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Abstract

Blazars, a class of jetted active galactic nuclei, are the most numerous permanent ex-
tragalactic gamma-ray sources. Their peculiar double-bumped spectral energy distri-
butions (SEDs) are usually interpreted as non-thermal emission from a relativistic jet
of particles closely aligned with the line of sight. Population studies have highlighted
a “blazar sequence”, i. e. an anticorrelation between the frequency of the low-energy
peak and its bolometric luminosity. Its existence and origin are still unclear, despite the
influx of new data, including in the TeV band. This work thus aims at contributing to a
new sequence that finally includes very high-energy gamma-ray spectra. A number of
representative SEDs from a sample of TeV-detected blazars of the “BL Lac” type, binned
according to their low-energy peak frequencies, were modeled based on the standard
“Synchrotron Self-Compton” scenario: best-fit parameters were compared to search for
trends hinting at the mechanisms underlying the sequence. Different techniques, in-
cluding analytical tools and machine learning, were used to characterize spectral quan-
tities of the selected sources, and their outcomes and performances were discussed.





Contents

List of Figures xi

List of Tables xiii

List of Code Snippets xvii

List of Acronyms xix

1 Blazars: Observations 1
1.1 Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Blazars: Observational Properties . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Radio Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Spectral Energy Distribution . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 The Highest Energies . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The Blazar Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Blazars: Theoretical Models 21
2.1 The Spectral Model: Synchrotron Self-Compton . . . . . . . . . . . . . . 21

2.1.1 Synchrotron Emission . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Synchrotron Self-Compton . . . . . . . . . . . . . . . . . . . . . . 23
2.1.3 Other Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The Physical Model, Part I: Unification . . . . . . . . . . . . . . . . . . . . 28
2.3 The Physical Model, Part II: Jets . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Accretion and the Birth of Jets . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Jet Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Acceleration Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Physics of the Blazar Sequence . . . . . . . . . . . . . . . . . . . . . . . . 35

v



CONTENTS

3 Spectral Modeling 39
3.1 Aim: the TeV Blazar Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Data Points Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 agnpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 MMDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Estimation of Spectral Quantities in Blazars with Machine Learning 81
4.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.2 Gradient Boosted Decision Tree . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Histogram-Based Gradient Boosted Decision Tree . . . . . . . . . 87

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Data Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Training and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.2 Predicting on New Data . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Final Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusions 115

References 117

Acknowledgments 129

Ringraziamenti 131

Appendix 133

vi



CONTENTS

A Spectral Modeling Plots and Tables 135
A.1 Bin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.1.1 MMDC Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.1.2 agnpy Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Bin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.3 Bin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Machine Learning 141
B.1 Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vii





List of Figures

1.1 AGN observational classification . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 PG 1218+304 light curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 PKS 2155-304 light curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 PG 1218+304 archival spectral energy distribution . . . . . . . . . . . . . 8
1.5 Fermi-LAT sensitivity and BL Lac detection . . . . . . . . . . . . . . . . . 11
1.6 Extreme blazars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 3C 454.3 spectral energy distribution . . . . . . . . . . . . . . . . . . . . . 15
1.8 Blazar sequence, 1998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Blazar sequence, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Synchrotron self-Compton . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Spectra and SSC model parameters . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Peak 𝜈 and 𝜈𝐹𝜈 against 𝛿𝐷 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Unified models of AGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Unified scheme, radio-loud . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Unification with radio galaxies . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Jet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Compton dominance sequence . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Fermi blazar sequence for TeV sources . . . . . . . . . . . . . . . . . . . . 41
3.2 4LAC-DR2 blazar 𝜈syn frequency distribution . . . . . . . . . . . . . . . . 43
3.3 TeV BL Lac 𝜈syn frequency histogram and binning . . . . . . . . . . . . . 44
3.4 Observed SEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Bin 4 redshift histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 SEDs at different redshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 WISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 BeppoSAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Fermi-LAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.11 VHE gamma-ray detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



LIST OF FIGURES

3.12 Example of SED data selection . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 agnpy flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.14 Neural network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.15 PG 1218+304 MMDC fit, free parameters . . . . . . . . . . . . . . . . . . . 63
3.16 PG 1218+304 fit parameters vs. 𝛿𝐷 . . . . . . . . . . . . . . . . . . . . . . 66
3.17 PG 1218+304 agnpy/Sherpa fits, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d, 𝛿𝐷 =

20, 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.18 PG 1218+304 agnpy/Gammapy fit, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d,

𝛿𝐷 = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.19 PG 1218+304 agnpy/Gammapy covariance matrix and 𝜒2 profiles . . . . 69
3.20 PG 1218+304 agnpy/Gammapy fit, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d,

𝛿𝐷 = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.21 PG 1218+304 models comparison . . . . . . . . . . . . . . . . . . . . . . . 71
3.22 PKS 2155-304 agnpy/Sherpa fit, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d, 𝛿𝐷 = 20 73
3.23 PKS 0548-322 agnpy/Sherpa fit, 𝛾min = 103, 𝛾max = 107, 𝑡var = 1d, 𝛿𝐷 = 20 75

4.1 K-Folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Cross-validation flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Random Forest vs. Gradient Boosting . . . . . . . . . . . . . . . . . . . . 88
4.4 Covariance matrix of features and target . . . . . . . . . . . . . . . . . . . 91
4.5 Correlation coefficients bar chart . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 𝜈syn, linear scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7 𝜈syn, logarithmic scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.8 𝜈syn, logarithms + power transform . . . . . . . . . . . . . . . . . . . . . . 96
4.9 Box plots of features and target . . . . . . . . . . . . . . . . . . . . . . . . 97
4.10 Scatter plots of features against target . . . . . . . . . . . . . . . . . . . . 98
4.11 Frequency density histogram, F100000, training vs. new data . . . . . . . 99
4.12 Performance metrics vs. fit times . . . . . . . . . . . . . . . . . . . . . . . 102
4.13 Predictions vs. actual values: scatter plot (HGB) . . . . . . . . . . . . . . 105
4.14 Predictions vs. actual values: frequency histograms (HGB) . . . . . . . . 106
4.15 Predictions vs. actual values: line plot (HGB) . . . . . . . . . . . . . . . . 106
4.16 Predictions vs. actual values: residuals (HGB) . . . . . . . . . . . . . . . 107
4.17 Feature importances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.18 Frequency histograms, new predictions vs. BlaST . . . . . . . . . . . . . 110
4.19 Frequency histograms, new predictions vs. old data . . . . . . . . . . . . 111

A.1 PG 1218+304 MMDC fit, 𝛾min = 102 . . . . . . . . . . . . . . . . . . . . . . 135
A.2 PG 1218+304 MMDC fit, 𝛾min = 103 . . . . . . . . . . . . . . . . . . . . . . 136
A.3 PG 1218+304 MMDC fit, 𝛾min = 103, Swift-XRT data . . . . . . . . . . . . 136
A.4 PG 1218+304 agnpy/Sherpa fits, alternative best fits . . . . . . . . . . . . 138

xii



LIST OF FIGURES

A.5 PKS 2155-304 MMDC fit, 𝛾min = 103 . . . . . . . . . . . . . . . . . . . . . 139
A.6 PKS 0548-322 MMDC fit, 𝛾min = 103 . . . . . . . . . . . . . . . . . . . . . 139

B.1 Distributions of features and target, linear scale . . . . . . . . . . . . . . . 144
B.2 Predictions vs. actual values: scatter plot (RF) . . . . . . . . . . . . . . . . 145
B.3 Predictions vs. actual values: scatter plot (GB) . . . . . . . . . . . . . . . 146
B.4 Predictions vs. actual values: frequency histograms (RF) . . . . . . . . . 147
B.5 Predictions vs. actual values: frequency histograms (GB) . . . . . . . . . 148

xiii





List of Tables

3.1 SEDs and redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 PG 1218+304 MMDC fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 PG 1218+304 agnpy/Sherpa fit, 𝛾min = 103, 𝛾max = 106 . . . . . . . . . . . 64
3.5 PG 1218+304 agnpy/Sherpa fit, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d . . . . . 65
3.6 PG 1218+304 agnpy/Sherpa fit, 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d, fixed 𝛿𝐷 67
3.7 PG 1218+304 peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8 PKS 2155-304 best-fit parameters . . . . . . . . . . . . . . . . . . . . . . . 73
3.9 PKS 0548-322 best-fit parameters . . . . . . . . . . . . . . . . . . . . . . . 75
3.10 Fit summary, BeppoSAX selection, agnpy/Sherpa . . . . . . . . . . . . . 77
3.11 Fit summary, BeppoSAX selection, MMDC . . . . . . . . . . . . . . . . . 77

4.1 Features and target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Skewness and kurtosis of features and target . . . . . . . . . . . . . . . . 94
4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 Mean performance metrics, train vs. test . . . . . . . . . . . . . . . . . . . 104
4.5 Predictions vs. actual values: distribution statistics . . . . . . . . . . . . . 105
4.6 New dataset: predictions and BlaST comparison . . . . . . . . . . . . . . 109

A.1 PG 1218+304 agnpy/Sherpa fit, 𝛾min = 102, 𝛾max = 106 . . . . . . . . . . . 137
A.2 PG 1218+304 agnpy/Sherpa fit, 𝛾min = 102, 𝛾max = 106, 𝑡var = 1d . . . . . 137
A.3 PG 1218+304 agnpy/Sherpa and MMDC fits, 𝛾min = 102, 𝛾max = 106,

𝑡var = 1d, fixed 𝛿𝐷 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiii





List of Code Snippets

B.1 Dictionaries of implemented models and candidate hyperparameters. . . 141
B.2 Model cross-validation and training loops. . . . . . . . . . . . . . . . . . 142

xvii





List of Acronyms

BL Lac BL Lacertae-type blazar

AGN Active Galactic Nucleus/Nuclei

FSRQ Flat Spectrum Radio Quasar

VHE Very High Energy/Energies

SED Spectral Energy Distribution

IR Infrared

EBL Extragalactic Background Light

LBL Low-synchrotron-peaked BL Lac

IBL Intermediate-synchrotron-peaked BL Lac

HBL High-synchrotron-peaked BL Lac

EHBL Extreme High-synchrotron-peaked BL Lac

SSC Synchrotron Self-Compton

IACT Imaging Air Cherenkov Telescope

MSE Mean Squared Error

rMSE root Mean Squared Error

xix





1
Blazars: Observations

When BL Lacertae was first detected, at the Sonnenberg Observatory in 1929, it was
mistaken for a faint variable star, and named according to one of the conventions for
that type of object. Almost 40 years would pass before astronomers began to realize it
was actually a peculiar non-stellar source for its long series of distinctive features, from
the strong optical and radio flux variability on a timescale of days, to the changing po-
larization in both frequency bands, to the apparently total absence of lines in the optical
spectrum. In 1972, these characteristics led researchers to suggest the existence of the
“BL Lacertae objects” (Stein, O’Dell, and Strittmatter 1976), or “lacertids”, now short-
ened to ”BL Lacs”: a new class of “quasi-stellar objects”, similar to the group discovered
9 years before when 3C 273 was found to have a redshift and a luminosity too high to be
a variable star (Schmidt 1963). Now this other group (the “flat-spectrum radio quasars”,
or FSRQs) and the BL Lacs are collectively called “blazars”, and are the under intense
scrutiny for being among the most luminous and energetic sources in the Universe, the
most numerous population of high-energy gamma ray emitters, and a natural labora-
tory to investigate on extreme acceleration processes and open issues in cosmology and
astroparticle physics.

1.1 ACTIVE GALACTIC NUCLEI

It is not only the redshifts, but also the luminosity1 of blazars that put these sources
outside the realm of variable stars: with values that may approach 1048 erg s−1, they can-
not be explained by thermonuclear processes (by comparison, a reference luminosity for
“normal” galaxies is 1011𝐿⊙ ∼ 1044 erg s−1, with 𝐿⊙ = 3.828 × 1033 erg s−1 the luminosity

1𝐿𝜈 , which is the emitted energy per unit time at a specific frequency 𝜈.
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1.2. BLAZARS: OBSERVATIONAL PROPERTIES

of the Sun). The “standard model” therefore invokes radiative processes caused by a
accreting supermassive black holes at the center of galaxies (see e.g. Ghisellini 2013;
Section 2.2). In this context, blazars are only the 10% of a wider class, active galactic
nuclei (AGN), that includes a “zoo” of different objects that are, in turn, ∼ 1% of all
galaxies, and take different names depending on which frequency band they are ob-
served in (and, arguably, on the researcher’s opinion; see Padovani et al. 2017 for an
overview of the nomenclature). Blazars are emblematic gamma-ray selected sources,
and they seem to share a very close link to another category of AGN, radio galaxies, in
both being loud radio sources whose emission is mainly non-thermal in origin, and lo-
cated principally in external structures (jets) originating from the core, rather than in the
nucleus itself. Other AGN, instead, do not feature jets, or at most weak ones; their spec-
trum is dominated by thermal processes, and their radio emission is weak (“non-jetted”
and “radio-quiet” AGN, like optical quasars and Seyfert galaxies). Figure 1.1 gives one
example of simplified AGN classification, including BL Lacs and FSRQs, based on ob-
servational properties.

Figure 1.1: Classification of AGN from observational properties, from Dermer and Giebels
2016.

1.2 BLAZARS: OBSERVATIONAL PROPERTIES

1.2.1 RADIO PROPERTIES

The optical band was the window through which BL Lacertae was first discovered,
but it was radio observations that led to the identification of the other prototype, 3C 273
and gave the definitive clues to single out the category of radio-loud quasars first, and
then of “blazars” once coupled with detections at high energies (Dermer and Giebels
2016). Blazars are characterized by a strong radio emission (“radio-loud” objects) that

2



CHAPTER 1. BLAZARS: OBSERVATIONS

usually appears variable in flux and polarization; the spectrum is flat, appearing con-
stant when considering the spectral flux density2 𝐹𝜈 ∝ 𝜈−𝛼𝑟 with 𝛼𝑟 ∼ 0. The develop-
ment of very long-baseline radio interferometry in the 1970s, with a resolution of 10−4

arcseconds, allowed to detect the existence of individual blobs of enhanced emission,
that at times look like they are moving at superluminal speed. Far from disproving spe-
cial relativity, they are actually a spectacular display of relativistic kinematics. Indeed,
if a source of electromagnetic radiation ismoving toward the observerwith a bulk speed
𝑉 and a very small angle 𝜃, it will have an apparent transverse speed of

𝑣app =
𝑉 sin𝜃

1 − 𝑉
𝑐 cos𝜃

whichpeaks for cos𝜃 = 𝑉
𝑐 yielding 𝑣app = Γ𝑉 , with Γ = 1√

1−𝑉2
𝑐2

, the bulk Lorentz factor of

the radio blob. From this relation, the Doppler factor, or beaming factor, can be defined,

𝛿𝐷 =
1

Γ
(
1 − 𝑉

𝑐 cos𝜃
) (1.1)

Powers of the beaming factor scale relevant physical quantities between the observer to
the blob reference frame, and is therefore a fundamental parameter in blazar modeling.
Superluminal motions, being a relativistic effect that well explains radio observations,
are a kind of “smoking gun” on the nature of blazars: collimated jets of particlesmoving
at relativistic speeds, observed at a small angle (𝜃 ≤ 1

Γ ) from their axis.

1.2.2 TIME EVOLUTION

Blazars were defined by their strong variability from the very beginning, when the
first sources of their kindwere detected in the radio (Dermer andGiebels 2016). Charac-
terizing these sources in the time domain is fundamental, as it allows to put constraints
on the maximum size of the emission region in a given energy band, becoming a way
to inspect the structure of an otherwise unresolved object (Ulrich, Maraschi, and Urry
1997, Spurio 2018). Given the minimum measured variability timescale, 𝑡var, and the
Doppler factor 𝛿𝐷 , the maximum size of the emission region 𝑅 in its reference frame
will be given by considering 𝑡var the light-crossing time:

𝑅 =
𝑐𝛿𝐷𝑡var
1 + 𝑧 (1.2)

2Energy of radiation at a specific frequency crossing a unit surface in a unit time. In terms of the
luminosity 𝐿𝜈 of a source at a distance 𝑟, the spectral flux density is 𝐹𝜈 = 𝐿𝜈

4𝜋𝑟2 .
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such that both the cosmological redshift and the apparent contraction of variability
timescales due to relativistic beaming are accounted for. In fact, blazars are known to
show variability on more than one timescale, depending on the energy band in which
time analysis is done: apart from potential intrinsic differences in the emission region
and variabilitymechanism at different frequencies, there is an impact of the instrument
performance and observation strategy, as exposure or integration times may prevent
a detector to catch flux variations on “incompatible” timescales. Indeed, blazar light
curves, plots that show the measured photon flux as a function of time, need to be in-
terpreted as a realization of the underlying stochastic process as it is sampled by the
instrument (Rieger 2019). One of the bands where variability is best known is high-
energy gamma rays: three examples referring to the same blazar (TXS 0506+056) are
shown in Figure 1.2, where light curves are built from data taken by the Fermi Large
Area Telescope (see Section 3.2) in the 100MeV-100GeV range over 16 years of activity,
integratingmeasurements over 3 days, oneweek, or onemonth. While the first two plots
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(c)

Figure 1.2: Light curves with different time samplings of the blazar TXS 0506+056, obtained
with the Fermi LAT Light Curve Repository (Abdollahi et al. 2023, https://fermi.gsfc.nasa.
gov/ssc/data/access/lat/LightCurveRepository/) in the 100MeV-100GeV energy range.
Each plot shows the photon flux using: 1.2a time bins of 3 days (August 6, 2008 to Septem-
ber 23, 2024), 1.2b one week (August 8, 2008 to September 20, 2024), 1.2c one month (August 20,
2008 to August 26, 2024). The photon index is left free in spectral fitting. Theminimumdetection
threshold is equivalent to 2𝜎; upper limits have been hidden for clarity.

reveal evident variation in the photon flux already in the span of few days, the third one
shows that in the last 16 years, the source underwent longer-term periods of enhanced
activity, including a very prominent one between 2017 and 2018 (Tanaka, Buson, and
Kocevski 2017) where the flux was measured to be about 6 times the catalogued one.
These apparently random flares are triggers of multiwavelength and, lately, multimes-
senger observation and data analysis campaigns (The IceCube Collaboration et al. 2018),
that often reveal a coherent increase in flux and hardness on the whole electromag-
netic spectrum, hinting at a common emission mechanism. These coordinated efforts
are made possible by alert networks between observatories, like the General Coordi-
nates Network3 and the Astrophysical Multimessenger Observatory Network (AMON:

3https://gcn.nasa.gov/
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Smith et al. 2013).

Variability Indices

In the specific case of Fermi-LAT observations, source variability (but even more,
the likelihood of source variability) is described in catalogues using two statistical
quantities, that will become relevant in Chapter 4: the variability index,

𝑇𝑆var = 2
∑
𝑖

log
[ ℒ 𝑖(𝐹𝑖)
ℒ 𝑖(𝐹glob)

]
− max

(
𝜒2(𝐹glob) − 𝜒2(𝐹av), 0

)
𝜒2(𝐹) =

∑
𝑖

(𝐹𝑖 − 𝐹)2
𝜎𝑖

(1.3)

and the fractional variability,

Var = 1
𝑁int − 1

∑
𝑖

(𝐹𝑖 − 𝐹av)2

𝛿𝐹 =

√√√
max

(
Var −

∑
𝑖 𝜎

2
𝑖

𝑁int
, 0

)
𝜎𝐹
𝐹

= max

(
1√

2(𝑁int − 1)
𝑉𝑖

𝐹av𝛿𝐹
, 10

) (1.4)

such that the fractional variability is 𝛿𝐹
𝐹av

. 𝐹 is the assumed flux, 𝐹𝑖 is the individual
flux value in the 𝑖-th time bin (2 months or one year), 𝜎𝑖 is its error, 𝐹av is the
average flux from the light curve, 𝐹glob is the overall flux obtained from the global
analysis of the source, 𝑁int is the number of time bins,𝑉𝑖 = (𝐹𝑖 −𝐹)2 (Abdollahi et
al. 2022)a. The variability index is then a likelihood ratio of yearly or bi-monthly
measured variability compared to the null hypothesis of stationarity andmay not
reflect actual variability for more “confused” sources. The fractional variability
is instead a measure of the excess variance in each time bin on top of statistical
and systematic uncertainties.

aEducated guess. The 4FGL paper seems to have forgotten to define 𝑉𝑖 .

The most debated results come from the detection of short-term variability at the
highest energies. As it will be explained later more in detail, telescopes covering the
TeV energy range are sensitive enough to measure flux variations during a single obser-
vation night. Variations over just 2 to 3min have been observed at very high energies
(VHE: 𝐸𝛾 > 100GeV) for a number of sources (Rieger 2019 and references therein). Fig-
ure 1.3a depicts the intra-night light curve of the BL Lac blazar PKS 2155-304. The fact
that some sources are not only able to produce such energetic photons, but with such
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(a)
(b)

Figure 1.3: Light curves of the BL Lac object PKS 2155-304 in different energy ranges and
on different timescales. 1.3a: intra-night VHE light curve measured by H.E.S.S. during a flare
on July 28, 2006, from Aharonian et al. 2007. 1.3b: 8-year light curve (2008-2016) measured by
Fermi-LAT above 100MeV with 30-day binning, and variability power spectra computed with
two different methods, from Zhang et al. 2017.

fast significant flux fluctuations, imposes the strictest constraints on the emission re-
gion and on its models, as explained above. For example, taking a timescale of ∼ 1 h,
the characteristic length scale of the central engine powering the blazar should be com-
parable to the Schwarzschild radius of a black hole of 109 − 1010𝑀⊙ (Spurio 2018) and
lie close to the AGN core. Given that the optical depth of pair production, 𝜏𝛾𝛾 ∼ 𝐿

𝑅

would be large, making the emission region opaque to high-energy radiation, the abil-
ity to measure a significant gamma-ray flux from a luminous compact source confirms
the relativistic beaming effect encoded in the 𝛿𝐷 parameter (Urry and Padovani 1995).
This, however, still does not explain the origin of the shortest variability timescales com-
pletely, and a number of models for the source structure and radiative processes have
been put forward to reconcile the observations with other quantities found indepen-
dently: for example, the fact that there frequently seems to be a correlation between the
variability in the gamma-ray and radio or optical band, suggesting an emission region a
few parsecs away from the active core, or the existence of VHE “orphan flares” without
a lower frequency counterpart (Dermer and Giebels 2016, Spurio 2018).

On the other side of the variability spectrum, multi-year trends have been found
in some TeV-detected blazars, thanks to the continuous monitoring at high energies
provided by Fermi-LAT. In particular, there are a few sources, like the aforementioned
PKS 2155-304 and PG 1553+113, where potential quasi-periodic oscillations have been
detected (Rieger 2019 and references therein; figure 1.3b).

Variability is not limited to fluxes: polarization is another feature of blazar emission
that shows variability over different energy ranges, sometimes correlating to flux varia-
tions (e.g. Tavecchio 2021 and references therein), and that has been recently under the
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spotlight since the launch of the Imaging X-ray Polarimetry Explorer (IXPE) in late 2021,
with the opening of the high-energy window in blazar polarimetry studies (e.g. Kouch
et al. 2024).

1.2.3 SPECTRAL ENERGY DISTRIBUTION

The time evolution of variable sources like blazars is strictly linked to their detectabil-
ity in different energy bands in different periods and, consequently, the observational
characteristics of their spectral energy distributions (SEDs), the plots showing the flux
density 𝜈𝐹𝜈 [energy area−2 time−1] as a function of frequency, or equivalently 𝐸2 𝑑𝑁

𝑑𝐸 as
a function of photon energy. The 1990s, which saw the simultaneous activity of sev-
eral X-ray experiments, of the Compton Gamma-Ray Observatory (and its high-energy
instrument EGRET in particular: Hartman et al. 1999), and of a growing number of
ground-based Cherenkov telescopes, definitively showed the width of the electromag-
netic emission from blazars, ushering the era of multiwavelength analysis.

GENERAL PROPERTIES

Figure 1.4 plots the observed SED of PG 1218+304 as an example. Spectral data
points were retrieved from theMarkarianMultiwavelength Data Center (see box in next
Subsection) and the STeVeCat (Gréaux et al. 2023), and were obtained from different
observation campaigns and catalogs. General characteristics of blazars, and of BL Lacs
specifically, can be noticed:

• As already mentioned, the spectrum can cover 20 decades of frequency, from the
radio (down to ∼ 107 Hz) to the VHE gamma rays (1027 Hz).

• The overall shape of the SED is dominated by two broad humps, and no other
evident features. More specifically, in restricted energy bands, it can be modeled
with simple power laws. The example in the picture peaks at high energies: the
lower-energy component, which covers the radio to hard X-ray range, has its max-
imum in the soft X rays (𝒪(100 eV)), while the higher-energy curve is centered on
the gamma-ray band, and peaks above 100GeV. In general, the spectra of these
objects see a low-energy peak between the far infrared (𝜆 ∼ 1mm) and the soft X
rays, and a high-energy peak between MeV and TeV gamma rays.

• Understandably, the flux variability is evident in archival data, as they represent
observations done in different periods. Variability is one of the defining features
of blazars and is strongly present at all frequencies (Ulrich, Maraschi, and Urry
1997), showing correlations especially during periods of strongly increased activ-
ity. The plot in Figure 1.4, however, only displays clear variability around the two
peaks, especially in the X-ray band, where it exceeds two orders of magnitude at
the higher energies. Ultraviolet and gamma-ray variability is less pronounced, but
still noticeable, being about a factor 5-10.

• The the slope of the flux density, 𝜈𝐹𝜈 in the radio band corresponds to a constant
spectral flux density, 𝐹𝜈 (flat spectrum), as anticipated in the previous paragraphs.
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Figure 1.4: SED of the BL Lac PG 1218+304, from archival data downloaded from theMarkar-
ian Multiwavelength Data Center and Gréaux et al. 2023. VHE data have been deabsorbed for
EBL.

• Observed flux densities, which may need to be 𝐾−corrected for redshift to obtain
the observed bolometric luminosity4, go from less than 10−16 erg cm−2s−1 in the
radio band to a little more than 10−10 erg cm−2s−1 for the X-ray peak during the
highest emission states. Other blazars may instead have the highest peak of their
emission in the second hump.

Breaking down the description by frequency band allows to notice more features
that are characteristic of BL Lacs specifically:

Infrared and Optical Data seem to follow the power-law continuum smoothly, up to
variability. In the SED of some low-power sources of the same class, however,
the profile of the thermal emission from the host galaxy (typically a giant ellip-
tical: Urry et al. 2000) can emerge. When going in more detail on this region of
the spectrum, no other thermal emission can be discerned, and there are no (or
very weak) emission lines. This makes it difficult to obtain a precise estimate of
the redshift: for example, the ‘redshift’ column is non-empty for only ∼ 62% of
ascertained BL Lacs in the catalog 4LAC-DR3 (Ajello et al. 2022).

4The bolometric luminosity is defined as the quantity of energy irradiatedper second [erg s−1] integrated
over frequency, 𝐿 =

∫ ∞
0 𝐿𝜈𝑑𝜈. See e.g. Ghisellini 2013. The 𝐾−correction is applied to flux, luminosity, or

magnitude to account for the fact that different sources selected in the same frequency band may have dif-
ferent redshifts, such that the emitted photons actually have different energies from one source to another
in their respective rest frames. See Hogg et al. 2002.

8



CHAPTER 1. BLAZARS: OBSERVATIONS

Ultraviolet Here variability starts to become more evident, but the spectrum still fol-
lows the smooth trend visible at other energies. The slope of the flux density plot-
ted in the SED is decreasing, but still positive. Other sources of the same class may
peak here, or showadecreasing trend,meaning they have peaked in the IR-Optical
range already.

X rays This is the region where the specific source in the example seems to have its first
peak, and the variability is strongest. Higher emission states see a rising spectrum
(in 𝜈𝐹𝜈) even here, while lower emission states are characterized by a decreasing
trend. For other sources, the flux density rises, but only after a decline at lower
energies, meaning that this region already belongs to the second hump.

Gamma rays The behavior is again smooth, and variability is less pronounced. Data
clearly show a second peak, of comparable height to the average of the lower-
energy maximum. Emission is able to reach the realm of VHE gamma rays in
individual cases like this.

MULTIWAVELENGTH OBSERVATIONS

The observed SED is not just a product of the intrinsic spectrum of the source, but
also highlights the effect of detection and monitoring by different instruments, work-
ing in a variety of configurations that are not always perfectly compatible in terms of
energy ranges, sensitivity and observation mode.

Online Databases

The broadband study of blazar SEDs is now made easier by a number of inter-
connected online platforms, that host catalogs at different energies and make
their data easily reachable. Apart from more “classic” archives and related tools
(HEASARCa and Xamin, VizieRb, SIMBADc), there are a few interactive services
that provide the desired SEDs directly, almost ready to use, after gathering and
uniforming data from the archived catalogs at all energy bands. The Space Sci-
ence Data Center SED Builder of the Italian Space Agencyd, which provides spec-
tra and light curves for astronomical objects of any class, is now joined by other
platforms created specifically for blazar astrophysics in the context of a grow-
ing need for coordination between observatories and public data availability,
as exemplified by the Virtual Observatories networke and the development of
the Open Universe for Blazars tool (VOU-Blazars: Chang, Brandt, and Giommi
2020). The Markarian Multiwavelength Data Center (MMDC: Sahakyan et al.
2024a), created by ICRANet Armeniaf, produces SEDs with archival data ob-
tained with VOU-Blazars and combines them with time-resolved data from var-
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ious frequency bands. Like the SSDC SED Builder, it allows to filter data by ob-
servation period and instrument, and even provides animated SEDs and light
curves for some bright, variable objects. Another Open Universe offshoot is Fir-
mamento (Tripathi et al. 2024), hosted by the New York University, Abu Dhabig.
Originally conceived as a mobile-friendly portal for citizen science, it has now
turned to a scientific platform to search for blazars with a multimessenger per-
spective, retrieve their SEDs fromover 90 catalogs, and characterize them through
the machine learning models, wpeak and BlaST (see Section 4.4.2). It does not al-
low to filter data by frequency, instrument or observation period. Both MMDC
and Firmamento, and the VOU-Blazars catalogs, were fundamental tools in this
work.

ahttps://heasarc.gsfc.nasa.gov/
bhttps://vizier.cds.unistra.fr/viz-bin/VizieR
chttps://simbad.cds.unistra.fr/simbad/
dhttps://tools.ssdc.asi.it/SED/
ehttps://www.ivoa.net/
fhttps://mmdc.am/
ghttps://firmamento.hosting.nyu.edu/home

Gaps in the SED are probably the first thing that catches the eye. A first reason for
this could be that the databases fromwhich points have been retrieved do not include all
available catalogs: for example, data are taken from two separate repositories, MMDC
up to high-energy gamma rays, and STeVeCat for VHEgamma rays (see Section 3.2). The
gap in the hard X-ray to low-energy gamma-ray region is instead due in part to the fact
that the “valley” between the two humps falls here for the example source, such that
the flux is low (≲ 10−12 erg cm−2s−1) and may go below the sensitivity of current and
past observatories. For example, Swift-BAT, Fermi-GBM (see 3.2) and INTEGRAL-SPI
(Kuulkers et al. 2021) should be able to “see” part of that range, but the sensitivities of
all three instruments are generally not enough; one of the selected sources in this work
features Swift-BAT data, but at high fluxes close to the lower-energy peak. A similar
discussion about the impact of instrument performance on the shape and the knowledge
of the SED also applies to detectors that are even more renown for their unprecedented
sensitivity in their energy range, which led them to discover and characterize thousands
of blazars. For example, the latest Fermi-LAT (see Section 3.2) source catalog, 4FGL-
DR4 (Ballet et al. 2024), lists 7194 different objects, 3935 of which are blazars; 1490 are
BL Lacs. As already explained, in most cases BL Lacs have their second peak in the
gamma-ray band, so the observed flux in the interval covered by the telescope (50MeV
to 1TeV) is usually above its sensitivity, and data are of good quality. However, as for
any instrument, sensitivity is described by an energy-dependent curve (Figure 1.5a): the
detectability of a source will therefore change depending on the energy, and on the
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shape of the spectrum compared to the sensitivity curve.

