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Abstract

Multi-human parsing is an important and challenging task in vision-

based human understanding, grouping together human body parts

segmentation and human instance segmentation.

Although recent deep-learning-based techniques achieve notable re-

sults on multi-human parsing datasets, many challenges still remain

unresolved. One of them consists in accurately segmenting human

bodies in images in which people are very close to each other or overlap.

In such cases, multi-human parsing techniques struggle to properly

segment human instances and to associate detected body parts to the

correct person. This is confirmed by an in-depth analysis provided in

this thesis on current state-of-the-art networks for multi-human pars-

ing, which highlights significant issues in presence of severe occlusions

between people in the image. To solve this problem, this thesis pro-

poses to exploit multi-view information, based on the intuition that

people occluded in an image taken from a particular point of view

could be easily separated if framed from a different angle.

Motivated by the absence of a suitable multi-view dataset in the liter-

ature, this work proposes to exploit the human instance segmentation

task to improve multi-human parsing on strong occlusions. A novel

learning framework is introduced to take advantage of human instance

segmentation as auxiliary information to guide the multi-human pars-

ing task. Network learning is driven by human segmentation loss func-

tions evaluated on single-views, aiming at improving foreground hu-

man instance discrimination, and multi-view instance and body parts

prediction consistency, to impose coherent instance and semantic pre-

dictions across multiple views of the same scene. The multi-view loss

term exploits 3D knowledge to separate overlapping bodies and to

provide sparse supervision to human parsing.

To validate the approach, a human instance annotation strategy is

used to retrieve human segmentation annotations from multi-view

RGB+D data and 3D human skeletons. In the experimental vali-

dation, such dataset has been used to fine-tune the state-of-the-art

AIParsing network, by leveraging its instance-level annotations and

multi-view data. The final model has been then evaluated on a subset

of images from CIHP dataset with consistent overlaps between people,



showing the effectiveness of the proposed approach, with an improve-

ment in terms of body part-aware mean Intersection-over-Union up to

4.25% with respect to the original AIParsing network.
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Chapter 1

Introduction

In recent years, human perception has gained relevant attention due to its fun-

damental role in many real-life applications, such as human-robot collaboration,

virtual reality, video surveillance, social media and fashion editing. Multi-human

parsing is a main computer vision task, allowing for rich human analysis in the

wild.

1.1 Multi-human parsing

Human parsing, or human body parts segmentation, can be defined as the task of

partitioning humans in an image into their semantic body parts (e.g., head, torso,

arms and legs). Semantic classes of interest can sometimes also include clothing

(e.g., shirt, pants, dress) and accessories. While human parsing approaches focus

on segmenting body parts of a single person, in many real-world scenarios, the

presence of multiple people is far more common. This kind of methods, however,

can neither count the number of people in the image, nor can they determine to

which person in the image each detected part belongs to. For this reason, recent

efforts have been devoted to the development of techniques that aim at combining

body part segmentation and human instance discrimination. This is known as

multi-human parsing, as illustrated in Figure 1.1.

Multi-Human Parsing (MHP), or instance-level human parsing, aims at seg-

menting human body parts while simultaneously associating each part to the

human instance (i.e., human body) such part belongs to. Multi-human parsing

plays a critical role in many human-related tasks, in the fields of social media [1],

fashion [2], human-robot collaboration [3] and human-centric vision [4, 5]. Sev-

eral works, such as [6, 7], exploit human parsing to accurately detect clothing
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Figure 1.1: Multi-human parsing (c) can be considered as the combination of human instance dis-
crimination (a) and human parsing (b) tasks.

and accessories, in order to develop fashion image applications, such as virtual

clothes try-on. In the field of human-robot collaboration, body parts segmenta-

tion can be exploited to obtain a rich 3D semantic representation of people in

the scene, useful to implement robust human collision avoidance, as described

in [3]. Human parsing can also provide very useful cues and features for im-

proved human pose estimation [8, 9], human action recognition, as in [5], and

person re-identification [10,11].

1.1.1 Challenges

Despite current multi-human parsing methods manage to achieve prominent re-

sults, benefiting from deep-learning advances, this task still poses many chal-

lenges. Since multi-human parsing is of interest for a very diverse range of down-

stream applications, in recent years, many models and datasets have been in-

troduced. However, the vast majority of them is highly specific for the target

domain. One of the main challenges of multi-human parsing is, indeed, rep-

resented by the lack of a common set of semantic classes of interest, resulting

in a significant discrepancy in label granularity among different datasets. For

example, the PASCAL-Person-Part (PPP) dataset [12] for instance-level human

parsing is annotated considering 6 semantic classes (e.g., head, torso, upper/lower

arms and upper/lower legs). This kind of annotations is typically used for appli-

cations which do not require prior knowledge about clothes or accessories, such

as human-robot collaboration. Nevertheless, models designed for fashion pur-

poses, for example, are interested in much more fine-grained categories. Crowd

Instance-level Human Parsing (CIHP) [13] provides ground-truth pixel-level su-

pervision for 19 different semantic classes, including 7 categories for body parts

(i.e., hair, face, torso-skin, left/right arm, left/right leg) and 12 categories for

2



Figure 1.2: Example of multi-human parsing on images with overlapping human instances. RGB
image (first row). Human parsing (second row). Human instance segmentation (third
row).

clothes and accessories (i.e. hat, glove, sunglasses, upper clothes, etc.). Learn-

ing Vision Multi-Human Parsing (LV-MHP-v2.0) [14] is annotated with an even

larger number of different parts, considering more than 50 different labels. Since

classes of interest are not homogeneous between datasets, heavily restricts gener-

alization of multi-human parsing models to different scenarios.

Another important issue is represented by intra-class variance, especially

when considered classes include clothes and accessories. Objects belonging to

the same semantic category (e.g. upper clothes) typically have very different ap-

pearances, with respect to color, texture and shape. Changes in illumination,

viewpoint and resolution make correct classification even more challenging. On

top of this, typical issues related to human perception, such as human body self-

occlusions, unconstrained people pose and appearance, must all be taken into

account. Having to deal with a varying number of people in each image, more-

over, makes things even more complicated.

One of the most significant challenges of multi-human parsing, however, is

represented by occlusions. Object occlusions have the effect of truncating human

figures, resulting in incomplete human body structure. Occlusions between hu-
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mans are far more challenging to solve, as shown in Figure 1.2. When occlusions

create huge discontinuities in human body structure, current MHP methods fail to

accurately detect human body parts, often producing very incomplete segmenta-

tion masks. In presence of multiple overlapping people, moreover, discriminating

between different human instances represents a huge issue, as it becomes very

difficult to understand to which person a given detected part belongs to. As il-

lustrated in Figure 1.2, produced parsing maps are full of holes, many portions of

the body are completely missed and several body parts are matched to the wrong

person.

1.2 Contribution

As discussed in the previous subsection, despite recent progress and efforts in the

field of multi-human parsing, several challenges still remain unresolved. In par-

ticular, this thesis focuses on addressing instance-level human parsing challenges

in scenarios in which people are strongly overlapping. An in-depth analysis on

current MHP methods highlights how heavy occlusions between people lead to

severe deterioration in instance-level human parsing performance. In particular,

when human bodies are largely overlapping, significant body portions are not seg-

mented, leading to incomplete masks, and many body parts are matched to the

wrong person, as it is difficult to distinguish between different human instances.

This thesis proposes to mitigate such issues exploiting information provided

by multi-view systems. Multiple points of view on the same scene, in fact, provide

different views on the same entity. This redundancy can be leveraged to retrieve

the information lost because of occlusions. However, the lack of a multi-view

dataset framing overlapping human instances with suitable instance-level body

parts annotations, creates the necessity of producing an appropriate dataset to

enable the development of the new multi-view approach. In order to do this,

this work proposes an annotation strategy to produce accurate instance-level

human segmentation masks from multi-view RGB+D video sequences, annotated

with 3D body skeletons. The annotations produced do not include body part

semantic information as very time-consuming to obtain. Furthermore, body part

annotations are usually hand-made and thus, not very accurate. Considering the

focus on overlapping people, in particular, this procedure is applied on the CMU

Panoptic Studio dataset [15], providing images rich of overlapping people.

To exploit the available multi-view instance-level annotations, which are coarser
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with respect to typical supervision used for the MHP task, this thesis introduces a

novel learning framework taking advantage of instance-level human segmentation

as auxiliary task to enhance multi-human parsing in presence of strong occlusions

between people in the image. Specifically, considering a multi-human parsing net-

work and a target MHP dataset, both 2D and 3D human instance information

from the novel dataset are exploited to enhance human instance segmentation

and outline, as well as instance identity discrimination. In particular, a set of

single-view human segmentation loss functions exploit 2D instance information

to improve human segmentation quality in case of occlusions. A multi-view loss

function improves human instance disambiguation between largely overlapped

people in the image, exploiting 3D instance-level ground-truth to explicitly en-

force human instance consistency between multiple views.

1.3 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, the state-of-

the-art about multi-human parsing is revised and analyzed, highlighting the main

approaches adopted. In order to confirm and analyse the effects that scenarios

presenting human overlaps have on multi-human parsing accuracy, in Chapter 3

an in-depth study on different multi-human parsing architectures is conducted. In

Chapter 4 an annotation procedure to retrieve human instance-level segmentation

annotations from RGB+D data is presented. Chapter 5 outlines the novel learn-

ing framework introduced, proposing to exploit human instance segmentation as

auxiliary task to enhance multi-human parsing in presence of strong occlusions

between people. Chapter 6 and 7 present the experimental results obtained val-

idating the proposed approach. Chapter 8 concludes this thesis, summarizing

contribution and illustrating future research directions.
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Chapter 2

Related works

Multi-Human Parsing (MHP) finds many applications in the fields of multimedia

and computer vision, enabling fine-grained, pixel-wise human analysis. It is of

strategic importance in many human-related tasks, such as human action recog-

nition [5], human-robot collaboration [3], human pose estimation [4,8,16], person

re-identification [17,18] and fashion image manipulation [2, 6, 7].

Multi-human parsing can be considered as the combination of two different

computer vision tasks: human instance segmentation and human parsing. The

former consists in distinguishing and localizing human bodies in an image, while

the latter partitions each human body into accurate semantic body parts, such

as head, torso, arms and legs. Semantic classes of interest sometimes include also

clothing and accessories.

This chapter is organized as follows. The first part will introduce the tasks of

instance segmentation and human parsing, to give the reader a better understand-

ing of the task at hand. In the second part of the chapter, the state-of-the-art

of multi-human parsing will be revised and analysed, presenting different deep-

learning-based approaches proposed in the literature. Finally, the most popular

multi-human parsing datasets will be introduced and described.

2.1 Instance segmentation

Instance segmentation is the task of identifying all occurrences of a certain ob-

ject of interest in an image, while producing an accurate segmentation mask for

each different instance of that object [19]. It therefore combines two different

perception tasks, namely object detection, that classifies and localizes objects

in the image, and semantic segmentation, that predicts a semantic category for
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each pixel. For instance segmentation, each object region extracted by the detec-

tion are given as input to semantic segmentation, that produces accurate masks

for each detected object. Current instance segmentation approaches are entirely

based on deep-learning techniques. Proposed methods can be divided into two

main families: region proposal-based methods and fully convolutional methods.

Most current multi-human parsing techniques build on instance segmentation

architectures belonging to one of these two categories.

2.1.1 Region proposal-based instance segmentation

Region proposal-based instance segmentation approaches produce segmentation

masks for candidate object regions extracted from the image. These techniques

usually build on existing object detectors, such as Faster R-CNN [20]. A promi-

nent example of this class of approaches is represented by Mask R-CNN [19], a

pioneer work proposed in 2017. Despite not being the current state-of-the-art,

Mask R-CNN is still very popular as a strong and reliable starting point for in-

stance segmentation applications, such as multi-human parsing. Mask R-CNN

extends a well-known object detection framework, Faster R-CNN [20], adding a

new branch based on Fully Convolutional Networks (FCNs) [21] to predict accu-

rate segmentation masks for each detection proposal. The overall architecture of

Mask R-CNN for instance segmentation is depicted in Figure 2.1. The Faster R-

CNN detector [20] works in two stages. The first stage is called Region Proposal

Network (RPN) and predicts bounding boxes for candidate objects. These are

known as Regions of Interest (RoIs). The second stage, coming from precursor

Fast R-CNN [22], extracts features from objects proposals to perform box classi-

fication and regression. Adding to this, Mask R-CNN augments the second stage

with a novel branch, producing binary segmentation masks, one for each object

category, for each region. To adapt the object detection framework to semantic

segmentation, the Mask R-CNN architecture proposes RoIAlign, a simple layer

used to preserve and retrieve the spatial location of features extracted from object

proposals. This is essential to pixel-to-pixel alignment between network inputs

and the outputs.

For good quality features extraction, many instance segmentation techniques

exploit a combination of convolutional architectures, such as ResNet [23], and

Feature Pyramid Networks (FPNs) [24], shown in Figure 2.2. A feature pyramind

network essentially builds a pyramid of feature levels from a single-scale input.

This allows to extract features for a given RoI from different levels of the pyramid,

8



Figure 2.1: Overview of Mask R-CNN framework for instance segmentation [19].

Figure 2.2: Overview of Feature Pyramid Network (FPN) architecture, for multi-scale feature maps
generation [24].

according to region scale. This leads to high quality feature maps, of utmost

importance for accurate bounding boxes and masks generation.

