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Understanding symmetries in quantum field theory (QFT) is crucial for unraveling the
fundamental principles that govern physical systems. Though less explored than ordinary
symmetry, the recently introduced notion of generalized symmetry opens up new avenues
for understanding complex phenomena. The goal of this thesis is to investigate these
symmetries in 3-dimensional QFTs through the derivation of a bulk topological theory
in one dimension higher that describes the discrete generalized symmetries of strongly
coupled 3d ortho-symplectic ABJ (Aharony-Bergman-Jafferis) theories.
In order to achieve this, the research will rely on holographic duality, established through
AdS/CFT correspondence, which eases the investigation of non-perturbative phenomena
by mapping a given strongly coupled d-dimensional conformal field theory (CFT) to a
weakly coupled gravitational theory in (d+1) dimensions. String theory, and in particular
its low-energy limit (in our case IIA supergravity), does in fact offer a useful framework
for capturing symmetries through a topological limit or, better said, truncation.
With a particular focus on the flux sector of supergravity and by using the discrete torsions
of the holographic IIA geometry, i.e AdS4 × CP 3/Z2, we construct the 4-dimensional
“Symmetry topological field theory (TFT)” via compactification on the CP 3/Z2 space.
The resulting TFT then allows to identify generalized symmetries and anomalies of the
original QFT in terms of branes, that are the fundamental extended dynamical objects
of string theory, and coupling thereof.
This thesis contributes to a deeper understanding of the nature of generalized symmetries
in 3-dimensional QFTs and their connections to holography and string theory.
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1 Introduction

One of the most insightful features of a physical theory is the set of symmetries it

bears. The most commonly encountered kind of symmetry are 0-form continuous sym-

metries, that correspond to Lie groups of transformations that leave the theory’s action

unchanged. However, the definition of a symmetry can be extended to encompass a wider

array of invariances: one could give up the continuity of the Lie group, obtaining a discrete

symmetry, or go a step further and abandon the group structure altogether, entering the

world of category theory and non-invertible symmetries. Another possibility is to have

the symmetry act on operators extended in space-time rather than point-like ones, re-

sulting in an higher-form symmetry. Symmetries of these types are collectively known as

“generalized symmetries”.

The purpose of this research is to apply to a 3-dimensional ABJ (Aharony-Bergman-

Jafferis) theory a method developed in [1] [2] [3] aimed at shedding light on the generalized

global symmetries of a given conformal theory through an holographic construction. More

precisely, starting from the 10-dimensional supergravity associated to the original QFT

via AdS/CFT correspondence, the method consists in isolating the Ramond-Ramond and

Neveu-Schwarz sector (later referred to as flux sector) and proceeding with the compact-

ification of the internal part of the supergravity background. Before doing so, the flux

sector will be modified to encode the Bianchi identities for the fields, which requires an

eleventh auxilliary dimension. Once the reduced 5-dimensional action is obtained, it will

be possible to select the topological sector by means of a simple limit. At this point

one removes the auxilliary dimension by applying Stokes theorem, obtaining a topological

theory on AdS4 that contains BF-terms and, most importantly, Chern-Simons couplings.

These can be traced back to the original QFT by means of the “anomaly inflow” paradigm.

Such theory is known as “Symmetry Topological Field Theory”, or SymTFT for short, and

its derivation is the main goal of this research. From the SymTFT one can reconstruct

the defect operators associated with the symmetries of the underlying CFT, given that

appropriate boundary conditions are set on the TFT fields: different boundary conditions

lead to the symmetry structure of different variants of ABJ theory.

Beside providing the means to reconstruct the defect operators, this method of probing

a theory’s symmetry structure also has the advantage of not relying on a lagrangian de-

scription of the initial conformal theory. Moreover, the Symmetry TFT’s relation to the

anomaly inflow paradigm can contribute to understanding the origin of anomalies.
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Figure 1.1: Schematic representation of the process utilized in this work to reconstruct the
symmetry structure of the ABJ theory.

As mentioned before, the subject of our analysis is a 3-dimensional superconformal

ABJ-type theory constructed in [4], that has gauge group O(2N)2k × USp(2N)−k, where

N and k are integers, with the latter denoting the Chern-Simons level. Some specifica-

tions of this kind of theory include gauge groups such as O(2N)2k × USp(2N)−k/Z2 and

SO(2N)2k × USp(2N)−k. The holographic dual of these theories can be derived from a

type IIA supergravity theory with background manifold AdS4 × CP 3/Z2.

The choice theory was driven by the fact that the symmetry content of these theories

has already been probed by the authors of [5] with a completely different approach, re-

lying on the superconformal index. Their results set a concrete expectation of the terms

that should appear in the SymTFT. In particular, the SO(2N)2k × USp(2N)−k gauge

theory is expected to bear a 1-form and two 0-form discrete symmetries, whereas the

O(2N)2k × USp(2N)−k/Z2 variant should turn out to have a 0-form non-invertible sym-

metry. Our final action will indeed be compatible with these results and one could recon-

struct the actual symmetries by choosing the right boundary conditions. Note that since

both theories are associated with the same SymTFT, their different symmetry structures

are yielded by different boundary conditions.

The thesis is organized as follows: in chapter 2 we provide a review on generalized sym-

metries, introduced by describing ordinary symmetries in terms of topological operators

and then relaxing various part of the definition to obtain different generalizations; we then

examine how anomalies translate to the generalized framework while also introducing the

notion of “anomaly inflow”. We will finally see how this concept gives us the footing

needed to devise a way to reconstruct the global symmetries of a theory by means of a

topological theory in one dimension higher: the SymTFT.

Since we will make frequent use of string theory concepts and terminology, chapter 3 will

be dedicated to a brief review of such theory, focusing on the nature of branes and the

low energy limits of string theory, in including supergravity theories (SuGra). We will

also discuss the topic of Kaluza-Klein compactifications, seeing as dimensional reduction

is an important step in the derivation of the SymTFT.

The following chapter (chapter 4) is instead dedicated to explain the tenets of AdS/CFT

correspondence, which establishes a duality relation between d-dimensional conformal
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field theories and (compactified) supergravity theories living in AdSd+1. This chapter

also introduces the ABJ theory and its holographic dual, providing a concrete example of

an AdS4/CFT3 duality pair.

We then elaborate on how the SymTFT is constructed starting from the SuGra action,

which is the focus of chapter 5. In particular we will discuss how one can extract the

topological sector of the dimensionally reduced action and operate a series of manipula-

tions on the flux sector action that ease later computations.

Chapter 6 is the actual computation of the topological action. We will initially restrict

to a self-consistent subset of the terms appearing in the action and then, once the path

to the final result is clear, include the remaining parts. We conclude the chapter with a

discussion of the symmetries and defect operators one can expect to reconstruct from the

newly found 4-dimensional action, comparing the results with the expectations set by [5].
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2 Generalized Symmetries

Symmetries, both local and global, are fundamental in physics: redundancies are piv-

otal in the formulation of gauge theories, whereas global symmetries provide powerful

constraints to quantum field theories. In particular, obstructions to gauge a global invari-

ance, known as anomalies, are RG-invariant quantities that allow to peek into strongly

coupled systems that would be difficult to examine from a strictly perturbative point of

view.

Over the last decade, physicists started contemplating the idea of symmetries being part

of a wider landscape of properties, which materialized in the concept of “generalized sym-

metry” [6] [7]. More precisely, by relaxing various elements of the definition of symmetry

one encounters higher-form symmetries, non-invertible ones and the more familiar discrete

symmetries. In principle, if a generalized symmetry does not give birth to anomalies, it

can be gauged just like an ordinary one.

Beside reviewing what a generalized symmetry is, this chapter also explores how these

properties can be probed by means of the symmetry TFT, which will be the main subject

of our study.

2.1 Extending the Concept of Symmetry

Before introducing generalized symmetries, let us review the definition and properties

of an ordinary symmetry, presenting them in terms of topological operators, making the

generalization easier.

Consider a field theory for the field ϕ(x) in a d-dimensional space-time, described by the

action S =
∫

ddxL[ϕ(x)], and a continuous group G under which the field transforms (at

first order) as in

ϕ(x) −→ ϕ′(x) = ϕ(x) + αδϕ(x) . (2.1)

These transformations are said to be ‘internal’ if they only affect the field content of the

theory, while they are called ‘space-time transformations’ if they act on the space-time

coordinates and, as a conseuqence, on the fields.

Definition 1 (Symmetry) The Lie group of transformations G parameterized by α is

a symmetry of a given theory if it doesn’t affect physics of the system. In other words,

if it leaves the action unchanged or, equivalently, if it alters the Lagrangian by a total

derivative:

δαS = 0 ⇐⇒ δαL[ϕ] = ∂µαΛ
µ for some Λµ . (2.2)
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According to Nöther theorem, each continuous symmetry is associated with a conserved

current. This can be easily seen by variating the Lagrangian and imposing the result to

be a total derivative, i.e. assuming the transformation to be a symmetry. Indeed the

variation is

δαL =
∂L
∂ϕ

αδϕ+
∂L

∂(∂µϕ)
δα(∂µϕ) ≡ ∂µαΛ

µ ; (2.3)

from the transformation of the field one gets δα∂µϕ = α∂µδϕ. Applying Leibniz rule to

the term ∝ ∂µδϕ in the variation allows to write it as

∂L
∂ϕ

αδϕ+ α∂µ

(

∂L
∂(∂µϕ)

δϕ

)

−
(

∂µ
∂L

∂(∂µϕ)

)

αδϕ ≡ ∂µαΛ
µ . (2.4)

In classical settings, one then recognizes the Euler-Lagrange equations, finally leading to

the conservation law of the quantity

jµ(x) =
∂L

∂(∂µϕ)
δϕ− Λµ ∂µj

µ = 0 , (2.5)

which is referred to as Nöther current. The conservation law can be expressed in differ-

ential geometry formalism as the closure of a (d− 1)-form:

d ∗ j1 = 0 , (2.6)

where j1 denotes the 1-form current of components jµ and ∗ is the Hodge star operator.

Nöther current can be coupled to a background 1-form gauge field A1(x), that canonically

shifts by δαA1 = dα, by including in the action the term

S ⊃ i

∫

ddxAµj
µ = i

∫

A1 ∧ ∗j1 δαS = i

∫

(dα) ∧ ∗j1 . (2.7)

This is known as a source term and will be an important building block going forward: it

is for instance at the root of the anomaly inflow paradigm that we will examine in section

2.2 while in chapter 3 gauge-current couplings are used to associate charged branes to the

background fields appearing in string theory.

Having associated a conserved current to each symmetry, it is natural to also define

a conserved charge, obtained by integrating the former over the a (d − 1)-dimensional

space-like slice Md−1:

Q(Md−1) =

∫

M

dd−1xn̂µj
µ =

∫

M

∗j1 (2.8)

The charge operator then acts as the generator of the unitary operators associated to the

symmetry transformations by Wigner’s theorem that eventually act on the Hilbert space
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of states1. In an Euclidean metric we define such operators as follows

Definition 2 (Symmetry defect operator) Given a generic manifold Σd−1 of codi-

mension 1 with no boundary, the Symmetry Defect Operator (SDO) is generated by expo-

nentiation of the conserved charge:

Uα(Σd−1) = eiαQ(Σd−1) (2.9)

The term ‘defect’ highlights that, due to the Euclidean setting, the integration domain of

the charge can also be extended in the time-direction. Notice also that, while the charge

is by construction a global object, the nature of the defect operator is determined by that

of α.

SDOs can be shown to be topological in nature thanks to the conservation of the Nöther

current; consider two codimension 1 manifolds Σ ∼ Σ′. Here the symbol “∼” indicates

homotopy, that is the property of a pair of manifolds that can be smoothly deformed into

one another, which is formally defined by the existence of a continuous function L(t) such

that






L(0) = Σ

L(1) = Σ′
, t ∈ [0, 1]. (2.10)

The product of Uα on Σ with its inverse on Σ′ then becomes:

Uα(Σ) · U−α(Σ
′) = e

iα

∫

Σ
∗j1e

−iα

∫

Σ′ ∗j1 = e
iα

∫

Ξd
d∗j1

, (2.11)

where Ξd is the d-dimensional manifold swept by the deformation of Σ into Σ′. The con-

servation law then kills the exponent, confirming that the multiplied operators are indeed

one the inverse of the other, despite being constructed on different manifolds. Uniqueness

of the inverse then grants identity between the Uα. The upshot of this calculation is that

Uα is determined solely by the choice of Σ up to homotopy, which is the hallmark of a

topological object.

Let us know include in our theory space a charged point-like object, which is realized as

a local operator O(x). Going back for a moment to the time slice Md−1, the symmetry

operator acts on the charged object as

Uα(Md−1)O(x)U−α(Md−1) = RG(α)O(x) , (2.12)

where RG(α) denotes a representation of the Lie group G and the non-commutativity of

Uα(M) and O(x) is granted by the fact that this is an equal time relation, so x surely lies

1The unitary operators will act on states as Uα|∗⟩ and as UαOU†
α on operators. Therefore, transforming

φ under Uα one gets the variation δφ = i[Q,φ].
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on Md−1. To understand how defects act on the charged operator, one needs to make use

of Ward identity, which is the operatorial counterpart to Nöther’s conservation law:

∂µj
µ(y)O(x) = δ(d)(x− y)R(T a)O(x) , (2.13)

where R(T a) is a representation of G generated by T a.

Consider now the expression

Uα(Σd−1)O(x)U−α(Σ
′
d−1) , (2.14)

assuming that x /∈ Σd−1,Σ
′
d−1. Since O(x) and Σ′ are space separated we can commute

them, reproducing the conditions of (2.11). Nevertheless this time around we are not

granted closure of the current, and we need to use (2.13) to reach the final result:

Uα(Σd−1)O(x)U−α(Σ
′
d−1) = e

iα

∫

Ξd
ddy∂µjµO(x) =

= e
iαR(Ta)

∫

Ξd
ddyδ(x−y)O(x) ,

(2.15)

meaning that if Ξd sweeps through x (so that the integral of the Dirac δ gives 1), the

action of the deformation is

Uα(Σd−1)O(x) = eiαR(Ta)O(x)Uα(Σ
′
d−1) = R(α)O(x)Uα(Σ

′
d−1) , (2.16)

while it trivializes if x is not crossed. We will see that this behaviour, represented in

Figure 2.1, carries over nicely to the case of higher-form symmetries, where the charged

object isn’t point-like anymore.

Figure 2.1: A smooth deformation (marked in green) of the symmetry defect operator (Uα)
that crosses a local charged operator (O(x)) acts on it via a representation of the symmetry
group.

This discussion showed how any “ordinary” symmetry can be described in terms of

topological defect operators, yet the inverse is not true: there exists a well of defect

operators that cannot be associated with an ordinarily defined symmetry but will instead
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correspond to a generalized symmetry.

2.1.1 Higher Form Symmetries

Now that we laid out a formal description of ordinary symmetries as topological operators,

we can start to gradually stray from it. In particular, in this section we set out to construct

a symmetry that acts on extended operators rather than local ones, that is O(Γp) as

opposed to O(x), with Γp being a p-dimensional manifold within the theory space. Upon

acting on the vacuum, operators of this kind generate p-branes rather than the localized

particles that O(x) = ϕ(x) would produce. The generalized symmetries that will emerge

are called higher-form symmetries, for reasons that will soon be clear.

We saw that symmetries are associated with a closed (d−1)-form current or, equivalently,

to a conserved vector current (jµ). The linchpin in constructing higher-form symmetries

is to remove the constraint on the current’s form degree; in other words, we associate a

p-form continuous symmetry with a closed (d− p− 1)-form, dual to a (p + 1) conserved

current:

d ∗ jp+1 = 0 ⇐⇒ ∂µj
[µ1,··· ,µp+1] = 0 ; (2.17)

in this notation, what we previously referred to as an ordinary symmetry is then deemed

a “0-form continuous symmetry”.

We can then couple this current to a (p+ 1)-form gauge field Bp+1 by adding

S ⊃ i

∫

Bp+1 ∧ ∗jp+1 (2.18)

to the action. Like in the case of 0-form symmetries, (2.17) ensures that any symmetry

transformation of Bp+1 reduces to a boundary term. However the transformation itself is

different, as it must be driven by a p-form parameter αp in order for the form degree to

be consistent:

Bp+1 −→ Bp+1 + dαp . (2.19)

Now that the current and transformation parameter are known, one can construct the

SDO of the p-form symmetry. The natural extension of (2.9) would be to replace the

charge with the (d− 1)-form given by the product of current and parameter, that is

eiαQ(Σd−1) −→ e
i

∫

Σd−1
αp∧∗jp+1

. (2.20)

However, since we are now taking into account the presence of extended charged objects,

the total charge (obtained setting Σd−1 = Md−1) is bound to diverge thus making the

operator ill-defined. Therefore it is more interesting to consider defects operators of
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codimension greater than 1, that are defined as

Uα(Σd−p−1) = e
iα

∫

Σ
∗jp+1 with α | αp = αΩp ; (2.21)

Ωp is known in mathematics as the global angular form of the normal bundle of Σd−p−1

[7]. If Σd−p−1 is embedded in Σd−1, Uα(Σd−p−1) and the operator constructed in (2.20)

should coincide.

As foretold at the beginning of the section, a p-form symmetry acts on p-dimensional

operators O(Γp). In order to compute such action we will again need the Ward identity,

which reads very similarly to (2.13), with the scalar point-supported Dirac delta being

replaced by a (d− p)-form supported on Γp:

d ∗ jp+1(x)O(Γp) = δ(d−p)(x ∈ Γp)R(T
a)O(Γp) . (2.22)

A piece of insight one can draw from the ordinary symmetry discussion is that Uα(Σd−p−1)

will act non-trivially on the operator if the manifold onto which the SDO is wrapped is

deformed in a way that changes its intersection with Γp. Unlike the 0-form case, where

due to the particle-like nature of the charged object the crossing was simply understood

x belonging in Ξd, here we need a rigorous way to count the junctions between charged

operator and defect before and after the deformation.

Definition 3 (Linking number) Let Up and Vd−p−1 be two oriented manifolds of di-

mension p and (d − p − 1) respectively. Let them also be disjoint and homotopically

trivial, so that one can introduce a manifold Wd−p such that ∂Wd−p = Vd−p−1. Up ∩Wd−p

is then a finite set of points {pi}. Since dim(U) + dim(W ) = d, at each intersection

their tangent spaces’ direct sum generates the whole tangent space of the underlying d-

dimensional manifold. Since both Up and Wd−p are oriented, they induce an orientation

on each TpiU⊕TpiW , that can be aligned or opposite to the orientation of the theory space.

Based on this we then define the sign of an intersection as sign(pi) = ±1 (respectively)

and the Linking number between Up and Vd−p−1 as

Link(Up, Vd−p−1) =
∑

i

sign(pi) . (2.23)

Notice that while the number of intersections depends on the choice of the ‘filling’ Wd−p,

Link(Up, Vd−p−1) is fixed.