(a) (b)

Figure 1.5: 1.5a: 10-year differential sensitivity of the Fermi Large Area Telescope, from the
LAT Performance web page (https://www.slac.stanford.edu/exp/glast/groups/canda/
lat_Performance.htm). 1.5b: SED of the BL Lac object 3HSP J064710.0-513548, downloaded
from SSDC SED Builder and compared to the Fermi-LAT 4-year sensitivity. Lime green points
at gamma-ray energies come from the 3FGL catalog (2008-2012 averages: Acero et al. 2015).
Brown points come from the 4FGL-DR3 catalog (2008-2020: Abdollahi et al. 2022). Magenta ar-
rows are upper limits from the 2FGL catalog (2008-2010: Nolan et al. 2012).

Selection biases, as pointed out by Padovani et al. 2017, are a consequence of this:
blazars of different subclasses will be selected more or less frequently than others de-
pending on the instrument and the energy range�potentially affecting population stud-
ies, especially if based on just one or few detectors as it happens for Fermi-LAT in the
high-energy gamma ray band. There are BL Lacs, for example (see Figure 1.5b), whose
observed flux is in general so low, and whose high-energy peak in the SED is shifted to
such high frequencies, that the “valley”, or the rising side of the second hump, falls in
the Fermi-LAT range and is barely detected, yielding an observed spectrum that suspi-
ciously follows the sensitivity curve despite not being flagged as upper limits.

Another issue that emerges when inspecting the broadband SED of blazars, and
is related to the instrument performance, is the variability. The fact blazars seem to be
morewidely variable at high energies, especially higher-peaked sources whose first flux
maximum is in the X-ray band, is known since a long time (see e.g. Ulrich, Maraschi,
and Urry 1997), and this is also evident from the example SED. However how different
instruments at different energies take data also has a role: this is covered more in
detail in Section 3.2. Each instrument, depending on the sensitivity and field of view,
will adopt its own observation strategy: single pointings with short exposures that are
recorded one by one in catalogs, or wide surveys whose data are averaged over several
months of years, reducing the effect of variability in the observed SED. In other words,
data are so heterogeneous theymay pose a problem to analysis, as illustrated in the next
Chapter.
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1.2.4 THE HIGHEST ENERGIES

A few tens BL Lacs are currently detected at TeV energies5. There are several reasons
for this: the first is, of course, the fact that only a small fraction of astrophysical sources
would be able to emit such energetic photons. There are others, however, that pertain
to observation conditions. As these objects are looked at from a distance of hundreds
of megaparsecs, the extragalactic background light (EBL) that pervades the Universe
starts to have an impact on the VHE observations, attenuating the flux in an energy-
and redshift-dependent way (e.g. Spurio 2018):

𝐼(𝐸, 𝑧) = 𝐼0 exp−𝜏𝛾𝛾(𝐸,𝑧)

where 𝐼(𝐸, 𝑧) is the measured intensity, 𝐼0 is the intensity at the source, and 𝜏𝛾𝛾(𝐸, 𝑧) is
the optical depth for the interaction between VHE gamma rays (𝛾𝐸) and EBL photons
(𝛾𝜖):

𝛾𝐸 + 𝛾𝜖 → 𝑒+ + 𝑒−

The maximum happens at

𝜖 ≃ 520GeV
𝐸

eV (1.5)

so the VHE band suffers the effect of the infrared-optical range of the background light,
coming from all the stars, galaxies and AGN across the history of the Universe. The
highest-energy data in Figure 1.4 had already been de-absorbed before plotting. EBL
makes the Universe opaque to VHE gamma rays, reducing the horizon to low red-
shifts, but observing blazars in turn helps to better characterize this relic of past epochs.

Imaging air Cherenkov telescopes (Section 3.2) are the main type of instruments
for the detection of VHE gamma rays today, through the reconstruction of the elec-
tromagnetic particle showers induced by the interaction of energetic photons with the
atmosphere. Their working principle requires them to have excellent timing and reposi-
tioning abilites, but they have a small field of view (∼ msr) bothwhen considering single
mirrors and arrays. Consequently, they need to perform specific observation campaigns
toward a target, rather than surveying the whole sky: this produces a bias in the blazar
population covered by these instruments in favor of brighter objects, often in the con-
text of multiwavelength campaigns during flares, or selected as potential TeV sources
by extrapolating from the information in Fermi-LAT catalogs (Prandini and Ghisellini
2022). These campaigns have a duration of the order of tens of hours, comparable to
the longest exposures of some X-ray space telescopes, such that sensitivities are typi-
cally expressed for integration times of ∼ 25 h to 50 h and reach ∼ 10−10 erg cm−2s−1 in

5http://tevcat2.uchicago.edu/
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that time span; catalogued spectra that appear in SEDs from online databases also re-
fer to multi-hour and multi-night observations. However, for bright enough sources,
the good sensitivity and the extended exposure times together make this type of obser-
vatories the ones able to detect the shortest variability timescales (∼few minutes) and,
consequently, to put the strictest constraints on emission models, as already underlined
in Section 1.2.2.

Extreme-TeV BL Lacs TeV observations have confirmed the existence of a subclass
of BL Lacs dubbed extreme-TeV blazars by virtue of their high-energy hump peak-
ing above 1TeV. Extreme blazars in general are not a homogeneous category (Figure
1.6): there are extreme-synchrotron sources (see Section 2.1 for the discussion on the syn-
chrotron emission model) whose lower-energy peak is found at either 𝜈syn ≥ 1017 Hz or
𝐸syn ≥ 1 keV, depending on the definition, but they do not show a second maximum at
TeV energies; some others become extreme for both peaks during flares; and others that
are both extreme-synchrotron and extreme-TeV sources steadily, and are characterized
by a hard GeV spectrum, with an unusual photon index Γ𝛾 < 2, that often make them
candidates for TeV detection by air Cherenkov telescopes already before discovery.

Figure 1.6: Examples of the three types of extreme blazars, from Biteau et al. 2020. a): Markar-
ian 501 becomes an extreme blazar during flares. b): 1ES 1426+428 is an extreme-synchrotron
blazar, but not extreme-TeV, during quiescence. c): 1ES 0229+200 is the prototype of extreme-
TeV blazars.

The latter group in particular is characterized by a relatively low luminosity, such
that they are sometimes barely detectable by Fermi-LAT (the main reference for blazar-
linked observation proposals to Cherenkov telescopes), as explained in the previous
Subsection: there is a possibility that a population of extremely low-power, high-energy
BL Lacs is beingmissed by our instruments. Extreme blazars are particularly interesting
not only because they may shed light on the most energetic acceleration and radiative
processes, but also because the detection of TeV photons from extragalactic sources may
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give experimental contributions to open issues in cosmology and fundamental physics
(Biteau et al. 2020). TeV photons allow to inspect the lowest-frequency range of the in-
frared EBL (see Equation 1.5); the outgoing electron-positron pairs may be deflected by
the intergalactic magnetic field and upscatter photons of the cosmic microwave back-
ground to the gamma-ray band, creating image and spectral signatures that can be used
to put constraints on the intergalactic magnetic field. More exotic applications include
the search for violations of the Lorentz invariance and for mixing with axion-like parti-
cles.

1.2.5 CLASSIFICATION

The observational description of blazars so far focused on BL Lacs, the subclass this
work is centered on. As already mentioned, they are not the only category of these
intriguing objects: there are also flat-spectrum radio quasars (FSRQs). Being blazars,
FSRQs obviously share most fundamental features with BL Lacs: as the name suggests,
the flat spectral flux density (𝐹𝜈) in the radio band; the overall shape of the spectrum,
with the usual two humps; the polarization of most electromagnetic emission; the fact
that these sources are variable. Other important chaacteristics tell them apart from their
BL Lac cousins, starting from the definition itself. The equivalent width of spectral emis-
sion lines is

𝐸𝑊 =
∫

𝐹0 − 𝐹𝜆
𝐹0

𝑑𝜆

where 𝐹0 is the flux of the power-law continuum, 𝐹𝜆 is the total flux of the line and the
continuum at the wavelength 𝜆. FSRQs are defined as blazars with broad emission lines
in the optical-IR band, 𝐸𝑊 ≥ 5Å; BL Lacs are characterized by very weak or absent
emission lines, as already mentioned in Subsection 1.2.3: 𝐸𝑊 < 5Å. The FSRQ class
also seems to correlate to higher redshifts, higher bolometric luminosities (dominated
by the higher-energy peak) coupled with steeper spectra (the “blazar divide”) corre-
sponding to lower peak frequencies, stronger flux variability in the GeV range (Dermer
and Giebels 2016 and references therein), weaker variability in the first peak frequency,
which generally sits at lower energies (Giommi and Padovani 2021), and amore complex
SED than the almost featureless one of BL Lacs, with contributions from thermal emit-
ters from the infrared to the ultraviolet band (Figure 1.7). BL Lacs are in turn classified
into three main categories, depending on the position of their lower-energy peaks:

LBL (Low-synchrotron peaked BL Lacs): 𝜈syn < 1014 Hz

IBL (Intermediate-synchrotron peaked BL Lacs): 1014 Hz ≤ 𝜈syn < 1015 Hz

HBL (High-synchrotron peaked BL Lacs): 𝜈syn ≥ 1015 Hz

Extreme-synchrotron BL Lacs (𝜈syn ≥ 1017 Hz) may be singled out as a subcategory of
HBLs. Some sources, like Giommi and Padovani 2021, adopt a similar nomenclature
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Figure 1.7: SEDs of 3C 454.3, a FSRQ, in different emission states, from Bonnoli et al. 2010.
The dashed lines represent the thermal contribution from other structures (an accretion disk, a
dust torus, and a hot corona). Notice the higher luminosity of the high-energy hump and the
strong, fast variability.

without distinction between BL Lacs and FSRQs. This reproduces the alternative classi-
fication introduced by Abdo et al. 2010, where the three groups are called LSP, ISP and
HSP (low-, intermediate-, high-synchrotron peaked blazars).

FSRQ-like Blazars

The picture of BL Lac classification, whichmay look like amerematter of conven-
tions, is mademore compelling by the fact that the BL Lac/FSRQdivide is indeed
blurred. Ghisellini et al. 2011 and Giommi and Padovani 2021, for example, dis-
cuss about how there is a number of sources that present optical and gamma-ray
features of both BL Lacs (typically LBL or IBL) and FSRQs, but are classified as
BL Lacs under the definition; in this scenario, these sources would be described
as “masquerading” FSRQs, whose non-thermal continuum at lower energies is
so bright that it obscures optical emission lines. Another family of objects, steep-
spectrum “true” BL Lacs (mostly LBLs), have gamma-ray luminosities spanning
a wide range that may come close to that of “classic” FSRQs and “masquerad-
ing” ones, and are considered transitional between the two main blazar classes
(Ghisellini et al. 2011). Examples of potentially “transitional” or “masquerading”
BL Lacs can be found, for example, in Ahnen et al. 2018 and Padovani et al. 2019.
Papers like Giommi and Padovani 2021 even suggest to completely abandon the
classic dichotomy in favor of another one that groups FSRQs and LBLs on one
side, and IBLs and HBLs on the other, while Ghisellini et al. 2011 is more cau-
tious and simply warns not to trust the emission line-based definition too much,
as the strong variability of blazarsmay lead towrongly classify a FSRQas a BLLac
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because it was observed during a period of strong brightening of the non-thermal
continuum, or to mistake a BL Lac for a FSRQ during a very low emission state
when intrinsically weak lines may stand out more. In this work, sources will
be selected according to the classical definition, but the issue of “transitional”
objects will have an impact, as better explained in Section 3.4.

1.3 THE BLAZAR SEQUENCE

Population studies on blazar SEDs reveal that theymay follow a general trend, called
blazar sequence, that relates the bolometric luminosity reconstructed from observations
in specific energy bands and the frequency of the lower-energy peak in the spectrum.

The first work to realize this, and to perform a systematic study of blazar SEDs in-
cluding gamma-ray data above 30MeV, was Fossati et al. 1998, at a time where the the
availability of multiwavelength data was much more limited than today. The authors
selected their sources from 3 samples: one in the X-ray band (the Einstein Slew Survey
of 1992) and two in the radio band (one for BL Lacs and one for FSRQs). The result was
a dataset on 126 blazars, of which 6 BL Lacs selected in both frequency intervals, and 33
objects detected in gamma rays by EGRET. The average SED was reconstructed for each
source by computing the logarithmic mean of archival data points at each frequency.
Taking the maximum fluxes to include gamma rays was considered as an alternative,
but discarded to avoid biases in favor of higher-energy states detected by EGRET (see
discussion on a similar problem in Section 3.2). After performing the 𝐾−correction on
observed fluxes to account for the redshift, the frequencies of the lower-energy peaks
were computed with polynomial fits of the SEDs and plotted against a number of other
quantities: luminosities 𝜈𝐿𝜈 in the radio and gamma-ray bands and at the peak, broad-
band photon indices, and gamma-ray dominance (defined either as the ratio of gamma-to-
low-energy peak luminosities, what is now more often called Compton dominance, or
as the ratio between gamma-ray and optical luminosities). This analysis was completed
by building the sequence in its most famous form: sources were classified in 5GHz
radio luminosity bins, as luminosity seems to be the quantity that correlates with the
others the most, and their SEDs were averaged in each bin irrespective of their original
classification. Part of the result is shown in Figure 1.8. The main findings of this study
were:

• When accounting for redshift biases, there is an anti-correlation between the first
peak frequency, 𝜈syn and the radio luminosity at 5GHz, 𝐿5GHz, while the cor-
relation with the peak luminosity is weak; when considering the average SEDs,
the 𝜈syn-𝐿5GHz relation becomes more complex, such that “high-luminosity” and
“low-luminosity” blazars need to be analyzed separately: the distinction roughly
matches the one between FSRQs and BL Lacs;
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(a) (b)

Figure 1.8: Two realizations of the first blazar sequence, from Fossati et al. 1998. 1.8a: average
SEDs of sample sources binned by luminosity, irrespective of classification. The curves are phe-
nomenological approximations computed by glueing power-laws and parabolae together. 1.8b:
Scatter plot of the low-energy peak frequencies against the gamma-ray dominance, according to
two different definitions.

• There is a strong anti-correlation between 𝜈syn and the broadband spectral indices
𝛼RO and 𝛼RX (optical/radio and X-ray/radio spectral slope in logarithmic scale, as
𝐹(𝜈) ∝ 𝜈−𝛼);

• There is a strong anti-correlation between 𝜈syn and the gamma-ray dominance;

• There is a positive correlation between the frequency of the first and the second
peak: the X-ray spectrum becomes harder, and the gamma-ray spectrum becomes
softer, with increasing luminosity, indicating a shift of the higher-energy hump,
too, toward lower frequencies;

• No source peaking in the X-ray band and emitting at TeV energies is predicted to
have high luminosity;

• Not only high-peaked sources are predicted to be detectable at TeV energies, but
also some low- and intermediate-peaked ones.

The original sequencewas later updated in a paper byDonato et al. 2001, confirming
and strengthening the previous findings with an extension of the analysis to the average
spectral quantities (fluxes and spectral indices) in the 2 keV to 10 keV. The new study
gave weight to the physical model according to which the two portions of the SED are
generated by different, but related, radiative processes (the synchrotron self-Compton
scenario: see Section 2.1 in the next Chapter).

Many years and discussions later, in 2017, a revision of the sequence (Ghisellini
et al. 2017) was published to include high-energy gamma rays in the picture. In the
late 1990s, only scarce (but fundamental) data from EGRET were available; in the late
2010s, the third catalog of AGN detected by Fermi-LAT, the successor of EGRET, had
been published (Ackermann et al. 2015), listing 1563 AGN of any type and their average
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fluxes over 4 years of observations. Blazars with known redshift and no identification
issues were selected, producing a sample of 747 objects. A similar approach to the orig-
inal 1998 work was adopted: SEDs were reconstructed from archival data, averaging
different emission states of the same source, and classified in 6 bins according to the
𝐾−corrected gamma-ray luminosity in the 100MeV-100GeV range. The average SEDs
for each bin were then interpolated with a piecewise phenomenological model. Results

(a)
(b) (c)

Figure 1.9: The blazar sequence, from Ghisellini et al. 2017. 1.9a: the sequence of aver-
age SEDs. 1.9b: self-absorption frequency 𝜈t, lower-energy peak frequency 𝜈S, higher-energy
peak frequency 𝜈C, Compton dominance 𝐶𝐷 and main slope of the high-energy component 𝛼3
against gamma-ray luminosity in logarithmic scale, log10 𝐿𝛾 , for FSRQs and BL Lacs separately.
1.9c: same as the previous plots, but for all blazars together.

(see e.g. Figure 1.9) were discussed for all the blazars together, or for FSRQs and BL
Lacs separately:

• BL Lacs have generally lower gamma-ray luminosities and redshifts than FSRQs.

• The photon index in the radio band, 𝛼𝑅 = −0.1 works for all sources.

• For FSRQs, the sequence mostly regards the “Compton dominance”, which in-
creases smoothlywith luminosity. The change in the lower-energy peak frequency
is slight compared to the increase in gamma-ray luminosity.

• For BLLacs, there is an overall trend ofboth peak frequencies being anti-correlated
with the gamma-ray luminosity. The low-energy peak frequency 𝜈syn increases
by 5 orders of magnitude with a 4-orders of magnitude decrease in luminosity;
almost the same happens for the high-energy peak. The Compton dominance
changes by one order of magnitude across the sequence, indicating that the two
components of the spectrum are almost equal for BL Lacs.

• For blazars all together, the sequence becomes more evident, as high luminosities
are dominated by FSRQs, and low luminosities by BL Lacs. There is an abrupt
change in 𝜈syn at 𝐿𝛾 ∼ 1045 erg s−1.

• There is a large dispersion of points around the median spectrum for low- and
intermediate-luminosity bins of the overall sequence, probably caused by the co-
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existence of objects of different nature (“low”-luminosity FSRQs and intermediate-
luminosity BL Lacs) in the same bin, which did not happen in the original se-
quence due to the sample being more biased in favor of brighter sources; there is
a possibility that the sequence does not really involve luminosity per se, but rather
the luminosity in units of the Eddington limit.

The new sequence therefore confirmed the old one in several aspects, but also brought
some surprises, especially when analyzing the two blazar subclasses separately. The
point about dispersion is mainly a consequence of more sensitive instruments being
available, that can detect objects with a wider range of luminosities and black hole
masses. Considering that Fermi-LAT has a limited energy range, despite the smaller bias
in the sample there are still at least two groups of sources that have probably been ex-
cluded: powerful FSRQs whose high-energy peak falls in the MeV range, and the most
extreme-TeV BL Lacs, at the opposite end of the sequence. These two limit cases are,
reasonably, the next step: this work will focus on the latter and on other TeV-detectable
sources.
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2
Blazars: Theoretical Models

Decades of ever-improving observational evidence have allowed to build a sort of
“standard model” of the general structure and radiative processes happening in AGN
and producing the fluxes of photons (and, lately, neutrinos) that we observe from Earth.
However, it is this same wealth of increasingly accurate, and sometimes surprising in-
formation that is now leading to a growing variety of theoretical models and making
these objects as intriguing as theywere 60 years ago. Understanding the blazar sequence
is one of the most debated ways to investigate on the physics of these astrophysical
sources.

2.1 THE SPECTRAL MODEL: SYNCHROTRON SELF-COMPTON

2.1.1 SYNCHROTRON EMISSION

The peculiar shape of the blazar SED, along with radio imaging and analyses in the
time domain, paints a picture where particles are accelerated to high energies along a
direction close to our line of sight, and their radiation undergoes relativistic beam-
ing, such that it ends up dominating the spectrum of these sources. In explaining the
SED of BL Lacs specifically, there is consensus on the origin of the lower-energy com-
ponent: electron synchrotron. Even in a classical context a charged particle spiraling
in a magnetic field, being subject to centripetal acceleration under the Lorentz force,
will radiate power. In case of relativistic electrons in an astrophysical environment, the
gyration radius will be the Larmor radius 𝑟𝐿 = 𝛾𝑚𝑒 𝑐2

𝑒𝐵 , depending by the modulus of
the magnetic field 𝐵, and the distribution of pitch angles will be isotropic due to parti-
cle scattering and irregularities in the field (Spurio 2018). Each electron emits strongly
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beamed radiation, according to:

𝑃𝑒 =
4
3𝜎T𝑐𝑢𝐵𝛾2𝛽2 (2.1)

in the reference frame of the observer; of course, 𝛽 = 𝑣
𝑐 for the electron, and 𝜎T = 8𝜋

3
𝑒4

𝑚2𝑐4

is the Thomson cross section; 𝑢𝐵 = 𝐵2

8𝜋 is the magnetic field energy density. Most of
this power will be radiated at a characteristic synchrotron frequency 𝜈S = 𝛾2𝜈L = 𝛾2 𝑒𝐵

2𝜋𝑚𝑒 𝑐
,

with 𝜈L the Larmor frequency. Due to relativistic beaming, the observer will only see
the radiation when the electron velocity vector lies at an angle 𝜃 ≲ 1

𝛾 . In the “standard”
leptonic model for blazars, electrons move at relativistic speeds in a “blob” immersed
in a magnetic field appearing homogeneous and random in its reference frame, so one
may expect this relation does not really hold, as synchrotron radiationwill be emitted in
all directions; however, switching to the observer frame, the blob has a bulk relativistic
motionwith Lorentz factor Γ, that beams the collective synchrotron radiation in an angle
of aperture 2

Γ . When the jet is formed by the nucleus of an active galaxy along an axis
lying at a smaller angle than 1

Γ from the line of sight, the observer will see a blazar (see
Section 2.2).

When, instead of a single particle, the radiation source is a distribution of electrons
accelerated with Doppler factor 𝛿𝐷 in a blazar jet at a luminosity distance 𝑑𝐿, one may
write for the flux density, following Finke, Dermer, and Böttcher 20081:

𝑓𝜖 =

√
3
ℎ

𝛿4
𝐷𝜖

′𝑒3𝐵

4𝜋𝑑2
𝐿

∫ ∞

1
𝑑𝛾′𝑑𝑁 ′

𝑒

𝑑𝛾′ (𝛾′)𝑅(𝑥) (2.2)

where all the primed quantities 𝜖′, 𝑁 ′(𝛾) are in the reference frame of the electron dis-
tribution; 𝜖 = ℎ𝜈

𝑚𝑒 𝑐2 is the dimensionless energy of emitted synchrotron photons in units
of electronmass-energy, 𝑑𝑁𝑒𝑑𝛾 is the differential number of particles in the total volume of

the source; 𝑥 = 4𝜋𝜖′𝑚2
𝑒 𝑐

3

3𝑒𝐵ℎ𝛾′2 , and 𝑅(𝑥) is the synchrotron spectral power of a single electron
averaged over the pitch angle (see also Ghisellini 2013, with a different notation).

Once the electron distribution is defined, amore concrete description of the spectral
shape can be done. For particles accelerated to relativistic energies by non-thermal
processes, the trend is a power law,

𝑑𝑁 ′
𝑒

𝑑𝛾
= 𝑘𝑒𝛾−𝑝

Combining this with Equation 2.1, one can obtain that the spectral flux density in the

1Chosen and reproduced here as it is the formalism adopted by agnpy, one of the SED modeling tools
used in this work.
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observer frame is
𝐹(𝜈) ∝ 𝑘𝑒𝐵

𝑝+1
2 𝜈−

𝑝−1
2 (2.3)

So the slope depends from that of the electron distribution, that can therefore be mea-
sured giving precious information on the acceleration process.

Synchrotron photons may be re-absorbed by their parent electrons themselves (syn-
chrotron self-absorption). This mechanism will not be included in the models in Section
3.4, as it is not observable in blazars, but it is remarkable in that the self-absorbed flux

𝐹(𝜈) ∝ 𝜈
5
2𝐵− 1

2 (2.4)

has a fixed slope, and may constrain the intensity of the magnetic field just by knowing
the angular size of the source. Self-absorption appears at frequencies below a certain
characteristic limit (the self-absorption frequency)marking the transition between optically
thin and thick regimes, and usually falls close to the synchrotron peak frequency 𝜈syn

(Ghisellini 2013).

2.1.2 SYNCHROTRON SELF-COMPTON

The interpretation of the second hump in the SED of blazars is not univocal, and
depends from the nature of the source and from the physical model that seems the
most suited to observations beyond the mere spectrum (imaging, multimessenger). It
has been found that BL Lacs are generally well described by the homogeneous one-zone
synchrotron self-Compton (SSC)model. This clever scenario stems, among other things,
by the fact that variability in different frequency bands seems to be correlated, so it is
reasonable to suppose that all radiative processes happen in a single, limited volume
of the jet: the same magnetized blob that emits the synchrotron radiation. In this con-
text, the electrons cool down by transferring part of their energy by inverse Compton
scattering to a fraction of the synchrotron photons they produced themselves.

Inverse Compton scattering may happen in two regimes: Thomson, when 𝜖′ < 𝑚𝑒 𝑐2

in the electron rest frame, and Klein-Nishina, when seed photons are more energetic. In
the first case, the radiated power by a single electron is given by

𝑃C =
4
3𝜎T𝑐𝛾2𝛽2𝑢𝑟 (2.5)

with 𝑢𝑟 =
∫
𝜖𝑛(𝜖)𝑑𝜖 is the energy density of the target radiation before scattering, in

the observer frame. The similarity of this expression with the equivalent one for syn-
chrotron allows to write a simple relation:

𝐿IC
𝐿syn

=
𝑃IC
𝑃syn

=
𝑢𝑟
𝑢𝐵

(2.6)
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which holds as long as either process is not inhibited: for example, it does not work in
the Klein-Nishina regime, when the scattering cross section becomes small and energy-
dependent (𝜎𝐾𝑁 ∝ 𝜖−1 at high energies), hindering electron cooling. It is therefore pos-
sible to estimate the relative weight of the radiation and the magnetic field by measur-
ing the observed luminosity ratio. In the Thomson regime, the maximum energy of
scattered photons is 𝐸max

𝛾 ≃ 4𝛾2𝜖, meaning that, even with an electron Lorentz factor
𝛾 close to the usual minimum value for high-synchrotron peaked BL Lacs (∼ 102), the
scattered photons can reach energies that are a factor 104 higher than the original: for
example, a near-infrared photon of frequency 𝜈 = 1014 Hz becomes a 4 keV X-ray. In
the Klein-Nishina regime, the photon energy is boosted by a factor ≤ 𝛾. The spectral
flux density of inverse Compton radiation when the population of seed photons is non-
monochromatic, and the electron distribution is a power law is

𝐹(𝜈C) ∝ 𝜈−𝛼C

∫ 𝜈max

𝜈min

𝑢𝑟(𝜈)𝜈𝛼−1𝑑𝜈 (2.7)

where 𝜈C is the frequency of the scattered photon. The integral is non-trivial, as the
integration limits depend on 𝜈C, but if the process is SSC, 𝑢𝑟 ∝ 𝜈−𝛼 and the integral is a
constant, lnΛ:

𝐹(𝜈C) ∝ 𝜈−𝛼C 𝜏C lnΛ (2.8)

where 𝜏C = 𝜎𝑅𝑘𝑒 is the inverse Compton optical depth, and depends from the interac-
tion cross section 𝜎, the source size 𝑅, and the electron number density 𝑘𝑒 . Figure 2.1
shows a schematic view of a SSC spectrum.

When accounting for Doppler boosting of the radiation emitted by a blob moving
toward the observer at relativistic speedwith a Lorentz factor Γ, as it happens in blazars,
the complete formula for the SSC observed flux density is (Nigro et al. 2022 and refer-
ences therein):

𝜖c𝐹𝜖C =
3
4 𝑐𝜎T𝜖

′2
C

𝛿4
𝐷

4𝜋𝑑2
𝐿

∫ ∞

0

𝑑𝜖′

𝜖′2
𝑑𝑢′syn(𝜖′)
𝑑𝜖′

∫ ∞

0

𝑑𝛾′

𝛾′2
𝑑𝑁 ′

𝑒(𝛾′)
𝑑𝛾′ 𝐹C(𝑞′, Γ′𝑒)

𝑑𝑢′syn(𝜖′)
𝑑𝜖′ =

3
4

3𝑑2
𝐿𝜈𝐹𝜈,syn

𝑐𝑅2𝛿4
𝑑𝜖

′

(2.9)

where 𝑢′syn is the spectral energy density of synchrotron photons, and 𝐹C(𝑞′, Γ′𝑒) is an
integration kernel that encodes the Compton cross section for electrons and photons
with uniform spatial distribution.

Notice how several physical parameters of the emission region appear in the two
equations, 2.2 and 2.9: fitting these formulae to observational data may yield informa-
tion on the source radius, its beaming factor (that includes both the observing angle
and the bulk Lorentz factor in its definition), the number density and energy of elec-
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Figure 2.1: A SSC spectrum, from Ghisellini 2013. The red curve is the synchrotron com-
ponent, the blue one is produced by the inverse Compton process. 𝜈t is the self-absorption
frequency: in blazars, it is not visible and the low-energy cutoff is dictated by the minimum
Lorentz factor of the electron distribution. The ∼ 𝜈−𝛼 trend is recognizable in both components.
The high-energy cutoff for both humps is due to the maximum Lorentz factor of the electron
distribution, joined by lnΛ in the inverse Compton curve.

trons, the slope of their distribution, and the magnetic field. In practice, depending
on the chosen electron distribution, there are at least 8 fit parameters, a relatively small
number (one of the great advantages of the SSC model) but still enough to introduce
degeneracy. The dependence of the SED from single parameters is illustrated in Figure
2.2, comparing a plot from literature with one produced specifically for this work to
show the relation of the SED with the beaming factor, and based on a preliminary fit
of an example source, the high-synchrotron peaked BL Lac PG 1218+304. The selected
electron density distribution is a broken power law (see Section 3.3.1), a standard choice
to describe the stationary broadband emission by SSC: the break in the electron distribu-
tion is introduced to account for radiative cooling when building a time-independent
model. All plots are obtained by varying one parameter, and keeping all the others
fixed. The frequency and flux density at both peaks was computed for different values
of 𝛿𝐷 , the quantity that impacted the data selection in Chapter 3 the most. Peaks of the
SEDs in Figure 2.2bwere approximated locally by parabolic fits to obtainmaximumpre-
cision in the estimate of frequencies and flux densities2. These quantities were plotted
against the respective value of 𝛿𝐷 , showing precise trends: the expected linear increase

2The package used for spectralmodeling, agnpy, includesmethods to compute these quantities directly,
but attempts at using it showed that the outputs are binned and produce step-like plots (see Section 3.2).
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Figure 2.2: Scaling of the SED when varying the SSC model parameters. 2.2a: variation of
magnetic field 𝐵, electron density normalization 𝑘𝑒 , Doppler factor 𝛿𝐷 , and break Lorentz factor
𝛾b. From Stamerra and Bonnoli 2010. 2.2b: SEDs when varying 𝛿𝐷 between 10 and 80 while
keeping all the other parameters fixed. Based on a preliminary fit (teal curve) of real data (black
dots) from PG 1218+304: log 𝑘𝑒 = −7.73± 0.25 [cm−3], 𝑝1 = 2.12± 0.04, 𝑝2 = 𝑝1 + 1 = 3.12± 0.04,
log 𝛾b = 5.03±0.10, log 𝛾min = 2 (fixed), log 𝛾max = 6 (fixed), log 𝐵 = −1.73±0.06 [G], 𝑡var = 1d.

of the peak frequency with 𝛿𝐷 for both components, and the 𝜈𝐹syn
𝜈 ∝ 𝛿4

𝐷 relation that
can be foundwhen applying the Lorentz transforms from the blob frame to the observer
frame. Forwhat concerns the inverse Compton peak flux density, the relation found em-
pirically seems to be exactly the same of the synchrotron peak, while in Figure 2.2a no
dependence is indicated explicitly, as the second component may be governed by other
processes than SSC and there could be an impact of the transition from the Thomson to
the Klein-Nishina regime (Stamerra and Bonnoli 2010). What emerges is that if slightly
different data for a fit are selected, the Doppler factor should change considerably. In
fact, this is not exactly the case, as more parameters are left free to vary for fitting and
“compensate” for the changing 𝛿𝐷 (Section 3.2).

