
UNIVERSITA’ DEGLI STUDI DI PADOVA

Dipartimento di Ingegneria Industriale DII

Corso di Laurea Magistrale in Ingegneria Aerospaziale

DENSE MONOCULAR VISUAL ODOMETRY AIDED BY

RANGE SENSORS FOR MOBILE ROBOTS

Relatore: Stefano Debei

Correlatore: Marco Pertile

Luca Brugiolo mat. 1063985

Anno Accademico 2017/2018

3

Table of Contents

 Riassunto esteso...5

 Introduction...7

 Related Works..9

1 Theoretical framework..11

 1.1 Homogeneous Coordinates..11

 1.2 Pinhole model..12

 1.2.1 Distortions..16

 1.3 Epipolar Geometry..16

 1.3.1 Fundamental Matrix...18

 1.4 Triangulation...20

 1.4.1 Triangulation: Ideal Case...20

2 Monocular Visual Odometry (MVO)...23

 2.1 Hybrid MVO...23

 2.2 Map Initialization..24

 2.3 Map Scaling...24

 2.4 Local Bundle Adjustment (BA)...25

 2.5 Hybrid MVO:Results..26

3 Dense Monocular Algorithm..27

 3.1 Stereo/Mono Dense reconstruction...27

 3.2 Algorithm Overview..28

 3.3 DM Algorithm:Fundamental Matrix...31

 3.4 Features...31

 3.4.1 Speed-up Robust Features (SURF)..32

 3.4.2 Features Filtering..34

 3.5 Rectification..35

 3.5.1 Linear Rectification Method..36

 3.5.1.1 Hartley Rectification...37

4

 3.5.1.2 Loop and Zhang Sharing Transformation...38

 3.5.1.3 Centering The Pictures..40

 3.5.2 Polar Rectification Method..41

 3.5.2.1 Determining The Common Region...43

 3.5.2.2 Sweeping and Resampling..44

 3.6 Disparity Calculation...45

 3.7 DM Algorithm: Triangulation...46

 3.7.1 Linear Triangulation...47

 3.7.2 Ideal Set-Up..48

 3.8 Point Cloud..49

 3.8.1 Radius Outlier Filter...49

4 Results...51

 4.1 Results: Linear Rectification...52

 4.2 Results: Polar Rectification...70

 4.2.1 Polar Rectification: Corridor 60°...73

 4.2.2 Polar Rectification: Corridor 45°...92

 4.2.3 Polar Rectification Corridor 0°...109

 Conclusions..121

 Bibliography...123

5

Riassunto esteso

Gli strumenti tradizionalmente utilizzati per odometria visuale e ricostruzione densa

possono essere poco adatti per veicoli di piccole dimensioni, a causa delle loro limitazioni

di potenza, massa e volume.

 Un configurazione monoculare è in grado di superare queste limitazioni. Un sistema

monoculare è in grado di ricavare le pose della camera, e quindi il moto del veicolo;

queste pose, tuttavia, non risulteranno scalate. Per superare questo problema si propone

l’utilizzo del algoritmo di odometria monoculare ibrida sviluppato da Sebastiano

Chiodini, Riccardo Giubilato, Marco Pertile and Stefano Debei [1]. Una volta che le pose

sono accuratamente scalate, è possibile completare la ricostruzione densa, trattando una

coppia di immagini successive come una coppia stereo.

 Questa tesi si concentra primariamente nel definire un algoritmo di ricostruzione densa

monoculare, scritto ed ideato per lavorare in concerto con l’algoritmo di odometria

visuale monoculare ibrida sopra menzionato. La tesi è suddivisa in quattro capitoli

principali.

 In apertura si riprendono alcune delle basi teoriche fondamentali della visione artificiale,

in particolare il modello pin-hole, la geometria epipolare e la triangolazione.

 Nel secondo capitolo viene brevemente presentato l’algoritmo di odometria visuale

monoculare ibrida scritto e progettato da Chiodini et al [1]. A questo punto, per superare

l’incertezza di scala delle pose, viene proposto di accoppiare le misure ricavate da una

singola camera RGB con le misure ottenute da una camera a tempo di volo di ridotto

campo di vista. Questa configurazione ha l’obbiettivo di mantenere i pregi principali di

una configurazione monoculare; ovverosia, bassa potenza e basso volume e massa

occupati.

 Il terzo capitolo, che rappresenta il cuore della tesi, descrive dettagliatamente

l’algoritmo di ricostruzione densa monoculare. Quest’algoritmo usa le pose ricavate

dall’odometria monoculare per analizzare coppie di immagini come farebbe un

tradizionale algoritmo di ricostruzione stereo. Per poter far questo, l’algoritmo di

6

ricostruzione densa monoculare deve correggere la geometria epipolare delle immagini in

modo che sia uguale a quella stereo. Quindi, esso ricava la geometria epipolare di ogni

coppia di immagini, e la descrive tramite la matrice fondamentale. Dopodiché, ricerca e

accoppia features tra le immagini, che saranno utilizzate durante la fase di rettifica e per

costruire una nuvola di punti sparsa. A questo punto, l’algoritmo sceglie che metodo

utilizzare per correggere la geometria epipolare delle immagini. Se questa è simile a

quella stereo, allora viene utilizzata la rettifica lineare; se invece i punti epipolari sono

vicini o interni alle immagini, l’algoritmo rettifica le immagini con un metodo polare.

Completata la rettifica, ovvero l’operazione che trasforma la geometria epipolare delle

immagini, l’algoritmo cerca corrispondenze dense tra le due immagini. Da questa

informazione, l’algoritmo triangola la posizione dei punti nell'immagine, ottenendo così

la loro corrispondente posizione tridimensionale. Questa viene usata per costruire una

nuvola di punti densa, che poi viene filtrata per rimuovere rumore, e infine trasformata

nel sistema di riferimento globale. Quest’operazione viene ripetuta per ogni coppia di

immagini nella sequenza analizzata.

Nel capitolo finale vengono presentati e descritti i risultati della ricostruzione densa

effettuata su diverse sequenze. Il capitolo è diviso in due parti: nella prima, si descrivono i

risultati per sequenze rettificate con il metodo lineare; nella seconda, i risultati di

sequenze rettificate con il metodo polare. Le sequenze rettificate con il metodo lineare

hanno una geometria epipolare facile da risolvere; la loro ricostruzione densa risulta

accurata, e non ha presentato problemi notevoli. Di contro, le sequenze rettificate con

metodo polare che progressivamente si allontanano da una geometria epipolare ideale

peggiorano nei risultati. Nelle prime due sequenze, dove la camera è orientata

rispettivamente a 60° e a 45° dalla direzione del moto, la ricostruzione è meno accurata

del caso lineare; tuttavia, l’ambiente ricostruito nelle nuvole di punti dense si avvicina

ancora a quello visto dalla camera. Nell'ultimo caso, la camera era montata con asse ottico

parallelo alla direzione del moto. In queste condizioni, la geometria epipolare è troppo

complessa da risolvere ed il metodo polare deforma sensibilmente le immagini. Le

risultati nuvole di punti dense sono quindi poco accurate e poco rappresentative

dell’ambiente visto dalla camera.

7

Introduction

Instruments traditionally used to compute Visual Odometry (VO) and Dense

Reconstruction (DR) can be inadequate for small vehicles, due to their limitation to

volume, mass, and power. This is especially true for rovers designed for planetary

exploration.

 Visual Odometry is a process that estimates the position and orientation of a vehicle

during its motion using only information provided by the vision system mounted on the

vehicle. To do this, the VO keeps track of same landmarks, registered in a sequence

during a given period of time. Then, this information is used to compute the rotation and

translation of the vision system at different time steps. From the motion estimate of the

camera and the calibration between the vehicle and the vision system, the VO finds the

motion of the vehicle. The most common VO algorithms utilize a stereo set-up as a vision

system. However, this type of configuration is not always possible in exploration

vehicles, given the strict constraint in terms of mass and volume.

 The aim of Dense Reconstruction is to accurately represent in a 3D map the environment

exactly as seen by the vehicle while moving. A DR algorithm can provide useful

information about the objects and obstacles surrounding the vehicle, information that a

sparse based method can not provide. Instruments that are usually employed to complete

DR are range sensor with an ample Field of View (FoV). Two of such instruments are 3D

LiDARs and RGB-D cameras. They are able to directly build a 3D map of the

environment as seen inside their FoV. However, they have some specific limitations.

While adequate for indoor application, an RGB-D camera has degraded performances if

used outside. On the other hand, 3D LiDARs do not suffer from this limitation : however,

they are bulky and heavy and are highly power consuming. An alternative is to use a

stereo set-up, but the limits in volume on small vehicles render this set-up hardly feasible.

 A solution, to surpass these limitations in small rovers and robots, is to use a monocular

set-up to complete both VO and DR. However, a pure monocular set-up is only able to

compute the camera poses up to scale. The solution we adopted in this thesis was

8

designed by Sebastiano Chiodini, Riccardo Giubilato, Marco Pertile and Stefano Debei

[1]. Following their method, we adopted a hybrid system composed of a small Time of

Flight (ToF) camera and an RGB-camera to eliminate the scale uncertainty.

 Once the poses are correctly scaled, we use that information in an algorithm that

compute a dense reconstruction. This is done by considering every subsequent pair of

pictures as a pair in a stereo set-up, and using the newfound scaled poses to adjust their

epipolar geometry. Therefore, an algorithm written for a Dense Monocular Visual

Odometry is composed of two parts:

1. The first part uses the information gathered through images taken by a monocular

setup and by a range sensor to define the position and orientation of the rover

through time. This is the Monocular Visual Odometry (MVO) step.

2. The second part uses the MVO information and the camera images obtained

during the previous step to build a dense reconstruction of the environment as

seen by the rover during its motion. This is the Dense Reconstruction part (DR).

 The algorithm presented in this thesis focus on the second part. It was written in order to

work in conjunction with the MVO written by Chiodini et al.

 A part from this introduction the thesis consist of four main chapters. Initially, we

introduce some preliminaries concepts regarding computer vision. Then, as a

methodological basis, we report a brief overview on the MVO algorithm. Only at this

point we are able to properly describe the DR algorithm. Finally, in the last parts, we

report the results gathered with five different datasets, and we discuss them.

9

Related Works

For what concerns the Monocular VO approach, the algorithm was provided by Chiodini

et al. For this reason, we invite the readers to consult their works for a thoughtful

explanation of how the ego-motion is estimated [1].

 The Monocular Dense Reconstruction algorithm depends heavily from the polar

rectification design by Marc Pollefeys, Reinhard Koch and Luc Van Gool [2]. Marc

Pollefeys and Sudipta Sinha discuss the iso-disparity surfaces for a general camera

motion in [3], and the uncertainty of reconstruction in the direction of motion due to the

distortion of these surfaces. S. Cavegn, N. Haala, S. Nebiker, M. Rothermel and T.

Zwölfer [4] in their six cameras set-up utilize the polar rectification to correct the epipolar

geometry of forwarding facing pairs of cameras. Then, they use this data to compute a

dense reconstruction in a way similar to the one proposed in this thesis.

 One of the most advanced algorithms for Monocular Dense Reconstruction is REMODE

[5] designed by Matia Pizzoli, Christian Forster and Davide Scaramuzza. REMODE is

able to accurately reconstruct the scene in real time, to compute the depth maps it uses a

probabilistic approach based on a Bayesian estimation. This is combined with a

smoothing method in order to provide spatial regularity and to mitigate the effect of noisy

camera localization.

 W. Nicholas Greene, Kyel Ok, Peter Lommel, and Nicholas Roy [6] designed an

accurate method to compute Monocular Dense Reconstruction that builds the depth maps,

dividing the frames into images regions based on the available texture. This allows them

to represent the different portions of the image differently based on the information it

contains.

10

11

Chapter 1

Theoretical framework

Although this thesis is not eminently concerned with the speculative aspects of Visual

Odometry and Dense Reconstruction, the theoretical grounding supporting these sets of

algorithms will be recalled frequently during the text. For this reason, it could be of some

use to briefly recollect the core elements of this theory.

1.1 Homogeneous Coordinates

Homogeneous coordinates are a type of coordinates used in projective geometry. They are

largely employed in computer vision, where they greatly simplify the vast majority of the

equations involved, leading to simpler formulations than their Cartesian counterpart.

 They were firstly introduced by A. F. Mobius in his 1827 work Der barycentrische

Calcül, as a set of coordinates capable to represent every point with finite coordinates.

Beyond that, they are able to define even points at infinity. In order to do this, coordinates

of N dimension in the Euclidean space are mapped to coordinates of N+1 dimension in

the homogeneous coordinate.

