsion pair (T ,F).

Definition 1.2.17. A torsion pair (T ,F) is called hereditary if T is hered-
itary, i.e. if it is closed under subobjects.

Thus we can state the following proposition, which can be proved directly
from Proposition 1.2.14:

Proposition 1.2.18. There exists a bijection between hereditary torsion
pairs and left exact radicals.

Proposition 1.2.19. A torsion pair (T ,F) is hereditary if and only if F is
closed under injective envelopes.

Proof. The fact that t is left exact implies that if F ∈ F , then t(E(F ))∩F =
t(F ) = 0, which implies that E(F ) ∈ F , since F is essential in E(F ).
Conversely, if F is closed under injective envelopes, T ∈ T , C ⊆ T , then
there exists a morphism β : T → E(C/t(C)) such that the diagram

C

α
��

// T

β
��

C/t(C) // // E(C/t(C))

is commutative. However, since E(C/t(C)) is torsion-free, β = 0 so α = 0
and C = t(C) ∈ T .

Proposition 1.2.20. Let A be a class which is closed under subobjects and
quotients; then the torsion pair generated by A is hereditary.
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1.2 Torsion theory

Proof. It can be proved that the torsion-free class is closed under injective
envelopes. Let F be a torsion-free object and α : C → E(F ), with C ∈ A.
Therefore Imα ∈ A and F ∩ Imα ⊆ F is a non-zero object belonging to A,
in contradiction with the fact that F is torsion-free.

Corollary 1.2.21. If r is a left exact radical, then r̄ is exact.

Corollary 1.2.22. Let r be a left exact preradical and let C be an object;
then r(C) is an essential subobject of r̄(C).

Proof. Let D ⊆ r̄(C) such that D ∩ r(C) = 0. Then r(D) = 0, so r̄(D) = 0.
However, since r̄(D) = r̄(C) ∩D, one deduces that D = 0.

Proposition 1.2.23. A torsion pair is hereditary if and only if it can be
cogenerated by an injective object.

Proof. Let E be injective and T = {C : Hom(C,E) = 0}. If C ∈ T , D ⊆ C,
and α : D → E is non-zero morphism, then α extends to C → E, but this is
in contradiction with the definition of T . Therefore T is hereditary.
Conversely, let (T ,F) be a hereditary torsion pair, G a generator for the
category, and E =

∏
E(G/L) ranging over all L ⊆ G such that G/L ∈ F .

Then E is torsion-free, so Hom(C,E) = 0 ∀C ∈ T . On the other hand, if
C /∈ T , there exists a subobject D ⊆ C of the form G/L together with a
non-zero morphism α : D → F for some F ∈ F ; Imα is torsion-free, then α
induces a morphism D → E which extends to C → E. Therefore C ∈ T if
and only if Hom(C,E) = 0, and from this one deduces that E cogenerates
the torsion pair.

From now on, we assume that the category C is actually a module cate-
gory. One has the following results.

Proposition 1.2.24. A hereditary torsion pair is generated by the family of
torsion cyclic modules A/a.

Proof. A module M is a torsion module if and only if every cyclic submodule
of M is so. The rest of the proof follows immediately.

A hereditary torsion pair is thus uniquely determined by the family of
right ideals a for which A/a is a torsion module.

Lemma 1.2.25. If L and M are modules, then Hom(L,E(M)) = 0 if and
only if Hom(C,M) = 0 ∀C ⊆ L cyclic submodule.
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1. Preliminaries

Proof. Let C ⊆ L, α : C →M e α 6= 0. Then one has α′ : C →M → E(M),
which extends to α′′ : L→ E(M), causing a contradiction.
Conversely, let α : L → E(M), and let α′ : C → E(M) be the restriction.
Now Imα′ is a submodule of E(M); M is essential in E(M), so M∩Imα 6= 0
if α 6= 0. Then one finds a non-zero morphism C →M , causing a contradic-
tion.

Proposition 1.2.26. Let us consider a hereditary torsion pair cogenerated
by the injective module E. A module M is torsion-free if and only if it is a
submodule of a direct product of copies of E.

Proof. Every submodule of a product E(I) is torsion free.
Conversely, let M be torsion-free and 0 6= x ∈ M , then xA is not a torsion
module, so Hom(xA,E) 6= 0. Since E is injective, ∀0 6= x ∈M ∃µ : M → E
such that µ(x) 6= 0. One defines η : M → E(I) (where I = Hom(M,E)) as
η(x) = (µ(x))µ∈I . Therefore η is a monomorphism.

1.3 Gabriel topologies

The results which were previously proved can be applied to the category
of modules over a ring A, obtaining a correspondence between hereditary
torsion pairs of Mod-A and families of ideals a of A for which A/a is a
torsion module. Such families are families of neighbourhoods of 0 in A for
some topologies on the ring.

Definition 1.3.1. A topological group is an abelian group together with a
topology for which the maps (a, b) 7−→ a+ b and a 7−→ −a are continuous.

In this setting, having fixed an a ∈ G, the map x 7−→ a+x is a homeomor-
phism, and U is a neighbourhood of a if and only if U−a is a neighbourhood
of 0.
Then, to assign a topology on a group it suffices to provide a filter of neigh-
bourhoods R of 0, such that it satisfies the following two axioms:

N1) ∀U ∈ R∃V ∈ R such that V + V ⊆ U ;

N2) U ∈ R ⇒ −U ∈ R.

Conversely, given a filter of neighbourhoods that satisfies these axioms, it
generates a unique topology on G.

Definition 1.3.2. A topological ring A is an additive topological group,
such that moreover the map (a, b) 7−→ ab is continuous.
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1.3 Gabriel topologies

Since ab− a0b0 = (a− a0)(b− b0) + (a− a0)b0 + a0(b− b0), the continuity
of the multiplication follows from two further axioms:

N3) ∀a ∈ A , U ∈ R, ∃V ∈ R such that aV ⊆ U , V a ⊆ U ;

N4) ∀U ∈ R∃V ∈ R such that V V ⊆ U .

Thus, given a filter of neighbourhoods of 0 which satisfies N1-N4, one obtains
a unique ring topology on A.

Definition 1.3.3. A ring is called right linearly topologized if there exists
a basis of neighbourhoods T of 0 consisting of right ideals.

The set T satisfies:

T1) a ∈ T , a ⊆ b ⇒ b ∈ T ;

T2) a, b ∈ T ⇒ a ∩ b ∈ T ;

T3) a ∈ T , a ∈ A ⇒ (a : a) ∈ T .

Conversely, if a set T of right ideals of A satisfying T1-T3 is given, then
there exists a unique right linear topology on A for which T is a basis of
neighbourhoods.

Definition 1.3.4. A right topological A-module (i.e. an additive topological
group in which the operation (x, a) 7−→ xa with x ∈M and a ∈ A is contin-
uous) is called linearly topologized if it has a basis of neighbourhoods of 0
consisting of submodules.

The open submodules of this basis satisfy:

TM1) L ⊆ L′ submodules of M , L is open ⇒ L′ is open;

TM2) L, L′ are open submodules ⇒ L ∩ L′ is open;

TM3) L is open, x ∈M ⇒ (L : x) is open.

Let us denote with T the class of such neighbourhoods; then one can define
a stronger topology on M , for which the set of open submodules is:

T (M) = {L ⊆M : (L : x) ∈ T ∀x ∈M}

this topology is called T -topology onM ; it is discrete if and only if rAnn(x) ∈
T ∀x ∈M . In such a situation M is called T -discrete.
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Lemma 1.3.5. The class of T -discrete modules is a hereditary pretorsion
class.

Proof. Since M is T -discrete if and only if rAnn(x) ∈ T ∀x ∈M , it is clear
that the class of T -discrete modules is closed under submodules. It is closed
under quotients due to T1 and under direct sums due to T2.

One thus obtains a left exact preradical t, and t(M) = {x ∈ M :
rAnn(x) ∈ T }; t(M) is called T -pretorsion submodule of M .

Proposition 1.3.6. There exists a bijection between:

1. Right linear topologies on A;

2. Hereditary pretorsion classes of A-modules;

3. Left exact preradicals of Mod-A.

Proof. We have already seen that every linear topology induces a pretorsion
class, in the proof of Lemma 1.3.5. Conversely, if A is a pretorsion class, let
us consider the set T of the right ideals a of A for which A/a ∈ A. This
family satisfies T1, since A is closed under quotients, and T2 since A/(a∩ b)
is a submodule of A/a ⊕ A/b, and T3 because if a ∈ T and a ∈ A, then
the sequence 0 → (a : a) → A → A/a is exact, and so A/(a : a) ⊆ A/a.
Therefore T defines a right linear topology on A. We are left to show that
this correspondence is a bijection.
If we start by taking T , a right linear topology, we obtain A = {M :
rAnn(x) ∈ T ∀x ∈ M}, and then {a : A/a ∈ A} = {a : (a : a) ∈ T ∀a ∈
A} = T by T1.
On the other side, starting with A, we attain T = {a : A/a ∈ A} and then
{M : rAnn(x) ∈ T ∀x ∈ M} = {M : every cyclic submodule ∈ A} = A by
the closure properties of A.

Our goal is now to identify a certain type of linear topology, for which a
correspondence with hereditary torsion classes will take place.

Definition 1.3.7. If a is a right ideal, and there exists b ∈ T such that
(a : b) ∈ T ∀b ∈ b then a ∈ T . We will use T4 to refer to this assertion; a
linear topology satisfying T1-T4 is called (right) Gabriel topology.

Theorem 1.3.8. There exists a bijection between:

1. Right Gabriel topologies on A;

2. Hereditary torsion pairs of Mod-A;
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1.4 Giraud subcategories

3. Left exact radicals in Mod-A.

Proof. The equivalence ((2)⇔ (3)) has already been proved.
Let T be a Gabriel topology, 0 → L → M → N → 0 an exact sequence of
modules where L and N are T -discrete. For every x ∈M , let b = rAnn(x̄),
where x̄ denotes the image of x in N . Thereby b ∈ T , and ∀b ∈ b one has
xb ∈ L, so Ann(xb) ∈ T . Since Ann(xb) = (Ann(x) : b), T4 implies that
Ann(x) ∈ T . Then M is T -discrete, so the class of T -discrete modules is
closed under extensions and it is therefore hereditary.
On the other hand, if T is a hereditary torsion class, the corresponding
topology T = {a : A/a ∈ T } satisfies T4. Indeed, if a is a right ideal
for which (a : b) ∈ T ∀b ∈ b, with b ∈ T , one may consider the sequence
0→ b/a∩b→ A/a→ A/(a+b)→ 0 whereA/(a+b) ∈ T since it is a quotient
of A/b ∈ T , and furthermore b/(a∩ b) ∈ T , since ((a∩ b) : b) = (a : b) ∈ T .
Inasmuch as T is closed under extensions, A/a ∈ T , so a ∈ T .

Therefore, given any right linear topology T on A, the corresponding
class of torsion modules is made by those modules whose elements are all
annihilated by right ideals contained in T . These modules are called T -
torsion modules.

1.4 Giraud subcategories

In this section, we assume that A is a complete Grothendieck category.

Definition 1.4.1. A full subcategory C of A is reflective if the inclusion
functor i : C → A has a left adjoint a.

Let C be reflective in A, with adjunction isomorphisms:

ηB,C : Hom(B,C)→ Hom(a(B), C)

for B ∈ A and C ∈ C, and natural transformations

ζ : ai→ 1C and ξ : 1A → ia

respectively counit and unit of the adjunction.

Lemma 1.4.2. If there exists a morphism α : a(B) → B with αξB = 1B
then ξB is an isomorphism.

Proof. The morphism ξB : B → a(B) has two factorizations: ξB = 1a(B)ξB =
(ξBα)ξB on a(B), and the unicity of the factorization gives 1a(B) = ξBα,
so ξBN is an isomorphism. Indeed, it is well known that the unit of the
adjunction is the solution to a universal problem: ∀α : B → C there exists a
unique ᾱ : a(B)→ C such that ᾱξB = α.
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Proposition 1.4.3. Every reflective subcategory C is complete and cocom-
plete.

Proof. The category C is preadditive, since it is full in A. If I is a small
category, and G : I → C is a functor, then there exists B = lim←− iG, with
canonical morphisms πi : B → G(i). Being G(i) ∈ C, there exists π̄i :
a(B)→ G(i) such that π̄iξB = πi. The family (π̄i)i∈I is compatible with the
morphisms in I, in fact: given λ : i→ j in I, one has G(λ)π̄iξB = G(λ)πi =
πj = π̄jξB, so G(λ)π̄i = π̄j. Therefore there exists an induced morphism
β : a(B)→ lim←−G = B such that πiβ = π̄i ∀i.
Therefore πiβξB = π̄iξB = πi ∀i, so βξB = 1. By Lemma 1.4.2, we obtain
that ξB is an isomorphism, and clearly a(B) is a limit for G in C. Then
i(lim←−G) = lim←− iG.
As regarding direct limits, using the fact that a preserves them, one may
write a(lim−→ iG) = lim−→ aiG = lim−→G since ai ' 1C.

In other words, inverse limits in C are calculated in A, while direct limits
in C are calculated in A, and later reflected in C by means of the functor a.

Proposition 1.4.4. If C is reflective in A, and a : A → C preserves kernels,
then C is abelian and has a generator and exact direct limits.