2.1.3 OTHER SCENARIOS

The one-zone SSC model is the standard for BL Lacs, but it is not the only choice
when considering blazars at large, or even some BL Lacs themselves. A dual-zone SSC
has been invoked for a growing number of sources in the last years, to account for mis-
matches in variability timescales and inferred Doppler factors across different energy
bands (Aleksić et al. 2014). The scenario described in the paper for a TeV-detected blazar
requires a larger, parsec-scale emission zone for the radio and themajority of the optical
emission, while X rays and gamma rays would be produced in a smaller region (with a
minor contribution from the larger region).

The existence of transitional sources with the FSRQ class, and the association of the
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Figure 2.3: Dependence of both synchrotron (top) and inverse Compton (bottom) peak fre-
quency and flux density from the Doppler factor, 𝛿𝐷 . Points were obtained from parabolic fits
of the SEDs in Figure 2.2b around the peaks, and interpolated with a straight line (𝜈peak(𝛿𝐷)) or
a fourth-degree polynomial (𝜈𝐹peak

𝜈 (𝛿𝐷)).

intermediate synchrotron-peaked BL Lac TXS 0506+056 with high-energy neutrinos in-
troduces additional radiative processes to consider alongside the SSC for a finer-tuned
model. The gamma-ray hump of FSRQs is usually described with an external Compton
model. The presence of thermal features like broad emission lines, or the typical profile
of an accretion disk, reveals that the FSRQ environment is rich in material surrounding
the central engine, which produces abundant low-energy seed photons that are upscat-
tered by the energetic electrons in the relativistic jet. The external contribution to the
emission is thought to be at the origin of the high luminosity and Compton dominance
of FSRQs and some transitional, “red” BL Lacs, since the large quantity of interaction
targets makes electron cooling more efficient.

Neutrino emission is also deemed to be more efficient for “FSRQ-like” sources, as
more external material and photon fields means more targets for hadronic processes
(Prandini and Ghisellini 2022 and references therein). In that case, the neutrino flux,
and the related high-energy photon emission, would most probably be a byproduct of
photo-meson interactions between accelerated protons and target photons: e.g.,

𝑝 + 𝛾 → 𝜋 + ℎ

𝜋0 → 𝛾𝛾
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𝜋− → 𝜇−𝜈̄𝜇

𝜇− → 𝑒−𝜈𝑒𝜈𝜇

High-energy photons could also be produced via proton synchrotron in presence of a
strong magnetic field (𝐵 ∼ 30G to 100G) and ultra-high particle energies (𝐸𝑝 ≥ 1019 eV;
Aharonian 2000). In any case, the hadronic component would be limited to the high-
energy region, while the leptonic one would still prevail at low energies, or even con-
tribute to the gamma-ray band too, in the so-called lepto-hadronic scenario.

Taking into account all possible components, including the hadronic ones, the total
power of the relativistic jet would be:

𝑃 =
∑
𝑖

𝜋𝑅2Γ2𝛽𝑐𝑢′𝑖 (2.10)

where 𝑢′𝑖 are the energy densities of each contribution in the emission region comoving
frame: radiation 𝑢′𝑟 = 𝐿

4𝜋𝑅2𝑐 for radiation fields, 𝑢′𝑝 = 𝑢′𝑒
𝑚𝑝

𝑚𝑒

𝑛′𝑝
⟨𝛾⟩𝑛′𝑒 for cold protons, and

𝑢′𝐵 = 𝐵′2
8𝜋 for the magnetic field.

2.2 THE PHYSICAL MODEL, PART I: UNIFICATION

Now that it is clear that a relativistic jet is involved, the question is what is it powered
by. Over the years, observational evidence lent support to general unified models (Urry
and Padovani 1995), which explain the labyrinth of AGN classes in terms of viewing
angle and few other features (Figure 2.4). The fundamental components of a blazar are:

• A supermassive, probably rotating black hole, with 107𝑀⊙ ≤ 𝑀BH ≤ 1010𝑀⊙ ,
located at the center of a giant elliptical galaxy;

• An accretion disk of matter falling onto the black hole;

• A pair of highly collimated relativistic jets of matter expelled in from the vicin-
ity of the black hole and extending for several kiloparsecs in opposite directions,
along the rotational axis of the central engine.

A rotating black hole orders of magnitude more massive than Sagittarius A∗ (at the
center of the Milky Way, 𝑀 ∼ 106𝑀⊙) would therefore be the “central engine” of AGN,
fueled by accretion. As well summarized by Dermer and Giebels 2016, the engine needs
to account for a bolometric luminosity above 1043 Wduring powerful flares, that develop
in a short amount of time inside jets of particles at relativistic bulk speeds, which are kept
collimated for thousand of parsecs: only accreting supermassive black holes would be
able to do all that. This picture is supported by an important body of evidence, not least
the spectacular result of the Event Horizon Telescope collaboration (The Event Horizon
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Figure 2.4: Classification of AGN according to mass accretion rate in Eddington units and
black hole spin parameter, from Dermer and Giebels 2016

Telescope Collaboration et al. 2019), who imaged the inner accretion disk of the nearby
radio galaxy M87, showing its connection with the spin of the central black hole.

Even if they have a common general structure, the two classes of blazars still differ
physically, as the existence of broad emission lines and sub-dominating thermal com-
ponents in the FSRQ spectrum indicate the prominent presence of abundant circum-
nuclear material (hot corona, broad-line region, molecular torus, narrow-line region:
see Figure 2.5) of which there are no signs in BL Lacs; this translates to different dom-
inating emission processes in the high-energy band (external Compton and SSC, re-
spectively), different accretion powers, and different luminosity, as highlighted in the
blazar sequence. Jets appear in <10% of AGN, and are not only present in blazars, but
also in radio galaxies. Together, they constitute the class of “radio-loud” AGN, now
often called “jetted” AGN as their emitted energy is indeed dominated by the jets in
both cases (Padovani et al. 2017). According to the unified model, blazars and radio
galaxies are the same type of object, and differ in their observational properties by their
viewing angle, and the consequent beaming effect on their emission. In particular, BL
Lacs are usually considered to be the aligned counterparts of “Fanaroff-Riley I” radio
galaxies, characterized by low luminosity, and a higher radio jet surface luminosity to-
wards the central engine. FSRQs would be the aligned versions of “Fanaroff-Riley II”
radio galaxies, which are more luminous, and feature powerful collimated jets whose
surface luminosity is highest on “hotspots” at the far end of extended radio lobes (Figure
2.6a). The beaming effect is therefore most evident in the radio band, where all types of
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Figure 2.5: Unified scheme of a radio-loudAGN fromVenturi et al. 2020, with an indication of
the possible observational counterparts of some of the regions at different energies, from radio
to VHE. The scheme follows the “spine-layer” model of the jet, as explained in 2.3.

(a)
(b)

Figure 2.6: Blazars and radio galaxies. 2.6a: Fanaroff-Riley II-like radio quasar (left) and
Fanaroff-Riley I radio galaxy (credit: NRAO). 2.6b: composite spectrum of a FSRQ, showing the
flatness in the radio band, from Ghisellini 2013.
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sources can be observed. At the largest angles the de-beaming is total, and only the lobes
are well visible (radio galaxies); as the angle decreases, other regions of the jet start to
appear at higher frequencies (steep spectrum radio quasars); for small angles, all radio
components are visible, such that their synchrotron spectra, whose peak flux is constant,
are superimposed, yielding a flat spectrum up to the self-absorption frequency of the
most compact component (Figure 2.6b). The reason for this peculiar behavior is thought
to be linked to the conservation of the number of emitting particles and of the Poynting
flux, requiring 𝐵(𝑅) ∝ 𝑅−1 and 𝐾(𝑅) ∝ 𝑅−2. Since it is the product of more than one
emission zone, the radio spectrum has nothing to do with the one-zone synchrotron
profile dominating at higher energies, so radio data at 𝜈 < 1011 Hz are excluded from
the model fits.

2.3 THE PHYSICAL MODEL, PART II: JETS

The emissionmodels considered so far all require non-thermal distributions of ener-
getic particles: it is clear that blazar jets, and the underlying mechanism that launches
them from the cores of the host galaxies, are powerful natural accelerators. Among
the main reasons for which these sources are studied are, indeed, understanding what
are the exact acceleration mechanisms happening in the extreme conditions of rela-
tivistic jets, and evaluating whether they could be the source of high-energy cosmic
rays. Acceleration processes are still an open problem, and their solution is inevitably
linked to the modeling of the jet structure on various scales. Two related issues can be
singled out: a large-scale one, on how the jet itself is generated and kept collimated on
kiloparsec scales, what is its structure, and how are the emitting blobs launched at rela-
tivistic bulk speed along the rotation axis of the engine; and a smaller-scale one, related
to how can the particles in an emission region be relativistic even in the blob reference
frame.

2.3.1 ACCRETION AND THE BIRTH OF JETS

One of the biggest puzzles in astrophysics is not only why are some supermassive
black hole at the center of galaxies active and others not, but why do some AGN have
strong jets and others not, showing instead a SED dominated by thermal processes in
the nuclear region. As shown in Figure 2.4, the key may be in the most fundamen-
tal properties of the central engine: the accretion rate and mechanism, and the black
hole spin, with a fundamental role played by magnetic fields produced in this context.
Imaging and polarization radio observations (e.g. The Event Horizon Telescope Col-
laboration et al. 2019, Issaoun et al. 2022 for recent examples) show that the jets are
originated close to the nucleus, and that they are associated to large-scale ordered mag-
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netic fields of toroidal (in the core) or helical (in the jet) shape. The two most popular
jet productionmechanisms both require similar environments. In the Blandford-Znajek
mechanism (Blandford and Znajek 1977), themagnetized inflow from the accretion disk
threads a spinning Kerr black holewithmagnetic field lines, inducing the formation of a
magnetosphere; energy and momentum can be extracted electromagnetically from the
black hole spin, powering an electron-dominated jet. The Blandford-Payne mechanism
(Blandford and Payne 1982) is instead based on the magnetic extraction of energy and
momentum from the accretion disk: in certain conditions, the magnetic field is able to
induce an outflow by centrifugal acceleration of the charged particles, creating a jet that
is kept collimated by the toroidal component of the field.

The role of the accretion mechanism is also invoked to explain the difference in the
luminosity and structure between BL Lacs and FSRQs. The low luminosity and appar-
ent absence of emission lines and of a molecular torus in BL Lacs can be explained
by inefficient matter accretion, such that the accretion luminosity of the disk is smaller
than a certain threshold in Eddington units ( 𝐿disk

𝐿Edd
≤ 10−2 − 10−3; Prandini and Ghisellini

2022 and references therein). BL Lac accretion is thought to occur in the Advection-
Dominated Accretion Flow regime, a radiatively inefficient mechanism that on one
hand, is unable to produce enough photo-ionizing UV radiation to induce line emis-
sion in the inner gas clouds (the broad-line region of FSRQs); on the other, it can be
associated to the emission of jets and winds (Yuan and Narayan 2014).

2.3.2 JET STRUCTURE

The scenario described in the previous Sections for BL Lacs, the one-zone SSC,
is quite successful in spectral modeling despite being quite simplistic: the broadband
emission is almost completely dominated by radiative processes happening in a single
blob of relativistic electrons, with a uniform and tangled magnetic field. This assump-
tion is actually well justified by a number of experimental data: the aforementioned
coherence of emission enhancement during flares across the electromagnetic spectrum,
but also the observation of moving “radio knots” and apparent standing shocks in the
jet, where matter should be crossing at relativistic bulk speed, a situation that can be
roughly describedwith the “one-zone” prescription. The problem is how heavy this ap-
proximation is: the state is steady, with no time evolution, no particles of other species
intervening, and no regard to what may be happening outside of the emitting volume,
especially large-scale phenomena. Othermore realistic models of an inhomogeneous jet
structure have therefore been put forward, often with the support of observational find-
ings, but at the price of more parameters and degeneracy (Sol and Zech 2022). Two-zone
SSC, or even multi-zone models have been invoked to explain peculiar spectra and vari-
ability patterns, especially when explaining flares (Abe et al. 2023), but also to account
for long-term multiwavelength behavior (Aleksić et al. 2014).
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In case of multi-zone models, particles are accelerated and radiate energy all the
way along the jet, whose geometry becomes fundamental (e.g., the “conical jet” model).
An inhomogeneous scenario that has been applied to some interesting cases, like TXS
0506+056 (Ansoldi et al. 2018) is the spine-layer, or spine-sheath model (e.g. the jet in
Figure 2.5): the jet proper, with a higher bulk Lorentz factor (Γ ∼ 13) and sometimes
described as purely leptonic, is surrounded by a slower baryonic envelope (Γ ∼ 3). The
two components “see” each other’s radiation beamed due to the difference in speed,
enhancingmutual external Compton emission. This picture would also help explaining
fast gamma-ray variability in sources that appearmore stationary at smaller frequencies.

It was, indeed, the extremely fast variability of some energetic blazars in the TeV
band (Section 1.2.2) that inspired even more complex models: from “jets-in-jet” and
“mini-jets”, where the jet is populated by several compact sub-components, to electron-
positron pair cascades induced in black hole magnetospheres, to jets encountering ob-
stacles like clouds or stars (Sol and Zech 2022). According to Rieger 2019, the log-
normality of flux distributions in variable blazars favors a disk-jet connection, and dis-
favors “additive” models like jets-in-jet.

Recent polarization studies with data from the IXPE mission (e.g. Kouch et al. 2024)
lend credibility to the energy-stratified shock-acceleration scenario. Particles, after be-
ing accelerated by a compact shock front, cool down in the more turbulent, magnetized
downstream regions, emitting less and less energetic photons as they travel away from
the shock. The result is that a one-zone model, where the entire SED is produced in the
same blob, is no more valid, as there are different regions of the jet that emit photons
of different energies and polarization degrees, with the highest-frequency flux being
more polarized as it is produced closer to the shock front, where the magnetic field is
more ordered. Adding to this is the structure of the innermost part of the jet, as it has
been reconstructed with the help of numerical magnetohydrodynamical simulations:
jets are launched as magnetically dominated outflows (Poynting flux region) and then
the magnetic energy is progressively converted to kinetic energy as the jet is collimated
and accelerates outwards, as shown in Figure 2.7.

2.3.3 ACCELERATION MECHANISMS

Shock Acceleration Shock acceleration is, indeed, the classic explanation for the emis-
sion of energetic massive particles in astrophysical environments, and blazar jets would
not be an exception. Shock fronts can form easily, especially in supersonic plasma flows:
for example, in case of internal instability, or recollimation of the expanding jet in outer
regions by the pressure of the intergalactic medium. Bow shocks due to collision with
the external medium form at the far end of the extended lobes in Fanaroff-Riley II radio
galaxies (FSRQs), producing characteristic radio hotspots. In such cases, the Fermi I
process (diffusive shock acceleration) happens. Fast particles crossing the shock into
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Figure 2.7: Model of the jet structure and radiative emission at different energies, fromVenturi
et al. 2020.

the downstream region are trapped by the magnetic turbulence, which themselves am-
plify by inducing Alfvén waves, and cross the shock several times:

⟨Δ𝐸⟩ ∝ 𝑟 − 1
𝑟

𝑢shock
𝑐

(2.11)

is the energy gain per crossing, where 𝑟 is the compression factor of the shock and 𝑢shock

is the shock speed in the reference frame of the upstream medium (Sol and Zech 2022).
This mechanism produces power-law particle distribution with an index

𝑝 =
𝑟 + 2
𝑟 − 1

which is about 2 for strong shocks. The problem with this process is that it is not ef-
ficient for strongly magnetized ultra-relativistic shocks, as it is difficult for particles to
cross back to the upstream region: in that case, the power index is softer, 𝑝 = 2.2 − 2.3,
and other acceleration mechanisms may gain more weight: for example, “fast Fermi
processes”, that exploit the electric fields induced by particle moving toward the shock
and may allow acceleration to high energies with a single crossing. In that case, power
indices may assume values as low as 𝑝 ≃ 1. For extreme-TeV BL Lacs, multiple shock
re-acceleration has also been invoked.

Turbulence Turbulence and instabilities are fundamental for the efficiency of diffusive
shock acceleration, but theymay induce themselves stochastic accelerationmechanisms
of the Fermi II type that, despite being second-order, are expected to produce very en-
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ergetic particles. The energy gain per interaction is, on average,

⟨Δ𝐸⟩ ∝ 𝐸
(𝑢c
𝑐

)2
(2.12)

where 𝑢c is the velocity of the scattering center. Turbulence can happen at the interfaces
between layers in a scenario like the spine-sheath, and induce shear acceleration, with an
average particle gain per interaction

⟨Δ𝐸⟩ ∝ 𝐸
(𝑢
𝑐

)2
(2.13)

where 𝑢 is the effective speed change of scattering centers from the reference frame of
a particle crossing the flow along the 𝑥 direction (transversely) in one mean free path.
For an outer layer of thickness ∼ 0.1𝑅jet, electrons can be accelerated to PeV energies,
and protons to EeV energies, without jet disruption (Sol and Zech 2022 and references
therein).

Magnetic Reconnection Themain competitor of shock acceleration, as shown bymag-
netohydrodynamical simulations, is magnetic reconnection. Favorable conditions are
present in blazar jets, especially the innermost regions closer to the central engine, where
the jet is dominated by the Poynting flux and is therefore particularly prone to instabil-
ities. Here “current sheets” may form, where magnetic energy is dissipated and con-
verted to particle kinetic energy in a fast and efficient way (Tavecchio 2021). Reconnect-
ingmagnetic fields in a relativistic context accelerate particles to very high energieswith
a hard power-law distribution of index 𝑝 ≃ 1 − 1.5 (Sol and Zech 2022 and references
therein).

2.4 PHYSICS OF THE BLAZAR SEQUENCE

As already highlighted, modeling source spectra and studying the blazar sequence
has the clear aim of understanding the physical processes behind particle acceleration
and radiation emission in these powerful sources. This is the main concern of the first
part of this work (Chapter 3), which was done as part of a wider study on the physical
roots of the sequence.

The first papers on the topic already tried to give a physical interpretation. Fos-
sati et al. 1998 underlines how the sequence could give a contribution to understanding
whether the high- and low-luminosity blazars are emitting at high energies according to
different flavors of inverse Compton scattering (external Compton versus SSC, respec-
tively), with a smooth transition between the two mechanisms, or if the same process
is behind the spectra at all peak frequencies, favoring the former idea; they also ad-
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Figure 2.8: The Compton dominance of the 2LAC clean sample of blazars against 𝜈syn, and
theoretical predictions, from Finke 2013. Black dots: FSRQs; empty red circles: BL Lacs; pink
triangles: objects of unknown redshift; green squares: ambiguous AGN.

mit they have no immediate justifications for the phenomenologically dominant role
of the luminosity. The 2017 update (Ghisellini et al. 2017), coming at a time when the
EC-SSC dichotomy for FSRQs and BL Lacs was consolidated, discusses the findings at
length, focusing mostly on the behavior of the FSRQ population. The idea is that the
cooling timescale is the most relevant quantity in characterizing radiative emission: for
FSRQs, it turns out it is constant, while for BL Lacs, the direct proportionality of the
synchrotron radiation energy density to the observed luminosity (Eq. 2.9) means that
electron cooling is stronger in more powerful objects. This reduces the electron en-
ergy at the synchrotron peak, whose frequency (alongside the inverse Compton peak
frequency) becomes in turn smaller.

A few years before, Finke 2013 analyzed the sequence with a slightly different ap-
proach, focusing on some observational quantities extracted from literature and archival
data and trying to correlate them to a simplified physical model. A correlation between
the synchrotron peak frequency and luminosity is confirmed, as it is the analogous re-
lation between 𝜈syn and the Compton dominance: the latter, in particular, is the focus
of the study as it is a redshift-independent quantity that can reduce selection bias. The
simplifiedmodel is able to predict both trends (Figure 2.8) and depicts a scenario where
the viewing angle, encoded by 𝛿𝐷 (as Γ = 30 is fixed) is the main parameter govern-
ing the synchrotron peak luminosity, but the overall trend actually exists, and seems
to be mostly driven by the magnetic field 𝐵, which is larger for FSRQs than BL Lacs,
and by the external photon field energy density 𝑢ext. Together, these two quantities
determine the cooling regime: slow cooling prevails for a minimum electron Lorentz
factor 𝛾min < 𝛾𝑐 , where 𝛾𝑐 is a characteristic cooling electron Lorentz factor, and the
synchrotron peak occurs at 𝛾 = 𝛾𝑐 ; if 𝛾min is larger, fast cooling prevails, and the syn-
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chrotron peak happens at 𝛾 = 𝛾min. In any case, electrons lose energy by synchrotron
radiation and inverse Compton scattering in the Thomson regime. Higher 𝜈syn matches
low values of 𝐵 and 𝑢ext, due to slow cooling; as the two quantities increase, the amount
of cooling also increases, and 𝛾𝑐 decreases, until the transition to fast cooling at about
𝜈syn ≲ 1013 Hz. A second break at 𝜈syn ∼ 1014 Hz to 1015 Hz marks the transition be-
tween the external Compton and the SSC. In other words, up to the effect of the observ-
ing angle, the sequence really exists and has a physical reason: low-synchrotron peaked
sources, especiallymost FSRQs, emit by synchrotron and external Compton by fast cool-
ing, while the higher-peaked sources, mostly BL Lacs, follow the SSC radiation model
in the slow regime.

This paper is now quite old, and a wealth of new data have come from all current
high-energy observatories. Other approaches can also be adopted: for example, model-
ing the single SEDs. A recent paper (Kerby and Falcone 2023) is particularly interesting,
because it has several elements in common with this thesis as illustrated in Chapter 3.
The authors analyze a small sample of dim gamma-ray blazars discovered recently, and
discuss their role in the sequence after fitting their SEDs one by one with agnpy and
evaluating their 𝜈syn with BlaST, two of the modeling tools that were employed here.
Apart from the anomalous Compton dominance, the average results seem to be coher-
ent with the blazar sequence. The paper, however, is limited to a small population and
does not try to do for low-luminosity blazars what is attempted here with high-energy
BL Lacs: rebuild the sequence with physical model parameters.

Criticisms of the Blazar Sequence Objections to the blazar sequence are not rare. Sev-
eral researchers argue that the observed trend does not exist physically, and suggest al-
ternative models. According to Fan et al. 2017 and, more recently, Ouyang et al. 2023
(described in Section 3.1) the key is not the coolingmechanism, but rather the relativistic
beaming: since 𝛿𝐷 boosts both the intrinsic 𝜈syn and the intrinsic synchrotron peak lumi-
nosity, the sequence would disappear, or even show the opposite trend, after correcting
for beaming. A radical proposal was advanced by Giommi et al. 2012: in the so-called
“simplified scenario”, the sequence is nothing more than a selection artifact related to
the depth of radio and X-ray surveys. Monte Carlo simulations based on rather strong
assumptions (among others, that all blazars have the same magnetic field, 𝐵 = 0.15G,
and the Doppler factor is ⟨𝛿𝐷⟩ = 15 ± 2) show that both high-luminosity, high-peaked
blazars and low-luminosity, low-peaked blazars should exist. The latter class, in partic-
ular, still would have not been recognized because it would be difficult to detect in the
X ray band. Both Finke 2013 and Ghisellini et al. 2017 challenge this model, but future
X-ray observations will probably have the last word.
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3
Spectral Modeling

TeVCat1, the online collection of astrophysical sources detected at teraelectronvolt
energies (Wakely and Horan 2008), currently lists 334 objects, 85 of which are blazars.
Understanding the physical mechanisms behind the emission of such high-energy pho-
tons, especially when it peaks in that energy range, may happen by understanding, in
turn, their place in the blazar sequence. Away to do this, that is sketched in this Chapter,
is by modeling their SEDs: however, as pointed out by Bégué et al. 2023, fitting blazar
spectra has progressively become harder from the computational point of view, as it
has become clearer, thanks to an increasing number and quality of multiwavelength
and multimessenger data, that the simplest spectral models are not enough. Even if
reforming the sequence, being a population study, is a task that may in principle be
limited to a rougher evaluation of physical parameters, complexity does not disappear,
and computational costs rise again if the SEDs of all the sample sources are fitted to
avoid indiscriminate averaging. Machine learning algorithms may therefore become
useful to tackle these issues.

3.1 AIM: THE TEV BLAZAR SEQUENCE

Most studies on the blazar sequence, as already shown in the previous chapters,
have been carried out by selecting sources in specific energy bands: radio and X rays
in the original version (Fossati et al. 1998), high-energy gamma rays in the 2017 update
(Ghisellini et al. 2017). The latter work was encouraged by the great achievements of
the Fermi Large Area Telescope, which had been able to detect more than 1700 blazars

1http://tevcat2.uchicago.edu/
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from the start of its operations in 2008 (Acero et al. 2015). The 2000s and early 2010s also
saw the commissioning of the three current imaging atmospheric Cherenkov telescopes,
H.E.S.S., VERITAS and MAGIC (see next Section), for ground-based indirect detection
of gamma rays at TeV energies. The completion of the three arrays marked a sharp in-
crease in the total number of jetted AGN, mostly BL Lacs (but also FSRQs and radio
galaxies), observed at very high energies. The natural consequence is to check what is
the role of these objects in the sequence, if they tend to confirm or disprove its exis-
tence in particular, and to discuss their features in this context to have a clearer physical
picture of the highest-energy radiative processes.

Of course, this is not the first attempt at including TeV data in the sequence: discus-
sions have been ongoing at least since the discovery of the first extreme synchrotron-
peaked blazars in the late 1990s (Costamante et al. 2001), which seemed to be anoma-
lous due to their relative brightness. The last few years saw the publication of several
papers focusing on the observational properties andphysicalmodeling ofVHE-emitting
blazars, encouraged by the fact that the number of detections is now becoming close to
that of objects in the original 1998 study. Qin et al. 2018 found consistent results with
the blazar sequence in the physical parameters from fits of a sample of TeV-selected
BL Lac SEDs; Zhou et al. 2021, working with a larger sample of TeV blazars, found an
anti-correlation between the peak Lorentz factor of the electron distribution, 𝛾p, and the
magnetic field, among other things. Prandini andGhisellini 2022 applied the same anal-
ysis as Ghisellini et al. 2017 to a sample of 67 TeV-detected blazars with known redshift,
building their SEDs from SSDC data, singling out BL Lacs, computing their luminos-
ity and classifying them in the same gamma-ray luminosity bins adopted by the 2017
paper. The result indicates no strong differences in the overall SEDs from the sources
selected from lower-energy gamma rays (Figure 3.1), but there seems to be a higher X-
ray luminosity in TeV BL Lacs: a slight deviation from the sequence that, according to
the authors, may be explained bywrong redshift estimations, or a selection effect linked
to a strong bias in favor of bright X-ray sources, or the existence of “blue quasars”, i.e.
FSRQswhose emission happens outside the broad line region (Ghisellini and Tavecchio
2008). Another recent paper (Ouyang et al. 2023), which tries to rebuild the sequence by
focusing on the observed TeV luminosity, instead puts it into question following the idea
that the trend is actually an effect of different Doppler beaming factors, 𝛿𝐷 : this is based
on the comparison between a sample of 48 quiescent blazars and 21 flaring ones (with
11 sources known in both states), which seems to show that the expected anticorrelation
exists only during flares, and disappears once correcting for beaming.

The work described in this Chapter was carried out as a contribution to an ongo-
ing effort to reform the blazar sequence focusing on TeV-detected sources, and adopt-
ing a different approach than the previous ones. The “traditional” modus operandi,
followed by the majority of the papers mentioned in the above paragraph, starts from
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Figure 3.1: The Fermi blazar sequence reproduced with TeV-detected blazars only, from Pran-
dini and Ghisellini 2022.

considering the 𝐾-corrected luminosity of sources in a specific frequency band, and
classifying it in luminosity bins in which spectra are averaged or interpolated to find a
single “average” SED of that bin. This approach, while reasonable (especially in a pe-
riod when data were not as abundant at most frequencies as today), still needs working
on different energy bands separately, making assumptions on the spectral shapes, and
is “dangerous” as it means blending together sources with possibly different character-
istics, all with large flux variabilities. Now that high-quality data are available in most
frequency bands, and many known blazars have their synchrotron peak frequencies es-
timated (e.g. in the 4LAC catalogue, see next Section), the new endeavor this work is
part of will proceed like this:

1. select only TeV-detected BL Lacs;

2. classify them by their synchrotron peak frequency in 5 bins;

3. choose one representative source per each bin, and select available spectral data
in a average emission state, that is most emblematic of the general behavior of the
single object and of the sources in the same subgroup;

4. fit the observed SEDs of the representative sources, using the same model for all;

5. discuss potential trends shown by the physical model parameters across the syn-
chrotron peak frequency bins.

In this way, there is no averaging over different sources and emission states, nor the
need to reconstruct 𝐾-corrected or even intrinsic, beaming-corrected luminosity: the
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final result will hopefully be a sequence of physical quantities, which may cast light on
the physics behind the phenomenology.

3.2 DATA SELECTION

3.2.1 SOURCE SELECTION

To perform the analysis outlined above, the following information is needed about
the objects in the sample:

• the source class, in order to select only BL Lacs and discard FSRQs and blazars of
uncertain type;

• the synchrotron peak frequency 𝜈syn, to classify them;

• the redshift 𝑧, which is needed not only to discuss its impact on measured fluxes
and its possible link to the sequence, but also to perform the correction for absorp-
tion by the EBL on VHE gamma-ray spectral data;

• the spectral points: frequencies or energies with their respective flux densities
and errors;

• related information like the instrument, the observation time, the exposure time,
the systematic errors, the emission state of the source when it produced that SED.