An evolution of Mask R-CNN is represented by Path Aggregation Network

(PANet) [25], shown in Figure 2.3. While lower levels in feature pyramid networks

are very useful to identify and describe large scale object instances, the path from

such feature levels to top features is rather long, resulting in the loss of accurate

information. Furthermore, the assignment of candidate regions having different

scales to corresponding feature pyramid levels, follows heuristics. To mitigate

these issues, PANet enhances the feature pyramid with accurate localization in-

formation, propagating features coming from lower, higher resolution layers up

Figure 2.3: Overview of Path Aggregation Network (PANet) architecture for instance segmenta-
tion [25]. (a) Feature Pyramid Network (FPN) backbone. (b) Bottom-up path augmen-
tation. (c) Adaptive feature pooling. (d) Box prediction branch. (e) Fully-connected
fusion.
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to the topmost feature levels. To avoid arbitrarily assigning regions of interest

to feature scales, an adaptive feature pooling strategy is introduced, consisting

in aggregating features coming from all pyramid levels to produce a rich feature

map for each region proposal, as shown in Figure 2.3.

2.1.2 Fully-convolutional instance segmentation

In contrast with the instance segmentation approaches presented so far, these

methods do not rely on a region proposal stage, but make use of fully convolu-

tional architectures. These techniques do not build on object detectors, like Mask

R-CNN [19] or PANet [25], but perform instance segmentation in a single stage.

For this reason, they typically achieve high inference speed, independently from

the number of people in the image, which makes such approaches very interesting

to multi-human parsing methods.

A prominent example of fully convolutional solutions for the instance seg-

mentation task is represented by YOLACT, You Only Look At CoefficienTs [26].

YOLACT is able to achieve real-time inference by decomposing the instance seg-

mentation problem into two parallel subtasks: the generation of a dictionary of

prototype masks over the entire image and the prediction of mask coefficients for

each instance, to produce a linear combination of the generated prototypes. The

overall architecture of YOLACT is shown in Figure 2.4.

Other fully-convolutional instance segmentation methods are based on fully-

convolutional object detection, provided by frameworks such as FCOS [27]. FCOS

(Fully-Convolutional One-Stage) is a popular anchor-free object detection frame-

work. Anchor-based detection, despite being very widely adopted [28, 29], has

several drawbacks. This kind of techniques generate a series of box candidates

depending on predefined anchor box sizes, aspect ratios and scales. All these

Figure 2.4: Overview of the architecture of YOLACT instance segmentation network [26]. Blue
regions in the prototype maps indicate low confidence values, while yellow regions indi-
cate high confidence values.
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hyperparameters, however, need accurate tuning, which restrains the generaliza-

tion of such models to new datasets and detection tasks. Moreover, anchor-based

object detectors typically exploit architectures that are not based on pixel-level

predictions, which is inconsistent with what is required by segmentation tasks.

In contrast, anchor-free frameworks, such as FCOS, do not require many hyper-

parameters and solve object detection in a per-pixel prediction fashion, which

makes them very suitable to be used as starting point for the development of

instance segmentation applications. Given this, FCOS-based instance segmenta-

tion is recently being exploited by successful multi-human parsing approaches,

such as [30].

2.2 Human Parsing

Human Parsing, or body parts semantic segmentation, is a fine-grained segmen-

tation task which consists in partitioning a human body image into its semantic

body parts, such as head, torso, arms and legs [31]. With respect to typical se-

mantic segmentation tasks, human parsing presents several additional challenges.

In many applications, predictions are required to be extremely fine-grained, dif-

ferentiating between left and right parts of the body and distinguishing between

several types of garments and accessories. In addition to this, most of the cate-

gories considered by this task suffer from a rather large intra-class variance. A

semantic class such as ‘upper clothes’, for instance, aggregates pieces of clothing

that can be very different in color, texture and shape. Further challenges are rep-

resented by variations in illumination and viewpoint, low resolution images and

unconstrained human poses, that can easily compromise the accurate distinction

between right and left body parts.

Human parsing models can be distinguished considering how they model the

relationship between human body parts, in order to extract meaningful features.

Graph Pyramid Mutual Learning (Grapy-ML), introduced by He et al. [32], for

instance, propose to take advantage of the attention mechanism. Self-attention is

exploited to model the connections between body part nodes in order to address

human parsing at different levels of granularity, as shown in Figure 2.5.

Other approaches, such as [31] take advantage of auxiliary tasks in order to

better model the relationship among body parts. Edge information, for exam-

ple, provides useful cues about body parts boundaries and significantly enhances

the ability of the model in discriminating between adjacent parts. Following
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Figure 2.5: Multi-granularity lexical pyramid representation of the human body considered by
Grapy-ML human parsing model [32].

Figure 2.6: Overall architecture of the Context Embedding with Edge Perceiving framework for
human parsing [31]. The framework consists of three key modules: 1) high resolution
embedding module 2) global context embedding module, 3) edge perceiving module.

this intuition, Ruan et al. proposes a Context Embedding with Edge Perceiving

framework, known as CE2P [31], shown in Figure 2.6. The network architecture

essentially consists of three key modules. At first, a high-resolution context em-

bedding module enlarges the feature map and preserves fine-grained details about

the human body that needs to be segmented. Then, a global context embedding

module encodes global information via multi-scale features. Finally, an edge per-

ceiving module takes into account the contours of the body parts to produce

accurate results.

Given the level of granularity expected from human parsing predictions, as

mentioned at the beginning of this subsection, annotations for this task are re-

quired to be very precise, making ground-truth generation a rather expensive

process. Moreover, most current approaches are entirely based on deep learning

techniques, which notoriously require a lot of annotations for effective supervised
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Figure 2.7: Overview of the Self-Correction for Human Parsing (SCHP) framework [33].

Figure 2.8: Examples of SCHP self-correction mechanism on ground truth annotations [33].

training. For these reasons, human parsing architectures often have to deal with

noisy ground truth annotations, which can be detrimental to overall model per-

formance. Trying to solve this issue, Li et al. build upon CE2P [31] and propose

a purification strategy named Self Correction for Human Parsing (SCHP) [33],

shown in Figure 2.7, which progressively refines ground-truth labels, making them

more reliable for supervision as training goes on. At each training iteration, the

current estimated model is aggregated with the former optimal one and used to

produce more reliable masks, as depicted in Figure 2.8 for few sample images.

2.3 Instance-level Human Parsing

While human parsing methods focus on segmenting human body parts of a single

human instance, in many real-world scenarios, the presence of multiple people

in an image is far more common. Instance-level human parsing techniques aim

at segmenting human body parts while also associating each part to the human

instance it belongs to. Multi-human parsing is indeed a difficult task, combining

challenges typical of single human parsing, such as self-occlusions, variance in
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people appearance and pose, with struggles brought by the fact of having to

deal with a varying number of people, potentially occluding and overlapping

with one another. Multi-human parsing methods proposed in the literature can

be distinguished into two main classes: bottom-up and top-down approaches.

Current methods are based on deep-learning techniques, requiring huge datasets

to be trained. In the following subsection, the most popular datasets will be

introduced, while the remainder of this section will be devoted to presenting the

main works on bottom-up and top-down multi-human parsing.

2.3.1 Datasets

Instance-level human parsing models are typically trained and evaluated on two

popular datasets, Crowd Instance-level Human Parsing (CIHP) [13] and Learning

Vision Multi-Human Parsing (LV-MHP-v2.0) [14].

CIHP Crowd Instance-level Human Parsing (CIHP) [13] is the largest publicly

available dataset for multi-human parsing in the wild. It includes a total of

38,280 images, annotated considering instance-level identification and 19 human

semantic parts, including body parts (e.g., face, torso, left/right arm, etc.), but

also clothing and accessories (e.g., coat, dress, hat, glove, etc.). Images have been

collected from sources such as Google and Bing research engines, and frame people

appearing in different poses, viewpoints and in a wide range of resolutions. The

dataset is split into three parts. The training set includes 28,280 images, while

the validation and the test set contain 5,000 images each. Figure 2.9 shows some

examples of images and annotations extracted from the CIHP dataset, while

Figure 2.10 illustrates dataset statistics about the number of people appearing in

the images and about the data distribution of the 19 annotated semantic parts

labels.

LV-MHP-v2.0 Learning Vision Multi-Human Parsing (LV-MHP-v2.0) [14] con-

tains 25,403 images, annotated considering 58 fine-grained semantic categories,

including body parts, clothing and accessories. The training set includes 15,403

images, while two splits of 5,000 images each are reserved for validation and test-

ing, respectively. The dataset frames a minimum of 2, up to a maximum of 26,

people per image and captures real-world scenes from various viewpoints, with a

wide range of poses, interactions and backgrounds. Figure 2.11 illustrates some

examples of images and ground-truth masks extracted from the dataset.
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Figure 2.9: Examples from the large-scale “Crowd Instance-level Human Parsing (CIHP)” Multi-
Human Parsing dataset. Images are presented in the first row. Semantic part seg-
mentation and instance-level human parsing are shown in the second and third row
respectively [13].

Figure 2.10: On the left, statistics on the number of persons in one image and on the right the data
distribution on the 19 semantic part labels in the CIHP dataset [13].

Figure 2.11: Examples from the large-scale “Learning Vision Multi-Human Parsing (LV-MHP-
v2.0)” Multi-Human Parsing dataset [14].

2.3.2 Bottom-up approaches

Bottom-up approaches primarily consider multi-human parsing as a fine-grained

semantic segmentation task, whose objective is to predict pixel-level body part

categories. Subsequently, classified pixels are grouped into different human in-

stances. This can be done following different strategies, such as edge-aware clus-

tering, as in [13] or mapping body parts to body joints, as in [8]. These type of
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methods usually show better performances in terms of body parts segmentation,

but have the tendency to confuse adjacent and overlapping human instances.

Part Grouping Network (PGN) [13], shown in Figure 2.12, is the first work

that defines instance-level human parsing as the composition of two twinned sub-

tasks: part-level pixel grouping and instance-level part grouping. Part-level pixel

grouping consists in assigning to each pixel in the image the corresponding body

part label, achieved using human parsing techniques. Instance-level part grouping

matches the segmented semantic parts to the human instances they belong to.

In this case, this is done by exploiting human instance boundary cues given by

human body edges detection. Body parts contained by human edges, indeed

belong to that instance.

Zhou et al. in [8] propose a different part-grouping strategy, shown in Fig-

ure 2.13. The proposed network aims at solving the instance-level human parsing

task at multiple levels of granularity, jointly learning multi-human pose estima-

tion and multi-human body parts segmentation. Adopting a dense-to-sparse pro-

jection field, dense body parts predictions are mapped to sparse body keypoints,

casting the part-grouping problem to a multi-person body joint composition task.

Semantic parts are associated to the human body whose joints are the closest,

effectively fusing knowledge about human pose and pixel-level part semantics.

Transformer-based approaches

Among bottom-up approaches, transformer-based methods exploit the latest ad-

vances in the deep-learning field to enhance multi-human parsing. Yang et al.

in [34] proposes Mask2Former for Parsing (M2FP), a new transformer-based base-

Figure 2.12: Overall architecture of Part Grouping Network (PGN) [13].
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Figure 2.13: Overview of Differentiable Multi-Granularity Human Representation Learning for
Instance-Aware Human Semantic Parsing [8].

line for multi-human parsing, built on the Mask2Former architecture [35], pro-

posed for universal image segmentation. An overview of the architecture is illus-

trated in Figure 2.14. Mask2Former for Parsing takes advantage of the human

body hierarchy and of the powerful sequence encoding capabilities of transformer-

based methods to model hierarchical relationships between body parts and hu-

mans instances. In particular, it makes use of three different kinds of queries:

background queries, part queries and human queries. The self-attention mecha-

nism is, therefore, used to learn relationships between body parts, between human

instances, between body parts and human instances and between parts, human

instances and background. M2FP can be applied to both human parsing and

multi-human parsing tasks, yielding very good performances in terms of both

accuracy and inference speed.

Figure 2.14: Overview of the architecture of the Mask2Former for Parsing (M2FP) network [34].
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2.3.3 Top-down approaches

With respect to bottom-up methods, top-down multi-human parsing techniques

first locate people in the image and then independently segment body parts for

each human instance. In this category, the literature differentiates between two-

stage top-down and one-stage top-down approaches.

Two-stage top-down approaches

Two-stage top-down approaches to multi-human parsing start from a well-trained

object detector, typically Mask R-CNN [19], and apply a robust single human

parsing method to the detected human bodies. This category of methods mainly

focus on the body part segmentation logic and rely on state-of-the-art techniques

for the detection stage. Approaches adopting this kind of architecture exhibit

higher accuracy in the instance-level human parsing task, at the expense of in-

ference speed and flexibility, which represent the bottleneck for this family of

methods.

Ruan et al. in [31] show that the proposed single human parsing network

CE2P, presented in Section 2.2, can be easily adapted to the multi-human scenario

exploiting Mask R-CNN to locate different people in the image (M-CE2P). Then,

instance-level body parts segmentation is obtained by combining the result of

two parallel branches, devoted to global and local parsing, respectively. Global

parsing consists in applying the CE2P network to the image as a whole, to retrieve

global context information, and the output of this step is fused with the result

from the local parsing branch, that applies the human parsing network to human

patches extracted by the object detector.

In a similar fashion, different human parsing techniques such as [36, 37], as

well as those presented in Section 2.2 can all be extended to the multi-human

case combining the human parsing network with a well-trained object detector.