Consider now two homotopic manifolds Σd−p−1 and Σ′
d−p−1, the former being linked to

O(Γp) and the latter being unlinked. The codimension p manifold swept by the deforma-

tion Σd−p−1 −→ Σ′
d−p−1, that we denote as Ξd−p, will then cross the charged object. The
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defect’s action on O(Γp) is then given by

Uα(Σd−p−1)O(Γp)U−α(Σ
′
d−p−1) . (2.24)

Like in the previous case, space separation between Σ′ and Γ allows to commute the two

operators, which in turn allows to apply Ward identity (2.22), resulting in

e
iα

∫

Ξ
d∗jp+1O(Γp) = e

iα

∫

Ξ
δ(d−p)(Γp)O(Γp) . (2.25)

Seeing as Ξd−p is, by construction, bounded by Σd−p−1, the integral can be read as the

linking between the codimension (p+1) manifold and the charged object. Therefore, the

action of the defect operator going through a charged p-dimensional operator is ultimately

given by

Uα(Σd−p−1)O(Γp) = eiαLink(Γ,Σ)O(Γp)Uα(Σ
′
d−p−1) . (2.26)

Hitherto we focused on generalizing the formalism of topological symmetry operators to

the case of higher-form symmetry. We now dedicate some time to remark some interesting

properties about these symmetries.

An important thing to notice about (p ≥ 1)-form symmetries is that they are always

Abelian: in the case of a 0-form symmetry the Uα operators, being related to manifolds

of codimension 1, must act according to time ordering and can thus display non-abelian

behaviour when swapped. The greater codimensionality of an higher-form SDOs allows

to continuously deform the manifold between different times, meaning that an operator

acting at t + ε can be deformed into one at t − ε. This makes time-ordering ill defined,

because the operators can be freely swapped exploiting the extra p dimensions, ultimately

leading to trivial commutation relations. Non-abelian higher-form symmetries can still

appear, but only in theories where the underlying space-time is topologically non-trivial,

so that the deformation of the manifolds can be hindered.

Another interesting remark comes from Coleman-Mandula theorem2, stating that

Theorem 1 (Coleman-Mandula) Given a relativistic theory (d > 2) describing a finite

number of massive particle types at any cutoff energy, the symmetry group G associated

with said theory is isomorphic to the direct product of the Poincaré group P and an internal

symmetry group E:

G ≃ P ⊗ E (2.27)

In other words the space-time symmetry of a relativistic theory is limited to the Poincaré

group.

Higher-form symmetries evade the hypothesis of this theorem because, acting on extended

operators, they appear in theories that do not comply to the assumption on the massive

2A more accurate statement of the theorem can be found, for instance, in [8].
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particle types seeing as there are infinite possible Γp [6]. This means that higher-form

symmetries can be both internal or space-time symmetries.

Example: Maxwell theory in 4d

A notable example of higher-form symmetry hides in 4-dimensional U(1) pure gauge

theory, i.e. Maxwell theory. Such theory is described by the well-known action

SM = − 1

4g2

∫

d4xFµνF
µν =

1

2g2

∫

F ∧ ∗F , (2.28)

where F = dA1 is the 2-form field strength of the 1-form gauge field A1 and g is a coupling.

The equations of motion for A yielded by this action are:

d ∗ F = 0 , (2.29)

which can be read as the conservation law of a 2-form current Je
2 = g−2F . This is the

sign of a U(1) 1-form symmetry, that will act on line operators through codimension 2

SDOs of the form

U e
α(Σ2) = e

iαg−2
∫
Σ2

∗F
. (2.30)

The U(1) character of the symmetry is testified by the fact that g−2
∫

Σ2
∗F = 2πZ, because

it measures the quantized charge enclosed in Σ2.

The previously described symmetry is often referred to as “electric 1-form symmetry” in

order to distinguish it from the “magnetic” one, stemming from the Bianchi identity

dF = 0 , (2.31)

which correspond to the conservation of Jm
2 = 1

2π
∗ F . The codimension 2 SDO is then

Um
α (Σ2) = e

iα
2π

∫
Σ2

F
. (2.32)

Each of these 1-form symmetries can be individually gauged, yet they can’t be gauged

simultaneously due to the anomaly that arises between them. We will see this in more

detail in section 2.2.

2.1.2 Discrete Symmetries

Another possible generalization of the definition of symmetry is represented by discrete

symmetries. We will mostly discuss symmetries of the ZN (N ∈ N) type, as it is the most

common in physics as theories often bear parity (P ) and time inversion (T ) invariance,

both being Z2 symmetries. What is lost in this case is the continuity of the group of

transformations, causing the symmetry to fall outside the hypotheses of Nöther theorem.
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This implies that there is no conserved current that we can use to construct the defect

operators associated with a discrete symmetry.

It is however still possible to describe discrete symmetries in terms of topological defect

operators. We will discuss how this is done in the case of BF theories, also known as

p-form ZN gauge theories. The construction of these theories is based on embedding the

discrete group in a larger, continuous one. The larger group is then used to write an action

in such a way that only a discrete subset of gauge configurations actually contributes to

the path integral. This results in a BF action of the form

SBF =
iN

2π

∫

Bd−p−1 ∧ dAp N ∈ Z , (2.33)

where Ap and Bd−p−1 are gauge fields, respectively transforming under the embedding

group U(1) ⊃ ZN as

Ap −→ Ap + dαp−1 Bd−p−1 −→ Bp + dαd−p−2 . (2.34)

The d-dimensional p-form BF action (2.33) is actually recognizable as the low energy limit

of a charge N Abelian Higgs model of gauge group U(1), which undergoes a spontaneous

symmetry breaking U(1)
SSB−−→ ZN [7]. Therefore the remnant BF action will be associated

with a discrete symmetry group, namely Z
(p)
N ×Z

(d−p−1)
N (the superscripts denote the form

degrees of the symmetries). This can be seen by computing the equations of motion of

(2.33):

d
NAp

2π
= 0 d

NBd−p−1

2π
= 0 . (2.35)

One can interpret these as conservation laws for the gauge dependent “currents”

∗jd−p =
NAp

2π
and ∗ jp+1 =

NBd−p−1

2π
, (2.36)

which can in turn be used to formally define the SDOs associated to an element e2πik/N ∈
ZN :

U
(p)
2πk/N(Σ

d−p−1) = e
2πik
N

∫
Σ ∗jp+1 (2.37)

U
(d−p−1)
2πk/N (Σ̃p) = e

2πik
N

∫
Σ̃ ∗jd−p . (2.38)

According to the definitions given in the previous sections, these correspond to a p-form

and a (d−p−1)-form symmetry. As a consequence of (2.35) one has that N
∮

dAp = 2πZ

and N
∮

dBd−p−1 = 2πZ, which in turn imply that the integrals appearing in the SDOs

(2.37) are also bound to be discrete, restricting the symmetry group from U(1) to ZN .

These observations reproduce the advertised discrete symmetry group Z
(p)
N × Z

(d−p−1)
N .
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2.1.3 Non-Invertible Symmetries

All the symmetries examined so far were introduced as groups of transformations, with

all the special properties that come with that structure. Yet our former description was

founded on the idea of constructing topological operators to act on the theory rather

than the group structure itself. Therefore one may further generalize the definition by

stripping the symmetry of its group-like structure too. As a matter of fact one can

construct topological operators in the more general setting of “categorical symmetry”,

that do not require the symmetry to fit in a group description. While category theory is a

expansive and interesting topic, we will not discuss it here, instead we will limit ourselves

to introducing the concept of a “non-invertible” symmetry as a set of topological defect

operators Uα parameterized by α and obeying a generic, non-group-like fusion relation

Uα1 × Uα2 . This categorical fusion relation can be arbitrarily complex:

Group-like fusion:

Uα1 × Uα2 = Uα1α2

Categorical fusions:

Uα1 × Uα2 =
∑

i

Uαi

Uα1 × Uα2 = Z ⊗ Uα1α2

...

with Z being the partition function of a topological theory.

It is worth mentioning that a major hindrance to the study of non-invertible symmetries

through category theory lies in the fact that many theorems in that framework are proven

only in low dimensions (d ≤ 2). The approach followed by our research is instead founded

on a more physical characterization of the symmetries as they appear in the theory, allow-

ing to extract information on them despite the fact that we are examining a 3-dimensional

QFT.

The construction of theories bearing a non-invertible symmetry begins with non-topological

defect operator, characterized by non-conservation of the corresponding current j:

d ∗ j = 1

4π2
dAdA , (2.39)

with A denoting the gauge field. One can then construct a topological operator using the

so-called Page current [9], defined as

jPage = j − 1

4π2
∗ (AdA) =⇒ d ∗ jPage = d(∗j − 1

4π2
AdA) = 0 . (2.40)

It is clear from this definition that the resulting operator will be gauge-dependent, there-

fore it needs to be dressed to be made gauge invariant and thus associated to a generalized

symmetry. The ‘dressing’ process is what ultimately strips the operators of their group-
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like product. We will now elaborate on this idea through the case of chiral symmetry in

Dirac theory, following the discussion by Shao in [9].

Example: Non-Invertible Chiral Symmetry in 4d Dirac Theory

Consider 4-dimensional U(1) gauge theory with a unit charge fermion ψ, described by the

QED action

S =

∫
[

1

2g2
F ∧ ∗F + iψ̄��Dψ

]

F = dA . (2.41)

As well known, this theory has a global U(1)A chiral symmetry that acts on the fermion

as ψ −→ eiαγ
5
ψ associated with the current

jµA = ψ̄γµγ5ψ , (2.42)

which displays an ABJ anomaly given by

d ∗ jA =
1

4π2
F ∧ F (2.43)

We have yet to discuss anomalies and their role in QFT, and we will do so in the next

section; for now it is enough to notice that due to (2.43), the naïve form of the 0-form

chiral defect operator, i.e.

UA
α (Σ3) = eiα

∫
Σ ∗jA , (2.44)

is not a topological operator. In fact, if we consider a continuous deformation Σ3 −→ Σ′
3

sweeping Ξ4, one gets

UA
α (Σ3)UA

−α(Σ
′
3) = eiα

∫
Ξ d∗jA ⇐⇒ UA

α (Σ3) = UA
α (Σ

′
3)e

iα

4π2

∫
Ξ F∧F . (2.45)

The upshot of this discussion is that UA
α does not lead to a generalized symmetry as it

does not correspond to a topolgical defect.

By means of a Page current defined as in (2.40) one can indeed define a gauge-dependent

topological operator:

UPage
α (Σ3) = eiα

∫
Σ ∗jPage

A−→A+dΛ−−−−−−→ UPage
α (Σ3)e

iα

4π2

∫
∗(dΛ∧F ) , (2.46)

where we assume the chiral angle to be fractional: α = 2π/N . In order to fix this

operator’s gauge invariance we need to borrow from condensed matter physics and in

particular from the tridimensional fractional quantum Hall effect, described by the gauge

invariant Lagrangian

LFQH =
iN

4π
ada+

i

2π
adA (2.47)
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where we introduced an additional U(1) dynamical gauge field a, whose classical equation

of motion is easily solved by a = −A/N up to a total derivative.

We can then go back to 4-dimensional QED and include the gauge-invariant topological

operator by dressing (2.46) with the Hall gauge field a, which only lives on the defect Σ3

and does not affect the physics elsewhere. The final form of the dressed operator is

U 1
N
(Σ3) =

∫

[Da]Me
2πi
N

∗jA+LFQH , (2.48)

which can be interpreted as an actual SDO and thus associated to a symmetry. This,

however, comes at the cost of the operator’s invertibility, which is broken by the [Da]M

integration; hence U 1
N
(Σ3) corresponds to a non-invertible symmetry.

The relation between (2.48) and (2.46) can be seen by integrating out a using its equation

of motion. This is an illegal manipulation that causes the gauge-invariance to break, but

it serves as an heuristic connection between U 1
N

and the Page operator.

2.2 Anomalies and Generalized Symmetries

As mentioned before, anomalies play a pivotal role in our search for generalized sym-

metry as they act as a lasting imprint of a broken global symmetry. For this reason we

will now review the concept of anomaly and examine how they can be interpreted in terms

of an higher dimensional theory. We then generalize the formalism to higher-form and

discrete symmetry.

An anomaly is most simply defined as follows:

Definition 4 (Anomaly) A 0-form continuous symmetry of a given theory is said to be

anomalous if its gauging is obstructed by the emergence of an extra term. The obstruction

is quantified by the non-conservation of the current

∂µJ
µ(x) = −A[Bµ] , (2.49)

where A is known as anomaly function or simply anomaly and it is generally a function

of the background gauge fields associated with the symmetry.

We will focus on two types of anomaly: ’t Hooft and Adler–Bell–Jackiw (ABJ) anomalies.

’t Hooft anomalies are obstructions that only become visible when gauging a symmetry.

ABJ anomalies instead emerge as a direct breaking of a global symmetry at quantum

level, that is when loop contributions are included. Notice that this does not contradict

Nöther’s theorem as its proof made use of the classical equations of motion of the theory.

In order to see how an ABJ anomaly can emerge, consider the theory S[ϕ,Aµ] with a

gauge symmetry (associated to the dynamical field Aµ) and a global 0-form symmetry

transforming the matter fields like ϕ′ = ϕ+ αδϕ; at classical level we defined the system
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as symmetric under ϕ −→ ϕ′ if such transformation yields δL[ϕ,Aµ] = α∂µJ
µ, with J

coinciding with the Nöther current in the case of a global symmetry. Moving to path

integral formalism, i.e. a fully quantum setting, the focus shifts from the action to the

partition function, causing the field measures to come into play:

Z =

∫

DϕDAeiS[ϕ,A] . (2.50)

The reasoning then proceeds analogously to the proof of Slavnov-Taylor identities.

By means of a simple renaming of the variables, one can move to (ϕ′, A′) without affecting

the path integral; then by substituting the α-transformed forms of the fields one gets

Z =

∫

D(ϕ+ αδϕ)DAµe
iS[ϕ,A]e+i

∫
ddxα∂J . (2.51)

It remains to examine the variation of the field measure. While the bosonic measure DAµ

is invariant by construction, the matter field’s (Dϕ) can be impacted by the transforma-

tion. Let us define the variation of the measure as

Dϕ −→ Dϕ′ = Dϕeiα
∫
ddxA . (2.52)

Substituting this back into (2.51) one clearly sees that, in order for the partition function

to remain unchanged, it must be

iα (A+ ∂µJ
µ) = 0 , (2.53)

reproducing the non-conservation of the current as stated in the definition.

Since it relies on the existence of a current, the definition provided above is only valid

for continuous symmetry and is therefore not well suited for a generalized description.

Because of this we look for a more general way to define anomalies.

To do so, consider the effective action obtained by coupling the Nöther current of the

anomalous symmetry to a background gauge field Bµ as in (2.7). The ‘background’

denomination signals that Bµ obeys the classical equations of motion and is thus not

integrated:

W [Bµ] = −i log
∫

DϕDAeiS[ϕ,A]+i
∫
B∧∗J . (2.54)

From this perspective a symmetry is deemed anomalous if the corresponding W [Bµ] is

gauge dependent. In fact, by transforming Bµ under an illegally gauged α-transformation,
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one can use (2.53) to easily deduce the variation of the effective action from

eiW [B′] =

∫

DϕDAeiS[ϕ,A]+i
∫
B′∧J =

∫

DϕDAeiS[ϕ,A]+i
∫
ddxα∂J = eiW [B]+i

∫
ddxα∂J

δW [Bµ] =

∫

ddxα∂µJ
µ(x) = −

∫

ddxαA[Bµ] .

(2.55)

We can then more generally define an anomaly in terms of the variation of the effective

action as follows:

Definition 5 (Anomaly) A symmetry is said to be anomalous if the partition function

is not invariant under a symmetry transformation of the background fields

Z[B]
B+δαB−−−−→ eA[B,α]Z[B] . (2.56)

2.2.1 The Anomaly Inflow Paradigm

The anomalous function A[Aµ] has a nice interpretation as the remnant of the coupling

of the theory to an higher dimensional topological theory (TFT). In fact, considering a

theory on a manifold N (d+1) | ∂N (d+1) =Md where the background field is decoupled, one

can express the anomalous phase in terms of the variation under a gauge transformation

of some functional Â[Aµ] in the bulk theory:

δαÂ[Aµ] = ∂µ(αA[Aµ])n̂
µ (2.57)

Interpreting Â as the TFT action, it’s then straightforward to see that the full N (d+1)∪Md

system is anomaly-free by virtue of the gauge invariance of the effective action W [Aµ].

The variation of the N (d+1) action can in fact be lowered to a d-dimensional boundary

term that cancels the one emerging from the original theory:

Ŵ [Aµ] = W [Aµ]e
i

∫

N
Â[A] A+∂α−−−→ Ŵ [Aµ]e

−i

∫

M
A[A,α]

e
i

∫

N
dd+1x∂µ(αA)n̂µ

= Ŵ [Aµ] .

(2.58)

This interpretation of anomalies as the remnant of an higher-dimensional anomaly-free

theory is known as “anomaly inflow” paradigm.

Besides this insights on the origin of anomalies, the construction behind anomaly inflow

offers an interesting avenue when treaded backwards: could we, starting from a TFT

known to couple to a QFT living on the boundary of the underlying space-time, be able

to reconstruct the anomalies and thus the symmetries of the boundary theory? The scope

of this thesis is doing just that, and we will elaborate on how this can be achieved in

section (2.3).
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2.2.2 Anomalies for p-form and Discrete Symmetries

Now that we introduced anomalies for ordinary symmetries, we can generalize the results

to higher-form and discrete ones.

The generalization to higher-form anomalies is quite simple: the gauge field becomes a

(p + 1)-form instead of a 1-form. In terms of gauge variation of the effective action, an

anomalous p-form symmetry is characterized by

δαW [Ap+1] = −
∫

ddxA[Ap+1, αp] ̸= 0 , (2.59)

where we included the dependence on the p-form symmetry parameter in the anomaly

function.

For discrete symmetries we cannot describe anomalies as non-conservation of currents,

seeing as the current is not well defined in this case. We can instead detect anomalies

in BF theory: recalling that the action (2.33) corresponds to a Z
(p)
N × Z

(d−p−1)
N , one can

couple the BF theory to background fields Cp+1 and Dd−p (that, like Ap and Bd−p−1 only

contribute to the dynamics in discrete configurations) by modifying the action as follows

SBF =
iN

2π

∫

[Bd−p−1 ∧ dAp − Bd−p−1 ∧ Cp+1 + Ap ∧Dd−p] . (2.60)

The related ZN gauge transformations are

Cp+1

Z
p
N−−→ Cp+1 + dαp

Ap

Z
p
N−−→ Ap + αp

Dd−p

Z
(d−p−1)
N−−−−−→ Dd−p + dαd−p−1

Bd−p−1

Z
(d−p−1)
N−−−−−→ Bd−p−1 + αd−p−1

(2.61)

Variating the action under the full symmetry group then gives

δS =
iN

2π

∫

[−αd−p−1 ∧ Cp+1 + αp ∧Dd−p] , (2.62)

which can only be cancelled by inflow, signaling the presence of a mixed anomaly between

the two discrete symmetries of BF theory. The anomaly and its counterpart in the (d+1)

bulk theory are, respectively:

A =
iN

2π

∫

Md

Dd−p ∧ Cp+1 δαÂ =
iN

2π

∫

Md+1

d(Dd−p ∧ Cp+1) . (2.63)

Example: Maxwell theory in 4d

Let us go back to Maxwell theory on 4-dimensional Minkowski space. We previously saw

that such theory bears two 1-form symmetries: the electric U(1)E associated with the

2-form current F and the magnetic U(1)M associated with ∗F . As foretold, there is a
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mixed ’t Hooft anomaly between these two symmetries, which can be probed by trying

to gauge both U(1)E and U(1)M at the same time. To do so, we couple both currents to

background 2-form gauge fields (Be
2, B

m
2 ) by modifying the action as follows

S =
1

2g2

∫

F ∧ ∗F gauging−−−−→ 1

2g2

∫

(F − Be
2) ∧ ∗(F − Be

2) +
i

2π

∫

Bm
2 ∧ F (2.64)

Be
2

U(1)E−−−→ Be
2 + dαe

1 Bm
2

U(1)E−−−→ Bm
2 + dαm

1 (2.65)

Note that the Be
2-coupling is of a rather peculiar form compared to (2.7). This is done to

include an additional counter-term meant to ensure the kinetic term’s invariance under

U(1)E since the dynamical field A1 is also affected by such symmetry, precisely as A′
1 =

A1 + αe
1. On the other hand U(1)M is associated with monopole operators, therefore it

doesn’t affect the electric field A1, allowing us to couple the current as per usual [7].