The first step was selecting the sample over which rebuilding the TeV blazar se-
quence2. Sources were selected in the high-energy gamma-ray band, covered by the
4FGL (Abdollahi et al. 2020) and 4LAC (Ajello et al. 2020) catalogs. As better explained
in the next paragraph, they were both built from data collected and averaged over the
years by the Fermi-LAT instrument in the range 50MeV to 1TeV; FGL catalogs include
all persistent sources detected by LAT, of which the large majority are blazars; LAC cat-
alogs are instead built from the corresponding FGL to only include AGN. 4LAC-DR2
(Lott, Gasparrini, and Ciprini 2020) was first merged with an updated version that fea-
tures redshift estimates that are deemedmore reliable, as theywere found in recent ded-
icated spectroscopic campaigns for potential target blazars of the future VHE gamma-
ray observatory CTA (Goldoni et al. 2021, Kasai et al. 2022, D’Ammando et al. 2024).
After filtering out the 259 sources still without a redshift, a new dataset was created
by merging the result with 4FGL-DR3 (Abdollahi et al. 2022). This operation, that pro-
duced a table of 1703 entries, was done to exploit the information from both catalogs,
whose columns do not coincide: more specifically, the source name and TeV counterpart
were taken from 4FGL, while 𝜈syn and the radio counterpart from 4LAC. Small correc-
tions were then applied to this dataset: 4 sources were flagged as TeV-detected based

2This part of the work, which was already underway when this thesis was begun, was carried out by
dr.ssa Elisa Prandini, dr.ssa Ilaria Viale and dr.ssa Chiara Righi. The collective plot of the selected SEDs,
the discussion about redshifts, and the fitting test with altered X-ray data are instead personal work.
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on new information from the aforementioned TeVCat, and other 3 TeV sources had their
unreliable 𝜈syn corrected with the value from an external tool, BlaST (see Section 4.4.2).
At this point, based on values in the TEVCAT_FLAG and CLASS columns, only the TeV-
detected BL Lacs were selected. Choosing BL Lacs only is based on the fact that the
physical model, the synchrotron self-Compton (Section 2.1), does not work for FSRQs,
which in addition are rarely detected at very high energies. The final sample consists
of 56 sources, whose 𝜈syn distribution is illustrated in Figure 3.2 in comparison with the
other BL Lacs and FSRQs of known redshift. Selected sources were classified in syn-
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Figure 3.2: Frequency distributions of 𝜈syn for BL Lacs, FSRQs and TeV detected BL Lacs of
known redshift in the 4LAC-DR2 catalog. Courtesy of dr.ssa Chiara Righi and dr.ssa Ilaria Viale.

chrotron peak frequency bins, recalling the BL Lac categorization in LBL, IBL, HBL and
EHBL objects and its thresholds; one representative source per bin was then chosen on
the basis of the abundance and quality of available spectral data:

Bin 1 LBLs, 𝜈syn < 1014 Hz, BL Lacertae (𝜈syn = 3.86 × 1013 Hz)

Bin 2 IBLs, 1014 ≤ 𝜈syn < 1015 Hz, TXS 0506+056 (𝜈syn = 3.55 × 1014 Hz)

Bin 3 HBLs, 1015 ≤ 𝜈syn < 1016 Hz, PKS 2155-304 (𝜈syn = 5.69 × 1015 Hz)

Bin 4 HBLs, 1016 ≤ 𝜈syn < 1017 Hz, PG 1218+304 (𝜈syn = 1.86 × 1016 Hz)

Bin 5 EHBLs, 𝜈syn ≥ 1017 Hz, PKS 0548-322 (𝜈syn = 2.29 × 1017 Hz)

The frequency histogram of the sample is shown in Figure 3.3 along with an approx-
imate graphical indication of the synchrotron peak frequency classes and the position
of each representative object. The average spectra of the five emblematic sources, built
from archival data according to the criteria explained in the next Subsection, are plot-
ted together in Figure 3.4, except for BL Lacertae. Clearly, no trend is obviously visible
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Figure 3.3: Frequency histogram of 𝜈syn for the sample of TeV-detected BL Lacs of known
redshift. Gray dashed lines indicate the limits of each frequency class. Green solid lines indicate
the positions of the 5 representative sources. Courtesy of dr.ssa Ilaria Viale.
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Figure 3.4: Observed SEDs of the selected representative sources (except BL Lacertae for Bin
1).
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when plotting the observed SEDs, as they do not represent the luminosity on which the
original sequencewas built: observed fluxes and frequencieswould need to be corrected
for redshift in each energy band (𝐾-correction). To inspect the impact of 𝑧 on measured
spectra, its frequency distribution was plotted in Figure 3.5, limiting the scope to Bin
4 for simplicity. There is about one order of magnitude difference between the nearest
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Figure 3.5: Frequency histogram of source redshifts in Bin 4 (𝜈syn ∈ [1016 , 1017)Hz). The
vertical lines show the mean (light red) and median (dark red) redshift, and the redshift of the
representative source, PG 1218+304 (gold).

and farthest source, with the representative object chosen for this work, PG 1218+304,
being slightly farther from Earth than the average. Figure 3.6 displays graphically how
the observed SED of PG 1218+304 changes when the redshift is made to vary over the
range of values in Bin 4. The spectrum is fitted with a classical SSC model (Section
2.1), obtaining a set of physical parameters that are then kept fixed while the redshift
is changed to the two extreme values in Bin 4 (𝑧 = 0.03, 𝑧 = 0.287). Table 3.1 shows a
rough comparison of the synchrotron and SSC peak frequencies and fluxes obtained in
this analysis with the agnpy package (see Subsection 3.3.1). Notice how all frequencies,
apart from 𝜈syn for 𝑧 = 0.03, seem to remain the same for the three values of 𝑧. This
due to an issue with discretization in the agnpy functions used for computing SED peak
frequencies: “true” values of 𝜈syn that are close enough are returned as the same value
by agnpy. This is also visible in Figure 3.6, whose vertical lines indicate the peak fre-
quencies evaluated by agnpy. In any case, the behavior is clear: given the same physical
model, observed peak frequencies and fluxes decrease as 𝑧 increases, as expected; 𝜈𝐹𝜈
increases by more than two orders of magnitude when redshift increases by one order.
The two peak fluxes vary by the same amount, such that the Compton dominance re-
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Figure 3.6: Data and SED of PG 1218+304 compared to the SED the same physical model
would produce, but at the two extreme redshifts of Bin 4. Vertical lines show the frequencies of
the two peaks for the original case (blue), the “lower redshift” model (orange), and the “higher
redshift” model (brown).

𝑧 0.03 0.184 0.287
𝜈syn[Hz] 1.76 × 1017 7.91 × 1016 7.91 × 1016

𝜈𝐹syn
𝜈 [erg cm−2s−1] 7.28 × 10−10 1.57 × 10−11 5.79 × 10−12

𝜈SSC [Hz] 3.73 × 1025 3.73 × 1025 3.73 × 1025
𝜈𝐹SSC

𝜈 [erg cm−2s−1] 5.66 × 10−10 1.23 × 10−11 4.52 × 10−12
Compton dominance 0.786 0.786 0.786

Table 3.1: Rough comparison of the synchrotron and SSC peak frequencies of BL Lac SEDs
from the same physical model, but observed at different redshifts. The model parameters are
fromone of the best fits for the Bin 4 representative source PG 1218+304 (spectral points in black):
𝑘𝑒 = 9.91 × 10−9 cm−3, 𝑝1 = 2.14, 𝑝2 = 3.28, 𝛾min = 102, 𝛾max = 106, 𝛾b = 1.95 × 105, 𝑡var = 1d,
𝛿𝐷 = 20, 𝐵 = 2.99 × 10−2 G. The original redshift is 𝑧 = 0.184. The other two are the lowest
found in Bin 4, 𝑧 = 0.03, and the highest, 𝑧 = 0.287. The results are subject to the uncertainty
due to agnpy estimating binned peak frequencies.
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mains the same (leading, e.g., Finke 2013 to focus the discussion on that, as it allows to
include BL Lacs with undefined redshift in the blazar sequence).

3.2.2 DATA POINTS SELECTION

INSTRUMENTS AND CATALOGS

At this point, SEDs for modeling were built for each of the 5 representative sources.
Points from the infrared to the high-energy gamma-ray bandwere taken from theMarkar-
ian Multiwavelength Data Center database (MMDC; see box in Section 1.2.3). VHE
gamma-ray data were instead retrieved from the Spectral TeV Extragalactic Catalog
(STeVeCat, Gréaux et al. 2023), a unified repository of spectral data and other useful
information (observation periods, livetime, significance, coordinates, types, redshifts)
from 173 papers that include at least 2 spectral points from imaging air Cherenkov tele-
scopes between 1991 and 2021, all re-formatted homogeneously. All data selected for
now come from the instruments described below.

Figure 3.7: WISE.
Credit: NASA/JPL.

WISE TheWide-Field Infrared SurveyExplorer (WISE;Wright
et al. 2010) was a NASA space telescope designed to provide a
sensitive all-sky survey in the mid-infrared band. Launched in
2009, it ceased its main mission in 2010 and, after a renewed pe-
riod of activity (NEOWISE) focused on the near-Earth asteroids,
it was shut down in August 2024 and is expected to deorbit by
the end of the year3. It worked by scanning along great circles,
freezing each frame for 11.002 s such that at least 99% of the sky
could be covered by at least 8 frames in 6 months. Data were
taken in 4 bands (𝑊1 − 4) centered at 3.4, 4.6, 12 and 22µm; the

selected data points for this work belong to the𝑊3 and𝑊4 bands, where the integration
time per frame was 8.8 s.

Swift TheNeil Gehrels SwiftObservatory (Gehrels et al. 2004) is aNASAmission, launched
in 2004 and still active, whose main goal is gamma-ray burst astrophysics. It features
three instruments: the Burst Alert Telescope (BAT) in the 15 keV to 195 keV range, the
X-Ray Telescope (XRT) in the 0.3 keV to 10 keV interval, and the Ultra-Violet/Optical
Telescope (UVOT) in the 170 nm to 600 nm range. BAT is a wide-field of view coded
mask telescope with the role of detecting GRBs first: in the process, it is doing an all-
sky survey at hard X-ray energies. Lower-energy instruments have a narrower field of

3https://www.nasa.gov/news-release/nasa-mission-concludes-after-years-of-successful-asteroid-detections/
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view, and are usually employed for BAT alert follow-ups, but they also dedicate time to
individual pointings of persistent sources, including blazars.

Figure 3.8: Swift diagram.
Credit: NASA/GSFC.

UVOT records fluxes in 3 visible (U, B, V) and 3 near-
ultraviolet bands: UVW2 (192.8 nm, FWHM=65.7 nm),
UVM2 (224.6 nm, FWHM=49.8 nm), UVW1 (260.0 nm,
FWHM=69.3 nm). Data selected here were recorded
through theUVfilters and are taken from the Swift/UVOT
Serendipitous Source Catalog (Yershov 2014), published
to describe single multi-exposure observations of ob-
jects detected by the telescope while pointing at other
targets between 2005 and 2010; differential fluxes in
erg cm−2s−1Å−1 and their errors are included. XRT mea-
surements are taken from the 1OUSXB catalog (Giommi
et al. 2019), published to collect individual multi-exposure targeted observations of
blazars performed between 2004 and 2018. The catalog, produced in the context of
Open Universe for Blazars, records fluxes (erg cm−2s−1) at 4 energies (0.5, 1.5, 3.0 and
4.5 keV) and the interpolated flux at 1 keV from measurements on the whole 0.3 keV to
10 keV range. BAT spectra come from the 105-Month Swift-BAT All-sky Hard X-Ray
Survey (Oh et al. 2018): fluxes in that catalog were extracted in 8 channels from the re-
gion of the identified source counterpart in an all-sky mosaic image, obtained in turn
by combining all 20min snapshots (total coverage of at least 7.25 × 106 s of 90% of the
sky).

Figure 3.9: BeppoSAX diagram. Credit:
ASI, BeppoSAX SDC.

BeppoSAX BeppoSAX (formerly SAX, Satellite
per Astronomia a raggi X; Boella et al. 1997) was
an ASI/NIVR mission for the observation of the
X-ray sky that operated from 1996 to 2002. The
spacecraft consisted of two instrument arrays: 2
Wide-Field Cameras and 6 co-aligned Narrow-
Field Instruments, including oneLowEnergyCon-
centrator Spectrometer (LECS), 3 Medium Energy
Concentration Spectrometers (MECS), one High
Pressure Gas Scintillation Proportional Counter
(HPGSPC) and one Phoswich Detector System

(PDS), collectively covering the 0.1 keV to 200 keV range. This work uses a catalog
(Giommi et al. 2002) of 157 single observations made by LECS, MECS and PDS in 1996-
2001; each exposure lasted ∼ 104 s to 105 s.
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Figure 3.10: Fermi-LAT dia-
gram, from Atwood et al. 2009.

Fermi The Fermi Gamma-ray Space Telescope is a
NASA mission, launched in 2008 and still ongoing, de-
voted to the surveying of the high-energy gamma-ray
sky with two instruments: the Large Area Telescope
(LAT; Atwood et al. 2009), for scanning and pointings
of both persistent and transient sources at higher ener-
gies, and the Gamma-ray Burst Monitor (Meegan et al.
2009), for the fast detection of gamma-ray bursts in the
8 keV to 40MeV range. Fermi-LAT is a pair-conversion
telescope featuring a silicon-strip tracker, a scintillation
calorimeter and a scintillation anticoincidence detector;
it is optimized for the detection of gamma-ray photons in
the range 50MeV to ∼ 1TeV and it mostly works in scanning mode, covering the whole
sky in about 3 hours. Spectra for this workwere taken from two catalogs of LAT sources:
4FGL-DR3 (Abdollahi et al. 2022), listing persistent objects of any class, and the older
3FHL (Ajello et al. 2017), focusing on sources detected above 10GeV. In both databases,
SEDs are reconstructed from multi-year photon counts (12 years from 2008 to 2020 in
4FGL-DR3, 7 years from 2008 to 2015 for 3FHL), by freezing the spectral index obtained
in the global fit over the whole energy interval and the region of interest of each source,
and adjusting the normalization in 8 (4FGL-DR3) or 5 (3FHL) energy bands.

Figure 3.11: VHE gamma-ray detection, from
Sitarek 2022.

IACTs: H.E.S.S., VERITAS and MAGIC
The highest-energy photons can be de-
tected indirectly, among other techniques,
by imaging air Cherenkov telescopes
(IACTs; see Sitarek 2022). As very-
high-energy gamma rays interact with
the atmosphere, producing an electro-
magnetic cascade, secondary particles in
the shower produce in turn a flash of
Cherenkov light, which can be recorded
to obtain information about the energy
and arrival direction of the original pho-

ton. Typical IACTs are tessellated optical telescopes that focus radiation on a segmented
photomultiplier camera, whose sensitivity and fast response allow to detect Cherenkov
light (signals of ∼ ns duration and ∼ 100 cm−2s−1TeV−1 photon differential flux) and
whose imaging capabilities allow to reconstruct the electromagnetic shower and the
properties of the parent photon. The Cherenkov light cone from electromagnetic cas-
cades usually has a cross section (light pool) of about 120m radius: several telescopes,
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each with a mirror of ∼ 10m diameter or more, are therefore set up in arrays, that reach
a total effective area of ∼ 105 m2 and the ability for stereoscopic reconstruction of the
cascade. The angular resolution is typically ∼ 0.1°, the energy resolution is ∼ 15%.
Systematic uncertainties of the order of 30% are typically considered for measured en-
ergies, fluxes and thresholds, due to the calibration and response of the instruments,
the reconstruction of the shower (based on complex simulations of the involved par-
ticle physics and the conditions of the atmosphere), the simulation and subtraction of
the cosmic ray background, and other aspects of the data analysis (Albert et al. 2006,
H.E.S.S. Collaboration et al. 2018).

Threemajor sites are currently operating: H.E.S.S.4 (OhmandWagner 2023) inNamib-
ia, VERITAS5 (Adams et al. 2022) in the United States, and MAGIC (Aleksić et al. 2016a,
Aleksić et al. 2016b) on the island of La Palma, Spain. H.E.S.S. consists of four 12m
telescopes, active since 2004, and a fifth 28m telescope added in 2012 to extend the en-
ergy range from a few tens GeV to ∼ 100TeV. VERITAS was inaugurated in 2007 and
features four 12m telescopes covering the 85GeV− 30TeV energy interval. MAGIC is a
pair of 17m instruments: MAGIC-I began activity in 2004, MAGIC-II in 2009; together,
they inspect gamma-ray sources in the interval between ∼ 50GeV to more than 50TeV.

These instruments have excellent sensitivities compared to other ground-based gam-
ma-ray telescopes (like surface arrays), but their field of view is limited (∼ 3° − 5°), and
their duty cycle is only ∼ 10% as they need a perfectly clear and dark sky. Pointed ob-
servations of single sources are therefore carried out over several nights, until a certain
total exposure time (usually on the order of tens of hours) is reached. Data from IACTs
can be found in publications referring to individual observation campaigns, collected in
unified repositories like the STeVeCat. The H.E.S.S. website features a page6 listing the
main detections; VERITAS published the VTSCat catalog in 2023 (Acharyya et al. 2023);
a repository of MAGIC data7 is hosted by the Port d’Informació Cientifica in Barcelona.
As already mentioned in Section 1.2.4, VHE data need to be deabsorbed to account for
the EBL: here8 the model in Saldana-Lopez et al. 2021 was employed.

Instrument specifications are summarized in Table 3.2. Sensitivities are included, as
they govern the minimum exposure time needed for detection (and is therefore linked
to the observation mode and the time sampling of the flux from a source). Future de-
velopments may include other observatories that have so far been ignored, like Planck
or NuSTAR.

4https://www.mpi-hd.mpg.de/HESS/pages/about/telescopes/
5https://veritas.sao.arizona.edu/about-veritas/veritas-specifications
6https://www.mpi-hd.mpg.de/HESS/pages/home/sources/
7https://magic.pic.es/
8Work done by dott.ssa Ilaria Viale.
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3.2. DATA SELECTION

SELECTION CRITERIA

Since the sequence would be the product of a population study on the general accel-
eration and emission mechanisms in blazars, the average states needed to be selected.
However, this task was not trivial, as blazars are characterized by a strong variabil-
ity on different timescales (see Section 1.2.2) and this may introduce biases, depending
on the features of each instrument. As already mentioned in the previous paragraph,
X-ray telescopes, in particular, most often work in “pointing” mode when observing
blazars, offering data from single campaigns targeted at a specific source (see, for ex-
ample, Giommi et al. 2019). High states and X-ray bright objects are therefore favored,
both by the a priori selection when allocating observation time (Giommi et al. 2002),
and by the subsequent data analysis, as their higher signal-to-noise ratios increase their
chances to be included in catalogs as standalone sources without confusion. This bias
unluckily affects not only the source selection itself (as objects with most and best data
were preferred for this study), but it is stronger in the region of the spectrum where the
synchrotron peak falls (at least for HBLs): right where variability is more evident, and
can influence more heavily the estimate of the Compton dominance, one of the charac-
terizing parameters of the blazar sequence. It would be fundamental, given these issues,
to either have fluxes from multi-year surveys by wide field-of-view instruments, which
would then be averaged to be included in catalogs, or single observations or campaigns
coordinated simultaneously among “pointing” instruments at different energies during
quiescent states of the blazar. The first case is that of Fermi-LAT: as already explained
above, both catalogs used here were obtained by averaging fluxes in 5 or 8 energy bins
over the total exposure time since the start of the mission, which dilutes the impact of
flaring periods and produces a single spectrum. The second case is the trickiest one, as
the frequent lack of simultaneity, or even of any information on observation periods9,
forced to make choices with some degree of arbitrariness. Two criteria were considered:

1. using a single observation, as it is. This was the initial approach: selecting TeV
and X-ray single observations based on quality, data taking period (for quiescent
states), position in the flux distribution for the respective frequency range (to guar-
antee they represent an average state), and howwell they joinedwith adjacent data
points in other bands. This led to selecting data from the IACTs and BeppoSAX.

2. Resorting to a more traditional way: averaging over different fluxes measured at
the same frequencies. This was applied routinely to Swift-UVOT data, and was
introduced for Swift-XRT measurements as an alternative to single BeppoSAX ob-
servations.

The second criterion was adopted after the first SED fits were performed, and it be-

9Even if MMDC has a time filtering option, and masking tables by the values in the date columns is
an easy task in Python, several VOU-Blazars catalogs (see box in Section 1.2.3) were noticed to only feature
placeholder observation times, which are meaningless.
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CHAPTER 3. SPECTRAL MODELING

came evident that BeppoSAX data for the X-ray band, despite their high quality, wide
frequency range, and clear coherence of the selected observations with points in other
bands, constrained the modeling too much right by virtue of their high precision. Their
errors are so small that they give them a disproportionate weight in 𝜒2-basedminimiza-
tion compared both to other frequency bands, especially VHE gamma rays which are
the focus of this work, and X rays themselves, where variability is enormous. Models of
spectra of PG 1218+304 taken in simultaneous multiwavelength campaigns during high
states10 producedmuch smaller values of the Doppler factor 𝛿𝐷 than obtained so far for
the data selection as described above. A test was therefore done to check how much a
slightly different X-ray data choice, well within the flux variance of archival data in that
range, still “well-connecting” to points in other bands, and producing a closer Comp-
ton dominance to the flaring spectrum, could change the fit parameters. The result was
striking, especially for the 𝛿𝐷 (see, indeed, Section 2.1 for the 𝜈𝐹syn

𝜈 -𝛿𝐷 relation), and
showed how arbitrary the first approach is. Without discarding the results with Bep-
poSAX spectral points, a second selection was introduced using the means of Swift-XRT
fluxes around the peaks of their distributions in each energy bin. In this way the “most
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Figure 3.12: Selected SEDs for the example source, PG 1218+304, compared to archival data
(gray). BeppoSAX (dark red) andmean Swift-XRT (teal) data are mutually exclusive alternatives
under the two adopted selection criteria, while higher-energy points are in common.

frequent” emission state, hopefully the average, is approximated. The variance of the

10Done by Julia Nguyen, who joined the group briefly as an intern.
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averaged sample is attached to each new data point; uncertainties become larger, and
more emblematic of variability in that energy range, but the bias in favor of higher flux
states is still present. Swift-XRT was chosen on account of the abundance of available
data from it. Figure 3.12 compares the two data selections for the Bin 4 source, PG
1218+304. Notice the absence of ultraviolet, optical, infrared and radio data in the se-
lection in this case. Mid-infrared and UV measurements from WISE and Swift-UVOT,
respectively, were included or not depending on the source. In this example, WISE
data were discarded because they looked “anomalous” (two very close points, with al-
most the same flux) and, being the only low-energy data and having very small errors,
the constraint they put on the fit was too strong. Besides this, although WISE was a
surveying instrument, it took data over a period of few months, comparable to flaring
timescales, and the object for which its points were included (an apparently stationary
blazar, indeed) was observed in 19 8.8 s-exposures over less than two days. The optical
band between 6 × 1013 Hz and 1015 Hz was always deleted from the dataset to avoid the
contamination of the jet spectrum by the host galaxy or components of the active nu-
cleus. The aforementioned fits of the PG 1218+304 SED during a flare suggested that
WISE points could be a low-energy tail of these additional components. The radio band
was always ignored, as it needs to be modeled outside of the SSC framework, being the
superposition of synchrotron curves from different zones (Chapter 2.2).

3.3 TOOLS

Two tools, based on different working principles, were used to model the selected
SEDs: the agnpy Python package and the MMDC SED fitting online tool. As explained
latermore in detail, the outputs are not directly comparable except for a few parameters,
so they were considered complementary to each other, with cross-checking limited to a
small number of fits.

3.3.1 agnpy

agnpy (Nigro et al. 2022) is a recent open-source Python package specifically built
for modeling the broadband SEDs of jetted AGN, both aligned (blazars) andmisaligned
(radio galaxies). Its focus is on leptonic non-thermal processes happening in the jet, but
it is peculiar in providing models for thermal and line emitters, especially when consid-
ered as soft photon sources for inverse Compton scattering or 𝛾𝛾 absorption, including
on the cosmic microwave background and the EBL. Recent updates introduced the sim-
plest hadronic process, proton synchrotron. Differently from other similar packages,
it is not designed for time evolution, but can only set constraints on parameters after
the characteristic timescales. agnpy is primarily for theoretical spectral modeling: it can
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CHAPTER 3. SPECTRAL MODELING

compute SEDs and some of their properties starting from a given model of the emis-
sion region, the non-thermal electron distribution, external photon field sources and
absorption processes. The flowchart in Figure 3.13 summarizes this process.

Figure 3.13: Scheme of agnpy modules interactions and outputs, from Nigro et al. 2022.

Fits on experimental data cannot be done natively, but it is possible to wrap agnpy
objects in eitherGammapy or Sherpa code for this purpose. Bothwere used in thiswork.
Gammapy (Donath et al. 2023) is an open-source Python package developed as a pro-
totype, or core library, of the CTA Science Analysis Tools software, which will serve as a
complete data analysis platform for the upcoming Cherenkov Telescope Array (CTA:
The Cherenkov Telescope Array Consortium et al. 2019); Gammapy is, however, al-
ready in use for existing high- and very high-energy gamma-ray telescopes. Sherpa
(Burke et al. 2023) is a Python package for modeling and fitting data, originally con-
ceived for analyzing spectral and imaging data from the Chandra X-ray telescope, but
again extended to general use in astrophysics. An agnpy class called fit.Synchrotron
SelfComptonModel is initialized on the electron number density distribution (from the
emission_regionsmodule). To create the experimental dataset, spectral points are read
from an .ecsv file and passed as an argument to another class of the .fit module, ei-
ther load_sherpa_flux_points or load_gammapy_flux_points, together with the fit
energy range and a dictionary of systematic uncertainties. In the case of Gammapy, the
agnpy spectral model is converted to a Gammapy SkyModel, which is then set as the
.models attribute of the agnpy dataset. At this point, after eventually adjusting settings
like the fit statistic and minimizer, the fit can be performed with the Fit class of either
backend.

Considering that this package does not compute the time evolution of particle dis-
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tributions, the standard choice to describe the electron distribution in the stationary
state was adopted: the broken power law,

𝑑𝑛𝑒
𝑑𝛾

= 𝑘𝑒

[(
𝛾

𝛾b

)−𝑝1

𝐻 (𝛾; 𝛾min , 𝛾b) +
(
𝛾

𝛾b

)−𝑝2

𝐻 (𝛾; 𝛾b , 𝛾max)
]

(3.1)

with 𝐻 the Heaviside function. In this scenario, the break accounts for synchrotron
cooling. Given the SSCmodel described in Chapter 2.1, the fit parameters will therefore
be:

𝑘𝑒 Normalization constant of the electron number density distribution [cm−3]

𝑝1 Low-energy power-law index of the electron distribution (before the break)

𝑝2 High-energy power-law index of the electron distribution (after the break)

𝛾min Minimum Lorentz factor of electrons

𝛾b Lorentz factor of electrons at the spectral break

𝛾max Maximum Lorentz factor of electrons

𝛿𝐷 Doppler factor of the emission region

𝐵 Magnetic field of the emission region [G]

𝑡var Observed variability/dynamical timescale [s]

Except for 𝑡var, all the quantities are in the reference frame of the emission region.

3.3.2 MMDC

The Markarian Multiwavelength Data Center11, already described in Chapter 1, is
not only an online platform for retrieving and filtering spectral data and literature on
known blazars, but it also provides tools to analyze said data. Its homepage includes
an extremely easy interface through which users can build theoretical models by giving
parameters as inputs, compare them manually with observed SEDs uploaded by them-
selves as a .csv file, or fit such spectra after choosing the model type (SSC or external
Compton), providing a value for the redshift, an indication whether VHE gamma ray
data need EBL de-absorbing or not, a fixed minimum Lorentz factor of the electron dis-
tribution (in the SSC case) optionally, and an e-mail address. After about half a hour, an
e-mail message will notify the user that the fit results are ready to be accessed through
a dedicated link. The same interface will appear providing best-fit parameters, the final

11https://mmdc.am/
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plot including an “error region” given by random intermediate realizations of the fitting
curve obtained during the optimization process, and the possibility to download a .png
image of the plot, a .pdf file of the corner plot, and .csv files of the fitting curve (as a
2-d array of points for plotting) and of the best parameters and their errors.

Apart from this extreme user-friendliness, an innovative aspect of this tool is the
modelingprocedure itself, described in Bégué et al. 2023 for the synchrotron self-Compton,
and Sahakyan et al. 2024b for the external Compton (the hadronic option is in prepara-
tion). In order to tackle the issue of building spectral models that are becoming more
andmore resource-intensive, the developers based their product on a machine learning
algorithm coupled to Bayesian inference.

Basics of Learning - part 1: Neural Networks

In analytical tools, classes and functions take parameter values and the arrays
of the independent variables as arguments, and apply a given formula to re-
turn the dependent variable as an output: in other words, they follow instruc-
tions and are limited to the exact mathematical relation they need to apply.
Machine learning, or statistical learning, instead shifts its focus on the data:
a learning model is a function that uses information from an input dataset to op-
timize a set of parameters or a “learning structure”, such that it will become able to
make predictions that are as close to an expected output as possible (Michelucci 2022).
The MMDC tool is based on a specific type of learning algorithm called con-
volutional neural network (CNN). The structure can be seen in Figure 3.14.

(a) (b)

Figure 3.14: Structure of a deep feed-forward neural network. (a): general structure. (b):
scheme of the first two layers. From Michelucci 2022.

Neural networks in general need an optimization algorithm to tune a large set
of parameters (weights) by minimizing a so-called loss function, that encodes
the departure of model predictions from expected outputs; weights are the co-
efficients of a linear combination of the input quantities, to which a non-linear
activation function is applied to predict the output. The weights and the activa-
tion function constitute the basic unit of a neural network, called a neuron. In

57



3.3. TOOLS

the architecture called deep feed-forward network, the training data form an input
layer, linked trough weights to several uncorrelated parallel neurons that form a
first hidden layer. Their outputs serve in turn as inputs of another layer, and so
on, until the last hidden layer feeds the final output layer. Convolutional neural
networks are a type of feed-forward deep network that is particularly suited to
multi-dimensional data types: a technical description can be found inMichelucci
2022.