Proof. We have already shown that C is preadditive, and that it has inverse
and direct limits. Moreover, C is abelian: indeed, if α is a morphism in C,
we wish that ᾱ : Coker(Kerα)→ Ker(Cokerα) is an isomorphism. To prove
it, we write kernels and cokernels in A as Ker and Coker.
In this way, one has

Coker(Kerα) = a(Coker(Kerα))

and

Ker(Cokerα) = Ker(a(Cokerα)) = a(Ker(Cokerα))

since a preserves kernels. Then ᾱ is an isomorphism.
Direct limits are exact in C: if I is a small directed category, let G, G′ : I → C
be two functors with a monomorphism G → G′. The induced morphism
lim−→ iG→ lim−→ iG′ is a monomorphism in A, and since a preserves monomor-
phisms, it follows that lim−→G → lim−→G′ is a monomorphism in C. Finally, it
is easy to prove that if U is a generator for A, then a(U) is a generator for
C.

Definition 1.4.5. A reflective subcategory of A is called Giraud subcate-
gory if the left adjoint of the inclusion preserves kernels.
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Corollary 1.4.6. If C is a Giraud subcategory of A, then C is a Grothendieck
category and a is exact. In general i is not exact.

Proposition 1.4.7. Let C be a Giraud subcategory of A. An object C in C
is injective if and only if i(C) is injective in A.

Proof. The inclusion functor preserves monomorphisms, so if C is injective
in A, it is also in C.
Conversely, let C be injective in C and let us be given β : B → B′ in A and
ϕ : B → C. Then ϕ induces a morphism a(B)→ C which extends, in C, to
a morphism a(B′) → C. The composition B′ → a(B′) → C extends ϕ as
wished.

Consider, still assuming C to be a Giraud subcategory of A, the class of
objects B of A such that a(B) = 0 and denote it with T . Similarly, consider
the class of objects B of A such that B → ia(B) is a monomorphism, and
denote it with F .

Proposition 1.4.8. The pair (T ,F) is a hereditary torsion pair for A.

Proof. From the exactness of a it immediately follows that T is closed un-
der subobjects, quotients and extensions. From the fact that a has a right
adjoint, it follows that a preserves coproducts, and then one obtains that T
is a hereditary torsion class.
Of course one has HomA(T,C) = 0 ∀T ∈ T e C ∈ C, then HomA(T, F ) = 0
∀T ∈ T and F ∈ F . If B is such that HomA(T,B) = 0∀T ∈ T , then B ∈ F ,
because Ker(B → ia(B)) ∈ T .

1.5 Localizing subcategories

In this section, following the works of N. Popescu (see [2]), the concept of
localizing subcategory of an abelian category A is studied, with the purpose
of finding a correspondence with that of torsion class.
Let A be an abelian category.

Definition 1.5.1. A full subcategory C of A is a Serre subcategory if for
every sequence 0→ A′ → A→ A′′ → 0 in A, one has A ∈ Ob(C) if and only
if A′, A′′ ∈ Ob(C). In other words, C is closed under subobjects, quotients
and extensions.

Definition 1.5.2. Let C ⊆ A be a Serre subcategory. Then the quotient
A/C is a category whose objects are exactly those of A, and given X, Y ∈
A/C, one defines HomA/C(X, Y ) := lim−→HomA(X ′, Y/Y ′), where X ′ ⊆ X and
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Y ′ ⊆ Y are such that X/X ′ and Y ′ belong to C.
The functor T : A → A/C, sending objects to themselves and morphisms
f : X → Y to the corresponding element of the direct limit, is called quotient
functor.

The following universal property holds: if F is such that F (C) = 0 ∀C ∈
Ob(C), then ∃!F ′ : A/C → B such that F ′T = F , as pictured in the diagram
below:

A F //

T
��

B

A/C
∃!F ′

==

Definition 1.5.3. Let A be locally small. A Serre subcategory C is localiz-
ing if the quotient functor T : A → A/C has a right adjoint S : A/C → A
which is called section functor.

Once given these definition, it is necessary to go more into the details of
the construction of the quotient category A/C, in order to state the definition
(Lemma 1.5.16) of C-closed object in A, which will play a central role in the
proof of Corollary 1.6.11 of the Theorem 1.6.6 (Gabriel-Popescu).

Definition 1.5.4. Let Σ be a class of morphisms in a category A; the pair
(T,AΣ) (where T : A → AΣ is a functor) is a category of fractions
of A with respect to Σ if for each s ∈ Σ T (s) is an isomorphism in AΣ;
furthermore if F : A → A′ is a functor for which if s ∈ Σ then F (s) is an
isomorphism, then ∃F ′ : AΣ → A′ such that F ′T = F .

Definition 1.5.5. A class Σ of morphisms is called multiplicative if for
any pair of composable morphisms s, s′ in Σ, the composition ss′ is again
contained in Σ, and Σ contains all the identity morphisms.

Definition 1.5.6. A class Σ of morphisms is called right (left)-permutable
if every angle

Y ′

��

X s
// Y

(or coangle

X

s
��

// X ′

Y )
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with s ∈ Σ can be embedded in a diagram

X ′

��

s′ // Y ′

��

X s
// Y

(or

X

s

��

// X ′

s′

��

Y // Y ′)

with s′ ∈ Σ.

Definition 1.5.7. A class Σ of morphisms is right (left)-simplifiable if for
any pair of morphisms f , g : X → Y for which there exists s : Y → Y ′

(s : X ′ → X) in Σ such that sf = sg (fs = gs), then there exists s′ : Z → X
(s′ : Y → Z) in Σ such that fs′ = gs′ (s′f = s′g).

Definition 1.5.8. A class Σ of morphisms is right (left)-calculable if it is
multiplicative and right (left)-permutable and simplifiable.

If C is a Serre subcategory of A, one defines Σ as the set of those mor-
phisms s in A such that Ker s ∈ C and Coker s ∈ C.

Proposition 1.5.9. Such class of morphisms is bicalculable (that is, it is
both left and right-calculable).

Proof. It suffices to show that it is right-calculable. The class Σ is multi-
plicative: indeed, if s : X → Y and s′ : Y → Z are elements of Σ, then one
has an exact sequence:

0→ Ker s→ Ker s′s→ Im s ∩Ker s′ → 0

so Ker s′s ∈ Ob(C), since C is a Serre subcategory. The same holds for
Coker s′s, so s′s is a morphism in Σ.
Let us consider the angle

X

s
��

Z
f
// Y
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with s in Σ. The pull-back diagram:

Z
∏
Y

X
f ′

//

s′

��

X

s

��

Z
f

// Y

can be built up with Ker s′ ' Ker s and Coker s′ ⊆ Coker s. Therefore s′ ∈ Σ,
so Σ is permutable.

Finally, let us be given a sequence of morphisms in A: X
f−→ Y

s−→ Z with
s in Σ and sf = 0. Then Im f ⊆ Ker s and one obtains the exact sequence
0→ Ker f

u−→ X
p−→ Im f → 0 where u is a morphism in Σ and fu = 0, from

which it follows that Σ is simplifiable.

From now on, we denote by Σ the class ΣC, and by A/C the quotient
category AΣC , which has the same objects as A with morphisms defined
above.

Lemma 1.5.10. If f : X → Y is a morphism in A, T (f) = 0 if and only if
Im f ∈ C.

Lemma 1.5.11. Let f : X → Y be a morphism in A; then T (f) is a
monomorphism (respectively an epimorphism) if and only if Ker f ∈ Ob(C)
(respectively Coker f ∈ Ob(C).

Lemma 1.5.12. The category A/C is preabelian; furthermore if f : X → Y
is a morphism in A, and if (X ′, i) is its kernel (respectively (Y ′, p) is its
cokernel) then (T (X ′), T (i)) is the kernel of T (f) (respectively (T (Y ′), T (p))
is the cokernel of T (f)).

Lemma 1.5.13. Let f : X → Y be a morphism in A; then T (f) is an
isomorphism if and only if both Ker f and Coker f are objects of C.

Theorem 1.5.14. The quotient category A/C is abelian and the quotient
functor T : A → A/C is exact.

Lemma 1.5.15. Any morphism in the category A/C can be written as a
composition of the form T (s′′)−1T (f)T (s′)−1 where s′ is a monomorphism
and s′′ is an epimorphism.

A proof of these last results can be found in ([2] - pages 166-172).

From now until the end of this section, we assume that C is a localizing
subcategory of the locally small abelian category A.
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1.5 Localizing subcategories

Lemma 1.5.16. Given an object M ∈ Ob(A), the following assertions are
equivalent:

1. ∀s : X → Y , s ∈ ΣC, the canonical morphism hM(s) : HomA(Y,M)→
HomA(X,M) is an isomorphism;

2. if f : X → M is a monomorphism and X ∈ Ob(C), then f = 0;
moreover every monomorphism s : M → X, with s ∈ ΣC is a section;

3. ∀X ∈ Ob(A) the group morphism

T (X,M) : HomA(X,M)→ HomA/C(T (X), T (M))

is an isomorphism.

An object M satisfying one of the above conditions is called C-closed.

Proof.

(1⇒ 2) Let (X ′, p) be the cokernel of f : X →M , and f be a monomorphism;
then Ker p = (X, f) and p ∈ Σ, so ∃!t : X → M such that tp = 1M .
Therefore p is a monomorphism and f = 0.
Moreover, if one has a short exact sequence 0 → M

s−→ X → X ′ → 0
for which X ′ ∈ Ob(C), then ∃!t : X →M such that ts = 1M .

(2⇒ 1) Let f : X →M be a morphism, and let i : Ker s→ X be the canonical
inclusion. Then fi = 0, so ∃!t : Coim s → M such that tp = f . One
has a commutative diagram:

Ker s i // X
s //

f

��

p

$$

Y

t′

��

Coim s

j

77

t

||

M
j′

//M
∐

Coim s

Y

where s ∈ Σ by hypothesis, and j ∈ Σ since Ker j = 0 and Coker j =
Coker s; moreover j′ is a monomorphism and Coker j′ ∈ Ob(C) by the
properties of the push-out. Then there exists a section h : M

∐
Coim s

Y →

M , with hj′ = 1M . Therefore ht′s = ht′jp = hj′tp = tp = f . The
uniqueness of ht′ is obvious.
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1. Preliminaries

(2⇒ 3) Let f : X →M be a morphism such that T (f) = 0. Then Im f ∈ Ob(C)
and f = 0; thereby, T (X,M) is a group monomorphism.
Let now u : T (X) → T (M) be in A/C. By Lemma 1.5.15, u =
T (s′′)−1T (f)T (s′)−1 with s′ : P → X, s′′ : M → Q, f : P → Q:

P
f
//

s′

��

Q

X M

s′′

OO

Moreover Ker s′′ ∈ Ob(C), from which it follows that s′′ is an isomor-
phism; Coker s′′ ∈ Ob(C) and ∃!t : X → M with ts′ = (s′′)−1f ; finally
f = s′′ts′, so T (f) = T (s′′)T (t)T (s′) and u = T (s′′)−1T (f)T (s′)−1 =
T (t). It follows that T (X,M) is an epimorphism.

(3⇒ 1) Let s : X → Y , s ∈ Σ. One has:

HomA(X,M)
T (X,M)

//

hM (s)

��

HomA/C(T (X), T (M))

hT (M)(T (s))

��

HomA(Y,M)
T (Y,M)

// HomA/C(T (Y ), T (M))

The horizontal lines and the second vertical line are isomorphisms, so
the first vertical line is an isomorphism, too.

Corollary 1.5.17. Let A, C, T and S be defined as above. One has that
∀Z ∈ A/C, S(Z) is a C-closed object.

Proof. Let us consider the following diagram, with s : X → Y morphism in
Σ, and with horizontal arrows given by the adjunction isomorphisms:

HomA(X,S(Z))
ΦX,Z

//

hS(Z)(s)

��

HomA/C(T (X), Z)

hZ(T (s))

��

HomA(Y, S(Z))
ΦY,Z

// HomA/C(T (Y ), Z)

Clearly hS(Z)(s) is an isomorphism, since T (s) is an isomorphism in A/C.

Proposition 1.5.18. Let A, C, T and S be defined as above. Let u : 1A →
ST and ν : TS → 1A/C be respectively the unit and the counit of the adjunc-
tion. The following assertions are true:
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1.5 Localizing subcategories

1. ν is a natural isomorphism;

2. ∀X ∈ Ob(A), uX ∈ Σ.

Proof. 1. Let Y ∈ Ob(A/C):

HomA(X,S(Y ))
ΦX,Y

//

T (X,S(Y ))
**

HomA/C(T (X), Y )

HomA/C(T (X), TS(Y ))

hT (X)(νY )

44

T (X,S(Y )) is an isomorphism due to Corollary 1.5.17. Being every
object of A/C of the form T (X) for some X ∈ Ob(A), the fact that
hT (X)(νY ) is an isomorphism implies that νY is an isomorphism for each
Y ∈ Ob(A/C) by Yoneda.

2. T (uX) is the inverse of νT (X), so it is an isomorphism; then uX ∈ Σ.

Corollary 1.5.19. Let M be an object of A. The following assertions are
equivalent:

1. M is a C-closed object;

2. uM is an isomorphism.

Proof.