Transforming now the action under U(1)M one gets

δMS ∝
∫

dαm
1 ∧ F = −

∫

αm
1 ∧ dF = 0 , (2.66)

meaning that the magnetic 1-form symmetry survived the gauging. If we instead trans-

form under U(1)E we find, from the Bm
2 ∧ F coupling, that

δES ∝
∫

dαe
1 ∧ ∗F +

∫

Bm
2 ∧ dαe

1 =

∫

Bm
2 ∧ dαe

1 . (2.67)

The gauging has then broken U(1)E invariance. One could think of adding a counter term

(only related to the background gauge fields, so that it doesn’t affect the dynamics) to

cancel δES, however doing this will always result in the breaking of U(1)M . We have then

found a ’t Hooft anomaly between the higher form symmetries of Maxwell theory.

The anomaly can be expressed through inflow from a theory in N5 | ∂N5 = Mink4 of

action

Sinflow = − i

2π

∫

N5

Be
2 ∧ dBe

2 . (2.68)

Indeed, variating this action along a U(1)E transformation reproduces exactly the breaking

(2.67).

2.3 A Theory for Capturing Symmetries

As foretold, the goal of our research is to construct a theory that encodes the symme-

tries of an otherwise difficult to examine QFT, the 3d ABJ theory. As it focuses on the

symmetries, that we went to great lengths to describe in terms of topological operators,

the theory we look for will be a topological theory (TFT).

In the previous section we also saw that, through anomaly inflow, the symmetry structure
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of a d-dimensional theory is intertwined with that of a (d + 1)-dimensional one that has

the former’s space-time as boundary. In order to be used to reconstruct the symmetries

of the original system, the higher dimensional theory must be built with a specific set of

properties [2][10]:

Definition 6 (Symmetry TFT) Given a d-dimensional theory T with symmetry S,

the Symmetry Topological Field Theory, or SymTFT, is defined as a (d+ 1)-dimensional

topological theory admitting two d-dimensional boundaries:

• A topological, gapped boundary BSym
S whose topological defects realize the structure

of S;

• A not necessarily topological boundary BPh
T reproducing the physical conditions of

the theory T .

Via compactification of the interval separating them, one can collapse these boundaries

together, resulting in the original theory T with symmetry S.

Figure 2.2: Starting from the SymTFT, living in (d+ 1) dimensions, the corresponding lower
dimensional QFT is obtained by collapsing the symmetry boundary onto the physical one.

Knowing the SymTFT of a theory T one can then recover the symmetry structure of

T by projecting the bulk topological defects onto BSym
S , at least in the case of Abelian

symmetries [2]; compactifying the interval then injects these defects into the physical

theory. Whether an SDO U(Σp+1) of the SymTFT translates to a defect in d-dimensions

(corresponding to a symmetry of T ) or to a charged operator depends on the boundary

conditions it satisfies. The details of this process are beyond the scope of our research and

are more precisely discussed in [2], however let us remark that if the defect is subject to

Neumann boundary conditions3, i.e. if it is free to move on the d-dimensional boundary,

3Neumann and Dirichlet conditions are conventional denominations for boundary conditions of ex-
tended objects and will be discussed in more detail when talking about branes in section 3.3.

20



the projection will result in an SDO, whereas if the defect’s ends are fixed, meaning that

it obeys Dirichlet boundary conditions, the result of compactifiaction is a generalized p-

dimensional charge.

If a projected defect links to a generalized charge, it will act on it as described in previous

sections, with the charge being related to the linking number.

The question that remains unanswered is how does one actually construct the Symmetry

TFT. A glimpse of the path to the SymTFT can be caught by noticing that the properties

of a SymTFT closely resembles those of an holographic dual: in both cases we associate

a given QFT with a (d + 1)-dimensional bulk theory that has the QFT’s d-dimensional

space-time as a boundary. As we will see in more detail in chapter 5, the construction

does indeed start like that of an holographic dual gravitational theory, with the difference

that instead of focusing on the dynamics in (d + 1)-dimensions, we will search for a way

to isolate the topological part.
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3 Fundamentals of String Theory and

Supergravity

Before moving on with the construction of the Symmetry TFT, we need to review

the core ideas and results of string theories and in particular of supergravity theories.

In fact, as hinted at the end of last chapter, the construction of the topological theory

will require familiarity with the holographic setup. More precisely we will associate a low

energy superstring theory (i.e. a supergravity theory) to our ABJ theory by means of the

AdS/CFT correspondence, that will be discussed in detail in chapter 4.

Beside supergravity theories, we will also focus on the nature of Neveu-Schwarz and mag-

netically charged brane sources, since these objects will play an important role in both

describing the ortho-symplectic ABJ theory and in recognizing the anomalies that appear

in the symmetry topological field theory.

3.1 The Bosonic String

In its modern incarnation string theory is a candidate “theory of everything”, capable

of describing all the fundamental forces of nature in a single quantum mechanical formal-

ism. Superstrings, the supersymmetric version of a string, actually do provide a theory

of quantum gravity, though it hasn’t yet been possible to prove whether it can describe

our universe. Regardless, string theory was originally conceived as a way to understand

strongly coupled systems and to this day sees a lot of usage in that regard, mainly thanks

to holographic correspondences allowing to earn new insights on quantum gauge theories,

which is exactly the aim of this thesis.

As the name suggests, the core assumption of string theories is that, instead of point-like

particles, the universe is populated by extended objects in the form of tiny loops that

can vibrate in different ways giving birth to a whole array of particle species, each with

a specific mass and spin; in the case of a superstring, this can include both bosonic and

fermionic particles.

As time goes by, point-particles sweep “world-lines” Xµ(τ) across aD-dimensional Minkowski

space-time, that is curves determined through minimization of the relativistic action

S = −m
∫

dτ

√

−ẊµẊνηµν , (3.1)
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which one can observe to be proportional to the length of the curve.

Similarly a string sweeps a 2-dimensional surface known as a “world-sheet”. Aside from

the time-like parameter τ ∈ R, the world-sheet is described by a second parameter σ,

that identifies the position along the string itself. Most known particles are believed to

correspond to closed strings, therefore we can assume σ to be periodic: σ ∈ [0, 2π[. The

two parameters are merged in the notation σα = (τ, σ).

In analogy with the particle case, one deduces that the string’s action should be propor-

tional to the world-sheet area. Such area is computed in terms of the pull-back γαβ of the

flat Minkowski metric onto the generally curved world-sheet Xµ(σα). The area element

is then the square root of the determinant of this metric, meaning that the action for a

relativistic closed string is given by:

SNG = − 1

2πl2s

∫

d2σ
√

− det γ , (3.2)

known as the Nambu-Goto action. The constant parameter ls is known as “string scale”

and plays a role in computing effective theories. The Nambu-Goto action has a global

Poincaré invariance inherited from the relativistic framework as well as reparameterization

freedom of the world-sheet: σα −→ σ′
α(σ).

It is possible to derive an action equivalent to Nambu-Goto’s by promoting the pull-back

metric γαβ to dynamical field, denoted as gαβ; this action, called Polyakov action, is then

SP = − 1

4πl2s

∫

d2σ
√−ggαβ∂αXµ∂βX

νηµν . (3.3)

Note that solving the equations of motion for gαβ leads to

gαβ = 2f(σ)
∂Xµ

∂σα

∂Xν

∂σβ
ηµν , (3.4)

whose difference from the pull-back metric (2f) factors out of the action, reproducing the

Nambu-Goto expression exactly. This observation leads directly to an important property

of SP : besides the symmetries it shares with SNG, the Polyakov action also enjoys Weyl

invariance:

gαβ −→ eϕ(σ)gαβ (3.5)

This symmetry can be interpreted as a local scale transformation preserving angles, i.e.

a conformal transformation.

The two local symmetries provide with a gauge freedom that allows to select a flat

Minkowski metric on the world-sheet. Replacing this metric in its own equations of mo-

tion, provides some important constraints on the string dynamics: the (01)-component

in particular assumes the form ∂τX · ∂σX = 0, meaning that the the physical oscillation

modes are tranversal to the string itself.
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Strings were hitherto described in a classical setting. The quantization of a string theory

is a delicate procedure of which we only provide the main steps; more detailed procedures

can be found, for instance, in [11] or [12]. The first step towards a quantum theory of

strings is to expand the world-sheet into discrete oscillation modes:

Xµ
L,R(σ±) =

1

2
xµ +

1

2
l2sp

µσ± + i
ls√
2

∑

n ̸=0

1

n
(α, α̃)µne

−inσ± , (3.6)

where σ± = τ ± σ and the left/right decomposition is a consequence of the constraints

given by the equations of motion for the metric. The same constraints will translate

to binding conditions on the α and α̃ coefficients. In particular, the vanishing of terms

proportional to ei0σ± provides a constraint on pµpµ, i.e. on the invariant mass of the

string:

M2 = −pµpµ =
4

l2s

∑

n>0

αn · α−n =
4

l2s

∑

n>0

α̃n · α̃−n (3.7)

The equality between the two expressions of the mass is known as ‘level matching’.

The quantum description of the string can then be obtained by determining the classical

physical solutions to the constraints and then quantizing them. This approach is known

as lightcone quantization as it makes use of space-time coordinates combining the time

direction with a spatial one, which describes a light-cone. In particular we choose

X± =
1√
2
(X0 ±XD−1) . (3.8)

Although they make the computation easier, these coordinates introduce a subtle point

of concern: because they hide Lorentz invariance, an anomaly could surreptitiously arise

in the quantization process, causing Poincaré symmetry to break.

The solutions of the EoM in these coordinates can be expressed in terms of only the

transversal modes, i.e. αi
n with n ∈ [1, D − 2]. Together with the 0-modes xi, pi, p+

and x− that will determine the string’s ground state, these transverse oscillators are then

promoted to operators, all obeying to well known commutation relations:

[

xi, pj
]

= iδij
[

x−, p+
]

= −i (3.9)
[

αi
n, α

j
m

]

=
[

α̃i
n, α̃

j
m

]

= nδijδn(−m) (3.10)

with every other commutator being vanishing.

One then defines the ground state of the string as |0; p⟩ such that

p̂µ|0; p⟩ = pµ|0; p⟩ , αn|0; p⟩ = α̃n|0; p⟩ = 0 ∀n > 0 (3.11)

24



Acting on each string vacuum |0; p⟩, that determines the motion of the string center

of mass, the creation (α−n, α̃−n) and annihilation (αn, α̃n) operators generate a Fock

space with modes restricted to the positive definite part of the metric, i.e. along the

i = {1, ...D − 2} directions. The resulting Hilbert space, made up by the ensemble of

all these Fock spaces, is then positive definite as expected from the physical states of a

system.

At the end of the quantization process the expression for the invariant mass reads

M2 =
4

l22

(

N − D − 2

24

)

(3.12)

whereN is the ‘level’, defined in analogy with the number operator of harmonic oscillators.

An immediate observation one can make is that (3.12) is not a positive definite quantity.

The ground state, i.e. ⟨N⟩ = 0, has in fact a negative mass and is therefore known as a

Tachyon state. The treatment of tachyonic states is one of the open problems of string

theory, yet it only emerges in bosonic string theory.

Due to the level matching condition, the first excited states (⟨N⟩ = ⟨Ñ⟩ = 1) are obtained

acting on the vacuum with both αi
−1 and α̃i

−1 operators,

αi
−1α̃

i
−1|0; p⟩ , (3.13)

generating (D − 2)2 states, each of mass M2 ∝ 1 − (D − 2)/24. At this point we need

to take care of the subtlety mentioned when introducing lightcone gauge: we have to

make sure that the states fit in a representation of the Lorentz group SO(1, D − 1) so

that Poincaré invariance of Polyakov action is inherited by the quantum theory. This is

only achieved if the (D − 2)2 first excited states are massless, so that they can fit into a

representation of SO(D − 2) ⊂ SO(1, D − 1). This yields:

M2 =
4

l22

(

1− D − 2

24

)

= 0 ⇐⇒ D = 26 , (3.14)

meaning that a consistent (bosonic) quantum string theory must live in 26 dimensions;

this value of D is called critical dimension.

Further oscillations of the strings, i.e. N ≥ 2, will necessarily be massive since D has

been fixed and thus need to fit into a representation of SO(D − 1).

For the purpose of our research, the most important consequence of string quantization is

that the 24⊗24 representation of SO(24) in which the N = 1 states fit can be decomposed

in three modes: a singlet (trace) mode, a traceless symmetric mode and an antisymmetric

one. Oscillations along any of these modes can be identified with a quantum of a massless

field with whom the string interacts. Namely
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• Singlet modes are associated with a scalar field Φ(X), the “Dilaton field”, and cor-

respond to scale transformations.

• Antisymmetric oscillations correspond to a 2-form field Bµν(X), known as “Kalb-

Ramond field” or “Neveu-Schwarz field” in supersymmetric frameworks, that plays

a role akin to that of an electromagnetic field.

• Finally traceless symmetric modes are associated with a spin 2 tensor field Gµν(X).

This field is identified with the space-time metric through the Feynman-Weinberg

argument, stating that any massless spin 2 field theory is actually Einstein’s gravity.

These fields will play an important role later on when we will derive low energy limits of

string theories and will become the main subject of supergravity theories.

3.2 Superstring Zoology

Up until now, the string was presented through a purely bosonic lens; however, if

string theory aims at describing the full spectrum of physical particles, it needs to include

fermions as well. This is achieved by endowing the string with supersymmetric properties,

giving birth to the so called ‘superstring’. The main feature of a superstring is that its

worldsheet can vibrate along both bosonic and fermionic modes. Superstring theories

are strictly related to supergravity and are the main kind of bulk theories involved in

holographic dualities. As a matter of fact, the 3d ABJ theory we will examine in later

sections is dual to a type IIA superstring theory.

The construction of a supersymmetric string involve a number of choices that lead to

different theories that fall under two main categories:

Definition 7 (Type II Theory) A type II superstring theory describes strings in an

N = 2 supersymmetric framework, with both L- and R-moving solutions oscillating along

both bosonic and fermionic modes.

Definition 8 (Heterotic Theory) Heterotic superstring theories are instead built with

N = 1 supersymmetry, and having fermionic modes only in the right-moving solution.

Regardless of the type of theory, the quantization process of superstrings leads to a critical

dimension of D = 10 and, as anticipated, displays tachyonless spectrum.

On the other hand the field content is not unique: while Gµν(X), Bµν(X) and Φ(X)

appear in the quantization of any string, there are some additional field that appear in

supersymmetric cases, the nature of which depends on what kind of theory was chosen.

Type II theories include massless bosonic p-form fields known as ‘Ramond-Ramond fields’,

that are to be interpreted as gauge fields. More precisely, type IIA superstrings have a

1-form and a 3-form Ramond-Ramond field, denoted as Cµ and Cµνρ respectively. Type
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IIB theories have instead a scalar, a 2-form and a 4-form RR field: C, Cµν and Cµνρσ.

Being gauge fields, RR fields are each associated with a (p + 1)-field strength given by

F = dC. These field strengths, which we often refer to as fluxes, will be the central

subject of the SymTFT derived from the 10-dimensional supergravity.

On the other hand, heterotic string theories include a field associated with a non-Abelian

gauge group that can either be SO(32) or E8×E8, resulting in a super-Yang-Mills theory

in ten dimensions.

It should be noted that all the different types of superstrings turn out to be specifications

of the same 11-dimensional framework known as M-theory1. In particular a type II theory

would represent the perturbative theory resulting from a small coupling limit of the non-

perturbative M-theory, with the dimensional gap being the result of an S1 compactification

(see section 3.5).

3.3 Open Strings and D-Branes

The discussion in section 3.1 only contemplated the existence of closed strings, however

the dynamics of an open string’s end-points are quite interesting because they lead to the

introduction of D-branes, a new dynamical object that string theory will need to include.

String theory is local, meaning that any point of the string will move according to physics

at that point in space-time, unaware of whether it’s part of a closed or open string. The

only exception to this statement is represented by the end-points of an open string, since

there’s no neighborhood of the end-point that can be identified with an internal point’s.

Hence the open string dynamics are still described by Polyakov action (3.3), aided by some

boundary conditions to take care of the end-points. Such boundary conditions are imposed

to make up for the fact that the σ parameter on the world-sheet is not periodic anymore

(σ ∈ [0, π]), causing the appearance of a non-trivial boundary term when minimizing

the action: if we consider the action within the interval [τ0, τf ] in conformal gauge the

variation takes the form

δSP ∝
∫

d2σ(EoM) · δX +

[
∫ π

0

dσ∂τX · δX
]τf

τ0

−
[
∫ τf

τ0

dτ∂σX · δX
]σ=pi

σ=0

where the first boundary term is clearly vanishing as δX|τ0,τf = 0. The second one instead

only vanishes under the condition

(∂σX
µδXµ)σ=0,π = 0 , (3.15)

which can be satisfied by two kinds of solutions, going under the names of Dirichlet and

Neumann boundary conditions, which we already encountered in section 2.3.

1More details on the nature of M-theory can be found in [13].
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A Dirichlet boundary condition fixes a component of an end-point’s world-line by setting

its variation to 0:

δXµ|σ={0,π} = 0 . (3.16)

A Neumann condition on the other hand leaves the end-point it’s applied on free to move

in the µ direction, i.e. it sets

∂σX
µ|σ={0,π} = 0 , (3.17)

without any constraint on the variation. Notice that the two ends aren’t necessarily

subject to the same set of boundary conditions.

Choosing Neumann conditions for µ = {0, ..., p} and Dirichlet ones the remaining D−p−1

directions restricts the end-points of a given string to move onto a (p + 1)-hypersurface,

known as a Dp-brane, causing the Lorentz group to break into

SO(1, D − 1)
Dp−brane−−−−−−→ SO(1, p)× SO(D − p− 1) , (3.18)

where SO(D−p−1) corresponds to the rotational symmetry of the brane in space, while

SO(1, p) is the residual Lorentz invariance of the end-points’ dynamics within the brane

itself.

The peculiar thing about D-branes is that, despite originating as constraints on open

string dynamics, we will see later on (in section 3.4.3) that they develop dynamics of

their own, thus needing to be considered as independent physical objects. In some cases

the inclusion of open strings, and thus D-branes, is necessary for a string theory to be

consistent. A prime example of this is found in type IIA superstring theory. As a dynamic

object, a Dp-brane sweeps a p+1-dimensional world-volume, determined by the so called

Dirac action. Parameterizing the world-volume as X(ζ), with ζ = (τ, ζ1, ..., ζp), the Dirac

action realizes in an higher dimensional version of (3.2):

SD = −Tp
∫

dp+1ζ
√

− det γ γαβ =
∂Xµ

∂ζα

∂Xν

∂ζβ
ηµν (3.19)

where γ is again the pull-back of the space-time metric onto the world-volume. The Dirac

action doesn’t actually give a complete description of brane dynamics, which is instead

achieved by the DBI action.