 For a given point x (x,y) a set of homogeneous coordinates is xh (xZ,yZ,Z) for any not

null value of Z. Therefore, a point in the Euclidean space is mapped to a series of

equivalent homogeneous coordinates, which differ themselves only by a scalar Z. As

such, even (x,y,1) represent the same point (x,y) in the Euclidean space.

 At this point, it could be of use to recall briefly some of the cardinal proprieties of

homogeneous coordinates:

• If we multiply the homogeneous coordinates for a non null scalar, we obtain a set

of homogeneous coordinates mapping the same point in Euclidean space.

• A line in homogeneous coordinates is defined by N+1 variables;

For the 2D space a line l in homogeneous coordinates is represented by:

12 1.1 Homogeneous Coordinates

l=(a ,b , c)T (1.1)

• l consist of the homogeneous points x (x,y,z) that satisfy:

xT l=ax+by+cz=0 (1.2)

• The line passing through two points x1 , x2 is given by the cross product:

l=x1∧x2 (1.3)

1.2 Pinhole model

A camera model projects points from the 3D space to a 2D plane, the image plane. The

simplest of these models is the pinhole model.

 This model is based upon the idealization of the thin lens model when the aperture

shrinks to zero. In this conditions, all light rays are parallel to the optical axis and are

focused to the focal point of the optical system. This is just an idealization, because in

those conditions no light would actually pass through the lens: nevertheless, it can be

used for points that are on focus.

 We will take into account a 3D orthogonal coordinate system centered on the camera

center, with its Z axis as the optical axis of the camera. The image plane, then, is a plane

perpendicular to Z and distant f, the focal length, from the camera center. A line from the

camera center to a point in 3D space intersect the image plane on a point m: the position

of this point can be defined on the image plane through a 2D coordinate system, centered

at the intersection of the image plane with Z and with axis x and y parallel to the axis X

and Y of the 3D system.

Chapter 1. Theoretical framework 13

Figure 1.1: Pin-Hole model

 Let P be the point in the 3D space with coordinates:

P=[X p , Y p , Z p]
T (1.4)

and m the projection of P on the image plane with coordinates in the 2D plane:

m=[xm , ym]
T (1.5)

Then, through similar triangles, a relationship between the 3D and 2D coordinate systems

can be defined:

xm=f XP /ZP ym=f Y P/Z P (1.6)

C
1

P

Z

X

Y

m

f

14 1.2 Pinhole model

 This relation in homogeneous coordinates can be written as follow:

λ [
xm

ym

1]=[
f 0 0
0 f 0
0 0 1] [

1 0 0 0
0 1 0 0
0 0 1 0] [

XP

Y P

ZP

1
] (1.7)

Where λ is the depth factor and is equal to Zp.

 However, points in the image plane are not normally defined through a system centered

at the intersection with the Z axis. Also, they are measured in pixels and not in meters:

this is due to the fact that the image plane is the sensor of the camera. Thus, the position

on the sensor is discretized in pixel, and the coordinates are centered on the top left corner

of the sensor. The conversion to the pixel coordinates is easily done; if the camera is

calibrated accordingly, then:

u=kx xm+cx v=k y ym+c y (1.8)

Where u is the coordinate in the direction parallel to x, v parallel to y. cx and c y are the

positions of the center of the sensor in pixel coordinates. k x and k y are scale factors

from meters to pixels in the two directions.

Equation 1.7 then becomes:

λ [
u
v
1]= [

k x k s c x

0 k y c y

0 0 1] [f 0 0
0 f 0
0 0 1] [

1 0 0 0
0 1 0 0
0 0 1 0] [

X P

Y P

ZP

1
] (1.9)

Where k s is the skew factor. If the sensor axes are not orthogonal, then this factor must

be taken into consideration. However, in the majority of the cases, k s is null.

Chapter 1. Theoretical framework 15

The product of the first two matrices on the right side of the equation is called calibration

matrix:

K=[
k x ks c x

0 k y c y

0 0 1] [f 0 0
0 f 0
0 0 1]=[

k x f k s f cx

0 k y f c y

0 0 1] (1.10)

K is also called the intrinsic parameters matrix, because it contains the information on the

intrinsic parameters of the camera.

 If the camera system does not coincide with the world system, we need to account for it.

Therefore, we transform the coordinate from the camera system to the world system. Let

R and t be the rotation and the translation that bring the coordinates from the world

system to the camera system, then:

X c=[R∣t] Xw (1.11)

Where X c are the coordinates in the camera system, the one used until this point, and

Xw are the world coordinates.

Equation 1.11 can then be written as:

λ [uv1]= K [R∣t]Xw (1.12)

Where the product between the calibration matrix and the roto-translation matrix is called

the projection matrix:

Pj= K [R∣t] (1.13)

16 1.2 Pinhole model

And thus :

ẋm=[Pj]Xw where ẋm=[λ u
λ v
λ] (1.14)

1.2.1 Distortions

 The lens on a camera tends to distort the image. This distortion is defined through seven

coefficients, grouped in two different set:

• k1 , k2 , k3 , k4 , k5 are radial distortion coefficients.

• p1 , p2 are tangential distortion coefficients.

 We obtain these coefficients through the calibration of the camera. Then, we correct the

distortions as follows:

r 2
=xm

2
+ ym

2

xm '=xm

1+k1 r2
+k2 r4

+k3 r6

1+k 4 r2
+k5 r4

+k6 r6 +2 p1 xm ym+ p2(r
2
+2 xm

2
)

ym '= ym

1+k 1r2
+k 2r 4

+k3 r6

1+k4 r 2+k5r 4+k6 r6 +2 p2 xm ym+p1(r
2
+2 ym

2
)

u=fk x xm '+c x v=fk y y m '+c y

(1.15)

1.3 Epipolar Geometry

The epipolar geometry is used to describe relationship between corresponding points in

different camera views. For the sake of simplicity simplicity, we have decided to explain

the epipolar geometry by referencing to stereo setup.

Chapter 1. Theoretical framework 17

 We define the epipolar geometry with a set of planes that have a common axis: the

baseline. These planes are called epipolar planes: the intersection of those plane with the

image planes define the epipolar lines, and the intersection of the baseline with the image

planes define the epipolar points. The baseline is the line passing through the two camera

center, so the epipolar point of one image is the projection on that image plane of the

camera center of the other image.

Figure 1.2: Epipolar geometry

 Let us identify a point in the 3D space as X. This point and his projection on the left and

right image planes, x1 and x2 , lie on the same epipolar plane. Considering another 3D

point the epipolar plane and lines change, but the epipolar points remain the same.

Therefore, all the epipolar lines on one image plane intersect the epipolar point for that

image. If only the position of x1 and the epipolar geometry are known, then the epipolar

plane passing through x1 is defined, and so are the epipolar lines l1 and l 2 . Therefore,

we can search for the point x2 only along the epipolar line l 2 instead of the whole right

image. This correlation between points on different images is called epipolar constraint

and greatly simplifies the research and match of corresponding points in an image pairs.

C
1

X

C
2

x
1

x
2

e
1

e
2

l
1

l
2

Epipolar plane

18 1.3.1 Fundamental Matrix

1.3.1 Fundamental Matrix

The fundamental matrix is a 3x3 matrix of rank 2 and the algebraic representation of the

epipolar geometry. Given X and the corresponding points x1 and x2 written as

homogeneous coordinates, then:

x2
T F x1=0 (1.16)

where F is the fundamental matrix. Equation 1.16 algebraically represents the epipolar

constrain.

 Given a couple of images there is only one set of fundamental matrix able to satisfy

Equation 1.16 for all corresponding points x1 , x2 . This set of matrices differentiate

themselves only for a scale factor.

 This matrix can be seen as a sort of map from one point on an image to the

correspondent epipolar line on the other image:

l1=FT x2 l2=F x1 (1.17)

All the epipolar lines on one image intersect on the epipolar point, e i of that image.

Thus:

e1
T l 1=e1

T FT x2=0 e2
T l 2=e2 F x1=0 (1.18)

for every point x1 and x2 , it follows that:

F e1=0 FT e2=0 (1.19)

Chapter 1. Theoretical framework 19

 The fundamental matrix can be derived algebraically using the projection matrices P j 1

and P j 2 . All the points that project from the 3D space to the point x1 in the image plane

of the first camera can be defined by [7]:

X (λ)=Pj1
+ x1+λ C1 (1.20)

Where: Pj1
+ is the pseudo-inverse of the projection matrix Pj1 , and C1 is the position in

homogeneous coordinates of the camera center of the first camera.

 Equation 1.20 represents a parametrization through λ of the ray back projecting from x1

to the 3D space. In particular, two points lays on this ray, the camera center C1 and

Pj1
+ x1 . These two points are represented on the image plane of the second camera on

Pj2 C1 and Pj2 Pj1
+ x1 . A line on the image plane of the second camera

l 2=Pj2 C1∧Pj1
+ x1 passes through these two points; this has to be an epipolar line, since

Pj2 C1 is the epipolar point e2 . Thus:

l 2=Pj2 C1∧Pj1
+ x1=[e2]^ Pj1

+ x1=F x1 (1.21)

and so from:

F=Pj2 C 1∧Pj1
+
=[e2]^ Pj1

+ (1.22)

the Fundamental matrix is obtained, once the projective matrices of the two cameras are

known.

 As a simple example, we will consider a calibrated stereo set-up, with the left camera

reference system coinciding with the world camera system. In this example, therefore:

Pj1=K 1[I∣0] Pj2=K2[R∣t] (1.23)

20 1.3.1 Fundamental Matrix

Pj1
+=[K 1

−1

0] and C1=[01] (1.24)

F=[Pj2 C1]^ Pj1
+
=[K2 t]^ K 2 R K1

−1= K2
−T

[t]^ R K1
−1 (1.25)

F=K2
−T

[t]^ R K1
−1= K2

−T R[RT t]^ K1=K 2
−T R K1

T
[K 1 RT t]^ (1.26)

1.4 Triangulation

Triangulation is the process that let us determine the position of a point in the 3D space

by matching points in the image planes. Essentially, if x1 is a point in first image and x2

is the corresponding point on the second image, then the line from the camera center of

the first image, C1 , that pass through x1 and the line from the second camera center C2

and x2 will intersect in a position in the 3D space. Furthermore, these two lines intersect

one another only if the two points satisfy the epipolar constraint.

 Solving the triangulation problem means finding the X that satisfy:

ẋ1=Pj1 X ẋ2=Pj2 X (1.27)

For every given couple of points ẋ1 and ẋ2 on the image plane.

1.4.1 Triangulation: Ideal Case

In an ideal stereo set-up, the two cameras must have the optical axes parallel one another

and perpendicular to the baseline. The rotation matrix between these cameras is the

identity matrix, and the translation is only in the horizontal direction with a magnitude

equal to the baseline. Also, the cameras must have the same intrinsic parameters.

 We will consider an ideal stereo set-up, where the world coordinate system coincides

with the left camera coordinate system. In this case, the position of a point P in the 3D

Chapter 1. Theoretical framework 21

space can be related to its correspondent position on the two images planes through

Equation 1.12. Therefore:

λ1[
u1

v1

1]= K [
1 0 0 0
0 1 0 0
0 0 1 0] [

X P

Y P

ZP

1
]

λ2[
u2

v2

1]=K [
1 0 0 −b
0 1 0 0
0 0 1 0] [

XP

Y P

Z P

1
]

(1.28)

these equations are easily solved for X p , Y p and Z p :

X p=b
u1−c x

u1−u2

Y p=b
kx

k y

v1−c y

u1−u2

Z p=b k x
f

u1−u2

(1.29)

22

23

Chapter 2

Monocular Visual Odometry

(MVO)

In this chapter, we are going to describe the Monocular Visual Odometry (VO) algorithm,

necessary for the correct operating of the Dense Monocular Reconstruction algorithm.

The MVO algorithm was created by Sebastiano Chiodini, Riccardo Giubilato, Marco

Pertile and Stefano Debei [1]. They propose an Hybrid solution to the scaling problems

concerning a typical Monocular Visual Odometry. Namely, they couple the information

provided by an RGB-camera to the data gathered with a Time-of-Flight camera of small

Field of View.

 The aim of a Monocular Visual Odometry algorithm is to provide an accurate ego-

motion estimate of a moving vehicle. The information obtained can then be passed to the

Dense monocular reconstruction algorithm to build a 3D representation of the

environment viewed by the camera. This chapter provides only a brief explanation of how

the Monocular Visual Odometry algorithm of Chiodini et al. Works.

2.1 Hybrid MVO

In a monocular set-up, the information provided by an RGB camera is not sufficient to

produce an accurate VO. An RGB camera, in fact, is only able to define the VO up to

scale. Therefore, to accurately scale the VO we need a range sensor.