(1⇒ 2) Let M be a C-closed object. Then M has no non-zero subobjects in C,
so KeruM = 0.
Moreover one may remark that uM : M → ST (M) is split, so CokeruM
is isomorphic to a subobject of ST (M), then also CokeruM = 0. It
follows that uM is an isomorphism.

(2⇒ 1) It follows from Corollary 1.5.17.

The following theorem establishes a key point for the study of localizing
subcategories; indeed, an immediate consequence of this assertion is that
localizing subcategories of a Grothendieck category A are in bijection with
hereditary torsion classes of the category.

Theorem 1.5.20. If A is a Grothendieck category, a Serre subcategory C of
A is localizing if and only if it is closed under arbitrary coproducts.
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1. Preliminaries

Proof. Let C be a localizing subcategory of A, and let (Ci)i∈I be a family of
objects of C. It is well known that 0 = T (

∐
i∈I
Ci) =

∐
i∈I
T (Ci), since if Ci ∈ C,

then T (Ci) ' 0 ∈ A/C. Now, if we have an object C ∈ Ob(A) for which

T (C) = 0, the canonical morphism 0
f−→ C is in particular such that T (f) is

an isomorphism; by Lemma 1.5.13 this implies that C = Coker f ∈ Ob(C).
Therefore, since T (

∐
i∈I
Ci) = 0 by what we have seen before,

∐
i∈I
Ci is an object

of C, which then is closed under arbitrary coproducts.
Conversely, let C be a Serre subcategory of A and let it be closed under
arbitrary coproducts. We need to show that T admits a right adjoint. By
Freyd’s adjoint functor theorem ([4] - Theorem 5.50), beingA a Grothendieck
category, it suffices to prove that T preserves arbitrary coproducts. Indeed,
if we consider a family (Ai)i∈I of objects of A, and the canonical morphism
f :

∐
i∈I
T (Ai) → T (

∐
i∈I
Ai), we obtain that Ker f and Coker f are objects of

C. Therefore f is an isomorphism in the quotient, and T preserves arbitrary
coproducts as wished.

1.6 The Gabriel-Popescu Theorem

The purpose of this section is, given a Gabriel filter T , to associate to
it a localizing functor (that is, the left adjoint to the inclusion of a Giraud
subcategory):

a : Mod-R→ Mod-(R,T )

where we may obtain, considering T as the class of T -torsion modules,
that T = Ker a and the Giraud subcategory Mod-(R,T ) is defined as F ∩
Ker(Ext1

R(T ,−)) = T ⊥0 ∩ T ⊥1 , according to the following definition:

Definition 1.6.1. Given a class T of objects of Mod-R, one sets:

T ⊥i := {M ∈ Mod-R : ExtiR(X,M) = 0 ∀X ∈ T } ∀i = 0, 1, 2...

Such subcategory is called subcategory of the F-closed modules. More-
over, the functor a induces an equivalence of categories Mod-R/T ' Mod-(R,T ).
Let us consider, for each M ∈ Mod-R, and each ideal J ∈ T , the restriction
map

aJ : M ' HomR(R,M)→ HomR(J,M)

Lemma 1.6.2. For each J ∈ T , the morphisms aJ are injective if and
only if M ∈ T ⊥0 := F , and are surjective if and only if M ∈ T ⊥1 :=
Ker(Ext1

R(T ,−))
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1.6 The Gabriel-Popescu Theorem

One obtains a well defined morphism ϕM : M →M(T ) := lim−→
J∈T

HomR(J,M).

Lemma 1.6.3. Let T be the hereditary torsion class corresponding to T ,
and let r be the corresponding radical. The morphism M → M(T ) defines
an endofunctor −(T ) of Mod-R, together with a natural transformation ϕ :
1Mod-R → −(T ) such that, for each M ∈ Mod-R one has:

• Ker(ϕM) = r(M);

• Coker(ϕM) ∈ T ;

• M(T ) = 0 if and only if M ∈ T .

Theorem 1.6.4. Denote by a the subfunctor of the identity a = (−)2
(T ). Let

(T ,F) be a hereditary torsion pair in Mod-R and r its associated radical,
and let T be the associated Gabriel filter.
Let T :=

⊕
J∈T

R/J . Then a is a localizing functor a : Mod-R→ Mod-(R,T )

associated with Mod-(R,T ) := T⊥0 ∩ T⊥1. Furthermore:

• Ker a = T = Gen(T );

• σ = (σM)M∈Mod-R is the unit of the adjunction 〈a, i〉, defined by the nat-
ural morphisms σM : M → a(M) = M(T ) := lim−→

J∈T

HomR(J,M/r(M)),

induced by the canonical projection M → M/r(M) and by the restric-
tion maps J ↪→ R, for each J ∈ T ;

• Ker(σM) = r(M) e Coker(σM) ∈ T ;

• a induces an equivalence Mod-R/T ' Mod-(R,T ).

Using this theorem one may deduce that, by fixing a Gabriel filter, it is
possible to produce a Giraud subcategory of Mod-R, denoted by Mod-(R,T ).
In particular, given a Gabriel filter T , one may build the localizing functor
a associated with the category T⊥0 ∩ T⊥1 , where T =

⊕
J∈T

R/J as in the

theorem; conversely, given a Giraud subcategory C of Mod-R together with
a localizing functor a, the kernel of a is a hereditary torsion class Ker a = T ,
and to T one may associate the Gabriel filter T = {J ≤ RR : R/J ∈ T }.
The following theorem can thereby be proved:

Theorem 1.6.5. There exists a bijection between Gabriel topologies on R
and Giraud subcategories of Mod-R.

Proof. See ([1], Chapter X, Theorem 2.1).
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Let now G be a Grothendieck category with a generator G, let R =
End(G); one has a well defined and faithful functor HG := HomG(G,−) :
G → Mod-R. Such functor is full, and induces an equivalence between G and
a Giraud subcategory Mod-R. This is proved in:

Theorem 1.6.6 (Gabriel-Popescu). Let G be a Grothendieck category, G a
generator, R = EndG(G), HG = HomG(G,−). Then:

• HG is full and faithful, so it induces an equivalence between G and
ImHG;

• HG admits a left adjoint exact functor TG : Mod-R → G such that
TG(RR) = G;

• T = Ker(TG) is a hereditary torsion class in Mod-R which is associated
to the Gabriel filter T = {I = 〈rλ : λ ∈ Λ〉 ≤ RR :

∐
rλ : G(Λ) �

G is an epimorphism} of R, and ImHG = Mod-(R,T );

• there exists a commutative diagram

G
TG

%%

∼ //Mod-(R,T )� _

i
�

∼ //Mod-R/T

Mod-R

πT
66

a

OO

HG

ee

Proof. Being G a generator of G, HG is faithful. We show it is also full:
given G1 and G2 in Ob(G), and fixed Φ ∈ HomR(H(G1), H(G2)), we look for
ϕ ∈ HomG(G1, G2) such that ∀f ∈ H(G1) it will be true that Φ(f) = ϕf .
Let Λ = H(G1); for each f ∈ Λ we denote by εf : G→ G(Λ) the corresponding
monomorphism. There exists a unique morphism ∇f : G(Λ) → G1 such that
∇fε = f , and ∇f is an epimorphism by the fact that G is a generator. In
the same way, there exists a unique morphism ∇Φ(f) : G(Λ) → G2 such that
∇Φ(f)εf = Φ(f) for all f ∈ Λ. Let k : K → G(Λ) be the kernel of ∇f . We
obtain the commutative diagram:

G

εf
��

f

((

Φ(f)

��

0 // K
k // G(Λ) ∇f

//

∇Φ(f) !!

G1

∃ϕ
~~

G2
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1.6 The Gabriel-Popescu Theorem

We wish that ∇Φ(f)k = 0; if this is true, we attain the factorization
∇Φ(f) = ϕ∇f for some ϕ : G1 → G2, by the properties of the kernel. More-
over, for any f : G → G1 we have Φ(f) = ∇Φ(f)εf = ϕ∇(f)εf = ϕf , and
this fact shows that the functor HG is full.
It is left to prove that ∇Φ(f)k = 0. Let us consider J ⊆ Λ finite, f ∈ J ;
there exist morphisms π′f : G(J) → G, ε′f : G → G(J) and εJ : G(J) → G(Λ).

Let kJ : KJ → G(J) be the kernel of the composition ∇fεJ : G(J) → G1.
Being K the direct limit of the kernels KJ over the finite subsets J ⊆ Λ, it
suffices to show that ∇Φ(f)εJkJ = 0. We fix β : G → KJ ; using the fact
that Φ is R-linear, we obtain:
∇Φ(f)εJkJβ = ∇Φ(f)εJ(

∑
f∈J

ε′fπ
′
f )kJβ =

∑
f∈J
∇Φ(f)εfπ

′
fkJβ =

∑
f∈J

Φ(f)π′fkJβ =∑
f∈J

Φ(fπ′fkJβ) = Φ(
∑
f∈J
∇fεJε′fπ′fkJβ) = Φ(∇fεJkJβ) = 0 since ∇fεJkJ =

0. The fact that β has arbitrarily been chosen, proves what we wished, that
is ∇Φ(f)k = 0.

We move forward to prove the existence of the left adjoint to HG and its
exactness.
First of all, if TG exists, it will have to fulfil the equality TG(RR) = H−1(RR) =
G, and moreover it will have to preserve coproducts, due to right exactness.
These remarks suggest the construction of TG: for each M ∈ Mod-R we fix
a presentation

(∗) : R(β) ψ−→ R(α) ϕ−→M → 0

using our remarks, a posteriori we should have:

T (∗) : G(β) T (ψ)−−→ G(α) T (ϕ)−−→ T (M)→ 0

such that HomR(M,H(−)) ' HomG(T (M),−). Therefore, we apply the
functor HomR(−, H(−)) to the sequence (∗) obtaining:

0 // HomR(M,H(−))
HomR(ϕ,H(−))

// HomR(R(α), H(−))
HomR(ψ,H(−))

//

'
��

HomR(R(β), H(−))

'
��

HomG(G
(α),−)

HomG(T (ψ),−)
// HomG(G

(β),−)

where the square is closed by HomG(T (ψ),−) coming from T (ψ) : G(β) →
G(α), and T (ϕ) = CokerT (ψ); T (ψ) exists by Yoneda lemma. Then T de-
fines a functor TG : Mod-R → G such that TG(RR) = G. From the dia-
gram and the sequence T (∗) we obtain, moreover, that HomR(M,H(−)) '

37



1. Preliminaries

Ker(HomG(T (ψ),−)) ' HomG(T (M),−) in a natural way, that is (TG, HG)
is and adjoint pair.
We proceed to prove that TG is an exact functor; of course it is right exact
since it is a left adjoint; we are left to show that TG preserves monomor-
phisms.

1st case: let 0→ L
i−→ R(α) be a monomorphism, and let L be finitely generated.

Then i factors:
0 // L � p

j !!

i // R

Rm
. �

==

so that we may assume that α = m ∈ N. We build a diagram (D1):

0

0 // L

OO

i // Rm

Rn

ϕ

OO

α

<<

R(α)

β
<<

ψ
// K

k

OO

// 0

0

OO

with exact rows, column and diagonal. Applying the fact that T is
right exact, we can build the diagram (D2):

0

T (L)

OO

T (i)
// Gm

Gn

T (ϕ)

OO

T (α)

;;

G(α)

T (β)
;;

ψ
// T (K)

T (k)

OO

// 0

with exact column and bottom row. We wish the diagonal in (D2) to
be exact; from that the injectivity of T (i) will follow using the com-
mutativity of the diagram. For this purpose, we consider the following
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1.6 The Gabriel-Popescu Theorem

diagram:

R(α) β
//

η
R(α)

��

Rn α //

ηRn '
��

Rm

ηRm '
��

HT (R(α)

HT (β)
// HT (Rn)

HT (α)
// HT (Rm)

where η is the unit of the adjunction, and ηRn and ηRm are isomorphisms
because H is fully faithful and Rm = H(Gm) and Rn = H(Gn); the
upper row is exact. From that the exactness of the bottom row follows
as well, and its exactness reflects to that of the sequence T (R(α)) →
T (Rn)→ T (Rm).

2nd case: We recall the every module can be viewed as the direct limit of its
finitely generated submodules, that T preserves direct limits (being a
left adjoint), and that direct limits are exact: we obtain, then, that

T preserves monomorphisms of the form 0 → L
R(α)

−−→ where α is not
necessarily finite.

3rd case: Let now 0 → L
i−→ M be any monomorphism. Let us consider the

pull-back diagram:

0

��

0

��

0 // K // P

i′
��

// L

i
��

// 0

0 // K
k
// R(α) //M // 0

Since T (k) and T (i′) are again monomorphisms, applying T to the
diagram we obtain the commutative and exact diagram:

0 // T (K) // T (P )

T (i′)
��

// T (L)

T (i)

��

// 0

0 // T (K)
T (k)

// G(α) // T (M) // 0

which proves that T (i) is a monomorphism.

The fact that T = KerTG is a hereditary torsion class is immediately verified
due to the properties of TG which we just proved. We go on proving the
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description of the Gabriel filter given in the statement of the theorem, and
the fact that G ' Mod-(R,T ) will easily follow, because G (or, better, its
image by HG in Mod-R) is the Giraud subcategory corresponding to the
hereditary torsion class T ; once the description of T is proved, then, it will
follow that HG(G) is the Giraud subcategory corresponding to T , indeed
that for which M ∈ HG(G) if and only if lim−→

J∈T

HomR(J,M) 'M .