Implementation in the MMDC Tool To build an unbiased training dataset for the
MMDC network, 2 × 105 SSC blazar spectra were simulated by the MMDC team with
the help of a package, SOPRANO (Gasparyan, Bégué, and Sahakyan 2021), thatworks by
computing the time evolution of photon and electron distributions until reaching the fi-
nal equilibrium solution, given an electron injection function for electrons and the terms
for the main radiative processes at play (synchrotron cooling, inverse Compton cooling,
Compton scattering, pair production). The end user therefore does not need to make
assumptions on which equilibrium distribution electrons will have. Model parameters
are sampled from given intervals in a way that ensures simulations cover uniformly the
whole spectrum of plausible combinations. SOPRANO outputs and the corresponding
model parameters, the input dataset, is then split into three subsets (80% for training
proper, 10% for validating, 10% for testing: see Chapter 4) and fed to an 8-layer convo-
lutional neural network, designed to reproduce spectra in 150 energy bins (from 10−2 Hz
to 1030 Hz: Gasparyan, Bégué, and Sahakyan 2021). The advantage of this approach is
that, while the training phase takes∼ 2 × 104 core hours of computation time (about two
weeks), it only needs to be performed once, and subsequent predictions based on new
given parameterswill only take a fewmilliseconds: a large improvement over the perfor-
mance of traditional analytical tools (for example, SOPRANO itself takes between a few
tens of seconds to a fewminutes, similarly to agnpy). TheMMDCmodeling tool is there-
fore particularly suited to be used iteratively: for example, it can be integrated into a fit-
ting package to boost its performance by computing the intermediate realizations of the
SED model. MultiNest (Feroz, Hobson, and Bridges 2009) was chosen for this purpose.
Developed specifically for the fields of astrophysics, cosmology and particle physics,
MultiNest employs Bayesian inference to estimate model parameters and compute pos-
terior probability distributions and credible intervals. This is particularly convenient in
cases like blazar spectral fitting, where the parameter space ismulti-dimensional, multi-
modal and degenerate. This tool would then be able to find the global best fit, without
risking to be stuck in a local best-likelihood region around a given initialization as it
may happen with other fitters: this has the practical consequence that the end user does
not need to provide anything to the web interface, apart from the spectral data and the
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redshift of the source.
The version of the network exploited in thisworkwas trained on SSC spectra, evolved

by SOPRANO from an electron injection function in the form of a simple power law
with exponential cutoff:

𝑄𝑒 =


𝑄𝑒 ,0𝛾−𝑝 exp

(
− 𝛾

𝛾max

)
if 𝛾 ≥ 𝛾min ,

0 otherwise
(3.2)

with 𝑄𝑒 ,0 defined such that the electron luminosity is:

𝐿𝑒 = 𝜋𝑅2𝛿2
𝐷𝑚𝑒 𝑐3

∫ ∞

1
𝛾𝑄𝑒𝑑𝛾 (3.3)

The fit parameters are therefore:

𝐿𝑒 Electron luminosity, in the range 1042 erg s−1 to 1048 erg s−1

𝑝 Electron injection function spectral index, in the range 1.8-5

𝛾min Minimum Lorentz factor of the electron injection function, in the range 3.16 × 102-
105

𝛾cut Cutoff/maximum Lorentz factor of the electron injection function, in the range
102-108

𝛿𝐷 Doppler factor of the emission region, in the range 3-50

𝐵 Magnetic field of the emission region, in the range 10−3 G to 102 G

𝑅 Radius of the emission region, in the range 1015 cm to 1018 cm

3.4 MODELING

3.4.1 IMPLEMENTATION

Blazar modeling is notoriously plagued by parameter degeneracy. Even a model
like the SSC, where the number of actors at play is minimum, has quite a large num-
ber of correlated free parameters, whose values may combine differently to produce
equally acceptable fits of the experimental data. Degeneracy would make it difficult
to understand if there actually are some physical quantities that lead to the blazar se-
quence, while others stay roughly the same across different values of 𝜈syn: it would all
depend from which “parameter family” is chosen. For this reason, the consolidated ap-
proach of stabilizing fits by fixing some selected parameters, and maybe attempting
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to keep them across bins, was adopted, even if that would be interpreted as arbitrarily
“imposing” a priori that they are not drivers of the sequence.

TheMMDC tool is built to scan the whole range of parameters to find the global best
fit in a situation where degeneracy is an important issue, so it would be the best choice
if the actual physical quantities need to be found. Its outcomes, however, showed that
some parameters are still very ill-defined (the 𝛿𝐷 in particular), with enormous errors,
such that pinpointing a number of them to fix in order to obtain more “stable” results
(and less degeneracy, even if theMultiNest fitter is alreadymade for this purpose) could
be beneficial. This is not possible for the ordinary user, who can fix 𝛾min at most. More-
over, MMDC is still not ready for including systematic errors on experimental data, and
to apply “composite”models like the ones that could be useful for “transitional blazars”.
agnpy fitting was therefore used to complement MMDC, mainly because it gives more
control over the parameters by allowing to fix or constrain them in various ways. The
process was:

1. Fit the SED of the Bin 4 source, PG 1218+304 using MMDC

2. Repeat using MMDC with fixed 𝛾min

3. Fit the same spectrum using agnpy/Sherpa, with fixed 𝛾min and 𝛾max

4. Fit again using agnpy/Sherpa after fixing 𝑡var

5. Scan over different fixed values of 𝛿𝐷 and choose the best realization

6. Fit the same source (different data selection) keeping the same parameters fixed

7. Compare with MMDC fit of the new data selection (𝛾min fixed)

8. Repeat the last two steps with data from Bin 3 (PKS 2155-304) and Bin 5 (PKS
0548-322).

Since agnpy/Sherpa/Gammapy and the original training tool SOPRANO work dif-
ferently, there are few parameters that can be directly compared between the former and
MMDC. agnpy was also initialized with a systematic errors dictionary, following the
advice from the official documentation: 0.05 for optical-infrared points (WISE), 0.10 for
high-energy data (BeppoSAX, Swift, Fermi-LAT), 0.30 for very-high-energy gamma rays
(H.E.S.S., VERITAS, MAGIC). They are relative errors on the fluxes, and are summed
in quadrature to the statistical errors. Two fits were done with Gammapy, as well as
Sherpa, to cross-check results. The default settings were kept for both backends: Leven-
berg-Marquardt algorithm, 𝜒2 statistic and Covariance method to compute errors in
Sherpa; MINUIT MIGrad 𝜒2 minimizer and MINUIT HESse to calculate the error ma-
trix for Gammapy.
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3.4.2 RESULTS

BINS 1 AND 2: LBLS AND IBLS

The first two bins, including the lowest-energy peaked BL Lacs, are not covered in
this work, and are being analyzed separately by the other people involved in this re-
form of the blazar sequence. The reason is the issue of “FSRQ-like” BL Lacs, as already
outlined in Section 1.2.3. More specifically, this also applies to the sources chosen for
fitting in these two bins.

“Bin 1” (LBLs, 𝜈syn < 1014 Hz) is represented by the prototype of the whole subclass
of blazars, BL Lacertae, which however seems to be bestmodeled by a two-zone SSC+EC
model, instead of the “pure” one-zone SSC usually applied to incontestable BL Lacs,
whenever its emission state is characterized by a high Compton dominance or TeV flux.
SSC seems unable to decently explain the broadband variability of BL Lacertae, whose
spectrum also features H𝛼 and H𝛽 emission lines in different periods, indicative of a
prominent broad-line region, an unusual occurrence in BL Lacs (Sahakyan and Giommi
2022 and references therein). For this source, data from the low-state multiwavelength
campaign described in Abdo et al. 2011b are going to be used.

The chosen source for “Bin 2” (IBLs, 1014 Hz < 𝜈syn < 1015 Hz) is the famous TXS
0506+056. Its ∼ 3𝜎-level association to the high-energy neutrino IceCube-170922A, ob-
served by IceCube on September 22nd, 2017 (The IceCube Collaboration et al. 2018) in-
duced extensive multiwavelength observation campaigns both during the main flare in
the days following the neutrino observation, and during average-low states in the subse-
quent years (Acciari et al. 2022); moreover, the IceCube collaboration found evidence of
a possible neutrino flare in 2014-2015 which seems to not having been accompanied by
an increased flux in the electromagnetic spectrum (IceCube Collaboration et al. 2018),
complicating the picture. As shown in Acciari et al. 2022, accounting for neutrino emis-
sion implies adopting a more complex model than the classic one-zone SSC: that paper
uses a spine-layer scenario where the gamma-ray band is dominated by inverse Comp-
ton on sheath photons, and lepto-hadronic contributions (Bethe-Heitler cascade, pion
decay) take a role in fine-tuning the model. Despite the model in Ansoldi et al. 2018
highlights physical parameters that are compatible to what expected for BL Lacs, up to
the external Compton/hadronic “correction”, some authors (Padovani et al. 2019) argue
that TXS 0506+056 is not even a BL Lac, but a “masquerading FSRQ”, as explained in
Section 1.2.3, on account of several features (radio luminosity, emission lines, Edding-
ton ratio) that also challenge its position in the blazar sequence: fitting the SED of this
object with a SSC model would therefore be inadequate in any case, even when not ac-
counting for hadronic processes. Given that simultaneous average-state observations
are available from Acciari et al. 2022, that data points will be used to model this source
separately from this work.
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BIN 4: HIGH-END HBLS

The fourth synchrotronpeak frequency bin (“Bin 4”) includes sourceswhere 1016 Hz ≤
𝜈syn < 1017 Hz, and are therefore considered the “almost-extreme” HBLs. Being away
from the “FSRQ-like” objects of the lower-energy bins, but still not belonging to the ex-
treme BL Lac subfamily with all its peculiarities, these sources are presumably the best
starting point to apply the SSCmodel in fitting; moreover, this bin is themost populated
one (18 entries), allowing (sub-)population studies (like in the redshift case of Section
3.2) for a future fine-grained analysis of the sequence limited to that single bin. For this
reason, Bin 4 is the first to be treated in this work: its representative source, as already
mentioned in previous Sections, is PG 1218+304. Appearing in literature for the first
time in a 1970 catalogue of radio sources observed at the 408MHz frequency by the
“Croce del Nord” telescope near Bologna (Colla et al. 1970), it was later detected on the
full electromagnetic spectrum, including at VHE (> 100GeV) byMAGIC in 2005 (Albert
et al. 2006) and VERITAS in 2006-2007 (Fortin 2008 and Acciari et al. 2009, including the
first TeV detection). Its redshift (from NED) is 𝑧 = 0.184.

First Data Selection Data points selected for the average SED of this source are:

• VHE gamma rays: discovery papers, Albert et al. 2006 (MAGIC) and Acciari et al.
2009 (VERITAS).

• HE gamma rays: Fermi-LAT 4FGL-DR3 (Abdollahi et al. 2022) and 3FHL catalogs
(Ajello et al. 2017).

• X rays: Single BeppoSAX observation from July 12th, 1999 (Giommi et al. 2002).

As already anticipated, the MMDC SED fitting tool was first ran as a starting point.
Figure 3.15a shows the resulting best-fit spectral model with the original data points
and one in 10 randomly selected samples from the Bayesian sampling; best-fit param-
eters are in the first column of Table 3.3. The corner plot (Figure 3.15b) highlights

MMDC fits All free Fix log(𝛾min) = 2 Fix log(𝛾min) = 3
log(𝐵) [G] −2.1 ± 0.5 −1.3 ± 0.6 −2.0 ± 0.6

log(𝐿𝑒) [cm−3] 44.5 ± 0.4 44.4 ± 0.5 44.6 ± 0.4
log(𝛾min) 3.5 ± 0.7 2 3
log(𝛾cut) 6.4 ± 0.5 5.5 ± 0.5 5.9 ± 0.5

log(𝑅) [cm] 17.6 ± 0.6 16.4 ± 0.7 17.1 ± 0.6
𝛿𝐷 24 ± 10 35 ± 10 31 ± 10

𝑡var [s] (6 ± 9) × 105 (3 ± 4) × 104 (2 ± 2) × 105

𝑝 2.4 ± 0.2 2.1 ± 0.2 2.3 ± 0.2

Table 3.3: Best-fit parameters obtained by the MMDC SED fitting tool on the selected spectral
data for PG 1218+304, keeping all parameters free or fixing 𝛾min = 102 , 103 (dark red). The 𝑡var
(teal) is not a fit parameter, but it was computed from 𝑅 and 𝛿𝐷 to facilitate comparison with
the agnpy fits.
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Figure 3.15: Results of the MMDC tool fit on PG 1218+304, keeping all model parameters
free. 3.15a: selected SED (blue dots), best-fit model (red line) and random Bayesian samples
(gray lines). 3.15b: corner plot of the same fit.

the marginalized posterior probability distributions of the free parameters, to have a
first-look estimate of the confidence intervals and pairwise covariances between model
quantities. Some pairs of parameters indeed seem to be linearly anti-correlated (for
example, log(𝐵) and log(𝑅), or log(𝐵) and log(𝐿𝑒)). Several 2-d projections of the distri-
butions (off-diagonal contour plots) look “patchy”, underlining parameter degeneracy
(existence of more than one family of solutions); this is a known issue in blazar model-
ing, and is reasonably expected when fitting a large number of free parameters. This is
also evident in the 1-d marginalized probability distributions of some parameters, es-
pecially log(𝑅) and 𝛿: one may already expect that 𝑡var estimates, when this quantity is
left free, will consequently have a large uncertainty, and that they will largely depend
on the choice of data points around the synchrotron peak (X-ray band), as evidenced in
Section 2.1 while discussing the 𝜈𝐹syn

𝜈 ∼ 𝛿4
𝐷 dependence, and anticipated in Section 3.2.

After fixing 𝛾min at either 102 or 103 (typical orders of magnitude found for HBLs and
extreme HBLs: see e.g. Abdo et al. 2011a, Sahakyan 2020), free parameters do not look
better constrained than before, and some of them change dramatically, as evidenced
by the latter two columns of Table 3.3, but the correlation between log(𝑅) and log(𝐿𝑒)
(through log(𝐵)) emerges more clearly. Plots can be found in Appendix A.

From the MMDC results it is clear that leaving all the parameters free in fitting,
even if it allows to search for the global best fit, will still lead to some instability, with
several quantities that have errors so large that they lose meaning: the lower end of the
1𝜎 error interval for 𝑡var would even lead to unphysical negative times. This confirmed
the need to fix some selected parameters. Doing this needed switching to agnpy. The
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Sherpa backendwas used formost fits, as it was shown to be faster andmore stable than
Gammapy when free parameters are many and initializations are too far from the data
points.

The first step was to fix 𝛾min and 𝛾max. The latter parameter was set at 106, more
or less halfway (in logarithmic scale) between the values of 𝛾cut in Table 3.3 and often
taken as a standard, reference value for that parameter in BL Lac modeling (see e.g.
Acciari et al. 2020 for extreme HBLs, and Zhao et al. 202412). Fixing it was deemed nec-
essary, as Sherpa has often shown the weird tendency to treat this parameter as frozen,
with 𝜎𝛾max = 0, even when it was explicitly thawed. 𝛾min was set at either 102 or 103.
The Doppler factor, while left free, was initialized at 𝛿𝐷 = 10, 15, 20, 30, 40. Results are
shown in Table 3.4 for 𝛾min = 103, a choice privileged here due to slightly better Q-
values13 and the fact that, apart from the “problematic” parameters 𝛿𝐷 and 𝑡var, there
seems to be a general convergence towards similar values for all the other quantities,
independently of the initialization. Results from fixing 𝛾min = 102 can be found in Ap-
pendix A. It must be noted that these results are very approximate, since even Sherpa
becomes unstablewith somany free parameters, and can only compute a rough estimate
of the errors.

𝛿𝐷 initialization 10 15 20 30 40
log 𝑘𝑒 [cm−3] −8.2 ± 0.5 −8.2 ± 0.5 −8.0 ± 0.6 −7.8 ± 0.6 −7.8 ± 0.9

𝑝1 2.21 ± 0.07 2.21 ± 0.07 2.24 ± 0.05 2.26 ± 0.09 2.26 ± 0.06
𝑝2 3.4 ± 0.8 3.4 ± 0.8 3.5 ± 0.8 3.7 ± 0.5 3.7 ± 0.7

log 𝛾b 5.4 ± 0.2 5.4 ± 0.2 5.3 ± 0.2 5.3 ± 0.2 5.3 ± 0.2
log 𝛾min 3 3 3 3 3
log 𝛾max 6 6 6 6 6

𝛿𝐷 20.6 ± 0.7 20.6 ± 0.7 27 ± 3 34 ± 12 33 ± 12
log 𝐵 [G] −1.5 ± 0.3 −1.5 ± 0.3 −1.5 ± 0.5 −1.5 ± 0.4 −1.5 ± 0.4
𝑡var [s] (8 ± 6) × 104 (8 ± 7) × 104 (4 ± 4) × 104 2.1 × 104 (2 ± 3) × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.761 0.761 0.750 0.744 0.744
Q-value 0.807 0.807 0.820 0.827 0.826

Table 3.4: Fit parameters and statistics for the SED of PG 1218+304, obtained with agnpy and
Sherpa by fixing 𝛾min = 103, 𝛾max = 106 and initializing 𝛿𝐷 at various values while keeping it
free. Values in dark red are fixed. Values in italics only have the first approximate estimate of
their errors.

Since these outcomes are still unstable and depend strongly from the 𝛿𝐷 initial-
ization, something more needs to be fixed. The obvious choice is 𝑡var, as early studies

12This recent paper, published while work on this thesis was already underway, also presents popula-
tion studies on HBLs based on broadband SED fitting, but with a less specific data selection.

13Defined as “measure of the probability that one would observe the reduced statistic value, or a
larger value, if the assumed model is true and the best-fit model parameters are the true parameter val-
ues” (Sherpa online documentation: https://sherpa.readthedocs.io/en/latest/index.html). Being
a probability, the Q-value is always equal or smaller than 1: simply put, the closer to 1 it is, the better.
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on PG 1218+304 TeV emission obtained an observational estimate (more precisely, an
evaluation of the characteristic flux doubling time) of 𝑡var ≲ 1d = 8.64 × 104 s (Acciari
et al. 2010). Table 3.4 would already hint at a value of 𝛿𝐷 ≲ 20, luckily matching the
most stable fit outcomes. Results are shown in Table 3.5 for fixed 𝛾min = 103, 𝛾max = 106

and 𝑡var = 1d, and for different initializations of 𝛿𝐷 (again left free). Fits now tend to

𝛿𝐷 initialization 10 15 20 30 40
log 𝑘𝑒 [cm−3] −8.2 ± 0.5 −8.2 ± 0.5 −8 ± 1 −8.0 ± 0.6 −8.0 ± 0.5

𝑝1 2.21 ± 0.07 2.21 ± 0.07 2.2 ± 0.1 2.2 ± 0.1 2.20 ± 0.10
𝑝2 3.3 ± 0.3 3.3 ± 0.3 3.1 ± 0.2 3.1 ± 0.2 3.08 ± 0.05

log 𝛾b 5.3 ± 0.2 5.4 ± 0.2 5.2 ± 0.7 5.2 ± 0.3 5.2 ± 0.2
log 𝛾min 3 3 3 3 3
log 𝛾max 6 6 6 6 6

𝛿𝐷 20.6 ± 0.7 20.6 ± 0.7 25 ± 1 25 ± 1 25 ± 14
log 𝐵 [G] −1.56 ± 0.09 −1.56 ± 0.09 −1.72 ± 0.08 −1.7 ± 0.1 −1.7 ± 0.4
𝑡var [s] 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.734 0.734 0.738 0.738 0.738
Q-value 0.843 0.843 0.839 0.839 0.839

Table 3.5: Fit parameters and statistics for the SED of PG 1218+304, obtained with agnpy
and Sherpa by fixing 𝛾min = 103, 𝛾max = 106 and 𝑡var = 1d, and initializing 𝛿𝐷 at various
values while keeping it free. Values in dark red are fixed. Values in italics only have the first
approximate estimate of their errors.

collapse toward two possible parameter combinations: one with 𝛿𝐷 = 20.6 ± 0.7 and
log(𝐵[G]) = −1.56 ± 0.09 (𝐵 = 0.028 ± 0.006G), and another one with 𝛿𝐷 = 25 ± 1 and
log(𝐵[G]) = −1.7 ± 0.1 (𝐵 = 0.019 ± 0.005G). All other parameters are well compatible
between the two solutions, and Q-values are close. It seems now that this has definitely
become an issue of choosing 𝛿𝐷 to further stabilize the fit, with due caution in the
light of its dependence from the bulk Lorentz factor, Γ and of the existence of blazar se-
quencemodels that give a fundamental role to the observing angle, as already discussed
in previous sections and chapters.

To explore how the choice of 𝛿𝐷 changes the other parameters more systemati-
cally, several fits were performed by fixing different values of 𝛿𝐷 , beyond the already
frozen quantities 𝛾min, 𝛾max and 𝑡var. Given the results from the previous fits, 𝛿𝐷 = 25
was added to the list of considered values, while 𝛿𝐷 = 10 was excluded as fits were com-
pletely off the observed data. Table 3.6 shows the results for 𝛾min = 103. The behavior
of the free fit parameters with respect to the choice of 𝛿𝐷 is shown in Figure 3.16. log 𝛾b

and log 𝐵 are perhaps the two parameters that change more clearly with the value of
𝛿𝐷 : in both cases, a stronger beaming and/or higher jet speed (higher 𝛿𝐷) is compen-
sated by an earlier cooling break and a weaker magnetic field. Considering the error
bars are often wide enough to make values of the same quantity generally compatible
for different 𝛿𝐷 , other trends are less evident: the electron number density 𝑘𝑒 vaguely
increases, while 𝑝2 seems to decrease, indicating a slightly harder electron spectrum af-
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Figure 3.16: Scatter plots of the free fit parameters for PG 1218+304 (Table 3.6) with respect
to the fixed values of 𝛿𝐷 .
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log 𝑘𝑒 [cm−3] −8.0 ± 0.4 −8.2 ± 0.5 −8.0 ± 0.6 −7.6 ± 0.6 −7 ± 1
𝑝1 2.15 ± 0.06 2.20 ± 0.07 2.20 ± 0.09 2.2 ± 0.1 2.0 ± 0.4
𝑝2 3.7 ± 0.5 3.3 ± 0.3 3.1 ± 0.2 3.0 ± 0.3 3.0 ± 0.3

log 𝛾b 5.4 ± 0.2 5.4 ± 0.2 5.2 ± 0.2 5.0 ± 0.2 4.7 ± 0.4
log 𝛾min 3 3 3 3 3
log 𝛾max 6 6 6 6 6

𝛿𝐷 15 20 25 30 40
log 𝐵 [G] −1.25 ± 0.07 −1.53 ± 0.08 −1.72 ± 0.10 −1.85 ± 0.09 −2.06 ± 0.09
𝑡var [s] 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.767 0.711 0.712 0.723 0.807
Q-value 0.810 0.873 0.872 0.860 0.757

Table 3.6: Fit parameters and statistics for the SED of PG 1218+304, obtained with agnpy and
Sherpa by fixing 𝛾min = 103, 𝛾max = 106 and 𝑡var = 1d, and freezing various values of 𝛿𝐷 .
Values in dark red are fixed.

ter the break as 𝛿𝐷 increases. 𝑝1 seems to remain roughly constant, up to the value for
𝛿𝐷 = 40 which has a huge error. Similar trends can be found when looking at the fit
parameters obtained after fixing 𝛾min = 102 (Table A.3 in Appendix A). The same table
includes some outputs of the MMDC tool for cross-checking purposes14.

In any case, fit results are again close both in terms of compatibility between the
values of several free parameters, and in terms of fit statistics, which are all similar for
different choices of 𝛿𝐷 and 𝛾min. The reduced 𝜒2, in particular, is almost always ≳ 0.7,
meaning that the models are even slightly overfitting experimental data, which indeed
have large errors in the TeV region. After looking at the Q-values, the “reference” fit
from now on will be the one with fixed 𝛿𝐷 = 20, the onewith the closest value to 1, even
if the difference in fit quality with the 𝛿𝐷 = 25 case is almost negligible. This again
highlights parameter degeneracy in blazar modeling, and is clear from the similarity of
the plots in Figure 3.17, where the observed SED and themodel for both values of 𝛿𝐷 are
shown. This choice is consistent with the outcomes of fits where 𝛿𝐷 is not frozen, but
𝑡var and the extremes of the electron distribution are (plots in Figure A.4 in Appendix
A), and is valid for either 𝛾min = 103 or 𝛾min = 102. This latter case also has good test
statistics, and very similar best-fit parameters: the difference lies mostly in the lack of
a break at infrared energies (at least in the range covered here) due to a smaller 𝛾min.
Parameter degeneracy is therefore still an issue, but, on the other hand, it must be kept
in mind that fine-tuning models excessively may be useless for a population study.
To better visualize the fit quality, Gammapy can now be used, as there are enough fixed
parameters to obtain an acceptable outcome15. Gammapy allows to easily plot data by

14Kindly provided by Prof. Narek Sahakyan, as the MMDC web interface still does not allow to freeze
parameters other than 𝛾min.

15Both Gammapy fits presented here actually returned the message “Optimization terminated success-
fully, but uncertainties are unreliable”. The results were taken as good anyway, since all the reduced 𝜒2
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Figure 3.17: Observed SED (dark red dots) and best-fit models (teal lines) of PG 1218+304,
fixing 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d, and 𝛿𝐷 . 3.17a: 𝛿𝐷 = 20. 3.17b: 𝛿𝐷 = 25.

instrument, include error regions (Figure 3.18) and generate the covariance matrix and
the test statistic profiles for each free parameter (Figure 3.19). The best-fit model not
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log 𝑘𝑒 [cm−3] −8.18 ± 0.09
𝑝1 2.20 ± 0.04
𝑝2 3.3 ± 0.2
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Figure 3.18: Fit of the PG 1218+304 SED computed with agnpy/Gammapy, fixing 𝛾min = 103,
𝛾max = 106, 𝑡var = 1d, and 𝛿𝐷 = 20. Left: Observed SED and best-fit model. Right: Best-fit
parameters. Dark red values are frozen.

only follows the data closely, but its error region is very thin, even if compared with
the small errors in Bepposax and Fermi-LAT spectral points. More quantitatively, the
Gammapy best-fit parameters are almost identical to the Sherpa ones, butwith generally
smaller errors; the Sherpa fit outcomewill be anyway considered the final model for the

profiles are quasi-parabolic inside the 1𝜎 confidence interval, apart for a slight asymmetry, and errors are
as good as Sherpa’s, if not better.
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Figure 3.19: agnpy/Gammapy fit statistics for PG 1218+304, fixing 𝛾min = 103, 𝛾max = 106,
𝑡var = 1d, and 𝛿𝐷 = 20. 3.19a: Covariance matrix. 3.19b, 3.19c, 3.19d, 3.19e, 3.19f: Reduced 𝜒2

profiles in the 1𝜎 confidence intervals for each free parameter.
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SED of PG 1218+304 with BeppoSAX data to allow for more direct comparisons with
other models.

Second Data Selection As already discussed in Section 3.2, these results are actually
the product of one choice of X-ray data. As an alternative, the means of the most
frequent fluxes measured by Swift-XRT (from the Open Universe for Blazars catalog,
Giommi et al. 2019) for each discrete value of the photon energy, with the square root
of the variance of the sample as error, were chosen. The same parameters of the “best”
models found in the above discussion were fixed: 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d,
and 𝛿𝐷 = 20. Since the Sherpa fit proved very unstable, Figure 3.20 shows the result
from the Gammapy fit. Notice the widening of the error region compared to the pre-
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Figure 3.20: Fit of the PG 1218+304 SED computed with agnpy/Gammapy, using the Swift-
XRT mean instead of BeppoSAX data in the X-ray range, and fixing 𝛾min = 103, 𝛾max = 106,
𝑡var = 1d, and 𝛿𝐷 = 20. Left: Observed SED and best-fit model. Right: Best-fit parameters.
Dark red values are frozen.

vious data selection, and a worse (but still roughly acceptable) adherence to observed
data. The main changes in parameters are a marked decrease of the magnetic field,
and a decrease of the after-break slope 𝑝2, now not significantly higher than 𝑝1. The
two data selections and the fits from both agnpy/Gammapy and the MMDC SED fit-
ting tool are compared in Figure 3.21. MMDC results for this new data selection can be
seen in Appendix A. “New” data seem to shift the lower-frequency peak to higher en-
ergies, making PG 1218+304 a fully extreme-synchrotron BL Lac. Approximate values
of the peaks can be found with agnpy by building the theoretical emission region and
SSC model from the given best-fit parameters, as explained in Section 3.3.1. Table 3.7
compares the values computed by agnpy for the two data selections and the same quan-
tities as found in the 4LAC-DR3 catalog (Ajello et al. 2022), which includes estimates
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Figure 3.21: Comparison of selected data, archival data and SSC models from both
agnpy/Gammapy and theMMDCSEDfitting tool, for both data selections in the X-ray band. All
models have fixed 𝛾min = 103. agnpy/Gammapymodels also have frozen 𝛾max = 106, 𝑡var = 1d,
and 𝛿𝐷 = 20.
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for the inverse Compton peak frequencies and fluxes that are not in 4LAC-DR2. Fluxes

agnpy, BeppoSAX agnpy, Swift-XRT 4LAC-DR3
𝜈syn [Hz] 9.54 × 1016 2.44 × 1017 1.86 × 1016

𝜈𝐹syn
𝜈 [erg cm−2s−1] 1.55 × 10−11 1.23 × 10−11 1.25 × 10−11

𝜈SSC [Hz] 3.56 × 1025 3.56 × 1025 2.33 × 1026
𝜈𝐹SSC

𝜈 [erg cm−2s−1] 1.20 × 10−11 1.18 × 10−11 1.65 × 10−11
Compton Dominance 0.78 0.96 1.32

Table 3.7: Comparison between the synchrotron and SSC peak frequencies and fluxes of
PG 1218+304 computed by agnpy for the two data selections, and as found in the 4LAC-
DR3 catalog. The .sed_peak_nu() and .sed_peak_flux() functions of the Synchrotron and
SynchrotronSelfCompton classes were used.

found with agnpy are similar to the Fermi-LAT estimates, especially 𝜈𝐹syn
𝜈 found with

the Swift data selection. There is more discrepancy in the estimates of the frequencies of
both peaks, as the Fermi-LAT estimate for 𝜈syn is almost one order of magnitude smaller
than the agnpy counterparts. The exact opposite happens for 𝜈SSC. This is probably due
to differences both in data selection and the technique to evaluate the peaks (in LAC
catalogs, local polynomial fits were performed).

BIN 3: LOW-END HBLS

The results from the agnpy fits were applied to the other two HBL bins, starting
from “Bin 3” (1015 Hz ≤ 𝜈syn < 1016 Hz). This subgroup of selected sources still includes
15 objects, a relatively large number, and PKS 2155-304 was selected as representative
source. This high synchrotron-peaked BL Lac at redshift 𝑧 = 0.1167 (from NED), dis-
covered by a radio survey in 1974, is more famous for its brightness in the X-ray band
(Schwartz et al. 1979, Abdalla et al. 2020). The first VHE detection was in 1996, by the
University of Durham Mark 6 telescope (Chadwick et al. 1999). H.E.S.S. was the first
instrument to observe it at TeV energies during a series of campaigns in 2002-2003 (Aha-
ronian et al. 2005) and to estimate a variability timescale on the order of days: for this
reason, the 𝑡var = 1d assumed for PG 1218+304 was also adopted here. It must be noted,
however, that this source has a long history of investigations about its strong variability
on different timescales, from a few minutes to a potential gamma-ray quasi-periodicity
on a ∼ year scale (see Section 1.2.2; e.g. Peñil et al. 2023, Zhang et al. 2017). Rieger 2019
discusses the variability power spectrum of PKS 2155-304, confirming a characteristic
timescale of ∼ 1d.

The selected SED data for this source were:

• VHE gamma rays: H.E.S.S. observation campaign from September 1st to 30th,
2003 (Aharonian et al. 2005)

• HE gamma rays: Fermi-LAT 4FGL-DR3 and 3FHL catalogs.