3.4 Low Energy Limits

In the previous sections we always assumed the underlying space-time to be flat, with

metric ηµν . It turns out that moving to a curved background is quite simple: one can just
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replace ηµν −→ Gµν(X) in the Polyakov action, obtaining

SP = − 1

4πl2s

∫

d2σ
√−ggαβ∂αXµ∂βX

νGµν(X) . (3.20)

The dynamic world-sheet metric of Polyakov action eases this generalization as there’s

no need to change the definition of the pull-back metric. What’s significantly less trivial

is proving that the space-time metric Gµν(X) actually coincides with the graviton field

that emerged from string quantization. Aside from the Feynman-Weinberg argument, this

identification is supported by a path integral based observation. Expanding the metric

as Gµν(X) = ηµν + hµν(X) one sees that the partition function of the curved-background

action becomes

Z =

∫

DXDge−SP [G] =

∫

DXDge−SP [η]e−SP [h] (3.21)

where SP [h] can be shown to be the vertex operator of a graviton-string interaction. The

partition function built on the “free” action SP [G] is then identified with an insertion of

a graviton vertex in the free SP [η] theory, i.e. with an interacting theory of strings and

graviton, thus confirming the original statement [11].

The action (3.20) will serve as the basis for the following discussion, where we gradually

introduce the field-string interactions in low energy settings, i.e. at first order in the

background fields.

3.4.1 Charged Strings and the Kalb-Ramond Field

Including a Kalb-Ramond-string interaction term, like in the graviton case, boils down to

adding the vertex operator associated with Bµν to the Polyakov action:

SP = − 1

4πl2s

∫

d2σ
√−g

[

Gµν(X)∂αX
µ∂βX

νgαβ + iBµν(X)∂αX
µ∂βX

νεαβ
]

, (3.22)

where εαβ is the antisymmetric unit 2-tensor. This term suggests that the string sweeping

the world-sheet Xµ is charged under Bµν , which takes the role of “electromagnetic field”

as anticipated in section 3.1. This conclusion is reached by recalling that the coupling of

a charged point-particle to the gauge field Aµ is testified by the appearance of the Lorentz

force in the action:

S = (kinetic terms) +

∫

dτAµẊ
µ (3.23)

which one may recognize as the pull-back of the space-time 1-form A1 = AµdX
µ onto the

world-line. Analogously, the new interaction term in (3.22) can be seen as the pull-back of

the 2-form B2 onto the world sheet of a charged string. The corresponding gauge-invariant

field strength is denoted as H3 = dB2.

One interesting feature of the electromagnetic field in 4-dimensional field theory is that
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the Hodge duality F2 −→ ∗F2 leads to the introduction of magnetically charged particles.

Similarly, in string theories, one can dualize B2, leading to the introduction of extended

objects, i.e. branes, charged under the dual magnetic field. As we seen many times

in chapter 2, a (p + 1)-dimensional charged object naturally couples to a (p + 1)-form

gauge field which is then associated with a (p + 2)-form field strength; for instance a

2-dimensional world-sheet couples to B2, associated with H3 = dB2. This should apply

also to the dual field, therefore we will follow this same logic in reverse to deduce the

dimensionality of a magnetically charged brane.

In the most general case, the Hodge dual of a (p + 2)-form field strength is FD−p−2 that

will be related to a gauge field CD−p−3 by an exterior derivative. The objects charged

under C will then be (D − p− 3)-dimensional world-volumes, i.e. (D − p− 4)-branes.

In D = 10 superstring theories the Neveu-Schwarz field couples to strings while its dual

couples to branes of dimension D − p − 4 = 5. To distinguish them from D-branes,

they are often referred to as NS5-branes. Furthermore, in the case of type II teories,

the Ramond-Ramond-fields are associated with their own electrically and magnetically

charged objects:

• In a type IIA theory C1 is associated with point-like sources and, through duality,

to D6-branes, whereas the C3 RR-field is couples to 2-branes while its dual couples

to D4-branes.

• In type IIB instead only the self-dual field C4 introduces new objects (the ones

related to C2 have the same dimensions as B2’s), namely 3-branes, both electrically

and magnetically charged.

Finally, it should be noted that much like magnetic monopoles in QFT, charged branes

behave like topological defects. Branes are then of great interest to our research as their

appearance in the dual supergravity and thus in the SymTFT will grant us the means to

reconstruct the generalized symmetries of the ABJ theory as described in section 2.3.

3.4.2 The Low Energy String Action

Incorporating also the dilaton Φ(X) in the action Polyakov action through its vertex

operator results in

SP = − 1

4πl2s

∫

d2σ
√−g

[

Gµν(X)∂αX
µ∂βX

νgαβ + iBµν(X)∂αX
µ∂βX

νεαβ + l2sΦ(X)R(2)
]

(3.24)

where R(2) is the world-sheet Ricci scalar. One immediately sees that the dilaton term

disrupts Weyl invariance, yet this issue could be solved by 1-loop corrections emerging

from the coupling of Φ to the graviton and Kalb-Ramond field. In order to see this

one should proceed to renormalize the 2-dimensional field theory and verify under which
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conditions Weyl invariance is restored. We only report the result of such analysis, which

is carried out in grater detailed in [11]; Weyl invariance is restored if

βµν [G] = βµν [B] = β[Φ] = 0 (3.25)

where the β functions are defined by

βµν [G] = l2sRµν + 2l2s∇µ∇νΦ− l2s
4
HµρσH

ρσ
ν (3.26)

βµν [B] = − l
2
s

2
[∇ρ + 2(∇ρΦ)]Hρµν (3.27)

β[Φ] = − l
2
s

2
∇2Φ + l2s∇µΦ∇µΦ− l2s

24
HµνρH

µνρ (3.28)

with ∇ denoting a covariant derivative with respect to Gµν .

By imposing Weyl invariance we can now obtain a (one loop level) low energy effective

string action by writing an action that reproduces the equations (3.25). Such an action

is given by

S =
1

2κ20

∫

d26X
√
−Ge−2Φ

[

R− 1

12
HµνρH

µνρ + 4∂µΦ∂
µΦ

]

(3.29)

A quite peculiar result, seeing as this action, obtained on consistency grounds alone and

from a single string’s dynamics, drives the physics of the underlying space-time gauge

fields.

The supersymmetric version of the low energy action has a more complicated expression:

Definition 9 (Supergravity) The superstring counterpart to the low energy string ac-

tion (3.29), known as a Supergravity theory is made up of the following terms:

SSuGra = S0 + S1 + Sf , (3.30)

where S0 coincides, at least for type II theories, with the low energy action for the bosonic

string (in D = 10); S1 describes instead the dynamics of the additional fields introduced

by superstring theory. Finally Sf encodes the interactions of space-time fermions.

Since, as mentioned before, our later analysis will focus on the flux sector of a type IIA

theory, we restrict our discussion to the form of S1 for superstring theories of type II:

denoting with Fq the field strengths associated to the RR-fields one gets

Type IIA: S1 = − 1

4k20

∫

[√
−G

(

|F2|2 + |F̃4|2
)

+B2 ∧ F4 ∧ F4

]

(3.31)

Type IIB: S1 = − 1

4k20

∫
[√

−G
(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

+ C4 ∧H3 ∧ F3

]

(3.32)
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with

F̃4 = F4 − C1 ∧H3 F̃3 =F3 − C0 ∧H3 F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3

|Fp|2 = Fp ∧ ∗Fp

(3.33)

Note that both actions contain a term that does not depend on the metric; such term

is called Chern-Simons term, and will be recognizable throughout the derivation of the

symmetry theory, assuming the role of a cubic anomaly in the final action. These actions

are built to preserve N = 2 supersymmetry and it can be shown that they are unique in

that regard.

3.4.3 The DBI Action

As foretold when introducing D-branes as dynamical objects, the Dirac action does not

provide a complete description of brane physics. A better characterization of D-brane dy-

namics is obtained including their interactions with the gauge fields. This will eventually

result in the Dirac-Born-Infeld action (DBI).

The first step in constructing the DBI action is to derive an effective action similar to

(3.29) but tailored for open strings. Through a process analogous to that used for closed

strings, one can derive a 2-dimensional field theory whose renormalization generates a

constraint aimed at ensuring conformal invariance of the theory. In the open string case

this materializes in the equation

∂αFβγ

[

1

1− 4π2l4sF
2

]αβ

= 0 (3.34)

where Fαβ is the field strength associated with the photon field emerging from string

end-point quantization; much like B2 for closed strings, this field charges the end-points

of the string. This equation is also yielded by the so called Born-Infeld action, describing

the background physics of a theory of open strings:

SBI = −Tp
∫

dp+1ζ
√

− det (ηαβ + 2πl2sFαβ) (3.35)

The DBI action, describing both the background and the branes dynamics, is then ob-

tained replacing η with its pull-back onto the world-volume of the brane in SBI :

SDBI = −Tp
∫

dp+1ζ
√

− det (γαβ + 2πl2sFαβ) γαβ =
∂Xµ

∂ζα
∂Xν

∂ζβ
ηµν (3.36)
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A further extension of the DBI action is obtained by also including the background fields

emerging from closed string quantization:

SDBI = −Tp
∫

dp+1ζe−Φ
√

− det (γαβ + 2πl2sFαβ) + Bαβ







γαβ = ∂Xµ

∂ζα
∂Xν

∂ζβ
Gµν

Bαβ = ∂Xµ

∂ζα
∂Xν

∂ζβ
Bµν

(3.37)

The fact that F2 and B2 only appear in the combination 2πl2sF2 + B2 suggests that the

two are deeply related to one another.

3.5 Kaluza-Klein Compactification

Both bosonic and supersymmetric string theories live in space-times of rather high

dimensionality, therefore, to have a possibility of describing our 4-dimensional universe in

terms of oscillating strings, we need a way to “hide” some of these dimensions.

A solution to this issue is offered by the intrinsically gravitational nature of string the-

ory: since the background space is generally curved, nothing prevents the overabundant

dimensions to be so curled up that they become invisible to experiments. This conjecture

is known as Kaluza-Klein compactification and relies on decomposing space-time into

MD = S1,3 × LD−4 (3.38)

with S1,3 being the 4-dimensional space-time solving the Einstein equations of the case2,

while LD−4 is a compact manifold of length scale below experimental sensitivities, that we

will refer to as internal space. In vacuum conditions, where Rµν = 0 one has S1,3 = R1,3

(Minkowski space-time) and LD−4 is bound to be Ricci-flat, i.e. a Calabi-Yau manifold.

One can then integrate over the internal space, obtaining a 4-dimensional theory on a S1,3

space-time.

This procedure can be simply generalized to different compactified spaces and we will

make use of it later on in chapter 5 to reduce the dimensionality of the holographic dual

theory and extract its topological sector.

2The “1, 3” superscript indicates that we are considering the space-time metric in Lorentzian signature,
i.e. (−+++).
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4 Holographic Duals and ABJ Theories

In analogy with the well-known concept of an hologram, where a bidimensional ob-

ject displays a tridimensional image, the core idea of an holographic principle is to fully

describe a d-dimensional theory via a (d + 1)-dimensional one and vice versa. Aptly

switching between the two theories can then ease the analysis of both.

Originally, the idea of holographic duality was proposed as a way to probe the quantum

theory of gravity, yet the implementation of the holographic principle in the physical uni-

verse is still an open challenge. Nevertheless the idea of holographic duality has proven

exceptionally effective as a tool to investigate strongly coupled QFTs by mapping them

to weakly coupled gravitational theories in one dimension higher. For the purpose of

our research however, holography won’t be used to obtain a full picture of the tridimen-

sional QFT, but rather to isolate the topological sector encoding the symmetries of the

Aharony-Bergman-Jafferis theory.

4.1 The AdS/CFT Correspondence

The most widespread and mathematically sound incarnation of holographic duality is

the AdS/CFT correspondence, connecting conformal field theories (CFT) to superstring

theories on an Anti-DeSitter background (AdS). This plays a part in our choice of sub-

ject, as the ABJ theory is a superconformal theory, therefore it allows to use the well

established AdS4/CFT3 duality. After briefly reviewing the ingredients and formulation

of the correspondence, we will examine how it materializes in the case at hand.

4.1.1 Conformal Field Theories

Previously, we referred to Weyl invariance as a ‘conformal symmetry’, meaning that it’s a

scale transformation that preserve angles, i.e. a dilatation. However, dilatations are not

the only symmetry of a conformal field theory because they are relativistic theories, thus

enjoying Poincaré invariance.

Definition 10 (CFT) A d-dimensional conformal field theory (CFT) is defined as a

theory bearing a symmetry under the conformal group, consisting of infinitesimal trans-

formations of the form

δxµ = aµ + ωµ
νx

ν + λxµ + (bµx2 − xµbνx
ν) . (4.1)

The first two terms are easily recognized as translations and boosts/rotations, generated by
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P µ and Jµν ∈ SO(1, d) respectively, whereas the third term is a dilatation whose generator

is indicated with D. The final term corresponds to a special conformal transformation

whose counterpart in the group algebra is denoted as Kµ.

The generators of the conformal transformations obey the following algebraic relations:

[P µ, P ν ] = 0

[Jµν , J
ρσ] = 4iδ

[ρ
[µJ

σ]
ν]

[Jµν , P ρ] = 2iηρ[µP ν]

[Jµν , Kρ] = 2iηρ[µKν]

[Jµν , D] = 0

[D,P µ] = iP µ

[D,Kµ] = −iKµ

[Kµ, P ν ] = −2i (Jµν + ηµνD)

(4.2)

Overall we have a total of 1
2
(d+1)(d+2) generators, just as much as an SO(d+2) algebra.

It can be shown that the group generated by (4.1) is actually isomorphic to SO(2, d).

The conformal group will also need to include a discrete symmetry transformation that

essentially acts as a local normalization: xµ −→ xµ/x2. It follows that the full conformal

group in d-dimensions is

O(2, d) .

In a N -supersymmetric setting, the group has to be modified to accommodate for the

supercharges QI
α, the R-symmetry and the so called conformal supercharges Sα ∼ [K,Qα],

that have to be included in order to close the algebra. The resulting algebra describes the

superconformal group, which is often denoted as SU(2, d− 2|N ).

The commutation relations (4.2) have an important consequence on the study of CFTs:

the mass operator M2 = P µPµ does not commute with all the other generators, in partic-

ular it doesn’t commute with D; this means that the energy of a state is not well defined

since it can be changed acting with a dilation, hindering the usual perturbative treatment

of QFTs, that generally uses the mass eigenvalue to label asymptotic states.

This is where the AdS/CFT correspondence shows its might: by studying the holographic

dual of a CFT one can use a perturbative approach in the weakly coupled string theory

to gain insight on the non-perturbative aspects of a CFT.

4.1.2 Gravity in Anti-DeSitter Universes

As mentioned before, on the other side of the holographic correspondence we will find

a gravitational theory in the form of a superstring theory. For the duality relation to

work, the background space-time of such string theory will need to have isometry group

identifiable with a conformal group, i.e. O(2, d).

This property is held by the maximally symmetric solution to vacuum Einstein equations

in presence of a negative cosmological constant (Λ):

Rµν =
Λ

3
gµν (4.3)
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Definition 11 (AdS space) A D-dimensional Anti-DeSitter space-time AdSD is the

maximally symmetric solution to (4.3) and it’s the Minkowskian signature analogue to

an Euclidean hyperboloid. In fact it coincides with a codimension 1 hypersurface in R1,D

given by

x20 + x2D −
D−1
∑

i=1

x2i = R2 (4.4)

where the positive sign of the time coordinate x0 is inherited from the R1,D metric while

xD appearing with a plus signifies that the focal points of the hyperboloid lie on the Dth

axis.

The metric of an AdS space can then be written as that of a R1,(D−2) space, foliated over

an additional coordinate z ∈ [0,∞[, scaled by a factor z2:

ds2(AdSD) = R2

(

dz2

z2
+ z2ds2(R1,(D−2))

)

. (4.5)

Notice that this metric degenerates at both z = 0 and z −→ ∞ resulting in the space

having two boundaries; this will become relevant in chapter (5), where these regions are

associated with the physical and symmetry boundaries of the SymTFT.

The space defined by (4.4) is visibly invariant under rotations generated by the O(2, D−1)

group, which is exactly what we were looking for. Observe that implementing a supersym-

metric structure into the AdS theory alters the isometry group in the same way as it did

the conformal group, therefore superstring theories will be connected to a supersymmetric

CFT.

One then needs to construct a superstring theory on an AdS background, describing the

interaction between the fields through an effective action in the form (3.30). Here we

encounter an issue: on one hand we’d like to describe CFTs of various dimensions d,

which would set D = d + 1 in order for the groups to match; on the other hand, we

saw in section 3.2 that the quantization of superstring theories requires superstrings to

live in 10 dimensions to preserve Lorentz invariance, which means the background would

have D = 10. This is however only a mild inconvenience, solved thanks to Kaluza-Klein

compactification. In fact, by constructing the gravitational theory on a 10-dimensional

space-time of the form

AdSd+1 × L10−d−1

with L10−d−1 being a compact space, one can compactify over L, leaving with a (d + 1)-

dimensional theory. The nature of the internal space will depend on the CFT and its

topology will be a crucial element of our later computations.
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4.1.3 Formulation of AdS/CFT

So far we’ve introduced the two ends of the correspondence, now we need to investigate

how the duality actually materializes. From here on out we will refer to the fields in

the conformal theory as “boundary fields” (f) while the supergravity fields are called

“bulk fields” (h). This is due to the fact that the CFT lives on a Minkowski-like space

R1,d−1, which can be recognized as the boundary of the AdSd+1 background. In that

sense the CFT can be interpreted as a theory living on the boundary of its dual, but still

encompassing all of the physics of the latter.

Each bulk field h(x, z) (where x = (x0, ..., xd−1) denotes the boundary coordinates while

z is the extra bulk coordinate) will be associated to an operator O[f ] and will appear in

the CFT action as a source term:

SCFT [f, h] = S0
CFT [f ] +

∫

ddx h(x)O[f(x)] (4.6)

where the d-dimensional function h(x) is related to the bulk field by h(x, z) = h(x)g(z).

This relation is chosen over the more intuitive h(x) ≡ h(x, 0) because the latter would

clash with the fact that we will shortly take h(x, z) as a solution of the equations of motion

in the bulk, thus vanishing at infinity where the boundary is.

One can now write the main statement of the AdS/CFT correspondence by equating the

Wilsonian action obtained integrating out the CFT’s fields with the bulk action along a

solution ĥ of the equations of motion:

W [h(x)] = − log

∫

Df e−S0
CFT [f ]−

∫

ddxhO[f ] = SAdS[ĥ(x, z)] (4.7)

From this equivalence follows that of the respective partition functions, confirming the

equivalence between the two theories. Notice that, since ĥ is bound by classical bulk

dynamics while h is completely free, AdS/CFT connects an on-shell gravitational theory

to an off-shell CFT.

One, crucial, missing piece of the formulation of the correspondence is how to determine

which boundary operator has to be associated with each bulk field. This varies between

theories but it’s often achieved through symmetry based arguments. In the simple case

of conserved currents of the CFT, the natural coupling is (2.7), which leads to identifying

h(x) with a background gauge field, meaning that the corresponding field in the bulk

theory will be a dynamical gauge field. One then deduces that each global symmetry in

the CFT corresponds to a gauge one in the bulk [14].