An ideal I ≤ RR is an element of the Gabriel filter if and only if R/I ∈ T =
KerTG. Now consider the diagram:

R(Λ)

ϕ

�� ""

0 // I //

��

RR
// R/I // 0

0

where I = 〈rλ : λ ∈ Λ〉 and ϕ(jλ) = rλ, with jλ the element of R(Λ) with 0 in
every entry except for a 1 in the λth one.
The row, the column and the sequence from R(Λ) to RR to R/I to 0 are
exact. Since the functor TG is a left adjoint, it is right exact, and calculating
it on the diagram we get:

TG(R(Λ)) //

∼

TG(RR) //

∼

TG(R/I) // 0

G(Λ) ∐
rλ

// G

so I ∈ T if and only if R/I ∈ T if and only if TG(R/I) = 0 if and only if∐
rλ is an epimorphism.

The last assertion of the theorem is easily proved using the forthcoming
Corollary 1.6.11 (for what concerns the second isomorphism in the upper
row) and the following diagram (for the remaining morphisms):

G
H

##

HG0 // G0_�

i
�

Mod-R
T

cc

a

OO

• HG0 is the fully faithful restriction of HG to its essential image, so it is
an equivalence of categories G0 = ImHG = Mod-(R,T );
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1.6 The Gabriel-Popescu Theorem

• (a, i) is an adjunction, because

HomR(a(M), HG0(X)) = HomR(HG0T (M), HG0(X)) '

' HomG(T (M), X) ' HomR(M,HG(X))

with M ∈ Mod-R e X ∈ Ob(G);

• a is exact, indeed both T and HG0 are exact, (HG0 is an equivalence
between Grothendieck categories), so G0 is the Giraud subcategory of
Mod-R which is equivalent to the Grothendieck category G.

In the last part of this section, some considerable corollaries of the Gabriel-
Popescu Theorem are stated and proved, as, for example, the Morita theorem
(1958).

Corollary 1.6.7. Every Grothendieck category G is complete, has injective
envelopes and has an injective cogeneretor.

Proof. The category G is equivalent to the subcategory Mod-(R,T ). In
particular, G is complete.
Moreover, let M ∈ G ' Mod-(R,T ); E(M) in Mod-R belongs both to T ⊥0 ,
since (T , T ⊥0) is hereditary, and to T ⊥1 , being E(M) injective. Therefore
E(M) ∈ Ob(G).
Finally, T ⊥0 = Cogen(E) for some E injective in T ⊥0 ∩ T ⊥1 , which then is
an injective object of G and cogenerates it, since it cogenerates T ⊥0 which
contains G as a full subcategory.

Definition 1.6.8. An object G ∈ G is self-small if for any cardinal α,
HomG(G,G

(α)) ' HomG(G,G)(α).

Corollary 1.6.9. A Grothendieck category G is equivalent to a module cat-
egory Mod-R if and only if it has a self-small projective generator G.

Proof. If G is equivalent to a module category, then RR is self-small and it
is a projective generator.
Conversely, if G is self-small, and it is a projective generator, the functor
HG preserves arbitrary coproducts of copies of G, and it is exact. Therefore,
using the Gabriel-Popescu Theorem, ∀I�R, we have a commutative diagram
with exact rows:

R(Λ) //

σ
R(Λ)

��

R //

σR

��

R/I //

σR/I

��

0

HGTG(R(Λ) // HGTG(R) // HGTG(R/I) // 0
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which shows that, since the first two vertical arrows are isomorphisms, also
σR/I is an isomorphism. Then I ∈ T if and only if R/I ∈ T if and only if
TG(R/I) = 0 if and only if HGTG(R/I) = 0 if and only if R/I = 0 if and
only if I = R. Therefore the Gabriel filter is trivial and G ' Mod-(R,T ) '
Mod-R.

Theorem 1.6.10 (Morita, 1958). Let R and S be two rings. The categories
S-Mod and R-Mod are equivalent if and only if there exists a projective gen-
erator SU of S-Mod such that R ' End(SU). In that case the functors giv-
ing the equivalence are identified, up to natural isomorphism, by the functors
H = HomS(U,−) : S-Mod → R-Mod e T = −

⊗
R

U : R-Mod → S-Mod.

Proof. Using Corollary 1.6.9, R ' End(SU), and we obtain the equivalence;
the functor H is that of the Gabriel-Popescu Theorem and T is one of its
adjoint functors; it follows from the fact that all the adjoint functors to the
same functor are isomorphic that T is the localizing functor built in the
Gabriel-Popescu Theorem.
Conversely, given an equivalence of categories F : S-Mod → R-Mod with
quasi-inverse G, and fixed SU = G(RR), we obtain natural isomorphisms
R ' HomR(R,R) ' HomS(G(R), G(R)) = End(SU); moreover, for all M ∈
S-Mod, one has F (M) ' HomR(R,F (M)) ' HomS(G(R),M) = H(M).
Finally, G ' −

⊗
R

U because they are both left adjoint to H ' F .

Corollary 1.6.11. From the Gabriel-Popescu Theorem one deduces that ev-
ery Grothendieck category is equivalent to the quotient of a module category
modulo a localizing subcategory.

To prove the assertion, the following lemma is needed:

Lemma 1.6.12. Let C ⊆ A be a localizing subcategory. The section functor
S : A/C → A is fully faithful and induces and equivalence between A/C and
the Giraud subcategory B of A made by the C-closed objects.

Proof. The functor S is fully faithful if and only if the counit of the ad-
junction is a natural isomorphism, and this fact has been already proved in
Proposition 1.5.18.
The essential image of S is made by C-closed objects, for what has been
proved in Corollary 1.5.17; therefore one has a fully faithful functor S :
A/C → B; it is essentially surjective, because if X is a C-closed object, one
can find T (X) in A/C such that ST (X) ' X.
It is left to show that the C-closed objects actually form a Giraud subcate-
gory of A. Consider the functors: i : B → A and ST : A → B; T is exact
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and S is left exact, so ST preserves cokernels. It is left to prove that the pair
(ST, i) is adjoint. Our goal is to prove that hM(uX) : HomB(ST (X),M) →
HomA(X, i(M)) is an isomorphism. Consider the diagram:

X //

uX
��

M

ST (X)

;;

Being M a C-closed object, hM(uX) is clearly an isomorphism due to the
characterization of the C-closed objects given in Lemma 1.5.16, since uX is
in Σ for any X, due to Proposition 1.5.18.

Proof (Corollary). In the Gabriel-Popescu Theorem, the kernel of the functor
T is the hereditary torsion class T , which, by Theorem 1.5.20 is equivalent
to a localizing subcategory. We foresee, then, that G ' Mod-R/T . More
precisely, it is required to prove that G is exactly the category of T -closed
objects. Let us consider X ∈ T and M ∈ Ob(G); then Hom(X,M) =
Hom(X, i(M)) ' Hom(a(X),M) = 0 since X belongs to the kernel of a (we
are identifying G with the equivalent Giraud subcategory of Mod-R). One
obtains then that there exists no non-zero morphism from an object of T to
one of G; in particular there exist no monomorphism, so any object of G is a
T -closed object.
Conversely, if M is a T -closed object, we assume by contradiction that it
does not belong to G, which has been characterized as Mod-(R,T ) = {M ∈
Mod-R : lim−→

J∈T

HomR(J,M) = M} in the Gabriel-Popescu Theorem. There-

fore lim−→
J∈T

HomR(J,M) 6= M , so there exists a morphism f : R → M that

cannot be expressed in terms of the direct limit. This means that there
exists an ideal J ∈ T such that f̄ : R/J → M is a non-zero morphism;
this leads us to a contradiction with the definition of T -closed object, since
R/J ∈ T . Thus the category G is precisely the category of T -closed objects
in Mod-R, so it is equivalent to Mod-R/T .
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Chapter 2

The functor category

In this chapter we will deal with the category of additive functors from
the category R-mod of finitely presented left R modules to the category
of abelian groups. Here we assume R to be a ring with identity and such
that 1R 6= 0R. Both the category of covariant functors and the category of
contravariant functors are useful to study and describe in a complete way
some particular classes of modules (i.e. pure-injective modules), since the
category Mod-R can be embedded in the functor category; to achieve such a
goal, it is necessary to describe this immersion.

2.1 Contravariant functors

In this section we denote by ((R-mod)op,Ab) the category of contravari-
ant additive functors from the category of finitely presented left R-modules
to the category of abelian groups. In general, given a category C and two
objects C and D, we denote by (C,D)C the set HomC(C,D), and if there is
no ambiguity about the category in which we consider the morphisms, we
simply use the notation (C,D).
We also recall that in a general functor category Fun(C,D), subfunctors, quo-
tient functors and exact sequences of functors are defined point-wise. From
Proposition 1.1.5 we obtain immediately that the category ((R-mod)op,Ab)
is abelian.

Definition 2.1.1. A functor F ∈ ((R-mod)op,Ab) is called representable
if it is isomorphic to a functor of the form (−,M), where M is a finitely
presented module.

Lemma 2.1.2 (Yoneda). Let M be a finitely presented left R-module and
F ∈ ((R-mod)op,Ab). There is an isomorphism ΘM,F : [(−,M), F ]→ F (M)
which is natural both in M and F .



2. The functor category

Lemma 2.1.3. Every representable functor in ((R-mod)op,Ab) is finitely
generated and projective. In particular, it is finitely presented.

Proof. Let (−,M) =
∑
λ

Fλ a direct sum of functors in ((R-mod)op,Ab); then

1M ∈ (M,M) =
∑
λ

Fλ(M), so 1M ∈ Fλ(M) for some λ. By Yoneda, this gives

a morphism (−,M)→ Fλ, which, composed with the inclusion Fλ ↪→ (−,M)
gives the identity 1(−,M). Indeed, it is the isomorphism corresponding to the
identity 1M ; therefore the inclusion is an epimorphism, so (−,M) is finitely
generated as wished.
To prove projectivity, let us consider an epimorphism π : F → G and a
morphism µ : (−,M) → G, which, by Yoneda, corresponds to some m ∈
G(M). Being πM : F (M)→ G(M) an epimorphism, there exists n ∈ F (M)
going to m. Let ν : (−,M) → F be the morphism which corresponds to n
via Yoneda. Then πν = µ.

Proposition 2.1.4. The representable functors of ((R-mod)op,Ab) generate
the category. Indeed, for every functor F : (R-mod)op → Ab there is an
epimorphism

⊕
i

(−,Mi)→ F for some Mi finitely presented left R-modules.

Also, F is finitely generated if and only if this direct sum may be taken to be
finite.

Proof. The category R-mod is skeletally small, i.e. the class of isomorphism
classes of its objects is a set. Thus we may consider, for any module in the
category, a representative M of its isomorphism class. Define the morphism⊕
M

(−,M)(F (M)) → F to have component at m ∈ F (M) the morphism fm :

(−,M)→ F which corresponds to m via Yoneda. This map is surjective by
definition.
For the second part of the statement, we have F =

∑
i

Im(fi) where fi is

the i-th component map of
⊕
i

(,Mi) → F , so F finitely generated implies F

is a sum of finitely many of these, so finitely many of the direct summands
will be sufficient. The converse follows since, by Lemma 2.1.3, each functor
(−,Mi) is finitely generated (and every image of a finitely generated object
is finitely generated).

We say that idempotents split in a preadditive category C if, for every
M ∈ C, each idempotent e = e2 ∈ End(M) has a kernel, and the canonical
map Ker(e)⊕Ker(1−e)→M is an isomorphism. In particular, the category
R-mod has split idempotents.
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Proposition 2.1.5. The finitely generated projective objects of ((R-mod)op,Ab)
are the direct summands of finite direct sums of representable functors. Since
R-mod has split idempotents and finite direct sums, then these are precisely
the representable functors.

Proof. The first statement is a direct corollary of Lemma 2.1.3 and Propo-
sition 2.1.4. For the second statement, since the category R-mod has finite
direct sums, then (−,Mi)⊕ (−,Mj) ' (−,Mi⊕Mj), so if F is finitely gener-
ated and projective, F is, without loss of generality, a direct summand of a
functor of the form (−,M). Let π : (−,M)→ F split the inclusion, and let
f ∈ End(−,M) be π followed by the inclusion, so that f = f 2. The Yoneda
embedding is fully faithful, so there exists and e ∈ End(M) corresponding
to f via Yoneda, hence with e = e2. Then we have M = Im(e)⊕Ker(e) and
then it follows quickly that F ' (−, Im(e)), so F is representable.

With these last results we have established that representable functors
correspond to finitely generated projective ones, and that the finitely gener-
ated projective functors are a family of generators for the category of functors.
We have almost proved the following:

Proposition 2.1.6. The Yoneda embedding

Y : R-mod→ ((R-mod)op,Ab)

M → (−,M)

is fully faithful and it is left exact. It is an equivalence between the category
R-mod of finitely presented left R-modules and the category Proj((R-mod)op,Ab)
of finitely generated projective objects of ((R-mod)op,Ab).