72



CHAPTER 3. SPECTRAL MODELING

• X rays: single BeppoSAX observation from November 4th, 1999 (Giommi et al.
2002) or Swift-XRT data averaged from the Open Universe for Blazars catalog.

For both data selections the fit was initialized on the “reference” result for Bin 4,
with fixed 𝛾min = 103, 𝛾max = 106, 𝑡var = 1d and 𝛿𝐷 = 20. Results are shown in Table
3.8 along with the MMDC best-fit parameters. Figure 3.22 shows agnpy/Sherpa plots;

BeppoSAX Swift-XRT
MMDC agnpy MMDC agnpy

log 𝐿𝑒 [erg s−1] log 𝑘𝑒 [cm−3] 44.6 ± 0.3 −7.95 ± 0.05 44.5 ± 0.4 −7.65 ± 0.09
𝑝1 2.2 ± 0.2 2.40 ± 0.03 1.9 ± 0.2 2.43 ± 0.05

𝑝2 4.7 ± 0.1 3.8 ± 0.3
log 𝛾cut log 𝛾b 5.5 ± 0.2 5.10 ± 0.01 6.1 ± 0.6 5.06 ± 0.03

log 𝛾min 3 3 3 3
log 𝛾max 6 6

𝛿𝐷 23 ± 10 20 12 ± 11 20
log 𝐵 [G] −1.7 ± 0.4 −1.14 ± 0.03 −0.7 ± 0.6 −1.40 ± 0.07

log𝑅[cm] 17.5 ± 0.5 16.5 ± 0.7
𝑡var [s] (5 ± 6) × 105 8.64 × 104 (0.9 ± 2) × 105 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.767 0.767
Q-value 0.800 0.777

Table 3.8: Best-fit parameters of the PKS 2155-304 SED computed with MMDC and
agnpy/Sherpa, using either BeppoSAX data or the Swift-XRT mean in the X-ray range, fixing
𝛾min = 103 for both tools, and 𝛾max = 106, 𝑡var = 1d, and 𝛿𝐷 = 20 for agnpy. Dark red values
are frozen. Teal values were computed later for comparison and are not part of the original fit
parameters.

MMDC plots can be found in Appendix A.
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Figure 3.22: Observed SED and agnpy/Sherpa best-fit model of PKS 2155-304, fixing 𝛾min =
103, 𝛾max = 106, 𝑡var = 1d and 𝛿𝐷 = 20. 3.22a: BeppoSAX X-ray data. 3.22b: mean Swift-XRT
X-ray data.

Considering the agnpy/Sherpa results, both data choices produce good fit statistics,
and an excellent fit of the inverse Compton bump, but it is clear from the plots that
the curve is not able to reproduce the slope of the synchrotron curve in the X-ray band
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for the Swift-XRT data selection. The BeppoSAX version is almost perfect, but the very
small errors on that single observation strongly constrain 𝑝2 to an excessively large value
which, however, is not unheard of: see, for example, the “doubly-broken” power law
model adopted for the emission region of Mrk 421 in Abdo et al. 2011a, where the large
Δ𝑝 is also an issue. The authors underline how such a large 𝑝2 is not compatible with
slow synchrotron cooling in a homogeneous model, which would produce a Δ𝑝 ∼ 0.5,
and that constraining 𝑝2 = 𝑝1 + 1, the upper limit in this scenario, is unable to pro-
duce satisfying outcomes. Concerning PKS 2155-304, it has already been stressed here
that the above results also depend from the choice to fix 4 model parameters to stabi-
lize fits and hopefully perform meaningful comparisons with the Bin 4 representative
source, which has been shown to be almost extreme. Bin 3 objects are expected to ex-
hibit “milder” features, so more work needs to be done on the possibility to tweak 𝛾min,
whose elected value of 103 is very high, and of course 𝑡var, as already explained.

BIN 5: EXTREME HBLS

The highest-frequency synchtrotron peak bin in this work matches one definition
of “extreme-synchrotron” BL Lacs: 𝜈syn ≥ 1017 Hz. PKS 0548-322 has been chosen to
represent this peculiar subgroup of 13 sources. Like PKS 2155-304, it was one of the
very first BL Lacs to be detected in the X-ray band (Schwartz et al. 1979) and it was first
observed at very high energies by H.E.S.S. during a dedicated campaign between 2004
and 2006 (Superina et al. 2008). Its redshift (from NED) is 𝑧 = 0.069.

Selected data for this work include:

• VHE gamma rays: H.E.S.S. discovery campaign fromOctober 1st, 2004 to January
31st, 2008 (Aharonian et al. 2010).

• HE gamma rays: Fermi-LAT 4FGL-DR3 and 3FHL catalogs.

• X rays: Swift-BAT105-month survey and single BeppoSAXobservation fromFebru-
ary 20th, 1999 (Giommi et al. 2002), or Swift-XRT data averaged from the Open
Universe for Blazars catalog. Only one Swift-BAT flux on the full 14 keV to 195 keV
range is recorded in the catalog, butMMDC, Firmamento and SSDC all report two
data points (at 50 and 100 keV) for PKS 0548-322.

• Optical - UV: median of Swift-UVOT observations from May 2005 (Yershov 2014).

• IR: WISE data from March 11th to 12th, 2010 as retrievable from the MMDC and
Firmamento online platforms (Wright et al. 2010). It is not completely clear if the
data release used by MMDC is the 2012 All-Sky (Cutri et al. 2012) or the later
AllWISE quoted by VOU-Blazars; in any case, fluxes are given as magnitudes in
each band, but the MMDC table already lists them as energy flux densities.

The fit was again initialized on the “reference” result for Bin 4 for both X-ray selec-
tions, with fixed 𝛾min = 103, 𝑡var = 1d, and 𝛿𝐷 = 20, but 𝛾max = 107 to leave more room
for the emission of VHE photons. The source has not been shown to be variable, at least
on timescales of less than ∼ 1d (see e.g. Devanand et al. 2022), so 𝑡var was kept at the
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usual value. Results are shown in Table 3.9 along with the MMDC best-fit parameters.
MMDC plots can be found in Figure A.6 in Appendix A. Although the reference object,

BeppoSAX Swift-XRT
MMDC agnpy MMDC agnpy

log 𝐿𝑒 [erg s−1] log 𝑘𝑒 [cm−3] 44.2 ± 0.3 −10.6 ± 0.1 44.2 ± 0.3 −6.6 ± 0.8
𝑝1 2.3 ± 0.1 2.32 ± 0.02 2.4 ± 0.1 2.0 ± 0.3

p2 4.5 ± 0.3 2.49 ± 0.04
log 𝛾cut log 𝛾b 6.6 ± 0.3 5.89 ± 0.05 6.6 ± 0.4 4.2 ± 0.3

log 𝛾min 3 3 3 3
log 𝛾max 7 7

𝛿𝐷 40 ± 10 20 44 ± 10 20
log 𝐵 [G] −2.8 ± 0.4 −1.62 ± 0.03 −2.8 ± 0.5 −1.61 ± 0.03
𝑡var [s] (2 ± 2) × 105 8.64 × 104 (2 ± 2) × 105 8.64 × 104

log𝑅 [cm] 17.4 ± 0.5 17.3 ± 0.5
𝜒2/𝑑.𝑜. 𝑓 . 1.013 1.085
Q-value 0.446 0.352

Table 3.9: Best-fit parameters of the PKS 0548-322 SED computed with MMDC and
agnpy/Sherpa, using either BeppoSAX and Swift-BAT data or the Swift-XRT mean in the X-ray
range, fixing 𝛾min = 103 for both tools, and 𝛾max = 107, 𝑡var = 1d, and 𝛿𝐷 = 20 for agnpy. Dark
red values are frozen. Teal values were computed at a later moment for comparison and are not
part of the original fit parameters.

PG 1218+304, is a “borderline” extreme BL Lac, fits of PKS 0548-322 based on its model
parameters do not yield good results. This is clear from the plots in Figure 3.23, where
the fitting curve struggles in catching the slope of the observed SED in the infrared and
high-energy X-ray bands (an effect amplified by the very small errors of chosen data
points), and probably underestimates the inverse Compton peak frequency in a region
where errors are large, there is no observational cue on where the peak could be, and
the slope seems not to be constant. Mean Swift-XRT fluxes cannot be fitted well if Swift-
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Figure 3.23: Observed SED and agnpy/Sherpa best-fit model of PKS 0548-322, fixing 𝛾min =
103, 𝛾max = 107, 𝑡var = 1d and 𝛿𝐷 = 20. 3.23a: BeppoSAX and Swift-BAT X-ray data. 3.23b:
mean Swift-XRT X-ray data.
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BAT data are also considered, but discarding the latter produces a cooling break at low
energies (optical-UV band) and an incredible peak at 𝐸syn > 10 keV, followed by a steep
descent (caused not by cooling, but by 𝛾max), that does not follow the behavior of the ac-
tual observed SEDs, if not perhaps during flaring states. This result was chosen anyway
over the attempts that included Swift-BAT points, as it was produced by the most stable
fits with the “least bad” statistics. Notice, in particular, the excellent reduced 𝜒2 and
the reasonable value of 𝑝2, perfectly in line with the theoretical slow cooling scenario
usually invoked in blazar modeling. This is not true when Swift-BAT data are consid-
ered, and in general for all attempts done with the BeppoSAX selection. In that cases,
the issue of 𝑝2 ∼ 4.5 arises again, like for the Bin 3 source PKS 2155-304.

It seems that for PKS 0548-322, too, adjusting the data selection and fixed parame-
ters could be the starting point for better results, with due caution since extreme BL Lac
SEDs are notoriously hard to fit with a one-zone SSC model without invoking, indeed,
extreme values for some parameters, including some that were frozen like 𝛿𝐷 and 𝛾min

(needed in the range 103-105: see Biteau et al. 2020). Considering that WISE data points
may suggest a change in slope somewhere in the optical band, and that the fitting curve
goes systematically above the lowest-energyWISE datum, it may well be that a better fit
at low frequencies is achieved by increasing 𝛾min (and the frequency of the associated
break in the SED). As pointed out in several papers, like Biteau et al. 2020, alternative
scenarios like multi-zone models, external Compton and other radiative processes, in-
cluding lepto-hadronic ones, are often considered for extremeHBLs in order to “soften”
parameters, so it is not granted that the usual one-zone SSC model will really work for
PKS 0548-322 and its peers.

3.4.3 FINAL CONSIDERATIONS

A summary of the fit outcomes for all the three bins this work focused on can be
seen in Table 3.10 for agnpy/Sherpa, and Table 3.11 for MMDC. The BeppoSAX data
selection, which gave the best agnpy/Sherpa results in general and drove the path to
fixing parameters, was chosen as an example, but there is actually no robust way to
determine which choice is the best. As already explained in Section 3.2, BeppoSAX
data are of excellent quality, spread over a wide frequency range, and seem to join well
spectral points at other energies, but their choice is quite arbitrary, coming from single
observations that are non-simultaneous with the TeV ones, and their errors are so small
they do not encode the large flux spread in the X-ray band. Swift-XRT means could be
biased in favor of high states, and they indeed shift synchrotron peaks to higher ener-
gies that may not represent the actual average emission; the quality of fits is generally
worse, but adopting the sample variances as errors ismoremeaningful in the light of the
strong X-ray variability. For this reason, not many conclusions can be drawn for now.
Moreover, even with a robust data selection, it is clear that attempting to fix the worst
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Bin 3 (PKS 2155-304) Bin 4 (PG 1218+304) Bin 5 (PKS 0548-322)
log 𝑘𝑒 [cm−3] −7.95 ± 0.05 −8.2 ± 0.5 −10.6 ± 0.1

𝑝1 2.40 ± 0.03 2.20 ± 0.07 2.32 ± 0.02
𝑝2 4.7 ± 0.1 3.3 ± 0.3 4.5 ± 0.3

log 𝛾b 5.10 ± 0.01 5.4 ± 0.2 5.89 ± 0.05
log 𝛾min 3 3 3
log 𝛾max 6 6 7

𝛿𝐷 20 20 20
log 𝐵 [G] −1.14 ± 0.03 −1.53 ± 0.08 −1.62 ± 0.03
𝑡var [s] 8.64 × 104 8.64 × 104 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.767 0.711 1.013
Q-value 0.800 0.873 0.446

Table 3.10: Best-fit parameters for the three representative sources computed with
agnpy/Sherpa, using BeppoSAX (+ Swift-BAT) data in the X-ray range, fixing 𝛾min = 103,
𝛾max = 106 (Bins 3 and 4), 𝛾max = 107 (Bin 5), 𝑡var = 1d, and 𝛿𝐷 = 20. Dark red values are
frozen.

Bin 3 (PKS 2155-304) Bin 4 (PG 1218+304) Bin 5 (PKS 0548-322)
log 𝐿𝑒 [erg s−1] 44.6 ± 0.3 44.6 ± 0.4 44.2 ± 0.3

𝑝 2.2 ± 0.2 2.3 ± 0.2 2.3 ± 0.1
log 𝛾cut 5.5 ± 0.2 5.9 ± 0.5 6.6 ± 0.3
log 𝛾min 3 3 3

𝛿𝐷 23 ± 10 31 ± 10 40 ± 10
log 𝐵 [G] −1.7 ± 0.4 −2.0 ± 0.6 −2.8 ± 0.4

log𝑅 [cm] 17.5 ± 0.5 17.0 ± 0.6 17.4 ± 0.5
𝑡var [s] (5 ± 6) × 105 (2 ± 2) × 105 (2 ± 2) × 105

Table 3.11: Best-fit parameters for the three representative sources computedwith theMMDC
SEDfitting tool, using BeppoSAX (+ Swift-BAT) data in theX-ray range, fixing 𝛾min = 103, 𝛾max =
106 (Bins 3 and 4), 𝛾max = 107 (Bin 5), 𝑡var = 1d, and 𝛿𝐷 = 20. Dark red values are frozen. Teal
values were computed later for comparison and are not part of the original fit parameters.
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defined parameters for all bins is probably too ambitious at this point: on one hand,
most agnpy/Sherpa fits of the PG 1218+304 spectrum (Bin 4) are very good for most of
the parameter combinations that were obtained, highlighting the issue of degeneracy;
on the other, fit quality declines for the other sources when fixing the same quantities
frozen for Bin 4, especially in Bin 5. It is therefore reasonable to think that thawing these
parameters, maybe still constraining them to a small interval of plausible values, could
produce better fits, but probably at the expense of stability when computing errors, and
of opportunities to pinpoint trends across the sequence (as there would be too many
changing correlated parameters).

Indeed, those presumed trends are not so easily discernible from the agnpy/Sherpa
fits. MMDCones, on the other hand, seem to be clearer. Outcomes from both tools show
that:

• the main electron distribution power index 𝑝1 fluctuates around ≳ 2.2, in the
expected range for first-order Fermi acceleration in shocks (see e.g. Spurio 2018
and references therein);

• the magnetic field, 𝐵 decreases as 𝜈syn increases;

• the radius of the emission region, 𝑅 is more or less constant: in the case of agnpy
this is trivial, since 𝛿𝐷 and 𝑡var were fixed by choice, such that 𝑅 will vary only be-
cause of different redshifts; in the case of MMDC, instead, 𝑅 is a free fit parameter,
but it is still almost constant.

According to agnpy/Sherpa results,

• the normalization of the electron distribution, 𝑘𝑒 , decreases strongly with increas-
ing 𝜈syn;

• 𝑝2 assumes a “reasonable” (under the a homogeneous synchrotron slow cooling
model) value for Bin 4 only, while it goes above 4 for both Bin 3 and Bin 5;

• the electron Lorentz factor at the spectral break, 𝛾b increases.

MMDC fits reveal that:

• the cutoff Lorentz factor of the electron energy distribution, 𝛾cut slowly increases,
and is of the same order of magnitude of typical 𝛾max and 𝛾b when considering
broken power law models;

• 𝛿𝐷 increases, and is often large;

• both 𝑅 and 𝑡var are predicted to be quite large;

• the electron luminosity, 𝐿𝑒 is almost perfectly constant.

This latter consideration, along with the fact that the electron power index seems to
be roughly constant, may be a good starting point for advancing thiswork, provided that
either agnpy developers include the possibility to set 𝐿𝑒 in place of 𝑘𝑒 as a fit parameter,
or that MMDC’s make fixing parameters a feature available to end users. On the other
hand, it is probably the fact that almost all parameters are left free that makes the fitting
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curves from MMDC follow the experimental data closely (with the slight exception of
Bin 5 in the infrared and high-energy X-ray bands); errors are also comparable with the
ones computed by both Sherpa and Gammapy, except for the 𝛿𝐷 (and, consequently,
the 𝑡var). Apart from this latter issue and the apparent systematic tendency to predict
high values of 𝛿𝐷 , this level of performance, the ease of use, and the speed make this
new machine learning-based tool a resource with good potential for future studies of
the blazar sequence.
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4
Estimation of Spectral Quantities in

Blazars with Machine Learning

So far in this thesis, machine learning has been exploited from the point of view
of the end user of a ready-made tool: other than uploading a data file with the right
structure and format, and providing the source redshift and an e-mail address through
a user-friendly web interface, nothing needs to be done to receive all the requested re-
sults in about half a hour. In principle, the MMDC SED modeling tool does not even
require to know what machine learning is, which model is it based on, how was such
model trained, and which steps of the fitting procedure employ it. This chapter instead
describes an attempt at applying machine learning techniques at a more fundamental
level, by writing a code tailored on the user’s specific purpose.

4.1 PURPOSE

The attempt at reforming the blazar sequence, as already explained, reversed the
usual approach by classifying SEDs by synchrotron peak frequency bins, instead of in-
trinsic luminosity in a single energy band. For this purpose, the synchrotron peak fre-
quencies from the 4LAC-DR2 catalog were chosen. This, however, implied excluding
226 sources, whose 𝜈syn is not reported in the catalog; two of them are TeV-detected
objects, whose 𝜈syn were corrected with the values found with other means (the afore-
mentioned BlaST tool, see later discussion) in order to consider them for the new blazar
sequence1. Computing thesemissing data would allow to expand the sequence analysis

1Curiously, they both ended up right in Bin 4, the starting point for spectral modeling.
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to all BL Lacs, including the ones that were not detected at TeV energies, while adopting
the same dataset binning principle.

Considering how 𝜈syn is computed in the 4LAC catalogs, one may suppose that
a failed estimate could result from scarcity of data at energies outside the Fermi-LAT
range, such that the broadband SED has not enough points in the synchrotron peak re-
gion, or not at all, to be fitted. On the other hand, while discussing data selection, it
became clear that the most suited spectral points for reconstructing average SEDs are
the ones from the Fermi catalogs, due to them being the result of multi-year integra-
tion and therefore a good representation of the average emission state of each source.
Fermi-LAT spectral data well sample the high-energy peak, and their power-law index
has been shown to be correlated to the inverse Compton peak frequency. An one-zone
synchrotron/inverse Compton scenario, especially SSC, justifies a correlation between
the two peaks, meaning that the gamma-ray slope is correlated to 𝜈syn (Ajello et al. 2020
and references therein). From this came the ambitious idea of training machine learn-
ing models on Fermi-LAT data only, to make predicting BL Lac synchrotron peak
frequencies as independent from multiwavelength observations as possible. More-
over, as pointed out in Glauch, Kerscher, and Giommi 2022, creating a good machine
learning tool to predict spectral quantities like 𝜈syn wouldmake this task faster andmore
automatic, reducing the impact of human error.

Basics of Learning - Part 2: Some Useful Definitions

As already explained in the box in Section 3.3.2, machine learningworks by taking
a dataset as an input and performing an optimization on one or more functions
or “learning structures” to make predictions of some kind. More specifically,
in a supervised model the algorithm will receive a training dataset as an input:
each entry (instance) will be a row of the values taken by a number of variables,
of which some are considered independent and are called features; some others
instead are the dependent variables that the model will learn to predict, called tar-
gets. For example, an instance in the training dataset for the models described
in this chapter would be a row from the merged 4LAC+4FGL catalog (see Sub-
section 4.3.2), referring to one specific source, with all its related quantities like
fluxes, variability, etc. The model will learn to map the values of the features
to the matching targets, according to some unknown relation that the algorithm
will “understand” from the data themselves. When presented with a table of
new feature values but unknown targets, the model should be able to recognize
the same patterns in them and predict the new values of the targets. When the
requested output is numerical, as in the cases discussed in this thesis, the task is
called regression.
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Building a machine learning model of this type requires three basic steps: train-
ing, validation, and testing. The dataset is split in three parts: the model will
learn from the training subset, be evaluated on the validation subset, and then,
once the training is considered successful and the best model is selected, there
will be a final assessment on the test set. This stages is needed to avoid the concep-
tual error of training a model on all the input data, and then evaluating the qual-
ity of learning on the input data themselves. The central element of the latter two
steps is predicting the target values from the features of known data, and compar-
ing them to the actual values to compute one or more metrics (scores) that quan-
tify the quality of training. This approach is sometimes risky, as there could be too
few input data to create all three subsets, and there is the danger ofwrongly using
the test set after each validation. The latter mistake would optimize the model on
the test set, leading to overfitting (see e.g. Hastie, Tibshirani, and Friedman 2009).
Overfitting happenswhen the algorithm startsmodeling not only the general pat-
terns, but also the noise: in other words, it “learns too much”, becoming unable
to generalize on new data. There is a particularly convenient way to handle the
issue: 𝑘-fold cross-validation, where the input dataset no longer needs to be split
in three subsets. It is instead split in 𝑘 subgroups (folds): one is kept out and used
for validation, while themodel is trained on the remaining 𝑘−1; a validation score
is computed and stored; the procedure is then iterated by choosing another fold
as validation and test data, while the first one now joins the training subset, and
so on until each subset has been used to evaluate the training once (Figure 4.1).

Figure 4.1: 𝐾-fold cross-validation scheme, from Scikit-learn Developers 2024.
The final performance score will be the average found at each iteration.
For validation, a number of metrics can be used: for example, the mean squared
error, the mean absolute error, and the coefficient of determination, 𝑅2 (Scikit-
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learn Developers 2024):

𝑅2(𝑦, 𝑦̂) = 1 −
∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̄)2

where 𝑦̄ = 1
𝑛

∑𝑛
𝑖=1 𝑦𝑖 , 𝑛 is the number of samples, 𝑦𝑖 is the true value of the 𝑖-th

sample and 𝑦̂𝑖 is the corresponding predicted value. From this definition, 𝑅2 can
be interpreted as an estimate of how much of the predicted variable variance can
be explained by the independent variables in the fit; or, in other words, how likely
it is that new samples will be predicted well by the model.
Another trick to prevent overfitting, and improve efficiency, is early stopping: a
portion of each fold is indeed set aside for internal validation after each iteration,
and the training is interrupted if the performance on the validation subset has
become stable or began worsening in a certain user-defined number of iterations.
Models can be refined by choosing some settings, called hyperparameters,
that regulate some properties of the procedures and structures used by the
algorithm, like the number of iterations to perform. In machine learn-
ing packages there are objects, like GridSearchCV, that scan lists of candi-
date values of some hyperparameters, given by the user, train and eval-
uate the model with every possible combination, and use cross-validation
to choose the settings that give the best validation metrics. The model
with the best hyperparameter combination is then implemented (Figure 4.2).

Figure 4.2: Flowchart of cross-validation workflow in model training, from the Scikit-learn
documentation (Scikit-learn Developers 2024).

This is not the only way to improve model performance: for some models, pre-
processing data is fundamental. In particular, there are algorithms that work
best with data distributed as close as possible to a standardized Gaussian. For
this reason, special methods called transformers can be used: they are described
in Section 4.3.3. To check whether distributions are suitable for optimal model
training, box plots and probability plots can be employed. A box plot summa-
rizes graphically the distribution of a variable: one axis represents the values the
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variable may take; for each quantity, a rectangle is drawn extending from the the
Q1 to the Q3 quartile of the distribution (such that the length of the side of the
box along the axis is the interquartile range). Themedian is highlighted inside the
rectangle, in order to see immediately how skewed is the distribution, depend-
ing on its distance from the ends of the box. Two segments called “whiskers”
extend from each end of the rectangle for 1.5× the interquartile range: any data
point that falls outside is drawn individually and may be considered an outlier.
Normal probability plots describe howmuch a distribution deviates from aGaus-
sian, by plotting the sorted experimental values of a variable against thematching
quantiles of the normal distribution: consequently, the closer are plotted data to
the bisector, the closer their distribution is to a Gaussian.

OUTLINE

To implement what has just been described, the following steps were taken:

• Choose which algorithm, or class of algorithms, to base the model on.

• Choose which coding library to employ.

• Select the training dataset: define the target variable and the training features,
and eventually a dataset to make predictions on after training.

• Prepare data for optimal training:

– Discuss the distributions of each feature and of the target in the training
dataset.

– Eliminate possible outliers that may disrupt the learning process.
– If needed, transformdata distributions tomake them closer to a standardized

Gaussian, which is handled more effectively by learning algorithms.
– Discuss possible relations between the features and the target throgh bivari-

ate analysis, by plotting the values of the target variable against each feature
in the training dataset.

• Train the model on the known values of the features and target:

– Select the performance metrics to evaluate models.
– Select the best number of 𝑘-folds and the best hyperparameters with cross-

validation methods.
– Use cross-validation to train and evaluate the selected best models on the

training dataset.
– Compare models by back-transforming the results (predictions on training

data, performance scores) to the original scale.

• Apply the model to make predictions on a previously unseen dataset.

• Compare the result on new data with the output of other tools.
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4.2 ALGORITHMS

The choice of which machine learningmodels to adopt was dictatedmainly by prac-
tical needs. The basic concept of decision tree-based ensemble models and their inner
mechanisms, by which they train and predict on data, is relatively easy to understand
for users, even beginners: algorithms of this type have a good level of interpretability de-
spite being built precisely to capture non-linear, non-trivial interactions between input
quantities (Molnar 2022), which indeed is the main purpose of this work. Models may
be limited by several factors, like missing entries, outliers in the data distributions, and
irrelevant inputs, like quantities the target variable has no relation to. Tree-based algo-
rithms handle well these issues, albeit at the expense of predictive power compared to
other popular, butmuch less interpretable, models like neural networks (see e.g. Hastie,
Tibshirani, and Friedman 2009, Table 10.1). They are also already widely used in the
very-high-energy astrophysics field for low- and intermediate-level data analysis tasks
like event classification and energy reconstruction (e.g. Albert 2008).

4.2.1 RANDOM FOREST

Random Forests are perhaps the most widespread machine learning algorithms for
the astrophysical data analysis needs mentioned above, and are an immediate evolu-
tion of the basic decision tree model. The latter works in a straightforward way: when
doing a regression task, learning structures called “trees” are grown by splitting data
multiple times according to some threshold value of one feature per split, such that
each input element belongs to one subgroup (node). This goes on until terminal nodes
(leaves) are reached. A simple model is then fit in each of the partitions of the feature
space: for example, the target for each terminal nodemay bemodeled to a different con-
stant value, like the average target of the training data in that leaf (Molnar 2022; Hastie,
Tibshirani, and Friedman 2009).

Random forests are ensembles of parallel decision trees: a number of random sub-
sets is created, and a decision tree is built for each of these samples. The predictions
from these decision trees are finally averaged, reducing the overall variance. In this
way, they improve the performance of single decision trees by reducing their weak-
nesses (the high variance and the tendency to overfit) while retaining their strengths
(the low bias).

4.2.2 GRADIENT BOOSTED DECISION TREE

Gradient boosting regression is anotherway to increase the performance of a “weak
learner”, specifically a decision tree, by building an ensemble of consecutive trees. In
this case, we have forward stagewise additive modeling: given an 𝑁-dimensional input 𝑥,
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the matching prediction 𝑦̂ will be (see Scikit-learn Developers 2024 and Hastie, Tibshi-
rani, and Friedman 2009):

𝑦̂ = 𝐹𝑀(𝑥) =
𝑀∑
𝑚=1

ℎ𝑚(𝑥) (4.1)

where ℎ𝑚(𝑥) is the 𝑚-th tree, and 𝑚 = 1, ...𝑀. At each step,

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + ℎ𝑚(𝑥) (4.2)

without modifying previous terms. The model is fit, like in neural networks, by min-
imizing a loss function that describes how distant are predictions from actual values of
the target variables in the training dataset:

ℎ𝑚 = arg min
ℎ

𝑁∑
𝑖=1

𝑙(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + ℎ(𝑥𝑖)) (4.3)

where 𝑥𝑖 is the 𝑖-th training input, 𝐹𝑚−1(𝑥𝑖) is the prediction of the target value done by
the (𝑚 − 1)-th tree on 𝑥𝑖 , 𝑦𝑖 is the respective “true” value of the target variable from the
training dataset, and ℎ(𝑥𝑖) is a tree computed for 𝑥𝑖 . The basic, default choice for the
loss function (which will be used here) is squared errors:

𝑙(𝑦, 𝐹(𝑥)) = (𝑦 − 𝐹(𝑥))2 (4.4)

The addends in the last termof Equation 4.3 are expanded to first order of a Taylor series,

ℎ𝑚 ≈ arg min
ℎ

𝑁∑
𝑖=1

ℎ(𝑥𝑖)
[
𝜕𝑙(𝑦𝑖 , 𝐹(𝑥𝑖))

𝜕𝐹(𝑥𝑖)
]
𝐹=𝐹𝑚−1

≡ arg min
ℎ

𝑁∑
𝑖=1

ℎ(𝑥𝑖)𝑔𝑖 (4.5)

with the practical result that the 𝑚-th tree, ℎ𝑚 will be fitted to predict the negative gra-
dients of the samples, −𝑔𝑖 (pseudoresiduals), which are updated at each iteration and are
proportional to residuals in the case of squared errors loss. In other words, the model
progressively “corrects” the errors with respect to the previous iterations. Figure 4.3
shows graphically the difference between gradient boosting and random forest.

4.2.3 HISTOGRAM-BASED GRADIENT BOOSTED DECISION TREE

Histogram-based gradient boosting is an evolution of gradient boosting optimized
for very large datasets (>104 instances) and inspired by the popular LightGBM frame-
work (Ke et al. 2017). Other tree-based ensembles, like the single trees, need to scan all
instances for each feature to find the optimal split points: LightGBM tackles the prob-
lem of the high computational cost by implementing a number of techniques to smartly
reduce the size of the training dataset. Histogram-based gradient boosting regressors
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Figure 4.3: Graphical comparison between Random Forests and Gradient Boosting, from
Kowalek, Loch-Olszewska, and Szwabiński 2019.

like the one used in this work bunch the input samples into bins. In this way, trees
are built by handling a smaller number of discrete quantities to scan, and much less
splitting points are needed. Sorting values for each feature is done only once, at the be-
ginning, to create the histograms, while usual gradient boosting requires sorting each
feature at each split: histogram-based boosting can therefore be orders of magnitude
faster for bigger datasets. The specific estimator used here also includes native support
for missing values, so it is particularly suited for sparse tables of training data.