Another insight into the field/operator correspondence comes from the fact that the op-

erator and the field must have, by consistency, the same quantum numbers with respect

to the (super)conformal group. The relevant quantum numbers in this context are the

AdS fields’ spins (j1, j2) and CFT operators’ conformal dimension ∆, i.e. their “charge”
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under dilation. The mass of the AdS field is actually defined by these quantum numbers,

in particular, setting the AdS radius to R = 1, one gets

Field Spin Eignevalues AdS Mass

ϕ (0, 0) m2 = ∆(∆− d)

Aµ (1
2
, 1
2
) m2 = ∆(∆− 1)(∆− d+ 1)

g(µν) (1, 1) m2 = ∆(∆− d)

B[µν] (1, 0) + (0, 1) m2 = ∆(∆− 2)(∆− d+ 2)

ψ (1
2
, 0) + (0, 1

2
) m = (∆− d/2)

4.2 Ortho-Symplectic 3-dimensional ABJ Theories

Killing two birds with one stone, we now provide an example of AdS/CFT dual

theories by finally introducing the QFT whose symmetry structure will be probed in

later chapters: a 3-dimensional superconformal theory with N = 5 supersymmetry and

O(2N)2k×USp(2N)−k gauge group, that was originally constructed by Aharony, Bergman

and Jafferis in [4]. The same paper also provides the holographic dual type IIA super-

string background, which we already stated to be the starting point of the SymTFT

construction. As mentioned before, the choice of theory was driven by knowledge of the

holographic background together with the fact that the same type of ABJ-theories were

investigated in [5] using a completely different approach, setting a concrete expectation

for the generalized symmetry we will reveal in our research.

In this chapter we give a very brief review of the construction of the theory itself, and

focus more on the AdS4 dual supergravity.

4.2.1 Construction of the O(2N)2k × USp(2N)−k Gauge Theory

A tridimensional ortho-symplectic theory can be constructed in two ways: it can be

obtained as the projection of a type IIB string theory onto a D3-brane configuration;

alternatively one can proceed by gauging a discrete symmetry in an N = 6 supersym-

metric ABJ theory of gauge group U(M)2k ×U(N)−2k, constructed in [15]. Both of these

constructions provide useful information on the resulting theory.

Projecting onto a D3-brane one comes across a discrete choice of brane configurations

leading to four different ortho-symplectic gauge theories, related to each other by an
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SL(2,Z) duality:

O(2M)2k × USp(2N)−k

USp(2M)k ×O(2N)−2k

O(2M + 1)2k × USp(2N)−k

USp(2M)k ×O(2N + 1)−2k

where by USp(2N) we denote the unitary symplectic group, obtained as the intersection

of U(2N) with the symplectic group: USp(2N) = U(2N) ∩ Sp(2N ;C). The subscripts

k ∈ Z correspond to the Chern-Simons level associated with the gauge field corresponding

to each group. The case we are interested in is the first line, in its M = N version. One

can further specify the gauge group into a discrete number of variants, including

SO(2N)2k × USp(2N)−k and (O(2N)2k × USp(2N)−k)/Z2 . (4.8)

These variants will have the same gravity dual, therefore they share the same SymTFT;

the different theories are recovered collapsing the same Bph
T against different Bsym

S,S′ .

From the second construction one can instead infer the degree of supersymmetry of the

theory, based on the R-symmetry’s behaviour along the gauging procedure. Being a 3-

dimensional superconformal theory, U(M)2k × U(N)−2k has R-symmetry SO(∋)R that

breaks into a smaller group upon gauging the discrete symmetry, namely

SO(6)R ≃ SU(4)R −→ USp(4)R ≃ SO(5)R ,

signaling that the final ortho-symplectic theory is invariant under N = 5 supersymmetry,

thus being a superconformal theory with group SU(2, 1|5). The SO(3)f subgroup of the

R-symmetry makes up the flavour symmetry of the ABJ theory.

It can be shown that theories of this kind have moduli spaces (C4/Dk)
N
/SN , where

Dk denotes the dicyclic group of order 4k. This information suggests the supergravity

background of our theory.

Thanks to the work of Mekareeya and Sacchi in [5], we know what kind of symmetries

and anomaly are found in these ortho-symplectic theories, besides the flavour group.

In particular the SO(2N)2k × USp(2N)−k variant has Z2 0-form magnetic and charge

conjugation symmetries. These can be shown to give birth to mixed anomalies with

anomalous actions of the form

SA =
2πi

2

∫

B2 ∧ B(1)
1 ∧ B(2)

1 with

∮

B2 ∈ Z2 and

∮

B
(1,2)
1 ∈ Z2 , (4.9)
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where B
(i)
1 are the background fields associated with either the magnetic or charge conju-

gation symmetry while B2 can correspond to the background field of the 1-form symmetry

or to the flavour symmetry. Because it is non-Abelian, we do not expect the anomalies

involving flavour symmetry to be detected by the SymTFT. Nevertheless, we expect our

SymTFT to display a cubic mixed anomalous term involving two 0-form symmetries and

a 1-form.

4.2.2 Holographic Dual Supergravity

As hinted above, knowing the moduli space allows to identify the background space-time

of the M-theory dual with AdS4 × S7/Dk. However in the k ≪ N regime, i.e. in small

coupling conditions, one can descend to a type IIA superstring theory by means of a S1

compactification, resulting in the 10-dimensional background space-time

M10 = AdS4 × CP 3/Z2 . (4.10)

Performing a low energy limit on this superstring action provides with a supergravity

theory whose full action is given by (3.30), specified by (3.29) and (3.31):

SSuGra ∝ −
∫

M10

[√
−Ge−2Φ|H3|2 +

√
−G

(

|F2|2 + |F̃4|2
)

+B2 ∧ F4 ∧ F4

]

+ F [Gµν ,Φ]

(4.11)

where F [Gµν ,Φ] encodes the terms depending only on dilaton and graviton fields.

As we will see in section 5.2, for the purposes of our discussion we will isolate the flux

sector of this action, which is achieved by silencing the dilaton (Φ = 0) and assuming a

weak curvature of the background1, yielding R −→ 0 and
√
−G −→ 1.

This supergravity theory will admit non-vanishing quantized fluxes for the Ramond-

Ramond field strengths of type IIA string theory; in particular there are 2k units of

F2 flux through CP 1/Z2 and N units of F̃4 on AdS4. The quantization of the 4-form flux

is only achieved when combined with the B2 holonomy b2 = c/k due to the fact that F2

flowing through CP 1/Z2 alters F4’s equations of motion [4]. It can be shown that the

allowed values for c are −k+1
2

and k−1
2

, modulo 2k.

∫

CP 1/Z2

F2 = 2k ∈ Z

∫

CP 2

F̃4 = f4 with f4 | d(f4 + 2kb2) = 0 (4.12)

The former equation leads to identifying the 2-background with 2kJ , where J denotes the

Kähler form of the space.

1This last assumption translates on the QFT side of the duality in N ≪ k5, therefore our discussion
will be consistent within the regime N1/5 ≪ k ≪ N .
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5 Extracting the Symmetry TFT from

an Holographic Construction

Although AdS/CFT, as presented in the previous chapter, does associate a compact-

ified supergravity theories to SCFTs living on their boundaries, the holographic dual

cannot be immediately identified with the Symmetry TFT defined in 2.3. In order to

bridge the gap between AdS4 gravity and the SymTFT corresponding to the ABJ theo-

ries, we will perform some preliminary manipulations on the 10-dimensional background

before carrying out the compactification under a specific “topological limit” that isolates

the part of the action that’s interesting to our purpose and consistently captures the finite

symmetries data. Following [2], this process is here presented in a general way and only

applied to our specific case in chapter 6.

5.1 Flux Sector Action in Democratic Notation

The first thing one can notice about the supergravity action (4.11) is that it is way

more than just a decoupled theory of gauge fields, with the latter coupling to both dilatons

and gravitons. The same holds for the lower dimensional SuGra living in AdS, where this

complexity is what allows to describe the complete dynamics of the SCFT. Nevertheless,

we are interested in extracting the topological sector and in examining the physics of flat

gauge fields within it. Doing so will result in a theory that complies to the definition

given in section 2.3 and we will claim that it is indeed the SymTFT we seek.

The construction begins by focusing only on the so called flux sector of the supergravity

action, i.e. the part depending solely on the Neveu-Schwarz and Ramond-Ramond fields.

The easiest way to achieve this is to just silence the graviton and dilaton fields which,

as anticipated, amounts to setting Φ = 0 and
√
−G −→ 1. The resulting ten dimensional

action is

SSuGra ∝ −
∫

M10

[

|H3|2 + |F2|2 + |F̃4|2 +B2 ∧ F4 ∧ F4

]

. (5.1)

In this form, the action still doesn’t describe a topological theory, which is one of the

defining characteristics of the symmetry theory. This point will however be addressed

during the compactification process.

Despite not coinciding with the action that will be used in the dimensional reduction,

(5.1) is equivalent to it. We will now review the construction of such an equivalent action

in the most general case.

The first change we apply is to redefine the field strengths in a democratic formalism,
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meaning that electric and magnetic fluxes will be treated equally, allowing us to see the

couplings in the final action as explicitly as possible, without Hodge dualities hindering

their readability. To do so, one defines new “independent” field strengths for each Hodge

dual, each to be associated to a brane-like magnetic source.

Observe that in this formalism the equation of motion of each flux is nothing but the

Bianchi identity of its former Hodge dual. In presence of charged branes this results in

the Bianchi identities being deformed into

dF (i) = d ∗ F (D+1−i) = J (i) + (Chern− Simons) . (5.2)

The reason we remark this is that Bianchi identities are what allows us to write the equiv-

alent action that we will end up compactifying. More precisely we embed the identities

in the action by writing it in a (D + 2)-dimensional1 setting that reduces to a (D + 1)-

boundary term when one enforces the Bianchi identities on it, reproducing (5.1). The

auxiliary eleventh dimension is to be understood as non-compact, therefore this opera-

tion only affects the ‘space-time part’ of the background rather than the internal space:

Md+1 × LD−d
Bianchi−−−−→Md+2 × LD−d .

It follows that the topology of the internal space remains the same throughout our manipu-

lations, ensuring that our later compactification will not assimilate unphysical information

into the final theory.

We will refer to the starting point of the SymTFT derivation as “Top Action” as it has

the highest dimensionality in our work; its general form is

STOP =

∫

M11

1

2

∑

i,j

κijF
(i) ∧ dF (j) + CS[{F (i)}]−

∑

i,j

κijF
(i) ∧ J (j) , (5.3)

where CS[{F (i)}] is a closed top-form from which the physical 10-dimensional Chern-

Simons term is obtained through a total derivative. The coefficients κij are defined by

κij = 0 if degF (i) + degF (i) ̸= D = 10

κji = (−1)(degF
(i)+1)(degF (j)+1)κij .

(5.4)

One can recover the Bianchi identities as the EoM stemming from (5.3). The reasoning

behind the top action is to make the action in democratic formalism gauge invariant on

sight. Moreover, it explicitly includes dF terms, that will be involved in the enforcement

of the topological limit, as well as source terms, that will eventually allow us to write

1Notice that, unlike in chapter 3, here we denote the dimensionality of the supertring theory as D+1,

so that the compactification gives D+1
KK−−→ d+1, with d corresponding to the superconformal theory’s

dimension.
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the entire action in terms of J (i) components, clarifying which defects are involved in the

SymTFT action.

Example: p-form Maxwell

To have a concrete feel of these calculations, let us consider a p-form Maxwell theory in

D + 1 dimensions:

SD+1 =

∫

MD+1

1

2e2
fp ∧ ∗fp . (5.5)

The democratic formalism in this case sees the introduction of the following fluxes and

magnetic currents:

F (1)
p = fp

J
(1)
p+1 = J

(m)
p+1

F
(2)
D−p = e−2 ∗ fp
J
(2)
D−p+1 = ∗J (e)

D−p+1

(5.6)

The original action had no Chern-Simons term, therefore, accounting for the definition of

κij, the top action of the Maxwell theory is then

STOP =

∫

MD+2

[

F (1) ∧ dF (2) − F (1) ∧ J (2) − (−1)(p+2)(D+1−p)F (2) ∧ J (1)
]

. (5.7)

The EoM yielded by this action are easily verified to coincide with the ones one would

associate with Maxwell’s theory, i.e.

dF (2) = J (2) ⇐⇒ d ∗ f = J (e)

dF (1) = J (1) ⇐⇒ df = J (m) .
(5.8)

5.2 The Topological Limit

We have already observed in the previous section that (5.1) is not topological. There-

fore, in order to apply the anomaly inflow paradigm as we described it previously, one

needs to define a regime within the AdS theory specifically suited to isolate the topological

sector.

While holographic setups usually consider the bulk theory near z = 0, where the confor-

mal physical boundary Bph is found, the symmetry theory emerges at z −→ ∞, i.e. near

the symmetry boundary Bsym of the anti-DeSitter space. The reason behind this is that

topology-related physics dominates at large scales. In this regime, one can perform a

derivative expansion of the action, with higher derivatives being subleading. Upon per-

forming the compactification, we can then neglect any derivative of the fluxes. This is

known as topological limit, and it leads to a theory capturing the dynamics of flat gauge

fields, which, according to the inflow paradigm, correspond to background fields of finite
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symmetries of the boundary theory.

To be more precise, the Kaluza-Klein procedure will require us to decompose each of the

fluxes (and currents) over the homology groups Hq(LD−d,Z) of the internal space.

F (i) = F
(i)
B +

∑

a

f (ia) ∧ ϕ(a) +
∑

b

f (ib) ∧ ψ(b)

J (i) = J
(i)
B +

∑

a

j(ia) ∧ ϕ(a) +
∑

b

j(ib) ∧ ψ(b)
(5.9)

The background component F
(i)
B is a closed form living in the internal space, proportional

to the volume form of i-cycles. Internal components also live in LD−d, whereas the external

fields f (ia) live on the (d + 2)-manifold generated by the AdS space and the auxilliary

direction. We wrote the decomposition distinguishing closed cycles in the internal space2,

denoted with ψ(a) from torsional cycles, represented by the ϕ(a) part of the sum and

defined as follows:

Definition 12 (Torsion) A cycle ϕ in a topological space LD−d belongs in the torsional

subgroup of Hdeg ϕ(LD−d,Z), denoted as Tordeg ϕ(LD−d,Z), if there exists a closed cycle in

Hdeg ϕ+1(LD−d,Z) whose corresponding cohomology form Φ is such that







dϕ = ℓΦ

dΦ = 0
for some ℓ ∈ Z . (5.10)

From (5.9) one can see that the kinetic term for F (i) in the top action, proportional

to dF (i), is not to be neglected until the compactification has been carried out, since it

produces both df terms, that will indeed be neglected, and dϕ terms, that do not include

any derivative of the flux, and are thus relevant to our discussion.

Another way to interpret the topological limit is that, at large distances in the AdS space,

the non-flat fluxes become massive, allowing us to integrate them out of the action.

Once the topological limit is computed, the resulting (d + 2)-dimensional action will be

a function of the external components of fluxes and currents, which can be rewritten in

terms of just the currents via Bianchi identities. If the calculations are done correctly the

result should be nothing but a boundary term, leading to a topological theory in (d+ 1)

dimensions written in terms of the sources alone. This will be the final expression for the

Symmetry TFT action:

SSymTFT =

∫

AdSd+1

L[{j(ia)}] .

Writing everything in terms of the branes has the aforementioned benefit of bringing out

the branes that one needs to project onto Bsym. It also directly couples the branes, or

rather the corresponding sources, thus showing which ones are involved in anomalies that

2Here the torsion-free part of the expansion also includes the cycles that are Φ ∝ dφ.
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will inflow to the underlying CFT.

Notice that throughout the whole construction knowledge of the SCFT Lagrangian was

never required. This is a major advantage in using the Symmetry TFT to probe the

symmetry structure of SCFTs, along with the insight it provides on the defects of the

superconformal theory (by projecting them onto Bsym).

Example: AdS5 × S5 Type IIB Background

Let us now illustrate the last steps of the derivation through a simple example, starting

from the compactified 6-dimensional action of a AdS5 × S5 type IIB supergravity [2]:

Sd+2 =

∫

M6

[

NH3 ∧ F3 −H3 ∧ J (1)
3 − F3 ∧ J (2)

3

]

, (5.11)

where H3 = dB2 and F3 = dC2, with B2 and C2 being the NS and a RR field of type IIB.

The constant N instead corresponds to the background flux of the Ramond-Ramond field

F5. This action leads to the following Bianchi identities for H3 and F3:

NF3 = J
(1)
3 , −NH3 = J

(2)
3 . (5.12)

Substituting these back in (5.11) leaves with an action written in terms of the sources

consisting of a single quadratic term:

Sd+2 = − 1

N

∫

M6

J
(1)
3 ∧ J (2)

3 (5.13)

The SymTFT action living in AdS5 is then obtained recognizing the action as a total

derivative exploiting closure of the currents and formally defining d−1 as detailed in ap-

pendix B:

SSymTFT = − 1

N

∫

AdS5

d−1J
(1)
3 ∧ J (2)

3 =
1

N

∫

AdS5

B2 ∧ dC2 (5.14)

This can be read as a BF gauge theory of two ZN 1-form symmetries and, recalling

that J (1,2) are δ-like functions supported on branes, it corresponds to the branes’ linking

number.

With an appropriate choice of boundary conditions this SymTFT can be used to probe

the symmetry structure of 4-dimensional super-Yang-Mills theories with N = 4 [1].
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6 Derivation of the Symmetry TFT

With the stage completely set, we can finally begin the computation in the specific

case of ABJ theories. Let us start by writing the flux sector action (5.1) in democratic

formalism and preparing it for the compactification. Since the field content of a type

IIA theory has no multiplicity within form-degrees, we will denote F (i) = Fi while the

corresponding magnetic currents are denoted as J (i) = Ji+1.
1 Therefore, the field content

of the flux action will be:

F (2) = F2

H(3) = H3

F (4) = F4

F (6) = ∗F4 = F6

H(7) = ∗H3 = H7

F (8) = ∗F2 = F8

supplemented by the sources

J
(2)
3 , J

(3)
4 , J

(4)
5 , J

(6)
7 , J

(7)
8 , J

(8)
9 .

Eventually one moves to eleven dimensions by specifying the CS-term in (5.3) in relation

to that of type IIA supergravity, which includes the cubic part of the |F̃4|2 term:

LSuGra|CS = −
(

F̃4 ∧ ∗F̃4

)

cubic
− B2 ∧ F4 ∧ F4

⇓
CS[{Fi}] = −H3 ∧ F4 ∧ F4 − F2 ∧H3 ∧ F6 +H3 ∧X8 ,

(6.1)

where X8 is an higher derivative correction and is hereby neglected. The top action can

then be written as

STOP =

∫

M5×L6

[

−F2 ∧ dF8 + F4 ∧ dF6 +H3 ∧ dH7 −H3 ∧
(

F2 ∧ F6 +
1

2
F4 ∧ F4

)

+

+ F2 ∧ J (8)
9 − F8 ∧ J (2)

3 − F4 ∧ J (6)
7 + F6 ∧ J (4)

5 −H3 ∧ J (7)
8 −H7 ∧ J (3)

4

]

,

(6.2)

with M5 being a non-compact manifold having an AdS4 boundary while L6 = CP 3/Z2.

1To avoid confusion, the currents will often report also the form degree.
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6.1 Dimensional Reduction of Supergravity in the Topo-

logical Limit

In order to compactify the top action (6.2), we anticipated while introducing the

topological limit that one needs to decompose the fields in a series of homology classes of

the internal space. The representative of these classes are δ-like a-forms (with a labelling

the form degree) supported on the corresponding cycles in CP 3/Z2. In particular we

denote a torsion-free cycle as ψa while torsional cycles and their derivatives are written as

(ϕa,Φa+1). In appendix A we go in deeper detail on CP 3/Z2’s topology, meanwhile here

we only report the set of internal components that we consider in our computations:

Torsional pairs:

(ϕ0,Φ1), (ϕ1,Φ2), (ϕ2,Φ3),

(ϕ3,Φ4), (ϕ4,Φ5), (ϕ5,Φ6)

Torsion-free cycles:

ψ0, ψ2, ψ4, ψ6

Each torsional pair is associated with torsion degree ℓa, related to one another through

a Poincaré-like duality between the cycles implying ℓa = ℓ5−a (more details in appendix

A). Hence going forward we will only encounter ℓ0, ℓ1 and ℓ2.