One-stage top-down approaches

Similarly to two-stage methods, one-stage top-down multi-human parsing archi-

tectures locate human instances first and then parse each body in a fine-grained

manner. However, in contrast to the former approaches, for one-stage top-down

methods detection and human parsing sub-networks are trained together. This

kind of networks are very flexible and can be easily adapted to different down-

stream tasks by adding new modules. In terms of accuracy and inference speed
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Figure 2.15: Overview of Parsing R-CNN network for multi-human parsing [16].

they represent a good compromise between bottom-up approaches and two-stage

methods and, for this reason, they are currently the mainstream research direction

for instance-level human parsing [38].

One of the first successful attempts at employing this kind of architecture

comes from Yang et al. [16]. Parsing R-CNN aims at improving instance-level

human analysis working on feature quality. An overview of the Parsing R-CNN

architecture is shown in Figure 2.15. To enhance the semantic information pro-

vided to the network, Parsing R-CNN adopts a proposals separation sampling

strategy. In FPN [24] and Mask R-CNN [19] large regions of interest will be

assigned to coarser-resolution feature maps, while small regions will be assigned

to feature maps having finer resolution. However, since human instances usually

occupy a large portion of images, this solution is not optimal for instance-level hu-

man parsing, as most operations would be performed on feature maps that do not

retain many instance details. To overcome this issue, Yang et al. propose in [16]

to extract features used by the parsing branch from the finest-resolution feature

map only, while keeping the standard region assignment rule for the bounding box

detection branch. At the same time, to preserve as many details as possible, the

architecture introduces a Geometric and Context Encoding module (GCE) to en-

large the receptive field and capture relationships between body parts, combining

Atrous Spatial Pyramid Pooling (ASPP) [39] and non-local operators [40].

Yang et al. build upon this work and present Renovating Parsing R-CNN

(RP R-CNN) [38], shown in Figure 2.16. In this work, feature semantics is

boosted even further introducing a Global Semantic Enhanced Feature Pyra-

mid Network (GSE-FPN). Starting from the popular feature pyramid network

(FPN) [24], generated multi-scale features are up-sampled to the same scale and

fused, strengthening and propagating the effect of global information on extracted

features, benefiting human parsing accuracy. RP R-CNN also introduces a novel
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Figure 2.16: Overview of RP R-CNN network architecture [38].

parsing re-scoring network, in order to measure the quality of produced instance

parsing maps, using the computed score to easily filter out poor results.

While the majority of available approaches employ anchor-based detectors

for human bounding box regression, Zhang et al. recently proposed Anchor-

free Instance-level Human Parsing (AIParsing) [30], which exploits the fully-

convolutional anchor-free detection head FCOS [27], to localize human instances.

The overall architecture of the network is shown in Figure 2.17. Given an input

image, a combination of a CNN-based backbone (i.e., ResNet [23]) and a feature

pyramid network [24] is used to extract multi-scale features. These are fed to

the anchor-free detection head, which predicts a bounding box for each human

instance. The final instance parsing maps are then the result of the application

of an edge-guided parsing head to the detected boxes.

AIParsing is currently the state-of-the-art among one-stage top-down ap-

Figure 2.17: Overall architecture of Anchor-free Instance-level Human Parsing network [30].
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proaches and has been considered as starting point for the development of the

approach proposed in this thesis. This network will be now described more in

detail, to give some concepts useful to illustrate the devised multi-human parsing

method in Chapter 5. AIParsing is mainly composed of two sub-networks: an

anchor-free human detection head and an edge-guided parsing head, with edge

information used to distinguish adjacent human body parts. A refinement head

is also added to enhance the final parsing results. The loss of the detection head

is defined as follows:

Ldet = Lcls + Lreg + Lcenter (2.1)

where Lcls is the classification loss, Lreg is the box offset regression loss and Lcenter

is the loss on box centerness. Lcls is the focal loss [41], Lreg is the bounding box

Intersection over Union loss, as defined in [42] and Lcenter is the binary cross en-

tropy loss. The edge-guided parsing head takes advantage of edges extracted from

the image to distinguish adjacent body parts and human instances, particularly

useful when dealing with overlapping human bodies. The edge-guided parsing

head, shown in Figure 2.17, is the combination of three main parts. A detail-

preserving component has the goal of extracting high quality features to retain

important human appearance information, very useful for instance parsing. Fea-

tures corresponding to detected instances, used to predict the final segmentation,

are extracted from the lowest layer of the feature pyramid, to exploit high res-

olution information. On the outputs of this detail-preserving feature extraction

step, the human-part context encoding is used to capture information about con-

text, of foremost importance for semantic segmentation tasks. This is achieved

by employing the Pyramidical Gather-Excite Context module (PGEC) [36], ex-

tracting multi-scale information, in combination with non-local operators [40],

to capture spatial relations and provide information about the relative position

between different parts of the body. The edge-guided parsing head is trained with

the following multi-task loss function:

Lpred = αLparsing + βLedge (2.2)

where α and β are both set to 2. Lparsing is the standard cross-entropy loss on

body parts segmentation. Ledge looks at body parts boundaries and it is the

weighted cross-entropy loss, defined as follows:

Ledge = −ω0

∑
i∈Y−

log((pi(yi = 0))− ω1

∑
i∈Y+

log((pi(yi = 1)) (2.3)
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where Y+ and Y− are the ground-truth pixels belonging to edges or non-edges, ω0

is equal to |Y+|
|Y | , ω1 is

|Y−|
|Y | and pi indicates the probability of the i-th pixel. The re-

finement head is used to improve both human instance and parsing map accuracy.

To discard imprecise human detection results, a re-scoring sub-network computes

the mean Intersection over Union of the predicted parsing map within the de-

tected bounding box, assigning a score to each detection. Poor scoring boxes are

discarded. Simultaneously, the quality of parsing maps is optimized, exploiting

the Lovász-Softmax loss, directly optimizing the Intersection over Union mea-

sure [43]. The loss of the refinement head is:

Lrefine = θLmiou + γLmiou−score (2.4)

where γ is equal to 1 and θ is equal to 2. Lmiou is the mIoU loss and Lmiou−score

is the mIoU score for box quality. The total loss Ltotal used to train AIParsing

is the sum of the detection head loss Ldet, the prediction head loss Lpred and the

refinement head loss Lrefine. The network has been evaluated on two popular

multi-human parsing datasets, CIHP [13] and LV-MHP-v2.0 [14]. The network

is trained using Stochastic Gradient Descent (SGD) for about 75 epochs with

batches of 8 images. The initial learning rate is set to 0.005 and decreased by

a factor of 10 after 50 and after 65 epochs. The weight decay is set to 0.0001

and the momentum is equal to 0.9. ResNet-101 is used as backbone for feature

extraction, initialized with ImageNet pre-trained weights [44]. On both datasets,

AIParsing achieves state-of-the-art performances, topping other one-stage top-

down alternatives.
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Chapter 3

Analysis of multi-human parsing

methods on overlapping human

instances

One of the main challenges that instance-level human parsing methods need to

tackle is represented by overlapping bodies. Despite being generally good at

segmenting people occluded by objects [34], current MHP techniques struggle to

correctly detect and segment human instances when they overlap with each other.

As described in Section 2.3, there exist two main types of multi-human parsing

architectures, bottom-up and top-down approaches, both affected by this issue.

Bottom-up approaches consider MHP primarily as a body parts segmentation

task, and then associate the segmented parts to the human instance they belong

to. This last stage is the most problematic when in presence of overlapping

people, as occlusions cause ambiguity and the model struggles in matching each

part with the correct person. Differently, top-down approaches first detect human

instances, regressing a bounding box for each different human body, and then

parse extracted regions. As a consequence, in case of occlusions, both detection

and parsing are affected. During the detection stage, the model might fail in

detecting bodies which are largely occluded, leading to missed instances in the

final prediction. During the parsing stage, the problem is different. The model

focuses on single extracted boxes that, when people are overlapping, will contain

body parts which do not belong to the target instance. The issue, in this case,

becomes identifying the main person in the region and considering the others as

part of the background.

Given these premises, this chapter presents a study on the effect of overlap-
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ping human instances on the performance of three different multi-human parsing

architectures, introduced in Section 2.3: two top-down approaches, namely RP R-

CNN [38] and AIParsing [30], and bottom-up approach Mask2Former for Parsing

(M2FP). Considering task-specific evaluation metrics, described in the following

section, these techniques will be evaluated under different occlusions scenarios,

to investigate how the amount of overlap between people in the image impacts

on the performances.

3.1 Evaluation metrics for instance-level human

parsing

To evaluate multi-human parsing methods, two types of metrics are usually con-

sidered: global-level metrics and instance-level metrics [30]. Global-level met-

rics measure the quality of body parts segmentation. These are consistent with

those typically used for the semantic segmentation task. They include pixel ac-

curacy, mean pixel accuracy and mean Intersection-over-Union. Pixel accuracy

(pix acc) is the ratio between the number of pixels whose category was correctly

predicted and the total number of pixels in the image. In other words, it rep-

resents the percentage of adequately classified pixels. Even though this seems a

reasonable evaluation metric for semantic segmentation, it can sometimes provide

misleading results, especially if the classes of interest take up a small portion of

the image with respect to background, as often happens for human parsing and

multi-human parsing tasks. A simple improvement on this metric is represented

by mean pixel accuracy (mean acc), that computes pixel accuracy for each cat-

egory and then considers the average of the obtained values. The most relevant

among global-level evaluation metrics is, however, mean Intersection-over-Union

(mIoU). Intersection-over-Union, or Jaccard index, quantifies the percentage of

overlap between the ground-truth segmentation mask and the predicted output.

It calculates the intersection and the union of two sets: the ground-truth and the

predicted segmentation, and then considers the ratio between these two quanti-

ties. Mean IoU simply computes the Intersection-over-Union for each class and

then takes the mean of such values.

Instance-level evaluation metrics measure the performance of actual instance-

level human parsing. Average Precision based on Part (AP P ) evaluates part

segmentation considering also human instances. In particular, for each instance,

a prediction is regarded as correct (i.e., a true positive) if the mean Intersection-
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over-Union between ground-truth masks and predicted parts is higher than a

certain threshold. At this point, the Average Precision is given by the area under

the Precision-Recall curve, where Precision is the ratio between correct and total

predictions, whereas Recall represents the ratio between correct predictions and

ground-truth. AP P
50 considers the threshold for Intersection-over-Union to be

0.5, AP P
vol is the mean of the results obtained using various thresholds, usually

from 0.1 to 0.9 with a 0.1 step. Probability of Correct Parts (PCP) gives a

measure of the human parsing quality within the human instance. For each true

positive human body, it considers as correct predictions those semantic categories,

excluding background, having IoU greater than a threshold, typically 0.5. PCP

for the given instance is the ratio between the number of correctly parsed semantic

categories and the total number of categories of that same person, according to

ground-truth.

3.2 Impact of overlapping human instances on

multi-human parsing performance

To investigate the impact of overlapping human instances on instance-level human

parsing, various models will be tested on popular MHP datasets, namely Crowd

Instance-level Human Parsing (CIHP) [13] and Learning Vision Multi-Human

Parsing (LV-MHP-v2.0) [14]. Specifically, different subsets including images pre-

senting different degrees of overlap severity will be considered. For each dataset,

the validation split is divided into four sets, depending on the degree of overlap

between people in the images. The degree of overlap, referred to as DoO, for

a given image is defined as the Intersection-over-Union between human bodies,

computed considering ground-truth bounding boxes. The subsets considered for

the analysis are as follows:

• images with degree of overlap greater or equal than 0.2 (DoO 20);

• images with degree of overlap greater or equal than 0.4 (DoO 40);

• images with degree of overlap greater or equal than 0.6 (DoO 60);

• images with degree of overlap greater or equal than 0.8 (DoO 80).

RP R-CNN [38] and AIParsing [30] are used to represent the class of top-down

approaches, with the former relying on classic anchor-based detection techniques
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N. Images
Validation set 5000
DoO 20 2550
DoO 40 1158
DoO 60 318
DoO 80 55

Table 3.1: Composition of subsets from CIHP validation set for different values of degree of overlaps.

and the latter being based on anchor-free detector FCOS [27], as described in

Section 2.3. For bottom-up approaches, Mask2Former for Parsing (M2FP) [34] is

selected. Each model is tested on the identified subsets of images and performance

is evaluated considering mean Intersection over Union as global-level metric and

Average Precision based on Parts (AP P
vol) as instance-level metric.

3.2.1 Analysis on CIHP dataset

For CIHP, the subsets considered are as illustrated in Table 3.1. Evaluation

results for RP R-CNN, AIParsing and M2FP are shown in Table 3.3. Considering

the variation of the mean Intersection-over-Union over the different sets, it can be

observed that the quality of human parsing monotonically decreases as the degree

of overlap becomes larger. This means that the more people in the image occlude

each other, the more the models struggle to accurately segment human body

parts. In particular, it is interesting to notice that state-of-the-art AIParsing

performs strictly worse than RP R-CNN, for which the degradation in human

parsing quality is slower. Mask2Former for Parsing performs a lot better than the

top-down approaches on the whole validation set and, reasonably, the advantage

is preserved even in case of occlusions between people in the image. However,

even in this case, occlusions are detrimental for the model performance, as in the

case of images with 80% of instance overlap, where performance drops by 16.1%.