 The hybrid Monocular VO uses a low-resolution Time-of-Flight (ToF) camera to

compensate the scale ambiguity of a monocular VO. This hybrid set-up preserves the

main perks of a monocular VO. Namely, these are three: low power usage, low mass, and

low volume occupied. The authors of this algorithm provide also a method to calibrate the

relative position and orientation between the ToF camera and the RGB-camera [8].

24 2.1 Hybrid MVO

Thanks to this calibration, the Monocular VO algorithm can transfer the ToF data to the

camera reference system.

The principal elements of this Hybrid Monocular VO are:

• Map initialization.

• VO scaling.

• Local bundle adjustment.

2.2 Map Initialization.

At the start, the algorithm initializes an unscaled 3D map. It takes two consecutive

frames, and detects their features. Then, it uses this information to find an unscaled

transformation between the two frames. With this newfound transformation, it

triangulates the features in an unscaled 3D cloud. At this point, it completes a full bundle

adjustment to correct the two camera poses. This bundle adjustment optimizes the 3D

cloud and the roto-translation matrix for the camera pair.

2.3 Map Scaling

To accurately scale the VO, the algorithm finds corresponding landmarks between the

ToF camera and the RGB-camera. Chiodini et al describe two possible methods: an

association on the image plane, and an association on the landmarks map space.

1) Image plane association

Firstly, the algorithm transfers the ToF 3D data from the ToF reference system to the

reference frame of the first frame in the pair. To associate points from the ToF to the

RGB-camera, we need them to be in the same plane. Therefore, the algorithm projects the

points of the ToF to the image plane of the first frame. For every newfound point, it finds

a matching point in the second frame. This is done by computing their descriptor and

searching for matching points in the second frames only along corresponding epipolar

Chapter 2. Monocular Visual Odometry (MVO) 25

lines. Then, it triangulates the matching points, and compares their three positions with

their respective position from the ToF. From this comparison, it gets a scale factor. The

algorithm then uses this scale factor to adjust the estimated transformation. Finally, it

performs a local Bundle adjustment to optimize the camera poses obtained until that

point.

2) Landmarks space association

The first step of this method is identical to the previous one. Again, the points from the

ToF are projected to the image plane of their respective camera. Then, for every point, the

algorithm finds three Speeded-up Robust Features (or SURF; we will expand the

definition of this method later during the thesis) around it. It triangulates the position of

these three features, obtaining a set of three points in the 3D space. These three points are

used to define a plane in 3D space. If the estimate of the unscaled transformation was

correct, then this plane would contain the 3D points of ToF camera. Therefore, the

algorithm finds a scale factor from the intersection between the plane and the rays back-

projecting from the ToF cloud to the camera.

2.4 Local Bundle Adjustment (BA)

At regular intervals, the algorithm performs a local bundle adjustment to improve the

computed poses. Bundle adjustment is a global optimization method largely used in VO

[9]. It utilizes correspondences between the data calculated at the various frames to

optimize the camera poses. Therefore, it requires that the algorithm keeps track of the

same landmarks as view by different frames. A global bundle adjustment can be highly

time consuming. Furthermore, the hybrid Monocular VO algorithm does not perform loop

closure, so it does not need to perform a global bundle adjustment.

 The proposed algorithm performs a local bundle adjustment, optimizing only the poses

for a fixed number of previous frames. The data the algorithm uses to compute the

bundle adjustment is: the key-points, their relative 3D position, the cloud of the ToF

26 2.4 Local Bundle Adjustment (BA)

camera, and the camera poses. Then, the optimization problem can be solved with the

Levenberg-Marquardt optimization.

2.5 Hybrid MVO:Results

To evaluate the hybrid MVO algorithm, Chiodini et al. mounted the RGB-camera and the

ToF-camera on a linear slide with a resolution of 1 mm. The vision system took pictures

at fixed intervals of 50 mm; this measurement gave them the ground truth necessary to

evaluate the results of the MVO.

 They tested three different sequences: an indoor sequence, an outdoor sequence, and a

non-planar sequence. In all the sequences, the hybrid MVO algorithm is able to retrieve

the scene absolute scale with both scaling methods. The relative error is comparable with

the standard stereo set-up. Therefore, we can state that the accuracy of the estimated

poses is sufficient to achieve a correct dense reconstruction.

27

Chapter 3

Dense Monocular Algorithm

The following chapters will focus on the presentation of the Dense Monocular (DM)

algorithm. We will start providing a general overview of the main issues and limits

relative to the use of a monocular set-up instead of a stereo set-up. Secondly, we will

present a general overlook of the algorithm itself. Then, the main elements of the DM

algorithm will be explained in details. We will review how they operate in practice, and

how they cooperate to complete the dense reconstruction.

3.1 Stereo/Mono Dense reconstruction

A stereo set-up is composed of two cameras in a fixed position between one another. The

two optical axes are parallel, and the vector that connects the two camera centers, the

baseline, is always perpendicular to the optical axis.

 The stereo set-up takes two pictures at the same time, one from the left camera, the other

from the right camera. From these pictures, it forms one pair. This pair is easily analyzed

by a dense reconstruction algorithm because:

• The relative position between the cameras is fixed and know.

• The epipolar lines on the left and right pictures are always parallel and have the

same direction of the baseline vector.

• The pictures require little to none adjustments to calculate a correct depth map.

All this greatly simplifies the process needed to complete the dense reconstruction.

 In a monocular set-up, all the images are taken by only one camera. Therefore, we form

a pair with pictures taken at subsequent times by the same camera. Furthermore, the

camera pose can change significantly from one frame to another. Therefore, the

orientation of the optical axis and the baseline can change significantly from one frame to

the other.

28 3.1 Stereo/Mono Dense reconstruction

 Some of the issues regarding the monocular set-up are apparent:

• The optical axis on the two camera poses are not generally parallel one another,

because the camera can move freely.

• The vector between the camera centers at subsequent times is not perpendicular to

both camera axis.

Therefore, for every pair of images in a monocular set-up, the fundamental matrix

changes. Furthermore, the epipolar geometry is not well defined as in a stereo set-up:

epipolar lines are not horizontal, they are not parallel one another, and corresponding

epipolar lines do not align.

 To solve this problem we need to find the fundamental matrix between the two poses.

Then, we can use this matrix to transform the pair in a rectified image pair. This pair will

have the same epipolar geometry of an ideal stereo pair.

3.2 Algorithm Overview

The code for the Dense Monocular algorithm was written in C++ and largely used the

OpenCV library [10] and the Point Cloud Library [11].

 The algorithm requires three sets of inputs: a stream of images, the camera poses on

these images, and the intrinsic parameters of the camera.

 The main cycle starts by loading a pair of pictures and the corresponding camera poses.

From the camera poses, the algorithm calculates the fundamental matrix and the

projective matrices. After that, the algorithm checks if one of the epipolar points is near

the image planes, to evaluate witch rectification method should be used.

 The next step is the feature detection and matching process; here, the algorithm looks for

features and matches them using SURF (Speeded-up Robust Features). Then, it filters the

features to avoid mismatch.

 Once the pictures are correctly rectified, the algorithm utilizes a block matching

algorithm to find the disparity map. Then, the algorithm matches every pixel in one image

to the corresponding one in the other image.

Chapter 3. Dense Monocular Algorithm 29

 From that information, the algorithm is able to triangulate the position of the points of

the picture in the 3D space, and build the dense points cloud. The features obtained

previously are also triangulated to build a corresponding sparse point cloud.

 At this point, the algorithm filters the dense cloud to remove noise. Both clouds are then

transformed from the camera system to the world system using the camera poses loaded

at the start of the cycle. The clouds are then pushed in two different vectors, one for the

dense cloud and one for the sparse cloud. The main cycle starts again and repeats until all

the subsequent pairs are analyzed.

 Lastly, an optional evaluation step begins. The algorithm analyzes the dense point cloud

to calculate the average distance between subsequent dense clouds. The dense clouds

should partly overlap one with another; therefore, their average distance should be low.

We use this parameter to judge the point clouds registration, namely how well the point

clouds combine one with another. Another parameter used to judge the quality of the

dense reconstruction is the distance between a dense point cloud and the corresponding

sparse point cloud. This evaluation step, however, is optional and time-consuming.

Therefore it should be done only during verification.

 Only at this point, the algorithm access the dense cloud vector and it outputs a 3D

visualization of a single cloud or of all the clouds in the vector.

 The algorithm is summed up in Figure 3.1.

30 3.2 Algorithm Overview

Figure 3.1: Simple diagram of the algorithm.

Initialization

Fundamental
Matrix

Calculation

Features
Detection and

Matching

Check
Epipolar Points

Position

Linear
Rectification

Polar
Rectification

Block
Matching

Triangulation

Point Clouds

Visualization

Chapter 3. Dense Monocular Algorithm 31

3.3 DM Algorithm:Fundamental Matrix

The first step of the main cycle is the calculation of the fundamental matrix.

 The fundamental matrix, as mentioned before, is an algebraic representation of the

epipolar geometry. For us, it is necessary to know this matrix due to the fact that block

matching algorithms are written to work with a pair of pictures obtained with an ideal

stereo set-up. In an ideal stereo set-up, an image pair has parallel, horizontal epipolar

lines. Furthermore, correspondent epipolar lines in the two images align one another.

Therefore, the block matching algorithm looks for a feature matching one on an image,

only along the same row of the other image. Since the fundamental matrix encapsulates

the epipolar geometry, it gives us the information necessary to transform the images in

such a way that their resulting epipolar geometry matches the one of an ideal stereo pair.

 We calculate the fundamental matrix with Equation 1.22, which requires as input the

projective matrices of the images composing the pair. We calculate these matrices

accessing the camera poses, the intrinsic parameters, and using Equation 1.13. From the

fundamental matrix we compute the position of the epipolar points, and check if they are

inside or near the image. We do this to evaluate witch rectification method the algorithm

should use. This passage will be better clarified in the rectification section.

 The fundamental matrix is extremely important, since the accuracy of the rectification

process depends on it. Therefore, the more accurate is the calculation of the fundamental

matrix, the more accurate the dense reconstruction will be.

3.4 Features

The DM algorithm requires matching features during rectification step, if the linear

rectification method is used. Also, the algorithm compute the features to build a sparse

point cloud to evaluate the DR. This point cloud contains fewer points than the dense

counterpart. Nevertheless, the points it contains have a more accurate position. Thus, we

can use it as a measure of the accuracy of the dense reconstruction.

32 3.4 Features

 Features detection and matching is an important part of many computer vision

applications. Some common examples are camera calibration, motion estimation, and

sparse reconstruction. Features are small patches of the image that distinguish themselves

from their neighbors for shape, color, texture or intensity. There are different types of

features detector; we can divide them into two categories, corner and blob:

• Corner detectors search the images for an intersection of edges or borders. They

are fast, but they are not scaling invariant, nor affine invariant.

• Blob detectors use a more complex way to define a feature, which examines the

texture, intensity or color of the patch. They are scaling invariant and affine

invariant, but comparatively slower.

 A feature detector should be chosen accordingly to the type of scene the camera is going

to observe, eventual computational restraints, and motion of the vision system. Taking

these parameters into account, we need to choose a feature detector that is accurate and

have high feature repeatability, efficiency, robustness distinctiveness, and invariance to

photometric and geometric changes. The algorithm works with a monocular set-up.

Therefore, there can be huge variations of camera orientation and of the baseline from

frame to frame. This leads to significant changes in the scale and perspective of the same

features in different frames. Thus we use a blob detector, SURF by Bay, Tuytelaars and

Van Gool [12].

3.4.1 Speed-up Robust Features (SURF)

SURF employs a fast Hessian detector to find features. It finds the Hessian matrix for any

point x (x,y) in the image and for a given scale σ:

H (x , σ)= [Lxx(x , σ) Lxy(x , σ)

Lyx(x , σ) L yy(x , σ)] (3.1)

Chapter 3. Dense Monocular Algorithm 33

Where Lij(x , σ) are the convolution of the Gaussian second order derivative on a point x

in the image I: Lij(x , σ)=∂
2 g(σ)/∂ i∂ j . Then, SURF identifies a point of interest as a

point where the determinant of the Hessian matrix is maximal.

 The method is defined fast because it approximates all these values using a box filter and

integral images which greatly speed up the process.

An integral image I∑ (x) for a point x is obtained by summing up all the values of the

pixels in a square region, which is defined by the origin and the point x:

I∑ (x , y)=∑
i=0

i=x

∑
j=0

j= y

I (x , y) (3.2)

 SURF filters the image starting with a box filter of size 9x9, which is an approximation

of a Gaussian with σ 1.2. Then, it applies a box filter of bigger size to account for size

variation of the features. Specifically, SURF scales the filter to 15x15 then 21 x21, 27x27

and so on. These scale variations correspond to different Gaussian scales. For example, a

size of 27x27 is equivalent to a σ of 3*1,2.