For the moment, we restrict our analysis to a subset of the torsional sector of the expan-

sion so that the equations are sensibly lighter. We will however observe that the missing

terms are of the same form as the ones contained in the restricted SymTFT, albeit in-

volving different fields. Beside the entirety of the torsion-free sector, which includes the

background terms F
(i)
B , we will neglect torsional 0- and 5-cycles as the equations for the

corresponding external components should decouple from the rest. The upshot of this is

that the expanded fluxes that enter the dimensional reduction are:

F2 = f
(2)
1 ∧ ϕ1 + f

(2)
0 ∧ Φ2 + f

(2)
0 ∧ ϕ2

F4 = f
(4)
3 ∧ ϕ1 + f

(4)
2 ∧ Φ2 + f

(4)
2 ∧ ϕ2 + f

(4)
1 ∧ Φ3 + f

(4)
1 ∧ ϕ3+

+ f
(4)
0 ∧ Φ4 + f

(4)
0 ∧ ϕ4

F6 = f
(6)
5 ∧ ϕ1 + f

(6)
4 ∧ Φ2 + f

(6)
4 ∧ ϕ2 + f

(6)
3 ∧ Φ3 + f

(6)
3 ∧ ϕ3+

+ f
(6)
2 ∧ Φ4 + f

(6)
2 ∧ ϕ4 + f

(6)
1 ∧ Φ5

F8 = f
(8)
7 ∧ ϕ1 + f

(8)
6 ∧ Φ2 + f

(8)
6 ∧ ϕ2 + f

(8)
5 ∧ Φ3 + f

(8)
5 ∧ ϕ3+

+ f
(8)
4 ∧ Φ4 + f

(8)
4 ∧ ϕ4 + f

(8)
3 ∧ Φ5

H3 = h
(3)
2 ∧ ϕ1 + h

(3)
1 ∧ Φ2 + h

(3)
1 ∧ ϕ2 + h

(3)
0 ∧ Φ3 + h

(3)
0 ∧ ϕ3

H7 = h
(7)
6 ∧ ϕ1 + h

(7)
5 ∧ Φ2 + h

(7)
5 ∧ ϕ2 + h

(7)
4 ∧ Φ3 + h

(7)
4 ∧ ϕ3+

+ h
(7)
3 ∧ Φ4 + h

(7)
3 ∧ ϕ4 + h

(7)
2 ∧ Φ5
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To distinguish them from the torsional component of the same degree, the external com-

ponents coupled to internal Φa forms are written in bold; a similar convention will be

used throughout the whole computation, with simple characters signaling a torsional ori-

gin while bold and tilded ones are associated with Φ and ψ terms respectively.

The magnetic currents associated with each flux are then expanded in a similar fashion:

J
(2)
3 = j

(2)
2 ∧ ϕ1 + j

(2)
1 ∧ Φ2 + j

(2)
1 ∧ ϕ2 + j

(2)
0 ∧ Φ3 + j

(2)
0 ∧ ϕ3

J
(3)
4 = j

(3)
3 ∧ ϕ1 + j

(3)
2 ∧ Φ2 + j

(3)
2 ∧ ϕ2 + j

(3)
1 ∧ Φ3 + j

(3)
1 ∧ ϕ3+

+ j
(3)
0 ∧ Φ4 + j

(3)
0 ∧ ϕ4

J
(4)
5 = j

(4)
4 ∧ ϕ1 + j

(4)
3 ∧ Φ2 + j

(4)
3 ∧ ϕ2 + j

(4)
2 ∧ Φ3 + j

(4)
2 ∧ ϕ3+

+ j
(4)
1 ∧ Φ4 + j

(4)
1 ∧ ϕ4 + j

(4)
0 ∧ Φ5

J
(6)
7 = j

(6)
6 ∧ ϕ1 + j

(6)
5 ∧ Φ2 + j

(6)
5 ∧ ϕ2 + j

(6)
4 ∧ Φ3 + j

(6)
4 ∧ ϕ3+

+ j
(6)
3 ∧ Φ4 + j

(6)
3 ∧ ϕ4 + j

(6)
2 ∧ Φ5

J
(7)
8 = j

(7)
7 ∧ ϕ1 + j

(7)
6 ∧ Φ2 + j

(7)
6 ∧ ϕ2 + j

(7)
5 ∧ Φ3 + j

(7)
5 ∧ ϕ3+

+ j
(7)
4 ∧ Φ4 + j

(7)
4 ∧ ϕ4 + j

(7)
3 ∧ Φ5

J
(8)
9 = j

(8)
8 ∧ ϕ1 + j

(8)
7 ∧ Φ2 + j

(8)
7 ∧ ϕ2 + j

(8)
6 ∧ Φ3 + j

(8)
6 ∧ ϕ3+

+ j
(8)
5 ∧ Φ4 + j

(8)
5 ∧ ϕ4 + j

(8)
4 ∧ Φ5

The dimensional reduction from D + 2 to d + 2 dimensions is carried out by integrating

the internal components over the orientifold L6 = CP 3/Z2. This will produce an effective

theory in which the interactions are determined by the linking and intersections of the

internal cycles. In order to streamline the notation, couplings of the same nature will

be denoted with the same greek letter, followed by indices signaling the degree of the

forms involved; consistently with the notation used for external components, simple letter

indices will correspond to torsional ϕ forms whereas bold ones indicate a closed Φ form.

The relevant terms of the expanded top action are those that carry an overall internal-

form degree equal to the dimension of the internal geometry, i.e. those of deg(∗) = 6,

seeing as they are the only ones providing a non-vanishing integration.

6.1.1 Chern-Simons Term

Let us start by compactifying the Chern-Simons sector of the action, that is

−H3 ∧
(

F2 ∧ F6 +
1

2
F4 ∧ F4

)

(6.3)
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The couplings provided by the dimensional reduction of these terms are cubic wedge-

combinations of internal-forms:

χabc =

∫

L6

ϕa ∧ ϕb ∧ ϕc χabc =

∫

L6

Φa ∧ ϕb ∧ ϕc

χabc =

∫

L6

Φa ∧ Φb ∧ ϕc χabc =

∫

L6

Φa ∧ Φb ∧ Φc

(6.4)

By construction Φa+1 ∈ Ha+1(CP 3/Z2,Z) has support on the torsional a-cycle, and has

a δ-like behaviour on it. By (5.10) this implies

dϕa = ℓΦa+1 = ℓδ(Σa+1)ε (6.5)

where ε is a “unit (a+1)-form”. This means that ϕa will be proportional to a step function

(denoted as θ) with support on the region Ω | ∂Ωa = Σa.

This observation allows to specify the couplings in (6.4) as volumes of intersections be-

tween Σ’s and Ω’s, modulo ℓ and a combinatorial factor. Consider for instance χabc:

χabc =

∫

L6

ℓaθ(Ωa)ℓbθ(Ωb)ℓcθ(Ωc)εa ∧ εb ∧ εc ∝ ℓaℓbℓcV ol(Ωa ∩ Ωb ∩ Ωc) (6.6)

where the antisymmetrization of the unit forms ε yields an overall numerical factor.

Any coupling including multiple torsional forms (ϕ) within the integral is actually van-

ishing. This can be seen by moving to higher dimension, specifically considering a conical

manifold L7 with boundary L6. Due to the conical construction, L7 has a singularity in

the origin. It follows that unlike L6, where the Z2 orientifold acts freely on the whole

space causing torsion to appear, any torsional cycle at the boundary of L7, trivializes

when approaching the singularity. The upshot of this is that the conical manifold L7 is

torsion-free.

Applying then Stokes theorem to write the coupling in terms of such space introduces an

exterior derivative, resulting in one of the original ϕ morphing into a Φ:

χabc =

∫

L6

Φa ∧ ϕb ∧ ϕc =

∫

L7

d(Φa ∧ ϕb ∧ ϕc) ∼
∫

L7

Φa ∧ Φb ∧ ϕc (6.7)

For couplings with at most one torsional form this leads to a torsion-free expression,

consistent with the observation made on L7. If instead the original coupling involved

multiple ϕ-forms (as in (6.7)) the integral on the conical manifold will still display torsion,

clashing with the construction of the space. The only way this contradiction can be solved

is if the coupling were vanishing in the first place. Hence

χabc = χabc = 0 ∀ a, a, b, c . (6.8)
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Furthermore, couplings made up of only Φ forms can also be neglected because the ar-

gument of the integral can be expressed as a total derivative thanks to nilpotence of the

exterior derivative:

χabc =

∫

L6

Φa ∧ Φb ∧ Φc =

∫

L6

dϕa−1 ∧ dϕb−1 ∧ dϕc−1 =

∫

L6

d (ϕa−1 ∧ dϕb−1 ∧ dϕc−1) .

(6.9)

It follows that these couplings are boundary terms in a space where ∂L6 = ∅, hence they

vanish.

In the Chern-Simons sector the internal form-degree of a term is fully encoded in the

components of the fluxes, therefore the selected terms are those of
∑

degϕ+
∑

degΦ = 6.

Combinations including two or more identical odd-degree forms are excluded by antisym-

metry of the ∧-product: ϕ3 ∧ ϕ3 = (−1)9ϕ3 ∧ ϕ3 ⇐⇒ ϕ3 ∧ ϕ3 = 0. The surviving

couplings provided by the CS sector are then:

χ132 , χ222 (6.10)

with possible permutations of the indices (maintaining the “boldness” unchanged).

6.1.2 Source Terms

The source terms, that is

F2 ∧ J (8)
9 − F8 ∧ J (2)

3 − F4 ∧ J (6)
7 + F6 ∧ J (4)

5 −H3 ∧ J (7)
8 −H7 ∧ J (3)

4 , (6.11)

produce quadratic wedge-combinations of internal-forms that become quadratic couplings

after carrying out the dimensional reduction. Such couplings are denoted by the letter σ:

σab =

∫

L6

ϕa ∧ ϕb σab =

∫

L6

Φa ∧ ϕb σab =

∫

L6

Φa ∧ Φb (6.12)

where it must be a+b = 6 for the integrand to be an internal top-form. Since they include

two small ϕ, all σab are vanishing based on the same argument used for χ couplings. Same

goes for σab, as they can be written as total derivatives. The mixed couplings on the other

hand bear a strict relation to the linking number between the torsional cycles associated

with the two internal forms involved in the integration:

σab =

∫

L6

dΦa ∧ ϕb = Σa ·L6 Ωb = ℓbLinkL6(Σa,Σb) (6.13)

Overall there are four quadratic couplings that, at this point in the discussion, are inde-

pendent:

σ15 , σ24 , σ24 , σ33 (6.14)
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Note that exchanging the indices may result in a sign flip according to wedge product

properties.

6.1.3 Kinetic Part

As foretold, when aiming at the construction of a SymTFT, the compactification of the

kinetic terms requires some extra attention: because it depends on the derivatives of the

field strengths, the kinetic part of the flux sector

−F2 ∧ dF8 + F4 ∧ dF6 +H3 ∧ dH7 , (6.15)

will be affected by the topological limit. In particular only terms where the exterior

derivative acts on an internal form survive the reduction process since df −→ 0. There

is an important exception to this, represented by terms ∝ df. In fact, it will turn out

that df(i)a cannot be considered subleading, as it is actually comparable to the external

components f
(i)
a+1.

If d acts on a f, the coupling will fall under the umbrella of σab discussed earlier. Kinetically

originated couplings in which the derivative acts on an internal form are instead denoted

as τab:

τab =

∫

L6

ϕa ∧ dϕb τab =

∫

L6

Φa ∧ dϕb (6.16)

Because the kinetic terms in STOP contains an exterior derivative, the degree of the

involved cycles must add up to 5 for them to survive the integration. The presence of

the exterior derivative also allows to relate the τ couplings to the linking number of the

cycles: by substituting (5.10) in these expressions one notices that these coupling can be

traced back to σab and σab respectively, giving:

τab = (−1)a(b+1)ℓbσ(b+1)a τab = (−1)a(b+1)ℓbσ(b+1)a (6.17)

It is then easy to conclude that couplings of the second type vanish as they are proportional

to a σab-type coupling, which was also deemed as vanishing.

Although, according to (6.17), they are not independent from the quadratic couplings,

they’ll be treated as such for the time being in order to highlight their different origin. In

particular the action will contain the couplings

τ14 , τ41 , τ23 , τ32 . (6.18)
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6.1.4 The Dimensionally Reduced Action

At this point, one can finally write the reduced form of the top action (6.2). By account

of all previous observations, the (d + 2)-dimensional action will consist of the following

terms:

Sd+2 =

∫

M5

τ14

[

−f (2)
1 f

(8)
4 + f

(4)
3 f

(6)
2 + h

(3)
2 h

(7)
3

]

+ τ32

[

f
(4)
1 f

(6)
4 − h

(3)
0 h

(7)
5

]

+

+ τ23

[

−f (2)
0 f

(8)
5 + f

(4)
2 f

(6)
3 + h

(3)
1 h

(7)
4

]

+ τ41

[

f
(4)
0 f

(6)
5

]

+ σ24f
(4)
0 df

(6)
4 +

+ σ24

[

−f (2)
0 df

(8)
4 + f

(4)
2 df

(6)
2 + h

(3)
1 dh

(7)
3

]

+ σ33

[

f
(4)
1 df

(6)
3 − h

(3)
0 dh

(7)
4

]

+

+ σ15

[

−f (2)
1 df

(8)
3 + f

(4)
3 df

(6)
1 − h

(3)
2 dh

(7)
2

]

− χ132

[

−h(3)2 f
(2)
0 f

(6)
3 − h

(3)
1 f

(2)
1 f

(6)
3 +

+ h
(3)
0 f

(2)
1 f

(6)
4 + h

(3)
0 f

(2)
0 f

(6)
5 − h

(3)
2 f

(4)
1 f

(4)
2 + h

(3)
1 f

(4)
1 f

(4)
3 + h

(3)
0 f

(4)
3 f

(4)
2

]

−

− χ222

[

h
(3)
1 f

(2)
0 f

(6)
4 + h

(3)
1 f

(2)
0 f

(6)
4 + h

(3)
1 f

(2)
0 f

(6)
4 +

1

2
h
(3)
1 f

(4)
2 f

(4)
2 + h

(3)
1 f

(4)
2 f

(4)
2

]

+

+ σ15

[

f
(2)
1 j

(8)
4 + f

(8)
3 j

(2)
2 − f

(4)
3 j

(6)
2 − f

(6)
1 j

(4)
4 + f

(6)
5 j

(4)
0 + h

(3)
2 j

(7)
3 − h

(7)
2 j

(3)
3

]

+

+ σ24

[

f
(2)
0 j

(8)
5 − f

(8)
4 j

(2)
1 + f

(4)
2 j

(6)
3 − f

(4)
0 j

(6)
5 + f

(6)
2 j

(4)
3 + f

(6)
4 j

(4)
1 − h

(3)
1 j

(7)
4 −

− h
(7)
5 j

(3)
0 − h

(7)
3 j

(3)
2

]

+ σ24

[

f
(2)
0 j

(8)
5 − f

(8)
4 j

(2)
1 − f

(4)
2 j

(6)
3 − f

(4)
0 j

(6)
5 + f

(6)
2 j

(4)
3 +

+ f
(6)
4 j

(4)
1 − h

(3)
1 j

(7)
4 − h

(7)
5 j

(3)
0 − h

(7)
3 j

(3)
2

]

+ σ33

[

−f (8)
5 j

(2)
0 + f

(8)
5 j

(2)
0 − f

(4)
1 j

(6)
4 +

+ f
(4)
1 j

(6)
4 + f

(6)
3 j

(4)
2 − f

(6)
3 j

(4)
2 + h

(3)
0 j

(7)
5 − h

(3)
0 j

(7)
5 + h

(7)
4 j

(3)
1 − h

(7)
4 j

(3)
1

]

(6.19)

where the wedge products between the external components are hidden for the sake of

readability. A neat consistency check is done by verifying that all surviving terms are

indeed top-forms of the external 5-dimensional space.

This action can be further simplified by removing some terms, namely those including

fluxes of the types f
(i)
0 , f

(i)
1 , f

(i)
0 and, consequently, j

(i)
0 , j

(i)
1 , j

(i)
0 . The reason for this can

be seen by recalling that in general, a p-flux is defined as the exterior derivative of a

(p− 1)-form gauge field:

Fp = dAp−1

Therefore, if one were to expand Ap−1 in terms of the torsional pairs just like the fluxes and

currents, a polynomial matching of the terms on both sides would show that the external

components listed above are entirely generated by 0-form components of a gauge field
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(a
(i)
0 ). Being scalars, the a0 fields cannot transform under the usual gauge transformation

a
gauge−−−→ a+ dλ

as λ would be a (−1)-form for the relation to be consistent. Hence for simplicity one sets

a
(i)
0 = 0, thus killing the corresponding parts of fluxes and magnetic currents.

After this simplification the action is of the form:

Sd+2 =

∫

M5

τ14

[

f
(4)
3 f

(6)
2 + h

(3)
2 h

(7)
3

]

+ τ23f
(4)
2 f

(6)
3 + σ15

[

f
(4)
3 df

(6)
1 − h

(3)
2 dh

(7)
2

]

+

+ σ24f
(4)
2 df

(6)
2 − χ132

[

−h(3)2 f
(4)
1 f

(4)
2 + h

(3)
1 f

(4)
1 f

(4)
3

]

− χ222h
(3)
1 f

(4)
2 f

(4)
2 +

+ σ15

[

f
(8)
3 j

(2)
2 − f

(4)
3 j

(6)
2 − f

(6)
1 j

(4)
4 + h

(3)
2 j

(7)
3 − h

(7)
2 j

(3)
3

]

+

+ σ24

[

f
(4)
2 j

(6)
3 + f

(6)
2 j

(4)
3 + f

(6)
4 j

(4)
1 − h

(7)
3 j

(3)
2

]

+

+ σ24

[

−f (8)
4 j

(2)
1 − f

(4)
2 j

(6)
3 + f

(6)
2 j

(4)
3 − h

(3)
1 j

(7)
4 − h

(7)
3 j

(3)
2

]

+

+ σ33

[

f
(4)
1 j

(6)
4 + f

(6)
3 j

(4)
2 − f

(6)
3 j

(4)
2 + h

(7)
4 j

(3)
1

]

(6.20)

6.2 The AdS4 Topological Theory

In order to make the CS couplings between branes clearly readable in terms of the

sources, along with removing the auxiliary dimension we set out to write the reduced

action in terms of only the currents. To do so we will consider the fluxes’ dynamics to be

driven by classical equations of motion and use such relations to effectively integrate out

each f
(i)
a .

One then needs to derive the equations, a task that can be carried out in two equivalent

ways: the first approach consists in compactifying the known Bianchi identities for the 11-

dimensional F (i). Alternatively one could directly compute the Euler-Lagrange equations

starting from the reduced action.