A detailed proof may be found in ([1], Chapter IV, Corollary 7.4). Di-
rectly from Proposition 1.1.9, one gets that the category ((R-mod)op,Ab) is a
Grothendieck category; using the fact that representable functors are a family
of generators for the category, a generator for this category is

⊕
M∈R-mod

(−,M)

(the coproduct is well defined since R-mod is a small category).

Limits in the category ((R-mod)op,Ab) are calculated object-wise; thus
we may give the following definition:

Definition 2.1.7. An object G ∈ ((R-mod)op,Ab) is called flat if it is iso-
morphic to a direct limit of finitely generated projective functors

G ' lim−→(−, Ai)
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The full subcategory of flat functors is denoted by Flat((R-mod)op,Ab).
Since the Yoneda embedding ensures us the equivalence stated above, we
may consider the corresponding direct limit M ' lim−→Ai in R-Mod. Using
a well-known characterization of finitely presented modules ([1] Proposition
V.3.4), we find

G ' lim−→(−, Ai) ' (−, lim−→Ai) ' (−,M)

Thus the following may be proved:

Proposition 2.1.8. The functor Y : R-Mod → ((R-mod)op,Ab) yields an
equivalence of categories between R-Mod and Flat((R-mod)op,Ab), and it is
left exact and fully faithful.

A proof of this proposition may be found in ([7], Theorem 1.4). Ac-
cording to the last result, the module category R-Mod can be embedded in
((R-mod)op,Ab), and can be seen as the full subcategory of flat functors.
Actually, the full subcategory of flat functors corresponds to the full subcat-
egory of left exact functors, as we prove in the following lemma. Thus, the
category of left R-modules can be seen as the full subcategory of left exact
functors in ((R-mod)op,Ab).

Lemma 2.1.9. A functor F ∈ ((R-mod)op,Ab) is flat if and only if it is left
exact.

Proof. According to what was shown above, we already know that if F is
a flat functor, then F ' (−,M), hence it is left exact. Conversely, let us
assume that F is left exact; we want to show that F ' (−, F (R)), which is
a flat functor. Consider the obvious isomorphism of abelian groups α(R) :
F (R) → (R,F (R)); it induces, for every finitely generated free module Rn,
an isomorphism α(Rn) : F (Rn)→ (Rn, F (R)).
Now, given A ∈ R-Mod, we can consider a free presentation of A:

Rm → Rn → A→ 0

and then we may apply F and (−, F (R)), obtaining the following commuta-
tive diagram:

0 // F (A) // F (Rn) //

∼

F (Rm)

∼

0 // (A,F (R)) // (Rn, F (R)) // (Rm, F (R))

from which it is clear that a morphism α(A) : F (A)→ (A,F (R)) is induced,
and one can prove that it is an isomorphism using the five lemma.
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This far, we have established an embedding of the module category into
the functor category. According to what we dealt with in section 1.4, the
natural question which arises from this situation is whether this functor has a
left adjoint or not. Furthermore, properties of this adjoint should be studied
in detail. The last part of this section is devoted to this topic.
Let us consider the functor −R : ((R-mod)op,Ab) → R-Mod, called R-
valuation, which acts on functor by ”evaluating” them on the left R-module

RR.

Lemma 2.1.10. The R-valuation functor −R : ((R-mod)op,Ab) → R-Mod
is exact.

Proof. The proof is straightforward: exact sequences in ((R-mod)op,Ab) are
defined object-wise, so if we have an exact sequence of functors 0 → F →
G → H → 0, then the sequence 0 → F (R) → G(R) → H(R) → 0 is still
exact, by definition.

Proposition 2.1.11. The pair 〈−R, Y 〉 is and adjoint pair of functors.

Proof. Let F ∈ ((R-mod)op,Ab) be a functor, and M ∈ R-Mod a left R-
module. Our goal is to show that we have an isomorphism HomR(F (R),M) '
Hom((R-mod)op,Ab)(F, (−,M)) which is natural both in M and in F . Let us
consider the morphism:

Hom((R-mod)op,Ab)(F, (−,M))→ HomR(F (R),M)

η 7−→ (η(R) : F (R)→ (R,M) 'M)

which sends a natural transformation on the left to its R-component. The
fact that this is an isomorphism is equivalent to having that any natural
transformation η as above may be completely (and uniquely) determined by
its R-component.
Let us assume we have a morphism η(R) : F (R) → M ; it clearly induces a
unique morphism η(Rn) : F (Rn) → (Rn,M) ' Mn since F is an additive
functor (it preserves direct sums). So our R-component determines in a
unique way the Rn-components for a finite n. Let us consider now any
finitely presented module A, and a free presentation:

Rm f−→ Rn p−→ A→ 0

let us apply both F and (−,M) to this exact sequence, in order to get the
following commutative diagram:

F (A)
F (p)

//

��

F (Rn)
F (f)

//

η(Rn)

��

F (Rm)

��

0 // HomR(A,M)
p∗

//Mn f∗
//Mm
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2. The functor category

the dotted vertical arrow is the morphism we are looking for, and with a
little exercise in diagram chasing, we may prove it is completely determined
by the second vertical arrow, thus it is unique as we wanted. Consider an
element a ∈ F (A), and take a′ = η(Rn)F (p)(a) ∈Mn. This element belongs
to the kernel of f∗, since f∗η(Rn)F (p)(a) = η(Rm)F (f)F (p)(a) = 0 by com-
mutativity of the diagram and exactness of the upper row. Then a′ belongs
to the image of p∗, and since p∗ is a monomorphism, there exists a unique
element a′′ ∈ HomR(A,M) such that p∗(a

′′) = a′. Finally, define, for every
a ∈ F (A), η(A)(a) = a′′. This is the required morphism.

Corollary 2.1.12. The category R-Mod is a Giraud subcategory of
((R-mod)op,Ab).

The proof follows immediately from Lemma 2.1.10 and Proposition 2.1.11.

2.2 Covariant functors

In this section we will consider the functor category (R-mod,Ab) consist-
ing of the additive covariant functors from the category of finitely presented
left R-modules to the category of abelian groups. We will study again an
embedding of the category Mod-R into (R-mod,Ab), with a focus on possible
adjoint functors.

Remark 2.2.1. In the category (R-mod,Ab), we define subfunctors, quo-
tient functors, exact sequences and direct limits object-wise, as we did for
((R-mod)op,Ab).
Moreover, the results about generators, representable functors and projective
functors stated in Lemma 2.1.3, Proposition 2.1.4 and Proposition 2.1.5 are
still true passing to our category (R-mod,Ab), as can be easily proved.

Let us consider the functor

T : Mod-R→ (R-mod,Ab)
M 7−→ (M ⊗−) : R-mod→ Ab

which is called tensor embedding.

Lemma 2.2.2. Let F and F ′ be two functors in (R-mod,Ab), with F right
exact, and let τ , τ ′ : F → F ′. Then τ(R) = τ ′(R) ⇒ τ = τ ′.

Proof. Let L a finitely presented left R-module, and Rm → Rn π−→ L → 0
a free presentation. Applying F and F ′ to this presentation, we obtain the
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following commutative diagram:

F (Rn)

τ(Rn)
��

F (π)
// F (L)

τ ′(L)
��

τ(L)
��

// 0

F ′(Rn)
F ′(π)

// F ′(L) // 0

one has that τ(Rn) = τ(R)n = τ ′(R)n = τ ′(Rn); hence one has that τ(L)F (π) =
F ′(π)τ(Rn) = F ′(π)τ ′(Rn) = τ ′(L)F (π). Since F (π) is an epimorphism, it
follows that τ = τ ′.

Theorem 2.2.3. The tensor embedding T : Mod-R→ (R-mod,Ab) is a full
embedding and it is left adjoint to the R-valuation functor
−R : (R-mod,Ab)→ Mod-R.

Proof. If (M⊗−) ' (N⊗−), evaluating them at R, we obtain M 'M⊗R '
N ⊗ R ' N . If τ : (M ⊗ −) → (N ⊗ −) is a natural transformation, its
R-component is τ(R) : M⊗R→ N⊗R, that is a map τ(R) : M → N . Thus
τ and (τ(R) ⊗ −) are natural transformation with the same R-component,
and since (M ⊗ −) and (N ⊗ −) are right exact functors, by Lemma 2.2.2
we obtain that τ = (τ(R)⊗−). Hence T is full.
To prove the adjunction, first note that if F ∈ (R-mod,Ab), then F (RR) has
a right R-module structure, since End(RR) = R: if a ∈ F (R) and s ∈ R, set
as := F (−× s)a and a(st) = F (−× st)a = F ((−× t)(−× s))a = (as)t.
The natural isomorphism ((M⊗−), F ) ' (M,F (R)) sends τ : (M⊗−)→ F
to its R-component. By Lemma 2.2.2 it is a monomorphism. To define the
inverse map: let g : M → F (R), let τg : (M ⊗ −) :→ F whose component
at L ∈ R-mod is defined by τg(m⊗ l) = F (l)g(m), where by F (l) we denote
the value of F at the morphism R → L sending 1R to l. The collection of
morphisms τg is indeed a natural transformation, and its R-component is
exactly g. These processes define the adjunction.

Proposition 2.2.4. The tensor embedding T : Mod-R → (R-mod,Ab) is a
fully faithful functor, and yields an equivalence of categories between Mod-R
and the full subcategory Rex(R-mod,Ab) of (R-mod,Ab) consisting of the
right exact functors.

Proof. The fact that T is full has been proved in Theorem 2.2.3. The tensor
embedding acts on morphisms sending f : M → N to (f ⊗−) : (M ⊗−)→
(N ⊗ −) whose L-component (for a finitely presented left R-module L) is
f ⊗ 1L : M ⊗ L → N ⊗ L. It is clear that if (f ⊗ −) = (g ⊗ −), then their
R-components must be the same, so f = g, and this proves that T is fully
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faithful.
For the second statement, note that the functor (M ⊗ −) is right exact for
any right R-module M ; it is left to prove that, for any right exact functor
F ∈ (R-mod,Ab), there exists M ∈ Mod-R such that F ' (M ⊗−).
Consider the right R-module F (R); we claim that F ' (F (R) ⊗ −). Of
course we have a canonical isomorphism η(R) : F (R) → F (R) ⊗ R, which
induces an isomorphism η(Rn) : F (Rn) → F (R) ⊗ Rn since F is additive.
Let us consider now L ∈ R-mod and a free presentation Rm → Rn → L→ 0.
We apply the right exact functors F and (F (R)⊗−) to this sequence to get
a commutative diagram:

F (Rm) //

∼

F (Rn)

∼

// F (L)

��

// 0

F (R)⊗Rm // F (R)⊗Rn // F (R)⊗ L // 0

with a little exercise in diagram chasing, it is clear that there is a unique
induced map corresponding to the dotted arrow; using the five lemma, it is
easy to show that it is also an isomorphism.

The last results provide us a situation that is dual to the one we had
in the case of contravariant functors; in particular by Proposition 2.2.4 a
correspondence between right R-modules and right exact functors in the
category (R-mod,Ab) is established, while we had a correspondence with
left exact functors in the contravariant case; by Theorem 2.2.3, moreover,
we have an adjunction 〈T,−R〉 in which the right adjoint is an exact functor
(the proof of this fact is exactly the same as that of Lemma 2.1.10). This
configuration appears very similar to that of Giraud subcategories, except
for the fact that we have a right adjoint to the inclusion functor which is
exact, instead of having a left adjoint. This motivates a brief digression on
Co-Giraud subcategories.

2.2.1 Co-Giraud subcategories

Recalling what we dealt with in Section 1.4, we may dualize those results
to deal with Co-Giraud subcategories. In this section we use C to denote a
category and A ⊆ C a full subcategory.

Definition 2.2.5. Let (T ,F) be a torsion pair in C. An object C ∈ C
is said to be codivisible (respectively divisible) if the functor HomC(C,−)
(respectively HomC(−, C)) is exact on all the exact sequences 0 → X ′ →
X → X ′′ → 0 with X ′ ∈ F (respectively X ′′ ∈ T ).
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A morphism f : D → C (respectively g : C → D) is a colocalization
(respectively a localization) if Ker(f), Coker(f) ∈ F and D ∈ T is codivisible
(respectively Ker(g), Coker(g) ∈ T and D ∈ F is divisible).

Proposition 2.2.6. Let f1 : D1 → C1, f2 : D2 → C2 two colocalizations with
respect to the torsion pair (T ,F). Let g : C1 → C2 be a morphism. There
exists a unique h : D1 → D2 such that f2h = gf1.

Proof. Let t be the idempotent radical associated to the torsion pair. Then
it is clear that Im(fi) = t(Ci). Hence one has

0 // Ker(f1) // D1
// t(C1) //

t(g)
��

0

0 // Ker(f2) // D2
// t(C2) // 0

Since Ker(f2) is torsion free and D1 is codivisible, there exists h : B1 → B2

making the diagram commute. Furthermore, h is unique since D1 ∈ T .

Next corollary shows that colocalization is unique up to isomorphism:

Corollary 2.2.7. Let f1 : D1 → C, f2 : D2 → C be two colocalizations of
C. Then D1 ' D2.

Corollary 2.2.8. If every object C ∈ C has its colocalization ϕC : L(C) →
C, then L is an additive endofunctor of C, and ϕ : L → 1C is a natural
transformation. L is called colocalization functor.