 Once the image is filtered, SURF applies a non-maximum suppression in a 3x3x3

neighborhood to find the points of interest in the image and interpolates the maximal of

the Hessian matrix determinant in image space and scale.

 At this point, SURF associates with every feature founded an orientation. This is done to

achieve rotational invariance. SURF calculates the Haar-wavelet responses in the x and y

directions in a circular neighborhood of the point. Then, it weights the responses with a

Gaussian and it represents them as vectors with component dependent from the horizontal

and vertical responses. From this information, it obtains an orientation of the feature.

 Finally, SURF defines the descriptor of a feature as follows. Firstly, it extracts a square

region centered on the point and oriented along the direction founded with the Haar-

wavelet response. Secondly, it splits this region into 4x4 square sub-regions. Thirdly, for

every sub-region, it calculates the Haar-wavelet responses in 5 equally distant sample

points. Then, it weights them using a Gaussian. In the end, it sums up the weighted

responses in both directions. Thus, for each region it generates the vector:

34 3.4.1 Speed-up Robust Features (SURF)

 v = { ∑ d x ,∑ d y ,∑ |d x | ,∑ |d y | }

Therefore, SURF defines the final descriptor vector merging these vectors of 4 elements

in a vector of 64 elements. Once SURF finds the features and their descriptor for a pair of

pictures, we match features between the two images that have a similar descriptor.

3.4.2 Features Filtering

We filter the matched features to eliminate bad matches due to an erroneous association

between features. In the Monocular Dense Reconstruction algorithm, we use two filters:

• Epipolar constraint filter

• Homography based filter

 The epipolar constraint filter requires that inliers respect the epipolar constraint:

x2
T F x1=0 (3.3)

Due to unavoidable errors and noise in the measurement of the key points position, no

points actually satisfies this constraint. For this reason, instead of requiring x2
T F x1 to be

null, we define a threshold and require for a given set of points that:

| x2
T F x1 | < threshold (3.4)

The threshold is chosen accordingly with the dataset analyzed.

 This filter only guarantees that matching points are going to lay on corresponding

epipolar lines. A mismatch that lies on corresponding epipolar lines is thus not eliminated

by this filter. To remove these mismatches, we utilize the homography filter.

 Homographies are projective transformations that bring points from a 2D space to

another set of points in the 2D space. In our case, the homography taken into account is

used to transfer the key point from one image to another, and to check if they actually

Chapter 3. Dense Monocular Algorithm 35

match in the new common space. This process helps us finding correspondences that

matches for a pattern.

 It must be noted that this homography is not actually applied to the image, but it is only

used to check for inliners for the key points. This homography also differs from the

rectification homography: in fact, this homography does not try to bring the epipolar point

to infinity. Therefore, it can also be used when the epipolar point is inside the image,

without generating infinity big images.

 This filter was judged adequate for the sequences analyzed, because the images contain

a great number of the same planes in different positions, mainly the walls of the corridor

and the ground. Key points that do not lie on these planes or on other planes parallel to

them will be filtered out, as will be seen in the outside sequences.

 A homography can be found only using four points, as described in [13]. Therefore, we

use an iterative method to estimate this homography: RANSAC. In this case, RANSAC

operates following six consequent steps:

1. It selects four random key points points.

2. Then compute the homography from these points.

3. It checks for the number of inliners from the key points.

4. It repeats the process until all key points are sampled.

5. Then it keeps the most numerous inliers.

6. At the end, it calculates new homography from those inliers.

The inliers at every cycle are the point for which:

|| x1−H x1 || < threshold (3.5)

3.5 Rectification

Once we find corresponding features, we pass the information to the rectification process.

The goal of the rectification is to transform the images in the pair so that their epipolar

geometry could transform and became comparable to an ideal stereo pair. We need to

complete this step to accurately match every pixel in one image to the corresponding

36 3.5 Rectification

pixel in the other. The resulting rectified images should have the following epipolar

proprieties:

 The epipolar points have to be at infinity.

 The epipolar lines have to be horizontal and parallel one another.

 Corresponding epipolar lines in the two rectified pictures have to align one

another.

 We present two possible methods of rectification: a linear one based on Hartley

rectification [14], and the polar rectification by Polifileris [2].

Hartley rectification tries to find a 2D projective transformation, or homography, to

rectify the pair. The polar rectification method, instead transforms the image pair using

polar coordinates around their epipolar points. The algorithm chooses which rectification

method to use checking the position of the epipolar points. If one of these points is far

away from the image plane then we use the linear rectification. Otherwise, we use the

polar rectification.

3.5.1 Linear Rectification Method

The linear rectification computes a pair of homography transformation to rectify the

image pair loaded in the cycle. The homographies bring the images from their image

plane to a common virtual rectified plane parallel to the baseline. This process requires

three steps:

1. We find a pair of homographies Hh1 , H h2 with the Hartley rectification method

and apply the transformation to the images.

2. To compensate for eventual unwanted distortion, we compute a shearing

transformation for both images: S1 , S2 . Then we apply S1 and S2 to the images

transformed in step 1.

3. Finally, we center the newly found images applying a translation transformation

T1 ,T2 along the epipolar lines.

Chapter 3. Dense Monocular Algorithm 37

The final homographies that map points from the original un-rectified planes to a virtual

rectified plane are:

H f 1=T1 S1 H h1 H f 2=T2 S2 H h2 (3.6)

We use linear rectification only when the epipolar geometry is almost ideal. Therefore, we

use this rectification method only to compute small, but vital, improvement in the

epipolar geometry.

3.5.1.1 Hartley Rectification

This method of rectification was invented by Richard I. Hartley [14] and is the cardinal

part of the linear rectification process.

 The first objective is to find a projective transformation able to render the epipolar lines

of one of the images horizontal. Therefore, the algorithm computes a transformation that

brings the epipolar point to infinity. Then, it rotates the epipolar lines around the epipolar

point until they are horizontal.

 Now we need a matching transformation for the other image. There is more than just one

possible transformations at this point, and for this reason our solution must be

constrained. As suggested by Hartley, the algorithm impose a minimization of the least-

square distances between matching features.

 Once the algorithm finds both projective transformations, it applies it to the images.

However, it should be noted that Hartley’s rectification may lead to some unwanted

distortions along the horizontal axis (Figure 3.2).

Now, the rectified pair has matching horizontal epipolar lines. However, Hartley’s

rectification distorts the left image. The algorithm calculates the homography for the left

picture with a minimization of the least-square distances between matching features. In

order for this process to work, it requires that the features cover the majority of the

images. The features must have a good uniform coverage in all the picture area. However,

for some sequences, I was unable to find features with adequate coverage on the images.

38 3.5.1 Linear Rectification Method

Figure 3.2: Images rectified only using Hartley's rectification

 I tried relaxing the filter's parameters, to suppress the homography based filter and to

increase the number of features detected by SURF relaxing its parameters. None of these

operations improved the coverage of the features in the images, though. Therefore, I had

to resort to another solution. This solution came from a paper by Loop and Zhang [15],

where they propose a further projective transformation to correct distortions similar to the

ones founded.

3.5.1.2 Loop and Zhang Sharing Transformation

Loop and Zhang suggest to use a sharing transformation:

S=[a b 0
0 1 0
0 0 1] (3.7)

Let us consider the homogeneous coordinates of the middle points on the borders of the

un-rectified images:

u=[
w−1

2
, 0,1]

T

r=[w−1 ,
h−1

2
,1]

T

d=[
w−1

2
, h−1 ,1]

T

l=[0 ,
h−1

2
, 1]

T

Where h and w are the height and width of the image in pixels. Thus, the aim of the

sharing transformation S is to maintain the aspect ratio and perpendicularity of the lines

lr and ud between transformations.

Chapter 3. Dense Monocular Algorithm 39

The algorithm transforms u, r, d and l with the Hartley homography H h :

û=H hu r̂=H h r d̂=Hh d l̂ =H h l (3.8)

From this, the algorithm finds x and y:

x(xu , xv ,0)= l̂− r̂ y (yu , yv ,0)=d̂−û (3.9)

Then, the transformation S preserve perpendicularity when:

(S x)
T
(S y)=0 (3.10)

And the aspect ratio when:

(S x)
T
(S x)

(S y)
T
(S y)

=
w
h

(3.11)

l

u

d

r

w

h

40 3.5.1 Linear Rectification Method

The algorithm then solves this quadratic polynomial up to sign for a and b:

a=
h2 xv

2
+w2 y v

2

h w(xv yu−xu yv)
 b=

h2 xv xu+w2 yv yu

h w(xu yv−xv yu)
(3.12)

We prefer a solution with a positive a. Therefore, if a is negative then the algorithm

inverts the signs of a and b.

3.5.1.3 Centering The Pictures

The algorithm transforms the images with the following homography: H p=S H h . Then,

for every point in the left border of the original image, it finds the corresponding point in

the transformed image. The leftmost of these points should have a horizontal pixel

coordinate of 0. However, this is not always the case, as we show in Figure 3.3.

Figure 3.3: Images rectified at the second step of linear rectification.

 To account for this discrepancy we need to correctly position the images in the rectified

virtual plane. Let Δ be the coordinate of the leftmost point. So, we need to translate the

image horizontally of a quantity Δ. The algorithm finds a translation transformation T:

T=[1 0 −Δ
0 1 0
0 0 1] (3.13)

The algorithm finds T for both images, and then it transforms them.

Chapter 3. Dense Monocular Algorithm 41

 A similar process can be done for a vertical translation, but in this case, the

transformation must be the same for both pictures in order to preserve the epipolar

geometry.

3.5.2 Polar Rectification Method

The linear rectification method fails when the epipolar points are near or inside one of the

image plane. In these conditions, the virtual plane and the image planes forms near

perpendicular angles and the resulting image have huge distortion and is infinitely large.

 When the epipolar points are near the images, we use a different approach: the polar

rectification [2]. This type of rectification is able to find a rectified couple for any type of

motion. Thus, it is the ideal form of rectification for a monocular set-up.

We can divide the polar rectification process in two main operative steps:

1. We determinate the common region.

2. We sample the area in the common region, and remap the points inside this area in

the rectified space.

Before we explain how this method works, we need to introduce two new concepts

related to the epipolar geometry:

• Epipolar line transfer.

• Epipolar line orientation.

Epipolar line transfer:

Epipolar line transfer states that it exists a homography able to map epipolar lines on one

image to the corresponding ones in the other image [2]:

l 2∼H−T l1 or l1∼HT l2 (3.14)

42 3.5.2 Polar Rectification Method

We define H using the fundamental matrix:

H=[e2]^ F+e2 aT (3.15)

Where a is an arbitrary vector for which the determinant of H is not null so that H is

invertible.

Epipolar line orientation:

 Epipolar line orientation reduces the matching ambiguity to half the epipolar line when

the epipolar point is inside the image. Points located on the right side of an epipolar plane

in one image should still be on the right side of that epipolar plane in the other image. We

can guarantee this by imposing that the homography calculated in the previous step

maintain the orientation when transferring the epipolar lines.

Let us consider a couple of matching points in the two images. The product between these

two points and the epipolar lines define the following factors:

f 1(x1)=l1 x1

f 2(x2)=l2 x2

(3.16)

Where we obtain l 2 with Equation 3.14. Then if the two factors shares the same sign the

homography already preserves the orientation of the epipolar line, otherwise we need to

change the sign of H.

Figure 3.4: Convection for the epipolar line
direction

x

e
+

++

+

-
-

-

-

Chapter 3. Dense Monocular Algorithm 43

The convection for the direction of the epipolar line is that it is positive if the matching

points are on the right side of the vector. This side of the image is also called the positive

side.

3.5.2.1 Determining The Common Region

Firstly, we determine the corner lines for both images. These are the lines that pass

through the epipolar point, and one of four corners of the image. So, using homogeneous

coordinates, if c is a corner in the image, then the corresponding corner line would be:

l c=e∧c (3.17)

We call corner lines that do not pass through the images, but only touch the corners,

extremal lines. Therefore, for every image, there are two extremal lines.

 Once we found the extremal lines of the first image, we transfer them from one image

plane to the other. We do this using the epipolar line transfer. If one of the transferred

lines pass through the image, it defines one limit of the common region. We repeat the

same procedure from the second image to the first. Thus, we find the two lines delimiting

the common region. An extremal line whose transformed line does not touch the other

image at any point can never be chosen as a limit line.

 Figure 3.5 represents the three cases that can be encountered determining the common

region when both epipolar points are outside the image.