Moving to instance-level performance evaluation, the trend in the results is

similar, showing that instance-level human parsing quality decreases as overlaps

become more severe. Comparing top-down approaches, the slope with which

performances go down is very similar, therefore, in this case, AIParsing, that

surpasses RP R-CNN on the whole validation set, works slightly better when

encountering overlaps. Looking at the bottom-up approach M2FP, the decrease

in instance-level segmentation quality is present, but is not as prominent, proving

that for this class of methods, overlaps still represent a challenge but not as critical

as it is for top-down techniques.
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N. Images
Validation set 5000
DoO 20 2353
DoO 40 1306
DoO 60 530
DoO 80 165

Table 3.2: Composition of subsets from LV-MHP-v2.0 validation set for different values of degree
of overlaps.

3.2.2 Analysis on LV-MHP-v2.0 dataset

For the LV-MHP-v2.0 dataset, the composition of the subsets considered is de-

scribed in Table 3.2. Evaluation results for the different models are shown in

Table 3.5.

As this dataset is extremely challenging, presenting annotations for more

than 50 different semantic body parts, global human parsing is generally very

difficult. For this reason, examining how the mean Intersection-over-Union varies

according to the degree of overlap, the detrimental effect given by occlusions is less

evident with respect to the previous dataset. However, considering instance-level

metrics, the negative impact of the overlaps becomes very visible. In particular,

consistently to what can be observed for CIHP, top-down methods struggle more

and more as occlusions get more severe, while the impact for the bottom-up

approach is less significant. When considering images having DoO equal to 80,

for instance, Average Precision for AIParsing drops by 18.8%, while only by 7.1%

for M2FP.

Analyses conducted on CIHP and LV-MHP-v2.0 highlight that strong over-

laps between human instances represent a huge problem for current multi-human

parsing approaches. How to effectively deal with occlusions between people ap-

pears to be still very unresolved and should be urgently addressed. In partic-

ular, comparing results for the evaluated models, it is clear that this challenge

prominently affects top-down architectures, bringing destructive effects on per-

formances. Motivated by this, in the remainder of this thesis, a novel approach

for multi-human parsing is proposed, in order to improve multi-human parsing

in presence of strong occlusions between people in the image.
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RP R-CNN AIParsing M2FP
mIoU ∆ AP P

vol ∆ mIoU ∆ AP P
vol ∆ mIoU ∆ AP P

vol ∆
Val 60.10 - 59.50 - 60.77 - 60.50 - 68.01 - 62.09 -
D20 58.54 -2.6 56.69 -4.7 58.19 -4.3 57.73 -4.6 66.50 -2.2 59.21 -4.6
D40 57.32 -4.6 54.60 -8.2 55.42 -8.8 56.00 -7.4 64.72 -4.8 58.60 -5.6
D60 55.35 -7.9 49.08 -17.5 50.82 -16.4 51.56 -14.8 63.83 -6.1 57.06 -8.1
D80 46.89 -22.0 48.70 -18.2 46.81 -23.0 50.36 -16.8 57.04 -16.1 57.53 -7.3

Table 3.3: Results for RP R-CNN, AIParsing and M2FP on CIHP instance overlap subsets. The
first row (Val) reports values for the whole CIHP validation set. Degree of overlap subsets
names have been shortened for visualization purposes (e.g., D20 stands for DoO 20, etc.).
Values in ∆ columns indicate variations and are expressed as percentages. Percentage
symbols are omitted for visualization purposes.

RP R-CNN AIParsing M2FP
mIoU ∆ AP P

vol ∆ mIoU ∆ AP P
vol ∆ mIoU ∆ AP P

vol ∆
Val 38.50 - 46.80 - 40.40 - 47.40 - 44.02 - 51.00 -
D20 36.20 -6.0 43.25 -7.6 38.42 -4.9 44.61 -5.9 42.32 -3.9 46.83 -8.2
D40 36.99 -3.9 40.52 -13.4 38.78 -4.0 43.27 -8.7 42.37 -2.9 47.58 -6.7
D60 34.40 -10.6 33.07 -29.3 35.65 -11.8 38.48 -18.8 42.83 -2.7 48.13 -5.6
D80 35.25 -8.4 29.80 -36.3 35.19 -12.9 36.54 -22.9 40.51 -8.0 47.38 -7.1

Table 3.5: Results for RP R-CNN, AIParsing and M2FP on LV-MHP-v2.0 instance overlap subsets.
The first row (Val) reports values for the whole CIHP validation set. Degree of over-
lap subsets names have been shortened for visualization purposes (e.g., D20 stands for
DoO 20, etc.). Values in ∆ columns indicate variations and are expressed as percentages.
Percentage symbols are omitted for visualization purposes.
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Chapter 4

CMU Kinoptic-HIS dataset

In order to improve instance-level human parsing performance when dealing with

overlapping people in the image, this thesis proposes to exploit multi-view in-

formation. In presence of strong occlusions between human bodies, in fact, the

biggest challenge for current MHP models, and in particular for top-down ap-

proaches, is represented by instance discrimination. Therefore, information pro-

vided by multiple views, that frame the same scene from different viewpoints,

can be very useful. However, multi-view multi-human datasets with instance-

level human segmentation annotations are currently lacking in the literature.

Datasets that include multiple people framed from multiple viewpoints are typ-

ically designed for 3D human pose estimation and provide only 3D skeletons as

ground-truth [45–47]. This brings the necessity of creating an appropriate dataset

to enable the development of the new multi-view approach.

This work proposes a technique to produce accurate human instance segmen-

tation annotations from multi-view RGB+D images and 3D human skeletons.

In particular, here such method will be applied to the CMU Panoptic Studio

dataset. This collects multi-view videos of multiple people interacting and en-

gaging in various activities, providing images rich of overlapping people, which

makes it very suitable for the problem dealt with in this thesis.

After an overview on the CMU Panoptic Studio dataset, this chapter describes

the devised technique used to recover human instance segmentation annotations

from RGB+D images and 3D body skeletons. The ground-truth obtained is very

accurate with respect to typical hand-made segmentation annotations.
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Figure 4.1: Example scenes from CMU Panoptic Studio dataset [15]. In the image also the repro-
jection of people 3D skeletons.

4.1 CMU Panoptic Studio dataset

CMU Panoptic Studio dataset [15] is a massive multi-view dataset for motion

and social interaction capture. It frames different groups of people engaging in

various social activities and games (e.g., Ultimatum, Mafia, Haggling, etc.), as

well as single people dancing and playing instruments. Some examples of views

from the dataset are shown in Figure 4.1. The dataset has been acquired using a

multi-camera capture system composed of 480 VGA cameras, 31 HD cameras and

10 Kinect v2 RGB+D sensors, distributed over the surface planes of a geodesic

sphere, shown in Figure 4.2. Each camera is calibrated with respect to a common

reference frame placed in the center of the dome floor, known as Panoptic world

reference frame. All calibration data is provided by the dataset.

The dome structure is used to host subjects interactions and to acquire video

sequences. The dataset includes more than 198 minutes of videos, amounting

to a total of about 154 million frames. The subset of data provided by Kinects

is also known as CMU Kinoptic Studio dataset. From this, given the provided

calibration parameters, scene point clouds can be generated. This is also referred

to as CMU Panoptic Studio PtCloud DB. Figure 4.3 illustrates an example of

point cloud generated by merging synchronized depth data for each view.
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Figure 4.2: CMU Panoptic Studio capture system [15], distributed over the surface of a geodesic
sphere having diameter 5.49 meters. VGA cameras are shown as red circles, HD cameras
as blue circles and Kinects as cyan rectangles.

4.2 CMU Kinoptic-HIS dataset

This thesis proposes a technique to retrieve accurate human instance segmenta-

tion ground-truth from a sequence of multi-view RGB+D videos, annotated with

3D body skeletons. In this case, such method is applied to video sequences

from the CMU Kinoptic Studio dataset [15]. This new collection of data is

denominated CMU Kinoptic-HIS, HIS standing for Human Instance Segmenta-

tion. Given the purpose of this dataset, that should include many scenes includ-

ing overlapping human instances, only videos framing multiple people are con-

sidered, in particular: 160224 haggling1, 160226 haggling1, 170407 haggling a1,

170407 haggling a2, 170407 haggling a3 and 160422 ultimatum1. The annota-

tion pipeline will be now described in detail.

4.2.1 Instance-level annotation strategy

The designed annotation technique takes advantage of point clouds and 3D body

skeletons to produce human instance segmentation masks from multi-view video

sequences. Given video sequences from Kinects sensors, the first step consists in

extracting multi-view RGB images. After this, scene point clouds are generated

by merging the depth maps captured by the Kinects at the same point in time,

that is, in this case, within a time interval of about 15 milliseconds.

In order to illustrate the annotation technique, it is convenient to introduce
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Figure 4.3: Example of point cloud generated from CMU Kinoptic Studio dataset [47].

some details related to CMU Panoptic Studio point clouds and 3D skeletons. Gen-

erated point clouds are defined in the so-called Panoptic world reference frame,

that is, a reference frame placed in the center of the Panoptic dome (Figure 4.2),

on the floor. Kinects’ RGB cameras reference frames are referred to as Kinect

color reference frames. To transform the point cloud from the world reference

frame into each Kinect color reference frame, two passages need to be performed.

First of all, the scale between the two frames needs to be adjusted: 3D coordi-

nates in Panoptic world are defined in centimeters, while in Kinect color frame

they are defined in meters. Therefore, there exists a scale factor equal to 0.001

that needs to be applied to 3D points. After this, to get the point cloud in the

image reference frame, it is sufficient to apply the rototranslation from Panop-

tic world reference frame to Kinect color reference frame, defined here as the

matrix T color
panoptic. Ground truth 3D body skeletons provided by the dataset are

conveniently defined in Panoptic world reference frame as well. 3D body pose is

represented by 19 joints, according to the COCO19 standard, shown in Figure 4.4,

defined by the COCO-WholeBody human pose estimation dataset [48].

Point cloud segmentation

In order to obtain instance-level discrimination and instance-indentity consis-

tency between multi-view images, the designed method takes advantage of point

clouds and 3D body skeletons. For each point cloud, human bodies are segmented

considering the distance between each point and the closest 3D body joint. The

closest joint determines the identity of the human instance each point belongs to.

In order to make computations more efficient, for each point, the closest body
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Figure 4.4: COCO19
Keypoint
mapping.

Figure 4.5: Example of segmented and filtered point
cloud generated from CMU Kinoptic Stu-
dio dataset.

is found by looking in a KDTree [49] of 3D joint coordinates. During this step,

the point cloud is also cleaned from noisy and excess points, discarding those

whose distance from the closest joint is larger than a threshold value. For a gen-

eral body joint, the threshold has been empirically set to 50 centimeters. For

hands body joints, this threshold is reduced to 15 centimeters, in order to remove

3D points belonging to hand-held objects, that are not of interest. Given that

point clouds generated from depth maps fusion are typically noisy, a statistical

outlier removal technique is applied, to obtain smoother volumes. In particu-

lar, the statistical_outlier_removal function from the 3D data processing

library Open3D 1, is employed. This function removes points whose distance to

their neighbors is too large if compared with the mean distance computed over

the whole point cloud. In this case, the neighbor distance for a given point is

computed as the average point-to-point distance considering 200 neighbors. Such

value was empirically adjusted considering a trade-off between effective outlier

removal and excessive point cloud sparseness. The threshold value on point dis-

tances depends on the standard deviation of the average distances across the point

cloud. Lastly, an input factor determines how aggressive outlier removal will be.

Here such value is set to 0.95, to avoid leaving the point cloud too sparse. The

result of this first phase is a set of filtered point clouds, that have been segmented

and annotated with instance identity. An example is shown in Figure 4.5.

1http://www.open3d.org/
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Figure 4.6: Example of result after point cloud projection.

Point cloud projection

As result of our point cloud segmentation step, instance annotations of the people

in the scene are obtained for each point cloud. The simplest way to obtain

human segmentation masks would be projecting 3D points on each image plane

using camera calibration parameters. However, due to the fact that point clouds

generated from CMU Kinoptic Studio sequences are quite sparse and noisy, this

does not yield satisfactory results. As it can be observed in Figure 4.6, the

obtained projections are very sparse, especially for instances close to the camera,

there are a lot of holes and contours are not smooth. To solve this issue, this

work proposes to retrieve some seed points from sparse projections and use them

as segmentation prompts for Segment Anything Model (SAM), a transformer-

based promptable segmentation system with zero-shot generalization to unknown

categories [50]. Given one or more prompts (e.g., points, bounding boxes) hinting

at the object in the image that needs to be segmented, SAM is able to produce

good quality masks without any additional training or fine-tuning. The proposed

annotation approach essentially consists in retrieving good seed points for each

projected human instance and using them as prompts for SAM, in order to obtain

accurate segmentation masks.

The procedure will be now described in detail. For simplicity, from now on,

the annotation pipeline will be described considering a single point cloud and

an arbitrary RGB camera. Given the segmented point cloud, each 3D body

is transformed from the world reference frame to the camera reference frame,
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considering the scale factor and T color
panoptic. After this, points are projected onto

the image plane, using intrinsic camera calibration parameters. Seed points for

segmentation will be extracted from these body projections. However, since the

images will probably frame overlapping human instances, only the actual set of

visible, unoccluded points must be considered, in order to avoid using as seeds

points that fall onto wrong bodies, leading to inaccurate masks. In particular, if a

projected point overlaps with the projection of a body that is closer to the camera

(i.e., has smaller depth), it means that the point is occluded and thus, it must be

discarded. Considering visible, unoccluded projected points, the goal is to obtain

seeds that are evenly scattered over the area that needs to be segmented. To

do this, exploiting the K-means algorithm [51], points are clustered and cluster’s

centers used as seeds. To avoid using too much prompts to segment a very small

area of the image, as in the case of occluded humans, the number of clusters

computed for each instance depends on the number of points available. If the

number of visible points for a body is less or equal to 100, 2 clusters will be

computed. If the number of visible points is less or equal to 10000, 4 clusters will

be computed. Otherwise, the number of extracted clusters will be 8. These values

has been set empirically, after several trials. Using clusters centers as guidance

for SAM allows to have seeds evenly scattered over the human instance that

needs to be segmented. However there exist some challenging situations in which

generated point clouds are extremely sparse in the legs area, producing sparse or

truncated body projections, that entirely miss leg points. Experiments show that,

especially when segmenting strongly occluded bodies, the absence of seeds for legs

leads to incomplete masks. To solve this problem, the set of prompts points is

enhanced adding projections for 3D skeletal joints corresponding to knees and

ankles (i.e. joints number 10, 11, 13 and 14 in Figure 4.4).