Proof. We must show that L is additive. Let f , g : C → D be two morphisms.
Then we have a commutative diagram

L(C)
ϕC //

L(f+g)

��

t(C)

t(f+g)

��

C(D) ϕD
// t(D)

Thus

ϕDL(f + g) = t(f + g)ϕC =

= (t(f) + t(g))ϕC = t(f)ϕC + t(g)ϕC =

= ϕDL(f) + ϕDL(g) = ϕD(L(f) + L(g))

This shows that L(f)+L(g)−L(f+g) maps L(C) into Ker(ϕD). On the other
hand, L(C) ∈ T and Ker(ϕD) ∈ F . Therefore L(f) + L(g)− L(f + g) = 0.
This proves that L is additive.
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2. The functor category

Of course, everything can be naturally dualized for localizations.

Definition 2.2.9. A torsion pair (T ,F) is called cohereditary if F is
closed under quotients, and it is called strongly cohereditary if every object
in C has a colocalization with respect to (T ,F).

Definition 2.2.10. Let r : C → C be a covariant functor. Then one says
that:

- r is a pre-coradical if r(C) is a quotient of C for every object C in
the category;

- r is idempotent if r(r(C)) = r(C) for every object C in the category;

- r is a coradical if r(Ker(ψC)) = 0 for every object C in the category,
where ψC is the C-component of the obvious natural transformation
ψ : 1C → r;

The bijective correspondence between torsion pairs and idempotent rad-
icals established in Proposition 1.2.14 can be extended dualizing it to idem-
potent coradicals.

Proposition 2.2.11. Every strongly cohereditary torsion pair is coheredi-
tary.

Proof. Let (T ,F) be strongly cohereditary with associated idempotent rad-
ical t. Let C ∈ F and let D be a subobject of C. There exists a subobject
A ⊆ C such that t(C/D) = A/D. Let f : L(A/D) → A/D be its colo-
calization; then f is an epimorphism since A/D ∈ T . Because L(A/D) is
codivisible and D ∈ F , there exists g : L(A/D)→ A such that the following
diagram:

L(A/D)
g

{{

f
��

0 // D // A // A/D // 0

is commutative. But we know that A ∈ F , hence g = 0, so f = 0. This
implies that A/D = 0 because f is an epimorphism. Thus F is closed under
quotient objects.

Theorem 2.2.12. Let (T ,F) be a torsion pair, and suppose that every object
of T is a quotient of a projective object. Then (T ,F) is strongly cohereditary
if and only if it is cohereditary.
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Proof. See ([11], Theorem 1.6).

Both last two result can be dualized.

Proposition 2.2.13. The following assertions are equivalent for a torsion
pair (T ,F):

1. (T ,F) is cohereditary;

2. t preserves epimorphisms;

3. r is right exact.

Proof. See [1].

Lemma 2.2.14. Suppose (T ,F) is a cohereditary torsion pair. Let f : C →
D be an epimorphism such that C ∈ T and Ker(f) ∈ F . Then f is a minimal
epimorphism.

Proof. Let X be a subobject of C such that X ↪→ C
f−→ D is an epimorphism.

Then we have the following commutative diagram:

0 // K // X +K //
_�

�

D // 0

0 // K // C
f

// D // 0

where X +K = C, since K = Ker(f). Thus C/X ' X +K/X ' K/X ∩K.
On the other hand, C/X ∈ T since C ∈ T and K/X ∩K ∈ F since K ∈ F
and F is closed under quotients. Therefore X = C, and this implies that f
is minimal.

Theorem 2.2.15. Let (T ,F) be a strongly cohereditary torsion pair with
colocalization functor L. Then L is right exact.

Proof. Let 0 → C ′
f−→ C

g−→ C ′′ → 0 be a short exact sequence. Then one
has:

L(C ′)
L(f)

//

h′

��

L(C)
L(g)
//

h
��

L(C ′′)

h′′

��

t(C ′)
t(f)

// t(C)
t(g)
// t(C ′′) // 0

where t(g) and columns are epimorphisms. Since h′′ is a minimal epimor-
phism, L(g) is an epimorphism. Indeed, if by contradiction L(g)(L(C)) (
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L(C ′′), one still has that h′′L(g) is an epimorphism, since it is equal to t(g)h
which are both epimorphisms, so one would have a subobject of L(C ′′) which
would cover all t(C ′′), but then h′′ would not be minimal anymore. Now,
put K = Ker(L(g)). One must prove that K = Im(L(f)); K ∈ T since
0→ K → L(C)→ L(C ′′)→ 0 is exact, L(C) ∈ T and L(C ′′) is codivisible.
Clearly, h(K) ⊆ Ker(t(g)) ⊆ Ker(g) = Im(f); hence h(K) ⊆ Im(t(f)), and
Im(hL(f)) = h(K). On the other hand, Ker(h|K) ⊆ Ker(h) ∈ F . Thus
h|K : K → h(K) is minimal, and this implies that Im(L(f)) = K, therefore
L is right exact.

Definition 2.2.16. Let A ⊆ C be a full subcategory. Then A is said:

- coreflective if there exists a right adjoint a to the inclusion functor
i : A → C;

- co-Giraud if it is coreflective and a is exact.

Theorem 2.2.17. Let A ⊆ C be a full subcategory of C whose objects consist
of torsion and codivisible objects of C. Let i : A → C be the inclusion, denote
L = a. Then a is a right adjoint of i.

Proof. Let C ∈ A, D ∈ C. Since C is codivisible, the exact sequence 0 →
Ker(L(D)→ D)→ D → t(D)→ 0 induces an isomorphism HomC(C,L(D)) '
HomC(C, t(D). Also, the exact sequence 0 → t(D) → D → r(D) → 0 in-
duces HomC(C,D) ' HomC(C, t(D). Since A is full in C, the above induces
an isomorphism HomC(i(C), D) ' HomA(C, a(D)).

Corollary 2.2.18. The inclusion functor i preserves cokernels and a pre-
serves kernels and cokernels.

Corollary 2.2.19. The full subcategory A ⊆ C is an abelian category.

Proof. See ([10], Corollary 2.6).

Theorem 2.2.20. Let A be a full subcategory of C and i : A → C the in-
clusion functor. Then A is a category consisting of objects which are torsion
and codivisible with respect to some strongly cohereditary torsion pair if and
only if A is a co-Giraud subcategory of C.

Proof. See ([10], Theorem 2.7).

Corollary 2.2.21. If A is a co-Giraud subcategory of C, then it is abelian.

The following corollary establishes a fundamental correspondence:

Corollary 2.2.22. There is a bijective correspondence between co-Giraud
subcategories of C and strongly cohereditary torsion pairs of C.
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2.3 Pure-injective modules

2.3 Pure-injective modules

In this section we will address a particular class of modules, namely the
pure-injective modules. In particular we will prove how this class is equivalent
to the subclass of injective functors in the covariant functor category.

Definition 2.3.1. Let R be a ring, and let 0 → A → B → C → 0 be an
exact sequence of right R-modules; it is called pure if the induced sequence
of abelian groups 0 → HomR(E,A) → HomR(E,B) → HomR(E,C) → 0 is
exact for every finitely presented right R-module E.

Definition 2.3.2. A submodule A of a right R-module B is a pure sub-
module if 0→ A→ B → B/A→ 0 is pure.
A pure monomorphism is a monomorphism A ↪→ B whose image is a
pure submodule of B.

Definition 2.3.3. An R-module M is pure-injective if the sequence 0 →
HomR(C,M) → HomR(B,M) → HomR(A,M) → 0 is exact for every pure
exact sequence 0→ A→ B → C → 0.

Proposition 2.3.4. For every right R-module M , there exists a pure exact
sequence 0→ A→ B →M → 0 where B is a direct sum of finitely presented
modules.

Proof. Let S be a set of finitely presented right R-modules such that every
finitely presented right R module is isomorphic to an element of S. For
every N ∈ S let NHom(N,M) be the direct sum of copies of N indexed in
Hom(N,M). Define B =

⊕
N∈S

NHom(N,M). Let g : B → M be the morphism

whose restriction to the copy of N indexed by ϕ ∈ Hom(N,M) is ϕ for every
N ∈ S and ϕ ∈ Hom(N,M). Since R is finitely presented, there is a module
in S which is isomorphic to R. Hence g is surjective.
Let A = Ker(g) and f : A → B be the inclusion so that 0 → A → B →
M → 0 is exact. To prove this is actually a pure sequence, one needs that for
every finitely presented module E and every morphism ψ : E →M , there is
a morphism ψ′ : E → B such that ψ = gψ′. Now, there exists N ∈ S which
is isomorphic to E. Let α : N → E be such an isomorphism, and ε : N → B
the embedding into the direct summand of B indexed by ψα ∈ Hom(N,M).
Then ψ′ = εα−1 has the required property.

To study pure-injective modules, we need a definition:

Definition 2.3.5. Let M = (rij) be an n×m matrix with entries in a ring
R, let A be a right R-module. Consider the n-tuples X = (x1, ..., xn) ∈ An

57



2. The functor category

such that XM = 0. The set SM = {X ∈ An : XM = 0} is an additive
subgroup of An. Hence if π1 : An → A is the canonical projection onto the
first summand, the image π1(SM) of SM is an additive subgroup of A. The
additive subgroups of A arising in this fashion, are called finitely definable
subgroups of A.
Any additive subgroup G of A is definable if it is an intersection of finitely
definable subgroups.

Proposition 2.3.6. Let A be a right R-module, and let r ∈ R. The following
statements are true:

a) the groups Gr and (G :A r) = {a ∈ A : ar ∈ G} are finitely definable
subgroups of A for every finitely definable subgroup G of A;

b) there is a bijective correspondence between the set of all finitely definable
subgroups G of A that contain (0 :A r) and the set of all finitely definable
subgroups G′ of A defined by G 7−→ G′ = Gr.

Proof. Given G finitely definable subgroup of A, there is an n×m matrix M
with entries in R such that G = π1(S) where S = {X ∈ An : XM = 0} and
π1 : An → A is the usual projection. It is easy to see that if π′1 : An+1 → A
is the canonical projection onto the first summand, then Gr = π′1(S ′) where

S ′ = {Y ∈ An+1 : Y


1 0 ... 0
−r
.
. A
0

 = 0} and (G :A r) = π′1(S ′′) where

S ′′ = {Y ∈ An+1 : Y


r 0 ... 0
−1
.
. A
0

 = 0} This proves a); b) is an easy

consequence.

Lemma 2.3.7. Sum and intersection of two finitely definable subgroups of
A are finitely definable subgroups of A.

This lemma proves that if A is an R-module, and F is a finite subset of
R, the additive subgroup (0 :A F ) is a finitely definable subgroup of A.

Lemma 2.3.8. If A is a pure submodule of B, then for every finitely definable
subgroup G of A there exists a finitely definable subgroup H of B such that
G = H ∩ A.
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2.3 Pure-injective modules

Proof. If G is a finitely definable subgroup of A, there exists an n×m matrix
M with entries in R such that G = π1(S) where S = {X ∈ An : XM = 0}
and π1 is the usual projection. Define S ′ = {Y ∈ Bn : YM = 0} and
π′1 : Bn → B the usual projection; write H = π′1(S ′), so that H is a finitely
definable subgroup of B. Then G ⊆ H ∩A. The other inclusion follows from
([9], Theorem 1.27).

Definition 2.3.9. Let R be a ring. A compact topological module
(N,T ) is a right R-module N together with a compact Hausdorff topology T
on the set N with the property that addition and multiplication are continuous
maps.

Theorem 2.3.10. The following assertions are equivalent for a right module
M over an arbitrary ring R:

a) M is pure-injective;

b) every pure exact sequence 0 → M → B → C → 0 of right R-modules
is split;

c) there exists a compact topological R-module (N,T ) such that M is
isomorphic to a direct summand of N ;

d) a system
∑
i∈I
xirij = mj with j ∈ J of linear equations in M is soluble

in M whenever it is finitely soluble in M (here rij ∈ R, mj ∈ M ∀i, j
and for every j ∈ J there are finitely many i ∈ I with rij 6= 0);

e) if mi ∈M , Gi is a finitely definable subgroup of M for every i ∈ I, and
the family {mi + Gi : i ∈ I} has the finite intersection property, then⋂
i∈I
mi +Gi 6= ∅.

Any module satisfying d) is called algebraically compact.

Corollary 2.3.11. If ϕ : R→ S is a ring homomorphism, then every pure-
injective right S-module is also pure-injective as an R-module.

Proposition 2.3.12. Let e be an idempotent element in R. Let M , N be
two R-modules, m ∈Me and n ∈ Ne. Suppose that N is pure-injective. The
following are equivalent:

a) for every finitely presented R-module F , every element a ∈ Fe and
every homomorphism f : F → M such that f(a) = m, there exists a
homomorphism f ′ : F → N such that f ′(a) = n;
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2. The functor category

b) there exists a homomorphism g : M → N such that g(m) = n.

Proof. See ([9], Proposition 1.37).

Now, let us consider again the category of covariant additive functors
(R-mod,Ab); recall that we defined a functor Ψ : Mod-R→ (R-mod,Ab) by
assigning Ψ(M) = (M ⊗ −). This functor is fully faithful, hence Mod-R is
equivalent to a full subcategory of (R-mod,Ab) (we actually proved that this
full subcategory is precisely that of right exact functors).