 If one of the epipolar points is inside the image, then we define the common region only

with the extremal line of the other image. If both epipolar points are inside, then the

common region is all the images.

44 3.5.2 Polar Rectification Method

Figure 3.5: The three cases that can be encountered when determining the common
region for images with epipolar points outside them. The dashed lines are the re-
projection of the extremal lines from the other image in the pair. The colored area is
the common region.

3.5.2.2 Sweeping and Resampling

To build the rectified pictures, we sweep the images rotating the half epipolar lines around

the epipolar point. From the upper limit epipolar line to the other we sample and remap

the area between subsequent half epipolar lines to the rectified space. The distance

between two subsequent half epipolar lines must be at maximum equal to 1 pixel, in order

to avoid information loss.

 At the start of the process, we identify the upper limit line of the first image as l1
1 and its

projection in the second image l1
2 . Therefore, the rectification for the first row of the

rectified image results as follow:

1. We find the intersections between l1
1 and the image border of the first image. Let

a1
1 be the point of intersection nearest to the epipolar point e1 , and b1

1 be the

other.

Chapter 3. Dense Monocular Algorithm 45

2. Similarly, we found the points a1
2 and b1

2 on the second image.

3. We search for the next half epipolar line on the two images l c
i as the half epipolar

line with a maximum distance of 1 pixel from b1
i . Where i = 1, 2.

4. We project l c
2 the first image plane, let us call this newfound line l c

2,1 .

5. We chose the line among l c
1 and l c

2,1 that is closer to b1
1 as the next epipolar line

and we call it l 2
1 .

6. For every pixel in the area between l1
1 and l 2

1 , we calculate its distance from a1
1

along the epipolar line l1
1 .

7. That distance, in the end, results to be the horizontal coordinate of the pixel on the

rectified row of the rectified image.

Then we repeat this process with a new l1
1
=l2

1 . The rectification ends when all the

common region is resampled in the rectified image.

 Once the rectification process is completed we pass the rectified images to the block

matching algorithm, which in return give us the disparity map.

3.6 Disparity Calculation

In dense reconstruction, we want to match every pixel of one image with the

corresponding pixel in the other image. In order to do this, we use a block matching

algorithm. This algorithm computes the distance along the epipolar lines between

matching pixels, otherwise noted as disparity.

 In order to do this the block matching algorithm requires as inputs two rectified images:

one is regarded as the left picture of a stereo pair, the other as the right picture. Starting

from the first row and column of the left image the algorithm considers a portion of the

left picture, which is determined by the block size. Then, it looks for a match on the same

row of the corresponding right picture. At this point, the algorithm chooses the best

matching block on the right image by minimization of a cost function. This cost function

depends on the intensity and the entropy of the pixels inside the block.

46 3.6 Disparity Calculation

 Once a matching block is found, the algorithm calculates the disparity pixel by pixel and

then moves the block left. Once all the pixels in a row are matched the block is moved to

the following column. At this point, the algorithm just repeats itself until all the pixels in

the picture are scanned. The disparity information is saved in a picture, called disparity

map, where at every pixel of the leftmost image is assign the value of the disparity.

 A disparity map is a useful tool. We use it to check the noise level of the disparity to

better chose the parameters of the stereo blocking algorithm. Then, we use the resulting

disparity to find corresponding points in the pair and triangulate their position in the 3D

space.

3.7 DM Algorithm: Triangulation

Triangulation requires as input a set of matching points in the image plane.

 In our case, the points are matched using the disparity map that is defined in the rectified

virtual plane. Therefore, points matched with the disparity map must be transferred from

the rectified plane to the image plane.

For any point u (u,v) in pixel coordinates on the disparity map we find the matching

points:

u1(u , v) and u2(u+d ,v) (3.18)

 Where d is the value of the disparity on the point u, u1 is the point in the first rectified

image and u2 is the corresponding point in the second rectified image. We then transfer

u1 and u2 from the rectified plane to the image plane inverting the rectification process

on those points. Therefore, we obtain the points x1 and x2 on the image plane:

u1→x1 and u2→x2 (3.19)

Chapter 3. Dense Monocular Algorithm 47

 We then check if x1 and x2 lie on their image plane. Also, in case we rectified the

image with the polar rectification we investigate if x1 or x2 is in a neighborhood of the

epipolar points. If this is the case, we reject the point pair: this because near the epipolar

points the rectified images are severely distorted [2][3]. After all the valid points pairs are

found in the image planes the triangulation process can begin.

 In not ideal conditions errors in the measured points make the ray back-projecting from

the image points skewed, so they do not actually intersect. In other words, the two points

can not actually satisfy the epipolar constraint.

3.7.1 Linear Triangulation

Firstly the scale factor is eliminated from λ1 x1=Pj1 X using the cross product:

x1∧Pj1 X . This product is null since x1 and Pj1 X are parallel. Therefore, we obtain

the following equations linear in X:

x1, x (Pj1,3 X)−Pj1,1 X=0

x1, y (Pj1,3 X)−Pj1,2 X=0

x1,x (Pj1,2 X)−x1, y (Pj1,2 X)=0

(3.20)

where Pj1, i is the i -th row of Pj1 and x1(x1, x , x1, y ,1) .

 We do the same also for λ2 x2=Pj2 X :

x2, x (Pj2,3 X)−Pj2,1 X=0

x2, y (Pj2,3 X)−Pj2,2 X=0

x2,x(Pj2,2 X)−x2, y (Pj2,2 X)=0

(3.21)

48 3.7.1 Linear Triangulation

Then the first two Equation of 3.20 and 3.21 are used to combine λ1 x1=Pj1 X and

λ2 x2=Pj2 X in a single linear equation AX = 0:

A X=[
x1,x(Pj1,3)−Pj1,1

x1, y(Pj1,3)−Pj1,2

x2,x(Pj2,3)−Pj2,1

x2, y(Pj2,3)−Pj2,2

]X=0 (3.22)

 However, this linear equations system is not exactly solved by our points. The position

of x1 and x2 is not accurate due to unavoidable noise. Therefore, we find an

approximate solution by requiring a minimization of the norm ||AX ||. The easiest way to

do so is to use the singular value decomposition [16] A=UDV T . Where U and V are

orthogonal matrices, and D is a diagonal matrix with non negative values. Then X is equal

to the last column of V. At this point, we check if X is inside the field of view of the

camera if: this is the case we push the point X inside its point cloud.

3.7.2 Ideal Set-Up

In an ideal set up the rectified space and virtual space are the same. Therefore, we can

easily triangulate the points using Equations 1.29 and the disparity information:

X p=b
u1−c x

d

Y p=b
kx

k y

v1−c y

d

Z p=bk x
f
d

(3.23)

Where d is the disparity value on the point u(u1, v1) in pixel coordinates of the disparity

map.

Chapter 3. Dense Monocular Algorithm 49

3.8 Point Cloud

A point cloud is a set of points in the 3D space. They usually are the result of a LiDAR, a

Time of Flight camera or a 3D range sensor. In our case, we generate the point cloud

using the 3D coordinates obtained during the triangulation step. We create two clouds at

every main cycle: a dense point cloud, and a sparse point cloud.

 We build the dense point cloud using the 3D coordinates of every pixel of the image

pair. Initially, the dense point cloud is composed of the points triangulated using the

disparity map. We assign a color to every point dependent from its corresponding position

on the image plane of an RGB version of the first image. Then, we build the sparse point

cloud using the 3D coordinates of the key points obtained during the feature detection and

matching. At this point, we filter the dense point cloud to remove noises with a radius

outlier filter. Before pushing the two clouds inside their vectors, we transform them from

the camera system to the world system.

3.8.1 Radius Outlier Filter

The radius outlier filter is a very simple filter that let us eliminate isolated points that

generate noise. For every point P in the point cloud, the radius outlier filter searches for

points in a spherical neighborhood defined by the radius r. If the number of points inside

the sphere is less than a defined threshold, N, we consider the point P as an outlier.

 Essentially, the radius outlier filter requires the points in a cloud have a minimum

density:

Dmin=
N

4 πr2
/3

(3.24)

The parameters of the filter must be adjusted accordingly with the dataset considered.

50

51

Chapter 4

Results

In this chapter, we present the results of the Monocular Dense Reconstruction algorithm.

We have elaborated five sequences, that we have divided into two groups. We decided to

divide the results in two parts, because every part has a series of sequences that have

similar characteristics. Furthermore, the results differentiate themselves for how the poses

were estimated and how their rectification and triangulation were computed.

 In the first set of sequences, the camera was mounted on a linear slide, and moved along

it with a fixed displacement. These two sequences correspond to the indoor and the

outdoor non-planar sequence that we mentioned in Chapter 3. Then, the camera poses are

retrieved via the hybrid algorithm of Chiodini et al. The optical axis of the camera and the

baseline are always semi-perpendicular. Therefore, we used linear rectification and ideal

triangulation to obtain the dense reconstruction.

 The second set is formed by three sequences. In each of these sequences, we mounted

the camera with a different orientation, compared to the direction of motion of the rover.

Then, the rover moved along a corridor and took pictures at fixed time intervals. The

movement of the rover was not constant: therefore, the virtual baseline from one camera

pose to the subsequent one is variable. The poses are obtained by a LiDAR mounted on

the rover. Thus, the pose estimation is especially accurate. In this set of sequences, we

computed the rectification through the polar method, and we constructed the point clouds

using the coordinates we obtained via general triangulation.

 We structured this chapter as follow: firstly, we present and discuss the results of the

first set of sequences in a singular section; then, we report and discuss the results of the

second set, divided by the orientation of the camera into different sections.

Unless otherwise noted, the numerical results and the point cloud figures in this chapter

refers to clouds down-sampled to 10% of their actual size. This was done to improve the

data handling and the computational times of the algorithm.

52 4 Results

 The point clouds density are calculated as the average number of points in a spherical

volume of radius 3 cm form every point of the cloud.

 We evaluated the distance between the sparse features cloud and the dense cloud as the

average of the distances between every point of the dense cloud to the nearest point of the

features cloud.

 The minimum distance between the sparse LiDAR cloud and the dense cloud was

evaluated with the minimum of the average distances between a point of the dense cloud

and the ten closest points on the LiDAR cloud. The LiDAR produces a sparse planar

cloud on the XY plane. Therefore, we evaluated the average distance from the LiDAR as

the distance on that plane from every point in the dense cloud to the nearest point of the

LiDAR cloud.

4.1 Results: Linear Rectification

The sequences we present in this section were the first we analyzed. We used them to test

the functionality of the algorithm in an easy to solve the condition, namely semi-

perpendicularity of the camera optical axis and the virtual baseline.

 The camera parameters are summed in following camera matrix and distortion vector:

K=[
k x f k s f cx

0 k y f c y

0 0 1]=[
1270.6 −2.4 592.5

0 1257.9 474.3
0 0 1] and dist=[

k1

k2

p1

p2
]=[

0.0811
−0.2884
0.0061
0.0030

]
The camera poses we used to analyze these sequences were evaluated by the monocular

VO algorithm of Chiodini et al. Both sequences were taken with the same camera while it

was moving horizontally with a semi-fixed direction of the optical axis. Moreover, the

system captured the pictures at fixed intervals of motion, around 0.05 m. Therefore, the

camera poses between every pair are highly comparable to an ideal stereo pair. Thus, we

Chapter 4. Results 53

treated these cases as an ideal stereo set-up: we rectified the pairs only using linear

rectification, and we triangulated the points with the ideal triangulation method.

 For these sequences, the camera axis and the baseline are almost perpendicular for

every pair. Thus, we expect a fundamental matrix comparable to an ideal stereo pair. The

fundamental matrix calculated by the algorithm matches the theoretical one:

F ideal=[
0 0 0
0 0 −1
0 1 0] Fcode=[

0 0 0
0 0 −1
0 1 0]

 The first sequence is composed by a series of images taken in an office, the second to a

sequence of images taken outside. We will refer to them as Office sequence, and Outside

sequence.

 Robust and repeatable features detection and matching is not the main goal of the

algorithm. However, it is still an important part of it. Thus, it is relevant to show the

results the algorithm obtains at this step. The algorithm tries to provide accurate feature

estimation without compromising their coverage on the images. As we show in the

Figures from 4.1 to 4.9, the filters were able to remove the majority of the mismatches.

Furthermore, the homography filter detects and remove mismatches undetected by the

epipolar constraint filter (Figure 4.5).

54 4.1 Results: Linear Rectification

Figure 4.1: Unfiltered matches for a frame of the first sequence.

Figure 4.2: Matches filtered only with the epipolar constraint filter for a frame of the
office sequence.