Mask generation

Given the seeds extracted for each instance in the image (i.e., clusters centers and

skeletal joints for legs), these are used as prompts for Segment Anything Model,

in order to produce masks that will be used as annotations. The steps used

by SAM to generate segmentation masks from seed points is shown in Figure

4.7. Despite being a very powerful segmentation model, even when providing

appropriate seed points, SAM struggles in accurately segmenting bodies that are

largely occluded and tends to group in the output mask portions of overlapping

instances. For this reason, this technique proposes to generate masks ordering
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instances by descending depth, that is, starting from the body that is the farthest

away from the camera (i.e., with a larger depth value) and moving on to closer

ones. Doing this, occluded bodies will be segmented first and, if generated masks

include regions of bodies closer to the camera, these will be overwritten. After the

segmentation mask for a given instance is produced, it is fed again to the SAM

network for refinement. During this step, seed points for all the other human

instances in the image are provided as well, labelled as belonging to background.

This has the effect of helping SAM identifying the actual target human that needs

to be segmented and leads to more accurate masks. Figure 4.8 depicts some

sample annotation masks produced using the proposed strategy on the CMU

Kinoptic Studio dataset. As it can be observed, human instance segmentation

masks show good quality even when bodies are largely occluded.
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Figure 4.7: Segment Anything Model segmentation steps. RGB image (a). Seed points (b). Mask
generated from seed points (c). Seed points used for refinement, red points indicate
regions that should be considered as background (d). Final refined mask (e).

Figure 4.8: Example of annotation masks generated for CMU Kinoptic Studio dataset.
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Chapter 5

Multi-view instance-guided

multi-human parsing

This thesis focuses on enhancing multi-human parsing when dealing with strong

occlusions between people. Information from multiple views is very strategic in

these scenarios: people that appear as overlapped in an image, will appear as

separated if framed from different viewpoints. Following this intuition, this work

proposes to exploit multi-view information to improve segmentation results in

case of occlusions between people. Taking inspiration from Caliskan et al. [52],

that leverage multi-view human shape consistency to guide 3D human body re-

construction, multi-view human instance segmentation ground-truth is exploited

to guide the multi-human parsing task, improving how it recovers human bod-

ies when heavily occluded. This is done according to a novel learning framework

which aims at enhancing the performance of state-of-the-art multi-human parsing

techniques, injecting 2D and 3D instance-level information about human bodies.

Consider for example a multi-human parsing architecture that has already been

trained on a specific multi-human parsing dataset (e.g., CIHP [13]). The pro-

posed method consists in performing a fine-tuning procedure using a multi-view

dataset with human instance segmentation ground-truth, as the one produced in

Chapter 4. This provides a weak supervision for multi-human parsing, as the

exploited annotations represent the original task at much coarser granularity.

Nevertheless, typical multi-human parsing annotations include both instance dis-

crimination and body parts labels, while human instance segmentation provides

distinction between background and foreground only. The fine-tuning is guided

by two classes of loss functions:

• single-view loss functions on human instance segmentation, which leverage
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2D human instance information to encourage the network to segment whole

bodies and to effectively identify the target instance when severely occluded;

• multi-view loss function for instance identity and body part prediction con-

sistency, that exploits knowledge about 3D human instances to promote

instance identity disambiguation and to enforce consistent body parts pre-

dictions between different views of the same scene.

The learning framework exploiting single-view loss functions only will be referred

to as Instance-Guided Multiple Human Parsing (IG-MHP), while the approach

including both single-view and multi-view loss contributions will be referred to

as Multi-View Instance-Guided Multi-Human Parsing (MVIG-MHP). In the fol-

lowing sections, details about each method will reported and described.

5.1 Instance-guided multi-human parsing

Considering a multi-human parsing architecture trained on a multi-human parsing

dataset (e.g., CIHP), the obtained model is fine-tuned exploiting an auxiliary

human instance segmentation dataset, such as the CMU Kinoptic-HIS dataset

described in Section 5.2. Human instance supervision is used to guide multi-

human parsing with the aim of enhancing human instance recovery on challenging

images in which bodies are heavily overlapped.

After the fine-tuning, the focus is again on the main task and the network

is evaluated on the target multi-human parsing dataset. For this reason, special

attention has to be paid to the fine-tuning procedure: learning on a new dataset

using weaker body part-agnostic supervision could disrupt important knowledge

about accurate parts prediction. For example, the CIHP dataset includes a wide

range of images framing people appearing in different poses, viewpoints, scales

and resolutions, whereas images from the CMU Kinoptic-HIS dataset have all

been taken in the same place and have very similar backgrounds. People pose

does not change widely throughout the dataset and the same groups of people

appear in many images. Moreover, some CIHP semantic categories such as glove,

dress or skirt are not represented. Trying to avoid the detrimental effects that

this domain gap could have on multi-human parsing accuracy, the proposed fine-

tuning procedure does not affect the whole network. Taking into consideration

top-down architectures (e.g., AIParsing) weights related to feature backbone and

detection head should be kept frozen and not modified. Leaving the backbone
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unconstrained, in fact, would most certainly lead to features alterations, which

would then translate in poorer performances when going back to CIHP for eval-

uation. Similarly, given the different degree of variety in people scale and pose

between the datasets, the detection head would suffer strong modifications try-

ing to adapt to the new data, which could be disruptive when dealing with the

original dataset again.

5.1.1 Single-view loss functions for human instance seg-

mentation

To take advantage of the human instance segmentation ground-truth as weak

supervision for multi-human parsing, the fine-tuning needs to be guided by proper

losses. The proposed loss functions take inspiration from the ones proposed for

AIParsing architecture in [30].

Parsing predictions for largely occluded instances tend to be partial and in-

clude a lot of holes. Human instance segmentation is, thus, exploited as auxiliary

task to improve the ability of the multi-human parsing network to recover com-

plete and accurate human parsing maps for largely occluded people. To do this,

fine-tuning is guided by two main loss functions, Linstance fg and Linstance seg miou.

Consider for example a top-down multi-human parsing architecture. Given a

region of interest extracted by the detection head, the loss function Linstance fg

guides the parsing sub-network to accurately segment the correct human instance:

body parts belonging to overlapping bodies that fall into that same region of inter-

est should be disregarded and assigned to background. Linstance fg represents the

standard cross-entropy loss between human segmentation predictions and ground-

truth. The considered network, however, has been trained to predict body parts

for each human instance, therefore, obtaining just human instance segmentation

predictions is not straightforward. This thesis proposes to consider the union of

body parts parsing maps, in order to obtain full body predictions. Specifically,

body parts predictions on a single region of interest are fused into a single map

by choosing the maximum output value for each pixel. In other words, consider-

ing human and background categories, the probability that each observation x is

classified as human is given by:

ph(x) = max{pi(x) : i ∈ C} (5.1)

where C represents the set of CIHP body parts categories, for example. To
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further improve the quality of the human instance segmentation obtained by fol-

lowing Linstance fg, Linstance seg miou directly optimizes the mean Intersection-over-

Union between predicted and ground-truth human segmentation masks, exploit-

ing Lovász-Softmax formulation [43]. Since mean Intersection-over-Union essen-

tially quantifies the overlap between predictions and ground-truth, Linstance seg miou

has the effect of punishing the network when producing incomplete human bodies

segmentation masks (e.g., internal holes in the segmentation mask). Combining

loss contributions given by Linstance fg and Linstance seg miou, encourages prediction

of accurate parsing maps for the correct human instance, recovering accurate

body outlines and filling holes. An additional refinement loss function, suitable

to top-down approaches, Linstance box miou can be also be introduced to consider

the mean Intersection-over-Union for the predicted human instance map within

the corresponding detected bounding box. This is useful to filter out poor quality

candidate human regions, similarly to what is done in [30]. All considered, the

proposed fine-tuning is driven by a loss function composed by three terms:

LIG−MHP = Linstance fg + Linstance seg miou + Linstance box miou (5.2)

The network will predict the multi-human parsing task on the human segmenta-

tion auxiliary dataset, with a particular encouragement towards producing com-

plete human instance parsing maps with accurate boundaries.

5.2 Multi-view instance-guided multi-human pars-

ing

Building upon instance-guided multi-human parsing, based on single-view loss

functions only, multi-view instance-guided multi-human parsing adds a multi-

view loss term that exploits knowledge about 3D human instances to encourage

instance identity discrimination and body parts prediction consistency. A main

challenge with occlusions between people in a RGB image is due to an intrinsic

ambiguity between their bodies, as they are projected on the same 2D plane, one

overlapped with the other. In this case, it becomes difficult to distinguish between

the two using an RGB image only, as their body parts are intersecting. Exploiting

3D information allows to resolve this ambiguity, as human bodies in the 3D

space are more easily separated. The idea of resorting to multi-view information

to enhance multi-human parsing on strong occlusions between human instances
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comes from this intuition. When the same scene is framed from multiple points

of view, ambiguity between human instances is easily removed and associating

body parts to the correct person becomes very simple. At the same time, between

multiple views there must be coherence, as the framed 3D scene is identical. In

other words, if a certain 3D point belongs to a given human instance and body

part, this has to be true from each viewpoint, that is, for each view. This can be

referred to as multi-view consistency.

5.2.1 Multi-view loss function for instance identity and

body part prediction consistency

To improve disambiguation between overlapped human instances and to enforce

consistency in body parts predictions between multiple views, the proposed learn-

ing framework introduces a loss contribution on multi-view images. This is done

exploiting the 3D point clouds provided with human instances annotations made

available by the annotation procedure described in Section 4.2.

Consider multiple adjacent views Ii with i from 1 to N , N at least equal to

2, and a 3D human body point P . The corresponding forward-projection on view

Ii is referred to as FPi. Multi-view consistency loss encourages coherent instance

identity predictions between point projections of the same 3D point P in multiple

views. This means that if point P is associated to a given human instance by 3D

ground truth, each projection in {FPi} should be associated to the same human

instance as well. Multi-view consistency on instance identity, aims at improving

separation and body part matching accuracy between overlapped human bodies.

Similarly, 3D human instance information can be exploited to enforce con-

sistency in body part prediction between multiple views. Note that the losses

designed for single-view approach presented in Section 5.1 relies just on 2D hu-

man instance information to guide the network, leaving the body part prediction

without supervision. When using multi-view information to guide the network

fine-tuning, predictions of body parts from each view should be consistent with

each other; by imposing such consistency at the loss level, weak supervision of

body parts can be introduced. To enforce body part prediction consistency across

different views, this thesis takes inspiration from Antonello et al. [53], that fuse

pixel-level predictions from multiple views to refine single-view semantic segmen-

tation. Considering all forward-projections {FPi} of the same 3D human body

point P on multiple views, the optimal body part label for P can be estimated

aggregating all contributions from the N views. In particular each forward-
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projection participates with the body part label c predicted by the network to be

fine-tuned and with the label confidence p(FPi|c) given by network. The label

predicted by the most views, with the highest aggregated confidence, is selected

as optimal for the 3D point P and propagated on all views. In other words, the

optimal label c∗ for a point P is given by:

c∗ = argmax
c∈C

N∑
i=1

p(FPi|c) (5.3)

where C is the set of body part labels considered by CIHP, for example. This

is done considering the cross-entropy loss function between the optimal label

obtained by aggregating contributions, and the predicted label, for each view.

5.2.2 Multi-view forward projection

The forward projection to map information from the 3D instance ground truth

to the multi-views images is a crucial step in the computation of the multi-view

loss function during the network fine-tuning. As described in Section 5.2.1, in

such operation each 3D point of each human instance is projected on different

views of a same scene, obtaining a set of points on which instance and body

part consistency can be imposed. However, few different considerations should

be kept in mind in implementing such operation. Firstly, in case of many people

in the scene, they can appear as occluded from a certain viewpoint. In such

cases, 3D points belonging to occluded people should not be projected. Moreover,

projecting all the 3D points of all human instances can take very long time and

computational resources with a negative impact on the fine-tuning feasibility.

In order to deal with such problems, in this thesis the forward projection is

implemented introducing two thresholds: one related to the distance of each

human instance from the camera, and one related to the number of 3D points

considered in the projection. When projecting 3D points onto a 2D plane, there

exist ambiguity, as more than one 3D point is projected onto the same 2D point.

This represents a huge problem when considering contributions for label fusion,

as the forward projection of a 3D point belonging to an occluded region could

contribute with the wrong label. Considering, for example, a human instance

framed from the side, 3D points belonging to the occluded arm should not be

included in label fusion, as they would contribute with a wrong part category.

To avoid such issues, a 3D body point is considered and projected only if their
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distance from the body point which is closer to the camera is lower than a certain

threshold. Such threshold on points distance, as well as the maximum number of

points considered for the projections are set empirically.