Either way, it’s useful to recall that, by definition, currents are closed forms, i.e. dJ i = 0

∀ i. Such constraint is easily transferred to the external components of the currents by a

polynomial identification, yielding the following results:

dj(i)a = 0 dj(i)a = (−1)a+1ℓi−a−1j
(i)
a+1 (6.21)

Let us anticipate that we will encounter some issues with both approaches and end up

choosing a simplified solution that should still provide consistent results.
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6.2.1 Reduction of the Bianchi Identities

By construction, Bianchi identities of the IIA theory are derived as the equations of motion

for F (i) induced by the (D+2)-dimensional top action, the general expression of which is

∑

j

κij
(

dF (j) − J (j)
)

+
∂ CS

∂F (i)
= 0 (6.22)

Substituting the values of κij and the expression for CS, one gets the following Bianchi

identities:


















dF2 = J3

dF4 = J5 +H3F2

dF6 = J7 +H3F4



















dF8 = J9 −H3F6

dH3 = J4

dH7 = J8 + F2F6 +
1
2
F 2
4

(6.23)

It is possible to induce similar relations between the external components of fluxes and

currents by expanding them as before; consider for instance the Ramond-Ramond flux

F4:

d
(

f
(4)
3 ϕ1 + f

(4)
2 Φ2 + f

(4)
2 ϕ2 + f

(4)
1 Φ3 + f

(4)
1 ϕ3 + f

(4)
0 Φ4 + f

(4)
0 ϕ4

)

=

= j
(4)
4 ϕ1 + j

(4)
3 Φ2 + j

(4)
3 ϕ2 + j

(4)
2 Φ3 + j

(4)
2 ϕ3 + j

(4)
1 Φ4 + j

(4)
1 ϕ4 + j

(4)
0 Φ5+

+
(

h
(3)
2 ϕ1 + h

(3)
1 Φ2 + h

(3)
1 ϕ2 + h

(3)
0 Φ3 + h

(3)
0 ϕ3

)

·
(

f
(2)
1 ϕ1 + f

(2)
0 Φ2 + f

(2)
0 ϕ2

)

At this point one would proceed with a polynomial identification with respect to the

internal forms. This approach is not as straightforward as it seems because it requires

knowledge of how ∧-products between ϕ and Φ forms relate to each other and to the

singled out internal forms: a product ϕa∧ϕb might not be independent from ϕa+b or from

a different combination ϕc ∧ ϕd (such that c+ d = a+ b). Non-independent terms should

then be included in the same equation, with some unknown relative numerical factors.

Due to this issue, the alternative path seems more promising seeing as it relies on a purely

(d + 2)-dimensional computation, thus not requiring detailed knowledge of the cycles of

CP 3/Z2. We will verify consistency between the two paths a posteriori.

6.2.2 Equations of Motion in (d+ 2) Dimensions

Instead of using Bianchi Identities, which, as explained above, introduce some difficulties

in their reduction and solution, one can cast the fluxes out of the action by extracting

their classical equations of motion directly from the (d+ 2)-dimensional action (6.20) by
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means of the Euler-Lagrange equations

∂L
∂f

(i)
a

− d
∂L
∂df

(i)
a

= 0
∂L
∂f(i)a

− d
∂L
∂f(i)a

= 0 (6.24)

Note that in these equations should be computed in terms of the components f
(i)
µ1...µa ,

however we can formally derive with respect to the full a-forms thanks to the total anti-

symmetrization of the action.

Computing these equations of motion produces a system of many coupled first order

differential equations quadratic in f , f and h, h:































































































































0 = σ15df
(6)
1 + τ14f

(6)
2 − χ132h

(3)
1 f

(4)
1 − σ15j

(6)
2

0 = τ14f
(4)
3 + σ24j

(4)
3

0 = σ15dh
(7)
2 + τ14h

(7)
3 + χ132f

(4)
1 f

(4)
2 + σ15j

(7)
3

0 = τ14h
(3)
2 − σ24j

(3)
2

0 = σ24df
(6)
2 + τ23f

(6)
3 − χ222h

(3)
1 f

(4)
2 + σ24j

(6)
3

0 = τ23f
(4)
2 + σ33j

(4)
2

0 = −df (4)
2 + j

(4)
3

0 = −df (4)
3 + j

(4)
4

0 = dh
(3)
2 − j

(3)
3

0 = χ132h
(3)
2 f

(4)
1 − χ222h

(3)
1 f

(4)
2 − σ24j

(6)
3

0 = −χ132f
(4)
1 f

(4)
3 − χ222f

(4)
2 f

(4)
2 − σ24j

(7)
4

0 = χ132

[

h
(3)
2 f

(4)
2 − h

(3)
1 f

(4)
3

]

+ σ33j
(6)
4

(6.25)

The remaining Euler-Lagrange equations provide instead some useful direct constraints

on the currents, that will allow to neglect some terms in the action:



















j
(4)
1 = 0

j
(3)
1 = 0

j
(2)
1 = 0



















j
(2)
2 = 0

j
(4)
2 = 0

j
(3)
2 = 0

(6.26)

Notice that all of these equations bear an important similarity with the Bianchi identities

(6.23) in the fact that the fluxes only appear in the combinations present in the Bianchi

relations; for instance the equation for a component f
(6)
a of the RR flux F6 will only

contain quadratic terms of the form ∼ h(3)f (4). This is expected since, were the reduction

of the Bianchi identities to be fully carried out, the two sets of equation should coincide,

or rather (6.25) should coincide with a subset of the reduced Bianchi identities.

The matching between (6.25) and the reduced Bianchi identities (considering all torsionful
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combinations as ∝ ϕa and torsionless ones as ∝ Φa) allows to fix the unknown coefficients

mentioned before and incidentally provides some insight on the couplings. For instance,

the first line of (6.25) needs to be matched to the Φ5 terms of dF6 = J7 + H3F4 as it

contains the exterior derivative of f
(6)
1 ; this means that the following equations must be

equivalent:

0 = σ15df
(6)
1 + τ14f

(6)
2 − χ132h

(3)
1 f

(4)
1 − σ15j

(6)
2

0 =
(

df
(6)
1 + ℓ1f

(6)
2 − j

(6)
2

)

Φ5 − (ϕ1 ∧ ϕ4)h
(3)
2 f

(4)
0 − (ϕ2 ∧ ϕ3)

(

h
(3)
1 f

(4)
1 + h

(3)
0 f

(4)
2

)

−

− (Φ2 ∧ Φ3)
(

h
(3)
1 f

(4)
1 + h

(3)
0 f

(4)
2

)

(6.27)

Most of these terms vanish because they contain an f0 or a similarly vanishing flux, leaving

with the equivalence

σ15df
(6)
1 + τ14f

(6)
2 − χ132h

(3)
1 f

(4)
1 − σ15j

(6)
2 ⇐⇒ Φ5

(

df
(6)
1 + ℓ1f

(6)
2 − j

(6)
2

)

− (Φ2 ∧Φ3)h
(3)
1 f

(4)
1

(6.28)

Recalling that τ14 = ℓ1σ15, it is easy to see that these coincide under the condition

Φ2 ∧ Φ3 =
χ132

σ15
Φ5 . (6.29)

Doing the same for the others equations in (6.25) leads the following relations:

Φ2 ∧ Φ2 =
χ222

σ24
Φ4 σ15 = σ24 σ24 = −σ33 (6.30)

The later two in particular give new information on the couplings, allowing to further

lower the number of parameters in our TFT.

The set of equations (6.25) does not provide a unique solution in terms of the current for

all of the fluxes appearing in the action, implying that also this path is obstructed. In

order to proceed with our computation we assume quadratic terms in f, f to be subleading.

The reliability of this assumption is backed by the fact that the topological limit sets us

close to the boundary of the 5-dimensional external space, i.e. at scales where the RR

and NS fields become small since, as it is usually assumed in field theory,

lim
z−→∞

f (i)
µ1...µp

(x, z) = 0 . (6.31)

Truncating the equations at linear order bypasses the hindrance encountered in the pre-

vious subsection, meaning that we can straightforwardly reduce the Bianchi identities, at

the cost of our final result becoming blind to higher order corrections to the fluxes. The
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full set of linearized Bianchi identities is summed up in the following equations:







df
(i)
p = j

(i)
p+1

df(i)p = j
(i)
p+1 + (−1)p+1ℓi−pf

(i)
p+1

(6.32)

6.2.3 The SymTFT Action

The SymTFT is obtained applying Stokes theorem to the d + 2 dimensionally reduced

action, resulting in an integration domain on its boundary, that is in dimension d+ 1; to

do so we need to express the action as a total derivative.

Before doing so one needs to express the TFT action in terms of the sources using (6.32).

The first relation that we will use is fp ∝ jp, obtained from a combination the linearized

Bianchi identities for the f components with closure of the currents, reading

dfp = jp+1 ∝ djp (6.33)

up to a torsion coefficient. It is also possible to identify fp = d−1jp+1. This latter identifi-

cation is not as straightforward as it may seem. Observe that, stemming from an equation

between exterior derivatives, fp ∝ jp is completely blind to any closed component of jp

due to the derivation being nilpotent. Therefore if we expand the current in closed and

exact components the correct result would be:

jp = j(e)p + j(c)p (6.34)

fp ∝ j(e)p (6.35)

One can then consider the reduced Bianchi identities for fp, which equate df with a

combination of an external flux f and an external current, and get a relation of the form

dfp = jp+1 − ℓfp+1 = j
(c)
p+1 (6.36)

This relation is the reason why we restrained from applying the topological limit to the

bold fluxes as the derivative is actually subleading only in a fine tuned setting where the

current is almost purely exact. From (6.36) one can express the flux as

fp = d−1j
(c)
p+1 . (6.37)

Although it is usually an ill-defined operation, in this context there is a formal way

to define d−1, based on the observations done in [16] and detailed in appendix B. In

particular, the integration over torsional cycles of a δ-like source introduces an ambiguity

in the flux, allowing to redefine it as long as its exterior derivative coincide the current.
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Since we are interested in what types of brane interact in the anomaly theory, we will

neglect the (c/e) superscripts when writing the SymTFT action.

Performing the substitutions (6.35) and (6.37) minimizing the number of parameters by

means of the relations between the couplings found in previous sections, the action reads:

Sd+2 =

∫

M5

χ132

ℓ1

[

j
(3,e)
2 d−1j

(4,c)
2 d−1j

(4,c)
3 + d−1j

(3,c)
2 d−1j

(4,c)
2 j

(4,e)
3

]

− χ222

ℓ2
d−1j

(3,c)
2 j

(4,e)
2 d−1j

(4,c)
3 +

+
σ24
ℓ2

[

2j
(4,e)
2 j

(6)
3 − j

(4,e)
2 j

(6,e)
3 − j

(4,e)
2 j

(6,c)
3

]

− σ15
ℓ1

[

2j
(4,e)
3 j

(6)
2 − j

(4,e)
3 j

(6,e)
2 − j

(4,e)
3 j

(6,c)
2 +

+ 2j
(3,e)
2 j

(7)
3 − j

(3,e)
2 j

(7,e)
3 − j

(3,e)
2 j

(7,c)
3

]

=

=

∫

M5

χ132

ℓ1

[

j
(3,e)
2 d−1j

(4,c)
2 d−1j

(4,c)
3 + d−1j

(3,c)
2 d−1j

(4,c)
2 j

(4,e)
3

]

− χ222

ℓ2
d−1j

(3,c)
2 j

(4,e)
2 d−1j

(4,c)
3 +

+
σ24
ℓ2

j
(4,e)
2 j

(6)
3 − σ15

ℓ1

[

j
(4,e)
3 j

(6)
2 + j

(3,e)
2 j

(7)
3

]

(6.38)

where we neglected any term containing a ‘simple’ current j
(i)
a since they must be sub-

leading based on the identities df = j. Notice that the cubic terms resemble the total

derivative of (d−1j)3, except for the different coupling constants that precedes each term.

Via a by-parts integration one can actually show that these constants actually coincide

(neglecting L6 boundary terms):

χ132

ℓ1
=

1

ℓ1

∫

L6

ϕ1 ∧ Φ3 ∧ Φ2 =
1

ℓ1ℓ2

∫

L6

ϕ1 ∧ dϕ2 ∧ Φ2 =

= − 1

ℓ1ℓ2

∫

∂L6

ϕ1 ∧ ϕ2 ∧ Φ2 +
1

ℓ2

∫

L6

Φ2 ∧ ϕ2 ∧ ϕ2 =
χ222

ℓ2
.

(6.39)

The quadratic terms can instead be written as

j(i)a j
(k)
b = d

(

d−1j(i)a j
(k)
b

)

− (−1)ad−1j(i)a j
(k)
b+1 , (6.40)

where the second term can be neglected since it involves a ‘simple’ current. All of the

terms in the action are now written as exterior derivatives, allowing us to apply Stokes

theorem. The final result is the following AdS4 action:

SSymTFT =

∫

AdS4

χ132

ℓ1
d−1j

(3)
2 d−1j

(4)
2 d−1j

(4)
3 − σ24

ℓ2
d−1j

(4)
2 j

(6)
3 − σ15

ℓ1

(

d−1j
(4)
3 j

(6)
2 + d−1j

(3)
2 j

(7)
3

)

(6.41)

This is the final (restricted) form of the Symmetry TFT action and we can use it to

extract information on the generalized symmetries of the initial ABJ theory, as we will

see in section 6.4. In particular we will see that the quadratic terms correspond to the

BF term for the involved currents, while cubic ones are interpreted as anomalies.
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6.3 Completing the Action

6.3.1 The 0, 5-Sector

Now that the path to the SymTFT is clear, one can effortlessly include the neglected

homology classes of the internal geometry. First of all, let us complete the torsional

sector by including 0, 5-cycles, meaning that the expansions will be integrated with the

terms:

F (i) ⊃ f
(i)
i ∧ ϕ0 + f

(i)
i−1 ∧ Φ1 + f

(i)
i−5 ∧ ϕ5 + f

(i)
i−6 ∧ Φ6

J
(i)
i+1 ⊃ j

(i)
i+1 ∧ ϕ0 + j

(i)
i ∧ Φ1 + j

(i)
i−4 ∧ ϕ5 + j

(i)
i−5 ∧ Φ6

(6.42)

Retracing the reasoning followed in previous sections, one can recognize the relevant

couplings listed below:

τ05 , τ50 , σ06 , σ51

χ024 , χ015 , χ114 , χ231 , χ321

(6.43)

Through Leibniz rule one can easily see that χ015 is actually vanishing:

χ015 =

∫

L6

ϕ0 ∧ Φ1 ∧ Φ5 =
1

ℓ0

∫

L6

ϕ0 ∧ Φ1 ∧ dϕ4 =

= − 1

ℓ0

∫

∂L6

ϕ0 ∧ Φ1 ∧ ϕ4 +

∫

L6

Φ1 ∧ Φ1 ∧ ϕ4 = χ114 = 0 .

(6.44)

The same holds for χ231, which is instead related to a Φ3∧Φ3 = 0 form. Similar relations

will later allow us to relate χ couplings and thus merge terms in the final action like we

did for the cubic term of the restricted action. The 0, 5-cycles ultimately introduce the

following terms to the reduced action in 5 dimensions:

Sd+2 ⊃
∫

M5

τ05

[

−f (2)
2 f

(8)
3 + h

(3)
3 h

(7)
2

]

+ σ06

[

−f (2)
2 df

(8)
2 + h

(3)
3 dh

(7)
1

]

−

− χ024h
(3)
1 f

(2)
2 f

(6)
2 − χ321h

(3)
1 f

(2)
1 f

(6)
3 + χ114h

(3)
2 f

(2)
1 f

(6)
2 +

+ σ06

[

f
(2)
2 j

(8)
3 − f

(4)
4 j

(6)
1 − h

(3)
3 j

(7)
2

]

+ σ51

[

−f (8)
3 j

(2)
2 + h

(7)
2 j

(3)
3

]

(6.45)

By using the Bianchi identities one can then write the action in terms of the sources alone,

as done in the previous section, and then move down to AdS4:

Sd+2 ⊃
∫

M5

−χ024

ℓ0
d−1j

(3,c)
2 j

(2,e)
2 d−1j

(6,c)
3 +

χ321

ℓ2
d−1j

(3,c)
2 d−1j

(2,c)
2 j

(6,e)
3 +

χ114

ℓ1
j
(3,e)
2 d−1j

(2,c)
2 d−1j

(6,c)
3 −

− σ06
ℓ0

j
(4,e)
4 j

(6)
1 − σ51

ℓ0

[

j
(8,e)
3 j

(2)
2 − j

(7,e)
2 j

(3)
3

]

(6.46)
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The couplings of the cubic terms can actually be shown to coincide through by parts

integration, namely
χ024

ℓ0
=

χ114

ℓ1
=

χ321

ℓ2
, (6.47)

thus making the three terms add up to a total derivative. The quadratic terms can

instead be rewritten using Leibniz rule, obtaining a total derivative and a vanishing term

(proportional to a j). The 0, 5-cycles contribution to the SymTFT is then

SSymTFT ⊃ − 1

ℓ0

∫

AdS4

χ024d
−1j

(3)
2 d−1j

(2)
2 d−1j

(6)
3 + σ06d

−1j
(4)
4 j

(6)
1 + σ51

[

d−1j
(8)
3 j

(2)
2 − d−1j

(7)
2 j

(3)
3

]

(6.48)

6.3.2 Torsionless Cycles and RR Backgrounds

We now proceed to include even the non-torsional cycles (coming from the geometry of

CP 3) in the flux/current expansions, i.e the terms

F (i) ⊃ F
(i)
B

∑

a

f̃
(i)
i−a ∧ ψa

J
(i)
i+1 ⊃

∑

a

j̃
(i)
i+1−a ∧ ψa

As anticipated, the presence of torsion-free cycles is signaled by tilded external compo-

nents and indices (e.g. χ024̃ =
∫

ϕ0Φ2ψ4).

Based on the features of the underlying supergravity observed in section 4.2.2, the back-

ground contributions will be non-vanishing only for the RR fluxes F2 and F4 and, being

proportional to volume forms of cycles of the same degree as the flux they can be included

in the sum by writing them as

F
(2,4)
B = f̃

(2,4)
0 ∧ ψ2,4 . (6.49)

The appearance of non-zero f̃
(i)
0 terms does not contradict our previous statement because

these are not gauge-invariant components of the flux but rather integer numbers, as one

can deduce from (4.12). For i ̸= 2, 4 the 0-degree component is still set to be null. Since

they are coefficients, the background components will not be expressed in terms of the

sources in the final action, so that the interpretation of the terms they appear in is much

clearer.

Let us now examine the couplings that the torsionless sector contains. The basic defini-

tions for the couplings are the same as for the torsion-sector, e.g.

σãb =

∫

L6

ψa ∧ ϕb and χãbc =

∫

L6

ψa ∧ Φb ∧ ϕc . (6.50)
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Observe that any quadratic coupling related to torsionless cycles can be shown to be

vanishing or intrinsically associated to vanishing external components: σãb-type couplings

(and by extension, τ -like couplings) are boundary terms in L6 due to dψa = 0. The other

possible types of quadratic coupling, σãb and σãb̃, are not vanishing a priori, yet the terms

they are associated with always contain either a free j or j̃: both of these quantities are

killed by the topological limit because Bianchi identities set d(f, f̃) ∼ (j, j̃). It follows that

the cubic terms will provide both the anomalies and BF terms, the latter corresponding

to terms picking up a background component.