4.3 IMPLEMENTATION

4.3.1 TOOLS

The Pythonmodule Scikit-learn (Pedregosa et al. 2011)was chosen to implement the
models described above. Scikit-learn has several practical advantages that were crucial
in its selection for this work:

• it is distributedunder a newBSD license, and its development ismainly community-
driven, making it popular in the world of free software;

• it was specifically created to be tightly integratedwith Python, awidespread high-
level programming language, in order to make machine learning more easily un-
derstandable and usable even in fields outside data science;

• it is built to maximize computational efficiency as much as possible while keeping
simplicity as the main objective;

• it is often the package of choice in online tutorials on the basics of machine learn-
ing, and an extensive documentation, both official and not, is available;
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• while focusing more on solidity, it still provides a large number of machine learn-
ing models of various types, including the three that were chosen for this work,
and all the required tools formodel tuning and training data engineering, all ready
to use.

The design revolves around objects called estimators, that accept data and match-
ing label arrays as arguments and can provide methods such as: fit for model train-
ing; predict, to be applied either on a validation dataset, or on new data after model
training; and score, to evaluate the goodness of fit. The three selectedmachine learning
models are implemented in the RandomForestRegressor, GradientBoostingRegressor
and HistGradientBoostingRegressor classes. A particular type of estimators, called
transformers, can modify input data to improve the quality of training. Another type
of object, the cross-validation iterator, can split input data into training, test and validation
sets. GridSearchCV (see box) allows to apply cross-validation to evaluate models.

Scikit-learn 1.4.2 was conveniently found to be already available on Bigmama, the
CloudVeneto machine dedicated to statistical learning:

CPU AMD Ryzen Threadripper 3990X 64-Core Processor

Total Memory (RAM) 258 GB

Operating System AlmaLinux 9.4 (Seafoam Ocelot)

The code developed in this thesis was written in Python 3.11, on a Jupyter 1.0.0 note-
book. Imported libraries, other than Scikit-learn, include NumPy 1.26.4, pandas 2.2.2,
Matplotlib 3.8.4, and seaborn 0.13.2.

4.3.2 DATA SELECTION

The 4LAC-DR3 catalog (Ajello et al. 2022; data: Ajello et al. 2023) was chosen for
this work, in place of the previous version. This allows to deal with more recent data,
as 4LAC-DR3 was built from 4FGL-DR3 using 12 years of observations, instead of the
10 years covered by 4LAC-DR2. It was retrieved from the VizieR online database2 and
integrated with the more recent 4FGL-DR4 catalog (Abdollahi et al. 2022; Ballet et al.
2024) using the CDS X-Match service (Boch, Pineau, and Derriere 2012; Pineau et al.
2020). This operation produced a single dataset featuring the 3805 common sources, of
3814 total in 4LAC-DR3, described by the data columns of both catalogs.

As already explained in Section 3.2, LAC catalogs include all FGL sources that can
be reliably associated to AGN-like counterparts in other energy bands of their SEDs:
not only blazars, but also steep-spectrum radio quasars, compact steep spectrum radio
sources, Seyfert galaxies and other objects of unknown nature (including BCUs, blazars

2https://vizier.cds.unistra.fr/

89

https://vizier.cds.unistra.fr/


4.3. IMPLEMENTATION

of uncertain classification). This work focuses on BL Lacs, so the data table was filtered
to select only the sources flagged as either BLL or bll in the Class column of the 4LAC-
DR3 catalog: 1458 objects, 276 of which lack a 𝜈syn estimate (column nu reads 0), leaving
1182 items (instances) in the training dataset.

Since some quantities are featured in both catalogs, several columns are, in fact, du-
plicates of each other, up to slight differences in their names and contents, due to differ-
ent observation timespans: 12 years (2008-2020) for 4LAC-DR3, 14 years (2008-2022) for
4FGL-DR4. For this reason, when selecting a duplicate quantity as a training feature,
the column from 4FGL was preferred, as it is the most up-to-date.

A few simple considerations guided the choice of training features:

• Only columns with purely numerical entries were taken into account; some of
them, like the ones regarding coordinates and their uncertainties, are thought not
to be correlated to the target feature 𝜈syn, and were discarded.

• A few columns have a high incidence of missing values, and were set aside to
simplify the task. Due to the definition of “BL Lac” itself, the issue of missing
values understandably plagues the redshift z column, whose cells are empty for
50.9% of selected sources. Unfortunately, the same scarcity holds for one of the
most interesting new additions to the 4LAC catalogs: the energy (EpkHE) and flux
(nuFnuPk) of the higher-energy SED peak, which would allow the model to assess
the possible role of the Compton dominance, and of a presumed correlation be-
tween the two SED peaks in a SSC scenario, in determining 𝜈syn. Other quantities
lacking a large fraction of values are the uncertainties on photon fluxes; they were
also ignored.

• The measured photon flux in each bandwas preferred over thematching flux den-
sity, in order to avoid relying on values that depend on the phenomenological fit
of the overall spectrum in the Fermi-LAT energy range (see Section 3.5 in Abdol-
lahi et al. 2020). The total energy flux, Energy_Flux100, one of the shared columns
between the two catalogs, was included anyway.

• A choice about the spectralmodel, however, was still necessary to include themost
important feature, the photon index: the power law model was considered for all
entries, so parameters referring to other models were discarded.

The selected quantities are described in Table 4.1. All features are from 4FGL-DR4;
the target, 𝜈syn (nu), is from 4LAC-DR3. Figure 4.4 shows the Pearson correlation coeffi-
cient matrix3 of the selected quantities, followed by the chosen training features ranked
by absolute value of the correlation coefficient with 𝜈syn (nu) in Figure 4.5. Values were
computed using pandas.DataFrame.corr. Notice the small values: this, however, does
not mean that the chosen features will not be adequate to reach the stated aim of pre-
dicting the target. Coefficients are pairwise, assessing the one-to-one correlation between
𝜈syn and one other quantity; the complex physics of BL Lac objects makes it reasonable

3Defined for two variables 𝑥, 𝑦 as 𝜌 = Cov(𝑥,𝑦)
𝜎𝑥𝜎𝑦

, where 𝜎𝑥 , 𝜎𝑦 are the variances, and Cov(𝑥, 𝑦) is the
correlation of the two variables. In turn, Cov(𝑥, 𝑦) = E

[(𝑥 − E(𝑥))(𝑦 − E(𝑦))] and E is the expected value.
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Feature Definition Units Notes
Pivot_Energy Energy at which the error on the differential flux is minimal MeV

Flux1000 Integral photon flux, 1 − 100GeV cm−2 s−1
Energy_Flux100 Energy flux, 100MeV to 100GeV by spectral fitting erg cm−2 s−1

PL_Index Photon index, Power law fit /
F50 Integral photon flux from 50MeV to 100MeV cm−2 s−1 Flux_Band

F100 Integral photon flux from 100MeV to 300MeV cm−2 s−1 Flux_Band
F300 Integral photon flux from 300MeV to 1GeV cm−2 s−1 Flux_Band

F1000 Integral photon flux from 1GeV to 3GeV cm−2 s−1 Flux_Band
F3000 Integral photon flux from 3GeV to 10GeV cm−2 s−1 Flux_Band

F10000 Integral photon flux from 10GeV to 30GeV cm−2 s−1 Flux_Band
F30000 Integral photon flux from 30GeV to 100GeV cm−2 s−1 Flux_Band

F100000 Integral photon flux from 100GeV to 1TeV cm−2 s−1 Flux_Band
Variability_Index Variability index, 1-yr time intervals /
Frac_Variability Fractional variability, 1-yr time intervals /

nu Synchrotron peak frequency, observer frame Hz

Table 4.1: First choice of training features and target. As highlighted in the Notes, fluxes in
individual energy bands have been extracted from the Flux_Band column in 4FGL-DR4, which
is actually a vector column with 8 sub-columns (see Sect. 3.4 in Abdollahi et al. 2022).
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Pivot_Energy

Flux1000

Energy_Flux100

PL_Index

Variability_Index

Frac_Variability

F50

F100

F300

F1000

F3000

F10000

F30000

F100000

1 0.085 -0.013 -0.012 -0.035 -0.0048 -0.039 -0.014 -0.014 -0.012 -0.013 -0.012 -0.011 -0.0087-0.0027

0.085 1 -0.2 -0.19 -0.66 -0.1 -0.32 -0.18 -0.22 -0.22 -0.21 -0.18 -0.13 -0.072 -0.025

-0.013 -0.2 1 0.99 -0.027 0.73 0.13 0.8 0.89 0.95 0.99 0.99 0.91 0.77 0.62

-0.012 -0.19 0.99 1 -0.037 0.68 0.12 0.78 0.86 0.92 0.98 0.99 0.94 0.83 0.7

-0.035 -0.66 -0.027 -0.037 1 0.047 0.26 0.093 0.15 0.088 0.012 -0.074 -0.15 -0.2 -0.15
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-0.014 -0.22 0.89 0.86 0.15 0.85 0.18 0.86 1 0.98 0.93 0.82 0.65 0.46 0.33

-0.012 -0.22 0.95 0.92 0.088 0.85 0.17 0.87 0.98 1 0.98 0.9 0.75 0.56 0.42

-0.013 -0.21 0.99 0.98 0.012 0.78 0.15 0.84 0.93 0.98 1 0.97 0.86 0.7 0.55

-0.012 -0.18 0.99 0.99 -0.074 0.65 0.11 0.75 0.82 0.9 0.97 1 0.95 0.84 0.7

-0.011 -0.13 0.91 0.94 -0.15 0.47 0.058 0.6 0.65 0.75 0.86 0.95 1 0.95 0.83

-0.0087 -0.072 0.77 0.83 -0.2 0.26 0.019 0.43 0.46 0.56 0.7 0.84 0.95 1 0.93
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Figure 4.4: Pearson covariance matrix of the selected features and target.
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Figure 4.5: Bar chart of the Pearson correlation coefficients (absolute value) of the selected
features with the target, 𝜈syn (nu).

to suppose that the target variable will be determined by a non-trivial combination of
more features. Three parameters seem to correlate with 𝜈syn more than the others: two
of them, the photon index (PL_Index) and the pivot energy (Pivot_Energy), appear in
the definition of the power-law phenomenological model for the gamma-ray spectrum,

𝑑𝑁
𝑑𝐸

= 𝐾

(
𝐸
𝐸0

)−Γ
(4.6)

where Γ is the photon index and 𝐸0 is the pivot energy. The apparent link between Γ

and 𝜈syn is known, as already explained; the pivot energy is used in the above expres-
sion as a sort of “reference energy” of the source gamma-ray spectrum, as it is by defi-
nition the energy at which the statistical error on the flux normalization 𝐾 is minimized
(Abdollahi et al. 2020): it can be sensibly supposed that sources with spectra shifted to
higher frequencies, as long as they are not too extreme (see Section 1.2.4), will show a
higher, better-measured flux at higher energies; the third quantity is the fractional vari-
ability (Frac_Variability; see box in Section 1.2.2), and its higher Pearson coefficient
is also reasonable as an anti-correlation between variability and 𝜈syn has already been
discussed (Ajello et al. 2020).

4.3.3 DATA ENGINEERING

A fundamental step in good machine learning is pre-processing input data. There
are several circumstances in which the learning performance can be improved by engi-
neering the training dataset in various ways. As already mentioned above, tree-based
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models are actually well-built for dealing with “messy” data, especially when there are
outliers in their distributions, or unimportant variables are included: however, cleaning
and standardizing the training dataset could still help training performance, having a
clearer picture, and creating inputs ready to be eventually applied to other models that
work less “off-the-shelf”, if needed.

DATA DISTRIBUTIONS

The first step is, obviously, inspecting the distributions of each training feature
and the target. Almost all of the distributions are very skewed towards smaller val-
ues: an example can be seen in Figure 4.6 for the target variable 𝜈syn, the synchrotron
peak frequency. The presence of an extreme outlier makes the other entries collapse
to one single bin, while the probability plot is almost unreadable. This behavior can
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Figure 4.6: Frequency histogram and probability plot of the target variable, 𝜈syn (nu) in linear
scale. An outlier makes both plots unreadable.

be evaluated by the skewness and the kurtosis of the distributions, quantifying the rela-
tive weights and the “extremity” of the tails. Their values were computed according to
the Fisher-Pearson and Fisher definitions respectively, using the scipy.stats.skew and
scipy.stats.kurtosis functions, and are shown in Table 4.2 together with the values
for scaled or transformed data (see later discussion). As expected, apart for PL_Index,
values are always large and positive, generally indicating “heavy” tails (slower decay of
the distribution tails compared to the Gaussian case, a large number of outliers) and a
strong asymmetry in favor of the lower tail.

A first step in dealing with data like these was to check outliers. Considering it is
not a particularly pressing issue with the chosen learning algorithms, the only clear out-
lier to be eliminated was 4FGL J1111.5+3455, because of its 𝜈syn = 1.798 870 × 1020 Hz.
Another machine learning tool, BlaST (Glauch, Kerscher, and Giommi 2022, see later
discussion) estimates 𝜈syn ≃ 2 × 1015 Hz for this source; both 4FGL-DR4 and 4LAC-
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Linear Log Standard Robust Power QuantileFeature Skew. Kurt. Skew. Kurt. Skew. Kurt. Skew. Kurt. Skew. Kurt. Skew. Kurt.
Pivot_Energy 2.8 11.1 0.4 0.1 0.4 0.1 0.4 0.1 0.003 -0.1 0.003 0.8

Flux1000 9.5 126.9 0.7 0.6 0.7 0.6 0.7 0.6 0.02 -0.2 0.00009 0.8
Energy_Flux100 9.9 135.1 0.8 0.8 0.8 0.8 0.8 0.8 0.04 -0.3 0.06 1.1

PL_Index 0.3 0.2 -0.01 0.05 -0.01 0.05 -0.01 0.05 0.0006 0.05 -0.002 0.8
Variability_Index 22.1 588.7 1.6 3.2 1.6 3.2 1.6 3.2 -0.003 0.3 -0.0006 0.8
Frac_Variability 1.3 4.9

F50 9.7 159.0 -1.1 1.2 -1.1 1.2 -1.1 1.2 -0.2 -1.0 -0.00005 0.8
F100 11.4 200.5 -1.9 3.4 -1.9 3.4 -1.9 3.4 -0.04 0.8 -0.0008 0.8
F300 11.4 193.3 -3.4 17.0 -3.4 17.0 -3.4 17.0 0.3 2.9 -0.0003 0.8

F1000 9.9 142.6 -1.0 13.6 -1.0 13.6 -1.0 13.6 0.04 4.4 -0.0005 0.8
F3000 9.2 116.5 -0.1 4.1 -0.1 4.1 -0.1 4.1 -0.05 3.9 0.02 0.9

F10000 10.5 154.4 -4.1 31.5 -4.1 31.5 -4.1 31.5 0.3 4.0 -0.001 0.8
F30000 13.8 268.1 -2.5 6.6 -2.5 6.5 -2.5 6.5 0.05 1.8 -0.0005 0.8

F100000 20.8 541.8 -0.5 -0.4 -0.5 -0.4 -0.5 -0.4 -0.06 -1.3 -0.001 0.8
nu 34.1 1164.4 0.4 -0.2 0.4 -0.2 0.4 -0.4 0.02 -0.6 -0.0001 0.8

Table 4.2: Skewnesses and kurtoses of the features and target, computed in the original scale,
after logarithmic transformation and outlier purge, and after further scalings: StandardScaler,
RobustScaler, PowerTransformer and QuantileTransformer. The column in bold refers to the
transform finally selected for this work.

DR3 identify it with RX J1111.5+3452, whose synchrotron peak frequency is given as
𝜈syn ≃ 1.26 × 1017 Hz by the 3HSP catalog (Chang et al. 2019), and 𝜈syn ≃ 3.98 × 1017 Hz
by BlaST. It is sensible to suppose that the 4LAC-DR3 peak frequency estimate is not
reliable, so the matching instance was deleted from the training dataset.

TRANSFORMATION

A positive skewness is convenient, as it allows to make the distributions more sym-
metric by simply applying a (base-10) logarithmic transform, a standard procedure.
This, unfortunately, forced discarding the fractional variability, one of the most corre-
lated quantities to 𝜈syn: Frac_Variability is exactly 0 for 261 sources, so converting to
logarithms is impossible. Considering the definition of variability and fractional vari-
ability in 4FGL, a null entry could be conceived as a sort of “upper limit”, and would
need the same treatment reserved to missing values, which is beyond the scope of this
thesis.

Both the features and the target were converted with the standard method in Scikit-
learn, by using FunctionTransformer, the class in the sklearn.preprocessing module
to apply custom transforms. Table 4.2 shows how skewness and kurtosis, while remain-
ing often large, greatly improved after discarding the worst outlier and converting to
logarithms. Figure 4.7 shows the new frequency histogram and probability plot for
𝜈syn. A further step, at this point, would be making input data as “training-friendly” as
possible, by further scaling or transforming their distributions to make them closer to
standardized Gaussians. Four classes from the sklearn.preprocessing module were
applied and compared in this work (see Scikit-learn Developers 2024):

StandardScaler It standardizes data by removing the mean and scaling data to unit
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Figure 4.7: Frequency histogram and probability plot of the target variable, 𝜈syn (nu) in loga-
rithmic scale.

variance based on the relevant statistics of each quantity.

RobustScaler It removes the mean and scales the data according to the interquartile
range of each single distribution. For this reason, it is more robust to the presence
of outliers, but it is not suited to sparse data tables.

PowerTransformer Transforms, in general, alter data by applying somenon-linear func-
tion to them. Power transforms are strictly monotonic, and attempt to map input
distributions to standard Gaussians; there are several types, including the Yeo-
Johnson, which was chosen here for being usable on negative data.

QuantileTransformer It maps data with a continuous cumulative distribution func-
tion, 𝐹(𝑥) to another distribution with quantile function 𝐺(𝑢) using the formula
𝐺−1(𝐹(𝑥)). It is powerful in smoothing unusual distributions, but it heavily dis-
torts correlations and distances (for example, between the main “body” of the dis-
tribution and outliers, which are “absorbed” and lose their “anomalous” nature,
potentially producing biases).

The features and the target were transformed separately: the target directly, with the
.fit_transform function of the chosen scaler or transformer, while the feature dataframe
was transformed with the help of sklearn.compose.ColumnTransformer, a class built
specifically to apply scalers and transforms to each column separately. The same class
was applied to all features and the target here, but each data column was fit and trans-
formed separately according to the statistics of its distribution. Table 4.2 shows the
skewnesses and kurtoses computed for each scaler or transform tested in this work.
Applying these data processing techniques improves the values sensibly, making them
closer to 0 as expected for a standardized Gaussian distribution, but outcomes depend
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on the type: while there is not much difference between the two scalers and between
them and the simple logarithmic transformation (as scalers only manipulate the mean
and the variance), the two transformers are distinct in the fact that QuantileTransformer
works to deform all the distributions to the same new one in a much stricter way than
PowerTransformer, producing almost identical values of the two coefficients for all data
columns. For simplicity, from now on the transformer that gave the best results, Power
Transformer, will be discussed on most of the obtained results. Figure 4.8 shows the
distribution and probability plot of log_nu when using PowerTransformer. Figure 4.9
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Figure 4.8: Histogram and probability plot for the target variable, 𝜈syn (nu) transformed with
logarithms + PowerTransformer.

compares feature and target box plots for the logarithmic transformation and the loga-
rithmic transformation plus the PowerTransformer; theywere obtainedwith the default
parameters of the pandas.DataFrame.boxplot method. Notice how rescaling or trans-
forming data allows to restrict the value ranges to similar orders of magnitude, helping
both users and machine learning models to handle data more easily. The fact that there
are so many outliers, and that they tend to form clusters, indicates how some features
(fluxes, in particular) seem to have bimodal distributions, with a second peak that ap-
pears as a clump of outliers. This “bizarre” behavior is evenmore evident in Figure 4.10,
that shows the scatter plots of all the features versus 𝜈syn, to evaluate visually the possi-
ble existence of one-to-one correlations of some type that may lead the learning phase.
On the other hand, the scatter plots of two much more “standard” features, the pivot
energy and the photon index, seem to hint at a roughly linear relation to 𝜈syn, coherently
with the correlationmatrix outcome. Other correlations are up to themodel to discover.

The “new” dataset, whose instances are all the 4LAC-DR3 sources without a 𝜈syn

estimate, will need to be transformed in the same way as the training dataset to allow
for target prediction. After converting to base-10 logarithms, the new data columns
were transformed with the .transform function of the same ColumnTransformer used
on the training dataset, clearly without refitting it to guarantee all data related to the
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Figure 4.9: Box plots of features and target. 4.9a: logarithmic transformation. 4.9b: logarith-
mic transformation + PowerTransformer. Red solid lines: medians; red dashed lines: means.
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Figure 4.10: Scatter plots of the features against the target 𝜈syn (nu) for transformed data
(logarithms + PowerTransformer).
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same quantity, both training and new, are scaled in the same way. This would ensure
that predictions are done correctly, and allow to compare the distributions of the same
feature in the two datasets, to check their similarity and therefore estimate what could
come out of the prediction beforehand. In the specific case treated here, there is a very
good agreement between training and new data, so it is reasonable to expect for the
predicted 𝜈syn to be distributed similarly to the ones in the training dataset: an example
is given in Figure 4.11 for the “weirdest” distribution, that of the integral photon flux
from 100GeV to 1TeV. The values of the target variable predicted on the new dataset
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Figure 4.11: Frequency density histograms of F100000 from training and new datasets, trans-
formed (logarithms + PowerTransformer).

will be, of course, scaled according to the transforms applied to the training data, so
they need to be back-transformed to the original scale, using the .inverse_transform
function of the target transformer.

4.3.4 TRAINING

As already mentioned, learning correctly consists in three phases: training, valida-
tion, and test. Scikit-learn provides a class to easily implement 𝑘-fold cross-validation (see
box in Section 4.2): KFold. There is not a general rule to choose the number of 𝑘-folds:
in general, as Hastie, Tibshirani, and Friedman 2009 point out, using a smaller number
of splits would introduce a bias for smaller datasets, as there would be too few train-
ing data, but using too many folds would make training subsets too close to the entire
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dataset, and variance would increase. Different possibilities were therefore tested: for
this work, 𝑘-fold cross-validationwas implemented by looping on a list of possible num-
bers of splits: 5, 10, or 20 folds, clearly equivalent to using 20%, 10% or 5% of the input
data for validation.

The training procedure was implemented in this way (Code B.2 in Appendix B):

1. The loop over the 𝑘-folds was nested inside another loop over a dictionary of the
three chosen models, in order to select the best number of dataset splits for each
model separately.

2. Another nested dictionary instead included lists of possible hyperparameters for
eachmodel, to be scanned by the GridSearchCV. The training results (found in the
GridSearchCV.cv_results_ attribute) were written to a list, that consequently in-
cludes the training and testing times and scores and their averages for eachmodel,
number of 𝑘-folds tested for that model, and single fold.

3. Once GridSearchCV found the best hyperparameter combination for the model
and that number of folds, its .fit method was invoked to refit the best estimator
on the entire dataset.

4. At this point, the cross_val_score function took the dataset, the given KFold,
the chosen scorer and the best model (GridSearchCV.best_estimator_) as argu-
ments to give a final evaluation across the 𝑘-folds, computing values that could be
finally averaged to give the overall performance score of the estimator.

5. An if-else statement was used to compare it with the one from the previous
iteration of the loop on the number of 𝑘-folds; if the score was better than the
previous one for that model, then the number of 𝑘-folds, the hyperparameter
combination, and the best estimator were recorded in the respective lists of the
best settings and results for each of the three machine learning models.

6. Another loop, this time over the best_models dictionary, allowed to predict the
values of the target variable, 𝜈syn (nu) on the training dataset, make a final evalua-
tion of the performance metrics for each best model, and plot the results, which
are presented in the next Section.

The performance metric chosen to evaluate the model was the mean squared error
(MSE), one of the available parameters of the sklearn.metrics.make_scorer method.
Since it is a loss metric, it needs to be minimized; GridSearchCV and cross_val_score,
however, work bymaximizing the score, so the output of these classes will be a negative
number: the root mean squared error (rMSE) will be therefore computed by extracting
the square root of -MSE. The coefficient of determination 𝑅2 was also computed, but not
used for validation.

User-defined hyperparameters (Code B.1 in Appendix B) were:

random_state The seed of random numbers generation that regulates data splitting
and feature permutation in decision trees. Fixing it ensures reproducibility.

n_estimators Either the number of trees (random forest) or the number of boosting
stages to perform (gradient boosting regressor).
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validation_fraction The fraction of data per fold that is set aside for validation, in
order to implement early stopping (see box in 4.2) in boosted tree models.

no_iter_no_change The number of iterations overwhich the result should not improve
before implementing early stopping.

max_iter Only for the histogram-based gradient boosting regressor, it is the maximum
number of iterations of the boosting process and is equivalent to the maximum
number of trees.

max_depth Themaximumnumber of nodes in each tree: None means that trees can split
indefinitely, until all leaves are pure or contain less than a certain number of items;
this may induce the model to overfit, so the other values in the list were chosen to
be relatively small.

Other hyperparameters were kept at their default values.

4.4 RESULTS

4.4.1 TRAINING AND EVALUATION

The training part was actually performed a first time without early stopping: it pro-
duced a results dictionary that includes all the training and test times for all the values
of n_estimators or max_iter. This object was filtered to select, for each model, the es-
timators with the best number of folds and hyperparameters, except for the ones just
mentioned. Generally, the more trees or iterations there are, the longer it will take to
train and test the model: each item in the n_estimators or max_iter matches a mean
fit time, a mean score time (usually much smaller, an therefore ignored) and, of course,
the correspondingmean values of the performancemetrics. Plotting the fit times against
the respective MSE and 𝑅2 scores, as in Figure 4.12, will show how quickly each model
reaches its optimal performance, and how it behaves if the number of trees or itera-
tions is increased. As expected, the gradient boosting models, especially the histogram-
based one which is optimized for large datasets, reach their best much faster than the
random forest, but the latter ismore stable, as the scores tend to saturatewith increasing
numbers of trees. Gradient boosting estimators instead see their metrics worsen after
an early peak, indicating overfitting.

Of course, gradient boosted trees were re-trained with early stopping. The Grid
SearchCV choice of best hyperparameters for all three models did not return much dif-
ferent results across data scalers or transforms: this is expected for tree-based models,
which are robust to variations in data quality and scaling. An exception may be the
QuantileTransformer, which needed double the number of estimators (trees) in the
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Figure 4.12: Fit times vs. negative mean squared error and 𝑅2 for the three models, each
fit with the best hyperparameters, without early stopping, on data processed with a logarith-
mic transformation and PowerTransformer. Points were plotted without error bars for clarity:
𝜎MSE ∼ 0.08, 𝜎𝑅2 ∼ 0.09.
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random forest and the gradient boosting regressor, and a tree depth of 5 nodes instead
of 3; for all other transforms, the best settings are:

Random Forest: n_splits=20 (KFolds), max_depth=5, n_estimators=500

Gradient Boosting: n_splits=5, max_depth=3, n_estimators=50

Histogram-based Gradient Boosting: n_splits=20, max_depth=3, max_iter=50

Notice that the number of trees or iterations for gradient boostingmodels is half the one
needed by the random forest, confirming what has already been seen from the fit times
- scores plot. Table 4.3 shows the MSEs and 𝑅2 coefficients for all the three models and
all the data transforms. It can be noticed immediately how the scores across different
models and data scalings are almost identical, with differences that sometimes appear
at the fourth decimal digit only. This again shows the relatively little impact of data pre-

Random Forest Gradient Boosting Histogram-b. Grad. Boost.
MSE 𝑅2 MSE 𝑅2 MSE 𝑅2

Log 0.837 0.487 0.832 0.490 0.832 0.490
Standard 0.837 0.487 0.833 0.490 0.832 0.490

Robust 0.837 0.488 0.834 0.489 0.832 0.490
Power 0.843 0.484 0.846 0.482 0.826 0.494

Quantile 0.854 0.477 0.839 0.486 0.823 0.492

Table 4.3: Performance metrics of the best estimators for each machine learning model and
data scaler. All scores were computed after back-transforming predictions on the training
dataset to the original logarithmic scale, to make them comparable.

processing (other than the logarithmic transformation) in this specific case, and for tree-
based models in general. Curiously, the same data transform, QuantileTransformer,
yields both the worst result (with the random forest) and the best one in terms of mean
squared error (with the histogram-based gradient boosting); the best result in terms of
𝑅2 is obtained by the histogram-based gradient boosting regressor applied to data pre-
processed with PowerTransformer. There is a hint at some predictive power, as the
𝑅2 coefficients are always positive, but it is already clear from here that the quality of
the selected estimators is not high and they are not able to generalize data correctly.
Obtaining relatively bad score values (𝑅2<0.5 always in this specific case) was anyway
expected, given the chosen models (Hastie, Tibshirani, and Friedman 2009).

To better understand the nature of the problem, whether it is a case of overfitting in
particular, a standard check is to compare the fit and score performance metrics from
the results dictionary. Mean results from the example estimators (PowerTransformer)
are described in Table 4.4. Note that mean squared errors here are different from the fi-
nal ones in the table above due to being computed at different steps of the procedure:
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Random Forest Gradient Boosting Histogram-b. Grad. Boost.
MSE (train) 0.365 ± 0.003 0.37 ± 0.01 0.401 ± 0.010
MSE (test) 0.51 ± 0.08 0.51 ± 0.04 0.50 ± 0.09
𝑅2 (train) 0.635 ± 0.003 0.63 ± 0.01 0.599 ± 0.009
𝑅2 (test) 0.48 ± 0.09 0.49 ± 0.03 0.49 ± 0.09

Table 4.4: Comparison of mean performance metrics for the train and test stages of the three
best models (data transformed with logarithms + PowerTransformer).

Table 4.4 gives the MSEs averaged across the 𝑘-folds during training, while Table 4.3
computed a single final value, after refitting the best models on the whole dataset, based
on the deviations of the predicted target values from the actual ones, without averag-
ing over folds and after back-transforming to the original logarithmic scale. A natural
slight increase in mean squared errors from training to testing can be seen, while there
is a noticeable decrease in the 𝑅2 coefficient. Even if the latter score is not good in any
case, so the model is not excessively optimized on training data, this behavior is usually
considered a sign of slight overfitting, as the given estimator is shown to be worse at
generalizing what it has learned from the training subsets to new data.

The quality of training can be visually inspected by plotting the predicted target
variables against the actual ones (Figure 4.13), the frequency histogram of predictions
against real values (Figure 4.14), the predicted and actual values against the sample
index (Figure 4.15) and the residuals, from which the final mean squared errors are
computed (Figure 4.16). For simplicity, only the results from the histogram-based gra-
dient boosting regressor trained on data pre-processedwith logarithmic transformation
and PowerTransformer are presented; the results from the other models trained on the
same dataset are in Appendix B. Notice how, in the scatter plots, samples are roughly
clustered around the bisector (representing a perfect match of predictions and actual
values), but there is a large dispersion in the horizontal direction. This means that all
the estimators have some predictive power, but they all have the tendency to “squeeze”
predictions around the average values, being unable to reproduce the correct values
for the lowest- and the highest-synchrotron peaked BL Lacs. This is more evident in the
“line plot” and the histograms, while the residuals show that theworst-predicted values
of 𝜈syn are more than three orders of magnitude from the actual values, but most other
samples are grouped around zero. Table 4.5 compares the main statistics of the “true”
and predicted values distributions, computed with pd.DataFrame.describe(); it con-
firms that the selected estimators tend to give predictions that are less dispersed around
the (almost coincident) means and medians of the respective distributions. Some scat-
ter plots, especially the random forest one (Figure B.2), show visible gaps in the points
distribution, which is also present, less evidently, in the frequency histograms of the
predictions. This may be due to the usage of tree-based models, that work by splitting
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Figure 4.13: Scatter plot of predictions against actual values of the target, log_nu
[Hz]. Histogram-based gradient boosting fit on a transformed dataset (logarithms + Power
Transformer).