5.3 Training details and best model selection

criteria

To describe the proposed framework, this thesis will consider state-of-the-art top-

down architecture AIParsing [30] as starting point, CIHP [13] as target multi-

human parsing dataset and CMU Kinoptic-HIS as human instance segmenta-

tion ground-truth used to carry out the fine-tuning. The training set used to

fine-tune the model is composed by 1360 images, taken from four different se-

quences, namely 160224 haggling1, 160226 haggling1, 170407 haggling a1 and

160422 ultimatum1. While haggling sequences frame up to 3 people per image

and ultimatum sequences frame up to 8 people per image, the 40% of the training

dataset is drawn from 160422 ultimatum1, while the remaining 60% is drawn from

the other ones. As already explained, CMU Kinoptic IS images do not present

large variance in background, people appearance, pose and scale, leading to the

decision of using a modest number of images for training.

To monitor the training process and avoid overfitting on the training data, a

set of 1000 images is used as validation set. These are taken from two different

sequences, without overlap with those that have been selected for the training set.

In particular, images from 170407 haggling a2 and 170407 haggling a3 are em-

ployed. While performances on the validation set are usually taken into account

in order to select the best model during training, this would not be significant in

this case, as performances are evaluated on the target dataset CIHP. To choose

the best model, the network is trained for a fixed number of epochs, after which

each model is evaluated on a subset of the CIHP target dataset, specifically, on

CIHP DoO 60, that is, the subset of CIHP images that frame people having de-

gree of overlap at least equal to 0.6. Choosing the best model on such set of

images is consistent with the main focus of this work, which is contrasting chal-

lenges given by strong occlusions. The mean Intersection over Union, representing

body parts segmentation quality, in particular, is selected as measure of goodness

for the obtained models. The set of network parameters that achieve the higher

mIoU on the validation set, are deemed as the best ones. The mean Intersection

over Union is selected to choose the final model as it gives a good representa-
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tion of the model behaviour on the target dataset. Being body-part-aware, an

improvement on this metric indicates that the overall body parts segmentation

quality has been enhanced, and thus, that the fine-tuning on the human instance

segmentation domain has been effective and, most importantly, did not disrupt

most of the knowledge learned by the model on the original MHP dataset.

To examine the results of the fine-tuning carried out on the network, along

with the typical multi-human parsing metrics illustrated in Section 3.1, (e.g.,

mean Intersection over Union, Average Precision based on Part, Probability of

Correct Parts), evaluation metrics measuring human segmentation quality must

also be considered. In particular, given the loss functions employed to drive the

network, the mean Intersection over Union on human instance segmentation, here

referred to as mIoUh, provides a good representation of the effectiveness of this

stage. In particular, if such part-agnostic mIoU improves and part-aware mIoU

improves as well, it means that the fine-tuning was successful: foreground hu-

man segmentation was enhanced and the network preserved its ability to predict

accurate body parts, despite seeing coarser ground-truth.
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Chapter 6

Experimental results for

instance-guided multi-human

parsing

In this chapter, the instance-guided multi-human parsing approach presented in

Section 5.1 will be evaluated through different experiments, aiming at improving

the performance of a state-of-the-art architecture, such as AIParsing [30], in the

challenging scenario of heavily overlapped people. Instance-guided multi-human

parsing, here referred to as IG-MHP, exploits single-view human instance segmen-

tation loss functions in order to guide the multi-human parsing task. The experi-

mental validation of the proposed approach presented in this chapter will consider

state-of-the-art top-down architecture AIParsing as starting point, CIHP [13] as

target multi-human parsing dataset and CMU Kinoptic-HIS, presented in Sec-

tion 4.2, as human instance segmentation ground-truth used to carry out the

fine-tuning. In accordance with the learning framework introduced, model per-

formances are measured on the multi-human parsing dataset used to pre-train the

considered network (i.e., CIHP). Different subsets of images with increasing de-

gree of overlap are considered (i.e., CIHP DoO 20, CIHP DoO 40, CIHP DoO 60,

CIHP DoO 80), in order to highlight the advantage achieved on the specific sce-

nario of interest. An analysis taking into account different hyperparameters,

such as learning rate, will be then carried out, in order to optimize the pro-

posed method. To measure performances on the target task, both global and

instance-level evaluation metrics will be considered, as defined in Section 3.1.

Mean Intersection-over-Union (mIoU), pixel accuracy (pix acc) and mean pixel

accuracy (mean acc) on CIHP semantic categories will be examined to evaluate
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body parts segmentation quality, while Average Precision based on Part (AP P
50,

AP P
vol) and Probability of Correct Parts (PCP) will provide an indication on

the instance-level part segmentation results. Mean Intersection-over-Union on

human instance segmentation, here denoted as mIoUh, will also be considered.

When mentioning mean Intersection-over-Union measures, to avoid ambiguity,

the mIoU on body parts will sometimes be referred to as part-aware mIoU, while

mIoU on human instance segmentation will be sometimes be referred to as part-

agnostic mIoU. For simplicity, in the following experiments, the model prior to

fine-tuning will be referred to as AIParsing, since it represents the multi-human

parsing method as proposed by Zhang et al. in [30]. This will also be the baseline

for the presented experiments.

6.1 Instance-guided multi-human parsing on over-

lapping human instances

The performances of the proposed instance-guided multi-human parsing method

on overlapping human instances will be now compared with results obtained from

state-of-the-art network AIParsing, used as baseline. As already mentioned in

Chapter 2, AIParsing was originally trained for 75 epochs on the CIHP training

set with image batches of size 8, using an initial learning rate equal to 0.005,

decreased by a factor of 10 each 50 and 65 epochs, respectively. Here AIParsing

is fine-tuned on CMU Kinoptic-HIS exploiting human instance segmentation loss

functions only. The batch size is set to 8 images, to be consistent with the original

AIParsing implementation. The learning rate for this experiment is set to 5e-5,

that is the learning rate used by the network for the last epochs of training. Due

to time constraints for carrying out the experiments, the network is fine-tuned for

a fixed number of epochs, 20 in this case, and the best model is selected according

to the part-aware mIoU measure on a subset of the target dataset CIHP, namely

CIHP DoO 60, as already described in Section 5.3.

Figure 6.1a shows the trend of the part-aware mean Intersection-over-Union

computed on CIHP DoO 60 over the 20 fine-tuning epochs, with respect to the

value that is reached for the same metric by the baseline method AIParsing. It

can be observed that the proposed approach leads to an improvement after one

epoch of training, proving the effectiveness of the proposed method. Such result

highlights an enhancement in body parts segmentation quality in presence of hu-

man instances that are largely occluded. Recalling the meaning of the part-aware
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(a) Part-aware mean Intersection-over-Union
for instance-guided multi-human parsing
method.

(b) Part-agnostic mean Intersection-over-Union
for instance-guided multi-human parsing
method.

Figure 6.1: Part-aware mean Intersection-over-Union and part-agnostic mean Intersection-over-
union for instance-guided human parsing method.

Figure 6.2: Comparison between multi-human parsing given by AIParsing (top row) and single-view
method (bottom row).

mIoU evaluation metric, which takes into account the Intersection-over-Union for

each semantic class, an improvement with respect to the baseline model means

that the network is effectively learning the auxiliary human instance segmenta-

tion task, leading to a more accurate segmentation of whole bodies and, at the

same time, the valuable knowledge on body part discrimination, acquired on the

multi-human parsing dataset, is preserved. A qualitative comparison between

AIParsing and IG-MHP is illustrated in Figure 6.2, highlighting the contribution

of the proposed approach.

Confirming the effect of IG-MHP on human instance segmentation, Fig-

ure 6.1b shows the evolution of the part-agnostic mean Intersection-over-Union

over the fine-tuning epochs. It is clear that the loss terms and the new data
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are successfully driving the fine-tuning. Moreover, the learned cues do not dis-

rupt the ability of the network on the target task but actually, performance is

enhanced. It is worth noticing that values obtained for the part-agnostic mean

Intersection-over-Union are much higher than those obtained for the part-aware

mean Intersection-over-Union, as shown in Figures 6.1a and 6.1b. This is due to

the fact that, while the first one only considers two classes (i.e., human and back-

ground), the second considers 20 different categories, and therefore, it is much

more difficult, but also much more significant, to obtain improvements. This val-

idates the choice of selecting the best model according to the part-aware mIoU,

instead of looking at mIoUh. Examining the mIoU trend over the epochs, the

metric reaches its peak after approximately 10 epochs of training and the best

model is obtained after 11 epochs.

For a more in-depth analysis of the performance of the instance-guided method

on overlapping human instances, the best model found was evaluated also on the

other subsets of images with overlapped people, namely CIHP DoO 20, CIHP DoO 40

and CIHP DoO 80. Results are shown in Table 6.1. It can be noticed that, the

more the degree of overlap of the considered images increases, the more the pro-

posed method brings a relevant advantage on body parts segmentation quality. It

can be, however, observed that, despite bringing improvements on CIHP subsets

including huge occlusions (i.e., CIHP DoO 60 and CIHP DoO 80), when consid-

ering also images in which occlusions are not as severe, the advantage gained is

lost. This could be related to the fact that during the fine-tuning process on the

CMU Kinoptic-HIS dataset, body parts prediction is left almost unsupervised.

Indeed, body parts predicted by the network are not corrected by a dedicated

loss function during the fine-tuning; the network learns to refine them in order to

improve the instance segmentation, leading to slight changes to predicted classes

as training proceeds. When facing very challenging scenarios, such as largely

occluded people, the proposed approach is able to recover more accurate human

instances, counter-balancing this deterioration in body part prediction. When

evaluated on a larger set of images on which the baseline method already performs

satisfactorily (e.g., CIHP DoO 20), this effect becomes visible. Nevertheless, this

proves that the scenarios on which the baseline struggles are represented by sets

of images having a degree of overlap of at least 40%. Therefore, given the focus

of this work, these are the sets of data on which testing the proposed method

becomes very relevant. For this reason, when analysing behaviour in case of over-

lapping people, CIHP DoO 40, CIHP DoO 60 and CIHP DoO 80 will mainly be
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Model mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
DoO 20 AIParsing 58.19 88.68 68.32 88.41 71.64 57.73 68.55

IG-MHP 57.70 88.55 68.49 88.85 60.84 55.98 64.81
DoO 40 AIParsing 55.42 87.57 64.95 86.52 68.75 56.01 63.24

IG-MHP 55.46 87.69 65.78 87.49 65.81 54.31 62.16

DoO 60
AIParsing 50.82 84.84 59.47 80.75 61.09 51.56 57.72
IG-MHP 52.38 85.41 62.02 82.59 57.55 49.83 56.20

DoO 80
AIParsing 46.81 83.08 58.25 79.21 58.43 50.36 55.59
IG-MHP 47.42 83.76 59.51 81.13 55.92 48.63 54.09

Table 6.1: Overall performance of IG-MHP on CIHP DoO 20, CIHP DoO 40, CIHP DoO 60 and
CIHP DoO 80 subsets, respectively indicated as D20, D40, D60 and D80 for visualization
purposes.

considered.

Looking at results in Table 6.1, instance-level metrics such as AP P
50 and PCP

decrease. This is indeed another symptom of the fact that body part prediction

is being affected, and such metrics attribute significant weigh to part accuracy.

6.1.1 Analysis on learning rate choice

Learning rate plays a critical role in network fine-tuning. As already mentioned,

features learned by the model during the pre-training phase on CIHP are ex-

tremely important. If the learning rate is too high, pre-trained network’s weights

will change dramatically: the model will forget how to properly segment body

parts and start to predict a single class for whole human instances. By using a

rather small learning rate, the network can slowly adapt to the new data, without

moving too much from the optimal solution found on the starting dataset. How-

ever, if the learning rate is too small, the network is not encouraged to learn new

insights and the fine-tuning on the new data is not exploited to its full potential.

This considered, for this experiment the learning is increased to a value equal to

3e-4, in order to evaluate if the previous learning rate was already a good choice

or if increasing it leads to better performances without degrading task-specific

knowledge.

The evolution of the part-aware mean Intersection-over-Union during fine-

tuning is shown in Figure 6.4a. The behaviour of this metric, in this case, is

quite different to the one observed for the first experiment. There are more

oscillations and less plateaus in the observed values, which is very consistent

to the fact that the learning rate employed is higher and thus, the model loss

function makes bigger leaps during optimization. A comparison between mIoU
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Figure 6.3: Comparison between multi-human parsing results given by the baseline AIParsing (top
row) and IG-MHP with learning rate equal to 5e-5 (middle row) and IG-MHP with
learning rate equal to 3e-4 (bottom row).

evolution for learning rate equal to 3e-4 and for learning rate equal to 5e-5 (i.e.,

first experiment) is illustrated in Figure 6.5.