Following the same reasoning used in the previous sections one can deduce that χab̃c̃ =

χabc̃ = 0 due to being total derivatives and χabc̃ = 0 due to including multiple torsional

forms. This restricts the pool of relevant cubic couplings to the following three categories:

χab̃c̃ , χabc̃ , χãb̃c̃ . (6.51)

In term of the fluxes, the torsionless contribution to the reduced action reads:

Sd+2 ⊃
∫

M5

χ12̃3h
(3)
2

[

f̃
(2)
0 f

(6)
3 + f̃

(4)
2 f

(4)
1

]

− χ22̃2h
(3)
1

[

f̃
(2)
0 f

(6)
3 + f̃

(4)
2 f

(4)
2

]

− χ04̃2

[

h
(3)
1 f

(2)
2 f̃

(6)
2 +

+ h
(3)
1 f

(4)
4 f̃

(4)
0 + h

(3)
3 f

(4)
2 f̃

(4)
0

]

+ χ14̃1

[

h
(3)
2 f

(2)
1 f̃

(6)
2 + h

(3)
2 f

(4)
3 f̃

(4)
0 + h

(3)
2 f

(4)
3 f̃

(4)
0

]

+

+ χ10̃5h
(3)
2 f̃

(2)
2 f

(6)
1 − χ40̃2h

(3)
1 f̃

(2)
2 f

(6)
2 − χ02̃4h

(3)
3 f̃

(2)
0 f

(6)
2 − χ32̃1h

(3)
2 f̃

(2)
0 f

(6)
4 −

− χ02̃4̃h
(3)
3

[

f̃
(2)
0 f̃

(6)
2 + f̃

(4)
0 f̃

(4)
2

]

− χ20̃4̃h̃
(3)
3 f

(4)
2 f̃

(4)
0 − χ40̃2̃h̃

(3)
3 f

(2)
0 f̃

(6)
2 −

− χ0̃2̃4̃h̃
(3)
3

[

f̃
(2)
0 f̃

(6)
2 + f̃

(4)
2 f̃

(4)
0

]

,

(6.52)

which is then rewritten in terms of the currents using linearized Bianchi identities, result-

ing in

Sd+2 ⊃
∫

M5

χ12̃3

ℓ1
j
(3)
2

[

f̃
(2)
0 d−1j

(6)
4 + d−1j̃

(4)
3 d−1j

(4)
2

]

− χ22̃2

ℓ2
d−1j

(3)
2

[

f̃
(2)
0 j

(6)
4 + d−1j̃

(4)
3 j

(4)
2

]

−

− χ04̃2

ℓ0
d−1j

(3)
2

[

j
(2)
2 d−1j̃

(6)
3 + j

(4)
4 f̃

(4)
0

]

+
χ04̃2

ℓ0
j
(3)
3 d−1j

(4)
3 f̃

(4)
0 +

+
χ14̃1

ℓ1
j
(3)
2

[

d−1j
(2)
2 d−1j̃

(6)
3 + d−1j

(4)
4 f̃

(4)
0

]

− χ14̃1

ℓ1
d−1j

(3)
3 j

(4)
3 f̃

(4)
0 +

+
χ10̃5

ℓ1
j
(3)
2 d−1j̃

(2)
3 d−1j

(6)
2 − χ40̃2

ℓ1
d−1j

(3)
2 d−1j̃

(2)
3 j

(6)
2 +

χ02̃4

ℓ1
j
(3)
3 f̃

(2)
0 d−1j

(6)
3 +

+
χ32̃1

ℓ2
d−1j

(3)
3 f̃

(2)
0 j

(6)
3 +

χ02̃4̃

ℓ0
j
(3)
3

[

f̃
(2)
0 d−1j̃

(6)
3 + d−1j̃

(4)
3 f̃

(4)
0

]

−

− χ20̃4̃

ℓ2
d−1j̃

(3)
4 j

(4)
2 f̃

(4)
0 − χ40̃2̃

ℓ1
d−1j̃

(3)
4 f̃

(2)
0 j

(6)
2 −

− χ0̃2̃4̃d
−1j̃

(3)
4

[

f̃
(2)
0 d−1j̃

(6)
3 + d−1j̃

(4)
3 f̃

(4)
0

]

.

(6.53)
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Terms related to χabc̃ couplings can be paired and recognized as total derivatives of

∼ d−1j̃(d−1j)2, seeing as d(d−1j̃) is vanishing. The matching between the couplings ahead

of each term is again checked via by parts integration, leading to

χ12̃3

ℓ1
=

χ22̃2

ℓ2

χ04̃2

ℓ0
=

χ14̃1

ℓ1

χ32̃1

ℓ2
=

χ02̃4

ℓ0
χ10̃5 = χ40̃2 . (6.54)

Similarly, since they contain two d−1j̃, each χab̃c̃ term can be seen as a total derivative on

its own.

As we mentioned before, any term containing a background component, that is either

f̃
(2)
0 or f̃

(4)
0 , will act as a BF term with the background becoming part of the coupling

constant. There are many of these terms and they are not particularly interesting, hence

in the final action they will be gathered under the symbol BF [{j̃(i)a }].
The “torsion-free” sector of the SymTFT action is then

SSymTFT ⊃
∫

AdS4

χ12̃3

ℓ1
d−1j

(3)
2

[

d−1j̃
(4)
3 d−1j

(4)
2 + f̃

(2)
0 d−1j

(6)
4

]

+
χ04̃2

ℓ0
d−1j

(3)
2

[

d−1j
(2)
2 d−1j̃

(6)
3 +

+ d−1j
(4)
4 f̃

(4)
0

]

+
χ04̃2

ℓ0
d−1j

(3)
3 d−1j

(4)
3 f̃

(4)
0 +

χ02̃4

ℓ0
d−1j

(3)
3 d−1j

(6)
3 f̃

(2)
0 +

+
χ10̃5

ℓ1
d−1j

(3)
2 d−1j̃

(2)
3 d−1j

(6)
2 +

χ02̃4̃

ℓ0
d−1j

(3)
3

[

f̃
(2)
0 d−1j̃

(6)
3 + d−1j̃

(4)
3 f̃

(4)
0

]

+

+
χ20̃4̃

ℓ2
d−1j̃

(3)
4 d−1j

(4)
2 f̃

(4)
0 +

χ40̃2̃

ℓ1
d−1j̃

(3)
4 f̃

(2)
0 d−1j

(6)
2 +

+

∫

M5

χ0̃2̃4̃d
−1j̃

(3)
4

[

f̃
(2)
0 d−1j̃

(6)
3 + d−1j̃

(4)
3 f̃

(4)
0

]

.

(6.55)

Although we found no reason for it to be vanishing, the last line of this action is completely

decoupled from the torsional sector, therefore it should be irrelevant to the scope of the

SymTFT.

6.4 Defects in ABJ from the SymTFT

Now that all of the contributions have been included one can put all the pieces together

and write the full expression of the symmtery topological field theory action, i.e.

SSymTFT =

∫

AdS4

χ132

ℓ1
d−1j

(3)
2 d−1j

(4)
2 d−1j

(4)
3 − σ24

ℓ2
d−1j

(4)
2 j

(6)
3 − σ15

ℓ1

(

d−1j
(4)
3 j

(6)
2 + d−1j

(3)
2 j

(7)
3

)

−

− 1

ℓ0

{

χ024d
−1j

(3)
2 d−1j

(2)
2 d−1j

(6)
3 + σ06d

−1j
(4)
4 j

(6)
1 + σ51

[

d−1j
(8)
3 j

(2)
2 − d−1j

(7)
2 j

(3)
3

]}

+

+
χ12̃3

ℓ1
d−1j

(3)
2 d−1j̃

(4)
3 d−1j

(4)
2 +

χ04̃2

ℓ0
d−1j

(3)
2 d−1j

(2)
2 d−1j̃

(6)
3 +

+
χ10̃5

ℓ1
d−1j

(3)
2 d−1j̃

(2)
3 d−1j

(6)
2 +BF [{j̃(i)a }] .

(6.56)
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This action is quite cumbersome, yet one can observe that all of the cubic anomalous

terms involve the same types of objects: two 1-forms and a 2-form. It follows that they

will all be associated to the same type of anomaly and therefore the same symmetry

structure in the ABJ theory, although the defects would be built with respect to different

fields. The upshot of this observation is that it is possible to examine the global generalized

symmetries of the underlying 3d theory restricting the to a single anomalous term without

losing information. In particular we elect to analyze the following sector of SSymTFT :

−
∫

AdS4

χ024

ℓ0
d−1j

(3)
2 d−1j

(2)
2 d−1j

(6)
3 +

σ51
ℓ0
d−1j

(8)
3 j

(2)
2 +

σ24
ℓ2
d−1j

(4)
2 j

(6)
3 +

σ15
ℓ1
d−1j

(3)
2 j

(7)
3 (6.57)

Let us start from the quadratic couplings

SSymTFT ⊃
∫

AdS4

d−1j(i)a ∧ j
(k)
b . (6.58)

For magnetic sources J (i,k) = δ(W (i,k)) an expression of this form can be interpreted as

the linking number between the support of the two extended objects. In fact the primitive

d−1j of a δ-like source is nothing but a step function supported on the region bounded

by the brane, therefore the integration will count the intersection between a brane and

the bulk delimited by the other, i.e. the linking number Link(W (i),W (k)). Hence the

appearance of terms of the form (6.58) in the action signals the linking between an a-

brane and a b-brane in AdS4.

The discrete nature of the linking number suggests that the symmetry connected to the

brane should be discrete too. This intuition is confirmed by writing the quadratic term

as
∫

AdS4

d−1j(i)a ∧ d(d−1j
(k)
b ) , (6.59)

which is easily recognized as a (b − 1)-form BF action as presented in section 2.1.2.

The appearance of these terms tells us that we are dealing with higher form discrete

symmetries of degrees (a− 2) and (b− 2) in the 4-dimensional theory, that will then need

to be projected onto Bsym. Notice that not all of these symmetries will carry over to the

ABJ theory since the inflow paradigm only creates a connection between the anomalous

terms of the two theories.

The anomalous cubic term, i.e.

SSymTFT ⊃
∫

AdS4

d−1j(i)a ∧ d−1j
(k)
b ∧ d−1j(m)

c , (6.60)

has a similar interpretation as the intersection between a brane and the junction between

the other two, meaning that the brane-junction is charged under the flux associated to

the first brane. The charge will correspond with the discrete parameter χabc/ℓa attached
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to the anomaly.

The anomaly in the SymTFT contains three objects of form degrees 1, 1 and 2 respectively:

according to previous observation on the quadratic terms and to the characterization given

in section 2.1.1, these will be the currents associated to two discrete 0-form symmetries

and a 1-form discrete symmetry, resulting in the anomalous global symmetry group

Z
(0)
ℓi

× Z
(0)
ℓj

× Z
(1)
ℓk

, (6.61)

with ℓi,j,k = 2 being the torsional degrees appearing in the BF term of each field appearing

in the anomaly.

As stated many times before, in order to see how these “inflow” to the ortho-symplectic

theory one needs to select a specific gapped boundary condition Bsym
S , which select the

symmetry structure S. How to select the correct boundary conditions to achieve a specific

symmetry structure is beyond the scope of our research, however we will sketch the effect

this choice has on the final SDOs. Let us consider, for instance, the case in which all of

the brane currents projects maintaining their freedom, i.e. the case where all of the d−1j(i)a

fields are subject to Neumann boundary conditions on Bsym
S . d−1j̃ can then be used to

construct defect operators acting in three dimensions, namely

U (2)
α (Σ2) = e2πiα

∫

∗d−1j
(2)
2

U (3)
α (Σ′

2) = e2πiα
∫

∗d−1j
(3)
2

U (6)
α (Σ1) = e2πiα

∫

∗d−1j
(6)
3

, (6.62)

with the supports Σ2, Σ′
2 and Σ1 coinciding with the projection of the brane living in

AdS4. These SDOs signal the presence of two 0-form and a 1-form discrete symmetry in

the superconformal theory.

This result is in line with the results of [5] for the SO(2N)2k × USp(2N)−k variant of

the ortho-symplectic ABJ theory: in that paper the theory was associated with a 1-form

discrete symmetry Z1
2 and two 0-form Z2 symmetries associated with charge and magnetic

conjugation.

If one were to choose a different Bsym
S , one or more fields would be subject to Dirichlet

boundary conditions, thus “freezing” into a charged object in the projection, breaking

the parts of the global group (6.61) connected to such branes. This is also in agreement

with what was found in [5] seeing as any ortho-symplectic ABJ variant considered in that

paper has global symmetries contained in (6.61).
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7 Conclusions and Outlooks

Our research successfully lead to the construction of a theory, the SymTFT, that en-

codes the symmetry structure of the original ABJ theory, revealing the presence of three

distinct discrete p-form symmetries (two with p = 0 one with p = 1) in the 3-dimensional

QFT. The symmetries we detected are compatible with the results obtained by Mekareeya

and Sacchi in [5] an it would be interesting to investigate the choice of gapped boundaries

Bsym that would lead to 3d-ABJ theories with symmetry structures coinciding with those

of the different variants considered by the authors.

Beside revealing the symmetries, the method employed in our research and developed in

[10][2] provides the means to also reconstruct the topological defect operators associated

with them by projecting the SDOs of the SymTFT on the symmetry boundary.

These insights came at the cost of some challenges, one of which encountered when inte-

grating out the fluxes from the (d+2)-dimensional action: both routes aimed at expressing

the external flux components in terms of the currents were subject to some obstruction.

However, a deeper understanding of the topology of the internal manifold CP 3/Z2 would

fix the “unknown” parameters appearing in the reduced Bianchi identities, allowing to

obtain a full set of exact equations of motion for the fluxes. It would be interesting to

investigate if and how the O(f 2, f2) terms appearing in these equations affect the symme-

try theory and thus the results of our analysis.
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A CP 3/Z2 Topology

This chapter is dedicated to reviewing the reasoning that lead to the identification

of the cycles that were included in the expansion of the fluxes and currents used in the

compactification procedure. This discussion is aimed at merely revealing the presence of

cycles in Hp(CP
3/Z2,Z) rather than achieving detailed information on their properties.

A.1 Torsional Cycles

To identify the torsional cycles of the orbifold that makes up the internal geometry of

our supergravity background, let us start with an observation on the “unfolded” manifold

CP 3, which is defined as the space of lines in C4 that pass through the origin and can be

expressed as

CP 3 = S7/U(1) . (1.1)

It can be shown that by itself the complex projective space CP 3 is torsion-free, meaning

that any torsional cycle in CP 3/Z2 will be wrapped around the single “hole” produced by

the Z2 orbifold of the space. As a consequence there can at most be one p-dimensional

independent torsional cycle, modulo multiple windings, meaning that

Torp(CP
3/Z2,Z) ⊂ Z2 ,with p ∈ [0, 5] .

Therefore from here on out the internal forms ϕ will be identified by their respective

form-degree.

We now need to identify which cycles are actually present in the internal space. To do so

we will make use of a property known as Poincaré duality:

Theorem 2 (Poincaré Duality for Torsional Classes) In a d-dimensional closed man-

ifold Md the torsional subgroups are related by

Torp(Md,Z) ≃ Torn−p−1(Md,Z) , (1.2)

which establishes a duality relation between cycles. Dual cycles also share the same tor-

sional degree ℓ.

As stated in [4], a torsional cycle belonging to the homology class H3(CP
3/Z2,Z) can

be obtained by S1-fibration of a CP 1/Z2 2-cycle. One can then deduce the existence of

torsional 2-cycles by means of Poincaré duality, which will share the same torsional degree

as its dual (ℓ2 = ℓ3 = 2).
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Existence of a torsional 1-cycle can be confirmed by observing that CP 1/Z2 ⊂ CP 3/Z2

actually coincides with RP 2, which is known to have a twisted geometry (often repre-

sented as a Boy surface); such a twisted surface allows to trace a non-orientable “ring”

displaying torsional behaviour [20]. Using once again Poincaré duality, one deduces that

there exist also torsional 4-cycles in CP 3/Z2, with ℓ4 = ℓ1 = 2.

Though it might seem counter-intuitive, the presence of points with non-trivial torsion,

that is torsional 0-cycles, cannot be ruled out a priori. As a matter of fact, their appear-

ance in CP 3/Z2 can be deduced from that of torsional 5-cycles. The latter existence is

granted by the following corollary of the universal coefficient theorem:

Corollary 1 For a closed connected d-manifold the torsional subgroup of Hd−1(Md,Z)

is empty if the space is orientable. Otherwise, in the case of a non-orientable manifold,

Tord−1(Md,Z) = Z2 [19].

In the case of CP 3/Z2, i.e. a non-orientable 6-manifold, this means that H5(CP
3/Z2,Z)

has torsional subgroup Tor5(CP
3/Z2) = Z2. By Poincaré duality one can then confirm

the presence of 0-cylces too, with ℓ0 = ℓ5 = 2.

These results mean that a complete expansion of the fluxes requires the inclusion of all

the terms listed below:

• p = 0 torsional cycles associated with the couple (ϕ0,Φ1)

• p = 1 torsional cycles associated with the couple (ϕ1,Φ2)

• p = 2 torsional cycles associated with the couple (ϕ2,Φ3)

• p = 3 torsional cycles associated with the couple (ϕ3,Φ4)

• p = 4 torsional cycles associated with the couple (ϕ4,Φ5)

• p = 5 torsional cycles associated with the couple (ϕ5,Φ6)

A.2 Closed Cycles

A full expansion on the cycles of the internal space also needs to include cycles with

trivial torsion (independent from the Φ forms belonging to torsional couples). According

to CP 3 geometry, these cycles are associated with even-dimensional closed forms:

dψ0,2,4,6 = 0 (1.3)

The 6- and 0-forms are of clear interpretation, seeing as they are the volume form of the

whole space, canonically normalized so that it trivially integrates to 1 over the full space,

and a δ-like form supported on a point.
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The remaining forms, ψ4 and ψ2, correspond to the 4-dimensional CP 2 and to the 2-

dimensional CP 1/Z2 cycles respectively.

These same cycles are used to specify the background fluxes F
(i)
B for the Ramond-Ramond

fluxes. As mentioned before in fact, these are proportional to the volume form of an i-cycle

in the internal geometry.
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B On the Inverse of Exterior Derivatives

This appendix is dedicated to clarifying the meaning of the symbol d−1 used in the

SymTFT action. This discussion is based off of the observations made on the subject by

the authors of [16].

The inverse d−1 of the exterior derivative is a generally ill-defined operation, however in

the case of our analysis, its appearance is related to the equation df = j, which is the

result of the integration over torsional cycles of dFp = Jp+1, with the magnetic current

in the right-hand-side being a δ-like function. This allows us to define d−1 through a

cohomology argument.

Theorem 3 (Universal Coefficient) Given a manifold Md, the torsion cohomology

group of degree (p + 1) is isomorphic to the space of (discrete) homomorphisms of the

group of torsional p-cycles:

Torp+1(Md,Z) ≃ Hom(Torp(Md,Z),Q/Z) . (2.1)

An (p+1)-form in Torp+1(Md,Z) can then be understood as a map between p-cycles and

phases, with each element of the same homology class corresponding to the same phase:

πn−1 −→ e2πiη(πp) (2.2)

One can then associate an (p+1)-form δp+1 with an element in the torsional cohomology

by choosing a p-form such that dFp = δp+1 and defining the phase corresponding to the

p-cycle as

η(ϕp) =

∫

ϕp

Fp =

∫

ϕ′
p

Fp +

∫

Ωp+1

δp+1 (2.3)

where Ωp+1 is a chain connecting the two cycles, which belong in the same torsion class.

Since the phase is independent from the cycle, this expression isn’t affected by a redefini-

tion of Fp, allowing us to identify it with a flux and write it as Fp = d−1δp+1 = d−1Jp+1.

We can then extend this notation to the reduced relation, thus giving (6.37).
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