Lemma 2.3.13. A sequence 0 → A → B → C → 0 of right R-modules
is exact and pure in Mod-R if and only if the sequence 0 → (A ⊗ −) →
(B ⊗−)→ (C ⊗−)→ 0 is exact in (R-mod,Ab).

Proof. It follows from ([9], Theorem 1.27).

Proposition 2.3.14. An object F ∈ (R-mod,Ab) is injective if and only
if it is isomorphic to Ψ(M) = (M ⊗ −) for some pure-injective module M .
Hence the full subcategory of pure-injective modules in Mod-R is equivalent
to the full subcategory of injective objects of (R-mod,Ab).

Proof. Let F be an injective object of (R-mod,Ab). We claim that if X, Y
and Z are finitely presented left R-modules, and X → Y → Z → 0 is an
exact sequence in R-mod, then F (X)→ F (Y )→ F (Z)→ 0 is exact.
To prove this claim, let X, Y and Z be finitely presented left R-modules,
and let X → Y → Z → 0 be exact. For every N ∈ R-mod, the sequence
0→ Hom(Z,N)→ Hom(Y,N)→ Hom(X,N) is exact, that is the sequence
0 → Hom(Z,−) → Hom(Y,−) → Hom(X,−) is exact in (R-mod,Ab).
Since F is injective, the functor Nat(−, F ) is exact; hence the sequence
Nat(Hom(X,−), F ) → Nat(Hom(Y,−), F ) → Nat(Hom(Z,−), F ) → 0 is
exact. By Yoneda, it follows that F (X)→ F (Y )→ F (Z)→ 0 is exact.
By what was proved in Proposition 2.2.4 we know that F is a functor of the
form (F (R) ⊗ −). We call M = F (R), so that F = Ψ(M). We need to
prove that M is pure-injective. Let A be a pure submodule of B, ε : A ↪→ B
be the inclusion, and let f : A → M be a homomorphism. Then (ε ⊗ −) :
(A ⊗ −) → (B ⊗ −) is a monomorphism in (R-mod,Ab) by Lemma 2.3.13,
hence (f ⊗ −) : (A ⊗ −) → (M ⊗ −) extends to u : (B ⊗ −) → (M ⊗ −)
with u(ε ⊗ −) = (f ⊗ −). Since Ψ is fully faithful, there exists a unique
g : B →M such that u = (g ⊗−); in particular, (g ⊗ 1R)(ε⊗ 1R) = f ⊗ 1R,
that is gε = f , therefore M is pure-injective.
Conversely, let M be a pure-injective module; then (M ⊗−) ∈ (R-mod,Ab),
hence (M ⊗−) is a subobject of an injective object G ∈ (R-mod,Ab) (since
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2.3 Pure-injective modules

the functor category is a Grothendieck category). We know that there ex-
ists an E pure-injective such that G ' (E ⊗ −). Hence there exists a
monomorphism (M ⊗ −) → (E ⊗ −), which must be of the form (f ⊗ −)
with f : M → E. By Lemma 2.3.13, f is a pure monomorphism. But M
is pure-injective, so M is isomorphic to a direct summand of E due to b)
in Theorem 2.3.10, hence (M ⊗ −) is isomorphic to a direct summand of
G ' (E ⊗−). In particular, (M ⊗−) is injective.

2.3.1 Sigma-pure-injective modules

Definition 2.3.15. A right R-module A is said to be Σ-pure-injective (or
Σ-algebraically compact) if for any index set I the direct sum A(I) is a
pure-injective module A over R.

Theorem 2.3.16. The following assertions are equivalent for a right R-
module A:

a) A is Σ-pure-injective;

b) for every I, the submodule A(I) ⊆ AI is a direct summand of AI ;

c) the submodule A(N) ⊆ AN is a direct summand of AN;

d) A satisfies the descending chain condition on its finitely definable sub-
groups.

Proof. See ([9], Theorem 1.40).

Example 2.3.17. If R is an arbitrary ring, then:

• if A is a right R-module that is Artinian as a left End(A)-module, A
is Σ-pure-injective;

• if A is an Artinian right R-module, then it is Σ-pure-injective as a left
End(A)-module.

This happens because if SAR is an S-R-bimodule, every finitely definable
subgroup of AR is in fact an S-submodule of SA.

Corollary 2.3.18. Every pure submodule A of a Σ-pure-injective module B
is a direct summand of B.

Proof. See ([9], Corollary 1.42).
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2. The functor category

Corollary 2.3.19. If R is a ring, A is a Σ-pure-injective module, r ∈ R
such that the right multiplication by r is an injective endomorphism of A,
then this morphism is an automorphism of A (as an abelian group).

Proof. See ([9], Corollary 1.43).

Corollary 2.3.20. Let 0 6= e be an idempotent element in R (an arbitrary
ring). If A is a Σ-pure-injective module then A is a Σ-pure-injective eRe-
module.

Proof. See ([9], Corollary 1.44).
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Chapter 3

Moving torsion pairs through
Giraud subcategories

In this chapter, referring to [12], we will analyse the process of moving a
torsion pair in an abelian category C to a Giraud subcategory D of C, and
vice versa; the case of D being a co-Giraud subcategory of C will be studied
as well.
In the last section the techniques developed will be applied to the case of the
functor category (both in the covariant and contravariant case).

3.1 General setting

The aim of this section is to define a way to move torsion classes through
exact functors and subsequently through a Giraud (resp. co-Giraud) subcat-
egory D of C. From now on, C is an abelian category, D is a Giraud (resp.
co-Giraud) subcategory of C, i (resp. j) : D → C is the inclusion functor
which is right (resp. left) adjoint to the localization (resp. colocalization)
functor l (resp r): C → D. Moreover S denotes the kernel of the localization
(resp. colocalization) functor. Before studying the transfer of torsion pairs,
we need to characterize the class S⊥ in the Giraud case, and the class ⊥S
in the co-Giraud case. In the Giraud case, we denote by η : 1D → il (resp.
ε : li→ 1C) the unit (resp. the counit) of the adjunction 〈l, i〉 and by S⊥ the
class of object defined below:

S⊥ = {D ∈ D : (S,D) = 0, ∀S ∈ S}

It is easily seen that since i is fully faithful the counit of the adjunction is
an isomorphism of functors. In particular, for any D ∈ D, one has that
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3. Moving torsion pairs through Giraud subcategories

l(η(D)) = ε−1
l(D) is an isomorphism. One obtains that:

S⊥ = {D ∈ D : ηD : D → il(D) is a monomorphism}

Indeed, for any D ∈ D we have that Ker(ηD) ∈ S (since l(Ker(ηD)) =
Ker(l(ηD)) = 0 because l(ηD) is an isomorphism), hence given X ∈ S⊥ the
kernel map Ker(ηX) ↪→ X is zero and so ηX is a monomorphism.
On the other hand if we consider D ∈ D such that ηD is a monomorphism,
then for any object S in S we have (S,D) ⊆ (S, il(D)) ' (l(S), l(D)) = 0 so
D ∈ S⊥.
Dually, in the co-Giraud case, denoting by ε : jr → 1D the counit of the
adjunction 〈j, r〉, we have that (given S = Ker(r)):

⊥S = {D ∈ D : (D,S) = 0, ∀S ∈ S}

= {D ∈ D : εD : jr(D)→ D is an epimorphism}.

Since torsion classes (resp. torsion-free classes) are closed under coprod-
ucts and quotients (resp. products and subobjects), it is natural to use the
left (resp. right) adjoint functor l (resp. i) in order to move torsion classes
(resp. torsion-free classes) from D to C (resp. from C to D).

Lemma 3.1.1. Let D be an abelian category and T a torsion class on D.
Let l : C → D be a functor between abelian categories which respects arbitrary
colimits. Then the class

l←(T ) = {C ∈ C : l(C) ∈ T }

is a torsion class in D.

Proof. Clearly, the class l←(T ) is closed under taking coproducts and quo-
tients, because so is T and l respects arbitrary colimits. Let us show that
l←(T ) is closed under extensions. Consider a short exact sequence in C

0→ X1 → C → X2 → 0

with X1, X2 ∈ l←(T ). By applying the functor l to this sequence, one obtains
an exact sequence in D:

l(X1)→ l(C)→ l(X2)→ 0

since l is right exact; here l(X1), l(X2) ∈ T . Taking the kernel K of the
morphism l(C)→ l(X2), we see that K is an epimorphic image of l(X1), so
K ∈ T , therefore l(C) ∈ T as extension of objects in a torsion class. We
conclude that C ∈ l←(T ).
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Lemma 3.1.2. Let D be an abelian category and F a torsion-free class on
D. Let r : C → D be a functor between abelian categories which respects
arbitrary limits. Then the class

r←(F) = {C ∈ C : r(C) ∈ F}

is a torsion-free class in C.

The proof is straightforward since this lemma is the dual of the previous
one.

Corollary 3.1.3. Let C be an abelian category with a Giraud subcategory
D. Suppose that C is endowed with a torsion pair (X ,Y). Then the class
i←(Y) = {D ∈ D : i(D) ∈ Y} is a torsion-free class on D.

Proposition 3.1.4. Let C be an abelian category with a Giraud subcategory
D. Suppose that D is endowed with a torsion pair (T ,F). Then the classes
(T̂ , F̂):

T̂ = l←(T ) = {X ∈ C : l(X) ∈ T }

F̂ = l←(F) ∩ S⊥ = {Y ∈ C : l(Y ) ∈ F and Y ∈ S⊥}

define a torsion pair on C such that i(T ) ⊆ T̂ , i(F) ⊆ F̂ , l(T̂ ) = T and
l(F̂) = F .

Proof. For any T ∈ T we have li(T ) ' T , which proves that i(T ) ⊆ T̂ .
Moreover, given F ∈ F it is clear that i(F ) ∈ S⊥ and li(F ) ' F ∈ F , hence
i(F) ⊆ F̂ . We deduce that T = li(T ) ⊆ l(T̂ ) ⊆ T and F = li(F) ⊆ l(F̂) ⊆
F , which prove that l(T̂ ) = T and l(F̂) = F . Let us show that (T̂ , F̂) is a
torsion pair on C.
Given X ∈ T̂ and Y ∈ F̂ ,

(X, Y ) ↪→ (X, il(Y )) ' (l(X), l(Y )) = 0

where the first inclusion holds since Y ∈ F̂ ⊆ S⊥ and S⊥ = {D ∈ D : ηD :
D → il(D) is a monomorphism}. It remains to prove that for any C ∈ C
there exists a short exact sequence

0→ X → C → Y → 0

with X ∈ T̂ and Y ∈ F̂ .
Given C ∈ C there exists T ∈ T and F ∈ F such that the sequence

0→ T → l(C)→ F → 0
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is exact in D. Let us define X = i(T )×il(C) C; then we obtain a diagram

0 // i(T ) // il(C) // i(F )

0 // X //

OO

C //

ηC

OO

C/X //
?�

OO

0

with exact rows (the second by definition, while the first because i is left
exact) and the map C/X ↪→ i(F ) is a monomorphism since the first square
is Cartesian.
Let us apply the functor l to the diagram (remembering that it is exact,
hence it preserves pullbacks and exact sequences, and that li ' 1D):

0 // T // l(C) // F // 0

0 // l(X)

'

OO

// l(C) //

1l(C)

OO

l(C/X) //

'

OO

0

Here the first row coincides with the second, which is exact, l(X) ' T ×l(C)

l(C) ' T ∈ T , which proves that X ∈ T̂ and so l(C/X) ' F ∈ F , and the
third vertical arrow of the previous diagram proves that C/X ∈ S⊥, thus
C/X ∈ F̂ .

Proposition 3.1.5. Let C be an abelian category with a Giraud subcategory
D. Suppose that C is endowed with a torsion pair (X ,Y), and let

l(X ) = {T ∈ D : T ' l(X), ∃X ∈ X}

l(Y) = {F ∈ D : F ' l(Y ), ∃Y ∈ Y}

Then (l(X ), l(Y)) defines a torsion pair on C if and only if il(Y) ⊆ Y. In
this case, i←(Y) = l(Y).

Proof. Let us suppose that il(Y) ⊆ Y first. Then, since li ' 1D, one has
i←(Y) = l(Y) and by Corollary 3.1.3 this is a torsion-free class on D. Given
T ∈ l(X ) (i.e. T ' l(X), with X ∈ X ), and F ∈ i←(Y), one has (T, F ) =
(l(X), F ) ' (X, i(F )) = 0 since i(F ) ∈ Y . Now let D ∈ D. There exist
X ∈ X , Y ∈ Y and a short exact sequence in C:

0→ X → i(D)→ Y → 0.

Applying l to this sequence we get a short exact sequence in D:

0→ l(X)→ D → l(Y )→ 0
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where l(X) ∈ l(X ) and l(Y ) ∈ l(Y), which proves that (l(X ), l(Y)) is a
torsion pair on D.
Conversely, if (l(X ), l(Y)) is a torsion pair on C, then for every X ∈ X and
every Y ∈ Y one has 0 = (l(X), l(Y )) ' (X, il(Y )), therefore il(Y ) ∈ Y .