The best model is obtained after 16 epochs and reaches a higher accuracy

in terms of part-aware mIoU with respect to the previous experiment, showing

that the approach benefits from a higher learning rate. The network is more

encouraged to adapt to the new data, as testified by the growth of the part-

agnostic mean Intersection-over-Union during fine-tuning (Figure 6.4b) and the

performance improvement on overlapped human instances is more relevant, as it

can be observed from Table 6.2. At the same time, however, the effect of the

body part precision degradation becomes visible even on CIHP DoO 40. This

confirms that there exists an important trade-off between the advantage reached

on severely occluded bodies, given by the new knowledge learned during the fine-

tuning, and body part precision. The more the network adapts to the new data,

depending on fine-tuning duration and learning rate, the more the task learned

during the pre-training on multi-human parsing undergoes some changes. This is

a straight consequence of the higher coarseness of the annotations used for fine-
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Model mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
DoO 40 AIParsing 55.42 87.57 64.95 86.52 68.75 56.01 63.24

IG-MHP 55.23 87.62 65.63 87.68 63.52 53.22 61.28

DoO 60
AIParsing 50.82 84.84 59.47 80.75 61.09 51.56 57.72
IG-MHP 52.57 85.51 62.49 83.13 56.33 48.75 55.26

DoO 80
AIParsing 46.81 83.08 58.25 79.21 58.43 50.36 55.59
IG-MHP 47.61 83.95 60.03 81.97 53.09 47.54 53.04

Table 6.2: Overall performance of instance-guided multi-human parsing on CIHP DoO 40,
CIHP DoO 60 and CIHP DoO 80 using learning rate equal to 3e-4.

(a) Part-aware mean Intersection-over-Union
for instance-guided multi-human parsing
method.

(b) Part-agnostic mean Intersection-over-Union
for instance-guided multi-human parsing
method.

Figure 6.4: Part-aware mean Intersection-over-Union and part-agnostic mean Intersection-over-
union for instance-guided multi-human parsing method with learning rate equal to 3e-4.

Figure 6.5: Comparison between part-aware mean Intersection-over-Union evolution using learning
rate equal to 3e-4 and 5e-5 during instance-guided fine-tuning.
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tuning and of the domain gap between data used for training and for evaluation.

A qualitative comparison on results illustrated in Figure 6.3, highlights the

contribution of the instance-guided method with a higher learning rate. Perfor-

mance on occluded bodies is visibly enhanced with respect to the baseline as the

model is able to recover significant portions of bodies that AIParsing misses.

6.1.2 Analysis on data augmentation strategies

As highlighted by previous analyses, there exits a quite huge domain gap between

CIHP and CMU Kinoptic-HIS datasets. Samples from the new set of data present

less variance in appearance, pose and most of all, scale. Reducing this gap could

help improving performances on the target dataset. To test this hypothesis, three

experiments are carried out, adding different data augmentation strategies to fine-

tuning. In particular, data augmentation on image appearance, flipping, scaling

and cropping is applied. Scale and resolution with which human bodies appear in

the image is one of the biggest discrepancies between the two datasets. For this

reason, all the experiments include image resizing as data augmentation strategy.

This is performed on the input images with a probability equal to 0.3.

A) Image appearance data augmentation

All images from CMU Kinoptic-HIS are taken in the same place, that is, the

Panoptic Studio dome, as illustrated in Section 4.2. For this reason, all images

present very similar backgrounds. Considering this, random background replace-

ment is adopted to introduce higher variety and applied on almost every input

image (i.e., with probability 0.98). Background images have been collected from

Google and frame both outdoor and indoor scenes, to resemble CIHP images as

much as possible. Additionally, gaussian blur and color jitter are also applied,

with probability equal to 0.3. Blur varies with kernel size from 5x5 to 11x11 and

sigma from 0.1 to 2. For color jitter, only variations in brightness and contrast

are introduced while hue is left untouched.

B) Adding image flipping data augmentation

Overcoming the fact that people pose does not vary much throughout the images

used for fine-tuning is not an easy task. Image flipping could be of some help, in-

troducing some variety in body configuration. For this, to the data augmentation

on image appearance used in experiment A, random image horizontal flipping is
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(a) Part-aware mean Intersection-over-Union for
IG-MHP with data augmentation strategy A
(image appearance).

(b) Part-aware mean Intersection-over-Union for
IG-MHP with data augmentation strategy B
(image appearance + horizontal flipping).

(c) Part-aware mean Intersection-over-Union for
IG-MHP with data augmentation strategy C
(image appearance + horizontal flipping +
image cropping).

Figure 6.6: Part-aware mean Intersection-over-Union for IG-MHP with different data augmentation
strategies, for the tested learning rates.

applied. In practice, with probability 0.3, the network will see sample images in

which human bodies appear upside down.

C) Adding body scale, truncation and occlusion data augmentation

For this last experiment, random image crop is also added. It is performed with

probability 0.3 and introduces occlusions, body parts truncation and stronger

variations in terms of scale, with respect to random image resize.

For each combination, best model selection is done as for previous experi-

ments. Figure 6.6 shows the trend of part-aware mean Intersection-over-Union

for each of the three strategies, comparing models with the different learning rates

tested.

Table 6.3 shows global-level and instance-level evaluation metrics on CIHP

DoO 60 for the best models obtained incorporating data augmentation tech-

niques. Learning rate equal to 3e-4 is the most effective, for all experiments.

The data augmentation strategy which brings the largest improvement on over-

lapping images is the one illustrated in B). This combines variations related to
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mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 50.82 84.84 59.47 80.75 61.09 51.56 57.72
IG-MHP 52.57 85.51 62.49 83.13 56.33 48.75 55.26
IG-MHP-A 52.47 85.51 61.81 83.00 56.99 49.19 55.94
IG-MHP-B 52.98 85.59 62.34 83.18 57.39 49.42 55.94
IG-MHP-C 52.22 85.36 61.68 82.35 58.91 50.33 57.03

Table 6.3: Performances on CIHP DoO 60 subset for the best models found for each data strategy.

appearance and body configuration and leads to a very significant advantage in

terms of part-aware mean Intersection-over-Union, with respect to the AIParsing

baseline. It is worth noticing that using strategies A and C, despite improving

with respect to the pretrained network, the performance is slightly worse if com-

pared to the model which does not employ any data augmentation. This is an

effect of the reduced gap between the two datasets. This leads to a smaller im-

provement on overlapped instances but body part precision is less affected. This

is confirmed by instance-level evaluation metrics, which improve with respect to

the IG-MHP without any data augmentation.

6.2 Instance-guided multi-human parsing method

on non-overlapping human instances

The effectiveness of the proposed instance-guided multi-human parsing method on

overlapping human instances has been confirmed by previous experiments, from

both a qualitative and quantitative point of view. In this section, the instance-

guided multi-human parsing approach is evaluated considering also images that do

not include overlapping bodies. In order to do this, models presented so far have

been tested on the whole CIHP validation set. Results are shown in Table 6.4.

It is clear to see that, despite bringing improvements on CIHP subsets including

occlusions between people, when considering also images without occlusions, the

advantage gained is lost. The culprit of this is once again that fine-tuning the

network on whole human instances ground-truth, leaving body part prediction

almost unsupervised, will inevitably bring slight changes to predicted classes.

Examples of this are shown in Figure 6.8, which illustrate how class prediction is

affected by instance-guided fine-tuning. When facing challenging scenarios, such

as large occluded people, the proposed approach is able to recover more accurate

human instances, counter-balancing this deterioration in body part prediction.

Figure 6.7, compares the evolution of the part-aware mean Intersection-over-
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Figure 6.7: Evolution of the part-aware mean Intersection-over-Union on the full set of CIHP vali-
dation images for the best IG-MHP model found in the first experiment, without data
augmentation, and for the IG-MHP model with identical learning rate and data aug-
mentation strategy C.

mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 60.77 90.29 71.37 90.05 76.01 60.47 69.22
IG-MHP LR 3e-4 59.35 89.80 70.54 89.89 71.35 57.45 67.30
IG-MHP LR 5e-5 59.90 89.98 71.06 89.90 73.35 58.58 68.11
IG-MHP LR 3e-4 A 59.34 89.82 69.90 89.83 71.38 57.63 67.34
IG-MHP LR 3e-4 B 59.54 89.88 70.03 89.92 72.81 57.52 68.10
IG-MHP LR 3e-4 C 60.39 90.13 71.44 90.15 74.47 59.25 68.76

Table 6.4: Performances of the best models from the experiments in Section 6.1 on the whole CIHP
validation set.

Union on the full set of CIHP validation images for the best IG-MHP model

found in the first experiment, without data augmentation, and for the IG-MHP

model with identical learning rate and data augmentation strategy C (image

appearance, flipping and cropping).

To confirm this intuition, Table 6.5 shows evaluation metrics computed com-

bining AIParsing baseline predictions with predictions from the proposed IG-

MHP method. Specifically, on images having degree of overlap at least equal

to 0.2, the new approach is applied. On images that do not frame overlapping

people, AIParsing results are considered. It can be easily observed that, in this

case, the advantage gained by the instance-guided approach is not cancelled out.

This further proves that the degradation in performances that is found on the

full set of CIHP images is due to images that frame people between which there

is little or no overlapping, that is, cases that do not benefit from an enhancement

in human segmentation quality.
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Figure 6.8: Examples of images affected by body part predictions errors after fine-tuning. Compar-
ison between AIParsing multi-human parsing results (top row) and single-view method
results (bottom row).

mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 60.77 90.29 71.37 90.05 76.01 60.47 69.22
IG-MHP LR 5e-5 60.94 90.32 71.98 90.40 75.88 60.44 69.78
IG-MHP LR 3e-4 60.71 90.24 71.77 90.39 74.59 59.89 69.30
IG-MHP-A 60.69 90.25 71.42 90.32 74.60 59.88 69.30
IG-MHP-B 60.79 90.27 71.49 90.37 74.76 59.97 69.36
IG-MHP-C 61.14 90.39 72.13 90.42 76.06 60.56 69.91

Table 6.5: Performances of the best models from the experiments in Section 6.1 on the whole CIHP
validation set. AIParsing predictions are considered for images not including overlaps,
while IG-MHP models predictions are considered for images including overlaps.
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Chapter 7

Experimental results for

multi-view instance-guided

multi-human parsing

In this chapter, the multi-view instance-guided multi-human parsing approach

presented in Section 5.2 will be evaluated through different experiments, with

the objective of improving the performance of a state-of-the-art architecture

(i.e., AIParsing) in the challenging scenario of strong occlusions between peo-

ple. With respect to the instance-guided multi-human parsing method validated

in Chapter 6, the multi-view instance-guided approach makes use of a multi-view

loss function to impose instance identity and body part prediction consistency

across views. As done for the experimental validation presented in Chapter 6, the

AIParsing architecture and its performance on the CIHP dataset will be consid-

ered as baseline. In particular, different subsets of images with increasing degree

of overlap will be considered, in order to highlight the advantage of exploiting

multi-view information to improve segmentation accuracy on images with strong

occlusions between people. Furthermore, an ablation study on the role of dif-

ferent numbers of multi-view images for multi-view consistency loss computation

will be carried out.
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7.1 Multi-view instance-guided multi-human pars-

ing on overlapping human instances

The proposed multi-view instance-guided multi-human parsing approach is now

evaluated considering overlapping human instances, comparing obtained results

with the AIParsing baseline. For this experiment, AIParsing has been fine-tuned

on CMU Kinoptic-HIS dataset for 15 epochs, using a learning rate equal to 3e-

4. Experiments for instance-guided multi-human parsing on occlusions, in fact,

testify how the approach benefits from a higher learning rate. Multi-view loss

consistency is computed taking into account views coming from two adjacent

viewpoints and for each 3D human instance, the number of projections consid-

ered is 50, with maximum distance between each point and the point closest

to the camera equal to 30 cm. The batch size is equal to 2, as the number of

views used by the multi-view loss. As done for experiments described in Chap-

ter 6, the best model is selected according to the value of the part-aware mean

Intersection-over-Union computed CIHP DoO 60. To mitigate the domain gap

between fine-tuning and evaluation datasets, data augmentation strategy A, as

defined in Section 6.1.2, is adopted. It combines background replacement, gaus-

sian blur and jitter on illumination and contrast. Data augmentation affecting

image geometry and orientation (e.g., image cropping and flipping) is not com-

patible with the computation of the multi-view loss and, thus, is not considered

for these experiments. The trend for part-aware mean Intersection-over-Union

during fine-tuning is illustrated in Figure 7.1a. The best model is obtained af-

ter 10 epochs. It achieves part-aware mIoU equal to 52.65 which corresponds to

an improvement of the 3.6% with the respect to the AIParsing baseline. It also

tops the mIoU reached by IG-MHP (i.e., instance-guided multi-human parsing

with single-view losses) using the same learning rate (52.57), even though the

two models are not directly comparable as they use different batch sizes (2 vs. 8

images).

Table 7.1 shows overall model performances on CIHP DoO 40, CIHP DoO 60

and CIHP DoO 80 subsets. MVIG-MHP tops the baseline in terms of part-aware

mIoU on subsets with degree of overlap equal to 0.6 and 0.8, which confirms

an enhancement in multi-human parsing quality in case of strong occlusions.

This appears to be due to improved human instance segmentation, as it can be

observed that the part-agnostic mean Intersection-over-Union (mIoUh) gains a

significant advantage with respect to the AIParsing baseline considering all three
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(a) Part-aware mean Intersection-over-Union for
the MVIG-MHP method.

(b) Part-agnostic mean Intersection-over-Union
for the MVIG-MHP method.

Figure 7.1: Part-aware mean Intersection-over-Union and part-agnostic mean Intersection-over-
Union for the multi-view instance-guided multi-human parsing (MVIG-MHP) method.