Chapter 4. Results 55

Figure 4.3: Matches filtered only with the homography filter for a frame of the office
sequence.

Figure 4.4: Matches filtered with both filters for a frame of the first sequence.

Figure 4.5: Detail showing a mismatch that passed through the epipolar
constraint filter.

56 4.1 Results: Linear Rectification

Figure 4.6: Unfiltered matches for a frame of the second sequence

Figure 4.7: Matches filtered only with the homography filter for a frame of the second
sequence

Chapter 4. Results 57

Figure 4.8: Matches on the outside sequence filtered only with the homography based
method.

Figure 4.9: Matches filtered with both filters for a frame of the second sequence.

58 4.1 Results: Linear Rectification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

200

400

600

800

1000

1200

1400

Matches Filtered Matches

Figure 4.10: Histogram with the number of matched feature in the office sequence before and
after filtering.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Matches Filtered Matches

Figure 4.11: Histogram with the number of matched feature in the outside sequence before and
after filtering.

 From Figure 4.10, we can see that the number of features in the Office sequence is

almost the same at different frames. The Outside sequence is extremely rich in features as

we show in Figures from 4.7 to 4.9. However, the ground features are too dominant.

Therefore, the homography filter removes correct matches that do not lay on the ground

Chapter 4. Results 59

plane. However, this does not negatively impact the rectification process. The features are

still numerous, and they cover the majority of the pictures.

 As we show in Figure 4.11, the number of features in the second dataset increases, with

a peek at the eleventh frame. From the starting frame to the eleventh frame the ground

becomes more and more prominent in the images (Figures 4.12 and 4.13). Therefore, due

to the homography filter, the number of features increases accordingly.

Figure 4.12: Frames 1, 3 , 6 and 9 of the outside sequence. The ground becomes more and
more prominent.

Figure 4.13: Frame 11 of the outside sequence.

60 4.1 Results: Linear Rectification

 Even if well matched, the features on the first dataset are not well distributed in the

images. Thus, the Hartley homography the algorithm calculates at the first step of the

linear rectification is not well estimated. However, the corrections we implemented in the

algorithm at step two and three of the linear rectification are sufficient to correct the

homography.

Figures from 4.14 to 4.16 show some images of the first sequence at different steps of the

linear rectification. The resulting rectified images are undistorted, and their epipolar

geometry matches the ideal case.

Figure 4.14: Images of the office sequence with epipolar lines, rectified via Hartley
without corrections.

Figure 4.15: Images of the office sequence with epipolar lines, rectified via Hartley
corrected with Loop and Zhang method

Figure 4.16: Images of the office sequence with epipolar lines, rectified and correctly
centered.

Chapter 4. Results 61

The second sequence suffers less from homography distortion. The algorithm is easily

able to compensate them, and to correctly center the images without compromising the

epipolar geometry.

Figure 4.17: Images of the outside sequence with epipolar lines, rectified via Hartley
without corrections.

Figure 4.18: Images of the outside sequence with epipolar lines, rectified via Hartley
corrected with Loop and Zhang method

Figure 4.19: Images of the outside sequence with epipolar lines, rectified and correctly
centered.

 We tested different parameters of the block matching algorithm. Figures from 4.20 to

4.25 shows disparity maps for the two sequences obtained with different parameters. Two

of these parameters were significant in determining the disparity maps: block size and

maximum disparity. A small block size produces a more defined disparity map. However,

62 4.1 Results: Linear Rectification

the resulting map can also be noisier around the edges of objects and more sparse. A

larger block size produces a smoother and denser disparity map. However, the resulting

map has fewer details. The block size does not significantly impact the computational

time of the block matching algorithm.

Figure 4.20: Frames densely matched with a block size of 1

Figure 4.21: Frames densely matched with a block size of 7

Figure 4.22: Frames densely matched with a block size of 15

Chapter 4. Results 63

 As for the block size, we tested different values of maximum disparity. The maximum

disparity is a parameter usually linked to the maximum depth of the image and the

magnitude of the baseline. In our cases, the depth of the scene is pretty low, as is the

baseline. Therefore, a big maximum disparity does not improve the resulting disparity

map. Increasing it over 16*5 did not improve the quality of the map. However, it

negatively affected the computational speed.

Figure 4.23: Frames densely matched with a maximum disparity of 16*2

Figure 4.24: Frames densely matched with a maximum disparity of 16*5

Figure 4.25: Frames densely matched with a maximum disparity of 16*30

64 4.1 Results: Linear Rectification

Computational time of Block Matching per cycle (s)

Max. Disparity 16x2 16x5 16x30

Office sequence 0.33 0.65 3.81

Outside sequence 0.35 0.68 4.12

Table 4.1: Time required for the block matching

 At this point, the triangulation process is completed, provided we assume an ideal stereo

set-up. Therefore, the process is fast and does not lead to particular issues. At every cycle

of the algorithm, we make sure that the 3D points are mapped inside the FoV of the

camera, and then we use the information to build a point cloud.

 The radius outlier filter is able to remove most of the noise caused by points scattered

around the densest part of the clouds. As can be seen in Figure 4.26, however, the densest

noise patches are still present.

Figure 4.26:Detail of dense reconstruction for the office sequence.
Some patches of noise are visible

 We assemble the cloud obtained for different pairs in a point cloud vector. These clouds

partially overlap in common regions. We use this overlapping to check the relative

proximity of the two clouds. We do this to check for consistency in the dense

reconstruction. The value we obtain are reported in Figure 4.27. As we can see, the

relative distance between subsequent clouds it is not particularly high. The first sequence

Chapter 4. Results 65

seems to suffer more of dis-alignment. However the resulting dense point cloud seems to

reconstruct pretty well the environment as seen by the camera (Figure 4.28 and 4.29).
1

-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0

1
0

-1
1

1
1

-1
2

1
2

-1
3

1
3

-1
4

1
4

-1
5

1
5

-1
6

1
6

-1
7

1
7

-1
8

1
8

-1
9

1
9

-2
0

2
0

-2
1

2
1

-2
2

2
2

-2
3

2
3

-2
4

2
4

-2
5

2
5

-2
6

0

0.05

0.1

0.15

0.2

0.25

Office sequance Outside sequance

Figure 4.27: Average distance between subsequents clouds (cm).

Figure 4.28: Dense point cloud for the office sequence.

66 4.1 Results: Linear Rectification

 Figure 4.29: Dense point cloud for the outside sequence.

 The point cloud obtained from the key point skips the filtering process; points in these

point clouds, while sparser, should have a more accurate position. This information can

also be used to check for the accuracy of the Dense Point cloud. We check the relative

distance between a dense point cloud and the corresponding sparse point cloud for every

point. Then, we average the results for every point exterminated. Figure 4.30 reports the

results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

1

2

3

4

5

6

Office sequance Outside sequance

Figure 4.30: Average distance between a dense cloud and the corresponding sparse cloud (cm).

Chapter 4. Results 67

Figure 4.31: Dense point cloud and sparse point cloud for the office sequence.

Figure 4.32: Dense point cloud and sparse point cloud for the outside sequence.

68 4.1 Results: Linear Rectification

Figure 4.33: Sparse point cloud for the office sequence.

Figure 4.34: Dense point cloud and sparse point cloud for the outside sequence.

Chapter 4. Results 69

 Lastly we check the density of the dense point clouds obtained. This measurement is

done by considering the amount of points in a sphere of radius 3 cm. The resulting

densities seem to be consistent between different clouds and between the two sequences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

50

100

150

200

250

Office sequance Outside sequance

Figure 4.35: Density of the dense clouds.

70 4.2 Results: Polar Rectification

4.2 Results: Polar Rectification

In this section, we present the results obtained with the polar rectification method for

three different sequences. Each one of these sequences is composed of images taken from

a camera mounted on a rover. The sequences differ one another for the orientation of the

camera. All the sequences are composed by a series of images taken in an indoor

environment: to be more precise, a corridor. Therefore, we name these sequences as

“corridor sequences” and divide them by the angle θ (Figure 4.36). For all these

sequences the rover moved forward with a small adjustment in its direction.

Figure 4.36: A simple outline of the set-up. Also, the
camera is 50 cm above the LiDAR.

 The three sequences we are going to present are:

1. Corridor 60°.

2. Corridor 45°

3. Corridor 0°.

 All the images are taken with the same camera.

X

Y

z x

θ

45 cm

15
 c

m

Camera

LiDAR

Chapter 4. Results 71

 The camera parameters are summed in following camera matrix and distortion vector:

K=[
k x f k s f cx

0 k y f c y

0 0 1]=[
696.3 0 698.1

0 696.2 357.9
0 0 1] and dist=[

k1

k2

p1

p2
]=[

−0.1708
0.0231

−0.0003
0.0017

]
 The aim of these sequences was to test the polar rectification method with a well-known

VO. Therefore, we decided to use a LiDAR to obtain the camera poses. Furthermore, the

LiDAR give us an ideal sparse cloud to use as a reference for our dense point clouds.

Thus, for these sets of sequences, we also compute the relative distance between the

dense point cloud and the LiDAR point cloud.

 In some preliminaries tests, we tried to rectify the images of the 45° sequence and 60°

sequence using the linear rectification. However, the resulting rectified images were too

big and deformed to be used during the dense match step of the algorithm. As we can see

in Figure 4.38, some portion of the image is still usable. However, to identify this portion

of the image requires a very precise method. In this case, the method we employed for

centering rectified images is not able to accurately detect and center the best part of the

pictures.

 For this set of results, we do not have a fundamental to use as a reference. The

orientation and the virtual baseline between the images change from pair to pair.

Therefore, the fundamental matrix changes accordingly.

 The polar rectification method does not require matching features to resolve the epipolar

geometry. However, we compute them to build a sparse point cloud to use as evaluation

in addition to the LiDAR point cloud. The same consideration regarding the features we

discussed in the previous set of results is still valid.

72 4.2 Results: Polar Rectification

Figure 4.37: Linear rectification for an image with the epipolar point near it.

Figure 4.38: Detail of Figure 4.37.

Chapter 4. Results 73

4.2.1 Polar Rectification: Corridor 60°

The features match well and, as we are going to see later, they are numerous enough to

build an accurate sparse cloud.

Figure 4.39: Corridor 60° unfiltered matched features.

Figure 4.40: Corridor 60° filtered matched features.

74 4.2.1 Polar Rectification: Corridor 60°

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

500

1000

1500

2000

2500

Matches Filtered Matches

Figure 4.41: Corridor 60° Number of features in the elaborated pair.

 As we show in Figures 4.42 and 4.43, the polar rectification method correctly adjusts the

epipolar geometry. However, it also introduces unwanted distortions, that grow more

severe the closer the pixel is to the epipolar point in the un-rectified images. Therefore,

during triangulation, we have to check if the pixel is near the epipolar point. If this is the

case, we avoid triangulating it. Another possible solution is to directly avoid the leftmost

area in the rectified images, which correspond to the nearest points to the epipolar point.

For example, S. Cavegn et al. [4] apply this method in their six camera set-up when

matching images from a pair of cameras with a baseline in the direction of movement.

Furthermore, the polar rectification method maps one point in the un-rectified image to

more than one position on the rectified image. Therefore, around the same point on the

3D space, we may encounter points with slightly different coordinates.

Chapter 4. Results 75

Figure 4.42: Pair of images with their epipolar lines.

Figure 4.43: The same pair of Figure 4.42 rectified. The epipolar lines are horizontal.

 As in the previous sequences, we tested different values of block size and maximum

disparity. Figures from 4.44 to 4.51 shows some of the resulting disparity maps. In this

particular sequence, the depth of the scene is low. Therefore, we can use a small

maximum disparity value to detect the disparities and to build the disparity map.

76 4.2.1 Polar Rectification: Corridor 60°

Figure 4.44: Block size of 3. Figure 4.45: Block size of 5.

Figure 4.46: Block size of 7. Figure 4.47: Block size of 9.

Chapter 4. Results 77

Figure 4.48: Maximum disparity equal to 16*1 Figure 4.49: Maximum disparity equal to 16*3

Figure 4.50: Maximum disparity equal to 16*9 Figure 4.51: Maximum disparity equal to 16*27

78 4.2.1 Polar Rectification: Corridor 60°

The quality of the disparity map seems to improve for low block sizes. As mentioned

before, the maximum disparity value can be set to the relatively low value of 16*9.

Increasing the maximum disparity over this value does not improve the quality of the

map.