Actual values Random forest Gradient boosting Histogram-b. Grad. Boost.
Mean 14.71 14.66 14.66 14.66

Standard deviation 1.28 0.89 0.89 0.89
Minimum value 11.92 13.00 12.64 12.68

25% 13.72 13.90 13.91 13.88
50% (median) 14.55 14.64 14.66 14.68

75% 15.65 15.38 15.35 15.40
Maximum value 19.05 16.66 16.96 16.80

Table 4.5: Statistics of the actual values of log_nu [Hz] distribution and the prediction distri-
butions for the three best models fit on the transformed dataset without outlier (logarithms +
PowerTransformer). Predictions were back-transformed to the logarithmic scale.
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Figure 4.14: Frequency histograms of predictions against actual values of the target, log_nu
[Hz]. Histogram-based gradient boosting fit on a transformed dataset (logarithms + Power
Transformer).

0 200 400 600 800 1000 1200
Sample Index

12

13

14

15

16

17

18

19

lo
g_

nu
 [H

z]

Line Plot of Actual and Predicted Values for Hist Gradient Boosting, Original LogScale

Actual Values
Predicted Values

Figure 4.15: Line plot of the predicted and actual values of the target, log_nu [Hz], for
the histogram-based gradient boosting regressor fit on transformed data (logarithms + Power
Transformer).
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Figure 4.16: Line plot of the fit residuals of the target, log_nu [Hz], for the histogram-based
gradient boosting regressor fit on transformed data (logarithms + PowerTransformer).

data until a discrete number of leaf nodes is reached: even if random forests average
over several trees, it is reasonable to suppose that when the number of nodes and trees
is too small, the smoothing effect of averaging is hindered by the fact that several trees
would classify the same samples in the same leaves.

An advantage of tree-basedmodels, on the other hand, is that data splitting relies on
feature values meeting certain thresholds. The depth of the node defined by a certain
feature (i.e. what fraction of the training dataset is involved) and the decrease in impu-
rity produced by the split are used by Scikit-learn to compute a normalized estimate of
the predictive power of that variable (feature importance: see Hastie, Tibshirani, and
Friedman 2009 for a more general and formal definition). The results are plotted in Fig-
ure 4.17 for the three models. They need to be taken with a grain of salt, as importances
for the random forest and the gradient boosting regressors are evaluated on statistics
computed on the entire training dataset (Scikit-learnDevelopers 2024). The importances
for the histogram-based gradient boosting regressor were estimated by permutation im-
portance, which is a technique that should solve this issue by shuffling values for a given
variable and assessing how the model performance worsens, but applying it rigorously
would have required complicating the training loop beyond manageability, so this case,
too, may suffer the same problem (Scikit-learn Developers 2024; Molnar 2022). What
emerges, in any case, is that all three models give an enormous relative weight to the
photon index Γ (log_PL_Index). This was expected, as shown by the target-features
scatter plots. The pivot energy, which had the highest correlation coefficient with 𝜈syn

and whose scatter plot also hinted at a linear relation with the target, comes in second
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Figure 4.17: Feature importances bar chart for the three models trained on transformed data
(logarithms + PowerTransformer. From left to right: gradient boosting, histogram-based gradi-
ent boosting, random forest.

according to the random forest and gradient boosting models, but with a much smaller
importance. In the histogram gradient boosting case, it even sits behind some of the
fluxes, especially the ones at the highest energies. In general, the three models show
the expected behavior, with the random forest distributing importances more equally
to the various features, at least the “secondary” ones (Hastie, Tibshirani, and Friedman
2009).

4.4.2 PREDICTING ON NEW DATA

The three models, now ready for use, were applied to a new, previously unseen
dataset to finally predict the missing BL Lac 𝜈syn values in 4LAC-DR3. The new data
were scaled according to the transforms fit on the training dataset, as explained in Sec-
tion 4.3.3 before being fed to the best estimators found in the previous steps; after predic-
tion, the output was back-transformed to the logarithmic scale by applying the inverse
target transform. As usual, the results obtained by training on logarithmic data scaled
with the PowerTransformer are chosen as an example.

The second, third and fourth column of Table 4.6 show the distribution statistics
of the predictions from the new dataset (scaled back from PowerTransformer). Values
seem to have a relatively small dispersion, with no 𝜈syn below 1013 Hz or above 1017 Hz
(no lower-peaked LBLs and no extreme HBLs), coherently with the predictions on the
training dataset done during learning. This is even more evident when looking at the
frequency histograms in Figures 4.18 and 4.19, where the “comb-like” behavior, with
wide gaps in the distribution, also reappears.
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Training data Random forest Gradient boosting Histogram-b. Grad. Boost. BlaST
Mean 14.71 14.86 14.85 14.83 15.58

Standard deviation 1.28 0.80 0.80 0.80 1.36
Minimum value 11.92 13.30 13.21 13.27 12.50

25% 13.72 14.18 14.14 14.11 14.58
50% (median) 14.55 14.88 14.93 14.88 15.60

75% 15.65 15.66 15.50 15.53 16.70
Maximum value 19.05 16.57 16.52 16.67 18.50

Table 4.6: Statistics of the log_nu [Hz] distributions from the training dataset, the prediction
distributions for the three best models fit on the new dataset (logarithms + PowerTransformer),
back-transformed to the logarithmic scale, and the BlaST predictions.

Comparison with Other Tools To have a better assessment of the quality of these re-
sults, a comparison was made4 with another machine learning tool with the same
task: the Blazar Synchrotron Tool5, or BlaST (Glauch, Kerscher, and Giommi 2022), al-
ready mentioned in Section 4.3.3. It was developed to compute unbiased estimates of
𝜈syn and confidence intervals, based on broadband SED data that may include spurious
components from the host galaxy or its nucleus, with limited need to clean data before-
hand. Its working principle is an ensemble of neural networks, built with the PyTorch
package (Paszke et al. 2019), each trained on a dataset of 3793 blazar SEDs from a sub-
sample of the Open Universe for Blazars master list (v. 2)6. Actually, in order to avoid
bias due to some 𝜈syn beingmuchmore frequent than others, oversampling was applied
to fill “emptier” bins with altered copies of other real SEDs of the same bin, bringing
the total number of instances in the training dataset (including the validation subset) to
10400 real or augmented samples.

Figure 4.18 shows the frequency distribution of values predicted by the three ex-
ample models in this work against the BlaST outcomes. As revealed in Table 4.6, the
predicted 𝜈syn from this work are spread over a smaller range, with a taller peak close
to the mean and the median of the distribution, while BlaST values follow a wider dis-
tribution, with higher mean and median and dozens of predicted extreme BL Lacs.

The agreement with the known 4LAC-DR2 values seems to be high in general, ac-
cording to the BlaST paper, so there is a possibility that the “new” sources tend to be
intrinsically shifted to higher frequencies and that the lower values for 𝜈syn found by this
work are a model quality issue; however, the paper also underlines that BlaST tends to
overestimate peak frequencies when 𝜈syn > 1016 Hz, and that there is some disagree-
ment with 4LAC in the 1014 Hz to 1015 Hz interval, right where means and medians of
the new predictions fall.

4The BlaST predictions were kindly provided by Dott.ssa Elisa Prandini.
5https://github.com/tkerscher/blast
6https://openuniverse.asi.it/OU4Blazars/MasterListV2/
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Figure 4.18: Frequency histograms of log_nu [Hz] values predicted on the new dataset by
the three models (trained on data scaled with logarithms + PowerTransformer; colored line
histograms), and the BlaST predictions on the same sources (gray filled histogram).
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Comparison with the Input Dataset Figure 4.19 shows the the frequency densities of
the new values of 𝜈syn predicted by the threemodels, comparedwith the frequency den-
sity histogram from the input dataset: as highlighted in Section 4.3.3, the distributions
of features in the training and the “new” dataset are very similar, so it is reasonable
to check the quality of the new predictions by comparing them with the values of 𝜈syn

found in the input dataset, even if it is not conceptually correct as new data may have
a different distribution. Table 4.6 also includes a summary of the distribution statistics
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Figure 4.19: Frequency densities of log_nu values predicted by the three models (colored line
histograms) and as found in the training dataset (gray filled histogram). Models were trained
on data scaled with logarithms + PowerTransformer.

of training targets for comparison. Predictions on new data are, again, spread over a
smaller interval of synchrotron peak frequencies; on the other hand, they are in good
agreement with the target predictions computed on the training dataset for model eval-
uation, already shown in Table 4.5. This lends weight to the idea that the models built
in this work are not optimal for prediction.
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4.5 FINAL CONSIDERATIONS

Summary

Target variable: synchrotron peak frequency 𝜈syn [Hz] of BLLac blazars as found
in the 4LAC-DR3 catalog (nu).

Training features: observed quantities on BL Lac blazars as found in the 4FGL-
DR4 catalog, from Fermi-LAT data in the energy range 50MeV-1TeV:

• Pivot energy, E0 [MeV]: energy at which the statistical error on the
differential flux is minimal (Pivot_Energy).

• Flux1000 [cm−2s−1]: integral photon flux measured from 1GeV to
100GeV.

• Energy_Flux100 [erg cm−2s−1]: energy flux from 100MeV to 100GeV
obtained by spectral fitting.

• Photon index, Γ: photon indexwhenfitting the spectrumwith a power
law (PL_Index).

• Photon fluxes in 8 energy bands [erg cm−2s−1]: 50MeV to 100MeV
(F50), 100MeV to 300MeV (F100), 300MeV to 1GeV (F300), 1GeV to
3GeV (F1000), 3GeV to 10GeV (F3000), 10GeV to 30GeV (F10000),
30GeV to 100GeV (F30000), 100GeV to 1TeV (F100000).

• Variability index TSvar: likelihood test statistic on the variability of a
source (Section 1.2.2).

Best Data Transformations: log10 + Yeo-Johnson Power Transformer on all
quantities separately.

Best Learning Model: Histogram-based Gradient Boosting with custom hy-
perparameters:

• No. of k-folds: 20
• Max. tree depth: 3
• Max. number of iterations: 50
• Validation fraction: 0.2
• No. of iterations with no score improvement before early stopping:

10

Validation metrics: MSE ∼ 0.8, 𝑅2 ∼ 0.5 for all models.

The outcome of the machine learning models implemented here was not of excep-
tional quality if compared with the training dataset and a more complex tool like BlaST,
but it still showed some potential for future development, and the shortcomings of the
selected estimators can be explained by the characteristics of tree-based models in gen-
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eral. There could be several roads to learning improvement:

• Test alternative models. As already explained, tree-based algorithms are based
on a weak estimator that has a limited predictive power and that, while built to
catch non-linear relations, is lacking in presence of linearity or linear combina-
tions among few variables (see e.g. Hastie, Tibshirani, and Friedman 2009). The
Scikit-learn documentation (Scikit-learn Developers 2024) is clear: ensemble re-
gressors should be considered as a last resort when datasets are relatively small
(< 100000 instances) and there are reasons to suppose that the target values will
depend from a small number of instances; in that case, using linear regressors like
Lasso and ElasticNet would be preferable. Scatter plots in Fig. 4.10 and, in part,
feature importances (Fig. 4.17) seem to suggest this is the case. Neural networks
are another popular choice, and are the type of estimator BlaST, which also takes
spectral points (but not variability and photon indices) as an input, was built on,
after attempts with a random forest and a gradient boosting regressor (Glauch,
Kerscher, and Giommi 2022);

• Hyperparameter optimization. Values scanned here are either the defaults, or
quite arbitrary. A more careful choice of which values to scan with GridSearch
CV, or setting hyperparameters at first kept as defaults (like the learning rate for
gradient boosting regressors) would benefit efficiency and accuracy;

• Refine the input dataset. The three models considered in this work belong to
a class that works decently “out-of-the-box”, such that data pre-processing does
not have a great impact, but machine learning in general benefits from good data
engineering before the learning phase. Potential improvements would include:

– Treating outliers more carefully. Only one source was discarded here, as it
was clearly off and cleaning the dataset from outliers could be unimportant
for tree-based models. In case the estimator were changed, handling outliers
could become much more relevant;

– Refining feature scalings and transforms, tuning their parameters and ap-
plying the best transform to each variable separately;

– Considering bias in the training dataset. Instances are just a subset of all
possible BL Lacs, the ones that are bright enough in the Fermi-LAT energy
range to be observed by that instrument. The BlaST paper points out how
the target variable has a distribution, that often leaves some 𝜈syn bins un-
derpopulated; models trained on biased datasets will propagate that bias in
their predictions, as they could not learn some combinations of feature and
target values that may exist in new data, but are underrepresented in the in-
put dataset. An idea that emerged while working on this Chapter was not
to train the models on real data, but on a large sample of simulated Fermi-
LAT spectra covering all plausible spectral model parameter combinations,
maybe repurposing the MMDC neural network training dataset.

• Work on features. As already mentioned, the models in this work seem to rely on
few of the features only. A different choice of independent variables could poten-
tially alter the result, maybe positively: for example, the features that could be the
less useful may be filtered out, or others that were initially left out could be added
back. A prominent example is the fractional variability, Frac_Variability, which
looked like one of the most strongly correlated features to 𝜈syn (nu) but was dis-
carded due to often being exactly zero (and therefore not being convertible to log-
arithmic scale). Another idea could be including the parameters of the alternative
model for curved spectra (LogParabola);
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• Consider the underlying physics. As already mentioned, the relation between
gamma-ray photon index and 𝜈syn, which seems to drive most of the learning, has
been known and discussed for several years and may have a physical justification
for both BL Lacs and FSRQs in the context of a one-zone synchrotron + inverse
Compton model (see e.g. Dermer et al. 2015). The 4LAC paper suggests to study
the correlation “more physically”, correcting 𝜈syn for redshift by the (small) factor
1 + 𝑧.

In any case, trying to obtain a machine learning model that only relies on high-
energy gamma ray data is probably a worthy task, for the reason explained in the “Pur-
pose” section: Fermi data are ubiquitous in the blazar world, while observations at other
energies are not granted, or retrieving them is not straightforward due to defects of on-
line catalogs. The outlier source, for example, despite having an association in both
4LAC and 4FGL catalogs, has separate entries in Firmamento: 4FGL J1111.5+3455 has
Fermi-LAT data only, the associated object RX J1111.5+3452 instead features a full broad-
band SED. Consequently, there are BlaST estimates of 𝜈syn for both: needless to say, the
two values are very different, as already shown above, and the one based on 4FGL data
only is probably unreliable. BlaST, with its apparent accuracy and robustness, is not
infallible: apart from the issue just mentioned, it turned out that 36 of the 276 BL Lacs
without 𝜈syn estimate in 4LAC-DR3 (on which predictions were done in this work) lack
even a BlaST evaluation of this quantity. Checking which sources were, and which ob-
servations are available of them, to understand if it is an issue of spectral data scarcity,
was out of the scope of this thesis. If that is the case, creating a new tool like the one
sketched in this work could be important.
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5
Conclusions

This work was carried out as part of an effort to integrate novel machine learning
techniques into high-level data analysis performed by researchers of the High-Energy
Astrophysics group in Padua, especiallywhen concerning the physical andphenomeno-
logical characterization of blazars. Machine learning, in particular, could be suited for
tackling issues like fit instability and parameter degeneracy in modeling blazar spec-
tral energy distributions, and to perform population studies that require handling large
amounts of data and discovering non-linear relations among them.

Investingating on the so-called blazar sequence, a possible anti-correlation between
synchrotron peak frequency and bolometric luminosity of blazars, is exactly a task of
this type, and the main topic of this thesis. The primary aim was to discuss the phys-
ical origin of the sequence and the role of “BL Lac” blazars that have been detected at
TeV energies, by adopting a new approach based on the modeling of the spectral energy
distribution of individual sources. A recent learning-based fitting tool, available on the
MarkarianMultiwavelengthDataCenter (MMDC)webpage, was tested alongsidemore
traditional analytical packages to fit the broadband spectra of three TeV BL Lacs. This
first part of the work, illustrated in Chapter 3, showed the potential of the MMDC tool
for blazar modeling, especially in terms of user-friendliness, speed, and ability to look
for the global best fit over the whole parameter space. The experience with the other
analysis package, agnpy and its fitting backends Sherpa and Gammapy, revealed very
clearly the issue of selecting non-simultaneous data in the X-ray band. No good com-
promise between the two alternative data choices was found, so no firm conclusions
can be drawn on the TeV blazar sequence yet, even though some patterns were detected
in MMDC results. Longer-term perspectives for the future also include extending the
modeling to all the blazars in the sample, hopefully after having found a reliable rule for
unbiased data selection, or working with new information from upcoming high-energy
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instruments. A needwhich emerged in this study is that of either X-ray and VHE simul-
taneous data gathered during average or low emission states of the sources of interest,
or time-integrated spectra from large-field of view X-ray instruments. The first solution
could be one of the objectives of the Cherenkov Telescope Array (CTA: The Cherenkov
Telescope Array Consortium et al. 2019), the next-generation very-high-energy gamma-
ray observatory that has recently began its main development phase, with the aim of
being operative in a few years. Covering the energy range from 20GeV to 300TeV, CTA
is expected to have 10 times better sensitivity than current IACT arrays, but will not be
able to work in the energy interval currently surveyed by Fermi-LAT, which is probably
going to be decommissioned in the near future. In the X-ray band, a perfect instru-
ment for of this study would have been eROSITA (Predehl et al. 2021), which, however,
was prematurely turned off in 2022 in protest against the Russian invasion of Ukraine.
New instruments with improved sensitivity could also be fundamental in providing the
necessary information to either confirm or disprove the actual existence of the blazar se-
quence, which some researchers think is drivenmore by beaming effect or selection bias
than physics. In absence of recent, in-depth surveys of the high-energy sky outside the
Fermi-LAT range, the alternative is to go back to archival simultaneous observations,
a fine-tuned approach that this work intended to avoid. The need for a more careful
recording of observation times in Open Universe for Blazars catalogs, and of easy time
filtering options in online multiwavelength databases, became apparent.

A further issue emerged during source selection: the lack of reliable estimates of the
synchrotron peak frequency for several gamma-ray blazars, the starting point in the new
approach to the study of the sequence. As it is reasonably caused by scarcity of multi-
wavelength data at low energies, whichmakes the traditional evaluation of this quantity
by fitting spectral points difficult, amachine learning codewas developed anddescribed
in Chapter 4 to predict the synchrotron peak frequency of BL Lac blazars based exclu-
sively on Fermi-LAT data in the high-energy gamma-ray band. An assessment of the
model performance based on evaluation statistics and comparison with the prediction
of another machine learning-based tool, BlaST, revealed that the algorithm is promis-
ing, but has large margins of improvement in terms of predictive power and overfitting
prevention. The fact that BlaST, which is trained on broadband spectra, is unable to
make predictions for a few Fermi-detected sources, shows that carrying on developing
a machine learning tool based on high-energy gamma-ray data only is probably worth
the effort.
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A
Spectral Modeling Plots and Tables

A.1 BIN 4

A.1.1 MMDC FITS
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Figure A.1: Results of the MMDC tool fit on PG 1218+304, keeping all model parameters free
except for 𝛾min = 102. A.1a: observed SED (blue dots), best-fit model (red line) and random
MCMC samples (gray lines). A.1b: corner plot of the same fit.
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Figure A.2: Results of the MMDC tool fit on PG 1218+304, keeping all model parameters free
except for 𝛾min = 103. A.2a: observed SED (blue dots), best-fit model (red line) and random
MCMC samples (gray lines). A.2b: corner plot of the same fit.

log 𝐿𝑒 [erg s−1] 43.9 ± 0.4
𝑝 2.4 ± 0.2

log 𝛾cut 6.9 ± 0.5
log 𝛾min 3

𝛿𝐷 41 ± 11
log 𝐵 [G] −1.1 ± 0.7

log𝑅 [cm] 15.9 ± 0.7
𝑡var [s] (0.7 ± 1) × 104

Figure A.3: Fit of the PG 1218+304 SED with the mean Swift-XRT data, computed with the
MMDC SED fitting tool, fixing 𝛾min = 103. Left: observed SED (blue dots), best-fit model (red
line) and random MCMC samples (gray lines). Right: Best-fit parameters. Dark red values are
frozen. 𝑡var (teal) was computed at a later moment and is not one of the original fit parameters.
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APPENDIX A. SPECTRAL MODELING PLOTS AND TABLES

A.1.2 agnpy FITS

𝛿𝐷 initialization 10 15 20 30 40
log 𝑘𝑒 [cm−3] −8.4 ± 0.4 −8.1 ± 0.5 −7.7 ± 0.4 −7.4 ± 0.2 −7.4 ± 0.2

𝑝1 2.07 ± 0.06 2.12 ± 0.06 2.13 ± 0.10 2.10 ± 0.06 2.10 ± 0.06
𝑝2 3.1 ± 0.9 3.4 ± 0.8 3.1 ± 0.3 3.1 ± 0.3 3.1 ± 0.3

log 𝛾𝑏 5.4 ± 0.2 5.4 ± 0.2 5.1 ± 0.2 4.90 ± 0.04 4.90 ± 0.04
log 𝛾min 2 2 2 2 2
log 𝛾max 6 6 6 6 6

𝛿𝐷 10 ± 3 16.6 ± 0.8 27 ± 11 35 ± 2 35 ± 2
log 𝐵 [G] −1.36 ± 0.04 −1.4 ± 0.3 −1.7 ± 0.2 −1.8 ± 0.2 −1.8 ± 0.2
𝑡var [s] (33 ± 10) × 104 (10 ± 10) × 104 (8 ± 5) × 104 (6 ± 2) × 104 (6 ± 2) × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.857 0.782 0.779 0.771 0.771
Q-value 0.677 0.780 0.785 0.795 0.795

Table A.1: Fit parameters and statistics for the SED of PG 1218+304, obtained with agnpy and
Sherpa by fixing 𝛾min = 102, 𝛾max = 106 and initializing 𝛿𝐷 at various values while keeping it
free. Values in dark red are fixed. Values in italics only have the first approximate estimate of
their errors.

𝛿𝐷 initialization 10 15 20 30 40
log 𝑘𝑒 [cm−3] −8.62 ± 0.10 −8.0 ± 0.4 −7.7 ± 0.4 −7.6 ± 0.5 −7.7 ± 0.4

𝑝1 2.15 ± 0.02 2.14 ± 0.06 2.12 ± 0.08 2.10 ± 0.10 2.12 ± 0.08
𝑝2 5 ± 10 3.3 ± 0.3 3.1 ± 0.2 3.0 ± 0.2 3.1 ± 0.2

log 𝛾𝑏 5.76 ± 0.06 5.3 ± 0.2 5.0 ± 0.2 5.0 ± 0.2 5.0 ± 0.2
log 𝛾min 2 2 2 2 2
log 𝛾max 6 6 6 6 6

𝛿𝐷 14 ± 4 19 ± 2 26 ± 2 28 ± 2 26 ± 2
log 𝐵 [G] −1.4 ± 0.3 −1.5 ± 0.1 −1.7 ± 0.1 −1.8 ± 0.1 −1.7 ± 0.1
𝑡var [s] 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 1.132 0.749 0.752 0.755 0.752
Q-value 0.287 0.827 0.823 0.820 0.823

Table A.2: Fit parameters and statistics for the SED of PG 1218+304, obtained with agnpy
and Sherpa by fixing 𝛾min = 102, 𝛾max = 106 and 𝑡var = 1d, and initializing 𝛿𝐷 at various
values while keeping it free. Values in dark red are fixed. Values in italics only have the first
approximate estimate of their errors.
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A.1. BIN 4

agnpy/Sherpa MMDC agnpy agnpy MMDC agnpy agnpy MMDC agnpy MMDC
log 𝑘𝑒 [cm−3] log 𝐿𝑒 [erg s−1] −7.9 ± 0.1 −8.0 ± 0.4 44.6 ± 0.2 −7.8 ± 0.4 −7.5 ± 0.5 44.5 ± 0.1 −7.1 ± 0.9 44.0 ± 0.1

𝑝1 2.10 ± 0.04 2.14 ± 0.06 1.85 ± 0.09 2.13 ± 0.08 2.1 ± 0.1 2.1 ± 0.1 1.9 ± 0.3 2.3 ± 0.1
𝑝2 3.7 ± 0.3 3.3 ± 0.3 3.1 ± 0.2 3.0 ± 0.3 3.0 ± 0.3

log 𝛾𝑏 5.38 ± 0.05 5.3 ± 0.2 5.1 ± 0.2 4.9 ± 0.2 4.6 ± 0.3
log 𝛾min 2 2 2 2 2

log 𝛾max log 𝛾cut 6 6 5.8 ± 0.4 6 6 5.7 ± 0.3 6 5.7 ± 0.3
𝛿𝐷 15 20 25 30 40

log 𝐵 [G] −1.26 ± 0.05 −1.52 ± 0.08 −1.3 ± 0.1 −1.69 ± 0.09 −1.84 ± 0.09 −1.6 ± 0.1 −2.06 ± 0.08 −2.1 ± 0.1
𝑡var [s] 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104 8.64 × 104

𝜒2/𝑑.𝑜. 𝑓 . 0.745 0.722 0.727 0.729 0.806
Q-value 0.837 0.861 0.856 0.854 0.760

Table A.3: Fit parameters and statistics for the SED of PG 1218+304, obtained with
agnpy/Sherpa and the MMDC SED fitting tool by fixing 𝛾min = 102, 𝛾max = 106 and 𝑡var = 1d,
and freezing various values of 𝛿𝐷 . Values in dark red are fixed.
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Figure A.4: Observed SED (dark red dots) and best-fit models (teal lines) of PG 1218+304,
fixing 𝛾min, 𝛾max = 106, and 𝑡var = 1d, with 𝛿𝐷 ∼ 20 by fixing or convergence. A.4a: fixed
𝛾min = 103, initialization with 𝛿𝐷 = 10 left free. A.4b: fixed 𝛾min = 102, initialization with
𝛿𝐷 = 15 left free. A.4c: fixed 𝛾min = 102 and 𝛿𝐷 = 20.
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APPENDIX A. SPECTRAL MODELING PLOTS AND TABLES

A.2 BIN 3

(a) (b)

Figure A.5: Observed SED (blue dots), MMDC best-fit models (red line) and random MCMC
samples (gray lines) of PKS 2155-304, fixing 𝛾min = 103. A.5a: BeppoSAX X-ray data. A.5b:
mean Swift-XRT X-ray data.

A.3 BIN 5

(a) (b)

Figure A.6: Observed SED (blue dots), MMDC best-fit models (red line) and random MCMC
samples (gray lines) of PKS 0548-322, fixing 𝛾min = 103. A.6a: BeppoSAX X-ray data. A.6b:
mean Swift-XRT X-ray data.
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B
Machine Learning

B.1 CODE SNIPPETS

1 import numpy as np
2 from sklearn.ensemble import HistGradientBoostingRegressor ,

RandomForestRegressor , GradientBoostingRegressor
3

4 models = {
5 "Random Forest": RandomForestRegressor(
6 random_state=23,),
7 "Gradient Boosting": GradientBoostingRegressor(
8 random_state=23,),
9 "Hist Gradient Boosting": HistGradientBoostingRegressor(

10 random_state=23, early_stopping=True),
11 }
12 param_grids = {
13 "Random Forest": {"n_estimators": [10, 20, 50, 100, 200, 500,

1000], "max_depth": [None, 3, 5, 10]},
14 "Gradient Boosting":{"n_estimators": [10, 20, 50, 100, 200, 500,

1000],"validation_fraction": [0.2], "n_iter_no_change": [10], "
max_depth": [None, 3, 5, 10]},

15 "Hist Gradient Boosting": {"max_iter": [10, 20, 50, 100, 200, 500,
1000], "validation_fraction": [0.2], "n_iter_no_change": [10], "
max_depth": [None, 3, 5, 10]},

16 }

Code B.1: Dictionaries of implemented models and candidate hyperparameters.
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B.1. CODE SNIPPETS

1 import numpy as np
2 import pandas as pd
3 from sklearn.ensemble import HistGradientBoostingRegressor ,

RandomForestRegressor , GradientBoostingRegressor
4 from sklearn.model_selection import KFold , cross_val_score ,

GridSearchCV
5 from sklearn.metrics import mean_squared_error , r2_score , make_scorer
6

7 folds = [5, 10, 20]
8

9 results = []
10 best_models = {}
11 best_params = {}
12 best_kfold = {}
13

14 scoring = {
15 'MSE': make_scorer(mean_squared_error , greater_is_better = False),
16 'R2': make_scorer(r2_score),
17 }
18

19 for name, model in models.items():
20 best_score = np.inf
21 best_kf = None
22 best_params = None
23 best_model = None
24

25 for n_folds in folds:
26 kf=KFold(n_splits=n_folds , shuffle=True, random_state=23)
27 print(f"Number of folds: {n_folds}")
28 grid_search = GridSearchCV(
29 estimator=model ,
30 param_grid=param_grids[name],
31 return_train_score=True,
32 cv=kf,
33 n_jobs=N_CORES , #parallelize job on all Bigmama cores
34 scoring=scoring ,
35 refit='MSE'
36 ).fit(X, y)
37

38 # Store the cross -validation results for this fold
39 result = {
40 "model": name,
41 "n_folds": n_folds ,
42 "cv_results": pd.DataFrame(grid_search.cv_results_)
43 }
44 results.append(result)
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45

46 # Perform cross -validation
47 mse_scores = cross_val_score(grid_search.best_estimator_ , X, y,

cv=kf, scoring=scoring['MSE'])
48 rmse_scores = np.sqrt(-mse_scores)
49 mean_rmse = np.mean(rmse_scores)
50

51 #Track the best model based on MSE
52 if mean_rmse < best_score:
53 best_score = mean_rmse
54 best_kf = kf
55 best_params = grid_search.best_params_
56 best_model = grid_search.best_estimator_
57 r2_scores = cross_val_score(grid_search.best_estimator_ , X, y,

cv=kf, scoring=scoring['R2'])
58

59 best_models[name] = best_model
60 best_params[name] = best_params
61 best_kfold[name] = best_kf

Code B.2: Model cross-validation and training loops.
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B.2. PLOTS

B.2 PLOTS
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Figure B.1: Frequency histograms and probability distributions of the features and target. In
the probability distribution plots, the values and distribution quantiles of the experimental data
points (teal) are compared to the behavior of a Gaussian distribution (dark red).
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Figure B.2: Scatter plot of predictions against actual values of the target, log_nu [Hz]. Ran-
dom forest fit on a transformed dataset (logarithms + PowerTransformer).
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Figure B.3: Scatter plot of predictions against actual values of the target, log_nu [Hz]. Gradi-
ent boosting fit on a transformed dataset (logarithms + PowerTransformer).
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Figure B.4: Frequency histograms of predictions against actual values of the target, log_nu
[Hz]. Random forest fit on a transformed dataset (logarithms + PowerTransformer).
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Figure B.5: Frequency histograms of predictions against actual values of the target, log_nu
[Hz]. Gradient boosting fit on a transformed dataset (logarithms + PowerTransformer).
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