Model mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP

DoO 40
AIParsing 55.42 87.57 64.95 86.52 68.75 56.01 63.24
MVIG-MHP 55.13 87.58 64.69 87.61 62.74 52.78 60.79

DoO 60
AIParsing 50.82 84.84 59.47 80.75 61.09 51.56 57.72
MVIG-MHP 52.65 85.57 61.92 83.45 55.85 48.64 54.96

DoO 80
AIParsing 46.81 83.08 58.25 79.21 58.43 50.36 55.59
MVIG-MHP 47.30 84.33 58.72 82.68 55.42 47.52 54.29

Table 7.1: Overall performances of multi-view instance-level human parsing on CIHP DoO 40,
CIHP DoO 60 and CIHP DoO 80 subsets.

subsets (e.g., +4.38% on CIHP DoO 80). This is consistent to what is illustrated

in Figure 7.1b, showing a significant growth in human segmentation accuracy

during fine-tuning. This highlights the effectiveness of the multi-view consistency

in leading to more accurate and fuller human masks.

Also from a quantitative point of view, the advantages of the multi-view

approach are remarkable. Compared to the baseline AIParsing and the single-

view loss approach, by exploiting multi-view information, the network can better

distinguish human instances and recover any holes in the instances due to non-

predicted or non-associated body parts. This is evident from Figure 7.2, showing a

comparison between results given by the AIParsing baseline, IG-MHP and MVIG-

MHP, proposed in this thesis. The boost provided by multi-view consistency in

human instance segmentation is strong. MVIG-MHP is able to segment even the

fifth person behind all the others, ignored by the other methods.

Discrimination effects on overlapped human instances are highlighted in Fig-

ure 7.3. Considering occluded people on the left side of the image, a correct

multi-human parsing result should include predictions about one of the two in-

stances only, as only one bounding box was produced by the detection head of

the baseline top-down architecture AIParsing. AIParsing results, however, clearly
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Figure 7.2: Comparison between results from AIParsing (first image), Instance-guided multi-human
parsing (second image) and Multi-view instance-guided multi-human parsing (third im-
age), shown to highlight network human instance recovery capabilities.

show some issues related to foreground instance discrimination, as parts belonging

to both people appear in the output parsing map. While instance-guided multi-

human parsing fails at improving disambiguation, the additional multi-view loss

exploited by MVIG-MHP results in improved instance discrimination. MVIG-

MHP chooses the woman as target instance and only few portions of the close

man body (right hand and part of face) appear to be mismatched.

Considering body part prediction, unfortunately, multi-view consistency does

not seem to produce the desired results. As depicted in Figure 7.4, MVIG-MHP

classifies part of the skirt of the girl in foreground as dress. This effect is confirmed

by the instance-level metrics reported in Table 7.1 on all three CIHP overlap

subsets considered, which obtain lower values than the baseline network.

Table 7.2 show performances on CIHP DoO 60 for the AIParsing baseline,

instance-guided multi-human parsing and multi-view instance-guided multi-human

parsing best models. IG-MHP and MVIG-MHP models compared have been

trained adopting the same learning rate and data augmentation strategy. The

multi-view consistency loss leads to improving both human parsing and human

instance segmentation performances with respect to the AIParsing baseline and

to IG-MHP, employing single-view loss functions only. As already pointed out,

however, multi-view consistency leads to decreased accuracy in body part predic-

tion with respect to instance-guided multi-human parsing with single-view losses,

as shown by instance-level metrics. This means that the advantage obtained by

MVIG-MHP on part-aware mean Intersection-over-Union is due to improved hu-

man instance discrimination and recovery, with respect to instance-guided multi-

human parsing, as shown in Figures 7.3 and 7.2.
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Figure 7.3: Comparison between results from AIParsing (first image), Instance-guided multi-human
parsing (second image) and Multi-view instance-guided multi-human parsing (third im-
age), shown to highlight network human instance discrimination capabilities.

Figure 7.4: Comparison between results from AIParsing (first image), Instance-guided multi-human
parsing (second image) and Multi-view instance-guided multi-human parsing (third im-
age), shown to highlight effects on body parts prediction accuracy.

7.1.1 Analysis on number of views

With the objective on investigating and analysing the role of different numbers of

views for multi-view consistency constraints, a series of experiments considering

a varying number of views is carried out. In particular, imposing consistency

taking into account contributions given by a larger number of views could provide

more reliable results. At the same time, however, if the different viewpoints

are far from each other, exploiting contributions coming from many views could

introduce noise. Consequently, imposing consistency using noisy and unreliable

labels, could be detrimental to overall performance.

Experiments are carried out considering sets of 2, 4 and 8 adjacent views,

using image batch sizes equal to 2, 4 and 8, respectively. Figure 7.5a and 7.5b

show the evolution of part-aware mIoU and part-agnostic mIoU over the fine-

tuning process for each conducted experiment. Table 7.3 shows the results on

Model mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 50.82 84.84 59.47 80.75 61.09 51.56 57.72
IG-MHP 52.47 85.51 61.81 83.00 56.99 49.19 55.94
MVIG-MHP 52.65 85.57 61.92 83.45 55.85 48.64 54.96

Table 7.2: Overall performances on CIHP DoO 60 for the AIParsing baseline, instance-guided
multi-human parsing and multi-view instance-guided multi-human parsing best models.
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(a) Part-aware mean Intersection-over-Union for
MVIG-MHP method.

(b) Part-agnostic mean Intersection-over-Union
for MVIG-MHP method.

Figure 7.5: Part-aware and part-agnostic mean Intersection-over-Union for multi-view instance-
guided multi-human parsing method.

Model N. Views mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing - 50.82 84.84 59.47 80.75 61.09 51.56 57.72
MVIG-MHP 2 52.16 85.41 61.41 82.66 56.50 49.44 56.19
MVIG-MHP 4 52.56 85.71 62.10 83.34 57.04 49.56 56.41
MVIG-MHP 8 51.83 85.34 61.07 82.51 56.81 49.55 56.39

Table 7.3: Overall performances of MVIG-MHP models using 2, 4 and 8 multi-view images for
multi-view consistency loss computation, on CIHP DoO 60.

CIHP DoO 60 obtained by the best models. It can be observed that the model

achieving the best performances in terms of part-aware mean Intersection-over-

Union is MVIG-MHP using a multi-view consistency loss on 4 multi-view images,

with batch size equal to 4.

It is interesting to notice that the model exploiting the highest number of

views is the one that performs the worst in comparison to the others. The reason

for this could be that, considering 8 adjacent views, the multi-view loss term

ends up fusing contributions coming from viewpoints that are very far one from

the other, aggregating many predictions that do not agree. Figure 7.6 shows

a sequence of 8 adjacent views from CMU Kinoptic-HIS, parsed by AIParsing

baseline. The black dots in each view represents the forward projections of a

same 3D point. It is clear to see that, in such case, multi-view consistency would

fuse many disagreeing contributions and would not provide useful supervision for

body part prediction.
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Figure 7.6: Sequence of 8 adjacent views from CMU Kinoptic-HIS, parsed by AIParsing baseline.
The black dots in each view represents the forward projections of a same 3D point.

7.2 Multi-view instance-guided multi-human pars-

ing on non-overlapping human instances

The effectiveness of the proposed multi-view instance-guided multi-human pars-

ing method on overlapping human instances has been validated, from both a

qualitative and quantitative point of view, by experiments presented in the pre-

vious section. Here, the proposed approach is evaluated considering also images

that do not include occlusions between bodies. To do this, models presented

so far have been tested on the whole CIHP validation set. Results are shown

in Table 7.4. The results obtained exploiting multi-view consistency are com-

pared with those obtained by the instance-guided multi-human parsing approach

(IG-MHP). In particular, among the models presented in Chapter 6, the ones

which obtained the best results on non-overlapped human instances, are consid-

ered for the comparison. These include IG-MHP trained using a learning rate

equal to 5e-5, without any data augmentation, and IG-MHP-C, trained using a

learning rate equal to 3e-4, using data augmentation strategy C, as defined in

Section 6.1.. These are compared with MVIG-MHP models achieving the best

overall performances on scenarios with overlapped human instances. These are

MVIG-MHP-2 from the experiment presented in Section 7.1 and MVIG-MHP-4,

presented in the previous experiment. Results on CIHP validation set are a con-

firmation of what was already found analysing previous experiments. Examining

both global- and instance-level metrics, performances of the models exploiting

multi-view consistency testify a loss in body part prediction accuracy with re-

spect to the AIParsing baseline and to the single-view loss instance-guided MHP

models. Comparing multi-view instance-guided models, multi-view consistency

exploiting 4 views is the most effective. Consistently to what was shown for

instance-guided multi-human parsing in Chapter 6, despite improving on CIHP
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mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 60.77 90.29 71.37 90.05 76.01 60.47 69.22
IG-MHP LR 5e-5 59.90 89.98 71.06 89.90 73.35 58.58 68.11
IG-MHP-C LR 3e-4 60.39 90.13 71.44 90.15 74.47 59.25 68.76
MVIG-MHP-2 59.12 89.72 69.49 89.91 70.54 57.03 66.69
MVIG-MHP-4 59.67 89.93 70.55 89.98 71.99 57.85 67.59

Table 7.4: Performances on the full CIHP validation set of the AIParsing baseline, the best IG-MHP
models and the best MVIG-MHP models.

mIoU pix acc mean acc mIoUh AP P
50 AP P

vol PCP
AIParsing 60.77 90.29 71.37 90.05 76.01 60.47 69.22
IG-MHP LR 5e-5 60.94 90.32 71.98 90.40 75.88 60.44 69.78
IG-MHP-C LR 3e-4 61.14 90.39 72.13 90.42 76.06 60.56 69.91
MVIG-MHP-2 60.60 90.19 71.23 90.34 74.37 59.69 69.08
MVIG-MHP-4 60.71 90.27 71.76 90.41 75.17 60.08 69.50

Table 7.5: Performances on the full CIHP validation set of the AIParsing baseline, the best IG-
MHP models and the best MVIG-MHP models, considering AIParsing results for images
without occlusions and the proposed method for images with overlapped instances.

subsets including occlusions between people, when considering also images with-

out occlusions, the advantage gained by the proposed method is lost because of

body part prediction degradation. In particular, models exploiting single-view

loss functions only hold better performances as body part prediction is better

preserved.

To better evaluate the approach contribution, Table 7.5 show the results on

the full CIHP validation set, considering AIParsing baseline on images with-

out occlusions and the proposed methods IG-MHP and MVIG-MHP on images

from CIHP DoO 20. It can be observed how instance-guided multi-human pars-

ing models still perform better than models including multi-view consistency, as

constraints on body part predictions coherence across views do not provide the

desired results.

66



Chapter 8

Conclusions

This thesis addressed multi-human parsing in the challenging scenario of severe

occlusions in the image. Despite producing significant results on multi-human

parsing datasets, current deep-learning-based approaches still struggle to properly

deal with overlapping human instances. An in-depth analysis on state-of-the-art

methods, taking into consideration images with different occlusion severity, high-

lights important issues in accurately parsing human bodies if largely overlapped.

When human bodies appear to be extensively overlapped, respective body parts

intersect. This causes current multi-human parsing models to struggle in as-

sociating body parts to the correct human instance, producing incomplete and

inaccurate parsing maps. Exploiting 3D information about humans in the scene

resolves ambiguity between instances, as people appear as separated if framed

from a different point of view. Following this intuition, this thesis proposes to

take advantage of multi-view information in order to enhance multi-human pars-

ing on strong occlusions between bodies.

A novel learning framework is proposed to improve multi-human parsing per-

formance, exploiting human instance segmentation ground-truth as auxiliary in-

formation to guide network learning. Learning on the new data is guided by

single-view human instance segmentation losses, aiming at improving foreground

human instance discrimination, as well as human instance segmentation quality

and outline. Novel multi-view consistency loss terms are used to enforce coher-

ent instance and body part predictions across multiple views of the same scene,

to enhance overlapping human instances discrimination and provide sparse su-

pervision to body part segmentation. A state-of-the-art multi-human parsing

architecture is fine-tuned exploiting the weak supervision provided by multi-view

human instance segmentation ground-truth, in order to enhance human instance
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parsing on strong occlusions.

The proposed learning framework has been validated considering the AIPars-

ing architecture, state-of-the-art model for multi-human parsing, and the CIHP

dataset. Experimental results show the effectiveness of the approach that, on

images presenting extensive occlusions between human bodies, is able to signifi-

cantly improve body parts and human instance segmentation quality, achieving

an advantage in terms of part-aware mean Intersection-over-Union up to the

4.25% with respect to the AIParsing network. The main criticality remains the

one related to the representation gap between multi-human parsing datasets, in-

cluding both human instance discrimination and fine-grained body parts labels,

and human instance segmentation ground-truth used to guide the fine-tuning,

providing coarser granularity information. This leads to a degradation in body

part prediction accuracy that, when facing very challenging scenarios, such as

largely occluded people, is counter-balanced by the amount of human body that

the model is now able to recover. When evaluated on a broader set of images in

which occlusions are not so critical, such as the entire CIHP validation set, this

effect becomes visible and the gained advantage is very diminished. The contri-

bution of a body parts prediction consistency constraint across multiple views, is

not sufficient to completely solve the issue.

To conclude, the objective of this thesis was indeed satisfactorily achieved,

as the proposed approach is able to improve multi-human parsing performance

on the very challenging scenario in which people are strongly occluded one with

the other. Future developments and research will be devoted to mitigating the

detrimental effect found on body parts segmentation accuracy, which would allow

to enhance multi-human parsing also on images which do not present occlusions.

As the proposed approach does not depend on a particular multi-human parsing

architecture or on a predefined set of body parts of interest, the generalization

capabilities of the proposed approach will also be evaluated, applying the devised

learning framework to other networks and datasets, such as LV-MHP-v2.0, par-

ticularly challenging as providing annotations for more than 50 semantic classes.
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