Computational time of Block Matching per cycle (s)

Max. Disparity 16x1 16x3 16x9 16x27

Corridor 45 ° sequence 0.38 0.76 1.87 5.33

Table 4.2: Time required for the block matching

 When seen from a favorable point of view, the clouds seem to be well recontacted and

well registered (Figures from 4.54 to 4.61). Furthermore, the sparse and dense clouds

seem to overlap well as such as the dense clouds and the LiDAR clouds. However, when

considered from the front or from a higher position (Figures from 4.62 to 4.69), we can

notice that a great amount of noise is still present. Furthermore, the clouds do not overlap

correctly. The same object is mapped more times in a cloud at different positions from the

camera. Nevertheless, the reconstructed clouds seem to correctly identify the position of

the box and the column present in the FoV of the camera (Figure 4.53).

 The computed results confirm these assumptions (Figures from 4.70 to 4.73). The

average relative distance between subsequent clouds is much higher than in the linear

rectification case, as such as the distance between the key point cloud and the dense

cloud, and the distance between the LiDAR cloud and the dense cloud. We can identify

two reasons motivating these results: the distortion introduced by the polar rectification,

and a point cloud registration process not robust enough.

 Furthermore, the block matching algorithm we employed is not adequate in situations

where the images are particularly distorted. This algorithm uses a fixed block size within

which it tries to find corresponding objects in the images forming a pair. If the objects are

big, a larger block size produces better results. On the contrary, when the objects are

small, a smaller block size is preferable. In our case, the distortion on the image is not

uniform. Therefore, objects near the epipolar point assume bigger sizes and objects far

Chapter 4. Results 79

away smaller ones. A dense matching method with a variable block size, or that does not

depend on block size, would be more suitable to analyze the images rectified with the

polar rectification.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10

20

30

40

50

60

Corridor 60°

Figure 4.52: Corridor 60° density of dense clouds.

Figure 4.53: Detail of the overlapping between the LiDAR and the dense cloud. The position of a box and
of the column on the left side of the image are correctly identify by the dense clouds.

80 4.2.1 Polar Rectification: Corridor 60°

Figure 4.54: Corridor 60° dense cloud. View 1.

Figure 4.55: Corridor 60° dense cloud and LiDAR cloud. The sparse LiDAR cloud is in red. View 1.

Chapter 4. Results 81

Figure 4.56: Corridor 60° dense cloud and sparse cloud from the key points. The key point cloud is in blue.
View 1.

Figure 4.57: Corridor 60° sparse cloud built from the key points. View 1.

82 4.2.1 Polar Rectification: Corridor 60°

Figure 4.58: Corridor 60° dense cloud, another favorable view. View 2.

Figure 4.59: Corridor 60° dense cloud and LiDAR cloud. The sparse LiDAR cloud is in red. View 2.

Chapter 4. Results 83

Figure 4.60: Corridor 60° dense cloud and sparse cloud from the key points. The key point cloud is in blue.
View 2.

Figure 4.61: Corridor 60° sparse cloud built from the key points. View 2.

84 4.2.1 Polar Rectification: Corridor 60°

Figure 4.62: Corridor 60° dense cloud. Seen from an higher position. View 3.

Figure 4.63: Corridor 60° dense cloud and LiDAR cloud. The sparse LiDAR cloud is in red. View 3.

Chapter 4. Results 85

Figure 4.64: Corridor 60° dense cloud and sparse cloud from the key points. The key point cloud is in blue.
View 3.

Figure 4.65: Corridor 60° sparse cloud built from the key points. View 3.

86 4.2.1 Polar Rectification: Corridor 60°

Figure 4.66: Corridor 60° dense cloud. Seen from the side. View 4.

Figure 4.67: Corridor 60° dense cloud and LiDAR cloud. The sparse LiDAR cloud is in red. View 4.

Chapter 4. Results 87

Figure 4.68: Corridor 60° dense cloud and sparse cloud from the key points. The key point cloud is in blue.
View 4.

Figure 4.69: Corridor 60° sparse cloud built from the key points. View 4.

88 4.2.1 Polar Rectification: Corridor 60°

1
-2

2
-3

3
-4

4
-5

5
-6

6
-7

7
-8

8
-9

9
-1

0

1
0

-1
1

1
1

-1
2

1
2

-1
3

1
3

-1
4

1
4

-1
5

1
5

-1
6

1
6

-1
7

1
7

-1
8

1
8

-1
9

1
9

-2
0

2
0

-2
1

2
1

-2
2

2
2

-2
3

2
3

-2
4

2
4

-2
5

2
5

-2
6

0

5

10

15

20

25

30

35

40

Corridor 60°

Figure 4.70: Corridor distance between subsequents point clouds (cm).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corridor 60°

Figure 4.71: Corridor 60° minimum distance between LiDAR and dense clouds (cm).

Chapter 4. Results 89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

20

40

60

80

100

120

140

160

180

Corridor 60°

Figure 4.72: Corridor 60° average distance between LiDAR and dense clouds (cm).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

Corridor 60°

Figure 4.73: Corridor 60° distance between dense and sparse KP cloud (cm).

90 4.2.1 Polar Rectification: Corridor 60°

 The twenty sixth cloud has a particularity high average distance. We checked the single

dense cloud and found out that it has a extremely low number of points positioned far

away from the LiDAR cloud. Therefore, we suppressed the radius outliers filter for that

cloud and verified that the resulting cloud had a low density and were not well

recontacted.

Figure 4.74: Detail of the 26th cloud. We circled the points remaining
in the cloud after the filter.

Figure 4.75: 26th Cloud without filter.

Chapter 4. Results 91

 As we show in Figure 4.76, the un-rectified disparity map of the twenty sixth frame is

too uniform. Usually, maps like this one are produced when the maximum disparity value

is too high compared to the movement of the rover.

Figure 4.76: Un-rectified disparity map for the 26th cloud.

 As in the linear rectification results, the high values of distance between the features

clouds and the dense clouds, are due to the dense and the features cloud not mapping the

same portion of the images in the 3D environment (Figure 4.77).

Figure 4.77: Detail of the feature and dense cloud not mapping
the same points in the 3D environment.

92 4.2.2 Polar Rectification: Corridor 45°

4.2.2 Polar Rectification: Corridor 45°

The features are correctly matched and filtered (Figures from 4.78 to 4.80).

Figure 4.78: Corridor 45° unfiltered matches.

Figure 4.79: Corridor 45° filtered matches.

The number of features is lower than the previous case, but they are still numerous and

accurate enough to build a sparse cloud from the key points.

Chapter 4. Results 93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

200
400
600
800

1000
1200
1400
1600
1800

Matches Filtered Matches

Figure 4.80: Corridor 45° number of features before and after the filters are applied.

 This sequence is pretty similar to the 60° one. However, the different orientation of the

camera produces two noticeable effects: the component of movement in the optical axis

direction is more pronounced, and the depth of the scene is higher than the previous case.

 The higher is the forward moving of the camera, the nearer is the epipolar point to the

image will be. Therefore, in some of the pairs analyzed in this sequence, the epipolar

points are inside the pictures. In those cases, the deformation of the rectified pairs is more

pronounced, as we can see in Figure 4.83. The algorithm is still able to correct their

epipolar geometry, but the dense point clouds suffer from the distortion.

Figure 4.81: Frame deformed by polar rectification. Image rotated by 90°.

94 4.2.2 Polar Rectification: Corridor 45°

 Figure 4.82: Corridor 45° image pair with epipolar points inside the images.

Figure 4.83: Corridor 45° the same pair rectified. The epipolar lines are distorted
in the above picture due to the polar deformation. Image rotated by 90°.

Chapter 4. Results 95

 As we already discussed, the deep of the scene affects the maximum disparity parameter

of the block matching algorithm. Therefore, a high maximum disparity is required to find

an accurate disparity map.

Figure 4.84: Block size of 1 Figure 4.85: Block size of 3.

Figure 4.86: Block size of 5. Figure 4.87: Block size of 7.

96 4.2.2 Polar Rectification: Corridor 45°

Figure 4.88: Maximum disparity of
16*5.

Figure 4.89: Maximum disparity of
16*9.

Figure 4.90: Maximum disparity of
16*15.

Figure 4.91: Maximum disparity of
16*27.

Chapter 4. Results 97

Computational time of Block Matching per cycle (s)

Max. Disparity 16x5 16x9 16x15 16x27

Corridor 60° sequence 1.09 2.56 3.74 6.72

Table 4.3: Time required for the block matching

 While still struggling to find matching textures in the images, the algorithm is able to

correctly and densely match enough of the images to build the dense clouds. These clouds

suffer from the same problems we already identified in the previous case. However, in

this sequence, they became more significant due to an epipolar geometry more difficult to

solve. Therefore, the resulting dense clouds are more distorted than the previous case with

bigger distances between subsequent clouds and from the reference clouds.

 As in the 60° sequence, the clouds seems well reconstructed and well registered from a

favorable point of view (Figure from 4.94 to 4.101). The dense and sparse clouds overlap

pretty well. However, when seen from the side (Figures from 4.106 to 4.109) or from a

higher position (Figures from 4.102 to 4.105), the distortion becames apparent.

Nevertheless, the dense clouds correctly position the box, and the column as can be seen

in Figure 4.92.

The distances between clouds suffer from the same problems we discussed in previous

sequences:

• A high distance between the dense cloud and the feature cloud is due to frames

where the features do not map the same objects in the 3D environment.

• The average distance between the LiDAR and dense cloud is high when the dense

cloud contain few points away from the LiDAR cloud. This clouds corresponds to

frames where the disparity is calculated with an incorrect maximum disparity

value.

• The deformations that the polar method introduces in the images generate

distortions and bad reconstruction. This negatively impact the clouds registration.

Therefore, the clouds do not overlap properly.

98 4.2.2 Polar Rectification: Corridor 45°

Figure 4.92: Corridor 45° detail showing the column and the box.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10

20

30

40

50

60

70

Corridor 45°

Figure 4.93: Corridor 45° Density of the dense point clouds

Chapter 4. Results 99

Figure 4.94: Corridor 45° dense clouds. View 1.

Figure 4.95: Corridor 45° dense clouds and LiDAR cloud. View 1.

100 4.2.2 Polar Rectification: Corridor 45°

Figure 4.96: Corridor 45° dense clouds and features cloud. View 1.

Figure 4.97: Corridor 45° Features cloud. View 1.

Chapter 4. Results 101

Figure 4.98: Corridor 45° dense clouds. View 2.

Figure 4.99: Corridor 45° dense clouds and LiDAR cloud. View 2.

102 4.2.2 Polar Rectification: Corridor 45°

Figure 4.100: Corridor 45° dense clouds and Features cloud. View 2.

Figure 4.101: Corridor 45° Features cloud. View 2.

Chapter 4. Results 103

Figure 4.102: Corridor 45° dense clouds seen from above. View 3.

Figure 4.103: Corridor 45° dense clouds and LiDAR cloud seen from above. View 3.

104 4.2.2 Polar Rectification: Corridor 45°

Figure 4.104: Corridor 45° dense clouds and Features cloud seen from above. View 3.

Figure 4.105: Corridor 45° Features cloud seen from above. View 3.

Chapter 4. Results 105

Figure 4.106: Corridor 45° dense clouds seen from the side. View 4.

Figure 4.107: Corridor 45° dense clouds and LiDAR cloud seen from the side. View 4.

106 4.2.2 Polar Rectification: Corridor 45°

Figure 4.108: Corridor 45° dense clouds and features cloud seen from the side. View 4.

Figure 4.109: Corridor 45° Features cloud seen from the side. View 4.

Chapter 4. Results 107

1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1

1

11
-1

2

12
-1

3

13
-1

4

14
-1

5

15
-1

6

16
-1

7

17
-1

8

18
-1

9

19
-2

0

20
-2

1

21
-2

2

22
-2

3

23
-2

4

24
-2

5

25
-2

6

0

10

20

30

40

50

60

70

80

Corridor 45°

Figure 4.110: Corridor 45° distance between subsequents dense clouds (cm).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Corridor 45°

Figure 4.111: Corridor 45° minimum distance between dense clouds and LiDAR cloud (cm).

108 4.2.2 Polar Rectification: Corridor 45°

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

5

10

15

20

25

30

35

40

Corridor 45°

Figure 4.112: Corridor 45° average distance between dense cloud and LiDAR cloud (cm).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10

20

30

40

50

60

Corridor 45°

Figure 4.113: Corridor 45° distance between dense clouds and Features cloud (cm).

Chapter 4. Results 109

4.2.3 Polar Rectification Corridor 0°

This sequence was gathered by a camera with the optical axis in the direction of

movement of the rover. Therefore, the epipolar geometry is particularly hard to solve,

with epipolar points inside the frames for every pair. Moreover, the sequence was

gathered in another corridor, with less distinguishable texture on its walls.

 Obviously, the features detection and matching is not impacted by this. The features

found and matched are still accurate (Figure 4.114 to 4.116).