Theorem 3.1.6. Let C be an abelian category with a Giraud subcategory D.
There exists a bijective correspondence between torsion pairs (X ,Y) on C
satisfying il(Y) ⊆ Y ⊆ S⊥ and torsion pairs (T ,F) on D.

Proof. On one hand, taking a torsion pair (T ,F) on D, the torsion pair
(T̂ , F̂) satisfies il(F̂) ⊆ F̂ and one easily verifies that (l(T̂ ), l(F̂)) = (T ,F).
On the other hand, given (X ,Y) a torsion pair on C satisfying il(Y) ⊆ Y ⊆
S⊥, its corresponding torsion pair on D is (l(X ), l(Y)) for which it is clear

that ˆl(Y) = l←(l(Y)) ∩ S⊥ = Y and so (X ,Y) = ( ˆl(X ), ˆl(Y)).

Dually one obtains:

Theorem 3.1.7. Let C be an abelian category with a co-Giraud subcategory
D. There exists a bijective correspondence between torsion pairs (X ,Y) on
C satisfying jr(X ) ⊆ X ⊆⊥ S and torsion pairs (T ,F) on D.

3.2 The case of functor categories

In Section 3.1 a condition to have a one-to-one correspondence between
torsion pairs on a category and on a Giraud (or co-Giraud) subcategory of
its was established. Our next aim is to specialize this condition to the case
of the functor category of a ring, namely that studied in Chapter 2.

Let us consider first the category ((R-mod)op,Ab) of contravariant addi-
tive functors from the category of finitely presented left modules over a ring
R to the category of abelian groups.
In Chapter 2 we proved (see Corollary 2.1.12) that Mod-R is a Giraud sub-
category of ((R-mod)op,Ab). In particular, we have an adjunction 〈−R, i〉
where −R is the R-valuation functor, and i is the inclusion of Mod-R as the
subcategory of representable functors in ((R-mod)op,Ab).
Looking at what was proved in Theorem 3.1.6, the condition for torsion pairs
of the form (X ,Y) in ((R-mod)op,Ab) to be in a bijective correspondence with
those of Mod-R is the following:

i(−R)(Y) ⊆ Y ⊆ S⊥
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3. Moving torsion pairs through Giraud subcategories

where S = {F ∈ ((R-mod)op,Ab) : F (R) = 0}.
Our goal is to characterize the torsion pairs (X ,Y) in ((R-mod)op,Ab) such
that the condition above is satisfied.

Lemma 3.2.1. Let us consider the abelian category ((R-mod)op,Ab). Then
S⊥ = {F ∈ ((R-mod)op,Ab) : F sends epimorphisms to monomorphisms}.

Proof. (⊆) Let F ∈ S⊥; then the F -component of the unit of the adjunction
is a monomorphism η(F ) : F → i(F (R)) due to the characterization of
S⊥ in the general case at the beginning of the previous section. Then
consider M ∈ R-mod, and a presentation Rn → Rm → M → 0 of
M . We obtain the following commutative diagram by applying F and
i(F (R)) = Hom(−, F (R)) to the presentation of M :

F (M) //
� _

��

F (Rm) //

'
��

F (Rn)

'
��

0 // Hom(M,F (R)) // Hom(Rm, F (R)) // Hom(Rn, F (R))

where the second row is exact; in particular, looking at the left square
of the diagram, by commutativity one gets that F (M)→ F (Rm) must
be a monomorphism.
In the general case, for L, M ∈ R-mod such that L → M → 0 is
exact, one may find two epimorphisms (since L and M are finitely
presented) of the form Rm → M → 0 and Rl → L → 0. By choosing
n = max(l,m), one gets the diagram

Rn

��

Rn

��

L

��

//M

��

// 0

0 0

Applying F to the diagram and using the same argument as above, one
gets the diagram:

F (Rn) F (Rn)

F (M)
?�

OO

// F (L)
?�

OO

by which it is clear that 0→ F (M)→ F (L) is exact.
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(⊇) Let F be a functor which sends epimorphisms to monomorphisms.
Then for every M ∈ R-mod and presentation Rn → Rm →M → 0 one
gets the commutative diagram where the second row is exact:

F (M) �
�

//

��

F (Rm) //

'
��

F (Rn)

'
��

0 // Hom(M,F (R)) // Hom(Rm, F (R)) // Hom(Rn, F (R))

which proves that 0 → F (M) → Hom(M,F (R)) is exact, therefore
F ∈ S⊥.

The following corollary follows easily from Lemma 3.2.1.

Corollary 3.2.2. Let us consider the functor category ((R-mod)op,Ab) and
a torsion pair (X ,Y) on it. Then Y ⊆ S⊥ if and only if every functor in Y
sends epimorphisms to monomorphisms.

Let us consider now the category ((R-mod),Ab) of covariant additive
functors from the category of finitely presented left R-modules to the cate-
gory of abelian groups. In Chapter 2 we proved that the category Mod-R is
a co-Giraud subcategory of ((R-mod),Ab). In particular, we have an adjunc-
tion 〈j,−R〉 where −R is the usual R-valuation functor and j is the tensor
embedding, described in Section 2.2. In Theorem 3.1.7 a condition to have a
bijective correspondence between torsion pairs (X ,Y) on ((R-mod),Ab) and
those on Mod-R was found, and it translates in our case in the following way:

j(−R)(X ) ⊆ X ⊆⊥ S

where S = {F ∈ ((R-mod),Ab) : F (R) = 0}.
Again, our aim is to characterize the torsion pairs (X ,Y) on ((R-mod),Ab)
that satisfy this condition. The next lemma is essentially dual to Lemma 3.2.1.

Lemma 3.2.3. Let us consider the abelian category ((R-mod),Ab). Then
⊥S = {F ∈ ((R-mod),Ab) : F sends epimorphisms to epimorphisms}.

Proof. (⊆) Let F be a functor in ⊥S. Then the F -component of the counit
of the adjunction is an epimorphism ε(F ) : j(F (R)) → F due to the
characterization of ⊥S in the general case at the beginning of the
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previous section. Then consider M ∈ R-mod, and a presentation
Rn → Rm → M → 0 of M . We obtain the following commutative
diagram by applying F and j(F (R)) = − ⊗ F (R) to the presentation
of M :

F (Rn) // F (Rm) // F (M)

Rn ⊗ F (R) //

'

OO

Rm ⊗ F (R) //

'

OO

M ⊗ F (R) //

OOOO

0

in which the second row is exact; using the same argument employed
in Lemma 3.2.1, one obtains that F (Rm) → M → 0 is exact. In the
general case, for L, M ∈ R-mod such that L → M → 0 is exact, one
may find a commutative diagram as below:

Rn

��

Rn

��

L

��

//M

��

// 0

0 0

Applying F to the diagram and using the same argument as above, one
gets the diagram:

F (Rn)

����

F (Rn)

����

F (L) // F (M)

by which it is clear that F (L)→ F (M)→ 0 is exact.

(⊇) Let F be a functor which send epimorphisms to epimorphisms. Then
for every M ∈ R-mod and presentation Rn → Rm → M → 0 one gets
the commutative diagram where the second row is exact:

F (Rn) // F (Rm) // F (M) // 0

Rn ⊗ F (R) //

'

OO

Rm ⊗ F (R) //

'

OO

M ⊗ F (R) //

OO

0

which proves that M ⊗F (R)→ F (M)→ 0 is exact, therefore F ∈⊥ S.

The following corollary follows easily from Lemma 3.2.3.
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Corollary 3.2.4. Let us consider the functor category ((R-mod),Ab) and a
torsion pair (X ,Y) on it. Then X ⊆⊥ S if and only if every functor in X
sends epimorphisms to epimorphisms.

3.2.1 The inclusion il(Y) ⊆ Y and further developments

In Corollary 3.2.2 and Corollary 3.2.4 a characterization of the inclusion
Y ⊆ S⊥ and of X ⊆⊥ S, which appear in Theorem 3.1.6 and Theorem 3.1.7,
has been given. In order to have a complete and detailed framework of the
translation of the formulas given in the aforementioned theorems, we should
now focus upon the study of the inclusion il(Y) ⊆ Y (in the contravariant
case; that of the covariant case would follow easily).
In writing this thesis, much effort has been made to obtain a complete char-
acterization of the inclusion, with no considerable result; only few facts have
been understood, and all of them carry only the information that any torsion-
free class Y in ((R-modop),Ab) that satisfies il(Y) ⊆ Y should not have some
properties, while none of this facts gives any useful hint of the desirable prop-
erties that Y should satisfy.
In the following lines some of these facts are shown, hoping that they may
establish a basis for further developments of the study of the transfer of tor-
sion pairs from the functor category to the underlying module category and
vice versa.

Fact 3.2.5. We can not require that, for any Y ∈ Y, il(Y ) ⊆ Y . This would
imply that il(Y) ⊆ Y, but since the condition we are studying is also Y ⊆ S⊥,
this implies that the unit of the adjunction 〈l, i〉 is a monomorphism, so that
Y ⊆ il(Y ). Then we would get Y ' il(Y ), and this would allow us to consider
only trivial torsion pairs in ((R-modop),Ab).

Fact 3.2.6. Let us consider the short exact sequence:

0→ Y
η(Y )−−→ il(Y )→ Coker(η(Y ))→ 0

where Y ∈ Y and η(Y ) is the unit of the adjunction 〈l, i〉.
A way to obtain that il(Y ) belongs to Y may be to assume that Coker(η(Y ))
belongs to Y, in order to have an extension. But we know that the cokernel
of the unit of the adjunction belongs to the kernel of the left adjoint functor,
which is S; we know as well that Y ⊆ S⊥, so we would get that Coker(η(Y )) ∈
S ∩ S⊥ = 0, obtaining again an isomorphism Y ' il(Y ).

Lemma 3.2.7. In our hypothesis, il(Y) ⊆ S⊥ for any torsion-free class Y
in ((R-modop),Ab).
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Proof. Let us consider F ∈ Y ; then we have to prove that il(F ) = (−, F (R)) ∈
S⊥. Let us fix an S ∈ S; then we get

Nat(S, (−, F (R)) = Nat(S, il(F )) ' Hom(l(S), l(F )) = Hom(S(R), F (R)) = 0

using the adjunction isomorphisms and the fact that S ∈ Ker(l). Since the
choice of S was arbitrary, we can conclude that il(F ) ∈ S⊥.

Anyway, a simple example of the transfer of torsion pair may be given in
the most trivial case:

Example 3.2.8. Let us consider the trivial torsion pair (0,Mod-R) in Mod-R.
By the correspondence proved in Section 3.1, the corresponding torsion pair
in ((R-modop),Ab) is (S,S⊥), because if we call T = 0 and F = Mod-R in
Mod-R, then

X := l←(T ) = {X ∈ ((R-modop),Ab) : l(X) = X(R) = 0} = S

and also
Y := l←(F) ∩ S⊥ =

= {Y ∈ ((R-modop),Ab) : l(Y ) = Y (R) ∈ Mod-R and Y ∈ S⊥} =

= ((R-modop),Ab) ∩ S⊥ = S⊥.

Furthermore the torsion class just found is unique, since Y verifies the condi-
tion il(Y) ⊆ Y ⊆ S⊥, where the inclusion on the right is actually an equality,
and that on the left is trivial because of Lemma 3.2.7.

The study of the transfer of torsion pairs from the category ((R-modop),Ab)
to the underlying module category and vice versa may be used as a tool to
understand tilting and cotilting torsion pairs in module categories. First, let
us give a definition:

Definition 3.2.9. Let C be a category. A torsion pair (T ,F) on C is tilting
if any object C ∈ C is subobject of some T ∈ T . The torsion pair is cotilting
if any object C ∈ C is quotient of some object F ∈ F .

A first step further in the study of the transfer of torsion pairs may be
to study whether the property of being (co)tilting is preserved or not in the
transfer process. While writing this thesis, only one direction of the transfer
has been proved to keep the property of being (co)tilting for torsion pairs,
and is stated in next proposition:
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Proposition 3.2.10. Let us consider the category C = ((R-modop),Ab). Let
(X ,Y) be a tilting torsion pair in C; then the torsion pair (l(X ), l(Y)) is
tilting in Mod-R.

Proof. Let us consider a module M in Mod-R, and let us consider first
the case of (X ,Y) being a tilting torsion pair. Let us consider the functor
(−,M) ∈ C; since (X ,Y) is tilting, there exists X ∈ X and a monomorphism
η : (−,M) ↪→ X. In particular, η(R) : (R,M)→ X(R) must be a monomor-
phism, so that (since (R,M) ' M) M is a subobject of X(R) ∈ l(X ).
Then any M ∈ Mod-R is subobject of an element of l(X ), and therefore
(l(X ), l(Y)) is a tilting torsion pair in Mod-R. The proof for the cotilting
case can be easily derived by this one.

The other direction of the transfer has yet to be understood; possibly
the transfer of a tilting torsion pair of Mod-R to ((R-modop),Ab) will not
guarantee a lifting to a tilting torsion pair, and further conditions should be
considered.

73





Bibliography

[1] Bo Stenstrom, Rings of quotients - An introduction to methods of ring
theory, Springer-Verlag 1975

[2] N. Popescu, Abelian categories with applications to rings and modules,
London, Academic Press Inc., 1973

[3] P. Gabriel, Des catégories abéliennes, Bulletin de la Société
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