Figure 4.114: Corridor 0° Unfiltered features matches.

Figure 4.115: Corridor 0° filtered features.

110 4.2.3 Polar Rectification Corridor 0°

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

100

200

300

400

500

600

700

800

900

Matches Filtered Matches

Figure 4.116: Corridor 0° number of features before and after the filters are applied.

 The rectification process is deeply impacted by epipolar configuration. The resulting

images are extremely distorted as we show in Figures 4.118 and 4.119.

 The subsequent block matching process struggles to find correct matching texture in the

pairs. This issue is emphasized by the lack of distinctive textures on the walls. Therefore,

the dense clouds are sparse and not well positioned in the environment. In order to

compute adequate results, we had to remove the down-sampling, thus the following data

is obtained from cloud at 100% density.

Figure 4.117: Corridor 0° Epipolar lines.

Chapter 4. Results 111

Figure 4.118: Corridor 0° image after rectification. Rotated 90°.

Figure 4.119: Corridor 0° Epipolar lines in rectified pair. Rotated 0°.

Figure 4.120: Corridor 0° disparity map for the same pair.

Figure 4.121: Corridor 0° un-rectified disparity map.

112 4.2.3 Polar Rectification Corridor 0°

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

50

100

150

200

250

Corridor 0°

Figure 4.122: Corridor 0° dense cloud density. The clouds are not down-sample in this case.

Figure 4.123: Corridor 0° dense cloud. View 1. The clouds are not down-sample in this case.

Chapter 4. Results 113

Figure 4.124: Corridor 0° dense cloud and LiDAR cloud. View 1. The clouds are not down-sample in this
case.

Figure 4.125: Corridor 0° dense cloud and features cloud. View 1. The clouds are not down-sample in this
case.

114 4.2.3 Polar Rectification Corridor 0°

Figure 4.126: Corridor 0° features cloud. View 1. The clouds are not down-sample in this case.

Figure 4.127: Corridor 0° dense cloud. View 2. The clouds are not down-sample in this case.

Chapter 4. Results 115

Figure 4.128: Corridor 0° dense cloud and LiDAR cloud. View 2. The clouds are not down-sample in this
case.

Figure 4.129: Corridor 0° dense cloud and features cloud. View 2. The clouds are not down-sample in this
case.

116 4.2.3 Polar Rectification Corridor 0°

Figure 4.130: Corridor 0° features cloud. View 2. The clouds are not down-sample in this case.

1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1

1

11
-1

2
12

-1
3

13
-1

4
14

-1
5

15
-1

6

16
-1

7
17

-1
8

18
-1

9
19

-2
0

20
-2

1
21

-2
2

22
-2

3
23

-2
4

24
-2

5

25
-2

6

0

50

100

150

200

250

300

350

400

450

500

Corridor 0°

Figure 4.131: Corridor 0° distance between subsequents dense clouds (cm). The clouds are not
down-sample in this case.

Chapter 4. Results 117

1-
2

2-
3

3-
4

4-
5

5-
6

6-
7

7-
8

8-
9

9-
10

10
-1

1

11
-1

2

12
-1

3

13
-1

4

14
-1

5

15
-1

6

16
-1

7

17
-1

8

18
-1

9

19
-2

0

20
-2

1

21
-2

2

22
-2

3

23
-2

4

24
-2

5

0

20

40

60

80

100

120

140

Corridor 0°

Figure 4.132: Corridor 0° same distances of Figure 4.131 the data from the last pair of clouds
was removed to improve the readability of the rest of the data (cm). The clouds are not down-
sample in this case.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10

20

30

40

50

60

70

Corridor 0°

Figure 4.133: Corridor 0° minimum distance between dense clouds and LiDAR cloud (cm). The
clouds are not down-sample in this case.

118 4.2.3 Polar Rectification Corridor 0°

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

2

4

6

8

10

12

Corridor 0°

Figure 4.134: Corridor 0° same distances of Figure 4.133, the data from the first cloud was
removed to improve the readability of the rest of the data (cm). The clouds are not down-sample
in this case.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

20

40

60

80

100

120

Corridor 0°

Figure 4.135: Corridor 0° average distance between dense cloud and LiDAR cloud (cm). The
clouds are not down-sample in this case.

Chapter 4. Results 119

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10

20

30

40

50

60

70

Corridor 0°

Figure 4.136: Corridor 0° average distance between dense cloud and features cloud (cm). The
clouds are not down-sample in this case.

 Figures from 4.123 to 4.130 confirm want previously stated. The clouds are sparse, not

adequately reconstructed nor adequately registered. Even at full density, we were unable

to find a viewpoint from which the clouds seem well reconstructed.

 The epipolar geometry in this sequence is too difficult to solve for an adequate

reconstruction with the Monocular Dense Reconstruction algorithm.

120

121

Conclusions

The Monocular Dense Reconstruction algorithm has been able to successfully reconstruct

clouds from sequences, but only where their epipolar geometry was not exceedingly

complex to solve. As we have seen in the results concerning the indoor and the outdoor

sequences, the algorithm does not have any difficulty in building accurate clouds for

cases, when we are in a semi-ideal situation of epipolar geometry.

 However, it starts to struggle when the epipolar grow increasingly near to the image

planes. In that condition to solve the epipolar geometry, we used the polar rectification

method, which is able to rectify the images for any given epipolar geometry.

Unfortunately, the resulting rectified images can result too distorted for the block

matching algorithm to find adequate matching texture. If this be the case, a matching

algorithm with fixed block sizes and parameters does not result adequate.

 This distortions heavily impacts the dense reconstruction. The most preeminent example

of this negative outcome is exemplified by the corridor 0° sequence, where the epipolar

points are almost at the center of the images. In these conditions, the algorithm fails to

compute an accurate reconstruction.

 Nevertheless, when the angle between the direction of motion and the camera is grater

then 0° the algorithm is able to compute more precise clouds. While not absolutely

accurate, these clouds represent the environment well enough if we take into

consideration a favorable point of view, namely the one of the camera. In particular, these

more accurate clouds we have defined are able to reconstruct the position and form of the

different the objects seen by the camera.

 Another glaring issue in the computed Dense Reconstruction is the lack of a robust

registration algorithm. This negatively impacts the distances between subsequent clouds,

and in general, the whole reconstruction algorithm.

 All things considered, despite being able to densely reconstruct the environment in

different possible configurations, this algorithm offers a good number of possible

improvements. We can mainly suggest two of them: a more suitable matching algorithm

122

to compute the disparity, and a registration algorithm able to use the computed data from

the entire sequence -or a limited number of sequences at least- to correct the position of

the clouds.

 Regarding the reconstruction problem we identify three possible methods:

1. Using the information from the computed dense clouds.

2. Following corresponding matching points in the images planes.

3. Computing a corrective transformation using the information from the Feature

clouds.

From the dense cloud.

 The concept is to detect features directly from the dense clouds, and find a corrective

transformation between them. The Point Cloud Library proposes a possible pipeline [17].

Some preliminary tests were conducted following this pipeline. However, the

implementation at the moment has not been sufficiently developed, and it was not able to

provide accurate results.

From the image plane.

 Alternatively, the Dense Monocular Reconstruction algorithm should be developed in a

similar way of a VO algorithm. The Dense Monocular Reconstruction algorithm should

try to follow points in the image plane that map to the same landmark through the

sequence and progressively correct its 3D position using the information gathered from

more than one image pair.

From the feature clouds.

 Considering the feature clouds’ perspective, finally, the algorithm should try to

triangulate densely matched points in the position where the features are accurately

triangulated. Then, the relation between these two set of triangulated points should be

used to correct the position of the dense cloud. However, this method would be inaccurate

for images where the features and the densely matched points do not correspond.

123

Bibliography

[1] Chiodini, S., Riccardo Giubilato, M. Pertile and Stefano Debei. “Monocular visual

odometry aided by a low resolution time of flight camera.” 2017 IEEE International

Workshop on Metrology for AeroSpace (MetroAeroSpace) (2017): 239-244.

[2] Pollefeys, Marc, Reinhard Koch and Luc Van Gool. “A Simple and Efficient

Rectification Method for General Motion.” ICCV (1999).

[3] Pollefeys, Marc and Sudipta N. Sinha. “Iso-disparity Surfaces for General Stereo

Configurations.” ECCV (2004).

[4] Cavegn, Stefan & Haala, Norbert & Nebiker, Stephan & Rothermel, Mathias &

Zwölfer, Thomas, “Evaluation of Matching Strategies for Image-Based Mobile

Mapping.” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information

Sciences. II-3/W5. 10.5194/isprsannals-II-3-W5-361-2015 (2015).

[5] Pizzoli, Matia, Christian Forster and Davide Scaramuzza. “REMODE: Probabilistic,

monocular dense reconstruction in real time.” 2014 IEEE International Conference on

Robotics and Automation (ICRA) (2014): 2609-2616.

[6] Greene, W. Nicholas, Kyel Ok, Peter Lommel and Nicholas Roy. “Multi-level

mapping: Real-time dense monocular SLAM.” 2016 IEEE International Conference on

Robotics and Automation (ICRA).

[7] Gang Xu and Zhengyou Zhang. Epipolar Geometry in Stereo, Motion, and Object

Recognition: A Unified Approach. Kluwer Academic Publishers, Norwell, MA, USA.

(1996).

[8] M. Pertile, S. Chiodini, R. Giubilato and S. Debei, "Calibration of extrinsic

parameters of a hybrid vision system for navigation comprising a very low resolution

Time-of-Flight camera," 2017 IEEE International Workshop on Metrology for AeroSpace

(MetroAeroSpace), Padua, 2017, pp. 391-396.

[9] Triggs, Bill, Philip F. McLauchlan, Richard I. Hartley and Andrew W. Fitzgibbon.

“Bundle Adjustment - A Modern Synthesis.” Workshop on Vision Algorithms (1999).

[10] The OpenCV library. Available at: https://opencv.org/

124

[11] The Point Cloud Library. Availabe at: https://pointclouds.org/

[12] Bay, Herbert, Andreas Ess, Tinne Tuytelaars and Luc Van Gool. “Speeded-Up

Robust Features (SURF).” Computer Vision and Image Understanding 110 (2008): 346-

359.

[13] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision (2 ed.). Cambridge University Press, New York, NY, USA (2003): 92.

[14] Hartley, Richard I.. “Theory and Practice of Projective Rectification.” International

Journal of Computer Vision 35 (1999): 115-127.

[15] Loop, Charles T. and Zhengyou Zhang. “Computing Rectifying Homographies for

Stereo Vision.” CVPR (1999).

[16] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer

Vision (2 ed.). Cambridge University Press, New York, NY, USA (2003): 592-593.

[17] PCL registration pipeline, from the Point Cloud Library documentation:

http://pointclouds.org/documentation/tutorials/registration_api.php#registration-api

http://pointclouds.org/documentation/tutorials/registration_api.php#registration-api
https://pointclouds.org/

	Riassunto esteso
	Introduction
	Related Works
	Chapter 1 Theoretical framework
	1.1 Homogeneous Coordinates
	1.2 Pinhole model
	1.2.1 Distortions

	1.3 Epipolar Geometry
	1.3.1 Fundamental Matrix

	1.4 Triangulation
	1.4.1 Triangulation: Ideal Case

	Chapter 2 Monocular Visual Odometry (MVO)
	2.1 Hybrid MVO
	2.2 Map Initialization.
	2.3 Map Scaling
	2.4 Local Bundle Adjustment (BA)
	2.5 Hybrid MVO:Results

	Chapter 3 Dense Monocular Algorithm
	3.1 Stereo/Mono Dense reconstruction
	3.2 Algorithm Overview
	3.3 DM Algorithm:Fundamental Matrix
	3.4 Features
	3.4.1 Speed-up Robust Features (SURF)
	3.4.2 Features Filtering

	3.5 Rectification
	3.5.1 Linear Rectification Method
	3.5.1.1 Hartley Rectification
	3.5.1.2 Loop and Zhang Sharing Transformation
	3.5.1.3 Centering The Pictures

	3.5.2 Polar Rectification Method
	3.5.2.1 Determining The Common Region
	3.5.2.2 Sweeping and Resampling

	3.6 Disparity Calculation
	3.7 DM Algorithm: Triangulation
	3.7.1 Linear Triangulation
	3.7.2 Ideal Set-Up

	3.8 Point Cloud
	3.8.1 Radius Outlier Filter

	Chapter 4 Results
	4.1 Results: Linear Rectification
	4.2 Results: Polar Rectification
	4.2.1 Polar Rectification: Corridor 60°
	4.2.2 Polar Rectification: Corridor 45°
	4.2.3 Polar Rectification Corridor 0°

	Conclusions
	Bibliography

